
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/178148

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/178148
mailto:wrap@warwick.ac.uk

Learning on Sequential Data with
Evolution Equations

by

Maud Lemercier

Thesis

Submitted to The University of Warwick

for the degree of

Doctor of Philosophy

Department of Statistics

April 2022

Contents

List of Figures v

List of Algorithms vii

Acknowledgments ix

Declarations x

Abstract xi

Acronyms xii

Symbols xiii

Chapter 1 Introduction 1
1.1 Outline of the thesis . 5

Chapter 2 Background 6
2.1 CDEs, signature and regression on paths 7

2.1.1 Controlled differential equations 9
2.1.2 The signature . 10
2.1.3 Signature-based basis functions 14

2.2 PDEs, signature kernel, and kernel methods 16
2.2.1 The signature kernel . 18
2.2.2 Kernel methods . 21

2.3 Neural controlled differential equations 29
2.3.1 The NCDE model . 30
2.3.2 Extensions to less regular controls 31

Chapter 3 Scalable Gaussian Processes on Sequential Data 33
3.1 Introduction . 33
3.2 Background . 35
3.3 Variational inference with orthogonal signature features 36

3.3.1 The signature . 37
3.3.2 The signature kernel . 38
3.3.3 Parametrization of the signature kernel 38

i

3.3.4 Variational orthogonal signature features 39
3.4 Reverse-mode automatic differentiation for the signature kernel 41

3.4.1 Differentiating along the direction of a path 42
3.4.2 A PDE for the gradients of the signature kernel 43
3.4.3 An explicit solution by variation of parameters 44

3.5 Related work . 45
3.6 Experiments . 46

3.6.1 Classifying digits in sequential MNIST 47
3.6.2 Detecting whale call signals 47
3.6.3 Large scale classification of satellite time-series 48
3.6.4 Weather forecast . 48

3.7 Conclusion . 50

Chapter 4 Distribution Regression on Sequential Data 51
4.1 Introduction . 51

4.1.1 Problem definition . 53
4.2 Background . 53

4.2.1 Paths and probability measures on paths 53
4.2.2 A canonical Hilbert space of tensors 54
4.2.3 The signature of a path 54
4.2.4 Truncating the signature 55
4.2.5 Robustness to irregular sampling 55

4.3 Methodology . 56
4.3.1 A feature-based approach (SES) 57
4.3.2 A kernel-based approach (KES) 59
4.3.3 Evaluating the distribution regression kernel 61

4.4 Related work . 63
4.5 Experiments . 64

4.5.1 A defective electronic device 64
4.5.2 Inferring the temperature of an ideal gas 65
4.5.3 Parameter estimation in a pricing model 66
4.5.4 Crop yield prediction from GLDAS data 66

4.6 Conclusion . 67

Chapter 5 Kernel Mean Embeddings for Stochastic Processes 69
5.1 Introduction . 69

5.1.1 Related work . 70
5.2 Preliminaries . 72

5.2.1 The signature transform and the signature kernel 72
5.2.2 Stochastic processes and filtrations 73

5.3 Higher order kernel mean embeddings 74

ii

5.3.1 Conditional kernel mean embeddings for stochastic pro-
cesses . 74

5.3.2 Conditioning stochastic processes on their filtrations . . 74
5.3.3 Second order kernel mean embedding and maximummean

discrepancy . 75
5.3.4 A filtration-sensitive kernel two-sample test 76
5.3.5 Higher order kernel mean embeddings and maximum

mean discrepancies . 78
5.3.6 Higher order distribution regression 79

5.4 Applications . 80
5.4.1 Hypothesis testing on filtrations 80
5.4.2 Applications of higher order distribution regression to

quantitative finance . 81
5.4.3 Inferring causal graph for interacting bodies 82

5.5 Conclusion . 83

Chapter 6 Resolution-Invariant Learning of Spatio-temporal
Dynamics 84
6.1 Introduction . 85
6.2 Background on SPDEs . 87
6.3 Neural SPDEs . 88

6.3.1 The model . 89
6.3.2 Kernel parameterization 1: ODE solver approach 90
6.3.3 Kernel parameterization 2: fixed point approach 91
6.3.4 Space-time resolution-invariance 92

6.4 Related work . 92
6.4.1 Neural CDEs, SDEs, RDEs 92
6.4.2 Neural Operators . 93

6.5 Experiments . 94
6.5.1 Stochastic Ginzburg-Landau equation 95
6.5.2 Stochastic Korteweg–De Vries equation 97
6.5.3 Stochastic Navier-Stokes equations 97

6.6 Conclusion . 99

Chapter 7 Discussion 101
7.1 Contributions of the thesis . 101
7.2 Future work . 102

Appendix A Appendix to Chapter 3 104
A.1 Additional proof . 104
A.2 Additional experimental details 106

A.2.1 Data collection process 106

iii

A.2.2 Training procedure . 107
A.3 Additional algorithmic details 108

A.3.1 Complexity analysis . 108
A.3.2 Computing the signature kernel and its gradients 109

Appendix B Appendix to Chapter 4 110
B.1 Proofs . 110

B.1.1 Weak continuity of the expected signature 110
B.1.2 Injectivity and weak continuity of the pathwise expected

signature . 111
B.2 Experimental details . 113

B.2.1 Transforming discrete time-series into continuous paths 113
B.2.2 Implementation details 114
B.2.3 Hyperparameter selection 115

B.3 Interpretability . 115

Appendix C Appendix to Chapter 5 118
C.1 Cross-covariance operators . 118

C.1.1 Hilbert-Schmidt conditional independence criterion for
stochastic processes . 120

C.1.2 Construction of the estimator for the second order MMD 121
C.2 Algorithms . 122

C.2.1 Algorithm for the first order MMD 123
C.2.2 Algorithm for the second order MMD 124
C.2.3 Algorithm for higher order MMDs 126

C.3 Experimental details . 128
C.3.1 Rough volatility . 128
C.3.2 Higher order distribution regression 128

C.4 Proofs . 130

Appendix D Appendix to Chapter 6 136
D.1 Computational aspects of SPDEs 136

D.1.1 The Fourier Transform 136
D.1.2 Stochastic simulation of Wiener processes 139
D.1.3 Numerical solvers . 141

D.2 Further experiments . 143
D.2.1 Additional experimental details 143
D.2.2 Stochastic Ginzburg-Landau equation 145
D.2.3 The stochastic wave equation 146

List of Figures

2.1 Geometric meaning of the coordinates of the 2nd level of the
signature of a d-dimensional path x. The coordinates Sij(x)

and Sji(x) correspond to the (light blue) area enclosed between
the (bold blue) curve t 7→ (xi(t), xj(t)) and two perpendicular
(dashed) lines passing through the endpoints of x. 12

3.1 Illustration of the first terms of the signature S(x) for a 3-
dimensional path x : t 7→ (x1(t), x2(t), x3(t)). Each blue circle
corresponds to a signature feature Si1...in(x). The size of the
circle reflects the feature importance according to the property
|Si1...in(x)| = O(1/n!). The first feature which is always equal
to 1 is omitted in this schematic. 39

3.2 Weather forecast dataset. (a) One (standard scaled) multivariate
time-series (xk)`k=1 in input to the GP model. (b) Posterior mean
of the SigGPDE GP when evaluated at multiple input time-series
like (xk)

`
k=1 on the test set. The actual precipitation amount is

given for reference. 46
3.3 Large scale (1M) classification of satellite time-series. Compar-

ison of various metrics as functions of inducing variables in (a),
(b) and (c). 49

3.4 Top 10 signature features (by importance) used by SigGPDE to
predict whether or not it will rain in the next hour from previous
weather data. Each feature corresponds to an iterated integral
Si1...in(x) where each ik ∈ {1, . . . , 7}. The 7 channels of the
input time-series represent Moisture, Humidity,Temperature, Rain,

Airtight, Pressure, and Wind speed. For example we can read that
the top feature corresponds to n = 3 and (i1, i2, i3) = (1, 2, 1). . 49

4.1 Simulation of the trajectories traced by 20 particles of an ideal gas
in a 3-d box under different thermodynamic conditions. Higher
temperatures equate to a higher internal energy in the system
which increases the number of collisions resulting in different
large-scale dynamics of the gas. 52

v

4.2 Schematic overview of the action of pathwise expected signature
Φ on a set of paths {xp}Np=1. Top: Representation of the inform-
ation about the set of time-series available from start up to time
tk. Bottom: At each time tk this information gets embedded
into a single point in H(Rd). 56

4.3 Predictive MSE at various subsampling rates forM = 50 circuits
and N = 15 devices. The shaded area indicates the standard
deviation. 64

5.1 Schematic overview of the construction in (Sec. 5.3.2) of the 1st

order predictive KME µ(1)
X|FX . HereX is a stochastic process with

sample paths taking their values in V . The red contours indicate
the portion of its filtration FX upon which the conditioning is
applied, i.e. the available information about X from start up
to time t. As explained in Sec. 5.3.2, the 1st order predictive
KME µ

(1)
X|FX is a path whose value at time t is a H(V)-valued

random variable representing the law of X conditioned on its
filtration FXt . Equivalently µ(1)

X|FX is a stochastic process with
sample paths taking their values in H(V). 71

5.2 Two stochastic processes Xn (left) and X (right). 80
5.3 Left: Empirical distribution of the 1st order MMD. Under H0 the

two measures are both equal to P and we use 500 samples from
each. Under HA with P and Pn where n = 5 · 105, and we use
500 samples. Right: Same for the 2nd order MMD. Histograms
are obtained by computing 500 independent instances of the MMD. 81

5.4 Inferring the graph structure of interacting bodies: results of the
kPC algorithm for multidimensional stochastic processes. 83

6.1 Schematic view of a Neural SPDE. The model is formulated
directly at the level of function spaces, which makes it possible
to deploy the model on different discretization meshes. 89

6.2 Top panel : Solution of the vorticity equation for one realization
of the stochastic forcing between the 500th and the 5 000th time
steps. Bottom panel : Predictions with the Neural SPDE model
given the initial condition at the 500th time step and the forcing
between the 500th and the 5 000th time steps. The model is
trained on a 16× 16 mesh and evaluated on a 64× 64 mesh. . . 99

B.1 The 5 most predictive features provided by (Lasso) SES for the
task of crop yield prediction. 116

vi

B.2 GLDAS/Eurostat dataset. Each panel shows the normalized
time-series of temperature, humidity and precipitation, measured
over 10 different locations across a region within a year. 117

vii

List of Algorithms

1 Sig . 16
2 PDESolve . 20
3 BackwardPDESolve1 . 42
4 BackwardPDESolve2 . 43
5 PES . 58
6 SES . 60
7 GramKES . 62
8 PDESolveFromGram . 123
9 FirstOrderGram . 124
10 FirstOrderMMD . 124
11 SecondOrderGram . 125
12 SecondOrderMMD . 125
13 InnerProdPredCondKME . 126
14 HigherOrderGram . 127
15 HigherOrderMMD . 127

viii

Acknowledgments

Foremost, I am extremely thankful to my supervisor Prof. Theo Damoulas for

his unwavering support, encouragement and guidance throughout my PhD. I

am deeply grateful to Theo for providing exciting real-world problems which

motivated and inspired my research, for always supporting me in exploring new

perspectives, and for connecting me with dynamic research communities at The

Alan Turing Institute.

I would like to extend my deepest gratitude to Prof. Terry Lyons, and the

members of the DataSig programme who welcomed me into the team, gave me

opportunities to present my work at multiple workshops and conferences, and

generously provided me with computational resources when needed.

My sincere thanks to Dr. Andris Gerasimovičs, Dr. Blanka Horvath, Dr.

Chong Liu, Dr. Cristopher Salvi, Dr. Edwin V. Bonilla and Dr. Thomas Cass.

Thank you for lending me your expertise. I have been very fortunate to work

with you and I have greatly enjoyed our collaborations.

I would also like to thank the Oxford-Warwick Statistical Programme

(OxWaSP) for funding my PhD. Thanks to my OxWaSP peers for creating

such a friendly working environment during the first year of the CDT.

Special thanks go to Prof. Alessandra Russo, Prof. Francesco P. Andriulli

and Prof. Valérie Burdin, who supervised me during my graduate studies in

France and the UK, and encouraged me to pursue a PhD.

Last but not least, I would like to thank my parents and Cris for their

loving support and encouragement.

ix

Declarations

This thesis is submitted to the University of Warwick in support of my applic-

ation for the degree of Doctor of Philosophy. It has been composed by myself

under the supervision of Prof. Theo Damoulas. I also confirm that this thesis

has not been submitted for a degree at another university. Parts of this thesis

have been previously published by the author:

1. The work presented in Chapter 3 was previously published in The 38th

International Conference on Machine Learning (ICML 2021) as SigG-

PDE: Scaling Sparse Gaussian Processes on Sequential Data

by Maud Lemercier, Cristopher Salvi, Thomas Cass, Edwin V. Bonilla,

Theodoros Damoulas and Terry Lyons.

2. The work presented in Chapter 4 was previously published in The 24th In-

ternational Conference on Artificial Intelligence and Statistics (AISTATS

2021) as Distribution Regression for Sequential Data by Maud

Lemercier, Cristopher Salvi, Theodoros Damoulas, Edwin V. Bonilla and

Terry Lyons.

3. The work presented in Chapter 5 was previously published in The 35th

Conference on Neural Information Processing Systems (NeurIPS 2021) as

Higher Order Kernel Mean Embeddings to Capture Filtrations

of Stochastic Processes by Cristopher Salvi, Maud Lemercier, Chong

Liu, Blanka Hovarth, Theodoros Damoulas and Terry Lyons.

4. The work presented in Chapter 6 was previously published in The 36th

Conference on Neural Information Processing Systems (NeurIPS 2022)

as Neural Stochastic Partial Differential Equations: Resolution-

Invariant Learning of Continuous Spatiotemporal Dynamics by

Cristopher Salvi, Maud Lemercier and Andris Gerasimovičs.

x

Abstract

Data which have a sequential structure are ubiquitous in many scientific

domains such as physical sciences or mathematical finance. This motivates

an important research effort in developing statistical and machine learning

models for sequential data. Recently, the signature map, rooted in the theory

of controlled differential equations, has emerged as a principled and systematic

way to encode sequences into finite-dimensional vector representations. The

signature kernel provides an interface with kernel methods which are recognized

as a powerful class of algorithms for learning on structured data. Furthermore,

the signature underpins the theory of neural controlled differential equations,

neural networks which can handle sequential inputs, and more specifically the

case of irregularly sampled time-series.

This thesis is at the intersection of these three research areas and addresses

key modelling and computational challenges for learning on sequential data.

We make use of the well-established theory of reproducing kernels and the rich

mathematical properties of the signature to derive an approximate inference

scheme for Gaussian processes, Bayesian kernel methods, for learning with

large datasets of multi-channel sequential data. Then, we construct new basis

functions and kernel functions for regression problems where the inputs are sets

of sequences instead of a single sequence. Finally, we use the modelling paradigm

of stochastic partial differential equations to design a neural network architecture

for learning functional relationships between spatio-temporal signals.

The role of differential equations of evolutionary type is central in this thesis

as they are used to model the relationship between independent and dependent

signals, and provide tractable algorithms for kernel methods on sequential data.

xi

Acronyms

CDE Controlled differential equation.

DR Distribution regression.

ELBO Evidence lower bound .

GP Gaussian process.

KES Kernel method for DR with the expected signature.

KL Kullback-Leibler divergence.

KME Kernel mean embedding .

KRR Kernel Ridge regression.

ML-II Type II maximum likelihood .

MMD Maximum mean discrepancy .

NCDE Neural controlled differential equation.

PDE Partial differential equation.

RKHS Reproducing kernel Hilbert space.

RNN Recurrent neural network .

SES Feature-based method for DR with the pathwise expected signature.

SigGPDE Scalable Gaussian process with signature kernel covariance function.

SPDE Stochastic partial differential equation.

VI Variational inference.

VOSF Variational orthogonal signature features.

xii

Symbols

N Natural numbers including zero
N∗ Natural numbers excluding zero
X ,Y Arbitrary sets, e.g. input and output spaces
U Compact set
V,W,H Hilbert spaces
X (V) Set of continuous V -valued paths of bounded variation
T (V) Tensor algebra of V
H(V) Feature space for embedding V -valued paths

x Generic input variable
x Path in X (V)

x,y Vectors
X,Y Random variables
A,B Elements of a tensor algebra

P(X) Set of probability measures on X
P,Q Probability measures
PX Law of the random variable X
Dk Maximum mean discrepancy associated with the kernel k
µP Kernel mean embedding of the probability measure P
µX Kernel mean embedding of the law of X
S̄ Expected signature

H Hilbert space of functions
Hk Reproducing kernel Hilbert space (RKHS) associated with k
H(V) RKHS for embedding V -valued paths

K Signature kernel
Kdr Distribution regression kernel
u Solution of a differential equation

xiii

Chapter 1

Introduction

Sequential data represent a succession of events or facts, which often follows
the order of time, but is not restricted to. For example, in bioinformatics, data
in the form of strings of characters are commonplace, as exemplified by DNA
sequences, which transcribe the order in which nucleotides are arranged along
DNA strands. In Earth sciences, time-stamped data are accumulated at a high
rate through the monitoring of various natural resources (e.g. soil moisture,
water levels, air pollutant concentrations) with measurements conducted at
regular intervals, directed by Earth observation programmes. There is an
increasing need to develop statistical and machine learning methods to analyze
this type of data and help individuals or organizations make scientific discoveries,
predictions, and decisions. Despite the variety of phenomena represented by
sequential data and the different data structures used to store and access them,
they can be formally described by sequences of the form (xk)k∈I with xk ∈ V ,
where the index set I is a countable and totally ordered set, and the state space
V is the set of possible events. The index set is typically a subset of natural
numbers or a subset {t1, t2 . . . , t`} of R+ with t1 < t2 < . . . < t`. When the
state space is a vector space such as Rd, the corresponding sequences are referred
to as multi-channel sequences or multivariate time-series. In some instances,
the state space may be endowed with a different mathematical structure to
describe more complex types of observations such as time-varying fMRI scans
(Giusti and Lee, 2021; Rieck et al., 2020) or time-series of spatial functions,
a.k.a. spatio-temporal data (Chevyrev et al., 2021; Cressie and Wikle, 2015).
We denote by (Xk)k∈I a sequential random variable, that is, a discrete-time
stochastic process, and by (xk)k∈I an observation.

Common learning tasks where the input variable is a multi-channel sequence
include: classifying sequential data (e.g. detection of viral sequences (Bzhalava
et al., 2018)), predicting a scalar response from an input sequence (e.g. crop
yield from series of satellite images (Tan et al., 2021)), or predicting a dependent
sequence from an explanatory sequence (e.g. a patient’s disease trajectory from

1

sequential medical records (Alaa and van der Schaar, 2019)). Although the
first two types of tasks have been extensively studied for multivariate inputs,
the models developed in this context are not directly applicable or may be
suboptimal when applied to multi-channel sequential data. The latter are
(ordered) sets of points that may vary in cardinality. As a result, the same
model must be able to process sequences of different lengths. Even with
sequences of fixed length `, the input variables may be highly correlated, as
repeated observations of a system made sequentially in time, which violates
the assumptions of multivariate linear models and poses colinearity problems.
Moreover, sequential data are often high-dimensional, with a total number of
` × d scalar variables. Contrary to multivariate data, in some instances, the
index set may differ from one sequence to another when observations are made
at different times. Crucially, the notion of a sequential variable expresses the
fact that the ordering of the observations matters, a form of prior knowledge.
In other words, changing the order of events in the input sequence is expected
to change its effect or response. For instance, the arrangement of nucleotides
in a DNA or RNA sequence determines the unique characteristics of a virus.
Furthermore, the variables in a multivariate time-series exhibit correlations
both along the index dimension and the state space dimension, which are often
important predictive patterns. Therefore, models operating on sequential data
should capture complex temporal patterns. Eventually, analyzing sequential
data goes well beyond multivariate analysis. For this reason, there has been an
important research effort to develop statistical and machine learning models
that account for the structure of sequential input variables.

One prominent approach consists in finding a representation for the in-
put data such that well-established models and algorithms become applicable.
This representation is typically a finite-dimensional vector obtained by feature
engineering. This process is often problem specific in the sense that it has
to be adapted to different types of datasets, and inevitably incurs some loss
of information which is difficult to quantify. Remarkably, over the past few
years, the signature method has emerged as a principled and systematic fea-
ture extraction technique to encode sequences into finite-dimensional vector
representations. Before being used as a feature map in machine learning, the
signature played an important role in the theoretical analysis of controlled
differential equations (CDEs), a class of differential equations that model the
relationships between evolving systems. Perhaps the most well-known instance
of this class is given by stochastic differential equations (SDEs) which are
a prominent modelling paradigm in physics, engineering, finance and so on,
as they describe evolutionary mechanisms under the influence of noise. This
grounding in the theory of dynamical systems has several practical implications
for machine learning applications. First, it inclines the modeller to think of

2

sequences as functions x : [0, T] → V of a continuous independent variable
t ∈ [0, T] ⊂ R+ which can be thought of as representing time, but may as well
be a one-dimensional spatial variable for example. Although it is not possible
to measure real-world phenomena continuously, they often unravel continuously
over time. This continuous-time view has several advantages compared to the
discrete conception of sequential data, so we choose to stress the distinction by
writing x(t) instead of xt or xt. Considering sequential data as the evaluation
of a function at different positions makes it possible to handle different index
sets and deal with high temporal resolutions. This idea is also at the heart of
Functional Data Analysis (FDA) (Ramsay et al., 2005). However, the signature
method stands out in the context of learning on sequential data, as the focus is
not on representing the time-series themselves, but on representing functions on
time-series, with good approximation guarantees resulting from the algebraic
and analytic properties of the signature. Besides, the real power of the signature
arises when the time-series are multidimensional as it captures the order of
events across time and channel dimensions.

By the same token, there has been a significant effort in designing kernel
functions on sequential data, as they provide an interface with kernel methods,
a well-established class of algorithms for learning on structured data. Popular
algorithms include Support Vector Machines (SVMs), Kernel Ridge Regression
(KRR) and Gaussian Process Regression (GPR), which can be transferred to
virtually any input space, via a carefully designed kernel function on this space.
In particular, positive definite kernels is an important class of kernel functions
as they make it possible to leverage the theory of Reproducing kernel Hilbert
spaces (RKHSs) (Steinwart and Christmann, 2008). On the one hand, defining
a positive definite kernel on sequences is not easier than (in some sense, it
is equivalent to) constructing a feature map. On the other hand, it makes it
possible to implicitly work with high-dimensional and possibly infinitely many
features, since kernelized algorithms only require the ability to compute inner
products in the feature space. A way to evaluate the inner product without
materializing the features is called a kernel trick. For this reason, various
kernel functions have been engineered for sequential data. They can be broadly
classified into three categories. So-called String kernels (Leslie et al., 2003;
Lodhi et al., 2002) are based on matching common substructures in a sequence.
Another idea is to fit a generative probabilistic model to each input time-series,
and use it to define kernel functions including Probability Product kernels
(Jebara et al., 2004), Autoregressive kernels (Cuturi and Doucet, 2011), or
Fisher kernels (Jaakkola et al., 2000). Alternatively, kernels can be contructed
from similarity measures between time-series such as Dynamic Time Warping
(DTW) (Cuturi et al., 2007). Each of these approaches has shortcomings, which
are remarkably overcome by the signature kernel (Cass et al., 2020; Király and

3

Oberhauser, 2019). The latter can be applied to real-valued time-series (which
is not the case of string kernels), does not rely on strong assumptions about the
generating process (contrary to probability product kernels), and is positive
definite (contrary to DTW-based kernels). Derived from the signature map, it
naturally inherits several desirable properties which guarantee effective learning
on sequential data. From a computational point of view, it makes it possible to
implicitly use a high (possibly infinite) number of signature features.

With the surge of the deep learning modelling paradigm, neural network
architectures have been developed to process sequential inputs, Recurrent neural
networks (RNNs) (Rumelhart et al., 1986) being one of the most popular models.
Compared to the aforementioned approaches, the features (or basis functions)
need not be fixed and can be adapted to the problem at hand by optimizing a loss
function through gradient-based backpropagation algorithms. RNNs repeatedly
apply the same operation to each term of a sequence, making it possible to reduce
the number of parameters and process sequences of different lengths. These
recurrent systems can be seen as discrete-time dynamical systems, and require
that the observations be regularly spaced in time. Recently, a continuous-time
analogue of RNNs, termed Neural controlled differential equations (NCDEs),
has been introduced in Kidger et al. (2020). NCDEs are capable of processing
irregularly observed time-series. As their name suggests, NCDEs are based on
the formalism of controlled differential equations, and their expressive power
can be explained using the properties of the signature, as may be expected.

Despite this progress, still various challenges remain when it comes to the
analysis of real-world datasets of sequences. First, in order to exploit the
availability of large-scale data, one needs to develop models which remain
computationally tractable when the number of training instances is very large.
This has motivated the development of approximate inference frameworks to
mitigate the prohibitive cubic time complexity of some kernel methods. However,
transferring these approaches to sequential data is not always straightforward or
optimal. Second, in regression analysis, the goal is to first model the relationship
between a response variable and an explanatory multi-channel sequence, and
then fit the model using training examples in the form of input-output pairs. A
common situation, which does not quite fit this learning framework, arises when
labels are only available at the level of sets of sequences, rather than a single
sequence. When the ensemble of sequences can be seen as a set of replicates of
samples from a stochastic process, one needs to be able to represent and learn on
(laws of) stochastic processes. Although fruitful directions have been proposed
to address this problem for multivariate random variables, stochastic processes
are not just a collection of one-dimensional marginals. In fact, compared to
multivariate random variables, stochastic processes have a much richer structure
that goes even beyond their laws. Third, when the set of sequences exhibits

4

spatial dependencies, and is no longer an unordered collection, this set may
be better modelled as a single observation from a spatio-temporal stochastic
process, that is, a time-series of functions. Although the signature applies
in theory to infinite-dimensional state spaces, this setting is challenging in
practice, as the functions are observed discretely, which poses scalability and
modelling issues when it comes to accounting for complex spatial dependencies.
In this thesis, we propose methodologies to address these challenges using the
formalisms of reproducing kernels, signatures and deep learning, and their
connections with evolution equations, differential equations involving time.

1.1 Outline of the thesis

In Chapter 2 we provide some necessary background for this thesis. Each
subsequent chapter can be read independently.

Chapter 3 is concerned with Bayesian kernel methods for sequential data, in
which the signature kernel is used as a covariance function to define Gaussian
process models. We combine two somewhat orthogonal views of the signature
kernel—on the one hand its explicit feature expansion, on the other hand the
kernel trick that relies on solving a partial differential equation—to develop a
fast approximate inference scheme. This allows fitting Gaussian process models
and performing model selection on large datasets of multivariate time-series
which were previously intractable.

In Chapter 4 we construct a set of features and a kernel—respectively
extending the signature and the signature kernel—that operate on probability
measures corresponding to the laws of stochastic processes. In practice, this
allows one to conduct Distribution regression (DR), a type of regression analysis
where the independent variable is a set of multivariate time-series, viewed as
an empirical or discrete measure, and the dependent variable is a single scalar.

In Chapter 5 we leverage the notion of conditional kernel mean embeddings
from the theory of RKHSs to construct a more expressive kernel on stochastic
processes, which captures information that goes beyond their law. Capitalizing
on the kernel trick, we provide practical algorithms for applications ranging
from DR to hypothesis testing with kernel two-sample tests.

In Chapter 6 we extend NCDEs to model the functional relationship between
discretely observed spatio-temporal signals. We do so by blending an important
class of models in physics, known as Stochastic partial differential equations
(SPDEs), with the high expressivity and flexibility of deep learning.

Chapter 7 concludes by summarizing the contributions of this thesis and
discussing potential future avenues of research.

5

Chapter 2

Background

The objective of this chapter is to provide some necessary background on the
mathematical tools which underpin the methodologies developed in this thesis.
To this aim, we start by introducing the signature map, a central object in the
theory of rough paths in stochastic analysis, which also provides a systematic
way to extract features from data with a sequential structure that can be easily
exploited by machine learning models. In particular, we will explain how the
mathematical properties of the signature map yield canonical basis function
expansions for approximating real-valued functions on sequential data. We
then provide some background on kernel methods and the theory of RKHSs
which can be transferred to sequential data leveraging the signature kernel,
another prominent but more recent tool in the theory of rough paths. Finally,
we give a brief account on NCDEs, continuous-time analogues of RNNs.

The goal of this thesis is to develop methodologies for learning tasks where
the input variable has a sequential structure. To fix the notation, each input
will be a sequence (xk)

`
k=1 in the form of a collection of points x̂k ∈ V with

corresponding time stamps tk ∈ R+ such that 0 = t1 < ... < t` = T and

(xk)
`
k=1 = ((t1, x̂1) , . . . , (t`, x̂`)) . (2.1)

We assume that V is a vector space, and represent the sequence as a path, a
continuous function x : [0, T] → V such that x(tk) = x̂k. Such embeddings
can be obtained by various interpolation methods (e.g. linear interpolation,
cubic splines), but other transformations may be considered, as discussed in
Fermanian (2019). When the data arise from the monitoring of a continuous-
time process, an interpolation provides an approximation of the underlying
process. While these approximations can be the object of a study, in this thesis,
this step is considered as a representation of sequential data, rather than an
imputation.

6

2.1 CDEs, signature and regression on paths

In supervised learning the goal is to find, given a dataset {(xi, yi)}ni=1 of input-
output pairs (xi, yi) ∈ X × Y, an approximation g to the function f : X → Y
that underlies the predictive relationship between the input (or independent
variable) and output (or dependent variable), such that g(x∗) can be used
to predict the response for an unseen input x∗ ∈ X . In some instances, the
input-output relationship can be approximately described by a mechanistic
model, usually in the form of a system of differential equations. When we
do not know the data generating process, a class of useful approximators for
nonlinear real-valued functions can be expressed as a linear basis expansion

fθ(x) = θ0 +

K∑

k=1

θkφk(x), (2.2)

that is, a linear combination of K ∈ N∗ known basis functions φk : X → R
(the bias term corresponds to φ0 ≡ 1). The basis functions should be easy to
evaluate and such that any continuous target function can be approximated
arbitrarily well by a finite linear combination of these basis functions. This type
of guarantee is known as the universal approximation property. More formally,
we say that the basis functions {φk | k ∈ N} have the universal approximation
property if it is guaranteed that for any continuous f : X → R and any scalar
ε > 0 there exists a g of the form (2.2) such that ||f − g||∞ < ε. The set of
functions of the form (2.2), that is linear combinations of basis functions, will
be denoted by F = span{φk | k ∈ N}.

The celebrated Stone-Weierstrass theorem provides sufficient conditions for
guaranteeing the universal approximation property, as stated below.

Theorem 2.1.1. Let (U, d) be a compact metric space and F ⊂ C (U,R) be an
algebra. If F is such that

1. for all x ∈ U , there exists an f ∈ F with f(x) 6= 0

2. for all x, y ∈ U with x 6= y, there exists an f ∈ F with f(x) 6= f(y)

then F is dense in C (U,R).

Basis functions on Euclidean spaces

The monomial basis is one of the most familiar example when the input space
X is an interval of R, with φ0 ≡ 1 and

φ1(x) = x, φ2(x) = x2, φ3(x) = x3, . . . , φk(x) = xk,

7

The Fourier basis is another common example when the input space is the real
line and the target function is periodic (e.g. φ2k−1(x) = sin(kx), φ2k(x) =

cos(kx) for 2π-periodic functions). These bases can be extended to multivariate
inputs. For example, the multivariate monomial basis is given by

φi1...ik(x) = xi1 . . . xik , x = (x1, . . . , xd) ∈ Rd, (2.3)

where i1, . . . , ik ∈ {1, . . . , d}. The corresponding basis expansions read as

fθ(x) = θ0 +

K∑

k=1

∑

i1,...,ik

θi1...ikφi1...ik(x),

where the inner sum is taken over i1, . . . , ik ∈ {1, . . . , d}. These basis functions
have the aforementioned universal approximation property as per the Stone-
Weierstrass theorem. In this section, we will introduce a set of basis functions
which generalize the monomials in eq. (2.3) when the input space is a suitable
space of paths. Instead of starting with the definition of these basis functions,
we shall explain how they are intimately connected to differential equations, as
this link will be further exploited in the subsequent chapters of this thesis.

Defining the input space

So far we have embedded sequences in the form of eq. (2.1) into continuous paths
x : [0, T]→ V . We start by adding more structure and regularity constraints
to the paths we consider. This will allow us to give a meaning to a certain
type of differential equations and define a set of basis functions for modelling
real-valued functions on paths. First, we consider paths x : [0, T]→ V which
evolve in a real Hilbert space V with inner product 〈·, ·〉V . In view of practical
applications and computations, an important example is the case V = Rd.
However, the mathematical objects that we will introduce in this section can
be defined when the state space V is infinite-dimensional and we will see in the
next section how to handle this situation computationally. Second, we consider
paths which are of bounded variation, as defined hereafter.

Definition 1 (Path of bounded variation). We say that a path x : [0, T]→ V

is of bounded variation if

V(x) := sup
D

∑

ti∈D
‖x(ti+1)− x(ti)‖V < +∞,

where ‖·‖V denotes the norm induced by the inner product on V and the
supremum is taken over

D ∈ {(t1, . . . , tn) | n ≥ 1, 0 = t1 < . . . < tn = T},

8

all finite partitions of [0, T].

We denote a set of V -valued continuous paths of bounded variation by X (V)

X (V) = {x ∈ C ([0, T], V) | V(x) < +∞} . (2.4)

We note that the piecewise linear embedding of a sequence with d channels is in
X (Rd) and X (V) is a Banach space with norm ‖·‖ defined for all x ∈ X (V) by

‖x‖ = V(x) + sup
t∈[0,T]

‖x(t)‖V . (2.5)

2.1.1 Controlled differential equations

The theory of rough paths is concerned with the study of Controlled differential
equations (CDEs), an important class of differential equations that model the
effect of an input signal x : [0, T] → V on a response signal y : [0, T] → W .
We assume that x and y are continuous and consider a continuous function
F : W → L(V,W), where L(V,W) denotes the set of continuous linear mappings
from V to W . We say that x,y and F solve the controlled differential equation

dy = F (y)dx, y(0) = a, (2.6)

if they satisfy the following integral equation for every t ∈ [0, T]

y(t) = a +

∫ t

0
F (y(s)) dx(s). (2.7)

If x ∈ X (V), the integral on the right hand side of eq. (2.7) can be interpreted
in the Riemann-Stieltjes sense. Furthermore, when F is Lipschitz continuous,
the solution is unique (Lyons et al., 2007, Thm 1.3). Such differential equations
may be used to model functions on paths, since each (a, F) induces a mapping
f between X (V) and W (think for example W = Re) given by

f : X (V)→W

x 7→ a +

∫ T

0
F (y(s)) dx(s).

Besides this map is continuous (w.r.t ‖·‖). We note that rough path theory
extends these results for less regular input paths x (such as Brownian motion
paths in SDEs) and refer the interested reader to Lyons (1998); Lyons et al.
(2007). More precisely, by parametrising the vector field F one can obtain a
hypothesis space of functions on X (V). We will discuss this approach in the
last section of this chapter. For now, we show that when F is linear, a sequence
of iterated integrals naturally appears. For simplicity, we assume that V = Rd

9

and W = Re. A CDE with linear vector field reads as

dy = Aydx, y(0) = a,

where A is a linear map from Re to Rd×e. However, by interpreting A as a map
which acts on dx(t) and returns a function in C (Re,Re), we can express the
response at final time by

y(T) =
(
Ie +

∞∑

k=1

A⊗k (Sk(x))
)
a, (2.8)

where Sk(x) denotes the tensor in (Rd)⊗k (tensor product of Rd with itself k
times), defined as the following k-fold iterated integral

Sk(x) =

∫
. . .

∫

0<t1<...<tk<T

dx(t1)⊗ . . .⊗ dx(tk) (2.9)

and A⊗k (v1 ⊗ . . .⊗ vk) = A(v1) . . . A(vk) for any v1, . . . ,vk ∈ Rd. The
convergence of the series in eq. (2.8) is ensured by the factorial decay of the
norm of Sk(x) in (Rd)⊗k (Lyons et al., 2007, Proposition 2.2): for any x ∈ X (V)

‖Sk(x)‖ ≤ V(x)k

k!
. (2.10)

The expansion in eq. (2.8) tells us that given the iterated integrals S1(x), S2(x), . . .

of the path x, we can determine the response of any linear controlled differential
equation driven by x. For a path with d coordinates x : t 7→ (x1(t), . . . , xd(t)),
the vector S1(x) is of dimension d, and is given by

S1(x) =

∫ T

0
dx(t) =

(
xi(T)− xi(0)

)
1≤i≤d .

The ith entry of this vector corresponds to the increment of the ith coordinate
of x between t = 0 and t = T . The tensor S2(x) can be seen as a d× d matrix

S2(x) =

∫ ∫

0<s<t<T

dx(s)⊗ dx(t) =

(∫ T

0

(
xi(t)− xi(0)

)
dxj(t)

)

1≤i,j≤d
,

whose components also have a geometrical meaning (see the next section).

2.1.2 The signature

So far we have seen how the k-fold iterated integrals of a path x ∈ X (V) in
eq. (2.9) appear in the expansion of the solution of a linear differential equation
controlled by x. We will now explain the role of these iterated integrals in

10

the construction of basis functions for approximating nonlinear real-valued
functions on paths. To this aim, we introduce the signature map, a central
object in rough path theory, which maps a path to its collection of iterated
integrals. The signature maps a path into the following space of sequences

T (V) =
{
A = (A0, A1, A2, . . .) | ∀k ≥ 0, Ak ∈ V ⊗k

}
. (2.11)

Definition 2 (Signature). The signature is the map defined by

S : X (V)→ T (V)

x 7→ (1, S1(x), S2(x), . . .)

where the kth term in the sequence is the order-k tensor in V ⊗k,

Sk(x) =

∫
. . .

∫

0<t1<...<tk<T

dx(t1)⊗ . . .⊗ dx(tk) (2.12)

which is referred to as the kth level of the signature.

The signature of Rd-valued paths

The above definition may appear rather abstract. However, as we have already
remarked, when V = Rd, each term Sk(x) ∈ (Rd)⊗k of the signature (each
k-fold iterated integral) can be represented by its coordinates with respect to
the basis (ei1 ⊗ . . .⊗ eik)(i1,...,ik)∈{1,...,d}k of (Rd)⊗k, such that

Sk(x) =
∑

i1...ik

Si1...ik(x)ei1 ⊗ . . .⊗ eik , (2.13)

where (ei)i∈{1,...,d} is the standard basis of Rd, and each coordinate is given by

Si1...ik(x) =

∫
. . .

∫

0<t1<...<tk<T

dxi1(t1) . . . dxik(tk), (2.14)

where we have used the fact that x(t) =
∑d

i=1 x
i(t)ei. In other words, the

kth level of the signature can be seen as a d× . . .× d︸ ︷︷ ︸
k times

array. See Fig. 2.1 for a

geometric interpretation of the coordinates of the 2nd level of the signature.

Our goal is to identify a set of basis functions to expand functions on X (Rd).
We will now explain why the real-valued functions x 7→ Si1...ik(x) are suitable
basis functions. To this aim, we shall state the core properties of the signature
that allow us to verify the conditions of Thm. 2.1.1.

11

xj

xi

Sij(x)

(a)

xj

xi

Sji(x)

(b)

Figure 2.1: Geometric meaning of the coordinates of the 2nd level of the signature
of a d-dimensional path x. The coordinates Sij(x) and Sji(x) correspond to
the (light blue) area enclosed between the (bold blue) curve t 7→ (xi(t), xj(t))
and two perpendicular (dashed) lines passing through the endpoints of x.

Co-domain structure

The co-domain T (V) of the signature map (see eq. (2.11)) is endowed with
two internal operations: an addition and a product. For any two elements
A = (A0, A1, . . .) and B = (B0, B1, . . .) of T (V) and any scalar λ ∈ R

λA+ B = (λA0 +B0, λA1 +B1, . . .) (2.15)

A⊗ B = (C0, C1, . . .) with Cn =

n∑

k=0

Ak ⊗Bn−k. (2.16)

The space T (V) endowed with these operations is a (non-commutative) algebra
(T (V), ·,+,⊗), and 1 = (1, 0, 0, . . .) is an identity element with respect to ⊗.

Invariances

Models that capture the invariances of a problem often perform better than
those that ignore them (Goodfellow et al., 2009; van der Wilk et al., 2018). Re-
markably, the signature is invariant to two important types of transformations.

First, the signature is invariant to time-reparametrizations. More precisely,
let I and J be two closed intervals of R+ and τ : J → I be a strictly increasing
function. Consider the paths x : I → V and x̃ : J → V that are related by
x̃ : t 7→ x(τ(t)). Then, a change of variables in eq. (2.12) yields S(x̃) = S(x).
This means that the signature is insensitive to the speed at which the path
unravels through time. Many real-world problems exhibit this parametrization
invariance. For example, in character recognition tasks, the speed at which a
character is drawn is irrelevant.

