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Minimal energy thresholds for sustained
turbulent bands in channel flow
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2Dipartimento di Meccanica, Matematica e Management (DMMM), Politecnico di Bari,
Via Re David 200, 70126 Bari, Italy

In this work, nonlinear variational optimization is used for obtaining minimal seeds for
the formation of turbulent bands in channel flow. Using nonlinear optimization together
with energy bisection, we have found that the minimal energy threshold for obtaining
spatially patterned turbulence scales with Re =3 for Re > 1000. The minimal seed, which
is different to that found in a much smaller domain, is characterized by a spot-like structure
surrounded by a low-amplitude large-scale quadrupolar flow filling the whole domain.
This minimal-energy perturbation of the laminar flow has dominant wavelengths close
to 4 in the streamwise direction and 1 in the spanwise direction, and is characterized by
a spatial localization increasing with the Reynolds number. At Re < 1200, the minimal
seed evolves in time, creating an isolated oblique band, whereas for Re = 1200, a
quasi-spanwise-symmetric evolution is observed, giving rise to two distinct bands. A
similar evolution is found also at low Re for non-minimal optimal perturbations. This
highlights two different mechanisms of formation of turbulent bands in channel flow,
depending on the Reynolds number and initial energy of the perturbation. The selection of
one of these two mechanisms appears to be dependent on the probability of decay of the
newly created stripe, which increases with time, but decreases with the Reynolds number.

Key words: nonlinear instability, shear-flow instability, transition to turbulence

1. Introduction

Since the experimental work of Reynolds (1883), who firstly observed subcritical transition
to turbulence in a wall-bounded shear flow, the dynamics of transition has remained an
open problem of fluid dynamics. One of the most intriguing features of transitional flows
is that turbulence does not arise at the same time in the whole domain, being preceded
by the formation of localized flow structures that grow in amplitude and spread in space.
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The first of these localized flow features to be observed were turbulent spots, which have
been investigated by many researchers in the past. Emmons (1951) was the first to show
experimentally, for a boundary-layer flow over a flat plate, that turbulent spots may trigger
turbulence; later, this was confirmed experimentally and numerically in plane channel
flow, analysing the spot characteristics (Carlson, Widnall & Peeters 1982; Henningson &
Kim 1991; Klingmann 1992; Aida, Tsukahara & Kawaguchi 2010, 2011; Lemoult, Aider
& Wesfreid 2013; Lemoult et al. 2014). In pipe flows, other localized flow structures —
dubbed puffs — are observed both numerically and experimentally (Eckhardt et al. 2007,
Avila et al. 2011). Puffs are localized, downstream-travelling flow structures within a
laminar field, sustained by the energy provided by the neighbouring laminar motion at
the upstream end of the puff. They can decay, split or merge, filling the laminar flow with
turbulent fluctuations. More recently, Duguet, Schlatter & Henningson (2010) have shown
that when locally perturbing the plane Couette flow, the fully turbulent state is preceded by
the formation of turbulent bands. The same behaviour was reported by Tao & Xiong (2013)
and Xiong et al. (2015), who have shown that after injecting a localized perturbation,
turbulent bands grow obliquely in the domain until decay or breakdown to turbulence.
In the latter case, it was assessed that the turbulent bands’ lifetime is longer than that of
turbulent spots. Besides having a crucial role in turbulent transition, oblique turbulent
bands characterize also the (transient) turbulent state in shear flows at low Reynolds
numbers, as shown by Tsukahara er al. (2005). In fact, in the pipe, plane Couette and plane
Poiseuille flow, there is a range of moderate Reynolds numbers for which experiments
and numerical simulations have shown that turbulence is not fully extended in space,
since localized regions characterized by laminar and turbulent behaviour coexist when
the statistically steady turbulent state is reached. Indeed, elongated oblique self-sustained
turbulent bands within a laminar flow appear in plane Couette flow at Re > 290 (Prigent
et al. 2002; Barkley & Tuckerman 2005; Duguet er al. 2010; Tuckerman & Barkley
2011), and in plane Poiseuille flow for Re > 1000 (Tsukahara, Kawaguchi & Kawamura
2014; Tuckerman et al. 2014; Tao, Eckhardt & Xiong 2018; Shimizu & Manneville
2019; Kashyap, Duguet & Dauchot 2020). In the channel flow, turbulent—laminar oblique
patterns were observed experimentally for Re = 1000 by Carlson et al. (1982). Numerical
simulations reproduced these patterns also at lower Reynolds numbers (Xiong et al. 2015;
Tao & Xiong 2017; Kashyap et al. 2020), estimating a threshold value for observing
turbulent bands at Re &~ 660, according to Tao et al. (2018). Recently, Gomé, Tuckerman
& Barkley (2020) investigated the decay and splitting of these turbulent bands, finding
that as the Reynolds number increases, their mean decay time increases and the mean
splitting time decreases. At the ‘critical’ Reynolds number, estimated to be ~965, these
times are approximately equal. Thus it has been established that inclined bands persist
for times of order 1 ~ 0(103-10°) only when Re > 965, whereas they decay rapidly for
lower values of Re. Song & Xiao (2020) reported recently the onset of such turbulent
bands even at Reynolds number as low as Re = 500, generated by forcing the flow with
a local perturbation with a sufficiently strong spanwise inflection. They showed that this
forcing method permits us to generate bands at very low values of the Reynolds number,
for which bands appeared previously to be not sustained. This procedure was motivated by
the work of Xiao & Song (2020), where the authors performed a linear stability analysis
of the mean velocity profile extracted in a small domain at the head of the turbulent band.
By means of the stability analysis, it was suggested that spanwise inflectional instability
may be the mechanism involved in the growth and self-sustaining process of turbulent
bands.
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In addition to the Reynolds number, the domain size plays an important role in the
growth and self-interaction of turbulent bands. When the considered domain is sufficiently
large, turbulent bands can grow for longer times, avoiding the probability of interaction
with themselves or other bands. For this reason, several works studied the influence of the
domain extension on the onset of turbulent bands. In order to reduce the computational
cost, some numerical studies cleverly considered computational domains tilted in the
direction of the bands, as done for plane Couette flow by Barkley & Tuckerman (2005) and
for plane Poiseuille flow by Tuckerman et al. (2014). Very recently, Parente et al. (2021)
carried out an optimal growth analysis in a tilted domain with given angle. They showed
that although linear optimization is able to recover the main wavenumbers observed by
direct numerical simulation, nonlinear effects are necessary for providing large-scale flow
and spatial localization of the perturbation able to generate a turbulent band. Although
very interesting for studying the dynamics of a single band, using the tilted domain
constrains the turbulent bands to develop at a fixed angle and avoids (or reduces) the
interactions with other bands, consequently resulting in a less rich dynamics. A more
detailed analysis of laminar—turbulent patterns in shear flows is tackled in the review of
Tuckerman, Chantry & Barkley (2020).

