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Texture is encoded in precise temporal spiking
patterns in primate somatosensory cortex
Katie H. Long1,2, Justin D. Lieber3 & Sliman J. Bensmaia 1,4,5✉

Humans are exquisitely sensitive to the microstructure and material properties of surfaces. In

the peripheral nerves, texture information is conveyed via two mechanisms: coarse textural

features are encoded in spatial patterns of activation that reflect their spatial layout, and fine

features are encoded in highly repeatable, texture-specific temporal spiking patterns evoked

as the skin moves across the surface. Here, we examined whether this temporal code is

preserved in the responses of neurons in somatosensory cortex. We scanned a diverse set of

everyday textures across the fingertip of awake macaques while recording the responses

evoked in individual cortical neurons. We found that temporal spiking patterns are highly

repeatable across multiple presentations of the same texture, with millisecond precision. As a

result, texture identity can be reliably decoded from the temporal patterns themselves, even

after information carried in the spike rates is eliminated. However, the combination of rate

and timing is more informative than either code in isolation. The temporal precision of the

texture response is heterogenous across cortical neurons and depends on the submodality

composition of their input and on their location along the somatosensory neuraxis. Fur-

thermore, temporal spiking patterns in cortex dilate and contract with decreases and

increases in scanning speed, respectively, and this systematic relationship between speed

and patterning may contribute to the observed perceptual invariance to speed. Finally, we find

that the quality of a texture percept can be better predicted when these temporal patterns are

taken into consideration. We conclude that high-precision spike timing complements rate-

based signals to encode texture in somatosensory cortex.

https://doi.org/10.1038/s41467-022-28873-w OPEN

1 Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA. 2Medical Scientist Training Program, University of Chicago, Chicago,
IL, USA. 3 Center for Neural Science, New York University, New York, NY, USA. 4Department of Organismal Biology and Anatomy, University of Chicago,
Chicago, IL, USA. 5Neuroscience Institute, University of Chicago, Chicago, IL, USA. ✉email: sliman@uchicago.edu

NATURE COMMUNICATIONS |         (2022) 13:1311 | https://doi.org/10.1038/s41467-022-28873-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28873-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28873-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28873-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28873-w&domain=pdf
http://orcid.org/0000-0003-4039-9135
http://orcid.org/0000-0003-4039-9135
http://orcid.org/0000-0003-4039-9135
http://orcid.org/0000-0003-4039-9135
http://orcid.org/0000-0003-4039-9135
mailto:sliman@uchicago.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Spike timing at the level of single milliseconds has been
shown to carry stimulus information in the somatosensory
nerves1. For example, the frequency composition of skin

vibrations is encoded in the phase-locked responses of individual
nerve fibers2–4, observed for frequencies up to 1000 Hz in a
subpopulation of nerve fibers, namely Pacinian corpuscle-
associated (PC) fibers. Temporal coding of vibratory frequency
is also observed in somatosensory cortex and is particularly
prominent in neurons that receive a preponderance of their input
from PC fibers5,6. The preservation of spike timing in cortex at
this level of precision is surprising given that these signals have
already passed through several synapses, including the cuneate
nucleus, and the thalamus7–10. Note, however, that similar pre-
cision is observed in rodent barrel cortex11–14 and along the
auditory neuraxis with equivalent synaptic passes1,15–17.

By extension, the perception of texture—particularly of fine
texture—is supported by a temporal code. Indeed, scanning a
textured surface across the fingertip leads to the elicitation of
vibrations in the skin that reflect the spatial structure of the
surface18,19 and depend on the speed at which it is scanned20. The
frequency composition of these texture-elicited vibrations is
encoded in temporally patterned responses in vibration-sensitive
nerve fibers, including PC fibers21. As a result, afferent responses
are much more informative about texture identity when spike
timing is taken into consideration than when it is not21. The
responses of neurons in somatosensory cortex, particularly those
that receive strong PC input, have also been shown to exhibit
temporal patterning22. However, the reliability of this patterning,
its informativeness about texture, or its relation to perception
have never been investigated. To fill these gaps, we first gauge the
precision and reliability of the temporal patterning in cortical
responses to texture. Second, we assess the degree to which and
the temporal resolution at which texture information is encoded
in temporal spiking patterns in cortex. Third, we examine how
texture-specific temporal spiking patterns change with changes in
scanning speed. Finally, we examine the degree to which temporal
spiking patterns are predictive of the resulting texture percepts.

Results
We recorded the responses of 141 neurons in somatosensory
cortex (SC) of 2 male rhesus macaques—35 in Brodmann’s area
3b, 81 in area 1, and 25 in area 2—as we scanned each of 59
diverse, everyday textures across the fingertips with precisely
controlled speed and contact force22,23 (Supplemental Table 1).

Reliability of temporal patterns in somatosensory cortex. A
temporal spiking pattern signals the presence of a stimulus to the
extent that the pattern is reliably evoked when the stimulus is
presented. In the peripheral nerves, the temporal patterning of
texture-evoked responses is nearly identical across multiple
repeats, yielding a robust temporal code of texture identity21.
Having observed temporal patterning in the cortical responses to
textures (Fig. 1A), we quantified the reliability of this patterning
across repeated presentations of the same texture and assessed its
temporal fidelity. To these ends, we computed the dissimilarity
between the responses of individual cortical neurons to repeated
presentations of the same texture using a spike distance metric,
which computes the cost of transforming one spike train into
another24. Varying the cost of shifting spikes in time allows us to
manipulate the temporal resolution of this metric: When the cost
is high, even small inconsistencies in spike timing drive large
dissimilarity values; when the cost is zero, distance values are
driven only by differences in spike count. If responses are tem-
porally precise across repeated presentations of the same stimu-
lus, the pairwise dissimilarity of the responses should be low, even

when evaluated at a high temporal resolution. Even for large
shifting costs, however, spike distance is driven in part by spike
count. To isolate the contribution of spike timing to dissimilarity,
then, we computed the spike distance metric for rate-matched
simulated responses whose temporal precision could be system-
atically manipulated. In one case, responses were simulated using
a Poisson model, thereby eliminating any information in spike
timing. In the other case, a measured response was repeatedly
jittered by a specific amount (Fig. 1B).