Second, the signature is invariant to translations. In other words, the
signature does not retain information about the initial point of a path. More
formally, let a ∈ V , and consider the path x̃ : t 7→ x(t) + a. Then S(x̃) = S(x).

12

Injectivity of the signature

In light of the above, two paths x and x̃ in X (V) can have the same signature;
the signature is not injective. A characterization of paths which have the
same signature as x ∈ X (Rd) (up to translations) is given in Hambly and
Lyons (2010). To ensure the injectivity of the signature (that to a signature
corresponds a unique path), it suffices to consider all paths in X (V) which start
at the same point (say 0 ∈ V) and add a monotonically increasing coordinate
(for example time). For this reason, we introduce the following set of paths

X̃ (R⊕ V) =
{
x̃ : t 7→ (t,x(t))

∣∣∣ x ∈ X (V), x(0) = 0
}
.

When V is Rd−1 we may simply write

X̃ (Rd) =
{
x̃ : t 7→ (t, x1(t), . . . , xd−1(t))

∣∣∣ x ∈ X (Rd−1), x(0) = 0
}
.

The injectivity of the signature restricted to X̃ (R⊕ V) ensures point 2. in the
Stone-Weierstrass theorem (Thm. 2.1.1).

Linear functionals on the signature

In order to use a Stone-Weierstrass argument (Thm. 2.1.1) and establish the
universal approximation property of our set of basis functions, we need to verify
that the span of the latter forms an algebra F . In particular the product of
any two elements of F must be an element of F . In the sequel, we will define
F and state the theorems that establish that F is closed under multiplication.

Definition 3 (Coordinate iterated integrals). Let V be a Hilbert space of
dimension d ∈ N∗ and (ei)i∈{1,...,d} be a basis of V . Let (ei1...ik)i1,...,ik∈{1,...,d}k

be the dual basis of (V ⊗k)′. The coordinate iterated integrals are the maps

Si1...ik : X (V)→ R

x 7→ ei1...ik(S(x))

where we use the natural extension ei1...ik(A) = ei1...ik(Ak), for A ∈ T (V).

Before stating an identity which ensures that the span of coordinate iterated
integrals is closed under multiplication, we define the shuffle product of two
multi-indices.

Definition 4 (Shuffle product). Given two multi-indices (i1, . . . , im) and
(j1, . . . , jn), consider the multi-index (r1, . . . , rm+n) = (i1, . . . , im, j1, . . . , jn).
The shuffle product of (i1, . . . , im) and (j1, . . . , jn) is the set defined by

(i1, . . . , im)� (j1, . . . , jn) = {rσ(1), . . . , rσ(m+n) | σ ∈ Shuffles(m,n)},

13

where Shuffles(m,n) denotes the collection of all permutations of {1, . . . ,m+n}
which satisfy σ−1(1) < . . . < σ−1(m) and σ−1(m+ 1) < . . . < σ−1(m+ n).

Theorem 2.1.2 (Shuffle identity). For any two multi-indices (i1, . . . , im) and
(j1, . . . , jn) the product of the corresponding iterated integrals can be written as
a sum of higher-order iterated integrals,

Si1...im(x)Sj1...jn(x) =
∑

k1...km+n

Sk1...km+n(x) (2.17)

where the sum is taken over all multi-indices (k1, . . . , km+n) of length m + n

such that (k1, . . . , km+n) ∈ (i1, . . . , im)� (j1, . . . , jn) as defined in Def. 4.

Therefore, any polynomial expression in the terms of the signature can
be rewritten as a linear expression in higher-order terms of the signature.
This result is extended to the signature of paths valued in a possibly infinite-
dimensional space in Cass et al. (2016, Corollary 3.9).

Theorem 2.1.3 (Close under multiplication). Let Lm ∈ (V ⊗m)′ and Ln ∈
(V ⊗n)′. Then there exists Lm+n ∈ (V ⊗(m+n))′ such that for all x ∈ X (V)

Lm(S(x))Ln(S(x)) = Lm+n(S(x)),

where we have used the natural extension Lm(A) = Lm(Am), for A ∈ T (V).

2.1.3 Signature-based basis functions

The properties that we have stated make it possible to apply Thm. 2.1.1 and
obtain the following density result for the algebra of functions

F = span
{
x 7→ Lk ◦ S(x)

∣∣∣ Lk ∈ (V ⊗k)′, k ∈ N
}
.

Theorem 2.1.4. Let U ⊂ X̃ (R⊕ V) be a compact set of paths and consider
a continuous function f : U → R. Then for any ε > 0 there exists an element
g ∈ F , that is a function of the form

g =
K∑

k=0

Lk ◦ S,

such that ‖f − g‖∞ < ε. In other words, F is dense in C (U,R).

If V = Rd, we can write more explicitly the space of approximators as

F = span
{
x 7→ ei1...ik ◦ S(x) | i1, . . . , ik ∈ {1, . . . , d}, k ∈ N

}
.

14

According to Thm. 2.1.4, there exists a truncation level K ≥ 0 and scalar
coefficients θ0, θi1...ik ∈ R such that for any path x ∈ U , the following holds

∣∣∣f(x)− θ0 −
K∑

k=1

∑

i1...ik

θi1...ikS
i1...ik(x)

∣∣∣ < ε.

In light of this result, to learn a regression function from input-output pairs
(x1, y1), . . . , (xn, yn) ∈ X̃ (Rd)×R, we start by replacing the inputs xi with the
new variables

Φi := vec ((1, S1(xi), . . . , SK(xi))) ,

to obtain the mapped dataset (Φ1, y1), . . . , (Φn, yn) ∈ Re × R with dimension
e = (dK+1 − 1)/(d− 1) where d > 1.

Remark. In practice, the inputs are more realistically time-series. We have
already discussed the transformation of time-series (xk)

`
k=1 of the form of

eq. (2.1) into a path x ∈ X (Rd−1). In order to map time-series into X̃ (Rd) it suf-
fices to add the point (t0,0) such that (xk)

`
k=1 7→ ((t0,0) , (t1, x̂1) , . . . , (t`, x̂`))

and consider the path x(tk) = (tk, x̂k) for all k ∈ {0, . . . , `}.

From there, it remains to compute the Φi. Another algebraic property of
the signature map plays an important role in addressing this practical point:
Chen’s theorem allows one to compute the signature of piecewise linear paths.
Before stating this result, we define the concatenation operation between paths.

Definition 5 (Concatenation). Let x : [0, s] → V and y : [s, t] → V be two
continuous paths. Their concatenation is the path x ? y : [0, t]→ V defined by

(x ? y)(u) =

{
x(u) if u ∈ [0, s]

x(s) + y(u)− y(s) if u ∈ [s, t].

Chen’s theorem (Chen, 1958) states that the signature of the concatenation
of two paths is given by the tensor product (see eq. (2.16)) of their signatures.

Theorem 2.1.5. Let x : [0, s]→ V and y : [s, t]→ V be two continuous paths
of bounded variation. Then S(x ? y) = S(x)⊗ S(y).

The practical importance of this theorem lies in the fact that a piecewise
linear path with ` knots is the concatenation of `− 1 linear paths, and that for
a linear path x : t 7→ a + tv, where a,v ∈ V , it can be shown that the levels of
the signature have the following simple expression

Sk(x) =
v⊗k

k!
, ∀k ≥ 0.

15

Therefore, one can compute the signature of a sequence of length `, viewed as
a piecewise linear path, by iteratively applying the product ⊗ to the signature.
This procedure is outlined in Alg. 1 where we use the notation expK(·) for

expK(v) =

(
1,v,

1

2
v⊗2, . . . ,

1

K!
v⊗K

)
,

and ⊗K defined for any A = (A0, A1, . . . , AK) and B = (B0, B1, . . . , BK) by

A⊗K B = (C0, C1, . . . , CK) with Cn =
n∑

k=0

Ak ⊗Bn−k,

for all 0 ≤ n ≤ K.

Algorithm 1 Sig O(`dK)

1: Input: A stream (xk)
`
k=1 with xk ∈ Rd and truncation level K ∈ N∗

2: Initialize S ← 1

3: for each k ∈ {1, 2, . . . , `− 1} do
4: S ← S ⊗K expK (xk+1 − xk)

5: end for

6: Φ← vec(S)

7: Output: The truncated signature Φ at level K of (xk)
`
k=1

The vector Φ = vec ((1, S1(x), . . . , SK(x))) has 1+d+d2 +. . .+dK components.
The number of features depends only on the dimension of the state space and not
the length of the sequence. As we explained, the first step to fit a linear model on
n signatures is to compute the latter. The time complexity of this preprocessing
step is O(n`dK) and the memory complexity O(ndK). These complexities can
be prohibitive for large d. However, this computationally expensive explicit
vectorization of the data may be circumvented if the subsequent learning
algorithm only requires the evaluation of inner products and if the latter can
be computed efficiently. This is the key idea of kernel methods. For this reason,
the signature kernel, introduced for the first time in Király and Oberhauser
(2019), is a more recent but not less powerful tool for machine learning on
sequential data as we shall see next.

2.2 PDEs, signature kernel, and kernel methods

In this section, we will start by defining kernel functions and subsequently
introduce the signature kernel. Finally, we will see that a kernel function
induces a particular Hilbert space of functions, and how the kernel trick allows

16

one to develop efficient algorithms to solve optimization problems and conduct
computations in these spaces of functions. Due to the flexibility of kernel
methods, the ability to define a kernel on a space of paths allows us to seamlessly
deploy these algorithms on sequential data.

We denote by X a general nonempty set and by X (V) the set of V -valued
continuous paths of bounded variation. In the previous section, the letter y
was used to denote a response variable. Here we often need to consider a pair
of elements in the input space X which we will denote by (x, y).

Definition 6 (Positive definite kernel). A symmetric function k : X × X → R
is called a positive definite kernel if for every n ≥ 1 and x1, . . . , xn ∈ X the
n× n matrix (k(xi, xj))1≤i,j≤n is positive semidefinite.

We can prove that a given function k is a positive definite kernel using the
following lemma.

Lemma 2.2.1. k : X × X → R is a positive definite kernel if and only if there
exists a Hilbert space H and a map Φ : X → H such that

k(x, y) = 〈Φ(x),Φ(y)〉H , ∀x, y ∈ X .

We call Φ a feature map and H a feature space.

In light of this result, it is natural to consider the signature as a feature map
and define a kernel on paths by the inner product of signatures, provided it has
a meaning. So far we have seen that the signature maps a path x ∈ X (V) into
the algebra (T (V), ·,+,⊗). We will now see that the range of the signature is
also contained in a Hilbert space. To this aim, consider the subset H(V) of
T (V) defined by

H(V) =
{
A = (A0, A1, . . .) ∈ T (V)

∣∣∣
∞∑

k=0

||Ak||2V ⊗k < +∞
}
. (2.18)

The factorial decay eq. (2.10) ensures that if x ∈ X (V), then S(x) ∈ H(V) as

∞∑

k=0

||Sk(x)||2V ⊗k ≤
∞∑

k=0

V(x)2k

(k!)2
< +∞.

As shown in (Cass et al., 2020) the space H(V) is a Hilbert space equipped
with the inner product

〈A,B〉 =
∞∑

k=0

〈Ak, Bk〉V ⊗k .

We can now instantiate (in the above lemma) the feature map Φ with the
signature map S and the feature space H with (H(V), 〈·, ·〉).

17

2.2.1 The signature kernel

We are now in a position to define the signature kernel.

Definition 7 (Signature kernel). The signature kernel is the map defined by

K : X (V)×X (V)→ R

(x,y) 7→ 〈S(x), S(y)〉 .

As we have already noted, the ability to evaluate a kernel function without
materializing the underlying features (which are not unique) is called a kernel
trick and is key for developing efficient algorithms. A first kernel trick, based on
the Horner’s scheme, was provided in Király and Oberhauser (2019), making it
possible to compute the inner product of truncated signatures for any truncation
level, and to consider sequences valued in an infinite-dimensional state space.
Subsequently, it has been shown in Cass et al. (2020) that the signature kernel
can be approximated by solving a Partial differential equation (PDE).

Although we refer the reader to Cass et al. (2020) for the original proof of
this result, we find it relevant to state the following theorem which establishes
the fact that the signature solves a controlled differential equation, and which
is the starting point of the proof.

Theorem 2.2.1. Let x ∈ X (V) and A = (A0, A1, ...) ∈ H(V). Consider the
vector field F : H(V)→ L(V,H(V)) defined as follows

F (A)(v) = (0, A0 ⊗ v, A1 ⊗ v, . . .) := A⊗ v.

Then, the unique solution to the following controlled differential equation,

dy = F (y)dx, y(0) = 1 = (1, 0, 0, . . .),

is the path y : t 7→ S(x|[0,t]), where x|[0,t] denotes the restriction of the path x
to the interval [0, t]. In integral form we have

S(x|[0,t]) = 1 +

∫ t

0
S(x|[0,s])⊗ dx(s). (2.19)

We will refer to the map Spath : t 7→ S(x|[0,t]) as the pathwise signature.
Similarly, consider the function of two time variables,

u : [0, T]× [0, T]→ R

(s, t) 7→ K(x|[0,s],y|[0,t]). (2.20)

As shown in Cass et al. (2020), leveraging eq. (2.19) and the algebraic properties

18

of the signature, one can formally write the integral equation

〈
S(x|[0,s]), S(y|[0,t])

〉
= 1 +

∫ s

0

∫ t

0
〈S(x|[0,s′]), S(y|[0,t′])〉〈dx(s′), dy(t′)〉.

Using eq. (2.20), we can replace the inner products of signatures to obtain

u(s, t) = 1 +

∫ s

0

∫ t

0
u(s′, t′)〈dx(s′), dy(t′)〉.

If we further assume that x and y are continuously differentiable, that is
x,y ∈ C 1([0, T], V), this equation can be simplified and the fundamental
theorem of calculus applies, yielding the following result.

Theorem 2.2.2. Let x,y ∈ C 1([0, T], V) and u : (s, t) 7→ K(x|[0,s],y|[0,t]).
The two parameter function u solves the partial differential equation

∂2u

∂s∂t
= 〈ẋ(s), ẏ(t)〉u, u(0, ·) = 1 and u(·, 0) = 1, (2.21)

and where ż(s) = dz(r)
dr

∣∣
r=s

.

Evaluating the signature kernel

In light of this result, the signature kernel K(·, ·) can be evaluated at two input
paths x,y, by solving the PDE in eq. (2.21) and evaluating the solution at
(s, t) = (T, T). During the development of this thesis, we contributed to the
construction and implementation of a finite difference scheme for approximating
the signature kernel in the sigkernel Python package which is publicly available
at https://github.com/crispitagorico/sigkernel. The principle of the
finite difference method is to first discretize the domain [0, T] × [0, T] into a
two-dimensional grid D = {(si, ti)}, and then approximate the value of the
solution u at the points in D using an update rule. More precisely, on each cell
Ri,j = {(s, t) ∈ [0, T]× [0, T] | si ≤ s ≤ si+1, tj ≤ t ≤ tj+1} the inner product
in eq. (2.21) is approximated by

〈ẋ(s), ẏ(t)〉 ≈
〈
x(si+1)− x(si)

si+1 − si
,
y(tj+1)− y(tj)

tj+1 − tj

〉
:= ∆xy(i, j), (2.22)

for all (s, t) ∈ Ri,j . Then, the value of solution at the upper-right corner of
Ri,j is approximated using the solution at the other three corners of Ri,j

u(si+1, tj+1) ≈ fupd (u(si, tj+1), u(si+1, tj), u(si, tj),∆xy(i, j)) ,

where fupd denotes an update rule. We refer the reader to Cass et al. (2020)
for specific instantiations of fupd.

19

https://github.com/crispitagorico/sigkernel

In Alg. 2 we outline the resulting numerical scheme for evaluating the
signature kernel at two piecewise linear paths x and y resulting for example
from a piecewise linear embedding of two time-series. We note that this
numerical scheme provides an approximation to K(x,y) with error estimates
given in Cass et al. (2020). Although there is a natural grid D associated
with piecewise linear paths, such that 〈ẋ(s), ẏ(t)〉 is constant on each cell Ri,j ,
in Alg. 2 we use the fact that this grid may be refined (for example using a
dyadic refinement) in order to increase the accuracy of the solver. Another
situation in which kernels need to be approximated can be found in the context
of latent force models (LFMs) where Gaussian processs (GPs) are combined
with differential equations (Alvarez et al., 2009).

Algorithm 2 PDESolve O(22κd`x`y)

1: Input: Two streams (xk)
`x
k=1, (yk)

`y
k=1 of dimension d and level κ of the

dyadic refinement (step size = 2−κ)

2: Create array U to store the solution of the PDE

3: Initialize U [i, :]← 1 for i ∈ {1, 2, . . . , 2κ ∗ (`x − 1) + 1}
4: Initialize U [:, j]← 1 for j ∈ {1, 2, . . . , 2κ ∗ (`y − 1) + 1}
5: for each i ∈ {1, 2, . . . , 2κ ∗ (`x − 1)} do
6: for each j ∈ {1, 2, . . . , 2κ ∗ (`y − 1)} do
7: ∆x = (xdi/(2κ)e+1 − xdi/(2κ)e)/2κ

8: ∆y = (ydj/(2κ)e+1 − ydj/(2κ)e)/2κ

9: ∆xy = 〈∆x,∆y〉
10: // Update the value of the solution using the solution at nearby points

11: U [i+ 1, j + 1] = U [i, j + 1] + U [i+ 1, j] + (∆xy − 1.) ∗ U [i, j]

12: end for

13: end for

14: Output: The solution of the PDE at the final times U [−1,−1]

Sequentializing static kernels

Until now we have assumed that the state space of the path had a Hilbert
space structure. Besides, we could only compute the signature of paths valued
in a finite-dimensional space. Working with the signature kernel offers more
flexibility. Indeed, if we have a map ϕ mapping a general non-empty set Z
onto a Hilbert space V , we can define a new kernel Kϕ on X (Z) as follows (as

20

per Steinwart and Christmann (2008, Lemma 4.3))

Kϕ(x,y) = K(xϕ,yϕ),

where xϕ : t 7→ ϕ(x(t)). In particular, if k is a kernel function on Z and
ϕ(x(t)) = k(·,x(t)), provided ϕ is differentiable, we obtain the PDE

∂2u

∂s∂t
=
∂2k(x(s),y(t))

∂s∂t
u,

where we can use a finite difference approximation as in eq. (2.22), that is

∂2k(x(s),y(t))

∂s∂t
≈ 1

δ2

(
k(x(s+ δ),y(t+ δ))− k(x(s),y(t+ δ))

− k(x(s+ δ),y(t)) + k(x(s),y(t))
)
.

One may still use the numerical scheme in Alg. 2 changing the lines 7 : 9 to
compute the above approximation with kernel k instead of the Euclidean inner
product in eq. (2.22). The consequence is that if one has a kernel function
on Z, the signature kernel provides a way to sequentialize it for learning on
time-evolving structured objects x : [0, T] → Z, as explained in Király and
Oberhauser (2019).

2.2.2 Kernel methods

So far we have defined positive definite kernels, and seen the example of the
signature kernel which realizes the inner product of signature features. Although
a kernel does not uniquely define a feature map and a feature space, we will
see that there is a canonical feature space associated to a kernel, called a
Reproducing kernel Hilbert space (RKHS). Within this RKHS framework, we
will describe learning techniques which only require the ability to define a
function k : X × X → R, where X is a non-empty set, making it possible to
work on different input spaces X in a unified manner. The ability to evaluate
the kernel via a kernel trick is key to obtain efficient algorithms. In everything
that follows, one can in principle instantiate the input space with X (V) and
the kernel with the signature kernel.

To this aim we introduce the notion of reproducing kernels which is ultimately
linked to the notion of positive definite kernels that we have been using so far.

Definition 8 (Reproducing kernel). Let H be Hilbert space of functions from
X to R. A function k : X × X → R is called a reproducing kernel of H if

1. k(·, x) ∈ H for all x ∈ X ,

2. f(x) = 〈f, k(·, x)〉H for all f ∈ H and all x ∈ X (reproducing property).

21

In particular, points 1. and 2. imply that 〈k(·, y), k(·, x)〉H = k(x, y), when
k is a reproducing kernel. Therefore, using lemma 2.2.1, k is a positive definite
kernel with feature map

Φ : X → H, x 7→ k(·, x).

A Hilbert space of functions which possesses a reproducing kernel is called a
Reproducing kernel Hilbert space (RKHS). The following theorem (proved in
Steinwart and Christmann (2008, Thm. 4.21)) gives a construction for the
unique RKHS associated to a kernel.

Theorem 2.2.3. Let k : X × X → R be a kernel with feature space H and
feature map Φ : X → H. Then the RKHS for which k is a reproducing kernel
is unique, and is given by

Hk = {f : X → R | ∃w ∈ H with f(·) = 〈w,Φ(·)〉H} ,

equipped with the norm

‖f‖Hk = inf {‖w‖H | w ∈ H and f(·) = 〈w,Φ(·)〉H} . (2.23)

An RKHS framework for nonparameteric regression

A representer theorem reduces infinite-dimensional optimization problems to
tractable finite-dimensional ones. In the context of RKHS, the following
representer theorem is due to Schölkopf et al. (2001).

Theorem 2.2.4. Any solution to the optimization problem

arg min
f∈Hk

c ((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) + Ω
(
‖f‖Hk

)
, (2.24)

where c : (X × R2)n → R ∪ {+∞} is a cost function, and Ω is a strictly
increasing real-valued function on [0,+∞[, admits a representation of the form

f∗(·) =

n∑

i=1

αik(·, xi).

Regularization is commonly used to overcome the problem of learning in a high
or infinite-dimensional space. Kernel Ridge regression (KRR) is obtained by
regularizing the mean squared error (MSE) by the squared RKHS norm

arg min
f∈Hk

n∑

i=1

(yi − f(xi))
2 + λ ‖f‖2Hk . (2.25)

According to the representer theorem, the solution of the KRR problem can be

22

expressed as a finite linear combination of the representers k(·, xi) of the data
points xi. Furthermore, the coefficients α = (αi)

n
i=1 are given by

α = (K + λIn)−1y, [K]i,j = k(xi, xj), (2.26)

where y = (yi)
n
i=1 and 1 ≤ i, j ≤ n.

Remark. Suppose Hk is finite-dimensional such that k(xi, xj) = 〈Φ(xi),Φ(xj)〉
where Φ(xi) ∈ Rd is a feature vector. Then the optimization problem in eq. (2.25)
is equivalent to

arg min
w

n∑

i=1

(yi −w′Φ(xi))
2 + λ ‖w‖2 ,

with solution given by

w = (Φ′Φ + λId)
−1Φ′y, [Φ]i,: = Φ(xi).

The prediction function is f∗(x) = w′Φ(x). Computing the (primal) variables
w takes O(d3), whilst computing the (dual) variables α takes O(n3).

Support vector machines (SVM), another popular kernel method, can also
be written in the form of eq. (2.24) so that the representer theorem applies.

Whilst the regularization prevents overfitting, one should also avoid under-
fitting. Universal kernels ensure that the associated RKHS is large enough to
provide good approximations of the target function.

Definition 9 (Universal kernel). Let U be a compact metric space. A continuous
kernel k : U × U → R is called universal if the RKHS Hk is dense in C (U,R),
i.e., for any function f ∈ C (U,R) and any ε > 0 there exists g ∈ Hk such that

‖f − g‖∞ ≤ ε.

The signature kernel K is universal. Indeed, since the signature has the
universal approximation property on U as defined in Thm. 2.1.4, for any
function f ∈ C (U,R) and any ε > 0 there exists an A ∈ H(R⊕ V) such that
‖f − 〈A, S(·)〉‖∞ ≤ ε with 〈A, S(·)〉 ∈ HK .

Gaussian process models

Gaussian process models provide another widely used approach for learning
functions based on positive definite kernels. These are Bayesian nonparametric
models in which a prior is placed over an unknown function of interest, by
means of Gaussian processes, an important class of stochastic processes.

23

Definition 10 (real-valued Gaussian process). A Gaussian process (GP) f
with index set X is a collection of random variables {fx}x∈X such that for
any n ∈ N and any set of points x1, . . . , xn ∈ X , (fx1 , . . . , fxn) is multivariate
Gaussian.

A GP is fully determined by the mean function m : X → R and the covariance
function k : X × X → R, which are defined for all x, x′ ∈ X by,

m(x) = E[fx] , k(x, x′) = Cov(fx, fx′).

We write f ∼ GP(m, k) and have the following finite-dimensional distributions

(fx1 , . . . , fxn) ∼ N (m,K),

with mean vector [m]i = m(xi) and covariance matrix [K]i,j = k(xi, xj) for
1 ≤ i, j ≤ n. A mean function m : X → R and a positive definite kernel
function k : X × X → R define a GP prior f ∼ GP(m, k) over an unknown
function f : X → R. In this context, it is common to write f(x) instead of fx.

Gaussian process regression Now we briefly expose how a GP model can
be defined to reason probabilistically about a regression function given a dataset
{(xi, yi)}ni=1 of input-output pairs (xi, yi) ∈ X × R. For ease of exposition we
consider a zero-mean prior, that is m ≡ 0. A GP model is completed by
specifying a conditional likelihood

f ∼ GP(0, k), p(yi |f(xi)) = N (y; f(xi), σ
2).

In Bayesian statistics, inference about unknown quantities consists in calculating
the posterior. Here, the combination of the GP prior and the data leads to closed-
form posterior distributions. Let y = (y1, . . . , yn)′ and f∗ = (f(x∗1), . . . , f(x∗p))

′

where x∗1, . . . , x∗p ∈ X . Considering the joint distribution (y, f∗) and using the
Gaussian conditioning properties, one straightforwardly obtains the posterior

f∗ |y ∼ N (m∗,K∗),

with mean vector and covariance matrix defined component-wise for 1 ≤ i, j ≤ p

[m∗]i = k(x∗i)
′(K + σ2In)−1y

[K∗]i,j = k(x∗i , x
∗
j)− k(x∗i)

′(K + σ2In)−1k(x∗j),

24

where k(x∗) ∈ Rn with [k(x∗)]i = k(xi, x
∗). Therefore, the posterior is a GP

with mean function m∗ and covariance function k∗ defined for any x, x′ ∈ X by

m∗(x) = k(x)′(K + σ2In)−1y

k∗(x, x′) = k(x, x′)− k(x)′(K + σ2In)−1k(x′).

One can note that the kernel ridge regressor in eq. (2.26) is identical to the
posterior mean of the Gaussian process. However, the GP approach provides un-
certainty estimates through k∗(x, x). Besides, the Bayesian inference principles
provide ways to adjust the various hyperparameters of the model including
the parameters of the kernel function and the variance σ2. We denote these
parameters (previously omitted from the notations) collectively by θ. It can
be easily shown that the log-probability log p(y;θ), called the log-marginal
likelihood, is given by

log p(y;θ) = −1

2
y′(K + σ2In)−1y − 1

2
log
∣∣K + σ2In

∣∣− n

2
log 2π.

It is standard practice to maximize the log-marginal likelihood w.r.t. the
hyperparameters, which is known as Type II maximum likelihood (ML-II). In
addition, there exist libraries dedicated for GP models using gradient-based
optimizers from TensorFlow or PyTorch (e.g. GPflow (De G. Matthews et al.,
2017), GPyTorch (Gardner et al., 2018)) that leverage automatic differentiation.
However, optimizing the log-marginal likelihood is computationally expensive,
as one needs to repeatedly compute the inverse of the n× n matrix K + σ2In

which has a time complexity O(n3). Once this inverse has been computed,
the posterior mean and covariance can be evaluated in O(pn2). The cubic
complexity becomes prohibitive for large training datasets, which motivates
approximate methods, that we will describe next.

Non-Gaussian likelihood A GP model can also be specified to learn a
classifier. The conditional likelihood can be defined through a link function
σ : R→ [0, 1] such as a probit or logit link function

f ∼ GP(0, k), p(yi = 1 |f(xi)) = σ(f(xi)).

However, in this case, (y, f∗) is no longer jointly Gaussian and the conditional
distribution f∗ |y is no longer available in closed form. For this reason, different
approximation techniques have been proposed (Rasmussen and Williams, 2006,
Chap. 3). In the rest of this part we will give a brief account on so-called sparse
variational GPs, which address this problem as well as the aforementioned
large-scale regression challenge.

25

Variational inference Sparse variational GPs are based on the principle of
Variational inference (VI) which turns the problem of approximating a posterior
distribution p(α |y) into an optimization problem (Blei et al., 2017). The idea
behind VI is to first posit a family of densities Q and then to find a member
q∗(α) ∈ Q that minimizes the Kullback-Leibler divergence (KL) to the target
density p(α |y)

q∗(α) = arg min
q(α)∈Q

KL [q(α) ‖ p(α |y)] . (2.27)

Although the KL can not be computed, the optimization problem in eq. (2.27)
is equivalent to the following one

q∗(α) = arg max
q(α)∈Q

{
Eq(α)[log p(y |α)]−KL [q(α) ‖ p(α)]

}
. (2.28)

This new objective is termed the Evidence lower bound (ELBO) and is a lower
bound on the marginal log likelihood p(y)

log p(y) ≥ Eq(α)[log p(y |α)]−KL [q(α) ‖ p(α)] .

Key to the success of VI, is to choose the family of approximate posteriors Q
to be simple enough to efficiently solve the optimization problem in eq. (2.28),
but flexible enough to yield a good approximation to p(α |y).

Variational inference for GPs In the context of GPs, the goal is to
approximate f |y. In sparse variational GPs a family of approximate posterior
GPs is constructed as follows. Let z = {z1, . . . , zM} be a collection of M points
in X—the index set of the GP—and denote by u = (f(z1), . . . , f(zM))′, the
finite-dimensional projection of the GP on these points. Under the GP prior
we have that p(u, f) = p(f |u)p(u) for any f = (f(x1), . . . , f(xn))′

p(u) = N (0M ,Kzz)

p(f |u) = N
(
K′zxK−1

zz u,Kxx −K′zxK−1
zz Kzx

)
,

where Kzz ∈ RM×M and Kzx ∈ RM×n denote the covariance matrices

[Kzz]m,m′ = Cov(f(zm), f(zm′)) [Kzx]m,i = Cov(f(zm), f(xi)),

The variational family is then defined as a family of GPs with finite-dimensional
marginal densities of the form q(u, f) = q(f |u)q(u) with

q(u) = N (m,Σ)

q(f |u) = N
(
K′zxK−1

zz u,Kxx −K′zxK−1
zz Kzx

)
.

26

The family of approximate posterior GPs is parametrized by a mean vector m

and a covariance matrix Σ. Marginalizing q(f |u)q(u) over u, we can show that
the mean function µ and covariance function ν are defined for all x, x′ ∈ X by

µ(x) = kz(x)′K−1
zz m

ν(x, x′) = k(x, x′)− kz(x)′K−1
zz (Kzz −Σ)K−1

zz kz(x′),

where kz(x) ∈ RM with [kz(x)]m = k(zm, x). After choosing the family of
approximate posteriors, following the VI framework, one minimizes a KL
objective which is equivalent to maximizing an ELBO. In the context of
GPs defining the KL objective is technically more involved, due to the fact
that inference is conducted on a stochastic process f and not on a finite-
dimensional random variable α. However, all objectives considered in the
literature (Matthews, 2017; Titsias, 2009; Wild and Wynne, 2021) yield the
following lower bound on the log-marginal likelihood (ELBO)

log p(y;θ) ≥ Eq(u)q(f |u)[log p(y | f)]−KL [q(u) ‖ p(u)] . (2.29)

By the definition of the Kullback-Leibler divergence,

KL [q(u) ‖ p(u)] = Eq(u)

[
log

q(u)

p(u)

]
:= KL,

which is available in closed form due to choosing q(u) multivariate Gaussian

KL =
1

2

(
tr
(
K−1

zz Σ
)

+ m′K−1
zz m−M + log

(
det Kzz

det Σ

))
, (2.30)

and can be computed in O(M3). Concerning the first term in the ELBO

Eq(u)q(f |u)[log p(y | f)] =

n∑

i=1

Eq(f(xi))[log p(yi |f(xi))] , (2.31)

the expectations can be estimated with a Gauss-Hermite quadrature (in the
case where p(yi |f(xi)) is non-Gaussian) once the moments of q(f) have been
computed. The overall computational complexity is O(M3 + nM2). Note
that this variational inference framework also provides the ability to carry out
ML-II to select the hyperparameters of the model through maximization of the
ELBO. Here, these hyperparameters include the kernel parameters, but also
the variational parameters m and Σ, as well as the inducing points zm.

Remark. We have not made any assumptions on the index set X of the GP.
Therefore, in principle, the framework of sparse variational GPs applies to
spaces of paths. However, choosing (or optimizing) the inducing variables zm
in X (V) is not trivial. Sparse variational GPs for GPs indexed on X (V) have

27

been developed in Toth and Oberhauser (2020).

As justified in Matthews (2017), the inducing variables which have been
defined as u = (f(z1), . . . , f(zM))′ may be replaced by another collection of
M real-valued random variables provided they are deterministic conditioned
on the Gaussian process f . The ELBO can still be expressed as eq. (2.29),
however we may choose different notations for the covariance matrices (which
are no longer the classical kernel matrices) as follows:

[Kzz]m,m′ = Cov(f(zm), f(zm′)) → [Cuu]m,m′ = Cov(um, um′)

[Kzx]m,i = Cov(f(zm), f(xi)) → [Cuf]m,i = Cov(um, f(xi))

[kz(x)]m = Cov(f(zm), f(x)) → [cu(x)]m = Cov(um, f(x)).

Representing probability measures into a RKHS

An important type of non-vectorial inputs, that can be handled with kernel
methods, are probability measures. Under suitable assumptions on the kernel
function k, probability distributions can be embedded into Hk by their Kernel
mean embedding (KME) defined hereafter.

Definition 11 (Kernel mean embedding (KME)). Given P a Borel probability
measure on X and k : X × X → R a kernel such that EX∼P[k(X,X)] < +∞,
then we can define the Bochner integral

µP =

∫

X
k(·, x)dP(x).

We call µP ∈ Hk the kernel mean embedding (KME) of P.

Analogously to the reproducing property EX∼P[f(X)] = 〈f, µP〉Hk . The com-
bination of the KME and the kernel trick allows one to evaluate an integral
probability metric known as the Maximum mean discrepancy (MMD), defined
as follows,

Dk(P,Q) = sup
‖f‖Hk≤1

(∫

X
f(x)dP(x)−

∫

X
f(x)dQ(x)

)
.

Lemma 2.2.2. If k : X × X → R satisfies EX∼P[k(X,X)] < +∞, then

Dk(P,Q) = ‖µP − µQ‖Hk .

Unlike other integral probability metrics, the MMD provides the flexibility
of measuring the distance between probability measures defined on structured
domains X , provided that one has a suitable kernel function on X × X . Using

28

the above lemma the MMD can be written in terms of the kernel function

(Dk(P,Q))2 = EX,X′
[
k(X,X ′)

]
− 2EX,Y [k(X,Y)] + EY,Y ′

[
k(Y, Y ′)

]
,

where X,X ′ i.i.d∼ P and Y, Y ′ i.i.d∼ Q. Given two samples X1, . . . , Xm
i.i.d∼ P and

Y1, . . . , Yn
i.i.d∼ Q, an unbiased estimator is given by

(
D̂k(P,Q)

)2
=

1

m(m− 1)

m∑

i,j=1
i 6=j

k(Xi, Xj)−
2

mn

m,n∑

i,j=1

k(Xi, Yj)

+
1

n(n− 1)

n∑

i,j=1
i 6=j

k(Yi, Yj),

which is fully expressed in terms of evaluations of kernel. Other estimators are
discussed in Gretton et al. (2012a).

In general the MMD is not a metric. However, it is a metric when the
kernel k is characteristic, i.e. is a kernel for which the map P 7→ µP is injective.
Gretton et al. (2012a) establishes a condition on the RKHS Hk, such that the
kernel is characteristic and the MMD is a metric.

Theorem 2.2.5. If the kernel k is universal on a compact metric space X ,
then Dk(P,Q) = 0 if and only if P = Q.

This result allows to use the MMD as a test statistic for statistical hypothesis
tests to determine if two samples are drawn from different distributions.

2.3 Neural controlled differential equations

In Sec. 2.1 we explained how the signature map provides canonical basis function
expansions for real-valued functions on paths f : X (Rd) → R. We have seen
that the signature features naturally appear when studying the solutions of
linear CDEs. In Sec. 2.2 we stated the fact that the signature itself solves a
particular CDE, a result that is exploited to derive a kernel trick that allows
for efficient kernel methods on sequential data. In this section, we will give a
brief account on NCDEs, a class of neural networks introduced in Kidger et al.
(2020), which also leverages CDEs for approximating functions f : X (Rd)→ Re,
yet in a different way.

Recall from Sec. 2.1 that the solution map of a CDE of the form of eq. (2.6)

dy = F (y)dx, y(0) ∈ Re,

with Lipschitz continuous vector field F : Re → Re×d, gives rise to a continuous

29

function f : X (Rd)→ Re such that for all x ∈ X (Rd)

f(x) = y(T) = y(0) +

∫ T

0
F (y(t))dx(t), (2.32)

where the integral on the right hand side is interpreted in the Riemann-Stieltjes
sense. The key idea of NCDEs is to parametrize the vector field by a neural
network Fθ : Re → Re×d and learn the parameters θ from data by optimizing a
given loss function.

2.3.1 The NCDE model

More precisely, the NCDE model uses eq. (2.32) to model the evolution of a
latent (or hidden) state y(t) ∈ Rh. It also adds architectural features to model
the initial latent state y(0) and read information from the hidden state at final
time y(T). With this, the NCDE model reads as

y(0) = `θ(x(0)), y(T) = y(0) +

∫ T

0
Fθ(y(t))dx(t), f(x) = πθ(y(T)),

where `θ : Rd → Rh and πθ : Rh → Re are feedforward neural networks. The
output is then fed to a loss function (mean squared, cross entropy, etc.) and
trained via stochastic gradient descent.

In the original version of NCDEs (Kidger et al., 2020), x : [0, T] → Rd is
assumed differentiable and obtained via natural cubic splines interpolation of a
time-series; therefore the term “dx(t)” can be interpreted as “ẋ(t)dt” and the
integral can be evaluated numerically via a call to an ODE solver of choice (e.g.
Euler, Runge-Kutta, adaptive schemes). For this reason, the implementation
of NCDEs relies on the software developed in the context of neural ordinary
differential equations (NODE) models (Chen et al., 2018).

The aforementioned NODE is a deep learning architecture which popularized
the field of neural differential equations, hybrid approaches combining neural
networks and differential equations. NODE exploited the fact that certain
models may be interpreted as approximations to differential equations. In
particular, an L-layers residual network (ResNet) consists in applying the
following sequence of transformations

yk = yk−1 + Fθ(yk−1), (2.33)

to a hidden state yk ∈ Rh, for k = 1, . . . , L. These iterative updates can be
seen as a forward Euler method (with a fixed step size ∆t = 1) for solving the

30

following ODE

ẏ(t) = Fθ(y(t)),

on a time interval [0, T], where the latent state y(t) ∈ Rh. As a result, the
output of the neural network y(T) can be computed by calling an ODE solver.
Although this observation was made earlier, Chen et al. (2018) turned it into a
practical algorithm. This fostered the development of ODE solvers benefiting
from the automatic differentiation capabilities of deep learning frameworks
(e.g. PyTorch). Indeed, the solution y(T) is fed into a loss function, whose
optimization requires backpropagating through the operations of the ODE
solver. Furthermore, Chen et al. (2018) developed a backpropagation scheme
that does not require storing a potentially high number of intermediate y(tk).

When the data is sequential, recurrent neural networks (RNNs) are a popular
modelling choice. RNNs use a dynamical system driven by an arbitrary length
(discrete-time) signal (x1, . . . ,x`), in other words a sequence

yk = Fθ(yk−1,xk), (2.34)

to model the values of hidden units yk. The fact that the same transition
function (or update rule) Fθ is used at every time step allows processing
sequences of different lengths. The residual version of eq. (2.34) is given by

yk = yk+1 + Fθ(yk−1,xk).

As observed in Kidger et al. (2020), such RNNs can be regarded as a discrete
approximation to some differential equation where the time-inhomogeneity
depends on an underlying continuous signal x

ẏ(t) = Fθ(y(t),x(t)),

and NCDEs can be seen as the continuous-time analogue of RNNs (Kidger
et al., 2020, Sec. 3.3).

2.3.2 Extensions to less regular controls

Depending on the regularity assumptions about the control x(t) =
∫ t

0 ξ(s)ds,
the integral in eq. (2.32) can be interpreted as a Riemann–Stieltjes, a stochastic,
or even a rough integral.

Neural stochastic differential equations (Neural SDEs) are Neural CDEs
where the control ξ is a sample path from a Rd-dimensional Brownian motion.
Besides, Neural SDEs can be used as generative models (trained either as VAEs
or GANs) for time-series (Kidger et al., 2021).