In the literature, typically two strategies are used to obtain turbulent bands. The first
consists in starting from a space-filling statistically steady turbulent state, and slowly
decreasing the Reynolds number until patterned laminar regions in the initially turbulent
flow begin to appear (Tsukahara et al. 2005; Kashyap et al. 2020). This method usually
leads to the formation of statistically steady laminar—turbulent patterns. Another method
consists of perturbing the laminar flow with suitable localized disturbances having enough
energy to trigger localized regions of turbulence eventually evolving into oblique stripes
(Duguet et al. 2010; Aida et al. 2010, 2011; Tao & Xiong 2013; Xiong et al. 2015). When
focusing on the second method, the amplitude, shape and localization of these initial
perturbations should be chosen carefully to ensure their growth towards oblique bands.
Depending on their shape, perturbations with higher amplitude may decay, while weaker
perturbations may lead the flow to transition.

From a phase-space point of view, the problem of finding perturbations eventually
generating these laminar—turbulent patterns consists of placing the starting point of the
trajectory beyond the boundary of the basin of attraction of the laminar solution. Notably,
the most relevant point of this boundary is its energy minimum, since it represents
the minimal (in energy norm) perturbation of the laminar state that can lead the flow
to transition. This point in the phase space has been dubbed, by Rabin, Caulfield &
Kerswell (2012), ‘minimal seed’ for turbulent transition. This energy minimum has been
assessed for several shear flows, aiming at finding minimal energy thresholds for transition.
In particular, in plane Couette flows, a minimal energy threshold varying with the
Reynolds number as Re~%7 has been found, in quantitative agreement with experimental
estimates for pipe flows, whereas for the asymptotic-suction boundary layer, Cherubini,
De Palma & Robinet (2015) found a scaling law of this energy threshold of Re™2.
Recently, Vavaliaris, Beneitez & Henningson (2020) performed similar computations
for a non-parallel boundary-layer flow but did not provide a scaling law with respect
to the Reynolds number. The determination of these energy thresholds is of primary
importance for control purposes, since passive or active control methods such as boundary
manipulation (Rabin, Caulfield & Kerswell 2014) or profile flattening (Marensi, Willis &
Kerswell 2019) able to increase this minimal energy would render these flows less prone to
transition. However, to the authors’ knowledge, the minimal seed computation has never
been carried out for the channel flow. In Farano et al. (2015, 2016), a nonlinear optimization
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in channel flow has been performed for rather small target times, but without any energy
bisection, which is needed for the determination of minimal seeds. Moreover, all the
minimal seed computations reported in the literature, except those performed by Pringle,
Willis & Kerswell (2015) in a pipe flow, have been carried out in relatively small domains,
hampering the development of laminar—turbulent patterns. In very large domains, where
laminar—turbulent oblique bands exist, the minimal transition thresholds potentially can be
different from those obtained in small domains. In fact, in small domains, the periodicity
imposed in the streamwise and spanwise directions causes the interaction of the front
of the perturbation with its tail already in the first phases of transition. Consequently,
the kinetic energy of disturbances grows rapidly and suddenly saturates when turbulence
fills the whole domain, whereas in large domains, the perturbations evolve freely for long
times without interacting with themselves, so the development of disturbance appears to
depart from that observed in smaller domains already at small times. As observed by
several authors, the kinetic energy keeps growing for very long times, before saturating to
a statistically steady value. Notably, in sufficiently large domains, localized perturbations
often develop in an inclined direction with respect to the mean flow. Such a behaviour
can be observed already at times comparable with the typical target times of minimal seed
optimizations (i.e. O(100)). This difference in the dynamics of the perturbations depending
on the domain size suggests that important differences can be found between minimal
seeds computed in small and large domains, influencing the initial phases of formation of
the band. Thus the analysis of these minimal perturbations and of their evolution towards
oblique bands can potentially unveil the main mechanisms leading to the formation and
sustainment of these laminar—turbulent patterns.

This work aims to find minimal seeds for the generation of turbulent bands in channel
flow. The methodology to find these perturbations is based on the nonlinear variational
optimization first used in the boundary-layer flow by Cherubini et al. (2010a, 2011) and
in pipe flow by Pringle & Kerswell (2010) and Pringle, Willis & Kerswell (2012), and
then coupled with energy bisection by Rabin er al. (2012) for the plane Couette flow
and by other authors for other shear flows (Duguet et al. 2013; Cherubini et al. 2015;
Vavaliaris et al. 2020). In all these studies, the kinetic energy was considered as the
objective function of the optimization, and the optimal perturbations associated to the
minimal input energy were localized spatially. Similar behaviour was found in Couette
flow by Monokrousos et al. (2011), maximizing the time integral of the entropy production.
A detailed review of these methods is reported by Kerswell, Pringle & Willis (2014) and
by Kerswell (2018). In the present work, we carry out for the first time the computation
of minimal seeds in channel flow for very large domains, allowing the creation of
laminar—turbulent patterned final states such as oblique stripes. The perturbation kinetic
energy is used as the objective function of the nonlinear optimization, which appears to be
an appropriate choice since many literature studies report peaks of kinetic energy during
the development of turbulent bands (Tao er al. 2018). The minimal seeds obtained using
this optimize-and-bisect method are found to change with the Reynolds number, presenting
a power-law scaling of the initial energy Ey,, o Re” ", with y being approximately four
times larger than the values reported in other shear flows in smaller domains. Moreover,
two distinct mechanisms of creation of turbulent bands are observed and discussed in
detail.