We first assessed each neuron’s temporal precision by
comparing the variability of its responses to that of their rate-
matched jittered counterparts (Fig. 1B). For each neuron and
texture, we then identified the amount of imposed jitter at which
the temporal variability across simulated responses exceeded that
of the measured responses (Fig. 1C–F). For each neuron, the
median of the distribution of temporal resolutions across textures
was then taken to be the temporal resolution (Fig. 1E). We
repeated this repeatability analysis using the Poisson neurons to
assess the resolution this approach would yield in the absence of
temporal patterning. We found that cortical neurons produce
more temporally precise responses than do rate-matched Poisson
neurons (Wilcoxon signed-rank test, Z= 9.4, p < 0.0001).
Furthermore, the temporal resolution (or precision) varied widely
across neurons, though most neurons (75%) yielded temporal
resolutions better than 5 ms (Fig. 1F).

Rate vs timing codes. For a temporal pattern to signal the pre-
sence of a stimulus, it must not only be reliable but also stimulus
specific. With this in mind, we assessed the degree to which we
could classify textures based on temporal spiking patterns. To
isolate the contribution of timing to texture identification, we
implemented a classifier based on pairwise correlations of single-
trial time-varying responses. In brief, a texture was correctly
classified to the extent that the time-varying response it evokes—
the smoothed time-varying firing rate—was consistent across
repeated presentations and different from responses evoked by
other textures. For this analysis, we used cross-correlation as
a metric of similarity between spike trains to eliminate
information carried by the firing rate. By smoothing the spike
trains with filters of varying width, we could vary the
temporal resolution at which spiking similarity was compared
across trials (Supplemental Fig. 2, Supplemental Fig. 3). In
agreement with our findings from the repeatability analysis, we
found that classification performance peaked at a high temporal
resolution (<5 ms) in individual cortical cells (Fig. 2A) and
resolutions were similar to those found in the repeatability ana-
lysis (Supplemental Fig. 4). As expected, simulated responses of
Poisson neurons, which by design do not contain any temporal
patterning, yielded chance classification performance (Fig. 2A,
dashed lines). To further validate this approach, we verified that
the classifiers’ performance peaked at the resolution matching
the amount of jitter introduced in the simulated responses
(Supplemental Fig. 5).

Next, we compared the informativeness of rate, timing, and
their combination based on classification performance. Because
neurons vary in the precision of their temporal patterning, we
evaluated the combination of rate and timing at each neuron’s
optimal resolution. We also allowed the contribution of rate and
timing to vary to optimize classification performance. We found
that, at the single-cell level, classification performance based on
rates alone was poorer than classification based on timing alone
(Wilcoxon signed-rank test, Z= 9.7, p < 0.0001) but performance
with both rate and timing exceeded that with either code
(Friedman’s test comparing rate, timing, and their combination;
χ2= 255.26, p < 0.0001; post-hoc 1-sided Wilcoxon signed-rank
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test: combined vs. rate, z=−10.26, p < 0.0001; combined vs.
timing, z=−10.26, p < 0.0001; Fig. 2B), and this was true for
every neuron. Note that cross-validated classification mitigates
the advantage of overfitting multiple input features.

Finally, we assessed how these coding schemes scaled at the
population level by assessing classification performance based on
temporal and rate codes across neuronal samples of increasing
size. To this end, we averaged the (inverted then standardized)
correlation and rate difference for each pair of textures across the
neuronal sample and then computed a weighted sum of the two
distance matrices to obtain a distance metric that integrates
timing and rate. We found that classifiers with both rate and
timing reached higher asymptotic performance than did classi-
fiers with rate or timing in isolation (permutation test comparing

population classification using 140 cells, p < 0.0001 for both
combined vs. rate and combined vs. timing) and that timing-
based classifiers leveled off at a lower performance level than did
rate-based classifiers (permutation test, p < 0.0001; Fig. 2C).
Classifiers with both rate and timing also reached higher
performance with fewer neurons: To achieve 90% classification
accuracy required 29 neurons with rate alone and 13 neurons
with both rate and timing; timing alone never yielded that level of
accuracy. We also evaluated the performance of a population
classifier in which timing and rate were equally weighted and
found performance to be nearly indistinguishable from the
combination with optimized weights (permutation test compar-
ing population classification using 140 cells, either with optimal
weights or with 50/50 weights, p= 0.69; Supplemental Fig. 6).

Fig. 1 Responses in somatosensory cortex are temporally precise. A Responses of ten example neurons to five repeated presentations of nine (of 59)
textures. Each color denotes a different texture, each row denotes the response of an individual neuron across five repeated presentations of that texture.
The bottom row of responses, colored in black, is from the example cell used in (B–F) of this figure. For more example responses, see Supplemental Fig. 7.
B Response of one example neuron to 5 repeated presentations of one texture (an upholstery fabric). The asterisk indicates the trial response (trial #2)
that was used to generate the simulated (jittered) responses. Colored rasters represent rate-matched simulated responses with different amounts of jitter.
The gray raster is a rate-matched response from a Poisson model. Spike distances represent mean pairwise values across the five measured or simulated
responses. C To assess the match in the variability of measured and simulated responses, we first divide the spike distance by the mean firing rate across
repetitions and subtract this value from its counterpart calculated from the simulated response. The point at which this line crosses the x-intercept
represents the point at which the measured responses become more temporally reliable than their simulated counterparts. The black trace is derived from
the measured response of the neuron and the gray trace is derived from a rate-matched Poisson model to ‘Ruby Dots’. D The difference in the variability of
the measured and simulated responses as a function of jitter for all textures. Each point is one texture. For most textures, measured responses are more
reliable than simulated responses with jitter set to 5 ms. E Histogram of the resolutions estimated from the responses to all repeated presentations of all 59
textures of the example neuron (black) and its rate-matched Poisson counterpart (gray). F Cumulative distribution of the temporal resolutions, determined
using the methods shown in (B–E), of all neurons (measured, black) and their rate-matched Poisson models (Poisson, gray).
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Temporal coding depends on submodality input. The glabrous
skin of the hand is innervated by three main classes of nerve fibers,
each of which terminates in a different type of mechanoreceptor,
responds to a different aspect of skin deformation25, and makes a
distinct contribution to texture coding21,26. PC fibers transduce
texture-elicited vibrations into highly precise temporal spiking
patterns; slowly-adapting afferents type-1 (SA1) fibers respond to
slower, larger skin deflections and, accordingly, reflect coarse
textural features in their spatial pattern of activation; rapidly
-adapting (RA) fibers exhibit response and texture-coding prop-
erties that are intermediate between those of PC and SA1 fibers21.