31

Neural rough differential equations (Neural RDEs) (Morrill et al., 2021)
generalize Neural CDEs in that they allow us to relax the regularity assumption
on x and consider a larger class of controls. In practice, Neural RDEs are
particularly well suited for long time-series. This is due to the fact that model
can be evaluated via a numerical scheme from stochastic analysis (called the
log-ODE method) over intervals much larger than what would be expected given
the sampling rate or length of the time-series.

Remark. Despite offering many advantages for modelling temporal dynamics,
Neural CDEs are not designed to process signals varying both in space and in
time such as physical fields arising from PDE-dynamics.

32

Chapter 3

Scalable Gaussian Processes on
Sequential Data

The objective of this thesis is to use tools from the theory of rough paths
and reproducing kernels to tackle challenging learning problems on sequential
data, such as multivariate time-series. A fundamental learning challenge that
has been highlighted in Chapter 2 is making predictions and quantifying their
uncertainty when the input data is sequential. Gaussian process (GP) models
offer a flexible approach to achieve this goal. However, their main limitation is
their poor scalability with the number of training examples. In this chapter, we
propose to address this issue and develop a scalable sparse variational inference
framework for GP models where the GP prior is indexed on sequential data.
This framework also makes it possible to perform approximate inference for
classication problems where the posterior is not available in closed form.

First, we construct inducing variables underpinning the sparse approxima-
tion so that the evaluation of the resulting ELBO does not require any matrix
inversion. Second, we show that the gradients of the signature kernel are
solutions of a hyperbolic PDE. This theoretical insight allows us to build an
efficient backpropagation algorithm to optimize the ELBO. Finally, we empir-
ically demonstrate the significant computational gains compared to existing
methods, while achieving state-of-the-art performance for classification tasks
on large datasets of up to 1 million multivariate time-series.

3.1 Introduction

Gaussian process (GP) models provide a sound mathematical framework for
supervised learning that allows the incorporation of prior assumptions and
provides uncertainty estimates when modelling unknown functions (Rasmussen
and Williams, 2006). This is usually achieved by specifying a GP prior over
functions with a suitable covariance function (or kernel) along with a conditional

33

likelihood. With this, the problem boils down to that of estimating the posterior
over the function (values) given the observed data.

However, this posterior distribution is often analytically intractable and,
even when the conditional likelihood is Gaussian, GP models scale poorly on
the number of observations N , with naïve approaches having a time complexity
O(N3). From a wide range of approximate techniques to scale inference in GP
models to large datasets, “sparse” methods based on VI have emerged as one
of the dominant approaches (Titsias, 2009). As explained in more details in
Sec. 2.2.2, they consist in defining a family of approximate posteriors throughM
inducing variables, and selecting the distribution in this family that minimizes
the KL divergence between the approximation and the true posterior. This is
achieved by maximizing the so-called Evidence lower bound (ELBO). When the
likelihood factorizes over datapoints, training can be done in minibatches of size
Ñ resulting in a per iteration computational cost O(ÑM2 +M3), where the
O(M3) cost is due to the inversion of the covariance matrix of the M inducing
variables. This yields significant computational savings when M � N .

In the seminal work of Titsias (2009) the inducing variables correspond to
evaluations of the GP at M pseudo input locations, which typically results in a
dense covariance matrix to invert. Subsequently, other ways of constructing
inducing variables have been introduced in order to mitigate the O(M3) cost
(Burt et al., 2020b; Hensman et al., 2017). The core idea consists in defining
(almost) independent inducing variables, such that their covariance matrix is
(almost) diagonal. These inducing variables correspond to projections of the
GP on basis functions, such that the covariance matrix is a Gramian matrix
with respect to some inner-product. Orthogonal basis functions yield diagonal
Gramian matrices, hence these methods are often referred to as variational
orthogonal features (VOFs). However existing VOF methods are limited to
stationary kernels on X ⊂ Rd with d ∈ N∗.

In this chapter, we propose to generalize the VOF paradigm to the case
where the input space X is a set of sequences of vectors in Rd. One may
be tempted to naively concatenate each vector in a sequence of length ` to
form a high-dimensional vector in R`d. However, in this case, existing VOF
methods cannot be directly applied because they are limited to low dimensional
vectors, with d ≤ 8 (Dutordoir et al., 2020). Thus, one needs kernel functions
specifically designed for sequential data. The signature kernel (Cass et al., 2020)
is a natural choice that has recently emerged as a leading machine learning
tool for learning on sequential data. In particular, Toth and Oberhauser (2020)
have proposed GPSig, a GP inference framework, using an approximation of
this covariance function (Király and Oberhauser, 2019), which achieves state-
of-the-art performance on time-series classification tasks. Nevertheless, as in
standard sparse variational approaches to GPs, the inducing inputs they chose

34

(so called inducing tensors) are additional variational parameters to optimize,
and the resulting covariance matrix is dense.

Here we develop SigGPDE, a new scalable sparse variational inference
framework for GP models on sequential data. After a brief recap on the general
principles of variational inference (Sec. 3.2) we identify a set of VOFs naturally
associated with the signature kernel. These inducing variables do not depend
on any variational parameter, as they are defined as projections of GP-samples
onto an orthogonal basis for the RKHS associated to the signature kernel
(Sec. 3.3). As a result, unlike the methods developed in Toth and Oberhauser
(2020), in SigGPDE the optimization of the ELBO does not require any matrix
inversion. Subsequently, we show that the gradients of the signature kernel are
solutions of a hyperbolic Partial differential equation (PDE). This theoretical
insight allows us to build an efficient backpropagation algorithm to optimize
the ELBO (Sec. 3.4). Our experimental evaluation shows that SigGPDE is
considerably faster than GPSig, whilst retaining similar predictive performances
on datasets of up to 1 million multivariate time-series (Sec. 3.6).

3.2 Background

We begin with a general summary of variational inference for GPs. More details
are provided in Sec. 2.2.2. In this section, it is assumed that the input space
X is a subset of Rd. Standard models with zero-mean GP priors and i.i.d.
conditional likelihoods can be written as follows

f ∼ GP(0, k), p(y | f) =
N∏

i=1

p(yi |f(xi)),

where k : X ×X → R is the covariance function, y = (yi)
N
i=1 and f = (f(xi))

N
i=1.

The general setting for sparse GPs consists in specifying a collection of M
scalar variables as well as a joint distribution with variational parameters m

(mean vector) and Σ (covariance matrix)

u = (um)Mm=1, q(u) = N (m,Σ).

These variables induce a family of approximate posteriors that are GPs with
finite-dimensional marginal densities of the form q(f ,u) = p(f |u)q(u). Con-
sidering any inputs x, x′ ∈ X , the mean function µ(·) and covariance function
ν(·, ·) of these GPs are given by

µ(x) = cu(x)′C−1
uum

ν(x, x′) = k(x, x′)− cu(x)′C−1
uu(Cuu −Σ)C−1

uucu(x′),

35

where the vector cu(x) ∈ RM and the matrix Cuu ∈ RM×M are defined by,

[cu(x)]m = Cov (um, f(x)) , [Cuu]m,m′ = Cov (um, um′)

for 1 ≤ m,m′ ≤M . Provided that the inducing variables u are deterministic
conditioned on f , one has the following lower bound (ELBO) on the marginal
log-likelihood (Matthews, 2017)

log p(y) ≥ Eq(f)[log p(y | f)]−KL [q(u) ‖ p(u)] , (3.1)

where p(u) = N (0M ,Cuu). Maximizing the right-hand side of eq. (3.1) is
equivalent to minimizing the KL divergence between the approximate GP and
the true posterior (Matthews, 2017).

The original variational inference framework described in Titsias (2009)
consists in setting um = f(zm) where zm ∈ X is a pseudo-input, living in the
same space as x, that can be fixed or optimized. The cost per iteration to
optimize the ELBO is O(ÑM2 +M3), where Ñ is the minibatch size and M3

is the cost of computing the inverse of Cuu via a Cholesky decomposition.
Recently, a considerable effort has been devoted to the construction of

inducing variables u which yield a structured covariance matrix Cuu whose
inversion has a reduced computational complexity (Hensman et al., 2017). This
line of work is often referred to as inter-domain sparse GPs, owing to the fact
that the pseudo inputs are not constrained to live in X as before. In particular,
Burt et al. (2020b); Dutordoir et al. (2020) have shown that provided one can
find an orthogonal basis of functions for the RKHS associated with the kernel
k(·, ·), it is possible to define the inducing variables as projections of the GP
samples onto this basis. This construction yields a diagonal matrix Cuu.

3.3 Variational inference with orthogonal signature
features

Here, we present our first contribution, namely the use of orthogonal signature
features as inducing variables for GPs on sequential data. We begin with a
summary of the theoretical background needed to define GPs endowed with
the signature kernel. In this section, the input space is no longer a subspace of
Rd but will be defined as a space of paths hereafter.

36

3.3.1 The signature

Consider a time-series (xk)
`
k=1 as a collection of points x̂k ∈ Rd−1 with corres-

ponding time-stamps tk ∈ R+ such that

(xk)
`
k=1 = ((t1, x̂1) , . . . , (t`, x̂`)) ,

with 0 = t1 < ... < t` = T . Let x : [0, T] → Rd be the piecewise linear
interpolation of the data such that x(tk) = (tk, x̂k). We denote by X (Rd) the
set of all continuous piecewise linear paths defined over the time interval [0, T]

and with values on Rd. For any path x ∈ X (Rd) and any i ∈ {1, . . . , d}, we
will denote its ith channel by xi so that at any time t ∈ [0, T]

x : t 7→ (x1(t), . . . , xd(t)),

as depicted in Fig. 3.1a with d = 3. The signature S : X (Rd) → H(Rd) is a
feature map defined for any path x ∈ X (Rd) as the following infinite collection
of statistics

S(x) =
(

1,
{
Si(x)

}d
i=1

,
{
Sij(x)

}d
i,j=1

, . . .
)
,

where each term is a scalar equal to the coordinate iterated integral

Si1...ik(x) =

∫
. . .

∫

0<t1<...<tk<T

dxi1(t1) . . . dxik(tk). (3.2)

Using the convention (Rd)⊗0 = R, the feature space H(Rd) associated to the
signature is the Hilbert space

H(Rd) =

{
A ∈

∞⊕

k=0

(Rd)⊗k
∣∣∣
∞∑

k=0

‖Ak‖2(Rd)⊗k < +∞
}
,

with inner-product 〈·, ·〉 defined for any two A,B ∈ H(Rd) by

〈A,B〉 =
∞∑

k=0

〈Ak, Bk〉(Rd)⊗k .

Interpretability of the signature features An important aspect of se-
quential data is that the order of the observations is not commutative, in the
sense that reordering the elements of a sequence can completely change its
meaning. By definition the terms in the signature capture this fact. In effect,
the coordinate iterated integral in eq. (3.2) is defined as an integral over the
simplex 0 < t1 < . . . < tk < T which explicitly encodes the ordering of events
happening across different channels xi1 , . . . , xik . This provides the signature

37

features with a natural interpretability as highlighted several times in prior
work (Arribas et al., 2018; Moore et al., 2019).

3.3.2 The signature kernel

The signature kernel K : X (Rd)×X (Rd)→ R is a reproducing kernel which is
defined for any pair of paths x,y ∈ X (Rd) as the following inner product

K(x,y) = 〈S(x), S(y)〉 (3.3)

in H(Rd). From the structure of H(Rd) and the properties of the signature,
the signature kernel can be decomposed according to the expansion

K(x,y) = 1 +
∞∑

n=1

∑

i1...in

Si1...in(x)Si1...in(y), (3.4)

where the inner summation is over the set {(i1, . . . , in) | i1, . . . , in ∈ {1, . . . , d}}.
In their recent article, Cass et al. (2020) provide a kernel trick for the signature
kernel by proving the relation

K(x,y) = u(T, T),

where the function of two independent time variables u : [0, T]× [0, T]→ R is
the solution of the following hyperbolic PDE

∂2u

∂s∂t
= 〈ẋ(s), ẏ(t)〉u, (3.5)

with boundary conditions u(0, ·) = 1 and u(·, 0) = 1. This kernel trick is
explained with simple arguments in the proof of Cass et al. (2020, Thm. 2.5).
The sketch of the proof goes as follows: one first shows that the inner product
in eq. (3.3) satisfies a double integral equation which comes from the fact that
the signature itself solves an integral equation. Then, one uses the fundamental
theorem of calculus to differentiate with respect to the two time variables to
obtain the PDE. Next, we propose a simple parameterization of this kernel.

3.3.3 Parametrization of the signature kernel

In many real-world problems the input path x contains a large number of
different channels, only some of which are relevant. Akin to an automatic
relevance determination (ARD) parameterization, for any channel i ∈ {1, . . . , d}
and time index t ∈ [0, T], one can rescale each channel xi(t) by a scalar

38

time

x1 x2 x3

(a)

R3

S3

S2

S1

level 1

S31

S21

S11

S32

S22

S12

S33

S23

S13

level 2

S311

S211

S111
S112

S113

level 3

1

(b)

Figure 3.1: Illustration of the first terms of the signature S(x) for a 3-
dimensional path x : t 7→ (x1(t), x2(t), x3(t)). Each blue circle corresponds
to a signature feature Si1...in(x). The size of the circle reflects the feature
importance according to the property |Si1...in(x)| = O(1/n!). The first feature
which is always equal to 1 is omitted in this schematic.

hyperparameter θi yielding the rescaled path

xθ : t 7→ (θ1x
1(t), . . . , θdx

d(t)). (3.6)

The signature kernel of eq. (3.4) can be reparametrized as

Kθ(x,y) = 1 +

∞∑

n=1

∑

i1...in

Si1...in(xθ)S
i1...in(yθ).

From eq. (3.2) it is straightforward to see that this parameterization corresponds
to a particular rescaling of the signature features as per the following relation,

Si1...in(xθ) = θi1 . . . θinS
i1...in(x) (3.7)

for any i1, . . . , in ∈ {1, . . . , d}. This result will turn out to be useful later on.
In the sequel we will drop the subscript θ to unclutter the notation.

3.3.4 Variational orthogonal signature features

We can now build on the results from the previous sections to define the ortho-
gonal signature features underlying our sparse variational inference framework
for GPs on sequential data.

By Thm. 2.2.3 in Sec. 2.2.2, the RKHS HK associated with the signature
kernel can be defined as

HK =
{
φ : X (Rd)→ R | ∃A ∈ H(Rd) with φ(x) = 〈A, S(x)〉

}
.

Besides, for any φ ∈ HK , there exists a unique element A ∈ H(Rd) such that

39

φ(x) = 〈A, S(x)〉 for all x ∈ X . This follows from Diehl and Reizenstein (2019,
Lemma 3.4) and Xu and Zhang (2007, Lemma 5). Let φA, φB ∈ HK such that

φA : x 7→ 〈A, S(x)〉
φB : x 7→ 〈B, S(x)〉.

Their inner product in the RKHS HK is defined by

〈φA, φB〉HK = 〈A,B〉.

The key to our setup is that the set of signature features (coordinate iterated
integrals) forms an orthonormal basis for HK . Indeed, we have that

Si1...in : x 7→ 〈Ei1...in , S(x)〉

where Ei1...in denotes the element of H(Rd) where all the terms are zero except
the nth term which is ei1 ⊗ . . .⊗ ein . Therefore, the inner product of any two
signature features satisfies,

〈
Si1...in , Sj1...jm

〉
HK =





1, if n = m, and ik = jk, ∀k ∈ {1, . . . , n}
0, otherwise.

(3.8)

An important property of this orthonormal basis is that its elements are
naturally ordered. This ordering is due to the property that for any path
x ∈ X (Rd) the terms of the signature decay factorially Lyons et al. (2007),

∣∣Si1...in(x)
∣∣ = O

(
1

n!

)
(3.9)

as illustrated in Fig. 3.1. Hence to index the signature orthogonal features
S1, S2, . . . , Sm, . . . we order first by increasing the level n, and then by sorting
the multi-indices (i1, . . . , in) within a level. From eqs. (3.8) and (3.9) we define
our inducing variables as orthogonal projections1 of the GP onto the first M
elements of the orthonormal signature basis

um = 〈f, Sm〉HK , 1 ≤ m ≤M. (3.10)

With this choice of inducing variables, we can easily deduce the following
covariances (Hensman et al., 2017)

E[umf(x)] = Sm(x) and E[umum′] = δm,m′ , (3.11)

1Although f does not belong to HK with probability 1 (Kanagawa et al., 2018), such
projections are well defined because the span of the signature features is dense in the space of
continuous functions on X (Rd) and f is continuous (Toth and Oberhauser, 2020, Thm. 1.).

40

which implies that the covariance matrix Cuu is the identity. For any path
x ∈ X (Rd) we use the convenient vector notation

sig(x) :=
(
S1(x), . . . , SM (x)

)′ ∈ RM , (3.12)

to obtain the approximate posterior GP(µ, ν) with mean and covariance func-
tions defined by the following equations for any x,x′ ∈ X (Rd)

µ(x) = sig(x)′m (3.13)

ν(x,x′) = K(x,x′)− sig(x)′(IM −Σ)sig(x′).

We note that the signature can be easily computed on real time-series using
existing Python libraries Lyons (2010); Reizenstein and Graham (2018). The
same holds for the signature kernel via the python package available at https:
//github.com/crispitagorico/sigkernel. During this thesis we contributed
to the development of this library, notably to enable fast forward and backward
computations on GPU, as we shall explain next.

3.4 Reverse-mode automatic differentiation for the
signature kernel

In order to optimize the ELBO with respect to the parameters θ, in principle
one needs to take derivatives of the signature features in eq. (3.12) with respect
to their input path. Here, the scaling property of the signature—as seen in
eq. (3.7)—becomes relevant, as it provides an easier way to obtain the gradients
with respect to θ. In addition, the signatures can be precomputed on the
training set. However, one also needs to differentiate the signature kernel in
eq. (3.13) with respect to each of its input paths. Recall that the signature
kernel solves the PDE in eq. (3.5) and is evaluated using appropriate PDE
numerical solvers. Therefore, differentiation could be carried out by leveraging
the automatic differentiation tools of modern deep learning libraries (Tensorflow,
PyTorch etc.). However, backpropagating through the operations of the PDE
solver can be inefficient.

Here we show that the gradients of the signature kernel can be efficiently
computed without backpropagating through the operations of the PDE solver as
they are the solutions of a second PDE analogous to eq. (3.5). The ability not
to rely on automatic differentiation allows for an efficient fitting of SigGPDE
both in terms of time complexity and memory cost.

41

https://github.com/crispitagorico/sigkernel
https://github.com/crispitagorico/sigkernel

Algorithm 3 BackwardPDESolve via the PDE in eq. (3.19)

1: Input: Path x, localised impulses Γ = {γk,i}k=`,i=d
k=1,i=1.

2: // Boundary conditions for the augmented state

3: u(0, ·) = 1, u(·, 0) = 1

4: [uΓ(0, ·)]k,i = 0, [uΓ(·, 0)]k,i = 0

5: uaug(0, ·) = [u(0, ·), uΓ(0, ·)], uaug(·, 0) = [u(·, 0), uΓ(·, 0)]

6: // Dynamics for the augmented state

7: def aug_dynamics([u(s, t), uΓ(s, t)] , s, t):

8: ∆(s, t)k,i = 〈γ̇k,i(s), ẋ(t)〉
9: return [〈ẋ(s), ẋ(t)〉u(s, t), 〈ẋ(s), ẋ(t)〉uΓ(s, t) + ∆(s, t)u(s, t)]

10: [u(T, T), uΓ(T, T)] = PDESolve(uaug(0, ·), uaug(·, 0), aug_dynamics, T, T)

11: Output: 2 · uΓ(T, T) // Gradients of the kernel

3.4.1 Differentiating along the direction of a path

Consider a time-series (xk)
`
k=1 as defined in Sec. 3.3.1. Each vector xk in the

sequence can be written with respect to the canonical basis (ei)
d
i=1 of Rd as

xk =

d∑

i=1

xikei.

Let x : [0, T]→ Rd be the piecewise linear interpolation of the data such that
x(tk) = xk. Similarly, for a second time-series (yk)

`′
k=1 and resulting piecewise

linear interpolation y. Recall the definition of signature kernel as

Kθ(x,y) = K(xθ,yθ),

where xθ and yθ are the rescaled paths of eq. (3.6). By the chain rule, one has

∂Kθ

∂θ
=
∂K

∂xθ

∂xθ
∂θ

+
∂K

∂yθ

∂yθ
∂θ

. (3.14)

Hence, to formulate a backpropagation algorithm in a rigorous way, we need to
give meaning to the following gradients

{
∂

∂xik
K(x,y)

}`,d

k,i=1

. (3.15)

The technical difficulty here consists in reconciling the continuous nature of the
input path x and the discrete nature of the locations xik, where one wants to
compute the gradients, which are given by the knots of the time-series (xk)`k=1.

Next, we introduce a collection of localised impulses and define the concept

42

of directional derivative of the signature kernel along a path in order to make
sense of the gradients in eq. (3.15). These definitions will be followed by the
main result of this section, namely that the directional derivative of K solves
another PDE similar to eq. (3.5) for the signature kernel, for which we derive
an explicit solution via the technique of variation of parameters (Thm. 3.4.1).

Definition 12. For any k = 1, . . . , ` and any i = 1, . . . , d define the localised
impulse γk,i : [0, T]→ Rd as the solution of the following ordinary differential
equation (ODE)

γ̇k,i(t) =
1

`
1[(k−1)/`,k/`)](t)ei, γk,i(0) = 0.

Definition 13. For any path γ ∈ X (Rd) the directional derivative of the
signature kernel K along γ is defined as

Kγ(x,y) :=
∂

∂ε
K
(
x+ εγ,y

)∣∣∣
ε=0

.

Each gradient of the signature kernel at the knot xik reported in eq. (3.15)
can be identified with the directional derivative of the signature kernel along
the localized impulse γk,i of Def. 12

∂

∂xik
K(x,y) := Kγk,i(x,y).

3.4.2 A PDE for the gradients of the signature kernel

Algorithm 4 BackwardPDESolve via Thm. 3.4.1

1: Input: Path x, localised impulses Γ = {γk,i}k=`,i=d
k=1,i=1

2: // Boundary conditions for the augmented state

3: u(0, ·) = 1, u(·, 0) = 1, ũ(0, ·) = 1, ũ(·, 0) = 1

4: uaug(0, ·) = [u(0, ·), ũ(0, ·)], uaug(·, 0) = [u(·, 0), ũ(·, 0)]

5: // Dynamics for the augmented state

6: def aug_dynamics([u(s, t), ũ(s, t)] , s, t):

7: return [〈ẋ(s), ẋ(t)〉u(s, t), 〈ẋ(T − s), ẋ(T − t)〉ũ(s, t)]

8: // Keep the solutions at each (s, t)

9: [u, ũ] = PDESolve(uaug(0, ·), uaug(·, 0), aug_dynamics, T, T)

10: ∆(s, t)k,i = 〈γ̇k,i(s), ẋ(t)〉
11: ũrev(s, t)← ũ(T − s, T − t)
12: uΓ = integrate(u · ũrev ·∆) // Simple final TensorFlow operations

13: Output: 2 · uΓ // Gradients of the kernel

43

Recall that the signature kernel solves the following PDE

∂2u

∂s∂t
= 〈ẋ(s), ẏ(t)〉u. (3.16)

Integrating both sides with respect to s and t one obtains

u(s, t) = 1 +

∫ s

p=0

∫ t

q=0
u(p, q) 〈ẋ(p), ẏ(q)〉 dpdq. (3.17)

Let us denote by uγ : [0, T]× [0, T]→ R the directional derivative Kγ evaluated
at the restricted paths x|[0,s] and y|[0,t]

uγ(s, t) := Kγ

(
x|[0,s],y|[0,t]

)
. (3.18)

The combination of eqs. (3.17) and (3.18) yields the relation

uγ(s, t) =
∂

∂ε
K
(

(x+ εγ)|[0,s],y|[0,t]
)∣∣∣
ε=0

=
∂

∂ε

(∫ s

0

∫ t

0
u(p, q)〈ẋ(p) + εγ̇(p), ẏ(q)〉dpdq

)

ε=0

=

∫ s

0

∫ t

0
(uγ(p, q) 〈ẋ(p), ẏ(q)〉+ u(p, q) 〈γ̇(q), ẏ(q)〉) dpdq.

Hence, differentiating the last equation, first with respect to t and then s, we
find that the directional derivative Kγ of the signature kernel along the path γ
solves the following PDE

∂2uγ
∂s∂t

= 〈ẋ(s), ẏ(t)〉uγ + 〈γ̇(s), ẏ(t)〉u, (3.19)

with boundary conditions uγ(0, ·) = 0 and uγ(·, 0) = 0. As a result, the
gradients in eq. (3.15) of the signature kernel with respect to each of its input
paths can be computed with a single call to a PDE solver, which concatenates
the original state and the partial derivatives in eq. (3.19). Each partial derivative
follows the dynamics of eq. (3.19) where one replaces the direction γ by the
relevant localized impulse γk,i, τk,i for x and y respectively. We outline the
resulting procedure in Alg. 3, where the partial derivatives are aggregated into
uΓ(s, t). Note that to optimize the ELBO we only need to differentiate K(x,x),
which is the case presented in the algorithm. The generalization to the case
K(x,y) is straightforward using the chain rule in eq. (3.14).

3.4.3 An explicit solution by variation of parameters

From this second PDE in eq. (3.19) we derive the following theorem (proved in
Appendix A.1), which allows us to compute the directional derivative Kγ of the
signature kernel directly from its evaluations at x,y and at ←−x ,←−y , where ←−x ,←−y

44

are respectively the paths x,y reversed in time (that is, ←−x (t) = x(T − t)).

Theorem 3.4.1. For any γ ∈ X (Rd) the directional derivative Kγ(x,y) of
the signature kernel along the path γ satisfies the following relation

Kγ(x,y) =

∫ T

0

∫ T

0
u(s, t)ũ(T − s, T − t)〈γ̇(s), ẏ(t)〉dsdt,

where ũ(s, t) = K
(←−x |[0,s],←−y |[0,t]

)
and where ←−x ,←−y are respectively the paths

x,y reversed in time.

The full backpropagation procedure is described in Alg. 4.

3.5 Related work

In this section, we expand on the material presented in Sec. 3.2, focusing on
the most recent approaches to scalable GPs on Rd with VOFs and on sparse
GPs for sequential data.

Variational Fourier Features In Hensman et al. (2017) the inducing vari-
ables are defined for scalar inputs (X = R) as projections of the GP-sample
onto the truncated Fourier basis. This type of inducing variables is constructed
for GPs with Matérn-type kernels. Although the resulting covariance matrix
of the inducing variables is not diagonal, it can be decomposed into the sum
of a diagonal matrix and rank one matrices. As a result, it can be inverted
using the Woodbury identity, which makes it possible to scale GP inference on
R. The generalization to GPs on Rd is done by taking the outer product of the
Fourier basis on R.

Eigenfunction inducing features Closest to our work are the eigenfunction
inducing features developed by Burt et al. (2020a), where the inducing variables
are also defined as projections of the GP-sample onto an orthogonal basis of
functions for the RKHS associated with the GP kernel. This is based on a Mer-
cer’s expansion of the kernel. From there, one identifies these orthogonal basis
functions by solving an eigendecomposition problem. For example, Dutordoir
et al. (2020) map the input data to the hypersphere Sd−1 ⊂ Rd and then show
that spherical harmonics form an orthogonal basis for the RKHSs associated
with zonal kernels defined on Sd−1.

GPs with signature covariances Toth and Oberhauser (2020) propose
a different sparse GP inference framework for sequential data with signature
covariances (GPSig). In this work the inducing variables are either taken to
be inducing sequences (IS) in the original input space (GPSig-IS) of sequences

45

0 50 100 150 200

(a) Input time series

−2

0

2

4

Pressure Temperature Relative humidity Airtight Wind speed Soil moisture Rain

250 260 270 280 290 300 310 320

(b) Output predictions

0.0

0.5

1.0
SigGPDE

Precipitation (mm)

Figure 3.2: Weather forecast dataset. (a) One (standard scaled) multivariate
time-series (xk)

`
k=1 in input to the GP model. (b) Posterior mean of the

SigGPDE GP when evaluated at multiple input time-series like (xk)`k=1 on the
test set. The actual precipitation amount is given for reference.

or inducing tensors (IT) in the corresponding feature space (GPSig-IT). The
chosen covariance function is an approximation of the signature kernel based on
truncating the signature to a finite level n. For GPSig-IT, this truncation makes
the feature space finite-dimensional and allows one to optimize the inducing
tensors defined over such truncated space. Unlike our method, the inducing
tensors are additional variational parameters to optimize. The covariance
matrix Cuu is dense and its inversion incurs an additional O(M3) cost. In
Table 3.1 we compare the computational complexities of GPSig-IT, GPSig-IS
and SigGPDE. A similar table for the memory complexity can be found in
Appendix A.3.

Table 3.1: Comparison of time complexities. M is the number of inducing
variables, Ñ the batch size, d the number of channels in the time-series, ` the
length of the sequences, n the truncation level (for GPSig-IT and GPSig-IS) and
˜̀ the length of the inducing sequences. The last line of the table corresponds to
linear algebra operations including matrix multiplication and matrix inversion.

Operation SigGPDE (ours) GPSig-IT GPSig-IS

Cuu O(1) O(n2M2d) O((n+ d)M2 ˜̀2)

Cfu O(ÑM`) O(n2ÑM`d) O((n+ d)ÑM ˜̀̀)

diag(Cff) O(dÑ`2) O((n+ d)Ñ`2) O((n+ d)Ñ`2)

Lin. Alg. O(ÑM2) O(ÑM2 +M3) O(ÑM2 +M3)

3.6 Experiments

In this section, we benchmark SigGPDE against GPSig-IT and GPSig-IS from
Toth and Oberhauser (2020) on various multivariate time-series classification
tasks. For GPSig-IS, we use inducing sequences of length ˜̀= 5 as recommen-
ded in Toth and Oberhauser (2020). We highlight how SigGPDE performs
competitively in terms of accuracy and uncertainty quantification but with a

46

significant speed-up in the fitting compared to the other baselines.
We use a mixture of UEA & UCR time-series datasets and real-world data

for the final example.
We measure the classification accuracy on the test set, assess the uncertainty

quantification with mean negative log-predictive probabilities (NLPP) and
report the runtime per iteration. For each dataset, all models are trained 3

times using a random training-validation split. The validation split is used
to monitor the NLPP when optimizing the hyperparameters of the models.
Further details on the training procedure can be found in Appendix A.2. All
code is written in TensorFlow using GPFlow De G. Matthews et al. (2017).

3.6.1 Classifying digits in sequential MNIST

We start with a handwritten digit classification task, where writers were asked
to draw the digits from 0 to 9. The instances are made up of 2-d trajectories
of the pen traced across a digital screen. The trajectories are of length ` = 8.
The training and test sets are of size 7 494 and 3 498 respectively. We made use
of M = 500 inducing features. In the results reported in Table 3.2, SigGPDE
achieves even better accuracy and NLPP than the GPSig baselines, whilst being
almost twice as fast than GPSig-IT.

Table 3.2: Classification for sequential MNIST (PenDigits). The higher the
Mean Acc. and the lower the NLPP the better.

Model Mean Acc. NLPP Time

GPSig-IS 97.42± 0.17 0.096± 0.005 0.186 (s/iter)
GPSig-IT 96.66± 0.59 0.115± 0.018 0.036 (s/iter)

SigGPDE 97.73± 0.13 0.085± 0.001 0.022 (s/iter)

3.6.2 Detecting whale call signals

In this example the task is to classify audio signals and distinguish one emitted
from right whales from noise. The dataset (called RightWhaleCalls in the UEA
archive) contains 10 934 train cases and 5 885 test cases. The signals are one-
dimensional, sampled at 2kHz over 2 seconds, hence of length 4 000. We tackle
this problem as a multivariate time-series classification task, by considering the
spectrogram of the univariate audio signal. The resulting streams are made of
29 channels corresponding to selected frequencies and are 30 time steps long.
The results in Table 3.3 are obtained with M = 700 and show the significant
speed-up of SigGPDE by almost one order of magnitude compared to GPSig.

47

This speed-up is compensated by a minimal decrease in performance both in
terms of accuracy and NLPP.

Table 3.3: Classification for whale call signals

Model Mean Acc. NLPP Time

GPSig-IS 86.97± 0.11 0.367± 0.005 0.438 (s/iter)
GPSig-IT 87.70± 0.42 0.357± 0.003 0.048 (s/iter)

SigGPDE 86.76± 0.36 0.382± 0.002 0.008 (s/iter)

3.6.3 Large scale classification of satellite time-series

We now consider a large-scale classification example on 1 million time-series.
The time-series in this dataset represent a vegetation index, calculated from
remote sensing spectral data. The 24 classes represent different types of land
cover (Petitjean et al., 2012). The aim in classifying these time-series of length
` = 46 is to map different vegetation profiles to different types of crops and
forested areas. Due to the sheer size of this dataset we only compare SigGPDE
to GPSig-IT as GPSig-IS is not scalable to such large dataset. In Fig. 3.3 we
report the accuracy, time per iteration and ELBO by progressively increasing
the number of inducing variables. Compared to SigGPDE, GPSig-IT has
additional variational parameters, namely the inducing tensors. This extra
flexibility explains the better performance of GPSig-IT when few inducing
variables are used. However, as the number of inducing features increases,
SigGPDE catches up and outperforms GPSig-IT in all monitored metrics.

3.6.4 Weather forecast

In this last example, we use a dataset of climatic variables recorded by the Max
Planck Institute for Biogeochemistry2 in the weather stations of WS Beutenberg
and WS Saaleaue from 2004-2020. The data consists of 7-dimensional time-
series recorded once per 10 minutes where each channel represents a weather
feature such as temperature, pressure, humidity, etc. The goal is to predict
whether it will rain in the next hour from the trajectory of all other features in
the preceding 6 hours. To obtain binary labels for the classification task, we
set the label to 1 if the precipitation is larger than 1mm and to 0 otherwise.
The inference mechanism is depicted on Fig. 3.2.

A key feature, proper to our model SigGPDE, is its interpretability. Looking
at the variational mean vector m in eq. (3.13), we can extract the terms with

2https://www.bgc-jena.mpg.de/wetter/

48

https://www.bgc-jena.mpg.de/wetter/

50 125 250 500

Number of inducing variables (M)

50

55

60

65

70

A
cc

ur
ac

y
(%

)

SigGPDE

GPSig-IT

50 125 250 500

Number of inducing variables (M)

0.02

0.04

0.06

0.08

0.10

0.12

T
im

e
(s

/i
te

r)

SigGPDE

GPSig-IT

50 125 250 500

Number of inducing variables (M)

−7

−6

−5

−4

E
L

B
O

×106

SigGPDE

GPSig-IT

(a)

50 125 250 500

Number of inducing variables (M)

50

55

60

65

70

A
cc

ur
ac

y
(%

)

SigGPDE

GPSig-IT

50 125 250 500

Number of inducing variables (M)

0.02

0.04

0.06

0.08

0.10

0.12

T
im

e
(s

/i
te

r)

SigGPDE

GPSig-IT

50 125 250 500

Number of inducing variables (M)

−7

−6

−5

−4

E
L

B
O

×106

SigGPDE

GPSig-IT

(b)

50 125 250 500

Number of inducing variables (M)

50

55

60

65

70

A
cc

ur
ac

y
(%

)

SigGPDE

GPSig-IT

50 125 250 500

Number of inducing variables (M)

0.02

0.04

0.06

0.08

0.10

0.12

T
im

e
(s

/i
te

r)

SigGPDE

GPSig-IT

50 125 250 500

Number of inducing variables (M)

−7

−6

−5

−4

E
L

B
O

×106

SigGPDE

GPSig-IT

(c)

Figure 3.3: Large scale (1M) classification of satellite time-series. Comparison
of various metrics as functions of inducing variables in (a), (b) and (c).

highest relevance learned by the model. As discussed in Sec. 3.3.1, thanks to
the corresponding signature features, it is possible to infer which signature
features used by the GP are more responsible for the result produced. The most
relevant predictive features for this weather forecast experiment are represented
in Fig. 3.4.

Pressure-Pressure-Rain
Rain-Rain-Rain

Airtight-Temperature-Rain
Moisture-Wind speed-Moisture

Rain
Pressure-Rain-Pressure-Rain

Moisture-Airtight-Moisture
Humidity-Rain-Humidity-Rain

Moisture-Temperature-Moisture
Moisture-Humidity-Moisture

feature importance

Figure 3.4: Top 10 signature features (by importance) used by SigGPDE to
predict whether or not it will rain in the next hour from previous weather
data. Each feature corresponds to an iterated integral Si1...in(x) where each
ik ∈ {1, . . . , 7}. The 7 channels of the input time-series represent Moisture,
Humidity,Temperature, Rain, Airtight, Pressure, and Wind speed. For example we
can read that the top feature corresponds to n = 3 and (i1, i2, i3) = (1, 2, 1).

49

3.7 Conclusion

In this chapter we have developed SigGPDE, a framework for performing
variational inference for GP models on sequential data with orthogonal signature
features. Firstly, we constructed inducing variables so that their covariance
matrix is diagonal. Secondly, we showed that the gradients of the signature
kernel are solutions of a hyperbolic PDE. As a result the ELBO is cheap to
evaluate, as gradient descent does not require backpropagating through the
operations of the PDE solver. We benchmarked SigGPDE against the state-of-
the-art GPSig on different time-series classification tasks, showing a significant
speed-up and similar performance.

50

Chapter 4

Distribution Regression on
Sequential Data

In the previous chapter we discussed how large datasets of multivariate time-
series lead to significant computational challenges when fitting Gaussian process
models. We leveraged the properties of the signature kernel and its associated
RKHS to scale up the learning algorithm. In some instances, one can instead
reduce the size of the dataset by representing sets of inputs by empirical
distributions. This is common practice in the context of Distribution regression
(DR), supervised learning problems, where labels are only available for sets of
inputs instead of individual inputs.

In this chapter, we develop a rigorous mathematical framework for DR
where inputs are data streams. Leveraging properties of the expected signature
and the recent signature kernel trick, we introduce two new learning techniques:
one feature-based and the other kernel-based. Each is suited to a different
data regime in terms of the number of data streams and the dimensionality of
the individual streams. We provide theoretical results on the universality of
both approaches and demonstrate empirically their robustness to irregularly
sampled multivariate time-series, on both synthetic and real-world examples
from thermodynamics, mathematical finance and agricultural science.

4.1 Introduction

DR on sequential data describes the task of learning a function from a set of data
streams to a single scalar target. For example, in thermodynamics (Fig. 4.1)
one may be interested in determining the temperature of a gas from the set
of trajectories described by its particles (Hill, 1986; Reichl, 1999; Schrödinger,
1989). Similarly, in quantitative finance, practitioners may wish to estimate
mean-reversion parameters from observed market dynamics (Balvers et al.,
2000; Gatheral et al., 2018; Papavasiliou et al., 2011). Another example arises

51

in agricultural science, where the challenge consists in predicting the overall
end-of-year crop yield from high-resolution climatic data across a field (Dahikar
and Rode, 2014; Panda et al., 2010; You et al., 2017).

DR techniques (Oliva et al., 2014; Póczos et al., 2013; Szabó et al., 2016)
have been successfully applied to handle situations where the inputs in each set
are vectors in Rd. Recently, there has been an increased interest in extending
these techniques to non-standard inputs such as images (Law et al., 2018b)
or persistence diagrams (Kusano et al., 2016). However, DR for sequential
data, such as multivariate time-series, has been largely ignored. The main
challenges in this direction are the correlations of the variables in a sequence,
which naturally come with an order, and the fact that in many real-world
scenarios, the points in a sequence are irregularly distributed across time.

Figure 4.1: Simulation of the trajectories traced by 20 particles of an ideal gas
in a 3-d box under different thermodynamic conditions. Higher temperatures
equate to a higher internal energy in the system which increases the number of
collisions resulting in different large-scale dynamics of the gas.

In this chapter, we propose a framework for DR that addresses precisely the
setting in which the inputs within each set are data streams, mathematically
thought of as continuous paths of bounded variation (Sec. 4.2). We formulate
two distinct approaches, one feature-based and the other kernel-based, both
relying on a recent tool from stochastic analysis known as the expected signature
(Chevyrev and Oberhauser, 2018; Chevyrev et al., 2016; Lyons et al., 2015; Ni,
2012). First, we construct a new set of features that are universal, in the sense
that any continuous function on distributions on paths can be uniformly well
approximated by a linear combination of these features (Sec. 4.3.1). Secondly, we
introduce a universal kernel on distributions on paths given by the composition
of the expected signature and a Gaussian kernel (Sec. 4.3.2), which can be
evaluated with a kernel trick. The former method is more suitable to datasets
containing a large number of low-dimensional streams, whilst the latter is better
for datasets with a low number of high-dimensional streams. We demonstrate
the versatility of our methods to handle interacting trajectories like the ones in
Fig. 4.1. We show how these two methods can be used to provide practical DR
algorithms for time-series, which are robust to irregular sampling and achieve

52

state-of-the-art performance on synthetic and real-world examples (Sec. 4.5).