The paper is organized in the following way. In § 2, the methodology is presented. In
§ 3, the main results of the optimization are reported and the nonlinear evolution in time
of the optimal perturbation is discussed. Finally, in § 4, conclusions are drawn.
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2. Problem formulation

The considered flow is a plane channel flow at Reynolds number Re = U.H /v, where
U, is the centreline velocity of the laminar Poiseuille flow, H is the half-width of the
channel, and v is the kinematic viscosity. The Reynolds number is varied by changing the
pressure gradient, while the volume flux remains constant, with bulk velocity U, = 2/3.
The dynamics of this flow is studied by decomposing the instantaneous velocity field,
u = [u, v, w]T, into the laminar base flow U = [U (y),0, 0] and a perturbation ' =
[/, v/, w']T. The dynamics of the perturbations of the laminar base flow is computed by
solving the perturbative nonlinear incompressible Navier—Stokes equations:

ou;

—L =0,

8xl~

814; + /31/!; + ,8Ui y 8u; 3p’ 1 aZu; 2.1
. u, — u. — L o ’

ot Toxg Y ox ! 0x; ox; Re 8X;‘2

where U = [U(y), 0, 01T, U( y)=1- y2, is the laminar streamwise velocity profile, p’
is the pressure perturbation, and x; is the Cartesian reference frame having components
X,y, z, for the streamwise, wall-normal and spanwise directions, respectively. No-slip
boundary conditions are imposed at the walls for the three velocity components, while
periodicity is fixed in the streamwise and spanwise directions.

In order to find the minimal seed for the considered flow, we first search for the optimal
perturbation ' at r = 0, providing the maximum value of the objective function at target
time 7. Following previous works (Cherubini et al. 2010a; Pringle & Kerswell 2010), we
choose as objective function the energy gain G(T) = E(T)/E(0), where

E(r) = L / W' @O +0' O +w ()>) dV (2.2)
A '

is the kinetic energy at time #, and V is the volume of the computational domain.
In order to find the initial perturbation #’(0) having given initial energy E(0) = Ej,
providing the largest possible energy E(T) at the target time, an optimization loop is set
using the Lagrange multiplier technique (Zuccher, Luchini & Bottaro 2004; Pringle &
Kerswell 2010; Cherubini ef al. 2011). A Lagrangian functional is defined by augmenting
the objective function with the following constraints: (i) the optimal perturbation u’(z)
must be a solution of the Navier—Stokes equations at all times ¢ € [0, T]; (ii) it must be
divergence-free at all times ¢ € [0, T']; and (iii) it must have energy norm equal to a given
value Eg at ¢t = 0. With these constraints, the Lagrangian functional reads

LG, pul, pt, u(0), (T), 1)
/o -
_EM) // (8u a(u,-u,a+a(Uluj>+a(u;U,~>+a__iﬁ)dm

E(0) 3)Cj 3)Cj 8x]~ 0x; Re 3x2

f / ’dV ( Eo 1) 2.3)
E©) ’ 2.

with u', pT and ET being the Lagrangian multipliers (or adjoint variables).
To maximize the augmented functional £, we evaluate its variation with respect to the
direct and adjoint variables, and nullify it. The variation of the Lagrangian functional with
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respect to the direct variables #/, p’ provides the adjoint equations

au:f
0x; ’
ot J axj J ax]' J 8x]~ / ax]' 0Xx; Re asz '

The optimization problem is then solved using a direct—adjoint looping algorithm (as
done by Pringle & Kerswell (2010) and Cherubini et al. (2010a), among others), which
consists in integrating iteratively in time the direct and adjoint equations between 0 and
T to evaluate the gradient of £ with respect to #'(0), which is then used to update the
initial perturbation using a gradient rotation algorithm (Foures, Caulfield & Schmid 2013;
Farano et al. 2016, 2017). Convergence is attained when the variation of the gain between
two successively iterations is smaller then a chosen threshold € = 5 x 1078.

For computing the minimal seed, the variational optimization is coupled with an
energy-bisection procedure. Two different optimizations are initialized with a random
divergence-free perturbation for low 7', with a value of Ej sufficiently high (low) to induce
transition (relaminarization) at longer times. The energy is bisected and the optimization
repeated, using the results of the previous optimization as initial guess. Energy bisection
is carried out at first for a low (O(10)) target time in order to have a very rough (but
computationally cheap) upper estimate of the initial minimal energy threshold Ey,, . Then
the target time is increased at O(100) and the energy bisection is repeated, allowing the
result to converge towards Eo,, .

The optimization algorithm is implemented within the open source code Channelflow
(channelflow.ch; Gibson et al. 2021). Both direct and adjoint equations are solved using
a Fourier—Chebyshev discretization in space and a third-order semi-implicit backward
difference scheme for the time integration. An influence matrix method with Chebyshev
tau correction was used to enforce the no-slip boundary condition at the walls.

The domain size in the streamwise, normal and spanwise directions is Ly x Ly x L; =
250 x 2 x 125, while the number of grid points in the same directions are Ny x Ny x N, =
1024 x 65 x 1024. This results in a numerical resolution comparable with the values used
by Shimizu & Manneville (2019) and Kashyap ez al. (2020) for the same range of Reynolds
numbers. Finally, it should be noticed that the fact that optimizations are performed in a
large domain involves challenging computations in terms of memory, especially for the
highest considered target time, 7= 150. In fact, the direct-adjoint algorithm requires
storage of the flow field snapshots #' at each time step, in order to evaluate the term
coupling direct and adjoint variables in the adjoint equations. To alleviate the storage
requirement, a checkpointing technique is used, similar to that used in Griewank & Walther
(2000) and Hinze, Walther & Sternberg (2006).

3. Results

Nonlinear optimizations are performed for four values of the Reynolds number, Re =
1000, 1150, 1250, 1568, chosen in the range of Reynolds numbers for which the plane
Poiseuille flow is linearly stable and the turbulent state appears in the form of persistent
turbulent—laminar patterns (Tao et al. 2018; Gomé et al. 2020; Kashyap et al. 2020). As
reported by Xiong ef al. (2015) and Gomé et al. (2020), the onset of bands does not
lead to sustained turbulence for Re < 1000, whereas for Re = 1000, the bands can split,
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providing a mechanism for turbulence spreading, leading to the coexistence of laminar
regions with inclined turbulent bands, which persist up to Re > 3900, for which only
featureless turbulence is present. Figure 1(a) provides the influence of the target time
on the optimal energy gain for Re = 1150 and given input energy Ey = 1.1 x 10~7. The
energy gain grows with the target time following a quasi-exponential trend for T < 40 and
T > 50, reaching an amplification of three orders of magnitude for 7 > 80. No saturation
of the final energy is observed for 7 < 100, since very long (i.e. O(103)) times would
be needed to fill the entire domain with turbulent bands, as will be shown in § 3.3. As
mentioned before, the procedure of bisection of the initial energy is carried out at first
for T = 10, in order to have a computationally cheap upper bound for the computation of
Eomin» Wwhich will be then carried out for T = 100 or T = 150, depending on the Reynolds
number. For Re < 1568, the estimate of E,,;,, was obtained for 7 = 100, since we have
verified that increasing the target time from 7 = 100 to 7 = 150 leads to slight changes
of the minimal energy, namely, from 5.6 x 1077 to 5.5 x 107 for Re = 1000. But at
Re = 1568, it has been necessary to increase the target time to 7 = 150 to achieve a
sufficiently good approximation of the threshold energy for generating bands. Figure 1(b)
provides the minimal input energy able to induce transition towards the turbulent bands,
Eomin (red dots), together with its upper estimate obtained for 7 = 10 (black dots), for
the four considered values of the Reynolds number. In the range of Re analysed, we
tried to fit the minimal input energy with a power law of the type Ep,,, o< Re™”, but we
obtained a satisfactory fit only by restraining the power law to the minimal seeds in the
range Re > 1000, represented by the red dashed line corresponding to y ~ 8.5. A similar
behaviour is observed for the upper estimate of Ey,, obtained for 7 = 10 (black dots),
although the associated value of y is much lower. Incidentally, we observe that as expected,
larger threshold initial energies are obtained for the lower target time 7" = 10 (black line).
The fact that the minimal seed energy obtained for Re = 1000 appears not to be aligned
with the fitting line recovered for larger values of Re might have been anticipated. As
reported by Xiong et al. (2015), Re = 1000 is very close to the limit value of the Reynolds
number for which band splitting begins to be observed. Thus at this threshold value of Re,
the flow dynamics may present a transitional behaviour between two different regimes,
not fitting with that observed at larger values of Re. Finally, it is also worth noticing
that the exponent of the power law approximating the minimal-energy threshold is much