Individual cortical neurons receive convergent input from
multiple tactile submodalities (SA1, RA, PC)6,27,28 and exhibit
highly idiosyncratic responses to texture that can be explained in
part by the nature of their afferent input22,23. For example,
cortical cells that receive dominant input from PC fibers are more
likely to exhibit temporally patterned responses to textures than
are cells that receive dominant input from SA1 fibers22.

With this in mind, we investigated the relationship between the
submodality composition of a neuron’s input and its tendency to
convey texture information via precise spike timing. To this end,
we first grouped cortical cells as SA1-like, RA-like, or PC-like
based on their pattern of texture-evoked firing rates. In brief, we
regressed the firing rates of each cortical neuron on the mean
firing rates of the three classes of nerve fiber evoked by a common
set of textures and identified populations of neurons with a high
standardized SA1, RA, or PC regression coefficient (>0.8).
Importantly, the strategy to group cortical neurons by dominant
submodality did not take temporal patterning into consideration.

First, we found differences in the informativeness of spiking
patterns of PC-like, RA-like, and SA1-like cortical neurons as
evidenced by differences in timing-based classification perfor-
mance (n= 12 PC-like cells, 12 RA-like cells, and 25 SA1-like
cells; Kruskal–Wallis test comparing best performance of
individual cells across groups, H(2) = 12.13, p= 0.002). Spiking
patterns of PC-like cortical cells were far more informative than
were those of SA1-like, as expected given the relative propensities
of PC and SA1 nerve fibers to exhibit temporal patterning3,21

(1-sided Mann–Whitney U test comparing the best classification
performance of PC-like and SA1-like neurons across resolutions,
U= 330, p < 0.001; Fig. 3A). RA-like cells yielded intermediate
performance, but the differences did not reach statistical
significance (PC-like vs. RA-like cells, U= 171.5, p= 0.11; SA1-
like vs. RA-like cells, U= 189.5, p= 0.02). Notably, spike timing
in PC-like, SA1-like, and RA-like cells was more informative than
was that in rate-matched Poisson models (Wilcoxon signed-rank
test, PC-like: U= 78, p < 0.001; SA1-like: z= 4.4; p < 0.0001, RA-
like U= 78, p < 0.001). Second, the informativeness of the
responses of PC-like neurons always peaked at high temporal
resolutions while not all SA1-like or RA-like responses did
(Fig. 3B). Note that the high temporal resolutions of many SA1-
like neurons may reflect the contribution of (non-dominant) PC/
RA input or the maintained temporal reliability of exceptionally
precise SA1 input (Supplemental Fig. 8).

Next, we compared the temporal coding in cortex to its
peripheral counterpart using a shared set of 24 textures
(Supplemental Fig. 8). We found striking similarities between
PC-like cortical cells and PC afferents: they yielded similar
classification performance (Mann–Whitney U test: U= 126.5,
p= 0.61) with similar optimal temporal resolutions (median of
1 ms in both cortex and periphery). Likewise, temporal coding
was weak (as indexed by timing-based classification performance)
for both SA1 fibers and SA1-like cortical neurons, though spike
timing in the former was more informative than in the latter
(U= 366, p < 0.0001). The informativeness of timing of RA-like
neurons was intermediate between that of PC-like and SA1-like
neurons but far weaker than that of RA fibers (U= 118, p= 0.03).
The contrast between the three populations of nerve fibers and

their downstream targets was also observed at the population
level. In small populations of both PC fibers and PC-like cortical
cells, timing classification exceeded rate classification (permuta-
tion test comparing rate classification to timing classification in
groups of 5 cells, peripheral: p < 0.01, cortical: p < 0.0001; Fig. 3D,
Supplemental Fig. 9B). In contrast, populations of SA1 fibers and
SA1-like cortical cells yielded better classification performance
with rate than with timing (peripheral: p < 0.0001, cortical:

Fig. 2 Temporal spiking patterns in somatosensory cortex carry texture information. A Classification performance (percentage of textures correctly
classified from the full texture set, comprising 59 unique textures) is best at high temporal resolutions (1–5ms). The temporal resolution denotes the
standard deviation of the Gaussian filter used to smooth the neuronal response. Performance derived from example neurons is shown in black and dark
gray, mean performance across all cortical neurons is shown in blue, mean performance from rate-matched Poisson simulated neurons is shown in light
gray. Simulated Poisson responses, which do not carry texture information in their timing, yield chance classification performance (1/59 textures ~ 2%).
Shaded area denotes the standard error of the mean. B Single-cell classification performance for all 141 neurons for rate (red), timing (blue), and their
optimal combination (purple). Dark points denote the example neurons shown in panel A. Violin plots show all values. Boxplots indicate median (center),
interquartile range (boxes), and maximum and minimum (whiskers). C Mean classification performance with neuronal populations of different sizes;
shaded area denotes standard deviation across 1000 iterations at each sample size. Timing-based classification (blue) yields better performance than does
its rate-based counterpart (rate) for very small groups of cells, but timing-based performance levels off at a much lower level than does rate-based
performance. Rate is nearly perfect with even a small population of 50–100 cells, but a combination of rate and timing (purple) is better for neuronal
populations of any size and reaches 90% performance with only 13 cells (as compared to rate, which requires 29 cells).
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p < 0.0001; Fig. 3C, Supplemental Fig. 9A). As was the case with
their PC and PC-like counterparts, populations of RA fibers and
RA-like cortical cells also yielded better classification performance
with timing than with rate (peripheral: p < 0.0001, cortical:
p < 0.0001; Fig. 3E, Supplemental Fig. 9C). As was found in the
analysis of single cells, the informativeness of spike timing in
populations of RA-like neurons was lower than was its afferent
counterpart, suggesting a loss of fidelity in RA-based texture
signals as they ascend the neuraxis. Neurons whose inputs were
not dominated by any one modality tended to be more
informative in their rates than timing (Fig. 3F).

These results suggest that the temporal coding properties of
cortical neurons are to a large degree inherited from their inputs.