4.1.1 Problem definition

Consider M input-output pairs {(Si, yi)}Mi=1, where each pair is given by a
scalar target yi ∈ R and a finite collection Si = {xi,p}Nip=1 of (d−1)-dimensional
time-series (with d > 1), each of the form

x = ((t1,x1), . . . , (t`,x`)) ,

of possibly unequal lengths ` ∈ N∗, with time-stamps 0 < t1 < . . . < t` < T

and values xk ∈ Rd−1. Every time-series can be naturally embedded into a
continuous path of bounded variation

x : [0, T]→ Rd,

by piecewise linear interpolation with knots at t1, . . . , t` such that x(tk) =

(tk,xk). After having formally introduced a set of probability measures on this
class of paths, we will summarize the information on each set {xi,p}Nip=1 by the
discrete measure Pi = 1

Ni

∑Ni
p=1 δxi,p where δxi,p is the Dirac measure centred

at the path xi,p. The supervised learning problem we propose to solve consists
in learning an unknown function F : Pi 7→ yi.

4.2 Background

We begin by formally introducing the class of paths and the set of probability
measures we are considering.

4.2.1 Paths and probability measures on paths

Let T > 0 and consider the closed time interval [0, T]. Let E be a Hilbert space
with inner product 〈·, ·〉E . For applications we will take E = Rd, with d ∈ N∗.
We denote by X (E) the Banach space (Friz and Victoir, 2010) of continuous
functions of bounded variation x : [0, T]→ E equipped with the norm

‖x‖ = V(x) + sup
t∈[0,T]

‖x(t)‖E .

We will refer to any element x ∈ X (E) as an E-valued path. Given a compact
subset of paths U ⊂ X (E), with respect to the topology induced by ‖·‖, we
denote by P(U) the set of (Borel) probability measures on U .

In the previous chapter, we leveraged the signature, which has been shown
to be an ideal feature map for paths (Lyons, 2014). In this chapter, we make use
of the expected signature, an appropriate feature map for probability measures

53

on paths. Both feature maps take values in the same feature space. In the next
section we introduce the necessary mathematical background to describe the
structure of this space.

4.2.2 A canonical Hilbert space of tensors

In what follows, ⊕ and ⊗ will denote the direct sum and the tensor product of
vector spaces, respectively. For example, (Rd)⊗2 = Rd ⊗ Rd can be identified
with the space of d× d matrices and (Rd)⊗3 can be identified wit the space of
d× d× d tensors. By convention E⊗0 = R. Consider the following vector space

T (E) =

∞⊕

k=0

E⊗k = R⊕ E ⊕ E⊗2 ⊕

If {ei}i∈{1,...,d} is a basis of E, the elements {ei1 ⊗ . . . ⊗ eik}(i1,...,ik)∈{1,...,d}k

form a basis of E⊗k. For any A ∈ T (E) we denote by Ak ∈ E⊗k the kth-tensor
component of A. If E is a Hilbert space with inner product 〈·, ·〉E , then there
exists a canonical inner product 〈·, ·〉E⊗k on each E⊗k which extends by linearity
to an inner product

〈A,B〉H(E) =
∑

k≥0

〈Ak, Bk〉E⊗k ,

on H(E) := {A ∈ T (E) | ∑∞k=0 ‖Ak‖2E⊗k < +∞} that thus becomes also a
Hilbert space (Chevyrev and Oberhauser, 2018, Sec. 3).

4.2.3 The signature of a path

The signature (Chen, 1957; Lyons, 2014, 1998) turns the complex structure of
a path x into a simpler vectorial representation given by an infinite sequence
of iterated integrals. We recall that, in this thesis, the iterated integrals are
defined in the classical Riemann-Stieltjes sense.

Definition 14. The signature S : X (E) → H(E) is the map defined in the
following way: the 0th component is always S0(x) = 1, whilst all the others are
defined as

Sk(x) =

∫
. . .

∫

0<t1<...<tk<T

dx(t1)⊗ . . .⊗ dx(tk). (4.1)

The kth component Sk(x) can be represented by its coordinates with respect
to the canonical basis of E⊗k

Sk(x) =
∑

i1...ik

Si1...ik(x)ei1 ⊗ . . .⊗ eik ,

54

where the coordinates are defined by

Si1...ik(x) =

∫
. . .

∫

0<t1<...<tk<T

dxi1(t1) . . . dxik(tk).

It is well known that any continuous function on a compact subset of Rd can
be uniformly well approximated by polynomials (Conway, 2019, Thm. 8.1). In
full analogy—as explained in more detail in Sec. 2.1—the collection of iterated
integrals defined by the signature provides a basis for continuous functions on
compact sets of paths as stated in the following result.

Theorem 4.2.1. Let U ⊂ X̃ (Rd) be a compact set of paths1 with d > 1, and
consider a continuous function f : U → R. Then for any ε > 0, there exists a
truncation level n ≥ 0, such that for any path x ∈ U

∣∣∣f(x)− θ0 −
n∑

k=1

∑

i1...ik

θi1...ikS
i1...ik(x)

∣∣∣ < ε,

where θ0 and θi1...ik are scalar coefficients, and the inner sum is taken over
i1, . . . , ik ∈ {1, . . . , d}.

4.2.4 Truncating the signature

In light of the above, in view of numerical applications (Arribas et al., 2018;
Bonnier et al., 2019; Graham, 2013; Kalsi et al., 2020; Moore et al., 2019), the
signature S(x) of a path x evolving in a d-dimensional vector space, might
need to be truncated at a certain level n ∈ N∗ which yields the approximation

sig(x) = vec((1, S1(x), . . . , Sn(x))).

This approximation is given by the collection of the first (dn+1 − 1)/(d − 1)

iterated integrals in eq. (4.1). Nonetheless, the resulting approximation is
reasonable owing to Lyons et al. (2007, Proposition 2.2) which states that the
absolute value of all neglected terms decays factorially as |Si1...in(x)| = O

(
1
n!

)
.

This factorial decay ensures that when the signature of x is truncated, only a
negligible amount of information about x is lost (Bonnier et al., 2019, Sec. 1.3).

4.2.5 Robustness to irregular sampling

The invariance of the signature to a special class of transformations in the
time domain of a path (Friz and Victoir, 2010, Proposition 7.10) called time
reparameterizations, such as shifting t 7→ t+ b and acceleration t 7→ tb (b > 0),
partially explains its effectiveness to deal with irregularly sampled data streams

1X̃ (Rd) is defined in terms of X (Rd−1) in Sec. 2.1.2

55

(Bonnier et al., 2019; Chevyrev and Kormilitzin, 2016). In effect, the iterated
integrals in eq. (4.1) disregard the time parameterization of a path x, but
focus on describing its shape. To retain the information carried by time, it
suffices to augment the state space of x by adding time t as an additional
dimension, yielding x̃ : t 7→ (t, x1(t), . . . , xd−1(t)). This augmentation becomes
particularly useful in the case of univariate time-series where the action of the
signature becomes somewhat trivial, as there are no interesting dependencies
to capture between the different path-coordinates (Chevyrev and Kormilitzin,
2016, Example 5). Furthermore, we use this augmentation in Thm. 4.2.1 in
order to ensure the injectivity of the signature (as explained in Sec. 2.1.2).

4.3 Methodology

t1 t2 t3 T

time

{
Πt1(xp)

}N

p=1

{
Πt2(xp)

}N

p=1

{
Πt3(xp)

}N

p=1

{
ΠT (xp)

}N

p=1

H(Rd)

multivariate time-series signature expected signature

t1

t2

t3

T

S̄
S̄ S̄ S̄

Φ

t1 t2 t3 T

time

{
Πt1(xp)

}N

p=1

{
Πt2(xp)

}N

p=1

{
Πt3(xp)

}N

p=1

{
ΠT (xp)

}N

p=1

H(Rd)

multivariate time-series signature expected signature

t1

t2

t3

T

S̄
S̄ S̄ S̄

Φ

Figure 4.2: Schematic overview of the action of pathwise expected signature Φ
on a set of paths {xp}Np=1. Top: Representation of the information about the
set of time-series available from start up to time tk. Bottom: At each time tk
this information gets embedded into a single point in H(Rd).

The Distribution regression (DR) setting for sequential data we have set up
so far consists of M input-output pairs of the form

{(
{xi,p}Nip=1, yi

) ∣∣∣ xi,p ∈ X (Rd), yi ∈ R
}M
i=1

, (4.2)

such that the finite set of paths U =
⋃M
i=1{xi,p}Nip=1 is a compact subset of

X (Rd). As mentioned in Sec. 4.1.1, we can summarize the information carried
by the collection of paths {xi,p}Nip=1 in set i by considering the empirical measure
Pi = 1

Ni

∑Ni
p=1 δxi,p ∈ P(U), where δxi,p is the Dirac measure centered at xi,p.

56

This way, the input-output pairs in eq. (4.2) can be represented by

{
(Pi, yi)

∣∣∣ Pi ∈ P(U), yi ∈ R
}M
i=1

. (4.3)

The sequence of moments (E[Z⊗m])m≥0 is classically known to characterize
the law PZ of any finite-dimensional random variable Z (provided the sequence
does not grow too fast). It turns out that in the infinite-dimensional case of
laws of paths-valued random variables (or equivalently of probability measures
on paths), an analogous result holds (Chevyrev and Oberhauser, 2018). It
says that one can fully characterize a probability measure on paths (provided
that it has compact support) by replacing monomials of a vector by iterated
integrals of a path (i.e. signatures). At the core of this result is a recent tool
from stochastic analysis that we introduce next.

Definition 15. The expected signature is the map S̄ : P(U)→ H(E) defined
for any P ∈ P(U) by

S̄(P) =

∫

x∈X
S(x)P(dx).

We will rely on the following important theorem in order to prove the
universality of the proposed techniques for DR on sequential data presented in
the next two sections.

Theorem 4.3.1. The expected signature map is injective and weakly continuous.

Proof. The injectivity has been proved in Chevyrev and Oberhauser (2018,
Thm. 5.3). We prove the weak continuity in Appendix B.1.1.

4.3.1 A feature-based approach (SES)

As stated in Thm. 4.2.1, linear combinations of coordinate-iterated-integrals are
universal approximators for continuous functions f on compact sets of paths.
In this section, we prove the analogous density result for continuous functions
F on probability measures on paths. We do so by reformulating the problem
of DR on paths as a linear regression on the iterated integrals of an object
that we will refer to as the pathwise expected signature. We start with the
definition of this term, followed by the density result. Ultimately, we show that
our DR algorithm materializes as extracting signatures on signatures. For any
t ∈ [0, T] consider the projection Πt that maps any path x to its restriction to
the subinterval [0, t] ⊂ [0, T], such that Πt(x) = x|[0,t] (see Fig. 4.2).

Definition 16 (Pathwise expected signature). The pathwise expected signature
is the function Φ : P(U)→ X (H(E)) that to a probability measure P ∈ P(U)

associates the path Φ(P) : [0, T]→ H(E) defined for all t ∈ [0, T] by

Φ(P)(t) = EX∼P [S (Πt(X))] .

57

The action of Φ is illustrated on Fig. 4.2, and its implementation is outlined
in Alg. 5.2 In line 8 of Alg. 5, we use an algebraic property for fast computation
of the signature, known as Chen’s theorem (see Thm. 2.1.5 and Alg. 1).

Algorithm 5 PES Computing the pathwise expected signature

1: Input: N streams {xp}Np=1 each of length `

2: Create array Φ to store the PES

3: Create array S to store the signatures

4: Initialize S[p]← 1 for p ∈ {1, . . . , N}
5: Initialize Φ[1]← 1

6: for each time-step k ∈ {2, . . . , `} do
7: for each stream p ∈ {1, . . . , N} do
8: // Compute the signature via Chen’s relation

9: S[p]← S[p]⊗ exp
(
xp[k]− xp[k − 1]

)

10: end for

11: Φ[k]← avg(S)

12: end for

13: Output: The pathwise expected signature Φ

We denote by Φk(P), the projection on E⊗k of the pathwise expected
signature of a probability measure P, that is the path Φk(P) : [0, T] → E⊗k,
defined for all t ∈ [0, T] by Φk(P)(t) = EX∼P [Sk (Πt(X))]. In the sequel,
Φ̃ denotes the pathwise expected signature augmented with time, such that
Φ̃(P)(t) = (t,Φ(P)(t)) for all t ∈ [0, T].

The next theorem states that any weakly continuous function on P(U)

can be uniformly well approximated by a linear combination of terms in the
signature of the pathwise expected signature.

Theorem 4.3.2. Let U ⊂ X̃ (R⊕E) be a compact set of paths, where E is a
vector space of dimension d ∈ N∗, and consider a weakly continuous function
F : P(U)→ R. Then for any ε > 0 there exists a truncation level m ≥ 0, such
that for any probability measure P ∈ P(U),

∣∣∣F (P)−
m∑

k=0

Lk ◦ S(Φ̃(P))
∣∣∣ < ε

where Lk are linear functionals, that is, elements of the dual space of (R⊕H(R⊕
E))⊗k, naturally extended to elements of the dual space of H(R⊕H(R⊕ E)).

2Equivalently Φ(P)(t) = S̄(Πt#P) where Πt#P is the push-forward measure of P by the
measurable map Πt.

58

Proof. P(U) is compact (see the proof of Thm. 4.3.3) and the image of a compact
set by a continuous function is compact. Therefore, the image UΦ = Φ(P(U))

is a compact subset of X (H(R⊕E)). Consider a weakly continuous function
F : P(U)→ R. Given that Φ is injective (see Appendix B.1.2), Φ is a bijection
when restricted to its image UΦ. Therefore, there exists a continuous function
f : UΦ → R (w.r.t. ‖·‖) such that F = f ◦ Φ. Denote by τ the map that
augments a path with a time coordinate. By Thm. 2.1.4 we know that for any
ε > 0, there exists a linear functional L : H(R⊕H(R⊕ E))→ R of the form
L =

∑m
k=0 Lk such that ‖f − L ◦ S ◦ τ‖∞ < ε. Thus, ‖F ◦Φ−1−L◦S◦τ‖∞ < ε,

implying ‖F − L ◦ S ◦ τ ◦ Φ‖∞ < ε, that is, ‖F − L ◦ S ◦ Φ̃‖∞ < ε.

The practical consequence of this theorem is that the complex task of
learning a highly non-linear function F : P(U) → R can be reformulated as
a linear regression on the signature (truncated at level m) of the pathwise
expected signature (truncated at level n). The model for the regression function
takes the form

F̂ (P) = θ0 +
m∑

k=1

∑

i1...ik

θi1...ikS
i1...ik(t 7→ vec(t, 1,Φ1(P)(t), . . . ,Φn(P)(t))),

where i1, . . . , ik ∈ {1, . . . , (d̃n+1−1)/(d̃−1)} with d̃ = d+1. The resulting SES
algorithm is outlined in Alg. 6, and has time complexity O(M`dn(N + dm)),
whereM is the total number of sets, ` is the largest length across all time-series,
d is the state space dimension, N is the maximum number of input time-series
in a single set. The factorial decay mentioned in Sec. 4.2.4, also applies to
the terms of the (pathwise) expected signature, hence low truncation levels
n,m ∈ {2, 3} will usually be sufficient in practice to achieve good predictive
performances.

4.3.2 A kernel-based approach (KES)

The SES algorithm is well suited to datasets containing a possibly large number
M × N of relatively low dimensional paths. If instead the input paths are
high-dimensional, it would be prohibitive to deploy SES since the number
of terms in the signature increases exponentially in the dimension d of the
path. To address this, in this section, we construct a new kernel function
Kdr : P(U)×P(U)→ R by combining the expected signature with a Gaussian
kernel and prove its universality to approximate weakly continuous functions
on probability measures on paths. The resulting kernel-based algorithm (KES)
for DR on sequential data is well adapted to the opposite data regime, i.e. when
the dataset consists of few number M ×N of high dimensional paths.

59

Algorithm 6 SES DR on sequential data with SES

1: Input: {(Si, yi)}Mi=1 where Si = {xi,p}Nip=1

2: Create array A to store M signatures of the PES.

3: Initialize A[:, i]← 1 for i ∈ {1, . . . ,M}
4: for each set i ∈ {1, ...,M} do
5: // Compute the pathwise expected signature using Alg. 5

6: Φ = PES(Si)

7: // Add a time coordinate to the PES

8: Create array Φ̃

9: Φ̃[k]← (k,Φ[k]) for k ∈ {1, . . . , `i}
10: for each time-step k ∈ {2, . . . , `i} do
11: // Compute the signature of the (time-augmented) PES

12: A[:, i]← A[:, i]⊗ exp (Φ̃[k]− Φ̃[k − 1])

13: end for

14: end for

15: (θ0, . . . , θc) = LinearRegression(A, (yi)Mi=1)

16: Output: Regression coefficients (θ0, . . . , θc)

Theorem 4.3.3. Let U ⊂ X̃ (R⊕E) be a compact set of paths and σ > 0. The
kernel Kdr : P(U)× P(U)→ R defined by,

Kdr(P,Q) = exp
(
− σ2

∥∥S̄(P)− S̄(Q)
∥∥2

H(R⊕E)

)
(4.4)

is universal, i.e. the associated RKHS is dense in the space of continuous
functions from P(U) to R.

Proof. By Christmann and Steinwart (2010, Thm. 2.2) if K is a compact metric
space and H is a separable Hilbert space such that there exists a continuous and
injective map ρ : K → H, then for σ > 0 the Gaussian-type kernel kσ : K×K →
R is a universal kernel, where kσ(z, z′) = exp

(
− σ2 ‖ρ(z)− ρ(z′)‖2H

)
. With

the metric induced by ‖·‖, U is a compact metric space. Hence the set P(U)

is weakly-compact (Walkden, 2014, Thm. 10.2). Given that (U, dU)—where
dU is the topology induced by ‖·‖—is a compact metric space, the topology
describing weak convergence of (Borel) probability measures can be metrized
(e.g. by the Prohorov metric dP(U)). Therefore (P(U), dP(U)) is also a compact
metric space. By Thm. 4.3.1, the expected signature S̄ : P(U)→ H(R⊕ E) is
injective and weakly continuous. Furthermore, H(R⊕E) is a Hilbert space with
a countable basis, hence it is separable. Setting K = P(U), H = H(R ⊕ E)

and ρ = S̄ concludes the proof.

60

We note that Thm. 4.3.3 holds more generally for any Taylor-type kernel of
the form,

Kdr(P,Q) =

∞∑

n=0

an||S̄(P)− S̄(Q)||2n, an > 0 (4.5)

including the Gaussian-type kernel in eq. (4.4).

4.3.3 Evaluating the distribution regression kernel

When the input measures are two empirical measures P1 = 1
N1

∑N1
p=1 δx1,p and

P2 = 1
N2

∑N2
q=1 δx2,q , the evaluation of the kernel Kdr in Equation (4.4) requires

the ability to compute the tensor norm

∥∥S̄(P1)− S̄(P2)
∥∥2

= m11 +m22 − 2×m12, (4.6)

where for i, j ∈ {1, 2}, the term mij is given by

mij =
1

NiNj

Ni∑

p=1

Nj∑

q=1

〈
S(xi,p), S(xj,q)

〉
.

Each of these inner products defines another recent object from stochastic
analysis called the signature kernel K (Király and Oberhauser, 2019). Recently,
Cass et al. (2020) have shown that K is actually the solution of a surprisingly
simple partial differential equation (PDE). This result provides us with a kernel
trick for computing the inner products in Equation (4.6) by a simple call to
any numerical PDE solver.

Theorem 4.3.4. (Cass et al., 2020, Thm. 2.2) The signature kernel

K(x,y) := 〈S(x), S(y)〉 , (4.7)

is the solution u : [0, T]× [0, T]→ R at (s, t) = (T, T) of the following linear
hyperbolic PDE

∂2u

∂s∂t
= 〈ẋ(s), ẏ(t)〉u (4.8)

with boundary conditions u(0, ·) = 1 and u(·, 0) = 1.

In light of Thm. 4.3.3, DR on paths with KES can be performed using any
kernel method (Drucker et al., 1997; Quiñonero-Candela and Rasmussen, 2005)
available within popular libraries (De G. Matthews et al., 2017; Gardner et al.,
2018; Pedregosa et al., 2011) using the Gram matrix computed using Alg. 7
and leveraging the aforementioned kernel trick. When using a finite difference

61

scheme (referred to as PDESolve in Alg. 7) to approximate the solution of the
PDE, the resulting time complexity of KES is O(M3 +M2N2`2d).

Algorithm 7 GramKES Gram matrix for KES

1: Input: {xi,p}Nip=1, for i = 1, . . . ,M and σ > 0.

2: Initialize 0-array G ∈ RM×M

3: for each pair of sets (i, j) such that i ≤ j do
4: Initialize 0-array Kij ∈ RNi×Nj

5: Similarly initialize Kii,Kjj ∈ RNi×Ni ,RNj×Nj

6: for p, p′ in set i and q, q′ in set j do

7: Kii[p, p
′]← PDESolve(xi,p,xi,p′)

8: Kjj [q, q
′]← PDESolve(xj,q,xj,q′)

9: Kij [p, q]← PDESolve(xi,p,xj,q)

10: end for

11: G[i, j]← avg(Kii) + avg(Kjj)− 2× avg(Kij)

12: G[j, i]← G[i, j]

13: end for

14: G← exp(−σ2G) // elementwise exponential

15: Output: The gram matrix G.

Remark In the case where the observed paths are assumed to be i.i.d. samples
{Xp}Np=1 ∼ P from the law of an underlying random process, one would expect
that the larger the sample size N , the better the approximation of P, and
therefore of its expected signature S̄(P). Indeed, for an arbitrary multi-index
(i1, . . . , ik), the Central Limit Theorem yields the convergence (in distribution)

√
N
(
EX∼P

[
Si1...ik(X)

]
− 1

N

N∑

p=1

Si1...ik(Xp)
) D→ N

(
0, σ2

i1...ik

)
,

as the variance σ2
i1...ik

= EX∼P
[
Si1...ik(X)2

]
−
(
EX∼P

[
Si1...ik(X)

])2 is always
finite; in effect, the product Si1...ik(X)Si1...ik(X) can be expressed as a finite sum
of higher-order terms Sj1...j2k(X) according to the shuffle identity (Thm. 2.1.2).
However, we note that Monte Carlo sampling is only one way of estimating the
expected signature. There are stochastic processes, such as Brownian motion,
for which the expected signature can be computed by solving a PDE (Ni, 2012).

62

4.4 Related work

Recently, there has been a growing interest in extending regression algorithms to
the case where inputs are sets of numerical arrays (Hamelijnck et al., 2019; Law
et al., 2018a; Musicant et al., 2007; Skianis et al., 2020; Wagstaff et al., 2008).
Here we highlight the previous work most closely related to our approach.

Deep learning techniques DeepSets (Zaheer et al., 2017) are examples
of neural networks designed to process each element of a set individually,
aggregate the outputs by means of well-designed operations (similar to pooling
functions), and feed the aggregated output to a second neural network to carry
out the regression. The aggregation makes it possible to encode permutation
invariance. However, these models depend on a large number of parameters
and the results may vary greatly depending on the choice of architecture and
activation functions (Wagstaff et al., 2019)

Kernel-based techniques In the setting of DR, elements of a set are viewed
as samples from an underlying probability distribution (Flaxman, 2015; Law
et al., 2018b; Muandet et al., 2012; Smola et al., 2007; Szabó et al., 2016). This
framework can be intuitively summarized as a two-step procedure. Firstly, a
probability measure µ is mapped to a point in an RKHSHk by means of a kernel
mean embedding µ =

∫
x∈X k(·, x)P(dx), where k : X ×X → R is the associated

reproducing kernel. Secondly, the regression is finalized by approximating
a function F : Hk → R by minimizing F ≈ arg ming∈Hκ

∑M
i=1 c(yi, g(µi)),

where c is a loss function, resulting in a procedure involving a second kernel
κ : Hk × Hk → R. In Sec. 4.5 we denote by DR-k the models produced by
choosing κ as a Gaussian-type kernel. Despite the theoretical guarantees of
these methods (Szabó et al., 2016), the feature map k(·, x) acting on the support
X is rarely provided explicitly, especially in the setting of non-standard input
spaces X 6⊂ Rd, requiring manual adaptations to make the data compatible
with standard kernels.

The signature method As explained in Sec. 2.1, the signature method
consists in using the terms of the signature as features to solve supervised
learning problems on time-series, with successful applications, such as bipolar
disorder detection (Arribas et al., 2018) or human action recognition (Yang
et al., 2017) to name a few. The signature features have also been used to
construct neural network layers (Bonnier et al., 2019; Graham, 2013) in deep
architectures. The feature-based method (SES) developed in this chapter can
be viewed as a generalization of the signature method when inputs are sets of
multivariate time-series.

63

4.5 Experiments

We benchmark our feature-based (SES) and kernel-based (KES) methods against
DeepSets and the existing kernel-based DR techniques discussed in Sec. 4.4 on
various simulated and real-world examples from physics, mathematical finance
and agricultural science. With these examples, we show the ability of our
methods to handle challenging situations where only a few number of labeled
sets of multivariate time-series are available. We consider the kernel-based
techniques DR-k with k ∈ {RBF,Matern32,GA}, where GA refers to the
Global Alignment kernel for time-series from Cuturi et al. (2007). Unlike our
methods, DeepSets, DR-RBF and DR-Matern32 are all for static arrays on
Rd. This is why we also construct the DR-GA method, which can be seen as a
simplification of KES, where some smaller terms are deleted in the signature
(see Király and Oberhauser (2019, Sec 5.)).

For KES and DR-k we perform Kernel Ridge Regression, while for SES we
use Lasso Regression. All models are run 5 times, and we report the mean and
standard deviation of the predictive mean squared error (MSE). The hyperpara-
meters of KES, SES and DR-k are selected by cross-validation via a grid search
on the training set of each run. Additional details about hyperparameters search
and model architecture can be found in Appendix B.2. The code is available at
https://github.com/maudl3116/Distribution_Regression_Streams.

4.5.1 A defective electronic device

We start with a toy example to show the robustness of our methods to irregularly
sampled time-series. To this aim, we propose to infer the phase ϕ of an electronic

0 10 20 30 40 50 60 70

Subsampling rate (%)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

P
re

di
ct

iv
e

M
S

E

DR-RBF

SES

KES

Figure 4.3: Predictive MSE at various subsampling rates for M = 50 circuits
and N = 15 devices. The shaded area indicates the standard deviation.

64

https://github.com/maudl3116/Distribution_Regression_Streams

circuit from multiple recordings of its voltage vϕ(t) = sin(ωt) and current
iϕ(t) = sin(ωt − ϕ). The data consist of M simulated circuits with phases
{ϕi}Mi=1 selected uniformly at random from [π/8, π/2]. Each circuit is attached
to N measuring devices recording the two sine waves over 20 periods at a
frequency 25 points per period. We then randomly subsample the data at rates
ranging from 0% to 75% independently for each defective device. As shown in
Fig. 4.3, the predictive performances of DR-RBF drastically deteriorate when
the subsampling rate increases, whilst results for KES and SES are stable.

4.5.2 Inferring the temperature of an ideal gas

Table 4.1: Ideal gas dataset. Radii of the particles in the gases: r1 = 3.5 ·
10−1(V/N)3 (few collisions) and r2 = 6.5 · 10−1(V/N)3 (many collisions).

Model Predictive MSE ×10−2 (standard deviation)

r1 r2 > r1

DeepSets 8.69 (3.74) 5.61 (0.91)
DR-RBF 3.08 (0.39) 4.36 (0.64)
DR-Matern32 3.54 (0.48) 4.12 (0.39)
DR-GA 2.85 (0.43) 3.69 (0.36)
KES 1.31 (0.34) 0.08 (0.02)
SES 1.26 (0.23) 0.09 (0.03)

The thermodynamic properties of an ideal gas of N particles inside a 3-d
box of volume V (3 cm3) can be described in terms of the temperature T (K),
the pressure P (Pa) and the total energy U (J) via the two equations of state
PV = NkBT and U = cVNkBT , where kB is the Boltzmann constant (Adkins
and Adkins, 1983), and cV the heat capacity. The large-scale behaviour of
the gas can be related to the trajectories of the individual particles (through
their momentum = mass × velocity) by the equation U = 1

2

∑N
p=1mp| #»vp|2. The

complexity of the large-scale dynamics of the gas depends on T (see Fig. 4.1)
and on the radius of the particles. For a fixed T , the larger the radius the
higher the chance of collision between the particles. We simulate M = 50

different gases of N = 20 particles each, randomly initializing all velocities and
letting the particles evolve at constant speed.3 The task is to learn T (sampled
uniformly at random from [1, 1 000]) from the set of trajectories traced by the
particles in the gas. In Table 4.1 we report the results of two experiments, one
where the particles have a small radius (few collisions) and another where they

3We assume (Chang, 2015) that the environment is frictionless, and that the particles
are not subject to other forces such as gravity. We use the Python code from https:
//github.com/labay11/ideal-gas-simulation.

65

https://github.com/labay11/ideal-gas-simulation
https://github.com/labay11/ideal-gas-simulation

have a larger radius (many collisions). The performance of DR-k is comparable
to the ones of KES and SES in the simpler setting. However, in the presence of
a high number of collisions, our models become more informative to retrieve
the global temperature from local trajectories, whereas the performance of
DR-k drops with increasing the system complexity. With a total number of
MN = 1 000 time-series of dimension d = 7 (after path augmentation discussed
in Sec. 4.2.5 and in Appendix B.2), KES runs in 50 seconds, three times faster
than SES on a 128 cores CPU.

4.5.3 Parameter estimation in a pricing model

Financial practitioners often model asset prices via an SDE of the form dPt =

µtdt + σtdWt, where µt is a drift term, Wt is a 1-d Brownian motion (BM)
and σt is the volatility process (Arribas et al., 2020). This setting is often
too simple to match the volatility observed in the market, especially since the
advent of electronic trading (Gatheral et al., 2018). Instead, we model the
(rough) volatility process as σt = exp{Pt} where dPt = −a(Pt −m)dt+ νdWH

t

is a fractional Ornstein-Uhlenbeck (fOU) process, with a, ν,m ≥ 0. The fOU is
driven by a fractional Brownian Motion (fBM)WH

t of Hurst exponent H ∈ (0, 1),
governing the regularity of the trajectories (Decreusefond et al., 1999).4 In line
with the findings in Gatheral et al. (2018) we choose H = 0.2 and tackle the task
of estimating the mean-reversion parameter a from simulated sample-paths of
σt. We consider 50 mean-reversion values {ai}50

i=1 chosen uniformly at random
from [10−6, 1]. Each ai is regressed on a collection of N = 20, 50, 100 (time-
augmented) trajectories {σ̂i,pt }Np=1 of length 200. As shown in Table 4.2, KES
and SES systematically yield the best MSE among all the models compared.
Furthermore, the performance of KES and SES progressively improves with
the number of time-series in each set, according to the remark at the end of
Sec. 4.3, while this pattern is not observed for DR-RBF, DR-Matern32, and
DeepSets. Both KES and SES give comparable results. However, while the
running time of SES remains stable (≈ 1 min) when M × N increases from
1 000 to 5 000, the running time of KES increases from ≈ 1 min to 15 min (on
128 cores).

4.5.4 Crop yield prediction from GLDAS data

Finally, we evaluate our methods on a crop yield prediction task. The challenge
consists in predicting the yield of wheat crops in a region from longitudinal
measurements of climatic variables recorded at different locations in the region.

4We note that sample-paths of fBM are not in C ([0, T],R) but we can assume that
the interpolations obtained from market high-frequency data provide a sufficiently refined
approximation of the underlying process.

66

Table 4.2: Predictive MSE (standard deviation) on the rough volatility dataset.
N is the number of rough volatility trajectories and (M,d, `) = (50, 2, 200).

Model Predictive MSE ×10−3 (standard deviation)

N=20 N=50 N=100

DeepSets 74.43 (47.57) 74.07 (49.15) 74.03 (47.12)
DR-RBF 52.25 (11.20) 58.71 (19.05) 44.30 (7.12)
DR-Matern32 48.62 (10.30) 54.91 (12.02) 32.99 (5.08)
DR-GA 3.17 (1.59) 2.45 (2.73) 0.70 (0.42)
KES 1.41 (0.40) 0.30 (0.07) 0.16 (0.03)
SES 1.49 (0.39) 0.33 (0.12) 0.21 (0.05)

We use the publicly available Eurostat dataset (available at http://ec.europa.
eu/eurostat/data/database) containing the total annual regional yield of
wheat crops in mainland France—divided in 22 administrative regions—from
2015 to 2017. The climatic measurements (temperature, soil humidity, and
precipitation) are extracted from the GLDAS database (Rodell et al., 2004),
are recorded every 6 hours at a spatial resolution of 0.25° × 0.25°, and their
number varies across regions. We further subsample at random 50% of the
measurements. As can be seen in Table 4.3, SES and KES are the two methods
that improve the most against the baseline which consists in predicting the
average yield on the train set.

Table 4.3: MSE and MAPE (mean absolute percentage error) on the Euro-
stat/GLDAS dataset

Model MSE (std) MAPE (std)

Baseline 2.38 (0.60) 23.31 (4.42)
DeepSets 2.67 (1.02) 22.88 (4.99)
DR-RBF 0.82 (0.22) 13.18 (2.52)
DR-Matern32 0.82 (0.23) 13.18 (2.53)
DR-GA 0.72 (0.19) 12.55 (1.74)
KES 0.65 (0.18) 12.34 (2.32)
SES 0.62 (0.10) 10.98 (1.12)

4.6 Conclusion

In this chapter, we have developed two techniques for DR on sequential data.
In the first technique, we have introduced the pathwise expected signature

67

http://ec.europa.eu/eurostat/data/database
http://ec.europa.eu/eurostat/data/database

and have constructed a universal feature map for probability measures on
paths. In the second technique, we have defined a universal kernel based
on the expected signature. We have shown the robustness of the proposed
methodologies to irregularly sampled multivariate time-series, achieving state-
of-the-art performances on various DR problems for sequential data.

68

Chapter 5

Kernel Mean Embeddings for
Stochastic Processes

In the previous chapter, we have constructed a feature map and a kernel
for representing and learning on (discrete or empirical) probability measures
supported on some space of paths, representing laws of stochastic processes.
This allowed us to perform regression analysis on sets of multivariate time-series.

However, reducing a stochastic process to a path–valued random variable
ignores its filtration, that is, the flow of information carried by the process
through time. In this chapter, by conditioning the process on its filtration,
we introduce a family of higher order kernel mean embeddings (KMEs) that
generalizes the notion of KME and captures additional information related
to the filtration. We derive empirical estimators for the associated higher
order maximum mean discrepancies (MMDs) and prove their consistency. We
then construct a filtration-sensitive kernel two-sample test able to pick up
information that gets missed by the standard MMD test. In addition, leveraging
the higher order MMDs we construct a family of universal kernels on stochastic
processes that allows one to solve real-world calibration and optimal stopping
problems in quantitative finance (such as the pricing of American options) via
classical kernel-based regression methods. Finally, adapting existing tests for
conditional independence to the case of stochastic processes, we design a causal
discovery algorithm to recover the causal graph of structural dependencies
among interacting bodies solely from observations of their multidimensional
trajectories.

5.1 Introduction

The idea of embedding probability distributions into a reproducing kernel Hilbert
space (RKHS) via kernel mean embeddings (KMEs) has become ubiquitous in
many areas of statistics and data science such as hypothesis testing (Gretton

69

et al., 2012a; Zhang et al., 2012), non-linear regression (Hofmann et al., 2008;
Schölkopf et al., 2002), distribution regression (Szabó et al., 2016) etc. Despite
the strong progress in the study of KMEs, most of the examples considered
in the literature tend to focus on random variables supported on some finite
(possibly high) dimensional Euclidean spaces like Rd. The study of KMEs for
function-valued random variables has been largely ignored.

Stochastic processes are random variables with values in some space of paths.
However, reducing a stochastic process to a path-valued random variable ignores
its filtration, which can informally be thought of as the flow of information
carried by the process through time. A question that naturally emerges from
the study of many random, time-evolving systems like financial markets is how
does the information available up to present time affect the future evolution of
the system?

Formally, this question can be addressed by conditioning a process on its
filtration (Sec. 5.3.1 and Sec. 5.3.2). In this chapter, we introduce a family of
higher order KMEs that generalizes the notion of KME to capture additional,
filtration-related information (Sec. 5.3.3 and Sec. 5.3.5). In view of concrete
applications, we derive empirical estimators for the associated higher order
MMDs and use one of them to construct a filtration-sensitive kernel two-sample
test (Sec. 5.3.4) demonstrating with simulated data its ability to capture
information that otherwise gets missed by the standard MMD test (Sec. 5.4.1).
Furthermore, we construct a family of universal kernels on stochastic processes
(Sec. 5.3.6) that allows us to solve challenging, real-world optimization problems
in quantitative finance via classical kernel-based regression methods (Sec. 5.4.2).
Finally, we adapt existing tests for conditional independence to the case of
stochastic processes in order to design a causal-discovery algorithm able to
recover the causal graph of structural dependencies among interacting bodies
solely from observations of their multidimensional trajectories (Sec. 5.4.3).

5.1.1 Related work

The notion of conditioning is a powerful probabilistic tool allowing one to
understand possibly complex, non-linear interactions between random variables.
As their unconditional counterparts, conditional distributions can also be em-
bedded into RKHSs (Song et al., 2013). Recently, conditional KMEs have
received increased attention, especially in the context of graphical models (Song
et al., 2010), state-space models (Fukumizu et al., 2013), dynamical systems
(Song et al., 2009), causal inference (Mitrovic et al., 2018; Sun et al., 2007;
Tillman et al., 2009), two-sample and conditional independence hypothesis
testing (Fukumizu et al., 2007; Park and Muandet, 2020; Sun et al., 2007).
Embeddings of distributions via KMEs have also shown their success in the

70

t1 t2 t3 T

time

t1

t2

t3
T

sample path from X filtration FXt sample from µ
(1)
X|FXt

µ
(1)
X|FXt1

µ
(1)
X|FXt2

µ
(1)
X|FXt3 µ

(1)
X|FXT

X

µ
(1)
X|FX

V

H(V)

Figure 5.1: Schematic overview of the construction in (Sec. 5.3.2) of the 1st

order predictive KME µ
(1)
X|FX . Here X is a stochastic process with sample paths

taking their values in V . The red contours indicate the portion of its filtration
FX upon which the conditioning is applied, i.e. the available information about
X from start up to time t. As explained in Sec. 5.3.2, the 1st order predictive
KME µ

(1)
X|FX is a path whose value at time t is a H(V)-valued random variable

representing the law of X conditioned on its filtration FXt . Equivalently µ(1)
X|FX

is a stochastic process with sample paths taking their values in H(V).

context of distribution regression (DR), which is the task of learning a function
mapping a collection of samples from a probability distribution to scalar targets
(Law et al., 2018b; Muandet et al., 2012; Smola et al., 2007). In Chapter 4,
we developed a framework for DR that addresses the setting in which inputs
are sample paths from an underlying stochastic process. We used the signa-
ture transform (Bonnier et al., 2019; Lyons, 2014) and the signature kernel
(Cass et al., 2020; Király and Oberhauser, 2019), two well-established tools in
stochastic analysis.

When it comes to stochastic processes, it was first shown in Aldous (1981)
that weak convergence of random variables does not always account for the
information contained in the filtration, as highlighted by means of numerous
numerical examples in Backhoff-Veraguas et al. (2021); Pflug and Pichler
(2012). This limitation is addressed in Aldous (1981); Hoover and Keisler (1984)
through the construction of a sequence of so–called adapted topologies1 (τn)n≥1

that become progressively finer2 as n increases (with τ1 coinciding with the
weak topology). In particular, higher order adapted topologies are shown to

1We say that a sequence of random variables {Xn}n∈N converges to a random variable X
in the topology τ if and only if for every τ -open neighbourhood U of X there exists N ∈ N
such that Xn ∈ U as soon as n ≥ N .

2A topology τ1 is said to be finer than a topology τ2 if every τ2-open set is also τ1-open.

71

capture more filtration-related information than their weak counterpart. This
characteristic becomes relevant for example in some optimal stopping problems
such as the pricing of American options, where the pricing function can be
shown to be discontinuous with respect to the weak topology, but is continuous
with respect to the second order adapted topology3 (Backhoff-Veraguas et al.,
2019, 2020; Pflug and Pichler, 2012). Leveraging properties of the signature
transform, it has been shown that adapted topologies are intimately related
to a family of higher order MMDs (Bonnier et al., 2020). However, providing
empirical estimators for these discrepancies that can be deployed on real-world
tasks remains a challenge. In this chapter, we propose to address this challenge
by presenting an alternative construction to this higher order MMDs using the
formalism of kernels and KMEs. The results in Bonnier et al. (2020) serve as a
strong theoretical background for this chapter.