higher than values reported in previous works. For the plane Couette flow, a minimal seed

energy varying as Re 27 was reported by Duguet et al. (2013); for the asymptotic suction

boundary layer, a scaling of Re~2 was found by Cherubini et al. (2015). This difference
might be linked to either the much larger domain considered in the present study, or the
different type of flow.

To investigate this interesting point, we have performed minimal seed computations in
a much smaller domain with size L, x L, x L; = 21 x 2 x 7. Unfortunately, we have
found that for Re < 1400, turbulence does not remain self-sustained for a sufficiently long
time to allow convergence of the algorithm. Thus we have computed the minimal energy
thresholds for a rather different set of Reynolds numbers, namely, Re = 1400, 1568, 1650.
As shown by the blue symbols in figure 1(b), we have found that the minimal energy
thresholds for transition to turbulence in the smaller domain are several orders of
magnitude larger than those found previously for the larger domain. In particular, for
Re = 1568, the minimal energy for transition is Eg,,;, = 7.1 x 1079 in the small domain,
three orders of magnitude larger than the value obtained for the large domain, namely,
Eomin = 3.6 x 1077, This might have been anticipated, since E has been defined as
an energy density, thus is normalized by the volume of the computational domain.
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Figure 1. (a) Optimal energy gain versus target time T for Re = 1150 and Eg = 1.1 x 1077, (b) Minimal
energy threshold Ey,,;, for transition to turbulence (red dots) and upper estimate obtained for 7" = 10 (black
dots) in the large domain. The blue symbols refer to the minimal energy thresholds recovered in the small
domain. The black and red lines represent the power laws for low (O(10)) and high (O(100)) target times,
respectively, for the large domain at Re > 1000. The blue and cyan lines represent the power laws for the small
domain at Re > 1400 and Re > 1568, respectively.

However, reporting the small-domain minimal energy estimate in the larger domain
provides Egin = Eofn”l?,f” ysmall jyslarge — 4 5 107°, which is indeed larger than the
large-domain estimate. Moreover, we have found that the scaling law of the minimal energy
for the small-domain case is very close to that found for the large domain, at least in the
considered range of Re. This may suggest that the higher value of the power-law exponent
found in the present case, with respect to other flow cases, is due to the different type of
flow, not to the domain size. However, we should mention that if we restrain the considered
Reynolds number range to the two largest values (cyan dashed line), then the exponent of
the scaling law drops to —3.3, a value that is closer to that of other shear flows, and to the
value reported recently by private communication for the channel flow at higher values of
Re (R. Kerswell, private communication). This might indicate that, similarly to what we
have reported for the large domain, very close to the threshold Reynolds number for which
turbulence is sustained, the minimal energy for transition strongly increases, departing
from the scaling law recovered at higher values of Re. This could be verified only by
performing minimal seed computations at higher Reynolds numbers, which is far from
the scope of the present paper. Thus we can conclude that the scaling law appears mostly
independent of the domain at very low values of Re, although it may differ strongly at
higher Re. The domain size affects considerably the values of the minimal energy, as well
as the shape and amplitudes of the minimal seeds, as will be shown in the next subsection.

3.1. Nonlinear optimal perturbations

The initial optimal solutions obtained for the target time 7 = 10 at the threshold energy
able to trigger turbulence are shown in figure 2 for Re = 1150. The optimal perturbation is
localized spatially in a small region of the domain, with a shape similar to that of a spot,
being composed of alternating positive and negative finite-size streamwise streaks. Despite
spatial localization having been observed already in nonlinear optimizations (for instance,
see Cherubini et al. 2011; Monokrousos et al. 2011; Pringle et al. 2012), the structure of
this optimal perturbation is rather different from that of previously computed nonlinear
optimal perturbations, and more closely resembles the optimal wavepacket recovered by
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Figure 2. Nonlinear optimal perturbation at times t = 0 (a) and t = T = 10 (), for Re = 1150 with the input

energy Eg = 1.1 x 1077 (black dot in figure 1). The insets show isosurfaces of the streamwise velocity, light
grey for positive and black for negative values, u = £0.003 (top) and u = +0.02 (bottom).

linear optimization and windowing, obtained for the boundary-layer flow by Cherubini
et al. (2010b). This is probably due to the low target time and initial energy used for these
computations, which hinders partially the development of nonlinear effects. At t = 0, the
optimal perturbation presents vortical structures inclined in the opposite direction with
respect to the shear, which reverse their inclination at target time (see the x—y planes in
the bottom right of figures 2a,b). This streamwise tilting is a common feature of optimal
perturbations in shear flows (Cherubini et al. 2010a; Pringle & Kerswell 2010; Duguet
et al. 2013), and indicates that the Orr mechanism is a fundamental mechanism involved
in the early stage of transition to turbulence, with characteristic time approximately equal
to 10 (Orr 1907). Indeed, although it may seem unrealistic that perturbations inclined
opposed to the mean flow can actually be observed in experiments and simulations of
wall-bounded turbulent flows, recent works (Jiménez 2013) have argued that such types of
disturbances are in fact created in the near-wall cycle during the streak breakdown.
Duguet & Schlatter (2013) show that oblique bands arise as a result of advection of
newly nucleated streaks in the direction of a large-scale flow, which is oblique with respect
to the streamwise direction. The local orientation of the large-scale flow is thus responsible
for the obliqueness of the laminar—turbulent interface of growing incipient spots as well
as for maintaining turbulent stripes (Duguet & Schlatter 2013). To ascertain whether
the computed nonlinear optimal perturbations contain the seed for the development of
turbulent bands, we compute the large-scale flow related to the optimal disturbances by