Temporal precision decreases at successive stages of cortical
processing. Nerve fibers exhibit responses to vibrations that are

more precisely phase-locked than do neurons in somatosensory
cortex. This loss in spike timing precision is also observed at
successive stages of processing in cortex5. Indeed, a subpopula-
tion of neurons in Brodmann’s area 3b—the first stage of cortical
processing—exhibits entrained responses to sinusoidal stimula-
tion at frequencies up to 800 Hz; neurons in area 1, a downstream
target of area 3b, are less susceptible to high-precision temporal
patterning, and neurons in area 2 even less so. Accordingly, we
examined whether this progressive loss of temporal precision was
also observed in cortical responses to texture. As expected, the
preponderance of neurons that carry information about texture in
spike timing decreased at successive stages of processing, as evi-
denced by a decrease in timing-based texture classification across
areas (Kruskal–Wallis test comparing areas 3b, 1, and 2, H(2) =
9.37, p < 0.01; post-hoc Mann–Whitney U tests comparing areas
3b and 1, U= 2.0, p= 0.02, and areas 1 and 2, U= 1.7, p= 0.04;
Fig. 4A, Supplemental Fig. 10). The weaker temporal patterning

Fig. 3 Informativeness of spike timing is related to the submodality composition of a neuron’s input. A Mean classification performance for individual
PC-like neurons (orange, n= 12), SA1-like neurons (green, n= 25), and RA-like neurons (blue, n= 12). PC-like and RA-like responses allow for better
classification than do SA1-like responses, and all are better than rate-matched simulated Poisson responses (dashed lines). Shaded regions denote the
standard error of the mean across neurons. B Cumulative distribution of the peak temporal resolution for individual neurons. C–F Population classification
using rate (red), timing (blue), and both (purple) for SA1-like neurons (C), PC-like neurons (D), RA-like neurons (E), or the remaining 92 unclassified cells
(F). Shaded regions denote the standard deviation across 200 iterations.
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in higher cortical areas was not accompanied by a decrease in
temporal resolution, however (Kolmogorov–Smirnov test com-
paring temporal resolutions in areas 3b and 2, D= 0.26, p= 0.23;
Fig. 4B), suggesting that, to the extent that temporal patterns
propagate, their timescale is preserved. Notably, differences in the
prevalence of temporally precise neurons across cortical fields are
not driven by differences in submodality input. That is, the
temporal patterning in area 3b is more informative than its
counterpart in areas 1 and 2 despite the fact that no neurons in
area 3b were classified as receiving dominant input from PC
fibers and only two received dominant input from RA fibers
(Supplemental Fig. 10). In other words, the incidence of PC-like
neurons in areas 1 and 2 was not sufficient to overcome the
overall decrement in temporal precision.

Robustness of temporal codes across changes in scanning
speed. In the nerve, temporal spiking patterns reflect vibrations
elicited in the skin as the surface is scanned across it21. These
texture-elicited vibrations depend not only on the texture19 but
also on the speed at which it slides across the skin20. Indeed,
texture-elicited skin vibrations systematically dilate and contract
with decreases and increases in scanning speed, respectively, as do
the evoked temporal spiking patterns in the nerve. In contrast, the
perception of texture remains remarkably invariant to changes in
scanning speed despite these speed-dependent changes in afferent
responses29–31. The systematic effects of speed on temporal pat-
terning can be reversed by multiplying the inter-spike intervals by
the speed, thereby expressing spike trains in space rather than
time32. To test the impact of changing scanning speed on texture-
elicited temporal spiking patterns, we recorded the responses of a
subset of cortical neurons as 10 textures were scanned across the
fingertip at a range of behaviorally relevant speeds (60 to
120 mm/s)33. We then examined the degree to which the tem-
poral patterning in the cortical response was speed-dependent
and assessed whether texture information could be extracted from
these temporal patterns across speeds.

First, we replicated the finding, documented for tactile nerve
fibers, that texture-elicited temporal spiking patterns scale
systematically with scanning speed (Fig. 5A). Indeed, spikes
evoked by a given texture at different speeds could be aligned by
expressing the neuronal response in space rather than time. To
quantitatively assess the impact of scanning speed on the
temporal code for texture, we trained timing-based classifiers
on responses at one speed (training speed) and tested them at
other speeds. Without warping the spike trains by speed,

classification was approximately at chance level (Fig. 5B, left;
Fig. 5C). When spike trains were warped by speed, the peak
performance of cross-speed classifiers was much closer to that of
within-speed classifiers (Fig. 5B, right, Fig. 5C). In contrast,
warping spike trains into spatial units decreased the performance
of rate classifiers by overcompensating for the speed-dependent
modulation of firing rates (1-sided Wilcoxon signed-rank test
comparing single-cell rate classification using warped and
unwarped responses, z= 15.2, p < 0.0001, Fig. 5C).

At the population level, combining rate and (warped) timing
codes yielded better classification performance than did either
code in isolation (permutation test comparing population
classification using both rate and timing to rate alone,
p < 0.0001, or to timing alone, p < 0.0001; Fig. 5D, Supplemental
Fig. 12). This improvement could not be accounted for by the
increase in the number of predictors (Supplemental Fig. 11),
indicating that spike timing carries information beyond that
carried in the spike rates, even in larger populations of neurons
(Fig. 5D).

Temporal patterning shapes texture perception. To establish a
neural code requires not only to demonstrate that the neuronal
signals carry information about stimuli but also that these neu-
ronal signals covary with the perception of these stimuli34.
Having demonstrated that temporal patterning in cortical
responses carries texture information, we thus set out to gauge
whether these temporal patterns relate to the evoked textural
percept. To this end, we asked human subjects to perform two
psychophysical tasks: roughness scaling and dissimilarity scaling.
In the roughness scaling task, each texture was presented indi-
vidually and the subject provided a rating of its roughness. In the
dissimilarity scaling task, a subset of thirteen textures was pre-
sented in pairs and the subject rated the dissimilarity of each
pair22 (Supplemental Table 1). While roughness ratings gauge
where textures fall along a single sensory continuum, dissimilarity
ratings take into account every way in which textures might
differ.

First, we assessed the degree to which the perceived dissim-
ilarity of a pair of textures could be predicted from differences in
the firing rates evoked in the cortical population by the two
textures. In other words, do textures feel different to the extent
that they evoke different firing rates? We found that rate
differences were poor predictors of dissimilarity ratings (Supple-
mental Fig. 13B), as might be expected as population firing rate
encodes roughness22, one of many perceptual attributes of

Fig. 4 Differences in the informativeness of temporal patterns across cortical fields. A Mean timing-based classification for individual neurons in areas
3b (n= 35, blue), 1 (n= 81, red), and 2 (n= 25, yellow). Shaded area represents standard error of the mean across neurons. Dashed lines on the right
denote the mean classification performance based on firing rates for each area. B Cumulative distribution of the best decoding resolutions separated for
nerve fibers (dashed lines; PC: orange, SA1: green, RA: blue) and cortical neurons (solid lines, 3b: blue, 1: red, 2: yellow).
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texture35. We might then expect that the contribution of
roughness to dissimilarity would be subsumed by the population
firing rate. Consistent with this hypothesis, we found that
differences in population firing rate accounted for around 20%
of the variance in the dissimilarity rating, as did differences in
roughness ratings (Supplemental Fig. 13B, C).