5.2 Preliminaries

We begin with a brief summary of tools from stochastic analysis needed to
define higher order KMEs. Let X (Rd) = {x : [0, T] → Rd} be a compact set
of continuous, piecewise linear, Rd-valued paths defined over a common time
interval [0, T], obtained for example by linearly interpolating a multivariate
time-series. More generally we denote by X (V) = {x : [0, T]→ V } a compact
set of continuous, piecewise linear paths with values in a Hilbert space V with
a countable basis.

5.2.1 The signature transform and the signature kernel

The signature transform S : X (V)→ H(V) is a feature map which associates
to any path x ∈ X (V) a sequence of tensors in the Hilbert space H(V). The
signature kernel K : X (V)× X (V)→ R is a characteristic kernel defined for
any pair of paths x,y ∈ X (V) as the following inner product in H(V)

K(x,y) = 〈S(x), S(y)〉 . (5.1)

Theorem 5.2.1. (Cass et al., 2020, Thm. 2.5) For any x,y ∈ X (V) the
signature kernel satisfies the equation K(x,y) = u(T, T), where u : [0, T] ×
[0, T]→ R is the solution of the hyperbolic PDE

∂2u

∂s∂t
= 〈ẋ(s), ẏ(t)〉V u, (5.2)

with boundary conditions u(0, ·) = u(·, 0) = 1 and where ż(s) = dz(r)
dr

∣∣
r=s

.

3The second order adapted topology τ2 is equivalent to the adapted Wasserstein distance
(Backhoff-Veraguas et al., 2019).

72

Hence, evaluating K at a pair of paths (x,y) is equivalent to solving the
PDE in eq. (5.2); in this thesis we solve PDEs numerically via a finite difference
scheme (see Appendix C.2 for additional details). In what follows, we denote
by H(V) the RKHS associated to K.

5.2.2 Stochastic processes and filtrations

We take (Ω,F ,P) as the underlying probability space. A (discrete time)
stochastic process X is a random variable with values on X (V). We de-
note by PX = P ◦ X−1 the law of X. Assuming the integrability condition
EX [K(X,X)] <∞, the 1st order kernel mean embedding (KME) of X is defined
as4 the following point in H(V)

µ
(1)
X = EX [K(·, X)] =

∫

x∈X (V)
K(·,x)PX(dx).

Accordingly, given two stochastic processes X,Y , their 1st order maximum
mean discrepancy (MMD) is the standard MMD distance with kernel K given
by the following expression

D
(1)
K (X,Y) =

∥∥∥µ(1)
X − µ

(1)
Y

∥∥∥
H(V)

.

Because the signature kernel K is characteristic, it is a classical result (Chevyrev
and Oberhauser, 2018; Gretton et al., 2012a) that the 1st order MMD is a
sufficient statistics to distinguish between the laws of X and Y , in other words

D
(1)
K (X,Y) = 0 ⇐⇒ PX = PY . (5.3)

Despite the fact that stochastic processes are path-valued random variables,
they encode a much richer structure compared to standard Rd-valued random
variables, that goes well beyond their laws. This additional structure is described
mathematically by the concept of filtration of a process X, defined as the
following family of σ-algebras

FX = (FXt)t∈[0,T],

where for any t ∈ [0, T], FXt is the σ-algebra generated by the variables
{Xs}s∈[0,t]. Note that FX is totally ordered in the sense that FXs ⊂ FXt
for all s < t, which naturally explains why filtrations are good mathematical
descriptions to model the flow information carried by the process X.

In the next section, we will present our main findings and introduce a family
of higher order KMEs and corresponding higher order MMDs as generalizations

4The 1st order KME is the standard KME with the signature kernel K.

73

of the standard KME and MMD respectively. We will do so by conditioning
stochastic processes on elements of their filtrations.

5.3 Higher order kernel mean embeddings

We begin by describing how KMEs can be extended to conditional laws of
stochastic processes.

5.3.1 Conditional kernel mean embeddings for stochastic pro-
cesses

Let X,Y be two stochastic processes. For a given path x ∈ X (V), the 1st order
conditional kernel mean embeddings µ(1)

Y |X=x and µ(1)
Y |X are defined as follows

µ
(1)
Y |X=x = E[K(·, Y) |X = x] =

∫

y∈X (V)
K(·,y)PY |X=x(dy), (5.4)

µ
(1)
Y |X = E[K(·, Y) |X] =

∫

y∈X (V)
K(·,y)PY |X(dy). (5.5)

Note that whilst µ(1)
Y |X=x is a single point in H(V), the 1st order conditional

KME µ
(1)
Y |X describes a cloud of points on H(V). Each point in this cloud is

indexed by a path x ∈ X (V). Equivalently, µ(1)
Y |X constitutes a PX -measurable,

H(V)-valued random variable.
These embeddings make it possible to extend the applications of conditional

KMEs to the case where the random variables are (possibly multidimensional)
stochastic processes. In particular, one can directly obtain conditional inde-
pendence criteria for stochastic processes (see Appendix C.1.1), enabling to
deploy standard kernel-based causal learning algorithms Sun et al. (2007), as
we demonstrate in Sec. 5.4. Next we describe how in the case of stochastic
processes, conditioning on filtrations is an important mathematical operation
to model real-world time-evolving systems.

5.3.2 Conditioning stochastic processes on their filtrations

Financial markets are examples of complex dynamical systems that evolve under
the influence of randomness. An important objective for financial practitioners
is to determine how actionable information available up to present could affect
the future market trajectories. The task of conditioning on the past to describe
the future of a stochastic process X can be formulated mathematically by
conditioning X on its filtration FXt for any time t ∈ [0, T].

More precisely, consider the 1st order KME of the conditional law PX|FXt ,

74

which is defined as the following FXt-measurable, H(V)-valued random variable

µ
(1)
X|FXt

= E[K(·, X) |X0,t] =

∫

x∈X (V)
K(·,x)PX|FXt (dx), (5.6)

where X0,t denotes the stochastic process X restricted to the sub-interval
[0, t] ⊂ [0, T]. By varying the time index t, we can form the following ordered
collection of 1st order KMEs

µ
(1)
X|FX =

(
µ

(1)
X|FXt

)
t∈[0,T]

, (5.7)

that we term 1st order predictive KME of the process X. By construction,
µ

(1)
X|FX describes a path taking its values in the space of H(V)-valued random

variables, in other words it is itself a stochastic process 5 (see Fig. 5.1). Hence,
the law of µ(1)

X|FX can itself be embedded via KMEs into a "higher order RKHS"
(see next section), making the full procedure iterable, as we shall discuss next.

We note that for each time t, the random variable µ(1)
X|FXt

in eq. (5.6)
is the Bochner integral of K(·,x) with respect to the probability measure
PX|FXt . Since we assumed that V is a compact set, the path space X (V)

is also compact. Hence, the function x 7→ K(·,x) is continuous, the set
U = {K(·,x) : x ∈ X (V)} is compact as continuous image of a compact set,
and therefore its Bochner integral µ(1)

X|FXt
takes values in the closed convex hull

of U , which is again a compact subset in the RKHS H(V). Consequently the
path t 7→ µ

(1)
X|FXt

belongs to a compact subset of X (H(V)), which satisfies the
assumptions introduced in Sec. 5.2.

5.3.3 Second order kernel mean embedding and maximum
mean discrepancy

The 2nd order KME is the point in H(H(V)) defined as the KME of the 1st

order predictive KME

µ
(2)
X =

∫

x∈X (H(V))
K(·, x)P

µ
(1)
X|FX

(dx).

The 2nd order MMD of X,Y is the norm of the difference in H(H(V)) of their
2nd order KMEs, that is

D
(2)
K (X,Y) =

∥∥∥µ(2)
X − µ

(2)
Y

∥∥∥
H(H(V))

. (5.8)

The next theorem states that the 2nd order MMD of two stochastic processes
X,Y is a stronger discrepancy measure than the 1st order MMD.

5Because PX = PX|FX0
, all the information about the law of X is contained in just the

initial point of the trajectory traced by µ(1)

X|FX
(Fig. 5.1).

75

Theorem 5.3.1. Given two stochastic processes X,Y

D
(2)
K (X,Y) = 0 ⇐⇒ PX|FX = PY |FY . (5.9)

Furthermore
D

(2)
K (X,Y) = 0 =⇒ D

(1)
K (X,Y) = 0, (5.10)

but the converse is not generally true.

Proof. All proofs are given in Appendix C.4.

Next, we make use of Thm. 5.3.1 in the context of two-sample hypothesis
testing (Chevyrev and Oberhauser, 2018; Gretton et al., 2012a) for stochastic
processes. In Sec. 5.4 we will show by means of a numerical example that
the 2nd order MMD is able to capture filtration-related information otherwise
ignored by the 1st order MMD.

5.3.4 A filtration-sensitive kernel two-sample test

Suppose that we are given m realizations {xi}mi=1 from X and n realizations
{yi}ni=1 from Y . A classical two-sample test (Gretton et al., 2012a) for X,Y
tests a null-hypothesis

H0 : PX = PY against the alternative HA : PX 6= PY .

The probability of falsely rejecting the null is called the type I error (and
similarly the probability of falsely accepting the null is called the type II error).
If the type I error can be bounded from above by a constant α, then we say
that the test is of level α. In Chevyrev and Oberhauser (2018, Sec. 8) it is

shown that rejecting the null if
(
D̂

(1)
K (X,Y)

)2
> cα (for some cα that depends

on m,n and α) gives a test of level α, where D̂
(1)
K (X,Y) denotes the classical

unbiased estimator of the 1st order MMD (Gretton et al., 2012a). This choice of
threshold is conservative and can be improved by using data-dependent bounds
such as in permutation tests (we refer to the MMD testing literature for extra
details (Gretton et al., 2012a; Sejdinovic et al., 2013; Sriperumbudur et al.,
2010)).

However, as discussed in Sec. 5.3.3, comparing the laws PX ,PY via the
estimator above might be insufficient to capture filtration-related information
about X,Y . To overcome this limitation we propose instead to test the null-
hypothesis

H0 : PX|FX = PY |FY against the alternative HA : PX|FX 6= PY |FY . (5.11)

Using Thm. 5.3.1, one can immediately construct a filtration-sensitive kernel

76

two-sample test for eq. (5.11) provided one can build an empirical estimator of
the 2nd order MMD D

(2)
K (X,Y). In the rest of this section we explain how to

obtain such an estimator and ultimately show its consistency.
Assuming availability of m realizations {x̃i}mi=1 from the stochastic process

µ
(1)
X|FX and n realizations {ỹi}ni=1 from µ

(1)
Y |FY , an estimate of the squared 2nd

order MMD is given by

(
D̂

(2)
K (X,Y)

)2
=

1

m(m− 1)

m∑

i,j=1
i 6=j

K(x̃i, x̃j)−
2

mn

m,n∑

i,j=1

K(x̃i, ỹj)

+
1

n(n− 1)

n∑

i,j=1
i 6=j

K(ỹi, ỹj).

Computing this estimate boils down to evaluating the signature kernel K(x̃, ỹ)

on multiple realizations x̃ from µ
(1)
X|FX and ỹ from µ

(1)
Y |FY . By Thm. 5.2.1, the

signature kernel solves the following PDE

∂2u

∂s∂t
=

〈
x̃(s− δ)− x̃(s)

δ
,
ỹ(t− δ)− ỹ(t)

δ

〉

H(V)

u,

where the two derivatives in eq. (5.2) have been approximated by finite difference
with time increment δ. It remains to explain how to estimate, for any s, t ∈ [0, T],
the inner product

〈
x̃(s), ỹ(t)

〉
H(V)

from sample paths of X and Y . This can
be achieved using the formalism of cross-covariance operators (Muandet et al.,
2016) as thoroughly explained in Appendix C.1, which yields to the following
approximation

〈
x̃(s), ỹ(t)

〉
H(V)

≈ ksX(x)′(Ks
X +mλIm)−1KX,Y (Kt

Y +nλIn)−1ktY (y), (5.12)

where ksX(x) ∈ Rm and ktY (y) ∈ Rn are the vectors (here we use the notation
x|[0,s] to denote the restriction of the path x to the sub-interval [0, s] ⊂ [0, T])

[ksX]i = K
(
xi|[0,s],x|[0,s]

) [
ktY
]
i

= K
(
yi|[0,t],y|[0,t]

)
,

Ks
X ∈ Rm×m, KX,Y ∈ Rm×n, and Kt

Y ∈ Rn×n are the matrices defined
element-wise by

[Ks
X]i,j = K(xi|[0,s],xj |[0,s]) [KX,Y]i,j = K(xi,yj),

[Kt
Y]i,j = K(yi|[0,t],yj |[0,t]),

where Im (resp. In) is the m ×m (resp. n × n) identity matrix. The corres-
ponding algorithm and its complexity analysis are provided in Appendix C.2.
The next theorem ensures that the estimator D̂

(2)
K (X,Y) is consistent for the

77

2nd order MMD.

Theorem 5.3.2. D̂
(2)
K (X,Y) is a consistent estimator for the 2nd order MMD

∣∣∣D̂ (2)
K (X,Y)−D

(2)
K (X,Y)

∣∣∣ p→ 0 as m,n→∞,

with {Xi}mi=1 ∼ X, {Yi}ni=1 ∼ Y and where convergence is in probability.

We now iterate the procedure presented so far to define higher order KMEs
and MMDs.

5.3.5 Higher order kernel mean embeddings and maximum
mean discrepancies

One can iterate the procedure described in Sec. 5.3.3 and recursively define, for
any n ∈ N∗, the nth order KME of X as the following point in H(n)(V)

µ
(n)
X =

∫

x∈X (H(n−1)(V))
K(·,x)P

µ
(n−1)
X|FX

(dx), (5.13)

where µ(n−1)
X|FX is the (n− 1)st predictive KME of X and H(n)(V) is defined by

H(n)(V) = H(H(. . .H︸ ︷︷ ︸
n times

(V) . . .)),

and µ(0)
X|FX = X and H(0)(V) = V . The associated nth order MMD between

two processes X,Y is then defined as the norm of the difference in H(n)(V) of
the two nth order KMEs

D
(n)
K (X,Y) =

∥∥∥µ(n)
X − µ

(n)
Y

∥∥∥
H(n)(V)

. (5.14)

The following result generalizes Thm. 5.3.1 in that it shows that the nth order
MMD is a stronger (i.e. finer) discrepancy measure than all the kth order
MMDs of lower order 1 < k < n.

Theorem 5.3.3. Given two stochastic processes X,Y

D
(n)
K (X,Y) = 0 =⇒ D

(k)
K (X,Y) = 0 for any 1 < k < n, (5.15)

but the converse is not generally true.

Other than hypothesis testing, another important application relying on
the ability of distinguishing random variables is distribution regression (DR)
Szabó et al. (2016). In the next section we make use of the nth order MMD in
the setting of DR on path-valued random variables (presented in the previous
chapter) and propose a family of kernels on stochastic processes whose RKHSs

78

contains richer classes of functions than the RKHS associated to the universal
kernel proposed in the previous chapter.

We note that since V is a Polish space (i.e., a separable, complete metric
space) and the signature maps is continuous, in view of Christmann and
Steinwart (2008, Lemma 4.33), one can easily check that all RKHSs appearing
in this chapter are separable Hilbert spaces by an induction argument and
therefore all regular conditional distributions are well–defined.

5.3.6 Higher order distribution regression

As we have seen in Chapter 4, DR on stochastic processes describes the super-
vised learning problem where the input is a collection of sample paths and the
output is a vector of scalars. Denote by P(X (V)) the set of stochastic processes
with sample paths on X (V). The goal is to learn a function F : P(X (V))→ R
from a training set of input-output pairs {(Xi, yi)}ni=1 with Xi ∈ P(X (V)) and
yi ∈ R, by means of a classical two-step procedure (Law et al., 2018b; Muandet
et al., 2012; Smola et al., 2007).

Firstly, a stochastic process X ∈ P(X (V)) is embedded into its KME µ
(1)
X ∈

H(V) via the signature kernel K. Secondly, another function g : H(V)→ R is
learnt by solving the minimization arg ming∈HRBF

∑
i c(g(µ

(1)
Xi

), yi), where c is
a loss function, and HRBF is the RKHS associated to the classical Gaussian
kernel kRBF : H(V)×H(V)→ R. This procedure materialises into a kernel on
stochastic processes whose RKHS is shown to be dense in the space of functions
F : P(X (V))→ R that are continuous with respect to the weak topology.

However, a class of approximators that is universal with respect to some
topology is not guaranteed to well approximate functions that are discontinous
with respect to that topology (but potentially continuous with respect to a
finer topology). For example, financial practitioners are often interested in
calibrating financial models to market data or pricing financial instruments
from observations of market dynamics. These tasks can be formulated as
DR problems on stochastic processes (see experiments in Sec. 5.4.2), but the
resulting learnable functions are discontinuous with respect to the 1st order
MMD whilst being continuous with respect to the 2nd order MMD (Backhoff-
Veraguas et al., 2019). This motivates the need to extend the kernel-based DR
technique proposed in Chapter 4 to situations where the target functions are
not weakly continuous, which is what Thm. 5.3.4 addresses. Before stating
the result, we recall that a function f : R→ R is called globally analytic with
non-negative coefficients if it admits everywhere a Taylor expansion where all
the coefficients are strictly positive, i.e. for any x ∈ R we have f(x) =

∑∞
i=0 aix

i

with ai > 0.

Theorem 5.3.4. Let f : R→ R be a globally analytic function with non-negative

79

coefficients. Define the family of kernels K(n)
dr : P(X (V))× P(X (V))→ R as

follows
K

(n)
dr (X,Y) = f

(
D

(n)
K (X,Y)

)
, n ∈ N∗ (5.16)

Then the RKHS associated to K
(n)
dr is dense in the space of functions from

P(X (V)) to R which are continuous with respect to the kth order MMD for any
1 < k ≤ n.

In Sec. 5.4 we will take f(x) = exp(−x2/σ) with σ > 0. This result marks
the end of our analysis. Next we apply our theoretical results in the contexts
of two-sample testing, DR and causal inference.

5.4 Applications

Here we demonstrate the practical advantage of using 2nd order kernel mean
embeddings, and evaluate the conditional kernel mean embedding for stochastic
processes on a causal discovery task. Additional experimental details can be
found in Appendix C.3 and the code is available at https://github.com/

maudl3116/higherOrderKME.

5.4.1 Hypothesis testing on filtrations

We start by considering two processes Xn and X with transition probabilities
depicted in Fig. 5.2. Although the laws Pn and P get arbitrarily close for large
n, their filtrations are very different. Indeed, the two processes have different
information structures available before time t = 1: for any 0 < t ≤ 1, the
trajectory of Xn is deterministic, whilst the progression of X remains random
until t = 1. Being able to distinguish two such stochastic processes is crucial in

p = 0.5

p = 0.5

2
n

p = 1

p = 1

p = 1

p = 0.5

p = 0.5

Figure 5.2: Two stochastic processes Xn (left) and X (right).

quantitative finance: if Pn and P are the laws of two traded assets, Pn gives an
arbitrage opportunity. As shown in Fig. 5.3, the 2nd order MMD can distinguish
these two processes with similar laws (n = 5 ·105) but different filtrations, while
the 1st order MMD fails to do so. We refer the interested reader to Bonnier
et al. (2020, Appendix A) for examples of sequences of processes Xn,Yn such
that the 1st and 2nd order MMDs converge to zero, but not the 3rd order MMD.

80

https://github.com/maudl3116/higherOrderKME
https://github.com/maudl3116/higherOrderKME

0.00 0.02 0.04

squared D
(1)
K (X, Y)

0

10

20

30

40

C
ou

nt

H0 HA

0.0 0.1 0.2 0.3 0.4

squared D
(2)
K (X, Y)

0

20

40

C
ou

nt

H0 HA

Figure 5.3: Left: Empirical distribution of the 1st order MMD. Under H0 the
two measures are both equal to P and we use 500 samples from each. Under
HA with P and Pn where n = 5 · 105, and we use 500 samples. Right: Same for
the 2nd order MMD. Histograms are obtained by computing 500 independent
instances of the MMD.

5.4.2 Applications of higher order distribution regression to
quantitative finance

In this section we use kernel Ridge regression and support vector machine
(SVM) classification equipped with the kernel K(2)

dr from Thm. 5.3.4 to address
two real-world problems arising in quantitative finance, notably the calibration
of the rough Bergomi model (Bayer et al., 2016) and the approximation of
solutions of optimal stopping problems (Becker et al., 2019). We benchmark
our filtration-sensitive kernel K(2)

dr against a range of kernels, including K(1)
dr .

The rough Bergomi model is a rough volatility model (Gatheral et al., 2018)
satisfying the following stochastic dynamics

dSt =
√
VtStdW

1
t , Vt =

∫ t

0
κ(s, t)dZs, Zt = ρW 1

t +
√

1− ρ2W 2
t , (5.17)

whereW 1,W 2 are two independent Brownian motions and κ(s, t) = (t−s)h−0.5

where here we take h = 0.2. The model in eq. (5.17) is non-Markovian in the
sense that the conditional law of S | FSt depends pathwise on the past history
of the process. Of particular importance is the correct retrieval of the sign of
the correlation parameter ρ (Gassiat et al., 2019). We consider 50 parameter
values {ρi}50

i=1 chosen uniformly at random from [−1, 1]. Each ρi is regressed on
a collection of m = 200 sample trajectories. We use an SVM classifier endowed
with different kernels (Table 5.1).

One of the most studied optimal stopping problems is the pricing of an
American option with a non-negative payoff function g : Rd → R. Stock
prices are assumed to follow a d-dimensional stochastic process X. The price
of the corresponding option is the solution of the optimal stopping problem
V (x) = supτ E[g(Xτ) |X0 = x], where the supremum is taken over stopping
times τ . Despite significant advances, pricing American options remains one
of the most computationally challenging problems in financial optimization,

81

Table 5.1: Quantitative finance examples. Average performances with standard
errors in parenthesis.

Kernel Rough Bergomi model
calibration (Acc.)

Optimally stopping fBms
(MSE ×10−3)

RBF 87% (5%) 1.07 (0.75)
Matérn 87% (3%) 2.75 (3.05)
K

(1)
dr 91% (3%) 0.90 (0.34)

K
(2)
dr 93% (3%) 0.52 (0.07)

in particular when the underlying process X is non-Markovian. This is the
setting we consider here, by modelling X as fractional Brownian motion (fBm)
(Duncan et al., 2000) all starting at X0 = 0, with different Hurst exponents
h ∈ (0, 1). We follow the setup of Becker et al. (2019); Herrera et al. (2021)
and use g = id. We note that the resulting optimal stopping problem falls
outside the standard American option pricing problem setting, because g(Xτ)

is allowed to be negative and fBm is not typically used as a stock price model
in quantititative finance. It is nevertheless considered a respected challenging
example for optimal stopping algorithms (Becker et al., 2019; Herrera et al.,
2021). True target optimal values ("prices") are obtained via expensive Monte
Carlo simulations (Longstaff and Schwartz, 2001). We consider 25 values of
{hi}25

i=1 sampled uniformly at random in [0.2, 0.8] and use 500 samples from
each fBm. As shown in Table 5.1 our kernel K(2)

dr yields the best results on
both tasks (rough Bergomi model calibration and optimally stopping fBms),
systematically outperforming other classical kernels as well as the kernel K(1)

dr

introduced in Chapter 4.

5.4.3 Inferring causal graph for interacting bodies

Finally, we consider the task of recovering the causal relationships between
interacting bodies solely from observations of their multidimensional trajectories.
We employ the multi-body interaction simulator from Li et al. (2020a) in order
to simulate an environment where N balls are connected by invisible physical
relations (e.g. a spring) and describe 2D trajectories (see Fig. 5.4a with N = 3

and 2 springs). At the beginning of a simulated episode, the initial positions of
the balls are generated at random, and during the episode, the balls are subject
to forces with random intensity and direction. By simulating m episodes we end
up with m sample trajectories for each of the N balls. We use the kernel PC
(kPC) algorithm (Sun et al., 2007)—which relies on conditional independence
testing— with the signature kernel and evaluate its ability to recover whether

82

any two balls are connected or not. We vary m and N and report the results in
Figs. 5.4b and 5.4c. Each experiment is run 15 times, 30% of the runs are used
to choose the hyperparameters, and the reported results have been obtained on
the remaining runs. We note that for finite datasets conditional independence
testing is hard without additional assumptions, as discussed in Lundborg et al.
(2021); Shah and Peters (2020).

e1

e2

e1

e2

e1

e2

e1

e2

e1

e2

t

(a) 3 interacting balls de-
scribing trajectories in the
2D plane over time.

20 40 60 80 100

Number of samples

0.00

0.25

0.50

0.75

1.00

A
cc

u
ra

cy

(b) Accuracy on bin-
ary classification of edges
with a varying number of
sample episodes (5 balls)

5 6 7 8 9

Number of balls

0.00

0.25

0.50

0.75

1.00

A
cc

u
ra

cy

(c) Accuracy on binary
classification of edges with
a varying number of balls
(100 samples)

Figure 5.4: Inferring the graph structure of interacting bodies: results of the
kPC algorithm for multidimensional stochastic processes.

5.5 Conclusion

In this chapter, we have introduced a family of higher order KMEs by condi-
tioning a stochastic process on its filtration, generalizing the classical notion
of KME. We have derived an empirical estimator for the 2nd order MMD and
proved its consistency. Then, we have proposed a filtration-sensitive kernel
two-sample test and showed with simulations its ability to capture information
that gets missed by the standard MMD test. In addition, we have constructed
a family of universal kernels on stochastic processes that can be used to solve
real-world calibration and optimal stopping problems in quantitative finance
via kernel Ridge regression. Finally, we have designed a causal-discovery al-
gorithm using conditional independence tests to recover the causal graph of
structural dependencies among interacting bodies solely from observations of
their multidimensional trajectories.

83

Chapter 6

Resolution-Invariant Learning of
Spatio-temporal Dynamics

So far, we have developed methodologies to perform regression (or classification)
analysis on multivariate time-series (Chapter 3) and on sets of multivariate time-
series (Chapters 4 and 5). Although in theory, the signature (used in Chapter 3)
can be defined on spaces of paths valued in an infinite-dimensional state space,
their application to spatio-temporal data remains challenging. Furthermore,
the methodologies developed in Chapters 4 and 5 are best suited when the
input set can be modelled as i.i.d. samples from a stochastic process. This
assumption breaks down for spatio-temporal data which are sets of multivariate
streams, but which exhibit spatial dependencies.

In this chapter, we propose to resolve this issue by leveraging Stochastic
partial differential equations (SPDEs), which are the mathematical tool of choice
for modelling spatio-temporal dynamics under the influence of randomness.
Based on the notion of a mild solution of an SPDE, we introduce a neural
architecture to learn the solution operators of PDEs with (possibly stochastic)
forcing from partially observed data. The proposed Neural SPDE model
provides an extension to two popular classes of physics-inspired architectures.
On the one hand, it extends Neural CDEs and variants—continuous-time
analogues of RNNs—in that it is capable of processing incoming sequential
information arriving irregularly in time and observed at arbitrary spatial
resolutions. On the other hand, it extends Neural Operators—generalizations
of neural networks to model mappings between spaces of functions—in that
it can parameterize solution operators of SPDEs depending simultaneously
on the initial condition and a realization of the driving noise. By performing
operations in the spectral domain, we show how a Neural SPDE can be evaluated
in two ways, either by calling an ODE solver (emulating a spectral Galerkin
scheme), or by solving a fixed point problem. Experiments on various semilinear
SPDEs, including the stochastic Navier-Stokes equations, demonstrate how the

84

Neural SPDE model is capable of learning complex spatio-temporal dynamics
in a resolution-invariant way, with better accuracy and lighter training data
requirements compared to alternative models, and up to 3 orders of magnitude
faster than traditional solvers.

In this chapter, x denotes a spatial variable. The functions considered in
this chapter depend on t and x. To unclutter the notations, we will drop the
dependence on space and write u(t) for u(t,x) where no confusion is caused by
doing so.

6.1 Introduction

Motivated by the fact that many classical deep learning architectures can
be interpreted as approximations to differential equations, there has been an
increased interest in combining neural networks and differential equations into
a hybrid approach, dubbed neural differential equations (Chen et al., 2018).
When the data are sequential, recurrent neural networks (RNNs) and variants
(GRU, LSTM etc.) are a popular modelling choice that can be regarded as a
discrete approximation to some function of an underlying continuous signal.

Neural controlled differential equations (Neural CDEs) (Kidger et al., 2020)
and variants (Neural SDEs (Kidger et al., 2021), Neural RDEs (Morrill et al.,
2021)) can be viewed as continuous-time analogues of RNNs. In essence, Neural
CDEs embed a neural network fθ as the vector field of a differential equation
dz(t) = fθ(z(t))dx(t) driven by a control path x(t), and the parameters θ
are then learned from the data to optimize a given loss function. The term
“dx(t)” means that the solution z(t) of the equation (e.g. attention required
from a doctor) can change in response to a change of an external stream of
information ξ(t) (e.g. heart rate of a patient). Despite offering many advantages
for modelling temporal dynamics, Neural CDEs are not designed to process
signals varying both in space and in time such as videos or physical fields arising
from PDE-dynamics.

Neural Operators (Kovachki et al., 2021) are generalizations of neural
networks capable of modelling mappings between spaces of functions, therefore
offering an attractive option for learning with spatio-temporal data. However,
Neural Operators architectures generally fail to incorporate randomness into
the systems they describe. In many cases the presence of noise leads to new
phenomena, both at the mathematical and the physical level, often describing
more complex and realistic dynamics than the ones arising from deterministic
PDEs.

SPDEs are the mathematical tool of choice to model many physical, bio-
logical, and economic systems subject to the influence of randomness, be it
intrinsic (e.g. quantifying uncertainty) or extrinsic (e.g. modelling environ-

85

mental random perturbations). Examples include the Kardar–Parisi–Zhang
(KPZ) equations for random interface growth modelling, for instance, the
propagation of a forest fire from a burnt region to an unburnt region (Hairer,
2013), the Ginzburg-Landau equation describing phase transitions of ferro-
magnets and superconductors (Temam, 2012), or the stochastic Navier-Stokes
equations modelling the dynamics of a turbulent fluid flow under the presence
of local random fluctuations (Mikulevicius and Rozovskii, 2004). For an intro-
duction to SPDEs, see Hairer (2009); a comprehensive textbook is Holden et al.
(1996).

Similarly to a stochastic differential equation (SDE), the solution u to an
SPDE is characterized by an initial condition u0 and a driving noise ξ. However,
in the case of SDEs (u0, ξ(t),u(t)) are vectors, while in the case of SPDEs they
are functions. Thus, Neural CDEs are not adapted to learn solution operators
of SPDEs from data, due to the non-linear interactions between the various
space-time points. While Neural Operators can model operators mapping the
initial condition u0 or a realization of the forcing noise ξ to the solution u
of a PDE, they do not offer a natural mechanism to handle SPDEs solution
operators, where the solution u depends simultaneously on u0 and ξ.

In this chapter, we introduce the neural stochastic partial differential equa-
tion (Neural SPDE) model capable of learning solution operators of SPDEs of
the form (u0, ξ) 7→ u from partially observed data. A Neural SPDE can be
used to process (continuously in time) incoming sequential information arriving
at an arbitrary spatial resolution. We propose two possible ways to evaluate a
Neural SPDE, either by calling an ODE solver (emulating a spectral Galerkin
scheme) or by solving a fixed-point problem. We perform extensive experi-
ments on various semilinear SPDEs, including the stochastic Ginzburg-Landau,
Korteweg-De Vries and Navier-Stokes equations. The outcomes illustrate several
aspects of our model: 1) it is space and time resolution-invariant, meaning that
even if trained on a lower resolution, it can be directly evaluated on a higher
resolution without sacrificing performance; 2) it requires a lower amount of
training data compared to alternative models; 3) for both choices of evaluation,
it inherits memory-efficient backpropagation capabilities provided by existing
adjoint-based and implicit-differentiation-based methods; 4) its evaluation is
up to 3 orders of magnitude faster than traditional numerical solvers, so that
once trained, the model can be used as a fast surrogate solver.

In Sec. 6.2 we provide a brief introduction to SPDEs which will help us to
define our Neural SPDE model in Sec. 6.3. In Sec. 6.4 we present related work
on Neural CDEs and Neural Operators, followed by numerical experiments in
Sec. 6.5. In Appendix D.1, we provide an overview of the computational aspects
of SPDEs used to design the model and solve SPDEs numerically. Additional
experiments can be found in Appendix D.2.

86

6.2 Background on SPDEs

Let T > 0 and d, du, dξ ∈ N∗. Let D ⊂ Rd be a bounded domain. Let
Hu = {f : D → Rdu} and Hξ = {f : D → Rdξ} be two Hilbert spaces of
functions on D with values in Rdu and Rdξ , respectively.

We consider a large class of SPDEs of the type

du = (Lu+ F (u)) dt+G(u)dW(t), u(0) = u0 ∈ Hu, (6.1)

where W(t) is an infinite-dimensional Q-Wiener process (Lord et al., 2014,
Definition 10.6) or a cylindrical Wiener process (Hairer, 2009, Definition 3.54),
F : Hu → Hu and G : Hu → L(Hξ,Hu) are two continuous operators1, and
where L is a linear differential operator generating a semigroup etL : Hu → Hu
(Hairer, 2009, Section 4).

A function u : [0, T]→ Hu is defined to be a mild solution of the SPDE in
eq. (6.1) if for any t ∈ [0, T] it satisfies

u(t) = etLu0 +

∫ t

0
e(t−s)LF (u(s))ds+

∫ t

0
e(t−s)LG(u(s))dW(s),

where the second integral is a stochastic integral (Hairer, 2009, Definition 3.57).
An SPDE can be informally thought of as an SDE with solutions evolving
in Hu and driven by an infinite-dimensional Brownian motion W. Assuming
global Lipschitz regularity on F and G, a mild solution u to eq. (6.1) exists
and is unique (Hairer, 2009, Theorem 6.4) at least for short times.

In view of machine learning applications, one should think of W as a
continuous space-time embedding of an underlying spatio-temporal data stream.
In this chapter we are only going to consider W to be a discretized sample path
of a Wiener process, but we emphasize that the Neural SPDE model extends,
in principle, beyond the scope of SPDEs and could be used, for example, to
process videos in computer vision applications.

We follow Friz and Hairer (2020) and consider the regularization ξε := δε ∗ξ
of white noise ξ with a compactly supported smooth mollifier δε. It is a classical
result in rough path theory (Wong-Zakai) that the sequence of random ODEs
driven by the mollification of Brownian motion converges in probability to a
limiting process that does not depend on the choice of mollifier and agrees
with the Stratonovich solution of the SDE. Furthermore, the solution map is
continuous in an appropriate rough path topology. This result nicely extends
to the setting of SPDEs driven by a finite-dimensional noise (Friz and Hairer,
2020, Theorem 1.3): if uε denotes the random PDE solutions driven by ξεdt
(instead of ◦dWt), then uε converges in probability to a limiting process given

1L(Hξ,Hu) denotes the space of bounded linear operators from Hξ to Hu.

87

by Stratonovich SPDE solution.
In our setting though, we consider dynamics driven by an infinite-dimensional

noise. In this case, there is no Stratonovich formulation for such class of equa-
tions, since the corresponding Itô-Stratonovich correction would be infinite.
Therefore, the stochastic integral (dWt) is to be interpreted in the Itô sense.
Hairer and Pardoux (2015, Theorem 1.1) show that for the case of the heat op-
erator and under appropriate renormalization and drift correction, the random
PDE solution uε converges in probability to the Itô solution of the SPDE. Fur-
thermore, the solution map is continuous in an appropriate regularity structures
topology.

Hence, computationally it is reasonable to assume some degree of smoothness
of W.2 As done in Kidger et al. (2020) for Neural CDEs, we can rewrite the
mild solution of the mollified version of eq. (6.1) as the following stochastically
forced PDE

u(t) = etLu0 +

∫ t

0
e(t−s)LHξ(u(s))ds (6.2)

where Hξ(u(t)) := F (u(t)) +G(u(t))ξ(t) for ξ = Ẇ. We also assume enough
spatial regularity and take Hu = L2(D,Rdu) and Hξ = L2(D,Rdξ). We will
refer to ξ as white noise if is W a cylindrical Wiener process (see Appendix D.1.2
for further details on Wiener processes).

In the next section we introduce the Neural SPDE model.

6.3 Neural SPDEs

For a large class of differential operators L, the action of the semigroup etL

can be written as an integral against a kernel function K(t) : D ×D → Rdu×du

such that
(etLh)(x) =

∫

D
K(t,x,y)h(y)µ(dy), (6.3)

for any h ∈ Hu, any x ∈ D and t ∈ [0, T], and where µ is a Borel measure on D.
As in Kovachki et al. (2021), here we take µ to be the Lebesgue measure in Rd,
but other choices can be made, for example to incorporate prior information.
We assume that K is stationary in x so that eq. (6.2) can be rewritten in terms
of the spatial convolution ∗

u(t) = K(t) ∗ u0 +

∫ t

0
K(t− s) ∗Hξ(u(s))ds (6.4)

We propose two different ways of parameterizing the kernel K and evaluating
Equation (6.4); we will outline the details of both methods in Sections 6.3.2
and 6.3.3 below. For now, we will denote either parameterization by Kθ.

2Although, extending the result in (Hairer and Pardoux, 2015) to a generic differential
operators would require a similar rigorous proof, which is out of the scope of this thesis.

88

For a large class of SPDEs of the form of eq. (6.1), both F and G are local
operators acting on a function h ∈ Hu. In other words, the evaluations F (h)(x)

and G(h)(x) at any point x ∈ D only depend on the evaluation h(x) at x, and
not on the evaluation h(y) at some other point y ∈ D in the neighbourhood of
x. This motivates the following model.

6.3.1 The model

Let dh > du be an integer, Hh := L2(D,Rdh), and let

Lθ : Rdu → Rdh , Πθ : Rdh → Rdu ,

Fθ : Rdh → Rdh , Gθ : Rdh → Rdh×dξ ,

four feedforward neural networks. For any differentiable control ξ : [0, T]→ Hξ,
define the map Hθ,ξ : Hu → Hu

Hθ,ξ(h)(x) = Fθ(h(x)) +Gθ(h(x))ξ(t,x),

for any h ∈ Hu, any x ∈ D and t ∈ [0, T].
The neural stochastic partial differential equation (Neural SPDE) model is

defined as follows: z0(x) = Lθ(u0(x)),

z(t) = Kθ(t) ∗ z0 +

∫ t

0
Kθ(t− s) ∗Hθ,ξ(z(s))ds (6.5)

and u(t,x) = Πθ(z(t,x)), for any x ∈ D and any t ∈ [0, T]. A schematic view
of how Neural SPDEs can process spatio-temporal data is given in Fig. 6.1.
We note that globally Lipschitz conditions can be imposed using, for example,
ReLU or tanh activation functions in the neural networks Fθ and Gθ.

Figure 6.1: Schematic view of a Neural SPDE. The model is formulated directly
at the level of function spaces, which makes it possible to deploy the model on
different discretization meshes.

89

In the next two subsections, we propose two numerical methods to evaluate
the Neural SPDE model in eq. (6.5) which produce two different parameterisa-
tions for the kernel K in eq. (6.3).

6.3.2 Kernel parameterization 1: ODE solver approach

Using the convolution theorem we can rewrite the integral in eq. (6.5) as follows

z(t) = F−1

(
F(K(t))F(z0) +

∫ t

0
F(K(t− s))F(Hθ,ξ(z(s))) ds

)
, (6.6)

where F ,F−1 are the d-dimensional Fourier transform (FT) and its inverse
(see Def. 20). Assuming that L is a polynomial differential operator3 of degree
N of the form

L =
N∑

n=0

∑

n1,...,nd
n1+...+nd=n

Cn1,...,nd

∂n

∂xn1
1 ...∂xndd

,

where Cn1,...,nd ∈ Cdh×dh are complex matrices, then the FT of the kernel
associated to L satisfies

F(K(t)) (y) = etP (iy) ∈ Cdh×dh ,

for any y ∈ Cd, where e is the matrix exponential and P is the following
matrix-valued polynomial

P (y) =
N∑

n=0

∑

n1,...,nd
n1+...+nd=n

(2π)nyk11 ...y
kd
d Cn1,...,nd

This means that there exists a map A : Cd → Cdh×dh such that F(K(t)) (y) =

etA(y). Thus, eq. (6.6) becomes

z(t) = F−1
(
etAF(z0) +

∫ t

0
e(t−s)AF(Hθ,ξ(z(s))) ds

︸ ︷︷ ︸
:=v(t)

)
,

where v(t) : Cd → Cdh is the solution of the following ODE

dv

dt
(t) = Av(t) + F(Hθ,ξ(z(t)))

= Av(t) + F
(
Hθ,ξ(F−1(v(t)))

)
.

3This already contains a big class of SPDEs studied in physics. One could consider
Cn1,...,nd to be a function of space for a more general setting.