averaging the instantaneous velocity field in the wall-normal direction as u; = f_ll u; dy.
Notice that u is zero where the flow is laminar, close to zero where the flow is turbulent,
but non-zero at the laminar—turbulent interfaces, due to a mismatch of the streamwise flow
rates across them, linked to the presence of overhang regions (Duguet & Schlatter 2013).
Figure 3 provides the isocontours of the crossflow energy E. = (1/2) [ (v? + w?) dy,
surrounded by the large-scale field (&, w), for the initial optimal perturbation at Re =
1150, Ey = 1.1 x 10~7. The optimal flow field is characterized by two different scales: a
small-scale flow embedded within the spot-like structure, and a large-scale flow in the form
of large vortices filling the whole domain. The latter is characterized by a streamwise flow
entering the spot and a spanwise flow exiting from it, constituting a quadrupolar structure.
A quadrupolar large-scale flow around spots or turbulent bands has been observed in
plane Couette flow (Schumacher & Eckhardt 2001; Lagha & Manneville 2007) and plane
Poiseuille flow (Lemoult et al. 2014), and very recently in the Couette—Poiseuille flow
(Klotz, Pavlenko & Wesfreid 2021). This large-scale structure appears within the flow due
to the shearing of the streamwise velocity and the breaking of the spanwise homogeneity
(Wang et al. 2020). Notice that this large-scale flow, which is not associated with the
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Figure 3. Shaded isocontours of the crossflow energy E.s together with the normalized y-integrated large-scale
flow (vectors) characterizing the nonlinear optimal perturbations for Re = 1150, Eg = 1.1 x 1077, T = 10: (a)
initial optimal solution, r = 0; (b) optimal solution at the target time, t = 7.

presence of overhang regions, remains almost unchanged from t = 0 to t = T (compare
figures 3a,b).

Increasing the target time to 7 = 100 for Re = 1150, while keeping Eg = 1.1 x 1077,
we obtain a similar optimal structure, characterized by a quadrupolar large-scale flow
surrounding a spot-like small-scale disturbances (not shown). Starting from this optimal
(but yet not minimal) solution, the optimize-and-bisect procedure is carried out with
T = 100 for Re = 1150. The same procedure is carried out for all the considered values of
Re, for obtaining the minimal seeds whose energy is reported in figure 1(b).

3.2. Minimal seed at different Reynolds numbers

The minimal seeds for turbulent bands obtained for all the considered values of the
Reynolds number are provided in figures 4 and 5 in two different views showing the
streamwise and spanwise alternation of finite-size streaks together with spanwise-inclined
vortical structures closer to the wall. Moreover, the large-scale flow, shown in figure 6
for Re = 1150, maintains the previously observed quadrupolar structure, presenting
large-scale vortices quasi-symmetric in the spanwise direction. The same large-scale
quadrupolar structure surrounding the minimal-energy wavepacket is observed also for the
other considered Reynolds numbers (not shown). Quadrupolar structures similar to those
observed around these optimal perturbations have been observed in several shear flows
and spatial domains, in experiments and computations (see, for instance, Lundbladh &
Johansson 1991; Lagha & Manneville 2007; Duguet & Schlatter 2013; Lemoult et al. 2013;
Couliou & Monchaux 2015; Chantry, Tuckerman & Barkley 2016). This two-dimensional
large-scale flow surrounding localized perturbations or turbulent spots, appears to fill out
the whole domain, and shows an exponential (or algebraic) decay of its amplitude in space
(see Schumacher & Eckhardt 2001; Brand & Gibson 2014). In particular, Wang et al.
(2020) demonstrated that this quadrupolar structure is a generic feature of planar shear
flows confined between two walls, and stems from (i) the shearing of the streamwise
velocity, and (ii) the breaking of the spanwise homogeneity. The minimal seeds (and
nonlinear optima) computed for all the considered Reynolds numbers show both these
features, justifying the presence of these large-scale vortices. However, the small-scale
minimal perturbations are found to change considerably with the Reynolds numbers,
as shown in figure 4. In particular, a further localization of the initial wavepacket is
observed for increasing Re, leading to a minimal structure at Re = 1568 localized on only
one of the two walls (see figure 4d), which resembles closely that found for the plane
Couette and the asymptotic suction boundary-layer flow in small domains (Rabin et al.
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Figure 4. Minimal seeds at different Reynolds numbers: isosurfaces of negative streamwise velocity (1 =
—0.0025, light grey) and Q-criterion (Q = 0.003) coloured by the streamwise vorticity (positive red, negative
blue). For all values of Re, only a subdomain of length ; x I, x [; = 16 x 0.5 x 6 is shown. Here: (@) Re =

1000, Eg = 5.5 x 1077; (b) Re = 1150, Ey = 4.7 x 107%; (¢) Re = 1250, Eg = 2.9 x 1078; (d) Re = 1568,
Ep=3.6x107°.

2012; Duguet et al. 2013; Cherubini et al. 2015). Apart from the spatial localization, the
main structures observed within the minimal seed wavepackets are essentially the same,
namely, finite-size streaks flanking upstream-tilted elongated vortices. As a result of the
discrepancies recovered at initial time, the minimal seeds obtained at different Re evolve
differently in time, presenting an increasing localization for larger values of Re, as provided
in figures 7 and 8. However, all of the wavepackets present an arrow-shaped structure, with
the downstream region essentially characterized by low-speed streaks, and the core region
filled with small-scale vortices together with some coherent streamwise streaks. Despite
having some common features with turbulent spots observed typically in transitional
flows (Marxen & Zaki 2019), these perturbations at target time are characterized by more
coherent streaks and vortices at their head, tail and sides, and a core showing signs of
streak breakdown. Moreover, the large-scale quadrupolar structure observed at t = 0 is
maintained at target time for all the considered values of Re, as shown in figure 6(b) for
Re = 1150.