Second, we examined whether differences in temporal
patterning might covary with perceptual dissimilarity. According
to this hypothesis, two textures should feel dissimilar to the extent
that the correlation between their PSTHs is low. Contrary to this
prediction, we found this metric of temporal dissimilarity to be a
poor predictor of dissimilarity ratings (R2= 0.05; Supplemental
Fig. 13D). However, this analysis averaged timing differences
across the entire population, disregarding the fact that neurons
vary widely in their susceptibility to carry texture information in
their timing. We reasoned that informative temporal patterning
might be more susceptible to drive perception. To test this
hypothesis, we limited the correlation-based analysis to the
responses of PC-like neurons, which carry the most texture
information in their temporal patterning. We found that timing
differences in this neuronal population yielded far better
predictions of perceived dissimilarity than did timing across the
full population (1-sided Mann–Whitney U test comparing the
MSE of the cross-validated predictions derived from the
responses of the full population and those of the PC-like
subpopulation, z=−6.8, p < 0.0001), far exceeding predictions
based on the firing rates of this same neuronal population

(1-sided Wilcoxon signed-rank test comparing rate and timing
predictions from a subpopulation of PC-like cells, z=−4.1,
p < 0.0001; Fig. 6A, Supplemental Fig. 13E, Supplemental Fig. 15).
In contrast, the timing of SA1-like or RA-like neurons were poor
predictors of perception (Supplemental Fig. 15).

However, because timing differences are most predictive of
perception does not entail that they solely determine it. With this
in mind, we investigated whether the combination of rate and
timing might drive perception. To this end, we performed a
multiple regression of rate and timing differences onto dissim-
ilarity ratings, separating the regressors by cortical subpopula-
tions (PC-like, SA1-like, and RA-like). After a systematic search
through many different candidate codes (Supplemental Fig. 14),
we found that the combination of timing and rate across all three
cortical populations yielded better predictions than either timing
or rate (Fig. 6B, C, Supplemental Fig. 14). In other words,
perceived texture is shaped by both the rate and the timing of
neurons across the entire cortical population.

Discussion
Temporal coding along the somatosensory neuraxis. An
essential question in neuroscience is whether the precise timing of
spikes carries behaviorally relevant information. The somato-
sensory system is well suited to address this question because
high-frequency deformations of the skin evoke responses in the
nerve and in the brain that are reliably patterned with millisecond

Fig. 5 Temporal spiking patterns depend on scanning speed. A Responses of three example neurons to two different textures (City Lights, a fabric with fine
textural features and coarse ridges, as well as a dot pattern). Colors denote scanning speed, with darker colors corresponding to faster speeds. On the left,
spikes are plotted across time. On the right, spikes times are “warped” such that each spike is plotted per mm of the texture rather than ms in time (by
multiplying inter-spike intervals by scanning speed). B Timing-based classification of texture when trained on responses to textures presented at one speed (60,
80, 100, or 120mm/s, n= 49 cells) and tested either within speed (cyan) or across speeds (dark blue). On the right, spike times are warped as in (A), and
classifiers are trained and tested on these warped spike trains. Chance performance is 10% (dashed line). C Mean classification based on timing (blue) or rate
(red), within and across speeds. Two cross-speed classifiers were assessed; light bars represent unwarped (spikes/ms), dark bars represent warped (spikes/
mm) spike trains. Boxes show the median and interquartile range and the whiskers show the full range across 49 neurons and speed combinations (within
speed, n= 4 speeds; across speeds, n= 12 combinations). DMean cross-speed population classification based on rate (unwarped, red), timing (warped, blue),
and an averaged combination of both (purple). Shaded regions denote standard deviation across 1000 iterations of randomly sampled populations of neurons.
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precision1. We can thus assess the informativeness of this tem-
poral patterning at each stage of processing and the timescale at
which stimulus information is carried. We have previously shown
that temporal patterning in afferent responses conveys informa-
tion about the frequency composition of skin vibrations3 and, by
extension, about textures, particularly fine textures21. The tem-
poral precision varies across afferent classes: PC responses are
most acute, on the order of 1–5 ms, RA responses exhibit inter-
mediate precision, around 5 ms, and SA1 responses carry little
information in their timing. In the nerve, information about
vibratory frequency and fine texture is not carried in the firing
rates and the perception of vibration and texture cannot be
accounted for based solely on rates2,3,21,36.

The role of timing in cortex has been more controversial
because cortical neurons exhibit much greater heterogeneity in
their firing rate properties than do nerve fibers22. As a result, rate
codes are far harder to disambiguate from temporal ones in
cortex than in the nerve. Indeed, the responses of individual
cortical neurons can be described as temporal filters—each
implementing an idiosyncratic temporal differentiation operation
on the afferent input, which effectively signal the presence of
specific temporal patterns in the input6. As a result, some of the
information carried in the timing is converted into a rate-based
code in this neural population. The question is whether the
remaining temporal patterning is still informative and behavio-
rally relevant. A case in point of this ambiguity is in the coding of
vibratory frequency in somatosensory cortex. Cortical neurons
have long been known to exhibit robust phase locking to
vibrations5,37,38 and this phase locking was hypothesized to
encode vibratory frequency, particularly at the low frequencies
(<50 Hz)37. However, firing rate was shown to also systematically
covary with frequency over this range, which argued for a rate
code38. On the other hand, the relationship between frequency
and rate breaks down at the high frequencies because individual
neurons can no longer fire on each stimulus cycle5. At those
frequencies, then, frequency information seems to be carried
solely in the timing.

Vibratory frequency per se is not an ecologically relevant
stimulus quantity. One might therefore argue that the temporal
code for frequency in somatosensory cortex is an artifact of the
highly contrived laboratory stimulus (vibrations delivered by a

motor) and associated sensory task (frequency discrimination).
The ethological relevance of this result might then be called into
question. In the present study, we show that millisecond-level
temporal patterning in the cortical response carries information
about more naturalistic stimuli, namely textures, as has been
shown in the barrel cortex of rodents14,39.