90

Hence, z(t) can be obtained by applying the inverse FT to the output of an ODE
solver on [0, t] with initial condition F(z0), vector field Ψθ,ξ := A+F◦Hθ,ξ◦F−1,

z(t) ≈ F−1(ODESolve(F(z0) ,Ψθ,ξ, [0, t])) .

This approach can naturally be seen as a “neural version” of the classical spectral
Galerkin solver for SPDEs described in Appendix D.1.3, with nonlinearities
F,G and differential operator L parameterized as outlined in this section.

We note that this numerical evaluation of the Neural SPDE model in eq. (6.5)
allows us to inherit memory efficient adjoint-based backpropagation capabilities
as in the evaluation of a Neural CDE. For further details on adjoint-based
backpropagation, we refer the reader to Chen et al. (2018).

6.3.3 Kernel parameterization 2: fixed point approach

We now propose a second option for parametrizing the kernel. To this aim, we
will make use of three different versions of the FT: the time-only FT F1 and
its inverse F−1

1 , the space-only FT Fd and its inverse F−1
d , and the space-time

FT Fd+1 and its inverse F−1
d+1 (see Def. 20). Denoting by ? the space-time

convolution, the integral in eq. (6.5) can be rewritten as

z(t) = K(t) ∗ z0 + (K ? 1s≥0Hθ,ξ(z)) (t),

where 1s≥0 is the indicator function restricting the temporal domain to the
positive real line. Using again the convolution theorem, we obtain the following

z(t) = F−1
d (Fd(K(t))Fd(z0)) + F−1

d+1(Fd+1 (K)Fd+1(1s≥0Hθ,ξ(z))) (t),

where all multiplications are matrix-vector multiplications.
Parameterizing Fd+1(K) (y) directly in Fourier space as a complex tensor

B, eq. (6.5) becomes

z(t) = F−1
d

(
F−1

1 (B)(t)Fd(z0)
)

+ F−1
d+1(BFd+1(1s≥0Hθ,ξ(z))) (t),

where we used the fact that Fd(K(t)) = F−1
1 (Fd+1(K)) (t). Hence, the solution

z can be obtained by solving the fixed point problem z = Φθ,ξ(z), where

Φθ,ξ(z)(t) := F−1
d

(
F−1

1 (B)(t)Fd(z0)
)

+ F−1
d+1(BFd+1(1s≥0Hθ,ξ(z))) (t).

This can be solved numerically by Picard’s iteration:

z ≈ FixedPointSolve(z0,Φθ,ξ).

Analogously to the adjoint-based backpropagation for the ODE solver

91

approach mentioned in Sec. 6.3.2, there is a mechanism that leverages the
implicit function theorem to backpropagate through the operations of a fixed
point solver in a memory-efficient way. We refer the reader to Bai et al. (2019)
for further details.

6.3.4 Space-time resolution-invariance

Let D = {x1, ...,xm} ⊂ D be an m-points discretization of the spatial domain
D, and let T = {t0, ..., tn} ⊂ [0, T] be an (n + 1)-points discretization of the
time interval [0, T] with t0 < ... < tn. As depicted in Fig. 6.1, the input data
corresponds to an irregularly sampled sequence of partially-observed spatial
observations on the space-time grid D×T . The data are then interpolated to a
continuous spatio-temporal signal ξ (and initial condition u0). By construction,
the Neural SPDE model operates on the tuple of functions (u0, ξ) to produce a
spatio-temporal response u, also continuous in space and time; the function u
can then be evaluated at an arbitrary space-time resolution (possibly different
from D×T) to produce the output data. Therefore, even if trained on a coarser
resolution, a Neural SPDE can be directly evaluated on a finer resolution. In
Sec. 6.5 we will empirically demonstrate this zero-shot super-resolution property
of the Neural SPDE model. We note that the FTs are numerically approximated
using the discrete Fourier transform (DFT) and selecting a maximum number
of frequency modes 4 (see Appendix D.1.1 for details).

Next, we provide a short overview of Neural CDEs and variants, and Neural
Operators, both used as main benchmarks in the experimental section.

6.4 Related work

6.4.1 Neural CDEs, SDEs, RDEs

A neural controlled differential equation (Neural CDE), as popularized by
(Kidger et al., 2020), is a parametric model that takes as input a time-series
interpolated into a continuous path x : [0, T] → Rdξ of bounded variation.
The architecture of the model consists of a matrix-valued feedforward neural
network fθ : Rdh → Rdh×dξ (satisfying some minimal Lipschitz regularity)
parameterizing the vector field of the following dynamics

z0 = `θ(u0), z(t) = z0 +

∫ t

0
fθ(z(s))dx(s), u(t) = πθ(z(t)),

4The DFT approximates the Fourier series expansion truncated at a maximum number of
modes. This allows to specify the shape of the two complex tensors A (k1max × . . .× kdmax ×
dh× dh) in Sec. 6.3.2 and B (k1max× . . .× kd+1

max× dh× dh) in Sec. 6.3.3. The kimax are treated
as hyperparameters of the model.

92

where `θ : Rdu → Rdh and πθ : Rdh → Rdu are feedforward neural networks.
The output u(t) is then fed to a loss function (mean squared, cross-entropy, etc.)
and trained via stochastic gradient descent in the usual way. Depending on the
regularity assumptions of the control x(t) =

∫ t
0 ξ(s)ds, the above integral can

be interpreted as a Riemann–Stieltjes, a stochastic, or even a rough integral.
In the original version of Neural CDEs (Kidger et al., 2020), x is assumed

differentiable and obtained via natural cubic splines interpolation of the original
time-series; therefore the term “dx(s)” can be interpreted as “ẋ(s)ds” and the
integral can be evaluated numerically via a call to an ODE solver of choice
(Euler, Runge-Kutta, adaptive schemes...).

Neural stochastic differential equations (Neural SDEs) are Neural CDEs
where the control ξ is a sample path from a Rdξ -dimensional Brownian motion;
Neural SDEs can be used as generative models (trained as VAEs or GANs) for
time-series Kidger et al. (2021). In principle, Neural SPDEs could be used in an
analogous way as the generator of a generative model for spatio-temporal data,
provided one can construct a sensible notion of discrepancy on the relevant
space of distributions for the discriminator.

Neural rough differential equations (Neural RDEs) (Morrill et al., 2021)
generalize Neural CDEs in that they allow us to relax the regularity assumption
on x and consider a larger class of controls. In practice, Neural RDEs are
particularly well suited for long time-series. This is due to the fact that model
can be evaluated via a numerical scheme from stochastic analysis (called the
log-ODE method) over intervals much larger than what would be expected given
the sampling rate or length of the time-series. However, the space complexity
of the numerical solver increases exponentially in the number of channels, thus
model complexity becomes intractable for high-dimensional time-series.

6.4.2 Neural Operators

Neural Operators (Kovachki et al., 2021; Li et al., 2020b,c) are generalizations
of neural networks that offer a way to model mappings between function spaces.
Contrary to Neural CDEs, Neural Operators can be used to model mappings of
the form u0 7→ u, where u0 : D → Rdu is the initial condition and u : D → Rdu

is the solution of an underlying PDE. Contrary to prior work attempting to
merge PDEs and deep learning techniques, Neural Operators do not require
knowledge of the exact form of the underlying PDE, they are resolution-invariant
and they achieve superior performance compared to previous physics-inspired
deep learning models.

Given an initial condition u0, a Neural Operator with M layers is defined
as follows

z0 = Lθ(u0), zk = Nk
θ (zk−1), u = Πθ(z

M),

93

for k = 1, ...,M , and with feedforward neural networks Lθ : Rdu → Rdh and
Πθ : Rdh → Rdu . Each layer Nk

θ is a parametric operator defined for any
z : D → Rdh as

Nk
θ (z) := σ

(
Akθz + bkθ +

∫

D
Kkθ (·,y)z(y)dy

)
(6.7)

where Akθ ∈ Rdh×dh , bkθ ∈ Rdh , Kkθ : D ×D → Rdh×dh is a matrix-valued kernel
and σ is an activation function.

In the case of evolution-type PDEs, the solution u : [0, T]×D → Rdu also
depends on time. There are two ways of dealing with such time-dependent
problems using Neural Operators. One can either consider D̃ = [0, T]×D as
the new input domain or use an auto-regressive structure in time to model the
mapping z(ti−1, ·)→ z(ti, ·) according to eq. (6.7). This allows the use of Neural
Operators for learning mappings of the form ξ 7→ u, where ξ : [0, T]×D → Rdξ

is a forcing term of the PDE. Among all kinds of Neural Operators, Fourier
Neural Operators (FNOs) Li et al. (2020d) stand out because of their easier
parametrization while maintaining similar learning performance. The Deep
Operator Network (DeepONet) (Lu et al., 2021) is another popular model for
learning operators on function spaces that we use as an additional benchmark.
For details on this model see Appendix D.2.1.

Despite their ability to model operators mapping either the initial condition
u0 or a time-dependent forcing ξ to the solution u of a PDE, Neural Operators
offer no natural mechanism to learn solution operators mapping the pair
(u0, ξ) to the solution u, which is crucial for solving SPDEs. Furthermore, as
highlighted in the conclusion of Li et al. (2020d), in order to learn complex
PDEs, Neural Operators require a large amount of training samples, which is
a hard constraint for real-world applications as data generation is generally a
very expensive procedure.

Neural CDE, Neural RDE, FNO, and DeepONet will be the main benchmark
models in our experimental section on semilinear SPDEs. Moreover, we propose
an additional hybrid baseline consisting of a Neural CDE where the drift is
modelled by an FNO and the diffusion by a feedforward neural network. The
motivation for using a FNO to represent the drift comes from the approximation
properties of FNOs as detailed in Kovachki et al. (2021, Theorem 4). We call
the resulting model Neural CDE-FNO.

6.5 Experiments

In this section, we conduct experiments on three semilinear SPDEs: the
stochastic Ginzburg-Landau equation in Sec. 6.5.1, the stochastic Korteweg-
De Vries equation in Sec. 6.5.2, and the stochastic Navier-Stokes equations

94

in Sec. 6.5.3. In particular, we consider three supervised operator learning
settings:

• u0 7→ u, assuming the noise ξ is not observed;

• ξ 7→ u, assuming the noise ξ is observed, but the initial condition u0 is
fixed across samples;

• (u0, ξ) 7→ u, assuming the noise ξ is observed and u0 changes across
samples.

We note that learning the operator u0 7→ u of an SPDE without observing
the driving noise ξ unavoidably yields poor results as only partial information
about the system is provided as input to the models. However, we find
informative to include the performances obtained in this setting, as this provides
a sanity check that emphasizes the importance of the noise in all the experiments.
Moreover, the ability to process the initial condition u0 on its own (in absence
of noise) means that Neural SPDEs can be also used to learn deterministic
PDEs.

For all the experiments, the loss function is the un-normalized pathwise L2

loss. The hyperparameters for all the models were selected by grid search (see
Appendix D.2.1 for further experimental details). The code for the experiments
is provided as a supplementary material. We note that although the assumption
of globally Lipschitz vector fields might be violated for the following SPDEs,
well-posedness (i.e. existence of global solutions) can be shown using equation-
specific arguments. Additional experiments may be found in Appendix D.2.

6.5.1 Stochastic Ginzburg-Landau equation

We start with a reaction diffusion equation in 1D called stochastic Ginzburg-
Landau equation and given by

∂tu−∆u = 3u− u3 + ξ,

u(t, 0) = u(t, 1),

u(0, x) = u0(x), (t, x) ∈ [0, T]× [0, 1]

This equation is also known as the Allen-Cahn equation in 1-dimension and is
used to model various physical phenomena such as superconductivity (Temam,
2012). Here, ξ denotes space-time white noise with sample paths generated using
classical sampling schemes for Wiener processes described in Appendix D.1.2.

We consider two data-regimes: a low data regime where the total number of
training observations is N = 1 000, and a large data regime where N = 10 000.
In both cases, the response paths are generated by solving the SPDE along
each sample path of the noise ξ using a finite difference scheme described in

95

Table 6.1: Ginzburg-Landau equation. We report the relative L2 error on
the test set. The symbol x indicates that the model is not applicable. In the first
task (u0 7→ u) only partial information (u0) is provided as input; the underlying
noise ξ is used to generate the dynamics, it varies across samples, but is not
provided as an input to the models. This explains why the performance of the
applicable models (DeepONet, FNO and NSPDE) is poorer than for all other
settings. In the second setting, (ξ 7→ u) the initial condition u0 is kept fixed.
In the third setting, the initial condition u0 and the noise ξ change and are
both provided as input.

Model N = 1 000 N = 10 000

u0 7→ u ξ 7→ u (u0, ξ) 7→ u u0 7→ u ξ 7→ u (u0, ξ) 7→ u

NCDE x 0.112 0.127 x 0.056 0.072
NRDE x 0.129 0.150 x 0.070 0.083
NCDE-FNO x 0.071 0.066 x 0.066 0.069
DeepONet 0.130 0.126 x 0.126 0.061 x
FNO 0.128 0.032 x 0.126 0.027 x

NSPDE (Ours) 0.128 0.009 0.012 0.126 0.006 0.006

Appendix D.1.3 using 128 evenly distanced points in space and time and step
size ∆t = 10−3. Following the same setup as in Chevyrev et al. (2021, equation
(3.6)), we solve the SPDE until T = 0.05 resulting in 50 time points and choose
as the initial condition u0(x) = x(1− x) + κη(x), where

η(x) = a0 +

k=10∑

k=−10

ak
1 + |k|2 sin (kπx) , with ak ∼ N (0, 1). (6.8)

We either take κ = 0 or κ = 0.1 to generate a dataset in which the initial data
is either fixed or varies across samples. We provide extra experiments on this
SPDE for larger time horizons T and multiplicative forcing in Appendix D.2.2.

We report the results in Table 6.1. The Neural SPDE model (NSPDE)
yields the lowest relative error for all tasks, reaching one order of magnitude
improvement on the main task (u0, ξ) 7→ u in the large data regime compared
to all the applicable benchmark models (NCDE, NRDE, NCDE-FNO). In all
settings, even with a limited amount of training samples (N = 1 000), the
NSPDE model is applicable and achieves ∼ 1% error rate, and marginally
improves to < 1% error when N = 10 000.

96

6.5.2 Stochastic Korteweg–De Vries equation

Next, we consider a higher order SPDEs, namely the stochastic Korteweg–De
Vries (KdV) equation given by

∂tu+ γ∂3
xu = 6u∂xu+ ξ,

u(t, 0) = u(t, 1),

u(0, x) = u0(x), (t, x) ∈ [0, T]× [0, 1] .

This equation is used to describe the propagation of nonlinear waves at the
surface of a fluid subject to random perturbations (another wave equation is
studied in Appendix D.2.3). We refer the reader to Wazwaz (2009) for an
overview of the KdV equation and its relation to solitary waves.

The stochastic forcing is given by ξ = Ẇ for W being a partial sum
approximation of a Q-Wiener process as per Example 10.8 in Lord et al. (2014)
with λj ∼ j−5+ε and φj(x) = sin (jπx) (see Equation (D.1) in Appendix D.1.2).
Taking small ε > 0 guarantees that Wt is twice differentiable in space for every
t ≥ 0. To generate the datasets, we solve the SPDE with γ = 0.1 until T = 0.5.
The stochastic forcing is simulated using 128 evenly distanced points in space
and a time step ∆tref = 10−3. We then approximate realizations of the solution
of the KdV equation using a time step ∆t = 10−2 to T = 0.5. Here, the
initial condition is given by u0(x) = sin(2πx) + κη(x), where η is defined in
Equation (6.8). Similarly to Sec. 6.5.1 we either take κ = 0 or κ = 1 to generate
datasets where the initial condition is either fixed or varies across samples.
Each dataset consists of N = 1 000 training observations.

As reported in Table 6.2, Neural SPDEs outperforms the second best model
FNO by a full order of magnitude in the task ξ 7→ u and the second best model
NCDE-FNO by almost two orders of magnitude in the task (u0, ξ) 7→ u. We
also perform the same tasks for a larger time horizons T = 1 and report the
results of a comparison against FNO in Table 6.3.

6.5.3 Stochastic Navier-Stokes equations

Finally, we consider the vorticity form of the Navier-Stokes equations in 2-
dimensions for an incompressible flow,

∂tw − ν∆w = −v · ∇w + f + σξ (6.9)

w(0,x) = w0(x), (t,x) ∈ [0, T]× [0, 1]2

where v is the unique divergence-free (∇ · v = 0) velocity field such that
w = ∇× v. The Navier-Stokes equations describe the motion of incompressible
fluid with viscosity ν subject to the external forces (Temam, 2012). The

97

Table 6.2: Stochastic KdV. We report the relative L2 error on the test set.
The symbol x indicates that the model is not applicable. N is fixed to 1 000
and T = 0.5.

Model u0 7→ u ξ 7→ u (u0, ξ) 7→ u

NCDE x 0.464 0.466
NRDE x 0.497 0.503
NCDE-FNO x 0.126 0.259
DeepONet 0.874 0.235 x
FNO 0.835 0.079 x

NSPDE (Ours) 0.832 0.004 0.008

Table 6.3: Stochastic KdV with longer time horizon T = 1.

Model u0 7→ u ξ 7→ u (u0, ξ) 7→ u

FNO 0.913 0.112 x

NSPDE (Ours) 0.904 0.009 0.012

deterministic forcing f is a function of space only and is defined as in Li et al.
(2020d). The stochastic forcing ξ is given by ξ = Ẇ for W being a Q-Wiener
process which is colored in space and rescaled by σ = 0.05 (see Appendix D.1.2).
The initial condition w0 is generated according to w0 ∼ N (0, 33/2(−∆+49I)−3)

with periodic boundary conditions. The viscosity parameter is set to ν = 10−4.
For each realization of the Q-Wiener process (sampled according to the

scheme in Appendix D.1.2) we solve Equation (6.9) with a pseudospectral solver
described in Appendix D.1.3, where the time is advanced with a Crank–Nicolson
update. We solve the SPDE on a 64× 64 mesh in space and use a time step of
size 10−3. For the tasks u0 7→ u and ξ 7→ u, we generate the datasets by solving
the SPDE up to time T = 1 and downsample the trajectories by a factor of
10 in time (resulting in 100 time steps) and 4 in space (resulting in a 16× 16

spatial resolution). The number of training samples is N = 1 000. To generate
the training set for the task (u0, ξ) 7→ u, we generate 10 long trajectories of
15 000 steps each up to time T = 15. We partition each of these 10 trajectories
into consecutive subtrajectories of 500 time steps using a rolling window. This
procedure yields a total of 2 000 input-output pairs. We chose to split the data
into shorter sequences of 500 time steps so that one training batch could fit
into memory on a Tesla P100 NVIDIA GPU.

We report the results in Table 6.4. Neural SPDE marginally outperforms
FNO in the simpler task ξ 7→ u, but with a significantly larger performance gap

98

0 50
0

25

50

G
ro

u
n

d
tr

u
th

t=500

0 50
0

25

50

t=1625

0 50
0

25

50

t=2750

0 50
0

25

50

t=3875

0 50
0

25

50

t=5000

0 50
0

25

50

S
u

p
er

-r
es

ol
u

ti
on

p
re

d
ic

ti
on

0 50
0

25

50

0 50
0

25

50

0 50
0

25

50

0 50
0

25

50

Figure 6.2: Top panel : Solution of the vorticity equation for one realization of
the stochastic forcing between the 500th and the 5 000th time steps. Bottom
panel : Predictions with the Neural SPDE model given the initial condition at
the 500th time step and the forcing between the 500th and the 5 000th time
steps. The model is trained on a 16×16 mesh and evaluated on a 64×64 mesh.

Table 6.4: Stochastic Navier-Stokes equations in two dimensions. We
report the relative L2 error on the test set. The symbol x indicates that the
model is not applicable. The symbol - indicates that the model does not fit in
memory.

Model u0 7→ u ξ 7→ u (u0, ξ) 7→ u

NCDE x 0.366 0.843
NRDE x - -
NCDE-FNO x 0.326 0.178
DeepONet 0.432 0.348 x
FNO 0.188 0.039 x

NSPDE (Ours) 0.155 0.034 0.049

in the harder task (u0, ξ) 7→ u with the second-best model NCDE-FNO. Fig. 6.2
indicates that the Neural SPDE model is capable of zero-shot super-resolution
in space and in time, achieving good performance even when evaluated on a
larger time horizon of 5 000 time steps and on an upsampled 64× 64 spatial
grid. Finally, we report in Table 6.5 the ratios of inference time of the trained
Neural SPDEs over the runtime of the solvers, indicating that NSPDEs can be
up to 3 orders of magnitude faster than traditional numerical solvers.

6.6 Conclusion

We introduced the Neural SPDE model to learn solution operators of PDEs
with (possibly stochastic) forcing from partially observed data. The proposed
approach provides an extension to two popular classes of physics-inspired models.
The model extends Neural CDEs, SDEs, RDEs in that it is resolution-invariant
both in space and in time. It also extends Neural Operators as it can learn

99

Table 6.5: Ratio of the inference time of NSPDE (once trained) over the runtime
of the numerical solver for different SPDEs. In each case we consider a single
solution. We use the same space and time discretization for both NSPDE and
the numerical solver.

Dataset Speedup

Stochastic Ginzburg-Landau Equation 59×
Stochastic Korteweg-De Vries Equation 80×
Stochastic Navier-Stokes 300×

solution operators of SPDEs depending simultaneously on the initial condition
and a realization of the driving noise. We performed extensive experiments on
various semilinear SPDEs, including the stochastic Ginzburg-Landau, Korteweg-
De Vries and Navier-Stokes equations. The outcomes illustrate that the model
achieves superior performance while requiring a lower amount of training data
compared to alternative models, and its evaluation is up to 3 orders of magnitude
faster than traditional numerical solvers.

100

Chapter 7

Discussion

In this thesis, we leveraged mathematical tools from rough paths analysis, the
theory of reproducing kernels and neural differential equations (reviewed in
Chapter 2), to develop new methodologies addressing three learning problems
on sequential data (in Chapters 3 to 6): large scale Bayesian inference for GP
models indexed on sequences, learning from sets of multivariate time-series,
and modelling the relationships between systems evolving in space and time.

7.1 Contributions of the thesis

We began in Chapter 3 by addressing the prohibitive computational cost of
inference algorithms for GPs on sequential data. More precisely, we considered
models in which the signature kernel defines the covariance function of the GP
prior. Subsequently, we leveraged two properties of the signature kernel to de-
velop a fast approximate inference scheme based on variational inference. First,
we used the explicit feature expansion of the signature kernel to introduce an
evidence lower bound which can be computed without costly matrix inversions.
Second, we derived a PDE to efficiently compute the gradients of the signature
kernel for gradient-based optimization of the evidence lower bound. Altogether,
this allowed to fit Gaussian process models and perform model selection on
large datasets of multivariate time-series which were previously intractable.

In Chapter 4 we showed how the signature features (respectively, the
signature kernel) can be used to construct a set of basis functions (respectively,
kernel functions) for regression analysis on probability measures corresponding
to the laws of stochastic processes (DR). The mathematical properties of the
expected signature allowed us to prove the universal approximation property
of the newly introduced features and the universality of the DR kernel. We
introduced two learning algorithms to conduct DR on discrete (or empirical)
probability measures, representing sets of multivariate time-series. In Chapter 5
we built upon the results of Chapter 4 and the notion of conditional kernel mean

101

embeddings from the theory of RKHSs, to construct a more expressive kernel
on stochastic processes, which captures information that goes beyond their law.
The kernel trick for evaluating the signature kernel and the inner products
of conditional KME was instrumental in developing practical algorithms for
applications ranging from DR to kernel two-sample tests.

In Chapter 6 we introduced the Neural SPDE model, which extends NCDEs
to model the functional relationship between discretely observed spatio-temporal
signals. To this aim, we blended SPDEs, an important class of models in physics,
with the high expressivity and flexibility of deep learning models. Leveraging
the notion of mild solution of an SPDE, we formulated the Neural SPDE model
directly at the level of functional input and output spaces. We empirically
demonstrated the capability of the model to be deployed on a finer mesh
resolution than the data it has been trained with. We also showed that a
learned Neural SPDE model can be used as a fast surrogate for traditional
numerical solvers.

7.2 Future work

Scalability As highlighted in Chapter 4, a key challenge is to develop tech-
niques which scale well with both the number of training examples and the
dimensionality of the inputs. While the signature kernel trick allows to avoid
the cost of the explicit computation of the coordinates of the signature, thereby
enabling to handle high-dimensional time-series, methods that operate on the
kernel matrix of the data scale poorly with the number of training examples.
Various approaches proposed in the context of static data (Pham and Pagh,
2013; Rahimi and Recht, 2007) could be adapted to the signature kernel. How-
ever, this would also require understanding theoretically the approximation
quality of these methods when extended to the sequential setting. While the
approximate inference scheme developed in Chapter 3 improves the scalability
with respect to the size of the training dataset, the number of inducing variables
increases exponentially with the state space dimension of the input time-series.
Future work should focus on improving the scaling in the state space dimension.

Hyperparameter selection Most methodologies developed in this thesis
make use of the signature kernel, whose parameters need to be adjusted for
best performance. In Chapter 3, kernel selection was performed by ML-II, a
Bayesian model selection method. In the setting of two-sample tests (Chapter 5)
one can leverage various hyperparameter selection methods which have been
proposed in the kernel literature, including approaches aiming at maximizing
the test power using the signal-to-noise-ratio as an objective Gretton et al.
(2012b); Liu et al. (2020); Sutherland et al. (2017). However, in the context of

102

DR, future work is needed for tuning the hyperparemeters of the higher order
KMEs, without resorting to expensive cross-validation procedures. Flaxman
et al. (2016); Hsu et al. (2018) are certainly a good starting point for such an
investigation.

Generative modelling The higher order KMEs introduced in Chapter 5 have
the potential to be used beyond two-sample tests and distribution regression.
For example, higher order MMDs could be used as discriminators in generative
models for time-series. The Neural SPDE model developed in Chapter 6 also
has the potential to be used in the context of generative models, as it may be
used to parameterize a generator network. However, this direction requires
constructing a discrepancy between probability measures on spatio-temporal
signals, generalizing for example the signature kernel MMD in Salvi et al. (2021).
Neural SPDEs paired with such discrepancy would allow the design of new
generative models for spatio-temporal signals generalizing the results in Kidger
et al. (2021).

103

Appendix A

Appendix to Chapter 3

A.1 Additional proof

In this section we prove Thm. 3.4.1 which underpins Alg. 4, an algorithm for
computing the gradients of the signature kernel with respect to its input paths,
without backprogating through the operations of the PDE solver. For the
reader’s convenience the theorem is recalled below.

Theorem 4.1. For any γ ∈ X (Rd) the directional derivative Kγ(x,y) of the
signature kernel along the path γ satisfies the following relation

Kγ(x,y) =

∫ T

0

∫ T

0
u(s, t)ũ(T − s, T − t)〈γ̇(s), ẏ(t)〉dsdt,

where ũ(s, t) = K(←−x |[0,s],←−y |[0,t]) and where ←−x ,←−y are respectively the paths
x,y reversed in time.

Before proving the theorem we need the following important lemma.

Lemma A.1.1. For any two paths continuous paths of bounded variation
x,y ∈ X (Rd) the signature kernel satisfies the following relation

K(x,y) = K(←−x ,←−y)

where ←−x ,←−y are the respectively x,y reversed in time.

Proof. The subset
{
A ∈ T (Rd) | A0 = 1

}
of the tensor algebra T (Rd) is a

group, and it is a standard result in rough path theory (see for example Lyons
et al. (2007)) that S(←−x) = S(x)−1. The operator g : S(x) 7→ S(x)−1 reverses
the order of the indices in the multi-index (i1, . . . , ik) and multiplies the result
Sik...i1(x) by −1 if the length k of the multi-index is odd. Expanding out
K(←−x ,←−y) coordinate-wise it is easy to see that the two −1’s for multi-indices
of odd length cancel as multiplied together, therefore the expansion of K(x,y)

matches the one of K(←−x ,←−y).

104

We also recall the notation for the signature kernel and its directional
derivative used in the statement of Thm. 3.4.1 in Chapter 3:

u(s, t) := K
(
x|[0,s],y|[0,t]

)

uγ(s, t) := Kγ

(
x|[0,s],y|[0,t]

)
.

Proof of Thm. 3.4.1. Let γ : [0, T] → Rd be a continuous path of bounded
variation along which we wish to differentiate K. Let’s assume that for any
s, t ∈ [0, T] there exists a function As,t : [0, T]× [0, T]→ R such that

uγ(s, t) =

∫ s

0

∫ t

0
As,t(p, q)u(p, q)〈γ̇(p), ẏ(q)〉dpdq. (A.1)

Differentiating uγ with respect to s and t we get

∂2uγ
∂s∂t

=

∫ s

0

∫ t

0

∂2As,t(p, q)

∂s∂t
u(p, q)〈γ̇(p), ẏ(q)〉dpdq

+As,t(s, t)u(s, t)〈γ̇(s), ẏ(t)〉. (A.2)

By eq. (3.19) in Chapter 3 we know that the directional derivative of the
signature kernel along the path γ solves the following PDE,

∂2uγ
∂s∂t

= 〈ẋ(s), ẏ(t)〉uγ + 〈γ̇(s), ẏ(t)〉u. (A.3)

Equating eq. (A.2) and eq. (A.3) we deduce that As,t(s, t) = 1 and

∫ s

0

∫ t

0

∂2As,t(p, q)

∂s∂t
u(p, q)〈γ̇(p), ẏ(q)〉dpdq

= 〈ẋ(s), ẏ(t)〉uγ(s, t)

= 〈ẋ(s), ẏ(t)〉
∫ s

0

∫ t

0
As,t(p, q)u(p, q)〈γ̇(p), ẏ(q)〉dpdq.

Which implies that,

∂2As,t(p, q)

∂s∂t
= 〈ẋ(s), ẏ(t)〉As,t(p, q) (A.4)

or equivalently, by integrating with respect to s and t,

As,t(p, q) = 1 +

∫ s

p

∫ t

q
As′,t′(p, q)〈ẋ(s′), ẏ(t′)〉ds′dt′.

105

Hence, we have:

AT,T (p, q) =
〈
S(x)[p,T], S(y)[q,T]

〉

= K
(←−x |[0,T−p],←−y |[0,T−q]

)
,

where the last equality is a consequence of Lemma A.1.1. Pluging back this
result into eq. (A.1) concludes the proof.

A.2 Additional experimental details

In this section we describe the experimental setup for Sec. 3.6. All experiments
were conducted on NVIDIA Tesla P100 GPUs.

A.2.1 Data collection process

The classification tasks of Sections 3.6.1 and 3.6.2 were performed on two
datasets (PenDigits, RightWhaleCalls) from the UCR & UEA time-series clas-
sification repository.1 For the large scale classification experiment of Sec. 3.6.3
we used a dataset of 1M satellite time-series (STS).2 Lastly, the climatic data
(WeatherForecast) for rainfall prediction task in Sec. 3.6.4 were downloaded
from the Max Planck Institute for Biogeochemistry website.3

Data pre-processing included the following two steps. As explained in
Sec. 3.3.1, we first add a monotonically increasing coordinate to all multivariate
time-series that we call "time", which effectively augments by one the number
of channels. Then, we standard scale the time-series using the tslearn library
(Tavenard et al., 2020). This is particularly important for the WeatherForecast
dataset where channels have different scales. Additional processing steps have
been performed for two datasets (RightWhaleCalls, WeatherForecast) which
we treat separately next.

A standard data transformation to tackle classification tasks on audio
signals consists in computing their spectrograms. We follow this procedure
for the RightWhaleCalls dataset which contains univariate highly-oscillatory
time-series of length 2 000. We used the scipy Python library to do so. The
spectrogram is commonly represented as a graph with one axis representing time,
the other axis representing the frequency, and the color intensity representing
the amplitude of a particular frequency at a particular time. We consider
the spectrogram as a multivariate time-series, where each channel represents
the change in amplitude of a particular frequency over time. Furthermore,
exploiting the fact that frequencies in whale call signals are typically between

1https://timeseriesclassification.com
2https://cloudstor.aarnet.edu.au/plus/index.php/s/pRLVtQyNhxDdCoM
3https://www.bgc-jena.mpg.de/wetter/weather_data.html

106

https://timeseriesclassification.com
https://cloudstor.aarnet.edu.au/plus/index.php/s/pRLVtQyNhxDdCoM
https://www.bgc-jena.mpg.de/wetter/weather_data.html

50 and 300Hz, we only consider frequencies which fall within this range. As a
result we obtain 28-dimensional time-series each of length 30. We then apply
the pre-processing steps described above.

To create the WeatherForecast dataset we used the recordings of various
climatic variables in two weather stations located in Germany from 2004 to
2020. The outliers were filtered out, and we used the recordings of 7 variables
(depicted on Fig. 3.2) over 6 hours in order to predict whether it would rain
by more than 1mm over the next hour. There is one recording every 10min
resulting in input time-series of length ` = 36. Since there were much fewer
positive cases (raining) than negative cases (not raining), we dropped at random
a fraction of the data, such that the ratio of positive/negative examples is
brought down to 3.

A.2.2 Training procedure

The datasets for classification of sequential digits (PenDigits), audio signals
(RightWhaleCalls), and satellite time-series (STS) come with a predefined test-
train split. In order to report standard deviations on our results we subsampled
20% (PenDigits,RightWhaleCalls) or 2% (STS) of the training set to form a
validation set.

The training was equally split into 3 different phases. During the first
phase, only the variational parameters are trained. For the second phase,
both the variational parameters and the hyperparameters of the kernel are
trained. During the last phase the variational parameters are trained on
the full training set (the validation data being merged back). Overall, the
hyperparameters are fixed for two-third of the iterations. SigGPDE and the
GPSig-IT/IS baselines have the same set of hyperparameters, which correspond
to the scaling factors for each channel for the ARD parametrization of the
signature kernel (see Sec. 3.3.3). Those were initialized with the same value
for all models. The inducing tensors for GPSig-IT and inducing sequences
for GPSig-IS were initialized following the procedure outlined in Toth and
Oberhauser (2020). We recall that for SigGPDE there is no such parameters to
initialize. As recommended in Toth and Oberhauser (2020), we use a truncation
level of n = 4 for their signature kernel algorithm (GPSig-IT/IS).

The minibatch size is either 50 (PenDigits, RightWhaleCalls) or 200 (STS).
We used the Nadam optimizer (Dozat, 2016) with learning rate 10−3. In
Chapter 3 we report the time per iteration which corresponds to one minibatch.

107

A.3 Additional algorithmic details

In this section we start by outlining the space and time complexities of the
algorithms underlying SigGPDE. Then, we explain how we have developed a
dedicated CUDA TensorFlow operator for GPU acceleration to speed-up the
computation of the signature kernel and its gradients.

A.3.1 Complexity analysis

The main algorithms underpinning SigGPDE consist in computing three differ-
ent covariance matrices to evaluate the ELBO. These are the covariance matrix
between the inducing variables u (denoted by Cuu), between the marginal f

and the inducing variables (denoted by Cfu), and finally the covariance matrix
of f (its diagonal is denoted by diag(Cff)). In Tables A.1 and A.2 we compare
the time and space complexities for the corresponding SigGPDE algorithms to
those of GPSig-IT/IS.

In the SigGPDE sparse variational inference framework, Cuu is diagonal
which lowers both the memory and computational costs (first line in Tables A.1
and A.2). Besides there is no need to compute the Cholesky decomposition of
Cuu to invert it (see last line Table A.1). Lastly, in SigGPDE the inducing
variables do not depend on any variational parameter (see last line Table A.2).

Operation SigGPDE (ours) GPSig-IT GPSig-IS

Cuu O(1) O(n2M2d) O((n+ d)M2 ˜̀2)

Cfu O(ÑM`) O(n2ÑM`d) O((n+ d)ÑM ˜̀̀)

diag(Cff) O(dÑ`2) O((n+ d)Ñ`2) O((n+ d)Ñ`2)

Lin. Alg. O(ÑM2) O(ÑM2 +M3) O(ÑM2 +M3)

Table A.1: Comparison of time complexities. M is the number of inducing
variables, Ñ the batch size, d the number of channels in the time-series, ` the
length of the sequences, n the truncation level (for GPSig-IT and GPSig-IS)
and ˜̀ the length of the inducing sequences.

Operation SigGPDE (ours) GPSig-IT GPSig-IS

Cuu N/A O(n2M2) O(M2 ˜̀2)

Cfu O(ÑM`) O(n2ÑM`) O(ÑM`˜̀)

diag(Cff) O(Ñ`2) O(Ñ`2) O(Ñ`2)

z N/A O(n2Md) O(M ˜̀d)

Table A.2: Comparison of space complexities, separated by algorithm to com-
pute each covariance matrix. The last line accounts for the storage of the
inducing tensors and inducing sequences in GPSig-IT and GPSig-IS.

108

A.3.2 Computing the signature kernel and its gradients

Recall that the signature kernel solves the following PDE

∂2u

∂s∂t
= 〈ẋ(s), ẏ(t)〉u u(0, ·) = 1, u(·, 0) = 1, (A.5)

therefore each kernel evaluation amounts to a call to a PDE solver. Using a
straightforward implementation of a finite difference PDE solver which consists
in applying an update of the form (as explained in more details in Sec. 2.2.1)

u(si, tj) = fupd(u(si−1, tj−1), u(si, tj−1), u(si−1, tj)),

in row or column order, the time complexity for N kernel evaluations for
time-series with d channels of length ` is O(dN`2). Indeed, there is no data
dependencies between each of the N kernel evaluations, hence we can solve
each PDE in parallel. But, this does not reduce the quadratic complexity with
respect to the length `. However, it is possible to parallelize the PDE solver
by observing that instead of solving the PDE in row or column order, we can
update the antidiagonals of the solution grid. Each cell on an antidiagonal
can be updated with in parallel as there is no data dependency between them.
Therefore, we propose a CUDA implementation where N collections of 2`− 1

threads (the number of cells on the biggest antidiagonal) running in parallel
can simultaneously update an antidiagonal of the solution grids.

To compute the gradients, we use the result from Thm. 3.4.1. During the
forward pass we solve the PDEs defined by the input time-series using the
CUDA operator described above. For the backward pass, we first solve the
PDEs with the input time-series reversed in time, by calling the same CUDA
operator. Second, we compute the gradients using simple vectorized TensorFlow
operations.

109

Appendix B

Appendix to Chapter 4

B.1 Proofs

In this section, we prove that the expected signature S̄ is weakly continuous
(Appendix B.1.1), and that the pathwise expected signature Φ is injective and
weakly continuous (Appendix B.1.2).

Recall that in Chapter 4 we considered a compact subset of paths U ⊂ X (E),
where E is a Banach space of finite dimension d > 1, and X (E) as defined
in eq. (2.4) such that (X (E), ‖·‖) is a Banach space with ‖x‖ = V(x) +

supt∈[0,T] ‖x(t)‖E for all x ∈ X (E). We will denote by P(U) the set of Borel
probability measures on U and by S(U) ⊂ H(E) the image of U by the signature
S : X (E)→ H(E).

As shown in (Chevyrev and Oberhauser, 2018, Section 3), if E is a Hilbert
space with inner product 〈·, ·〉E , then for any k ≥ 1 the following bilinear form
defines an inner product on E⊗k,

〈
ei1 ⊗ . . .⊗ eik , ej1 ⊗ . . .⊗ ejk

〉
E⊗k

=

k∏

r=1

δir,jr , δij =





1, if i = j,

0, if i 6= j.
(B.1)

which extends by linearity to an inner product 〈A,B〉H(E) =
∑∞

k=0〈Ak, Bk〉E⊗k
on H(E) that thus becomes also a Hilbert space.

B.1.1 Weak continuity of the expected signature

Definition 17. A sequence of probability measures µn ∈ P(U) converges weakly
to µ if for every f ∈ Cb(U,R) we have

∫
U fdµn →

∫
U fdµ as n → ∞, where

Cb(U,R) is the space of real-valued continuous bounded functions on U .

Remark. Since U is a compact metric space, we can drop the word "bounded"
in Def. 17.

Definition 18. Given two probability measures µ, ν ∈ P(U), the Wasserstein-1

110

distance is defined as follows

W1(µ, ν) = inf
γ∈Π(µ,ν)

∫

x,y∈U
‖x− y‖ γ(d(x,y)) (B.2)

where the infimum is taken over all possible couplings of µ and ν.

Lemma B.1.1. (Chevyrev and Oberhauser, 2018, Theorem 5.3) The signature
S : X (E)→ H(E) is injective.1

Lemma B.1.2. (Chevyrev et al., 2016, Corollary 5.5) The signature is con-
tinuous w.r.t. ‖·‖.

Lemma B.1.3. (Chevyrev and Oberhauser, 2018, Theorem 5.6) The expected
signature S̄ : P(U)→ H(E) is injective.