It is also interesting to compare such minimal seeds with those obtained in the previously
mentioned smaller domain. A three-dimensional visualization of the small-domain
minimal seeds is provided in figure 9 for the three considered Reynolds numbers. The
streamwise perturbation patches alternating in the x and z directions are rather similar
to those found for the large domain, although in the latter case this alternating structure is
repeated many times in all spatial directions. Moreover, the amplitude of the small-domain
minimal seeds is about twice that of the minimal perturbations obtained for the large
domain, indicating that the size of the domain has a non-negligible effect on the shape,
amplitude and energy of the minimal seeds. Finally, the isocontours of the crossflow
energy surrounded by the large-scale field are shown in figure 10 for the small-domain
minimal seeds. One can observe that a quadrupolar structure is present as well, but at a
much smaller scale than in the previous case.
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Figure 5. Minimal seeds at different Reynolds numbers: isosurfaces of negative streamwise velocity (u =
—0.0025, light grey) and Q-criterion (Q = 0.003) coloured by the streamwise vorticity (positive red, negative
blue). Here: (a) Re = 1000, Eg = 5.5 x 1077; (b) Re = 1150, Ey = 4.7 x 1073; (¢) Re = 1250, Ey = 2.9 x
1078; (d) Re = 1568, Eg = 3.6 x 107°.
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Figure 6. Isocontours of the crossflow energy E s with the normalized y-integrated large-scale flow (vectors)
for Re = 1150, Eg = 4.7 x 1078, T = 100: («) initial optimal solution, = 0; (b) optimal solution at the target
time, r =T.

The contours of the premultiplied energy spectra of the minimal seed obtained at Re =
1150 are reported in figure 11. The streamwise perturbation energy peaks for A, &~ 2.45
and A, &~ 3.78 (see also table 1), whereas the wall-normal and spanwise perturbation
energy have largest amplitude at A; & 1, A, = 4, with a secondary peak for 1, &~ 2 and
Ay & 25. The lowest of these wavelengths are close to those reported by Lemoult ef al.
(2014) concerning the development of turbulent spots at similar Reynolds numbers, and are
linked to the finite size of the streaks, whereas the largest wavelengths are linked directly
to the streamwise and spanwise sizes of the wavepacket. Very similar spectra are found to
characterize the nonlinear optimal perturbations at higher initial energy (solid contours in
figure 11). The premultiplied energy spectra of the minimal seeds obtained for the other
values of Re are reported in figure 12 by the shaded contours (Re = 1000) and the dashed
lines (black for Re = 1150, blue for Re = 1250, green for Re = 1568). As a consequence of
the increased spatial localization, the overall distribution of the energy spectra is displaced
towards higher values of A, A, when Re increases. This effect is coupled with a narrowing
and displacement of the spectra towards higher values of y, which is a consequence of
an increased localization also in the wall-normal direction. The peak values reported in
table 1 are also influenced considerably by the Reynolds number.

3.3. Minimal seed evolution in time

In this subsection, we analyse the time evolution of the minimal seeds towards the turbulent
bands. In figure 13, the time evolution of the kinetic energy, obtained from direct numerical
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Figure 7. Minimal seeds at target time t =T for different Reynolds numbers: isosurfaces of negative
streamwise velocity (u = —0.03, light grey) and Q-criterion (Q = 0.005) coloured by the streamwise vorticity
(positive red, negative blue). For all values of Re, only a subdomain of length Iy x 1, x [; =30 x 0.5 x 10

is shown. Here: (a) Re = 1000, Ey = 5.5 x 10~7; (b) Re = 1150, Eg = 4.7 x 1078; (¢) Re = 1250, Ey =
2.9 x 1078; (d) Re = 1568, Ey = 3.6 x 107°.
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Figure 8. Minimal seeds at target time t =T for different Reynolds numbers: isosurfaces of negative
streamwise velocity (1 = —0.0025, light grey) and Q-criterion (Q = 0.003) coloured by the streamwise
vorticity (positive red, negative blue). Here: (@) Re = 1000, Eg = 5.5 x 10=7; (b) Re = 1150, Ey = 4.7 x
1078; (¢) Re = 1250, Eg = 2.9 x 1078; (d) Re = 1568, Ey = 3.6 x 1079,
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Figure 9. Minimal seeds for (a) Re = 1400, (b) Re = 1568, (c) Re = 1650; isosurfaces of the streamwise
velocity (light grey for positive and black for negative values, u = £0.005.
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Figure 10. Isocontours of the crossflow energy E.s with the normalized y-integrated large-scale flow
(vectors) for the minimal seed in the small domain for (@) Re = 1400, (b) Re = 1568, and (c¢) Re = 1650.
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Figure 11. Logarithm of the premultiplied spectral energy versus the wall-normal distance y* for the initial
optimal solution for 7'= 100, Re = 1150, with Ep = 1.1 x 107, coloured contours, and Ey=4.7 x 1078,
black contours. The white dots indicate the energy peaks. Here: (@) Ay Eyy(Ay). (D) Ax Eyy(Ay), (¢) Ay Eypw (Ay),
(d) Az Equ(Ay), (€) Az Epy (Ay), (f) Az By (A2).

Re (A)u (Au (A)v (v (Aw (Aw
1000 4.897 2.117 4.995 1.049 4.995 2.080
1150 3.784 2.449 4.163 1.105 4.028 1.125
1250 1.287 2.153 24.98 1.049 4.625 1.105
1568 3.244 2.838 3.518 0.790 3.642 1.759

Table 1. Streamwise and spanwise wavelengths A, A, associated with the primary peaks of the premultiplied
energy spectra of u, v, w, shown in figure 12 for different Reynolds numbers.
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Figure 12. Logarithm of the premultiplied spectral energy versus the wall-normal distance y* for the
initial optimal solution at different Reynolds numbers at T = 100: Re = 1000 for Ey = 5.5 x 107 (coloured
contours), Re = 1150 for Ey = 4.7 x 108 (black contours), Re = 1250 for Eg = 2.9 x 10~8 (blue contours),

and Re = 1568 for Ey = 5.8 x 107 (green contours). The symbols indicate the peaks of the energy, also
reported in table 1. Here: (a) Ay Eyu(Ay), (D) Ay Epy(Ay), (¢) Ax Eyw(Ay), (d) /lz Euu(/lz)s (e) /lz Evv(/lz),
() Az By (A2).

simulations initialized with the minimal seeds, is reported. In all cases, the kinetic energy
increases strongly in time until saturating towards a statistically constant value. For the
lowest considered Reynolds numbers, we observe a rapid initial increase of the kinetic
energy, followed by a slow phase of saturation of the energy, whereas for larger Re, the
initial growth is slower and leads to lower values of the kinetic energy at small time. One
can notice once again that at Re = 1000, the flow appears to behave rather differently from
what is observed at larger Reynolds numbers. However, the minimal seeds at larger Re,
despite having lower initial energy, tend towards higher values of the kinetic energy at
large times, suggesting that for larger Reynolds numbers, turbulence eventually occupies a
larger portion of the domain.