Temporal resolution depends on afferent input. As a rule,
individual neurons in somatosensory cortex receive convergent
input from multiple tactile submodalities6,27,28. Given that SA1,
RA, and PC fibers exhibit different response properties25, neurons
that receive dominant input from any one population of nerve
fibers are liable to inherit these differences. As mentioned above,
nerve fibers differ in the degree to which their spiking responses
to a repeated stimulus are alike. PC responses are the most
temporally precise, SA1 responses the least, and RA responses
intermediate between these two3,21. Here, we show that PC-like
cortical neurons consistently carry texture information at the
highest temporal resolution (median= 1 ms), RA-like neurons at
a lower resolution (3.5 ms), and SA1-like neurons carry little
information in their timing, mirroring their afferent counterparts.
Interestingly, the temporal precision and informativeness of PC
fibers and of PC-like cortical neurons are nearly indistinguishable.
One might expect that the three intervening synaptic passes
would degrade the response timing and thus its informativeness.
However, the manner in which PC input drives cortical activity
has been shown to be well suited to preserve timing, by exerting a
brief excitatory influence closely followed by a brief inhibitory
one6. In contrast, RA input is integrated over longer time win-
dows, which leads to a blurring of the temporal patterning, and
accounts for the observation that the temporal patterning in the
responses of RA-like cortical neurons is less informative than is
the temporal patterning in RA afferent responses.

Temporal patterns scale systematically with speed. A central
question in neuroscience is how we achieve robust object repre-
sentations despite changing sensory input. Texture perception
constitutes an example of this phenomenon. Indeed, afferent
responses scale systematically—both in their patterning and in
their strength—with changes in scanning speed21. Despite the

Fig. 6 Temporal patterns predict texture perception. A The correlation between the temporal spiking patterns evoked by texture pairs in PC-like neurons
is negatively correlated with perceived dissimilarity of those same texture pairs. Each point represents the mean value for one pair of textures. Z-scored
timing correlation represents the max cross-correlation of a pair of textures, z-scored across all texture pairs for a given cell, and averaged across all PC-
like cortical cells. B Mean squared error (MSE) of the prediction of perceived dissimilarity derived from a linear combination of rate and timing differences
of increasing-size populations of SA1-like, PC-like, and RA-like cells. Red and teal lines indicates a three-factor model that includes either rate (red) or
timing (teal) with each factor in the model derived from the mean across subpopulations of each submodality type (PC-like, RA-like, and SA1-like).
The black line indicates a six-factor model including rate and timing from PC-like, SA1-like, and RA-like subpopulations. C Accuracy of the complete
model (average n= 10 population response) in predicting perceived dissimilarity. Each circle represents one texture pair (78 unique pairs, rated by
10 human subjects).
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speed dependence of the texture signal emanating from the per-
iphery, our perception of texture is almost completely indepen-
dent of scanning speed, even if the texture is scanned passively
across the skin29–31,40. Scanning speed-related signals in the
nerve must thus somehow be discounted in the computation of
texture. This process is not trivial, as evidenced by the fact that
the converse is not true: Tactile speed perception is highly
dependent on texture40,41.

Rate-based texture signals in cortex have been shown to be
more robust to changes in scanning speed than are their
counterparts in the nerve23,42. This increased robustness to speed
could in part be attributed to computations applied to the afferent
input and reflected in the output of cortical neurons. Specifically,
populations of simulated cortical neurons that reflected temporal
and spatial differentiations of their afferent input exhibited
responses that were less speed-dependent than was the afferent
input itself23. Here, we show that this increase in robustness of a
rate-based code is complemented by the propagation of the
temporal code, which itself scales systematically with speed. One
possibility is that this temporal patterning is further converted
into a rate-based signal through subsequent differentiation
operations. According to this hypothesis, downstream neurons
—in secondary somatosensory cortex, e.g.—would carry even
more texture information in their rates and this rate-based
representation would be even more invariant to changes in speed.

Temporal patterning of the cortical response shapes texture
perception. Whether temporal patterning in cortical responses
shapes perception has proven difficult to establish. Probably the
most compelling evidence is that information about the frequency
of high-frequency vibrations is carried in the temporal patterning
and not the rates; yet their frequency is still discriminable5. The
link between perception and neural response is thus circum-
stantial. Here, we provide a more explicit link between temporal
patterning and perception: perceptual ratings are better predicted
by temporal patterning than by rates.

Furthermore, rate and temporal codes are often put in
opposition, where one purportedly drives behavior and the other
does not. Our results imply a synergistic integration of the two
types of codes: perceived texture is best predicted from the
combination of spike rate and timing. This integrative neural
code reflects the two codes that carry texture signals in the
peripheral nerves: Spatial and temporal. In cortex, texture
information carried in spatial patterns of activation of SA1 and
RA fibers has been converted into a rate code by the spatial
filtering properties of subpopulations of cortical neurons22,43,44,
which individually act as detectors of spatial features in the input.
Texture information carried in temporal patterns of activation
RA and PC fibers is converted into a rate code by temporal
filters6, which act as detectors of temporal features in the input.
As one ascends the somatosensory neuraxis, successive temporal
differentiations convert temporal patterns into rate-based signals,
but this process is not complete in somatosensory cortex (SC) as
evidenced by the residual informativeness of temporal patterning
and its ability to predict perception above and beyond rate.
Importantly, spatial and temporal codes coexist in SC to encode
texture, as seems to be the case in barrel cortex14.

Conclusions
Temporal spiking patterns in somatosensory cortex are precise
and informative about texture identity. Cells vary in the degree to
which texture information is carried in their temporal patterning
and this heterogeneity is in part driven by the afferent input:
Neurons that receive dominant input from PC fibers, which carry

textural information in their spike timing, themselves carry
information in their spike timing. Information carried in the
temporal spiking patterns in cortex complements that carried in
firing rates. The combination of rate and timing is more pre-
dictive of texture perception than is rate or timing in isolation.

Methods
The cortical responses and human psychophysical data have been described in two
previous studies22,23 and the peripheral nerve responses have been described in
another two studies21,26.

Animals. All experimental procedures involving animals were approved by the
University of Chicago Institutional Animal Care and Use Committee (ACUP
72042). Cortical data were obtained from two Rhesus macaques (male Macaca
mulatta, 6–8 years old and 8–11 kg), instrumented with a custom head-post to
immobilize the head (for eye-tracking and stable neurophysiological recordings)
and a 22-mm wide recording chamber centered on the hand representation in
anterior parietal cortex. During training and data collection, animals performed a
visual contrast discrimination task so that they would remain awake and calm. In
brief, animals fixated on a go-target to initiate the trial, and two circles appeared on
the computer monitor. The animal made a saccade to the brighter target to obtain a
juice reward. Peripheral responses were collected from 6 anesthetized rhesus
macaques as previously described21.