This result was firstly proved in Fawcett (2002) for probability measures
supported on compact subsets U of X (E), which is enough for this thesis. It
was also proved in a more abstract setting in Chevyrev et al. (2016). The
authors of Chevyrev and Oberhauser (2018) introduce a normalization that
is not needed in case of compact supports, as they mention in (Chevyrev and
Oberhauser, 2018, (I) - page 2).

Theorem B.1.1. The expected signature S̄ : P(U)→ H(E) is weakly continu-
ous.

Proof. Consider a sequence {µn}n∈N of probability measures on P(U) con-
verging weakly to a measure µ ∈ P(U). By Lemma B.1.2, the signature
map S : x 7→ S(x) is continuous w.r.t. ‖·‖. Hence, by definition of weak-
convergence (and because U is compact), for any k > 0 and any multi-index
(i1, . . . , ik) ∈ {1, . . . , d}k it follows that

∫

x∈U
Si1...ik(x)µn(dx)→

∫

x∈U
Si1...ik(x)µ(dx).

The factorial decay given by Lyons et al. (2007, Proposition 2.2) yields
∫

x∈X
S(x)µn(dx)→

∫

x∈X
S(x)µ(dx),

in the topology induced by 〈·, ·〉H(E).

B.1.2 Injectivity and weak continuity of the pathwise expected
signature

Theorem B.1.2. (Lyons et al., 2007, Theorem 3.7) Let x ∈ X (E) and recall
the definition of the projection Πt : x 7→ x|[0,t]. Then, the H(E)-valued path

1Up to tree-like equivalence (see (Chevyrev and Oberhauser, 2018, appendix B) for a
definition and detailed discussion).

111

defined by
Spath(x) : t 7→ S ◦Πt(x), (B.3)

is continuous and of bounded variation. Furthermore the map x 7→ Spath(x) is
continuous w.r.t. ‖·‖.

For any µ ∈ P(U) the path Φ(µ) ∈ X (H(E)). Indeed Φ(µ) is a continuous
path because x, Πt, S and Φ are all continuous and the composition of con-
tinuous functions is continuous. The fact that Φ is of bounded variation comes
from the fact that ‖Φ(µ)‖ ≤ µ(U) supx∈U ‖Spath(x)‖ < +∞ by Thm. B.1.2.

Theorem B.1.3. The pathwise expected signature Φ : P(U) → X (H(E)) is
injective.

Proof. Let µ, ν ∈ P(X) be two probability measures. If Φ(µ) = Φ(ν), then for
any t ∈ [0, T], EX∼µ[S ◦Πt(X)] = EY∼ν [S ◦Πt(Y)]. In particular, for t = T

S̄(µ) = EX∼µ[S(X)] = EY∼ν [S(Y)] = S̄(ν).

The result follows from the injectivity of the expected signature S̄ (Lemma B.1.3).

Theorem B.1.4. The pathwise expected signature Φ : P(U) → X (H(E)) is
weakly continuous.

Proof. Let {µn}n∈N be a sequence in P(U) converging weakly to µ ∈ P(U). As
Spath is continuous (Thm. B.1.2), it follows, by the continuous mapping theorem,
that Spath#µn → Spath#µ weakly, where Spath#µ is the pushforward measure
of µ by Spath. Given that Spath is continuous and U is compact, it follows
that the image Spath(U) is a compact subset of the Banach space X (H(E)).
By (Villani, 2008, Theorem 6.8) weak convergence of probability measures on
compact supports is equivalent to convergence in Wasserstein-1 distance. By
Jensen’s inequality

‖E[Spath#µn]− E[Spath#µ]‖ ≤ E[‖Spath#µn − Spath#µ‖] .

Taking the infimum over all couplings γ ∈ Π(Spath#µn, Spath#µ) on the right-
hand-side of the previous equation we obtain,

‖E[Spath#µn]− E[Spath#µ]‖ ≤W1(Spath#µn, Spath#µ)→ 0

which yields the convergence,

E[Spath#µn]→ E[Spath#µ]

in ‖·‖ over X (H(E)). Noting that E[Spath#µ] = Φ(µ) concludes the proof.

112

B.2 Experimental details

In our experiments we benchmark KES and SES against DeepSets and DR-k
where k ∈ {RBF,Matern32,GA}. Apart from DR-GA, all other baselines are
designed to operate on vectorial data. Therefore, in order to deploy them in
the setting of DR on sequential data, manual pre-processing (such as padding)
is required. In the next section we describe how we turn discrete time-series
into continuous paths on which the signature operates.

B.2.1 Transforming discrete time-series into continuous paths

Consider a d-dimensional time-series of the form x = {(t1,x1), . . . , (t`,x`)}
with time-stamps 0 = t1 < . . . < t` = T and values xk ∈ Rd, and the continuous
path x obtained by linearly interpolating between the points x1, . . . ,x`. The
signature (truncated at level n) of x can be computed explicitly with exist-
ing Python packages (Kidger and Lyons, 2020; Lyons, 2010; Reizenstein and
Graham, 2018), does not depend on the time-stamps (t1, . . . , t`), and produces
(dn+1 − 1)/(d− 1) terms when d > 1. When d = 1 the signature is trivial since

S(x) =

(
1, (x` − x1),

1

2
(x` − x1)2, . . . ,

1

n!
(x` − x1)n, . . .

)
.

As mentioned in Sec. 4.2.5 we can simply augment the paths with a monotonous
coordinate, such that x̂ : t 7→ (t,x(t)), where t ∈ [0, T], effectively reintroducing
a time parametrization. Another way to augment the state space of the data
and obtain additional signature terms is the lead-lag transformation (see Def. 19)
which turns a 1-d data stream into a 2-d path. For example if the data stream
is {1, 5, 3} one obtains the 2-d continuous path x̂ : t 7→ (xlead(t),xlag(t)) where
xlead and xlag are the linear interpolations of {1, 5, 5, 3, 3} and {1, 1, 5, 5, 3}
respectively. A key property of the lead-lag transform is that the difference
between S12(x̂) and S21(x̂) is the quadratic variationQV (x) =

∑`−1
k=1(x(tk+1)−

x(tk))
2 (Chevyrev and Kormilitzin, 2016). Hence, even when d > 1, it may

be of interest to lead-lag transform the coordinates of the paths for which the
quadratic variation is important for the task at hand.

Definition 19 (Lead-lag). Given a sequence of points x = (x1, . . . ,x`) in Rd

the lead-lag transform yields two new sequences xlead and xlag of length 2`− 1

of the following form

xlead
p =

{
xk if p = 2k − 1

xk if p = 2k − 2.
xlag
p =

{
xk if p = 2k − 1

xk if p = 2k.

In our experiments we add time and lead-lag all coordinates except for
the first task which consists in inferring the phase of an electronic circuit (see

113

Sec. 4.5.1).

B.2.2 Implementation details

The distribution regression methods (including DR-k, KES and SES) are
implemented on top of the Scikit-learn library (Pedregosa et al., 2011), whilst
we use the existing codebase https://github.com/manzilzaheer/DeepSets

for DeepSets.

KES

The KES algorithm relies on the signature kernel trick which is referred to as
PDESolve in this thesis. We used Alg. 2 where the discretization level of the
PDE solver is fixed to κ = 0 such that the time complexity to approximate the
solution of the PDE is O(d`2) where ` is the length of the longest data stream.

SES

The SES algorithm from Chapter 4 relies on an algebraic property for fast
computation of signatures, known as Chen’s relation. Given a piecewise linear
path x = ∆x(t2) ? . . . ? ∆x(t`) given by the concatenation ? of individual
increments Rd 3 ∆x(tk) = x(tk) − x(tk−1), k = 2, . . . , `, one has S(x) =

exp(∆x(t2)) ⊗ . . . ⊗ exp(∆x(t`)), where exp denotes the tensor exponential
and ⊗ the tensor product. Using Chen’s relation, computing the signature
(truncated at level n) of a sequence of length ` has complexity O(`dn).

Baselines

Table B.1: Kernels k for the kernel-based baselines. See Cuturi and Blondel
(2017) for the definition of dtw1/γ in the GA kernel.

RBF exp(−γ2 ‖x− x′‖2)

Matern32 (1 +
√

3γ2 ‖x− x′‖) exp(−
√

3γ2 ‖x− x′‖)
GA exp(−γ dtw1/γ(x,x′))

For the kernel-based baselines DR-k, we perform Kernel Ridge regression
with the kernel defined by kdr(Pi,Pj) = exp (−σ2 ‖ρ(Pi)− ρ(Pj)‖2Hk), where
ρ(Pi) = N−1

i

∑Ni
p=1 k(·,xi,p). For k ∈ {RBF,Matern32}, if the time-series are

multi-dimensional, the dimensions are stacked to form one large vector x ∈ Rd`.
See Table B.1 for the expressions of the kernels k used as baselines.

For DeepSets, the two neural networks are feedforward neural networks
with ELU activations. We train DeepSets by minimizing the mean squared
error.

114

https://github.com/manzilzaheer/DeepSets

B.2.3 Hyperparameter selection

All models are run 5 times. The hyperparameters of KES, SES and DR-k are
selected by cross-validation via a grid search on the training set (80% of the
data selected at random) of each run. The range of values for each parameter
is specified in Table B.2.

Table B.2: Range of values for each parameter of DR-k, KES and SES. We
denote by α the regularization parameter in kernel Ridge regression and Lasso
regression. The kernels parameters γ and σ are expressed in terms of lengthscales
`1 and `2 such that γ2 = 1/(2`21) and σ2 = 1/(2`22).

Model `1 `2 α n m

DR-RBF {10−3, 10−2, . . . , 102, 103} {10−3, 10−2, . . . , 102, 103} {10−3, 10−2, . . . , 102, 103} N/A N/A
DR-Matern32 {10−3, 10−2, . . . , 102, 103} {10−3, 10−2, . . . , 102, 103} {10−3, 10−2, . . . , 102, 103} N/A N/A
DR-GA {7 · 101, 7 · 102} {10−3, 10−2, · · · , 102, 103} {10−3, 10−2, . . . , 102, 103} N/A N/A
KES N/A {10−3, 10−2, . . . , 102, 103} {10−3, 10−2, . . . , 102, 103} N/A N/A
SES N/A N/A {10−5, 10−4, . . . , 104, 105} {2, 3} {2}

B.3 Interpretability

When dealing with complex data streams, interactions between the different
path-coordinates might be an essential feature that one wishes to extract from
the signal. Intrinsic in the definition of the signature is the concept of iterated
integral of a path over an ordered set of time indices 0 < u1 < . . . < uk < T .
This ordering of the domain of integration, naturally captures the influence
that the coordinate-paths xi1 , . . . , xik may have on each other. For example,
considering only two variables xi and xj , if an increase (decrease) in xi is
systematically followed by an increase (decrease) in xj , the term Si,j(x) will be
positive. Conversely, if an increase (decrease) in xi is systematically followed
by a decrease (increase) in xj , the term Si,j(x) will be negative.

Taking this property into account, we revisit the crop yield prediction
example (see Sec. 4.5.4 and Fig. B.2) to show how the iterated integrals from
the signature (of the pathwise expected signature) provide interpretable pre-
dictive features, in the context of DR with SES. For this, we replace the
climatic variables by two distinct multi-spectral reflectance signals: 1) near-
infrared (nR) spectral band; 2) red (R) spectral band Huete et al. (2002).
These two signals are recorded at a much lower temporal resolution than
the climatic variables, and are typically used to assess the health-status of
a plant or crop, classically summarized by the normalized difference vegeta-
tion index (NDVI) (Huete et al., 2002). To carry out this experiment, we
use a publicly available dataset (Hubert-Moy et al., 2019) which contains
multi-spectral time-series corresponding to geo-referenced French wheat fields

115

from 2006 to 2017, and consider these field-level longitudinal observations to
predict regional yields (still obtained from the Eurostat database available
at http://ec.europa.eu/eurostat/data/database). Instead of relying on
a predefined vegetation index signal, such as the aforementionned NDVI :
t 7→ (xnR(t)− xR(t))/(xnR(t) + xR(t)), we use the raw signals in the form of
2-dimensional paths x : t 7→ (xnR(t), xR(t)) to perform a Lasso DR with SES.

Figure B.1: The 5 most pre-
dictive features provided by
(Lasso) SES for the task of
crop yield prediction.

Interpretation Chlorophyll strongly absorbs
light at wavelengths around 0.67µm (red) and
reflects strongly in green light, therefore our eyes
perceive healthy vegetation as green. Healthy
plants have a high reflectance in the near-infrared
between 0.7 and 1.3µm. This is primarily due to
healthy internal structure of plant leaves (Rahman
et al., 2004). Therefore, this absorption-reflection
cycle can be seen as a good indicator of the health
of crops. Intuitively, the healthier the crops, the
higher the crop-yield will be at the end of the
season. It is clear from Fig. B.1 that the feature
in the signature that gets selected by the Lasso
penalization mechanism corresponds to a double
red-infrared cycle, as described above. This simple example shows how the
terms of the signature are not only good predictors, but also carry a natural
interpretability that can help getting a better understanding of the underlying
physical phenomena.

116

http://ec.europa.eu/eurostat/data/database

Figure B.2: GLDAS/Eurostat dataset. Each panel shows the normalized time-
series of temperature, humidity and precipitation, measured over 10 different
locations across a region within a year.

117

Appendix C

Appendix to Chapter 5

This Appendix is organised as follows: C.1) using the formalism of cross-
covariance operators we define an Hilbert-Schmidt conditional independence
criterion for stochastic processes, and provide further details on the construction
of the estimator for the 2nd order MMD; C.2) we outline algorithms and
their complexities for computing higher order MMDs; C.3) we provide further
experimental details; C.4) we prove the theorems from Chapter 5.

C.1 Cross-covariance operators

Covariance and cross-covariance operators on RKHSs are important concepts
for modern applications of conditional KMEs (Fukumizu et al., 2004; Song
et al., 2009). In this section we will use this formalism (adapted to the case
of path-valued random variables) to firstly derive a criterion for conditional
independence of stochastic processes and secondly provide more details on the
derivation of the estimator of the 2nd order MMD from Chapter 5.

Let X,Y ∈ P(X (V)) be two stochastic processes and their joint process
(X,Y) ∈ P(X (V ⊕ V)). Define the cross-covariance operator CY,X as the
following point in the tensor product of RKHSs H(V)⊗H(V)

CY,X = E(X,Y)[K(·, Y)⊗K(·, X)] ,

or equivalently as the Hilbert-Schmidt operator CY,X : H(V)→ H(V) defined
for any function f ∈ H(V) as follows

CY,X(f)(·) =

∫

(x,y)∈X (V⊕V)
K(·,y)f(x)P(X,Y)(d(x,y)).

Let HS (H(V),H(V)) be the space of Hilbert-Schmidt operators from H(V) to
itself. The equivalence between tensor product of RKHSs and Hilbert-Schmidt
operators is given by the isomorphism Φ : H(V)⊗H(V)→ HS (H(V),H(V))

118

defined as follows

Φ



∑

i1...in
j1...jm

αi1...inj1...jm
Si1...in ⊗ Sj1...jm


 =

∑

i1...in
j1...jm

αi1...inj1...jm

〈
·, Si1...in

〉
Sj1...jm ,

where Si1...in denotes an element of an orthogonal basis of H(V) and the
inner product is taken in H(V). An example of such basis is given by the
signature basis defined for any path x ∈ X (V) and any coordinate (i1, ..., in) as

Si1...in(x) =

∫
. . .

∫

0<t1<...<tn<T

dxi1(t1) . . . dxin(tn).

The centered version C̃Y,X ∈ H(V)⊗H(V) of the operator CY,X is defined as

C̃Y,X = CY,X − µ(1)
X ⊗ µ

(1)
Y .

Similarly let CX,X ∈ H(V)⊗H(V) be the following covariance operator

CX,X = EX [K(·, X)⊗K(·, X)] ,

or equivalently CX,X ∈ HS (H(V),H(V))

CX,X(f)(·) =

∫

x∈X (V)
K(·,x)f(x)PX(dx).

Under the assumption that for any f ∈ H(V) the function x 7→ µ
(1)
f(Y)|X=x

from X (V) to R is in H(V), the authors in Fukumizu et al. (2004); Song et al.
(2009) showed that

µ
(1)
Y |X = CY,XC−1

X,X . (C.1)

However, this assumption might not hold in general (Fukumizu et al., 2004;
Song et al., 2009). This technical issue can be circumvented by resorting to a
regularized version of eq. (C.1): this yields to

µ
(1)
Y |X ≈ CY,X(CX,X + λIH(V))

−1, λ > 0 (C.2)

where IH(V) is the identity map fromH(V) to itself. Under some mild conditions
the empirical estimator of eq. (C.2) is equal to the empirical estimator of eq. (C.1)
(Fukumizu et al., 2013, Thm. 8). In particular, one has

µ̂
(1)
Y |X=x = kX(x)′(KX +mλIm)−1kY (·)

based on sample paths {(xi,yi)}mi=1 from (X,Y) where kX(x), KX and kY (·)

119

are such that

[kX(x)]i = K(xi,x) [KX]i,j = K(xi,xj) kY (·) = [K(·,y1), . . . ,K(·,ym)]′.

Cross-covariance operators have been used to define kernel-based measures of
conditional dependence, as we shall discuss in the next section.

C.1.1 Hilbert-Schmidt conditional independence criterion for
stochastic processes

Multiple measures of conditional dependence have been proposed in the lit-
erature (Fukumizu et al., 2007; Sun et al., 2007; Tillman et al., 2009). In
this section, we follow Tillman et al. (2009) to define a nonparametric condi-
tional dependence measure for stochastic processes, based on the conditional
cross-covariance operator C̃Y,X|Z : H(V)→ H(V)

C̃Y,X|Z = C̃Y,X − C̃Y,Z C̃−1
Z,Z C̃Z,X . (C.3)

The squared Hilbert-Schmidt norm HY X|Z := ‖C̃(Y,Z),X|Z‖2HS can be used as
measure of conditional dependence of stochastic processes. Since the signature
kernel K is characteristic, it follows that X ⊥⊥ Y | Z ⇐⇒ HY X|Z = 0

(Tillman et al., 2009).
Givenm sample paths {(xi,yi, zi)}mi=1 from the joint distribution of (X,Y, Z),

let KX ,KY and KZ be the Gram matrices with entries

[KX]i,j = K(xi,xj) [KY]i,j = K(yi,yj) [KZ]i,j = K(zi, zj).

An empirical estimator of the kernel conditional dependence measure HY X|Z is
then given by

ĤY X|Z =
1

m2

{
tr(K̃XK̃Y)− 2tr(K̃XK̃Z(K̃ε

Z)−2K̃ZK̃Y)

+ tr(K̃XK̃Z(K̃ε
Z)−2K̃ZK̃Y K̃Z(K̃ε

Z)−2K̃Z)
}
,

where K̃ε
Z = K̃z+εIm and K̃X , K̃Y ,K̃Z are the centered versions of the matrices

KX ,KY and KZ

K̃X = HKXH K̃Y = HKY H K̃Z = HKZH,

with H = Im −m−11m and 1m the m ×m matrix with all entries set to 1.
This estimator can be used as a test statistic for testing whether X and Y are
independent given Z. However, it is not known how to analytically compute the
null distribution of the test statistic, and permutation tests are typically used.
In Sec. 5.4.3 we use this measure of conditional dependence as part of the kPC

120

algorithm to infer causal relationships between multidimensional stochastic
processes. We provide more details in Appendix C.3.

C.1.2 Construction of the estimator for the second order MMD

As discussed in Chapter 5, the estimation of the second order MMD, requires
the ability to compute inner products of the form 〈x̃(s), ỹ(t)〉 in H(V). Here,
we provide more details on the approximation that we have used in eq. (5.12),
also restated below for the reader’s convenience

〈
x̃(s), ỹ(t)

〉
H(V)

≈ ksX(x)′(Ks
X +mλIm)−1KX,Y (Kt

Y + nλIn)−1ktY (y),

where x̃ and ỹ are sample paths from the processes µ(1)
X|FX and µ(1)

Y |FY respect-
ively. In particular, we have

x̃(s) = µ
(1)
X|x|[0,s] and ỹ(t) = µ

(1)
Y |y|[0,t] .

As discussed at the beginning of this section, their empirical estimates are
constructed from m samples {xi}mi=1 from X and n samples {yj}nj=1 from Y

respectively

x̃(s) ≈ ksX(x)′(Ks
X+mλIm)−1kX(·) and ỹ(t) ≈ ktY (y)′(Kt

Y +nλIn)−1kY (·)
(C.4)

where ksX(x), Ks
X , kX(·) are defined by

[ksX(x)]i = K(xi|[0,s],x|[0,s]) [Ks
X]i,j = K(xi|[0,s],xj |[0,s])

and

kX(·) = [K(·,x1), . . . ,K(·,xm)]′.

Alternatively, we can write

x̃(s) ≈
m∑

i=1

αiK(·,xi) α = (Ks
X +mλIm)−1ksX(x)

ỹ(t) ≈
n∑

j=1

βjK(·,yj) β = (Kt
Y + nλIn)−1ktY (y).

121

Therefore, the inner product between x̃(s) and ỹ(t) can be approximated as
follows

〈x̃(s), ỹ(t)〉H(V) ≈
m∑

i=1

n∑

j=1

αiβjK(xi,yj)

= α′KXY β

= ksX(x)′(Ks
X +mλIm)−1KXY (Kt

Y + nλIn)−1ktY (y),

where KXY ∈ Rm×n with [KXY]i,j = K(xi,yj). Next we outline the algorithm
to compute an estimate of the second order MMD.

C.2 Algorithms

In this section, we provide algorithms to compute the empirical estimate D̂
(k)
K

for the kth order MMD, which rely on the ability to evaluate the signature
kernel K(x,y) where x and y are two paths taking their values in the Hilbert
space H(k−1)(V) (with the convention that H(0)(V) = V). Following Cass et al.
(2020, Sec. 3.1.) we use an explicit finite difference scheme to approximate the
PDE solution u on a grid D of size P ×Q

D = {0 = s1 < s2 < . . . < sP = T} × {0 = t1 < t2 < . . . < tQ = T}.

Writing u(si, tj) = ui,j to make the notation more concise, we use an update
rule of the form

ui+1,j+1 = fupd(ui,j+1, ui+1,j , ui,j ,Mi,j), Mi,j = 〈xsi+1 − xsi ,ytj+1 − ytj 〉.

Hence, computing K(x,y) consists in forming the (P − 1)× (Q− 1) matrix M

such that

[M]i,j = 〈x(si+1)− x(si),y(tj+1)− y(tj)〉H(k−1)(V) ,

and iteratively applying the update rule as outlined in Alg. 8. Besides, in Alg. 8
we distinguish the case where the solution u on the entire grid is returned,
and the case where only the solution at the final times (sP , tQ) = (T, T) is
returned, which corresponds to the value of the kernel K(x,y). The runtime
complexity to solve one PDE is O(PQ). We make use of the parallelization
strategy described in Appendix A.3.2 to drastically speed-up the PDE solver
on CUDA-enabled GPUs.

122

C.2.1 Algorithm for the first order MMD

In this section we provide the algorithm to compute an empirical estimator
of the 1st order MMD. This way, we also introduce subroutines (Alg. 8 and
Alg. 9) for the estimator of the 2nd order MMD.

Let {xi}mi=1 ∼ X and {yj}nj=1 ∼ Y . An estimate for the 1st order MMD
Gretton et al. (2012a) reads as

(
D̂

(1)
K (X,Y)

)2
=

1

m(m− 1)

m∑

i,j=1
i 6=j

K(xi,xj)−
2

mn

m,n∑

i,j=1

K(xi,yj)

+
1

n(n− 1)

n∑

i,j=1
i 6=j

K(yi,yj).

Hence, in order to compute this estimate, we need to form the following three
Gram matrices G1

X,X ∈ Rm×m, G1
X,Y ∈ Rm×n and G1

Y,Y ∈ Rn×n such that,

[G1
X,X]i,j = K(xi,xj) [G1

X,Y]i,j = K(xi,yj) [G1
Y,Y]i,j = K(yi,yj)

As explained at the begining of this section (and outlined in Alg. 9), this
consists in two steps. Taking G1

X,Y for example, first one forms m×n matrices
of size (P − 1)× (Q− 1) each of the form,

[M]p,q = 〈xi(sp+1)− xi(sp), yj(tq+1)− yj(tq)〉V

and then one solves m×n PDEs with Alg. 8. The full procedure is summarized
in Alg. 10. Assuming that m = n and P = Q, Alg. 10 has time complexity
O(dm2P 2) where d is the number of coordinates of the paths x and y.

Algorithm 8 PDESolve O(P 2)

1: Input: matrix M ∈ RP×Q, full ∈ {True,False}
2: Output: solution u ∈ RP×Q with u[p, q] = K(x|[0,sp],y|[0,tq]) if full,

u[P,Q] = K(x,y) otherwise

3: u[1, :]← 1

4: u[:, 1]← 1

5: for p from 1 to P − 1 do

6: for q from 1 to Q− 1 do

7: u[p+ 1, q + 1]← fupd(u[p, q + 1], u[p+ 1, q], u[p, q],M [p, q])

8: end for

9: end for

10: if full then return u else return u[P,Q]

123

Algorithm 9 FirstOrderGram O(dm2P 2)

1: Input: Sample paths {xi}mi=1 ∼ X and {yj}nj=1 ∼ Y , full ∈ {True,False}
2: Output: G ∈ Rm×n×P×Q where G[i, j, p, q] = K(xi|[0,sp],yj |[0,tq]) if full,

G[:, :, P,Q] otherwise

3: M [i, j, p, q] ← 〈xi(sp),yj(tq)〉 ∀i ∈ {1, . . . ,m}, ∀j ∈ {1, . . . , n}, ∀p ∈
{1, . . . , P}, ∀q ∈ {1, . . . , Q}

4: M ←M [:, :, 1:, 1:] +M [:, :, :−1, :−1]−M [:, :, 1:, :−1]−M [:, :, :−1, 1:]

5: G[i, j]← PDESolve(M [i, j]), ∀i ∈ {1, . . . ,m}, ∀j ∈ {1, . . . , n}
6: if full then return G else return G[:, :, P,Q]

Algorithm 10 FirstOrderMMD O(dm2P 2)

1: Input: sample paths {xi}mi=1 ∼ X and {yj}nj=1 ∼ Y
2: Output: an empirical estimator of the 1st order MMD between X and Y

3: G1
XX ← FirstOrderGram({xi}mi=1, {xi}mi=1, full = False)

4: G1
XY ← FirstOrderGram({xi}mi=1, {yj}nj=1, full = False)

5: G1
Y Y ← FirstOrderGram({yj}nj=1, {yj}nj=1, , full = False)

6: return avg(G1
XX)− 2 ∗ avg(G1

XY) + avg(G1
Y Y)

C.2.2 Algorithm for the second order MMD

In Chapter 5, we used the following estimate of the 2nd order MMD,

(
D̂

(2)
K (X,Y)

)2
=

1

m(m− 1)

m∑

i,j=1
i 6=j

K(x̃i, x̃j)−
2

mn

m,n∑

i,j=1

K(x̃i, ỹj)

+
1

n(n− 1)

n∑

i,j=1
i 6=j

K(ỹi, ỹj)

Compared to the 1st order MMD, in order to compute this estimate, as outlined
in Alg. 12, we need to form the following three Gram matrices G2

X,X ∈ Rm×m,
G2
X,Y ∈ Rm×n and G2

Y,Y ∈ Rn×n,

[G2
X,X]i,j = K(x̃i, x̃j) [G2

X,Y]i,j = K(x̃i, ỹj) [G2
Y,Y]i,j = K(ỹi, ỹj)

As outlined in Alg. 11, this consists in two steps. Taking G2
X,Y for example,

first one forms m× n matrices of size (P − 1)× (Q− 1) each of the form

[M]p,q = 〈x̃(sp+1)− x̃(sp), ỹ(tq+1)− ỹ(tq)〉H(V) ,

124

(see Alg. 13) and then one solves m× n PDEs with Alg. 8. This is summarized
in Alg. 12, which has time complexity O((d+m)m2P 2) where d is the number
of coordinates of the paths x and y.

Algorithm 11 SecondOrderGram O(P 2m3)

1: Input: GXX , GXY , GY Y with GXY [i, j, p, q] = K(xi|[0,sp],yj |[0,tq]) and

hyperparameter λ.

2: Output: an empirical estimate of G2
X,Y ∈ Rm×n, where G2

X,Y [i, j] =

K(x̃i, ỹj)

3: M ← InnerProdPredCondKME(GXX , GXY , GY Y , λ)

4: M ←M [:, :, 1:, 1:] +M [:, :, :−1, :−1]−M [:, :, 1:, :−1]−M [:, :, :−1, 1:]

5: G2
XY [i, j]← PDESolve(M [i, j]), ∀i ∈ {1, . . . ,m}, ∀j ∈ {1, . . . , n}

6: return G2
XY

Algorithm 12 SecondOrderMMD O(dm2P 2 + P 2m3)

1: Input: sample paths {xi}mi=1 ∼ X and {yj}nj=1 ∼ Y , hyperparameter λ.

2: Output: an empirical estimate of the 2nd order MMD between X and Y

3: G1
XX ← FirstOrderGram({xi}mi=1, {xi}mi=1, full = True)

4: G1
XY ← FirstOrderGram({xi}mi=1, {yj}nj=1, full = True)

5: G1
Y Y ← FirstOrderGram({yj}nj=1, {yj}nj=1, full = True)

6: G2
XX ← SecondOrderGram(G1

XX , G
1
XX , G

1
XX , λ)

7: G2
XY ← SecondOrderGram(G1

XX , G
1
XY , G

1
Y Y , λ)

8: G2
Y Y ← SecondOrderGram(G1

Y Y , G
1
Y Y , G

1
Y Y , λ)

9: return avg(G2
XX)− 2 ∗ avg(G2

XY) + avg(G2
Y Y)

125

Algorithm 13 InnerProdPredCondKME O(P 2m3)

1: Input: three Gram matrices GXX , GXY , GY Y and hyperparameter λ

2: Output: returns an empirical estimate of M ∈ Rm×n×P×Q where

M [i, j, p, q] = 〈x̃i(sp), ỹj(tq)〉
3: WX [:, :, p]← (GXX [:, :, p, p] +mλI)−1, ∀p ∈ {1, . . . , P}
4: WY [:, :, q]← (GY Y [:, :, q, q] + nλI)−1, ∀q ∈ {1, . . . , Q}
5: for p from 1 to P do

6: for q from 1 to Q do

7: GWX ← GXX [:, :, p, p]WX [:, :, p]

8: WGY ←WY [:, :, q]GY Y [:, :, q, q]

9: M [:, :, p, q]← GWXGXY [:, :, P,Q]WGY

10: end for

11: end for

C.2.3 Algorithm for higher order MMDs

Now, we generalize the procedure in Appendix C.2.2 for computing an estimate
of D

(k+1)
K when k > 1,

(
D̂

(k+1)
K (X,Y)

)2
=

1

m(m− 1)

m∑

i,j=1
i 6=j

K(x̃
(k)
i , x̃

(k)
j)− 2

mn

m,n∑

i,j=1

K(x̃
(k)
i , ỹ

(k)
j)

+
1

n(n− 1)

n∑

i,j=1
i 6=j

K(ỹ
(k)
i , ỹ

(k)
j),

where x̃(k)
i and ỹ(k)

j denote sample paths from the processes µ(k)
X|FX and µ(k)

Y |FY
respectively. In order to compute this estimate, as outlined in Alg. 12, we need
to form the following three Gram matrices Gk+1

X,X ∈ Rm×m, Gk+1
X,Y ∈ Rm×n and

Gk+1
Y,Y ∈ Rn×n,

[Gk+1
X,X]i,j = K(x̃

(k)
i , x̃

(k)
j) [Gk+1

X,Y]i,j = K(x̃
(k)
i , ỹ

(k)
j) [Gk+1

Y,Y]i,j = K(ỹ
(k)
i , ỹ

(k)
j)

As outlined in Alg. 14, this consists in two steps. Taking Gk+1
X,Y for example,

first one forms m× n matrices of size (P − 1)× (Q− 1) each of the form,

[M]p,q =
〈
x̃(k)(sp+1)− x̃(k)(sp), ỹ

(k)(tq+1)− ỹ(k)(tq)
〉
H(k)(V)

(see Alg. 13) and then one solves m× n PDEs with Alg. 8. This is summarized
in Alg. 15, which has time complexity O((d+km)m2P 2) where d is the number
of coordinates of the paths x and y.

126

Algorithm 14 HigherOrderGram O(P 2m3)

1: Input: GkXX , G
k
XY , G

k
Y Y with GkXY [i, j, p, q] = K(x̃

(k−1)
i |[0,sp], ỹ

(k−1)
j |[0,tq])

and hyperparameter λ.

2: Output: an estimate of Gk+1
XY ∈ Rm×n×P×Q, where Gk+1

XY [i, j, p, q] =

K(x̃
(k)
i |[0,sp], ỹ

(k)
j |[0,tq])

3: M ← InnerProdPredCondKME(GkXX , G
k
XY , G

k
Y Y , λ)

4: M ←M [:, :, 1:, 1:] +M [:, :, :−1, :−1]−M [:, :, 1:, :−1]−M [:, :, :−1, 1:]

5: Gk+1
XY [i, j] ← PDESolve(M [i, j], full = True), ∀i ∈ {1, . . . ,m}, ∀j ∈
{1, . . . , n}

6: return Gk+1
XY

Algorithm 15 HigherOrderMMD O(dm2P 2 + (k − 1)P 2m3)

1: Input: sample paths {xi}mi=1 ∼ X and {yj}nj=1 ∼ Y , hyperparameter λ,

order k.

2: Output: an empirical estimate of the kth order MMD between X and Y

3: GXX ← FirstOrderGram({xi}mi=1, {xi}mi=1, full = True)

4: GXY ← FirstOrderGram({xi}mi=1, {yj}nj=1, full = True)

5: GY Y ← FirstOrderGram({yj}nj=1, {yj}nj=1, full = True)

6: for order from 2 to k do

7: Gnew
XX ← HigherOrderGram(GXX , GXX , GXX , λ)

8: Gnew
XY ← HigherOrderGram(GXX , GXY , GY Y , λ)

9: Gnew
Y Y ← HigherOrderGram(GY Y , GY Y , GY Y , λ)

10: GXX , GXY , GY Y ← Gnew
XX , G

new
XY , G

new
Y Y

11: end for

12: return avg(GXX [:, :, P, P])− 2 ∗ avg(GXY [:, :, P,Q]) + avg(GY Y [:, :, Q,Q])

127

C.3 Experimental details

We start with further experimental details for the applications of higher order
distribution regression to quantitative finance (Sec. 5.4.2), where we consider
the problem of optimally stopping fractional Brownian motions with different
hurst exponents.

C.3.1 Rough volatility

Rough volatility models constitute a class of models that are empirically well-
tailored to fit observed implied market volatilities in the context of option
pricing for short maturity assets. The basic model for option pricingis called
the Black-Scholes model in which the volatility is assumed to be constant.
Stochastic volatility models are extensions of the Black-Scholes model to the
case where the volatility is itself stochastic. The main shortcoming of such
stochastic volatility models is that they are able to capture the true steepness of
the implied volatility smile close to maturity (see Bayer et al. (2016) for extra
details). This is where rough volatility models become useful. Among them,
the rough Bergomi model introduced by Bayer et al. (2016), stood out for its
ability to explain implied volatility and other phenomena related to European
options.

C.3.2 Higher order distribution regression

Data We use the data generator from the publicly available repository https:

//github.com/HeKrRuTe/OptStopRandNN to simulate sample paths from X

a fractional Brownian motion (fBm) and obtain the solution of the optimal
stopping time problem supτ E[g(Xτ) |X0]. We note that although fBm is not
typically used as a stock price model in quantitative finance, it is nevertheless
considered a respected challenging example for optimal stopping algorithms
(Becker et al., 2019; Herrera et al., 2021).

Models We use a kernel Ridge regressor with different distribution regression
kernels. Each is of the form Kdr(X,Y) = exp(−Dk(X,Y)2/σ2) where Dk(X,Y)

is a maximum mean discrepancy associated to the kernel k. The models K(1)
dr

and K(2)
dr correspond to the 1st and 2nd order maximum mean discrepancies

D
(1)
K and D

(2)
K . We consider two other baselines (Matérn and RBF) for which

the MMD is computed using the Matern 3/2 covariance function kmat32, and

128

https://github.com/HeKrRuTe/OptStopRandNN
https://github.com/HeKrRuTe/OptStopRandNN

the RBF covariance function krbf,

kmat32(x,y) =

(
1 +

√
3

γ2
‖x− y‖

)
exp

(
−
√

3

γ2
‖x− y‖

)
,

krbf(x,y) = exp

(
−‖x− y‖2

γ2

)

All models are run 3 times. The hyperparameters of all models are selected by
cross-validation via a grid search on the training set (70% of the data selected
at random) of each run.

Inferring causal graph for interacting bodies

We provide further details for the last application (Sec. 5.4.3) where the task
is to infer whether any two bodies are connected by a spring from multiple
observations of their 2D trajectories.

Data We adapt the Pymunk simulator from Li et al. (2020a) publicly available
at https://github.com/pairlab/v-cdn. For each pair of balls, there is a one-
half probability that they are connected by nothing, or a spring. For each
graph we run multiple episodes each of 20 time steps. At the beginning of each
episode, we randomly assign the balls in different positions. The stiffness of the
spring relation is set to 20, and we randomly sample the rest length between
[20, 120].

Causal discovery algorithm The PC algorithm (Spirtes et al., 2000) uses
conditional independence tests to generate a causal graph from a dataset. The
PC algorithm consists in two stages. The first stage, referred to as the skeleton
phase, consists in finding the structure of the causal graph. In the second
stage, the edges are oriented by repetitively applying orientation rules. In the
multi-body interaction example, we only need to perform the skeleton phase,
which is sketched hereafter,

1. Start with a complete graph.

2. For each X and Y which are still connected. If there is a third variable Z1

connected to X or Y , such that X ⊥⊥ Y | Z1, remove the edge between
X and Y .

3. For each X and Y which are still connected, if there is a third and a
fourth variable Z1 and Z2 connected to X or Y such that X ⊥⊥ Y | Z1, Z2,
remove the edge between X and Y .

4. Iteratively increase the cardinality of the set of variables on which to
condition.

129

https://github.com/pairlab/v-cdn

To test for conditional independence we use the Hilbert-Schmidt conditional
independence criterion HXY |Z for stochastic processes (Appendix C.1.1). The
combination of the PC algorithm with a kernel-based dependence measure has
been used in Sun et al. (2007) and Tillman et al. (2009) where it is termed
kPC. However, to our knowledge it has never been used in conjunction with a
kernel-based measure of dependence for multidimensional stochastic processes.

Since the null distribution of the test statistics HY X|Z is not known, one
possibility would be to use a permutation approach as in Tillman et al. (2009,
Sec 2). However the latter is not computationally efficient. We leave the
development of a faster approach for future work, and adopt the approach from
Sun et al. (2007) for this experiment. That is we use a threshold α and remove
an edge if there is a Z such that HXY |Z < α. We repeat 15 times the causal
discovery procedure and use 30% of the runs to fix α.

All experiments in Sec. 5.4 have been run on a P100 GPU to leverage an
efficient dedicated CUDA implementation of the signature kernel.

C.4 Proofs

Theorem C.4.1. Given two stochastic processes X,Y

D
(2)
K (X,Y) = 0 ⇐⇒ PX|FX = PY |FY .

Furthermore
D

(2)
K (X,Y) = 0 =⇒ D

(1)
K (X,Y) = 0,

but the converse is not generally true.

Proof. First we note that by a standard result in signature kernel learning
theory (Chevyrev and Oberhauser, 2018), for every t, the mapping

PX|FXt 7→ µ
(1)
X|FXt

=

∫
K(·,x)PX|FXt (dx)

is a homeomorphism (with respect to the weak topology and the Hilbert space
topology); in particular, we have

PX|FX = PY |FY ⇐⇒ P
µ
(1)
X|FX

= P
µ
(1)
Y |FY

.

Then, using the same argument for P
µ
(1)
X|FX

and P
µ
(1)
Y |FY

, we can deduce that

P
µ
(1)
X|FX

= P
µ
(1)
Y |FY

⇐⇒
∫
K(·,x)P

µ
(1)
X|FX

(dx) =

∫
K(·,y)P

µ
(1)
Y |FY

(dy)

⇐⇒ µ
(2)
X = µ

(2)
Y .

130

Since by definition it holds that D
(2)
K (X,Y) = ‖µ(2)

X − µ
(2)
Y ‖H(2)(V), we

complete the proof of the first claim in this theorem.
For the second claim, it is easy to see that by definition

PX|FX = PY |FY ⇒ PX = PY .

Besides, we know that

PX = PY ⇐⇒ D
(1)
K (X,Y) = 0,

and therefore
D

(2)
K (X,Y) = 0 =⇒ D

(1)
K (X,Y) = 0.

Moreover, we refer readers to Hoover and Keisler (1984, Example 3.1) for
a simple example which shows that there exist processes X and Y with
D

(1)
K (X,Y) = 0 but D

(2)
K (X,Y) > 0.