This can be verified by analysing the time evolution of the crossflow energy and
y-averaged flow fields for the minimal seeds at different Reynolds numbers. For Re =
1150, figure 14 shows that despite its quasi-symmetric initial shape (see figure 5), the
localized minimal solution breaks its symmetry rapidly along the spanwise direction. A
clearly asymmetric (but still spatially compact) structure can be seen already at t = 500,
as shown in figure 14(b). Previous experimental and numerical works (Bullister & Orszag
1987) have observed that in their initial phases, spots are more unstable in their edges,
so they rapidly incur symmetry breaking. Various authors (see, for instance, Lemoult
et al. 2014) have related this symmetry-breaking phase to the development of sinuous
instabilities of the streaks. This asymmetric wavepacket evolves via nucleation of new
streaky structures (see Parente et al. (2021) concerning the mechanism of creation of
the streaks) in the direction of the inclined laminar—turbulent interface, clearly forming
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Figure 13. Time evolution of the kinetic energy for the minimal seeds obtained for the different considered
Reynolds numbers.

a singular turbulent band, as can be observed for ¢t = 900. The newly formed turbulent
band continues growing in an oblique direction with angle ~28° until reaching the
periodic boundaries, where it interacts with itself (+ = 1500). This triggers splitting of
the previously isolated band (¢ = 2500), which saturates, reaching a laminar—turbulent
pattern filling the whole domain at = 4000. The same behaviour has been observed
by Tao & Xiong (2013) and Xiong et al. (2015) by injecting in a plane Poiseuille flow
a ‘seed’ of the turbulent bands, similar in shape to the instantaneous field at t = 500
in figure 14. Analysing the large-scale flow, we can observe the formation of a small
recirculation zone upstream of the spot during its evolution. Moreover, when the bands
are formed, the large-scale flow is found to turn clockwise around bands with positive
angle and anticlockwise around bands with negative angle. In fact, all the bands are
formed in correspondence with the shear layer that divides the different vortices. A rather
similar behaviour is observed at Re = 1000, as shown in figure 15. Despite that at small
times (¢ = 150) the minimal seed evolves into a quasi-symmetric V-shaped spot, one of
its two legs weakens in time (¢ = 500) and completely disappears at t = 900, evolving
into a single band, as observed for Re = 1150. Whereas, looking at the evolution in time
for the cases at higher Reynolds number, the flow presents the same behaviour observed
experimentally and numerically when turbulence is triggered by a spot (Carlson et al.
1982; Alavyoon, Henningson & Alfredsson 1986; Henningson & Kim 1991; Aida et al.
2010, 2011). In fact, the localized perturbation initially evolves in the domain forming a
turbulent spot, turning into a V-shape at t = 500, as shown in figure 16. At this time, two
distinct fronts of the spots can be observed, which evolve in two symmetric bands with
angle ~ £ 45° growing obliquely in the domain, as shown at t = 900. At t = 1200, they
start to interact with each other, forming a spatio-temporally complex final state composed
of turbulent and laminar patterns (¢ = 3000). Qualitatively, the same behaviour is observed
at Re = 1568, as shown in figure 17, although the spatial spreading of the bands appears to
be more rapid than at lower Re, despite the initial energy of the perturbation being lower.
Also in these cases, the bands are found to be generated right in the mixing layer between
two large-scale counter-rotating vortices. Notice also that the same quasi-symmetric
behaviour can be observed at lower Re, for a larger initial energy. In fact, the nonlinear
optimal perturbation computed for Re = 1150 and Ey = 4.7 x 1078 > Ej,,,;, evolves in
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Figure 14. Isocontours of the crossflow energy E.s together with the normalized y-integrated large-scale flow

(vectors) for several instantaneous fields (Re = 1150, Ey = 4.7 x 1078, T = 100): (a) r = 200, (b) t = 500, (¢)
t =900, (d) t = 1500, (e) t = 2500, (f) t = 4000.

()

Figure 15. Isocontours of the crossflow energy Er together with the normalized y-integrated large-scale flow
for several instantaneous fields (Re = 1000, Ey = 5.5 x 10~7, T = 100): (a) t = 150, (b) r = 500, (¢) = 900,
(d) t = 1500, (e) t = 2500, (f) t = 3000.

two distinct bands, showing a time evolution corresponding to that of the minimal seed at
largest Re (not shown).

An explanation of this behaviour can be attempted by recalling that in the channel flow,
turbulent stripes have a probability of decay that increases with time, and that decreases
with the Reynolds number (Paranjape 2019). Thus since all minimal seeds present an
almost spanwise-symmetric structure, two proto-bands begin to be created at the edges
of the large-scale vortices characterizing the minimal seed. However, the probability of
decay of these bands is higher for low Reynolds number, and increases in time, so when
Re is sufficiently low, one of these bands dies out rapidly, leading to the development of
one isolated band. Increasing Re, the probability of decay of an initial band is lower, while
the probability of splitting increases. Thus both oblique bands originated at the sides of
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Figure 16. Isocontours of the crossflow energy Er together with the normalized y-integrated large-scale flow
for several instantaneous fields (Re = 1250, Eg = 2.9 x 1078, 7T = 100): (a) t = 200, (b) t = 500, (c) t = 900,
(d) t = 1200, (e) t = 1500, (f) t = 3000.
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Figure 17. Isocontours of the crossflow energy E.r together with the normalized y-integrated large-scale flow
for several instantaneous fields (Re = 1568, Eg = 3.6 x 1072, T = 150): (a) t = 200, (b) t = 300, (¢) t = 350,
(d) t =500, (e) t = 600, (f) t = 900.

the minimal seed survive longer in time, until they split and interact, leading rapidly to
the establishment of a spatio-temporally complex final state. Notice that injecting more
initial energy at low values of Re has the same effect as increasing Re. In fact, an optimal
perturbation with Eg > Ej,,;, is less spatially localized, and is able to reach a much larger
kinetic energy at 7 = 100, leading to more spatially-extended and energetic proto-bands,
which allows their sustainment for a longer time.