Neurophysiology. Cortical responses: Procedures have been previously described
in detail22,23. In brief, extracellular recordings were obtained using tungsten elec-
trodes (Epoxylite insulated probes, FHC Inc.) driven into somatosensory cortex—
Brodmann’s areas 3b, 1, and 2—using a computer-controlled microdrive (NAN
Instruments, Nazaret Illit, Israel). We collected the responses from neurons whose
receptive fields were centered on the distal fingerpads of digits 2–5. A full recording
session (59 textures, presented 5 times at 80 mm/s) lasted at least 30 min and we
only report the responses of neurons whose action potential waveforms remained
stable over the entire session. For a subset of 49 highly stable neurons, we also
collected responses to 10 textures at three additional speeds (60 mm/s, 100 mm/s,
and 120 mm/s,23).

Peripheral responses: These standard procedures have been previously
described in detail4,21. In brief, we obtained extracellular recordings of 17 SA1, 15
RA, and 7 PC fibers from the median and ulnar nerves of six Rhesus macaques
under isoflurane anesthesia.

Tactile stimuli. We presented a diverse set of textures at a controlled speed (80 ±
0.1 mm/s) and force (25 ± 10 g) using a custom-built and designed texture-drum
stimulator21 for both the peripheral and cortical experiments with a different but
overlapping texture set. The cortical texture set included 59 textures, including furs,
fabrics, papers, and 3D printed gratings and dot patterns. These textures were
selected to include features that span spatial scales. The peripheral texture set
included 55 textures, 24 of which overlap with the cortical set (Supplemental
Table 1). Textures were presented once each in pseudo-random order in each of 5
blocks and the order of presentation changed from block to block. Each texture was
presented for 2 s but we only analyzed 500 ms of the steady-state response
(excluding the onset and offset transients). Texture presentations were separated by
at least 3 seconds, both to prevent neural adaptation and to allow the drum time to
shift between textures.

Human psychophysics
Dissimilarity ratings. These psychophysical ratings have been previously reported22

and all experiments were approved by the University of Chicago Institutional
Review Board (IRB 15-1670). Ten human subjects (10 female, ages 19-24) rated the
dissimilarity between pairs of textures. The stimulus set included 13 textures
(Supplemental Table 1), yielding 78 unique pairs, and each texture pair was pre-
sented 5 times to each subject. If a pair was perceived as identical, the subjects
ascribed it a rating of zero. If one pair of textures was perceived as being twice as
different as another, the former was to be ascribed a number that was twice as large
as that ascribed to the latter. Subjects were free to use the range and were
encouraged to use fractions and decimals. Ratings obtained from each subject were
normalized by the mean rating across textures in each session and then averaged
across sessions.

Roughness ratings. These psychophysical ratings have been previously described in
two reports, and all experiments were approved by the University of Chicago
Institutional Review Board (IRB 15-1670)22,23. In brief, six human subjects (5 male,
1 female, ages 18–24) freely rated the perceived roughness of each of the 59 textures
used in the neurophysiology experiments. Textures were presented at the same
speed and force as those in the neurophysiology recordings (80 mm/s, 25 ± 10 g)
and each texture was presented once in each of six experimental blocks. Ratings
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were then normalized by the mean rating of each block and averaged across blocks
for each subject. The ratings presented here are the average across all subjects.

Data analysis. Neurophysiological recordings yielded spike times spanning a
period beginning 1 s before to 3 s after skin made contact with a given texture. For
all analyses, we used a 500-ms epoch that began 100 ms after the texture contact to
exclude transient responses.

Firing rate-based classification. We calculated each neuron’s firing rate to each
texture presentation (141 cells × 59 textures × 5 repeats) by counting the number of
spikes during the aforementioned 500-ms window. To assess how informative
about texture these firing rates were, we performed a nearest-neighbor classifica-
tion. For single-cell classification, we calculated the Euclidian distance between one
test trial (one repeat of a given texture) and the mean response across all remaining
repeats of every texture in the dataset. The classification was correct if the training
texture with the lowest distance was the texture presented in the test trial.

PSTH and cross-correlation classification. We calculated peri-stimulus time histo-
grams (PSTHs) by convolving spike trains with Gaussian kernels of varying widths
(ranging from 0.1 to 500 ms) to assess decoding performance at various temporal
precisions. Importantly, all PSTHs were demeaned to remove rate-based infor-
mation from the signal. All that remained was the waxing and waning of the
response in time—a purely time-varying signal that was not confounded by rate. By
convolving neural spike trains with Gaussian kernels of increasing width, we
obscured increasing amounts of the fine timing information. To the extent that this
fine timing information is just noise, wider Gaussian kernels should de-noise the
signal and improve classification performance. Alternatively, if fine timing is
informative, obscuring it should degrade classification. To test this, we performed
an analogous classification to the firing rate classification described above. We
computed the cross-correlation (using Matlab xcov function, as xcov is a zero-
mean cross-correlation) of one test response (500 ms PSTH, computed at a given
resolution for one repeat of a given texture) and all other repeats of every texture.
To accommodate the fact that responses may be shifted slightly in phase from one
repeat to the next, we selected the max cross-correlation across time. We then
averaged the max cross-correlation values across all repeats for a given texture, and
the classifier selected the training texture that yielded the highest cross-correlation.
The classification was correct if the training texture with the highest correlation
was the texture presented in the test trial.

Spike distance. We sought to quantify the dissimilarity between responses of a given
neuron to repeated presentations of a stimulus. To this end, we employed a
commonly used method that assigns a minimum cost to transforming one spike
train into another24. The cost adding or removing a spike is 1, and the cost of
moving a spike in time is q | dt | , where q is a parameter. When q= 0, there is no
penalty to moving spikes in time, such that the minimum cost is simply the
difference in spike count. For high values of q, spikes that are displaced in
time incur a cost. Using this distance metric, we obtained a measure of dissimilarity
that is influenced by both the firing rate and temporal patterning of two
spike trains.

Combined rate and timing classification. To combine rate difference and timing
correlation to decode texture identity, we z-scored the distance matrices for each
neuron and coding scheme, and multiplied all PSTH cross-correlation values by −1
(to invert similarity into a dissimilarity metric). We then computed the optimal
weighted averages of these z-scored distance matrices (rate & timing) for each
neuron. To find the optimal weighting, we performed the classification using
weights that ranged from 0% rate (100% timing) to 100% rate (0% timing) and
identified the weighting that yielded the best performance. To the extent that
timing does not improve rate classification, this weighted average would include
100% rate and 0% timing. To the extent that a combination of both coding schemes
improves classification performance, the weights would be intermediate. We report
the classification performance of the optimal combination, which, in all cases, was
an intermediate combination of rate and timing.