To corroborate this conjecture, we make use of the Reynolds—Orr equation to evaluate
the production, P, and dissipation, €, of kinetic energy as, respectively,

P=—uu—, e=""yg.s. withs,=—|—+—L], 3.1
" ox; Re V'Y Yoo2\0x  Ox
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Figure 18. Spanwise distribution of the production (P, red line) and dissipation (—e, black line) terms
integrated in x—y planes for different instantaneous fields obtained by evolving in time the minimal seed for

Re = 1150, Ey = 4.7 x 1078, T = 100: (a) t = 0, (b) t = 100, (¢) t = 500, (d) ¢ = 900.

where the Einstein summation convention has been used. One can compare the time
evolution of the production and dissipation terms, integrated in x—y planes, for the minimal
seeds at Re = 1150 and Re = 1250, provided in figures 18 and 19. For both Reynolds
numbers, at = 0 the production presents one single peak almost in the centre of the spot
(z & 70), which is found to exceed dissipation of almost an order of magnitude. Production
of kinetic energy leads to a slight increase of the spanwise size of the wavepacket (¢ = 100),
together with a further increase of the kinetic-energy production, probably due to the
nucleation of new streaks that produce kinetic energy thanks to the lift-up effect. Due
to the breakdown of the structures inside the spot, dissipation increases as well, reaching
almost the same value of the production term. Notice also that a weak secondary peak
begins to be visible in the production term. At ¢ = 500, the spot has increased its size
strongly in the spanwise direction, presenting a quasi-symmetric shape with two peaks
at z ~ 55-60 and z ~ 80-85. However, at t = 900, the evolution of the production and
dissipation terms begins to differ strongly between the two considered Reynolds numbers.
For Re = 1250, the spanwise distribution of the dissipation and production terms remains
quasi-spanwise-symmetric, centred at z & 70, with two distinct laminar—turbulent fronts
at z &~ 20 and z &~ 110 (see figure 19). Whereas, for Re = 1150, the leftmost part of the
packet has almost faded away, while the rightmost part has expanded up to z = 110,
as shown in figure 18. The analysis of the production and dissipation terms indicates
clearly that the minimal seed for turbulent bands leads to the generation of two almost
symmetric regions of high production and dissipation, which can be seen as two distinct
proto-bands. However, for lower Reynolds numbers, the weaker of these two proto-bands
decays rapidly, leading to the development of an isolated band, whereas at larger
Reynolds numbers, both bands survive for a sufficiently long amount of time to begin
self-interacting.

4. Conclusion

In this work, we have investigated the minimal-energy perturbations for the generation
of turbulent bands in plane Poiseuille flow. A nonlinear optimization maximizing the
kinetic energy at a given target time, coupled with initial energy bisection, has been
used. The optimization was performed in very large domains, for a range of Reynolds
numbers for which turbulent bands are sustained and lead to a spatio-temporally complex
turbulent—laminar final state, namely Re = 1000, 1150, 1250, 1568 (the lowest value being
close to the threshold Re for which bands splitting and turbulence spreading can be
observed). The influence of the Reynolds number on the minimal energy threshold for
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Figure 19. Spanwise distribution of the production (P, red line) and dissipation (—e, black line) terms
integrated in x—y planes for different instantaneous fields obtained by evolving in time the minimal seed for

Re = 1250, Eg = 2.9 x 1078, T = 100: (a) t = 0, (b) t = 100, (c) ¢ = 500, (d) t = 900.

generating turbulent bands (Ey,,, ) is analysed. In accordance with previous work carried
out on other shear flows in small domains, the minimal seed has been found to scale with
Re following a power law Ey, . o Re™7, although a sufficiently good fit is found only by
restraining the analysis to Re > 1000. However, the value of y recovered in the present
work (y ~ 8.5) is approximately four times larger than the values reported in previous
works (y ~ 2.7 in Duguet et al. (2013), y ~ 2 in Cherubini et al. (2015)). This may
be due either to the different type of flow or to the very large domain size. Minimal
seed computations carried out in a much smaller domain provided a scaling law very
close to that found for the large one, although in a a limited range of Re very close to
the threshold value for observing sustained turbulence. Whereas, restraining the range
of Re to the largest values, the scaling appears to drop to —3.3, which is consistent
with the values found for other shear flows. Moreover, the minimal energy threshold
for transition to turbulence in the large domain is several orders of magnitude lower
than that found for this smaller domain, and the structure of the minimal seeds changes
as well.

For all values of the Reynolds numbers analysed, the minimal-energy perturbation
able to generate turbulent bands is a spatially localized spot-like structure composed of
finite-size streaks and elongated vortices. A more marked localization of the minimal
seed is found when Re increases. As previously reported for the channel flow in the
presence of spatially-localized spots, a large-scale flow having a quadrupolar structure
has been found to surround the small-scale localized minimal perturbations. These
minimal perturbations have dominant wavelengths ~4 and ~1 in the streamwise and
spanwise directions, respectively. Nonlinear optimal perturbations, with energy higher
than minimal, are characterized by similar shape and wavenumbers.

The evolution of the minimal seeds towards the turbulent bands has been investigated.
For Re < 1250, the minimal seeds evolve in time creating an isolated oblique band,
whereas for Re > 1250, it gives rise to two distinct bands that grow quasi-symmetrically
in the spanwise direction. This quasi-symmetrical evolution is observed also at lower Re
for non-minimal optimal perturbations. An analysis of the production and dissipation of
kinetic energy integrated in the streamwise and wall-normal directions shows that in all
cases, the initial spot-like perturbation evolves in a quasi-symmetric fashion, giving rise
to two proto-bands at the edges of the large-scale flow characterizing the minimal seeds.
However, since the probability of decay of the bands increases in time and is higher for
low Reynolds number, when Re is sufficiently low, one of these bands rapidly dies out,
leading to the development of one isolated band. Whereas, for larger values of Re, the
probability of decay of an initial band is lower, while the probability of splitting increases.
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Thus both oblique bands originated at the sides of the minimal seed survive for a
longer time, until they split and interact, leading rapidly to the establishment of a
spatio-temporally complex final state. Injecting more initial energy at low values of Re
has the same effect as increasing Re, since a more spatially extended disturbance with
higher kinetic energy is reached at a small time, leading to longer and more energetic
proto-bands, able to be sustained for a longer time.

This work elucidates two (apparently distinct) minimal-energy mechanisms for the
generation of turbulent bands in channel flow. It appears that both the initial and final
states are very sensitive to the energy and Reynolds numbers characterizing the flow,
highlighting the complexity of the laminar—turbulent patterned state and its initial seed.
The selection of one of these two mechanisms appears to be affected by the probability
of decay of the newly created stripe, which increases with time, but decreases with the
Reynolds number. Future work will aim to extend the present investigation to other shear
flows presenting spatially patterned turbulence.
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