Population analyses. For the population analyses, we averaged the z-scored distance
matrices of n randomly sampled neurons (without replacement). We then per-
formed the classification using this mean distance matrix. For PSTH classification,
we used each neuron’s optimal decoding resolution. For rate classification, this
population analysis did not require the selection of a temporal resolution, as we
assessed rate across the entire 500-ms window. For combined rate and timing
classification, we weighted each neuron’s timing- and rate-based distance matrices
(as described in the previous section) and averaged these combined distance
matrices across the neuronal population to perform nearest-neighbor classification.

Homogenous Poisson neurons. To validate the timing-based classification approach,
we simulated Poisson spike trains generated from the measured firing rates.
Simulated responses had the same rate as their measured counterparts but lacked
temporal fidelity. To generate these model spike trains, we generated a vector of

spike times from a stationary Poisson process where the probability of a spike in
each bin (dt= 0.1 ms) was P= r*dt, where r is the measured spike rate.

Jittered spike trains. At the other extreme of a purely Poisson model is a deter-
ministic response that does not vary across repeats. To simulate responses at pre-
determined levels of jitter, we took the response of a neuron to one presentation of
each texture and jittered each spike time by a specific amount. Specifically, we
introduced jitter probabilistically using a Gaussian distribution with mean 0 and a
standard deviation defined by the jitter level (between 0.1 and 200 ms). We then
added and removed spikes as necessary to ensure that the simulated responses were
rate matched with their measured counterparts, given the trial-to-trial variations in
the latter. We report the results of generating simulated responses based on the trial
with the largest number of spikes and removing spikes of individual simulated
responses to match the spike count of each measured response. When we adopted
the converse approach—simulating responses from the trial with the lowest
number of spikes and adding spikes to match measured spike counts, we obtained
nearly identical temporal resolutions (Kolmogorov–Smirnov test, D= 0.06,
p= 0.93; Supplemental Fig. 1).

Comparing measured spike trains to jittered spike trains (repeatability analysis). To
quantify how measured cortical responses compared to their simulated jittered
counterparts, we used spike distance (described above) to calculate the dissimilarity
between the responses evoked by multiple repetitions of the same stimulus at a very
high temporal resolution (2 ms, q= 500). For each neuron, we first calculated the
mean pairwise distance between repeats (for a given texture) and the mean pairwise
distance between rate-matched simulated (jittered) responses. Specifically, we
calculated the spike distance between every unique combination of responses of
one neuron to each texture (repetitions 1 and 2, 1 and 3, 2 and 3, etc.). We then
repeated this analysis on the simulated response for each level of jitter. We then
identified the jitter levels adjacent to the neuron’s cross-repetition mean distance
and averaged these two jitter values to obtain an estimate of that neuron’s preci-
sion. For example, if a neuron’s mean cross-repetition spike distance was 15, and
the corresponding simulated responses with 1-ms jitter yielded a distance of 13 and
the simulated responses with 2-ms jitter yielded a distance of 21, the neuron’s
resolution was estimated to be 1.5 ms. For each neuron, we repeated this analysis
for each texture and used the median of the resulting distribution as the neuron’s
temporal resolution.

Submodality composition of cortical cells. As reported previously22, we estimated
the submodality composition of a neuron’s peripheral inputs by performing a
multivariate regression of that neuron’s z-scored mean rate responses onto the
z-scored responses of SA1, RA, and PC afferents to a shared set of 24 textures. We
then classified cortical cells with a normalized regression weight of > 0.8 as
receiving dominant input from the corresponding population of nerve fibers (SA1,
RA, or PC). This criterion yielded 12 PC-like cortical cells (n= 10 in area 1, n= 2
in area 2), 25 SA-like cortical cells (n= 9 in area 3b, n= 14 in area 1, n= 2 in area
2), and 12 RA-like cortical cells (n= 2 in area 3b, n= 9 in area 1, n= 1 in area 2).
Note that this approach to determining the submodality composition of each
neuron’s input did not take temporal patterning into consideration.

Cross-speed classification. To convert neural responses to spikes/mm from spikes/
ms, we multiplied spike times by the scanning speed (60, 80, 100, or 120 mm/s).
This resulted in warped spike trains that could be compared across speeds. Within-
speed classification was performed using a leave-one out procedure. Cross-speed
classification was performed in the same way, except that classifiers were trained on
four warped repetitions at one speed (80 mm/s, e.g.), and tested on one left-out
warped repetition at a different speed (120 mm/s, e.g.). All other methods were as
described above.

Predicting dissimilarity ratings. We predicted perceived dissimilarity using cross-
validated multiple regression. We fit the regression using all but one texture pair and
tested it on the left-out texture pair, iterating through each texture pair. We then
calculated the mean squared error of this prediction across each of the 78 texture pairs.

Statistical analyses. We report a variety of non-parametric statistical tests. To
compare unpaired samples from two groups, we used a Mann–Whitney U test
(using MATLAB ranksum function). When the sample size was smaller than 20
observations, we reported the exact U statistic. Otherwise, we reported the
approximated z-statistic. For paired samples from two groups, we used a Wilcoxon
signed-rank test (MATLAB signrank function). Here too, for sample sizes greater
than 20, we reported the approximated z-statistic. When comparing 3 or more
groups, we used a one-factor Kruskal–Wallis test (MATLAB kruskalwallis func-
tion) or a repeated measures Friedman test (MATLAB friedman function) and
reported the χ2. To compare the population classification results, we performed a
simple 1-sided permutation test, in which we iteratively (10,000 repeats) shuffled
data from two samples and identified the proportion of shuffles whose difference
was greater than or equal to that of the unshuffled data. We then reported this
proportion as the p-value. Lastly, to compare empirical cumulative distribution
functions from two samples, we used a Kolmogorov–Smirnov test (MATLAB
kstest2 function).
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The neurophysiological and psychophysical data are available as MATLAB (.mat) data
structures in the Source Data folder on GitHub (https://github.com/kthlong/
TimingAnalyses). Source data are provided with this paper.

Code availability
All analyses were performed using MATLAB (R2019b), and all code can be found on
GitHub (https://github.com/kthlong/TimingAnalyses).
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