Theorem C.4.2. D̂
(2)
K (X,Y) is a consistent estimator for the 2nd order MMD,

∣∣∣D̂ (2)
K (X,Y)−D

(2)
K (X,Y)

∣∣∣ p→ 0 as m,n→∞ (C.5)

with {Xi}mi=1 ∼ X, {Yi}ni=1 ∼ Y and where convergence is in probability.

Proof. Recall that given m independent sample paths {xi}mi=1 ∼ X, we can use
the estimator in eq. (C.4) to approximate sample paths {x̃i}mi=1 from the 1st

order predictive KME µ
(1)
X|FX . Hence, it suffices to prove the following claim.

Claim: consider m independent sample paths {x̃i}mi=1 ∼ µ̂
(1)
X|FX . Then, the

estimator given by µ̂
(2)
X = 1

m

∑m
i=1K(·, x̃i) is consistent for the 2nd order

predictive KME µ
(2)
X , that is

∥∥∥µ̂(2)
X − µ

(2)
X

∥∥∥
2

H(2)(V)

p→ 0, as m→∞.s (C.6)

By the triangular inequality

∥∥∥µ̂(2)
X − µ

(2)
X

∥∥∥
2

H(2)(V)
=

∥∥∥∥∥
1

m

m∑

i=1

K(·, x̃i)− E
[
K(·, µ(1)

X|FX)
]∥∥∥∥∥

2

H(2)(V)

(C.7)

≤
∥∥∥∥∥

1

m

m∑

i=1

K(·, x̃i)− E
[
K(·, µ̂(1)

X|FX)
]∥∥∥∥∥

2

H(2)(V)

(C.8)

+
∥∥∥E
[
K(·, µ̂(1)

X|FX)
]
− E

[
K(·, µ(1)

X|FX)
]∥∥∥

2

H(2)(V)
(C.9)

The term in eq. (C.8) converges to 0 as m → ∞ by the weak law of large

131

numbers. Therefore, it remains to show that as m→∞

A :=
∥∥∥EX

[
K(·, µ̂(1)

X|FX)
]
− EX

[
K(·, µ(1)

X|FX)
]∥∥∥
H(2)(V)

p→ 0 (C.10)

First note the following upper bound,

A ≤ EX
∥∥∥K(·, µ̂(1)

X|FX)−K(·, µ(1)
X|FX)

∥∥∥
H(2)(V)

.

We will show convergence of the right-hand-side. By Park and Muandet (2021,
Theorem 3.4), for every t = 1, . . . , T

EX|FXt
∥∥∥µ̂(1)

X|FXt
− µ(1)

X|FXt

∥∥∥
2

H(V)

p→ 0 as m→∞. (C.11)

Now let us assume that the above convergences also hold almost surely for every
t = 1, . . . , T . Then by the Egorov’s theorem, for any δ > 0, there is a subset
Ωδ with P(Ωδ) > 1− δ and the above convergence eq. (C.11) holds uniformly
on Ωδ. This implies that on Ωδ for every ε > 0 there is an N(ε) such that for
all m ≥ N(ε) and all t = 1, . . . , T , it holds that

EX|FXt
∥∥∥µ̂(1)

X|FXt
− µ(1)

X|FXt

∥∥∥
2

H(V)
≤ ε2. (C.12)

From this estimate we immediately obtain by the triangle inequality on Ωδ

EX|FXt
∥∥∥µ̂(1)

X|FXt

∥∥∥
2

H(V)
≤ 2EX|FXt

∥∥∥µ(1)
X|FXt

∥∥∥
2

H(V)
+ 2ε2, (C.13)

and, by the Chebyshev’s inequality, on Ωδ, ∀t = 1, . . . , T , ∀m ≥ N(ε)

PX|FXt

[∥∥∥µ̂(1)
X|FXt

− µ(1)
X|FXt

∥∥∥
H(V)

>
√
ε

]
≤ 1

ε
EX|FXt

∥∥∥µ̂(1)
X|FXt

− µ(1)
X|FXt

∥∥∥
2

H(V)

≤ 1

ε
ε2 = ε,

which implies that on Ωδ, ∀t = 1, . . . , T , the sequence µ̂(1)
X|FXt

converges to

µ
(1)
X|FXt

in probability with respect to PX . By a standard result in rough path
theory (Lyons, 1998) there exists a universal constant β ∈ R such that

∥∥∥K(·, µ̂(1)
X|FX)

∥∥∥
H(2)(V)

≤ β
∥∥∥µ̂(1)

X|FX

∥∥∥
1–var

H(V)
, (C.14)

where ‖·‖1–varH(V) denotes the total variation norm of paths taking values in H(V).
Since we are in a finite discrete time setup, we have

∥∥∥µ̂(1)
X|FX

∥∥∥
1–var

H(V)
≤ C(T)

T∑

t=1

∥∥∥µ̂(1)
X|FXt

∥∥∥
H(V)

. (C.15)

132

Hence, combining all the above arguments, we can conclude that on Ωδ and for
all m ≥ N(ε),

EX
∥∥∥K(·, µ̂(1)

X|FX)
∥∥∥

2

H(2)(V)
≤ β2EX

∥∥∥µ̂(1)
X|FX

∥∥∥
2

1–var;H(V)

≤ β2C(T)2
T∑

t=1

EX
∥∥∥µ̂(1)

X|FXt

∥∥∥
2

H(V)

≤ β2C(T)2
(

2

T∑

t=1

EX
∥∥∥µ(1)

X|FXt

∥∥∥
2

H(V)
+ 2Tε2

)

≤ C <∞

where in the penultimate line we used eq. (C.13). As a result, we obtain that
on Ωδ,

sup
m≥N(ε)

EX
∥∥∥K(·, µ̂(1)

X|FX)−K(·, µ(1)
X|FX)

∥∥∥
2

H(2)(V)
<∞ (C.16)

which in turn implies, by the de la Vallée–Poussin theorem, that on Ωδ the
sequence, ∥∥∥K(·, µ̂(1)

X|FX)−K(·, µ(1)
X|FX)

∥∥∥
2

H(2)(V)

m ≥ N(ε) is uniformly integrable for PX . Thanks to the uniform integrability
of the sequence and the continuity of the kernel K,

∥∥∥K(·, µ̂(1)
X|FX)−K(·, µ(1)

X|FX)
∥∥∥
H(2)(V)

→ 0

in probability for PX . Then recalling that we have shown that µ̂(1)
X|FX converges

to µ(1)
X|FX in probability with respect to PX as m → ∞, a standard result in

probability theory ensures that on Ωδ,

EX
∥∥∥K(·, µ̂(1)

X|FX)−K(·, µ(1)
X|FX)

∥∥∥
H(2)(V)

→ 0, as m→∞

which implies that,
∥∥∥EX

[
K(·, µ̂(1)

X|FX)
]
− EX

[
K(·, µ(1)

X|FX)
]∥∥∥
H(2)(V)

→ 0, as m→∞

on Ωδ. Clearly, as δ was arbitrary, we have

EX|FXt
∥∥∥µ̂(1)

X|FXt
− µ(1)

X|FXt

∥∥∥
2

H(V)
→ 0 as m→∞

almost surely. Finally, note that the above result holds true for any sub-
sequence of

(
µ̂

(1)
X|FXt

)
m≥1

(because every sequence converging in probability

has a subsequence converging almost surely), which proves the desired result
eq. (C.6).

133

Theorem C.4.3. Given two stochastic processes X,Y

D
(n)
K (X,Y) = 0 =⇒ D

(k)
K (X,Y) = 0 for any 1 < k < n (C.17)

but the converse is not generally true.

Proof. Let X ∈ X (V), then we denote PX|FXt =: X
(1)
t . Then we continue this

procedure and define X(n)
t := PX(n−1)|FXt (it is called the rank n prediction

process in Bonnier et al. (2020)). Now we can apply the same argument as in
the proof of Theorem Thm. C.4.1 together with an induction procedure easily
prove that

D
(n)
K (X,Y) = 0 ⇐⇒ PX(n−1) = PY (n−1) (C.18)

for all n > 1. From the definition of these processes X(n) and Y (n) we can
immediately see that PX(n) = PY (n) ensures that PX(k) = PY (k) for all k <
n, which yields the desired result. We refer readers to Hoover and Keisler
(1984, Example 3.2) for examples which illustrate that for each n there exist
processes X and Y with D

(n)
K (X,Y) = 0 (equivalently, PX(n−1) = PY (n−1)) but

D
(n+1)
K (X,Y) > 0 (equivalently, PX(n) 6= PY (n)).

Remark. Using terminologies from Hoover and Keisler (1984) and Bonnier
et al. (2020), PX(n) = PY (n) means that processes X and Y have the same
adapted distribution up to rank n. Therefore Thm. C.4.1 and Thm. C.4.3 tell us
that D

(n)
K (X,Y) = 0 if and only if they ave the same adapted distribution up to

rank n. Moreover, using the partial isometry between the RKHS generated by
K and the tensor algebra, see e.g. Chevyrev and Oberhauser (2018, Theorem
E.2), one can use an induction argument to verify that D

(n)
K coincides with the

metric dn−1 defined in Bonnier et al. (2020, Definition 14), and therefore by
Bonnier et al. (2020, Theorem 4) we can obtain a stronger result that D

(n)
K

actually metrizes the so–called rank n− 1 adapted topology (see Bonnier et al.
(2020, Definition 5), Hoover and Keisler (1984, Definition 2.25)). For more
details regarding adapted topologies we refer to Bonnier et al. (2020).

Theorem C.4.4. Let f : R → R be a globally analytic function with non-
negative coefficients. Define the family of kernels K(n)

dr : P(X (V))×P(X (V))→
R as follows

K
(n)
dr (X,Y) = f(D

(n)
K (X,Y)), n ∈ N∗. (C.19)

Then the RKHS associated to K
(n)
dr is dense in the space of functions from

P(X (V)) to R which are continuous with respect to the kth order MMD for any
1 ≤ k ≤ n.

Proof. By Christmann and Steinwart (2010, Thm. 2.2) if K is a compact metric
space and H is a separable Hilbert space such that there exists a continuous

134

(w.r.t. a topology τ on K) and injective map ρ : K → H, then for any
globally analytic function with non-negative coefficients f : R→ R the kernel
k : K ×K → R given by

k(z, z′) = f
(∥∥ρ(z)− ρ(z′)

∥∥
H

)
(C.20)

is universal in the sense that its RKHS is τ -dense in the space of τ -continuous
functions from K to R. By assumption, X (V) is a D

(1)
K -compact metric space,

therefore by Thm. C.4.3 it is also D
(n)
K -compact for every n ≥ 1. Hence,

by Walkden (2014, Thm. 10.2) the set of stochastic processes P(X (V)) is
also D

(n)
K -compact. To show that ρ : X 7→ µ

(n)
X is injective and continous

with respect to D
(n)
K we refer readers to Bonnier et al. (2020, Proposition 4).

Furthermore, H(n)(V) can be shown by induction to be a Hilbert space with a
countable basis, hence it is separable. Setting K = P(X (V)), H = H(n)(V)

and ρ : X 7→ µ
(n)
X concludes the proof.

135

Appendix D

Appendix to Chapter 6

This appendix is organized as follows. In Appendix D.1 we provide a sum-
mary of the computational aspects of SPDEs used for data simulation and
model definition, emphasizing the important role of the Fourier Transform
(Appendix D.1.1) for simulating noise realizations of Wiener processes (Ap-
pendix D.1.2) and building numerical solvers for SPDEs (Appendix D.1.3). In
Appendix D.2 we provide further experimental details (Appendix D.2.1) and
additional experiments on the stochastic Ginzburg-Landau (Appendix D.2.2)
and wave (Appendix D.2.3) equations.

D.1 Computational aspects of SPDEs

We start this section with the definition of the Fourier Transform (FT). We
then define the Discrete Fourier Transform (DFT) as an approximation to the
FT of a function observed at finitely many locations. Next, we discuss the role
played by the FT to sample realizations of Wiener processes, necessary to build
spectral solvers for SPDEs. The interested reader is referred to Briggs and
Henson (1995) and Lord et al. (2014) for further details.

D.1.1 The Fourier Transform

Let V be a vector space over the complex numbers (e.g. Cdh or Cdh×dh). Let
r ∈ N∗ and let C ⊂ Rr be a compact subset of Rr. In Chapter 6 we used either
r = d and C = D or r = d+ 1 and C = [0, T]×D.

Definition 20 (r-dimensional Fourier Transform). The r-dimensional FT
Fr : L2(Rr, V)→ L2(Rr, V) and its inverse F−1

r : L2(Rr, V)→ L2(Rr, V) are
defined as follows

Fr(f)(y) =

∫

Rr
e−2πi〈x,y〉f(x)dx, F−1

r (g)(x) =

∫

Rr
e2πi〈x,y〉g(y)dy,

136

for any f, g ∈ L2(Rr, V), where i =
√
−1 is the imaginary unit and 〈·, ·〉 denotes

the Euclidean inner product on Rr.

In practice, we do not observe a function on Rr but on a subset C ⊂
Rr. Furthermore, functions are observed at finitely many locations in C, and
another transform—the discrete Fourier transform (DFT)—is used for numerical
computations.

In the sequel we denote by ΠN the set of periodic sequences indexed on Zr
with period vector (N1, . . . , Nr).

Definition 21 (r-dimensional Discrete Fourier Transform). The r-
dimensional DFT Dr : ΠN → ΠN and its inverse D−1

r : ΠN → ΠN are
defined as follows,

Dr(u)n =
∑

k∈Zr∩RN
uke

−2πi〈n,N−1k〉, D−1
r (v)k =

1

|detN|
∑

n∈Zr∩RN
vne

2πi〈n,N−1k〉,

with N = diag(N1, . . . , Nr) ∈ Nr×r, and RN the rectangular domain RN =

{x ∈ Rr | 0 ≤ xi < Ni, i = 1, . . . , r}.
The DFT of a sequence can be computed exactly and efficiently using

the fast Fourier transform (FFT) algorithm (Cooley and Tukey, 1965) which
reduces the complexity from O(M2) to O(M logM) where M = N1N2 . . . Nr.
Most importantly, the FFT algorithm is implemented in machine learning
libraries such as PyTorch, which provide support for GPU acceleration and
automatic differentiation capabilities.

Note that if we have a finite sequence, we may still define its DFT by
implicitly extending the sequence periodically. In particular, when a compactly
supported function is sampled on its interval of support, and the samples are
used as input for a DFT, it is as if the periodic extension of the function had been
sampled. More precisely, consider an input sequence which corresponds to the
evaluation of a function f on a regular grid of C = RN . For simplicity, suppose
that Ni = N1 for all i = 1, . . . , r and consider the grid points xn = nL/N1 for
n ∈ Zr ∩RN . Taking the DFT of the sequence of general term un = f(xn) we
obtain for all n ∈ Zr

Dr(u)n =
∑

k∈Zr∩RN
uke

−2πi〈n,k/N1〉 =
∑

k∈Zr∩RN
f(xk)e−2πi〈yn,xk〉,

where yn are the reciprocal frequency points given by yn = n/L for n ∈ Zr∩RN .
The DFT of a compactly supported (or approximately compactly supported)
function f sampled on the regular grid of points xk approximates the FT of f
at the frequency points yn (up to a constant multiplicative factor).

The FT is closely related to the notions of Fourier coefficients and Fourier
Series defined hereafter.

137

Definition 22 (r-dimensional Fourier series). Let f be a piecewise smooth
function f : Rr → V which is periodic in xi with period Li ∈ R+ for all
i = 1, . . . , r. The r-dimensional Fourier series of f is a representation of the
form,

f(x) ∼
∑

n∈Zr
cn(f)e2πi〈L−1n,x〉,

where L = diag(L1, . . . , Lr) ∈ Rr×r and cn(f) are complex coefficients, called
Fourier coefficients, given by

cn(f) =
1

|detL|

∫

RL
e−2πi〈L−1n,x〉f(x)dx, n ∈ Zr

where RL ⊂ Rr denotes the rectangular domain of sides L1, . . . , Lr.

We note that in the definition above, the sign ∼ means that the series is a
formal series and no statement is made about the convergence of the series (the
forms of convergence are studied in Alimov et al. (1992)). If f is compactly
supported on RL, we may still define its Fourier coefficients, and in this case
Fr(f)(yn) = |detL|cn(f) at the frequency points yn = L−1n.

Numerical consideration

Consider a function f which has compact support (or is periodic) which is
observed at M locations in its support (or its unitary cell RL). When using the
DFT to approximate M points of the spectrum Fr(f)(yk) (or M coefficients
ck(f)), a so-called aliasing error usually occurs: due to the periodicity of the
DFT, the kth coefficient of the DFT includes the contributions not only of the
kth frequency mode, but also from higher modes of the underlying function f .
In general the accuracy of the highest frequency modes is more impacted by
this error, and aliasing occurs specifically when we compute nonlinear terms in
the physical space. For example, in Chapter 6 we approximate the evaluation
on the grid D × T of F−1

d+1(Fd+1(K)Fd+1(f)) by D−1
d+1(BDd+1(f |D×T)) where

f = 1s≥0Hθ,ξ(z) and Hθ,ξ is nonlinear. One possibility to mitigate aliasing
is to set to zero the DFT terms (arising in nonlinearities) corresponding to
the highest frequency modes before we apply the inverse DFT to go back to
the physical space. This is precisely what we do when we parametrize only
k1
max× . . .× kd+1

max× dh× dh entries of the complex tensor B, and set the others
to zero, hence resolving potential aliasing errors. We note that specific rules
have been proposed (notably in the literature on pseudo-spectral solvers) to
deal with specific nonlinearities. However, in the context of Neural SPDE we
learn the nonlinearities, hence the number of frequency modes that we retain is
treated as a hyperparameter.

138

D.1.2 Stochastic simulation of Wiener processes

After defining Wiener processes we outline the sampling procedure that we
used to simulate the datasets in Chapter 6. For more details on computational
aspects of SPDEs the reader is referred to Lord et al. (2014).

Throughout this section, H will denote a separable Hilbert space (e.g.
H = L2(D)) with a complete orthonormal basis {φk}k∈N. Let (Ω,F ,Ft,P) be
a filtered probability space.

Q-Wiener process

Consider an operator Q : H → H such that there exists a bounded sequence
of nonnegative real numbers {λk}k∈N such that Qφk = λkφk for all k ∈ N
(this is implied by Q being a trace class, non-negative, symmetric operator, for
example).

Definition 23 (Q-Wiener process). Let Q be a trace class non negative,
symmetric operator on H. A H-valued stochastic process {W (t) : t ≥ 0} is
called a Q-Wiener process if

1. W (0) = 0 almost surely;

2. W (t;ω) is a continuous sample trajectory R+ 7→ H, for each ω ∈ Ω;

3. W (t) is Ft-adapted and has independent increments W (t) −W (s) for
s < t;

4. W (t)−W (s) ∼ N (0, (t− s)Q) for all 0 ≤ s ≤ t.

In analogy to the Karhunen Loéve expansion, it can be shown that W (t) is
a Q-Wiener process if and only if for all t ≥ 0

W (t) =

∞∑

j=1

√
λjφjβj(t), (D.1)

where βj(t) are i.i.d. Brownian motions, and the series converges in L2(Ω, H).
Moreover the series is P-a.s. uniformly convergent on [0, T] for arbitrary T > 0.
(i.e. converges in L2(Ω, C([0, T], H))).

In the Navier-Stokes example, we drive the SPDE by samples ξ from
a Q-Wiener process in two dimensions. Here we follow Lord et al. (2014,
Example 10.12) and explain how the sampling procedure works in this case. Let
D = (0, L1)× (0, L2) and consider an L2(D)-valued Q-Wiener process W (t). If
the eigenfunctions of Q are given by

φk(x) =
1√
L1L2

e2iπ(k1x1/L1+k2x2/L2),

139

numerical approximation of sample paths from W (t) are easy to obtain through
a DFT. Denote by λk the eigenvalues of Q (e.g. λk = e−α|k|

2 for some parameter
α > 0) and let J be the index set defined by

J := {(j1, j2) ∈ Z2 : −J1/2 + 1 ≤ j1 ≤ J1/2, −J2/2 + 1 ≤ j2 ≤ J2/2}.

The goal is to sample from the truncated expansion of W (t)

WJ(t) =
∑

j∈J

√
λjφjβj(t),

at the collection of sample points

xk = (L1k1/J1, L2k2/J2)′ , 0 ≤ k1 ≤ J1 − 1, 0 ≤ k2 ≤ J2 − 1.

Consider the random variable Z(tn, x) defined by

Z(tn, x) =
√

∆t
∑

j∈J

√
λjφj(x)ξnj , ξnj ∼ CN (0, 2),

meaning that ξnj = a+ ib with a, b i.i.d∼ N (0, 1) such that Z(tn, xk) is a complex
random variable with independent real and imaginary part with the same
distribution as two independent copies of the increment WJ(tn + ∆t, xk) −
WJ(tn, xk). Furthermore, Z(tn, xk) can be expressed in the form

Z(tn, xk) =
1

J1J2

J1/2∑

j1=−J1/2+1

J2/2∑

j2=−J2/2+1

Z̃j1,j2e
2iπ

(
j1
k1
J1

+j2
k2
J2

)
, (D.2)

where Z̃j1,j2 =
√

∆tλj1,j2J1J2ξ
n
j1,j2

We recognize that the matrix with entries
given by eq. (D.2) is the 2D inverse DFT of the J1 × J2 matrix with entries
Z̃j1,j2 . Therefore, we can sample two independent copies of

WJ(tn + ∆t, xk)−WJ(tn, xk), 0 ≤ k1 ≤ J1 − 1, 0 ≤ k2 ≤ J2 − 1,

by computing a single 2D inverse DFT.

Cylindrical Wiener process

If the operator Q = I is the identity, then Q is not of trace class on H so
that the series in eq. (D.1) does not converge in L2(Ω, H). This motivates the
definition of cylindrical Wiener processes.

Definition 24 (Cylindrical Wiener process). Let H be a separable Hilbert
space. A cylindrical Wiener process (a.k.a space-time white noise) is a H-valued

140

stochastic process {W (t) : t ≥ 0} defined by

W (t) =
∞∑

j=1

φjβj(t), (D.3)

where {φj} is any orthonormal basis of H and βj(t) are i.i.d. Brownian motions.

In all examples except Navier-Stokes, we drive the SPDE by samples ξ from
a cylindrical Wiener process in one dimension. Let D = (0, L) and consider
an L2(D)-valued cylindrical Wiener process W (t). As explained in Lord et al.
(2014, Example 10.31), if we take the basis

φk(x) =
√

2/L sin (kπx/L),

numerical approximation of sample paths from W (t) are easy to obtain. The
goal is to sample from the truncated expansion

WJ(t) =
J∑

j=1

φjβj(t), (D.4)

at the collection of sample points xk = kL/J for k = 1, . . . , J . Observing that
a trigonometric identity yields

Cov (WJ(t, xi),WJ(t, xk)) = (tL/J)δik, i, k = 1, . . . , J,

the incrementsWJ(tn+∆t, xk)−WJ(tn, xk) ∼ N (0,∆tL/J) for all k = 1, . . . , J .

D.1.3 Numerical solvers

In this section we present an overview of the numerical solvers for SPDEs we
used to generate the data for all the experiments. The stochastic Ginzburg-
Landau (Sec. 6.5.1 and appendix D.2.2), stochastic wave (Appendix D.2.3) equa-
tions have been solved using the finite difference method, while the stochastic
Korteweg–De Vries (Sec. 6.5.2) and Navier Stokes (Sec. 6.5.3) equations have
been solved using the spectral Galerkin method. We use the same setup as in
Sec. 4.2. In particular, we focus on stochastic semilinear evolution equations of
the form

du(t) = (Lu(t) + F (u(t))) dt+G(u(t))dW (t), (D.5)

where W (t) is either a Q-Wiener process or a cylindrical Wiener process and
L is a linear differential operator generating a semigroup etL. We consider
nonlinearities F,G regular enough (see Lord et al. (2014, Assumption 10.23)) to
guarantee existence and uniqueness of mild solutions of eq. (D.5) (Lord et al.,
2014, Theorem 10.26).

141

Finite difference method

We illustrate this numerical method for the reaction-diffusion equation

du(t) =
(
ε∂2
xxu(t) + F (u(t))

)
dt+ σdW (t), u(0, x) = u0(x),

with homogeneous Dirichlet boundary conditions and where ε, σ > 0 are
constants. We assume for simplicity that u0, u(t),W (t) are real-valued and
D = (0, a). The generalization to higher dimensions is straightforward.

Consider the grid points xj = jh, where h = a
J and j = 0, ..., J , for some

spatial resolution J ∈ N. Let uJ(t) be the finite difference approximation of
[u(t, x1), ..., u(t, xJ−1)] (similarly for WJ(t)) resulting from the solution of the
following SDE

duJ(t) = [−εMuJ(t) + f̂(uJ(t))]dt+ σdWJ(t),

where f̂(uJ) = [f(u1), ..., f(uJ−1)]′ and M is the (J − 1) × (J − 1) matrix
approximating Laplacian (with free boundary conditions) which is given by

M =
1

h2




2 −1

−1 2 −1

−1 2 −1
.

−1 2 −1

−1 2




.

One could modify M for specific boundary conditions. For instance in the
case of periodic boundary one should modify M1,J−1 = MJ−1,1 = −1 (see
Lord et al. (2014, Chapter 3.4) for Dirichlet and Neuman boundary condition
modifications ofM). To discretize in time, we may apply numerical methods for
SDEs (see for example Lord et al. (2014, Chapter 8)). Choosing the standard
Euler-Marayama scheme with time step ∆t yields an approximation uJ,n to
uJ(tn) at tn = n∆t defined by

uJ,n+1 = (I + ∆tεM)−1
(
uJ,n + f̂(uJ,n)∆t+ σ(WJ(tn+1)−WJ(tn))

)

The increments (WJ(tn+1)−WJ(tn)) are generated using techniques discussed
in Appendix D.1.2.

Spectral Galerkin method

Consider again a separable Hilbert space H. Assume that the differential
operator L in eq. (D.5) has a complete set of orthonormal eigenfunctions
{φj}j∈N and eigenvalues λj < 0, ordered so that λj+1 < λj . Then, we can

142

define the semigroup etL as follows

etLh =
∞∑

j=1

eλjt〈h, φj〉φj , h ∈ H.

Define the Galerkin subspace VJ = Span{φ1, ..., φJ} and the orthonormal
projections PJ : H → VJ as follows

PJh =
J∑

i=1

〈u, φj〉φj , h ∈ H.

Then, the following defines spectral Galerkin approximation of eq. (D.5)

duJ(t) = (LJuJ(t) + PJF (uJ(t)))dt+ PJG(uJ(t))dWJ(t), uJ(0) = PJu0

where uJ := PJu and LJ := PJL and WJ = PJW is as in eq. (D.4). Using a
Euluer-Marayama discretization as above, we obtain the following discretization

uJ,n+1 = (I + ∆tLJ)−1(uJ,n + ∆tPJF (uJ,n) + PJG(uJ,n)∆WJ,n).

This approach is particularly convenient for problems with additive noise where
the eigenfunctions of L and Q (the covariance of the Q-Wiener process W)
are equal, which is the case for all the experiments in Chapter 6 generated
with this method. The eigenfunctions of the Laplacian with periodic boundary
conditions correspond to the Fourier basis exponentials; therefore, one can
define the projection PJ in terms of the DFT.

D.2 Further experiments

We start this section with additional details on the training of NSPDE and
the baseline models, including how the relevant hyperparameters have been
selected for each model.

D.2.1 Additional experimental details

For all experiments the dataset is split into a training, validation and test
sets with relative sizes 70%/15%/15%. For all models, a grid search on the
hyperparameters is performed using the training and validation sets. We use
the Adam optimizer and a scheduler which reads the validation loss and reduces
the learning rate if no improvement is seen for a patience number of epochs.
Additionally, an early stopping method is used to halt the training of the
model if no improvement is seen after a patience number of epochs. The
hyperparameters included in the grid search are stated below.

143

NSPDE The hyperparameters included in the grid search are the number of
frequency modes used to parametrize the kernel in Fourier space B = Fd+1(K)

and the number of forward iterations used to solve the fixed point problem.

FNO The hyperparameters included in the grid search are the number of
frequency modes used to parametrize the kernel and the number of layers M .
Note that the numbers of frequency modes in the grid search differ from the
ones used for the NSPDE model by a factor 2 to ensure that the effective
number of retained modes is the same. For both the NSPDE model and FNO,
we kept the number of hidden channels fixed to dh = 32 as this systematically
yielded better performances than previously included values and enabled to
perform the grid search in a reasonable time.

DeepONet The Deep Operator Network (DeepONet) (Lu et al., 2021) is
another popular class of neural network models for learning operators on function
spaces. The DeepONet architecture is based on the universal approximation
theorem of Chen and Chen (1995). It consists of two sub-networks referred
to as the branch and the trunk networks. The trunk acts on the coordinates
(t, x) ∈ [0, T] × D, while the branch acts on the evaluation of the initial
condition u0 on a discretized grid D. Therefore, the DeepONet is not a space
resolution-invariant architecture. The output of the network is expressed as

DeepONet(u0)(t, x) =

p∑

k=1

bk(u0)τk(t, x) + b0,

where the bk and the τk are the outputs of the branch and trunk network
respectively. The trunk network is usually a feedforward neural network, and
one can chose the architecture of the branch network depending on the structure
of the input domain. We follow Lu et al. (2021) and use feedforward neural
networks for both the trunk and the branch networks. We perform a grid search
on the depth and width of the trunk and branch feedforward neural networks.

NRDE/NCDE/NCDE-FNO The hyperparameters included in the grid
search are the number of hidden channels and the type of solver as implemented
by torchdiffeq (Chen et al., 2018). We note that we used a depth-2 NRDE
model (depth-2 already results in dξ = 8 385 for forcings observed at 128 spatial
points and higher depths models could not fit in memory) and recall that NCDE
is a depth-1 NRDE.

144

D.2.2 Stochastic Ginzburg-Landau equation

Recall that the stochastic Ginzburg-Landau equations are of the form

∂tu−∆u = 3u− u3 +G(u)ξ, (D.6)

u(0, x) = u0(x), (t, x) ∈ [0, T]× [0, 1],

subject to either Periodic or Dirichlet boundary conditions. Periodic boundary
conditions are given by u(t, 0) = u(t, 1) for all t ≥ 0 and Dirichlet boundary
conditions are given by u(t, 0) = u(t, 1) = 0 for all t ≥ 0. Initial condition we
take as in Sec. 6.5.1 u0(x) = x(1− x) + κη(x) with κ = 0 or κ = 0.1 depending
on a task. In both Periodic and Dirichlet case we can take η(x) as in eq. (6.8)
though in Dirichlet case one must take a0 = 0 to ensure u0 being zero at the
boundary.

We first reproduce an experiment Sec. 6.5.1 on the additive stochastic
Ginzburg-Landau equation but with Dirichlet boundary conditions instead of
the periodic. We compare it to the benchmark of FNO model which was the
most successful among all the benchmarks of Sec. 6.5. From Table D.1 we
see that even though Neural SPDE model depends on the spectral methods
the errors did not increase compared to the periodic equation in Sec. 6.5.1
(see Table 6.1). Our algorithm still outperforms FNO whose relative L2 error
increased slightly. The fact that Neural SPDE can be applied to non-periodic
equations could be perhaps explained by interpolation (Lθ) and projection (Πθ)
neural networks that could correct for non-periodicity of the data.

Table D.1: Additive stochastic Ginzburg-Landau equation with homo-
geneous Dirichlet boundary conditions. The experimental setup is the
same as in Chapter 6. We report the relative L2 error on the test set. The
symbol x indicates that the model is not applicable. N is fixed to 1 000.

Model u0 7→ u ξ 7→ u (u0, ξ) 7→ u

FNO 0.132 0.023 x

NSPDE (Ours) 0.135 0.008 0.010

We now take a look at the specific hyperparameter: number of forward
iterations in the fixed point solver. We also call this a number of Picard iterations
P . Theoretically as P increases Fixed Point Solver should converge to the true
solution (see Hairer (2009)). This suggests that higher P should improve the
performance of the Neural SPDE algorithms. In practise we observed in both
additive Ginsburg Landau equation from Sec. 6.5.1 and in KdV equation from
Sec. 6.5.2 that P = 1 could already be enough. This could be explained either

145

by dominance of the linear part of the equation or by overfitting in these cases.
Thus we present an experiment on the multiplicative stochastic Ginzbug-Landau
equation over a longer (compared to Sec. 6.5.1) time interval. In Table D.2
we compare NSPDE with P ∈ {1, 2, 3, 4} and again include FNO benchmark
(which performed best in the previous experiments). We see that NSPDE with
even P = 1 outperforms FNO. Relative L2 error for T = 0.05 increases for both
NSPDE and FNO due to more complicated multiplicative noise. In Table D.2
we present for each P the best result over other hyperparameters obtained by
cross validation. One could clearly see an improvement in error as we increase
the number of Picard iterations P (with an exception of the case T = 0.05

where P = 3 outperformed P = 4). This improvement becomes more apparent
as the time frame T increases. Heuristically (and qualitatively) this is due to
the fact that for the short times solution of the SPDE is relatively close to its
linearised version and that nonlinearity of the equation starts to play a bigger
role for larger T .

Table D.2: Multiplicative stochastic Ginzburg-Landau equation. We
report the relative L2 error on the test for FNO and NSPDE (Ours) for different
number of Picard iterations on the task ξ → u.

Time FNO Ours P = 1 Ours P = 2 Ours P = 3 Ours P = 4

T = 0.05 0.040 0.023 0.018 0.016 0.017
T = 0.10 0.068 0.042 0.041 0.040 0.040
T = 0.25 0.105 0.079 0.077 0.073 0.072

D.2.3 The stochastic wave equation

In this section we consider the following nonlinear wave equation with multi-
plicative stochastic forcing,

∂2
t u−∆u = cos(πu) + u2 + uξ, (D.7)

u(t, 0) = u(t, 1),

u(0, x) = u0(x),

∂tu(0, x) = v0(x), (t, x) ∈ [0, T]× [0, 1].

The nonlinear stochastic wave equation arises in relativistic quantum mechanics
and is also used in simulations of nonlinear waves that are subject to either
noisy observations or random forcing. We refer a reader to Temam (2012) for
an overview on the nonlinear wave equation. The above equation can put in a
form of eq. (6.1) by rewriting it as a system for (u, v) = (u, ∂tu). To generate

146

training datasets, we solve the SPDE using a finite difference method with
128 evenly distanced points in space and a time step size ∆t = 10−3. As in
Chevyrev et al. (2021, equation (3.5)), we solve the SPDE until T = 0.5. We
then downsample the temporal resolution by a factor 5, resulting in 100 time
points. Here, the initial condition is given by u0(x) = sin(2πx)+κη(x), where η
is defined in eq. (6.8) and for simplicity initial velocity v0 is taken deterministic
v0(x) = x(1 − x). Similarly to Sec. 6.5.1 we either take κ = 0 or κ = 1 to
generate datasets where the initial condition is either fixed or varies across
samples. Each dataset consists of N = 1 000 training observations.

Table D.3: Stochastic Wave equation. We report the relative L2 error on
the test set. The symbol x indicates that the model is not applicable. N is
fixed to 1 000.

Model u0 7→ u ξ 7→ u (u0, ξ) 7→ u

NCDE x 0.142 0.432
NRDE x 0.146 0.445
NCDE-FNO x 0.029 0.037
DeepONet 0.190 0.143 x
FNO 0.151 0.026 x

NSPDE (Ours) 0.150 0.023 0.026

147

Bibliography

Clement John Adkins and Clement John Adkins. Equilibrium Thermodynamics.
Cambridge University Press, 1983.

Ahmed M Alaa and Mihaela van der Schaar. Attentive state-space modeling of
disease progression. Advances in Neural Information Processing Systems, 32,
2019.

D. J. Aldous. Weak convergence and general theory of processes. Unpublished
draft of monograph, 1981.

Sh A Alimov, RR Ashurov, and AK Pulatov. Multiple fourier series and fourier
integrals. In Commutative Harmonic Analysis IV, pages 1–95. Springer, 1992.

Mauricio Alvarez, David Luengo, and Neil D Lawrence. Latent force models.
In Artificial Intelligence and Statistics, pages 9–16. PMLR, 2009.

Imanol Perez Arribas, Guy M Goodwin, John R Geddes, Terry Lyons, and
Kate EA Saunders. A signature-based machine learning model for distin-
guishing bipolar disorder and borderline personality disorder. Translational
Psychiatry, 8(1):1–7, 2018.

Imanol Perez Arribas, Cristopher Salvi, and Lukasz Szpruch. Sig-sdes model
for quantitative finance. In Proceedings of the First ACM International
Conference on AI in Finance, pages 1–8, 2020.

J Backhoff-Veraguas, D Bartl, M Beiglböck, and M Eder. Adapted wasserstein
distances and stability in mathematical finance. Finance and Stochastics,
2019.

J Backhoff-Veraguas, D Bartl, M Beiglböck, and J Wiesel. Estimating processes
in adapted wasserstein distance. Annals of Applied Probability, 2021.

Julio Backhoff-Veraguas, Daniel Bartl, Mathias Beiglböck, and Manu Eder. All
adapted topologies are equal. Probability Theory and Related Fields, 178(3):
1125–1172, 2020.

148

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models.
Advances in Neural Information Processing Systems, 32:690–701, 2019.

Ronald Balvers, Yangru Wu, and Erik Gilliland. Mean reversion across national
stock markets and parametric contrarian investment strategies. The Journal
of Finance, 55(2):745–772, 2000.

Christian Bayer, Peter Friz, and Jim Gatheral. Pricing under rough volatility.
Quantitative Finance, 16(6):887–904, 2016.

Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. Deep optimal stopping.
Journal of Machine Learning Research, 20:74, 2019.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A
review for statisticians. Journal of the American statistical Association, 112
(518):859–877, 2017.

Patric Bonnier, Patrick Kidger, I Perez Arribas, Cristopher Salvi, and Terry
Lyons. Deep signature transforms. Advances in Neural Information Processing
Systems, 2019.

Patric Bonnier, Chong Liu, and Harald Oberhauser. Adapted topologies and
higher rank signatures. arXiv preprint arXiv:2005.08897, 2020.

William L Briggs and Van Emden Henson. The DFT: an owner’s manual for
the discrete Fourier transform. SIAM, 1995.

David R Burt, Carl Edward Rasmussen, and Mark van der Wilk. Convergence
of sparse variational inference in gaussian processes regression. The Journal
of Machine Learning Research, 21:1–63, 2020a.

David R Burt, Carl Edward Rasmussen, and Mark van der Wilk. Variational
orthogonal features. arXiv preprint arXiv:2006.13170, 2020b.

Zurab Bzhalava, Ardi Tampuu, Piotr Bała, Raul Vicente, and Joakim Dillner.
Machine learning for detection of viral sequences in human metagenomic
datasets. BMC bioinformatics, 19(1):1–11, 2018.

Thomas Cass, Bruce K Driver, Nengli Lim, and Christian Litterer. On the
integration of weakly geometric rough paths. Journal of the Mathematical
Society of Japan, 68(4):1505–1524, 2016.

Thomas Cass, Terry Lyons, Cristopher Salvi, and Weixin Yang. Computing
the full signature kernel as the solution of a goursat problem. arXiv preprint
arXiv:2006.14794, 2020.

Jeffrey Chang. Simulating an ideal gas to verify statistical mechanics, 2015.
http://stanford.edu/~jeffjar/files/simulating-ideal-gas.pdf.

149

http://stanford.edu/~jeffjar/files/simulating-ideal-gas.pdf

Kuo-Tsai Chen. Integration of paths, geometric invariants and a generalized
baker-hausdorff formula. Annals of Mathematics, pages 163–178, 1957.

Kuo-Tsai Chen. Integration of paths–a faithful representation of paths by non-
commutative formal power series. Transactions of the American Mathematical
Society, 89(2):395–407, 1958.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud.
Neural ordinary differential equations. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Systems, pages 6572–
6583, 2018.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators
by neural networks with arbitrary activation functions and its application to
dynamical systems. IEEE Transactions on Neural Networks, 6(4):911–917,
1995.

Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in
machine learning. arXiv:1603.03788, 2016.

Ilya Chevyrev and Harald Oberhauser. Signature moments to characterize laws
of stochastic processes. arXiv preprint arXiv:1810.10971, 2018.

Ilya Chevyrev, Terry Lyons, et al. Characteristic functions of measures on
geometric rough paths. The Annals of Probability, 44(6):4049–4082, 2016.

Ilya Chevyrev, Andris Gerasimovics, and Hendrik Weber. Feature engineering
with regularity structures. arXiv preprint arXiv:2108.05879, 2021.

Andreas Christmann and Ingo Steinwart. Support Vector Machines. Springer
verlag, 2008.

Andreas Christmann and Ingo Steinwart. Universal kernels on non-standard
input spaces. In Advances in Neural Information Processing Systems, pages
406–414, 2010.

John B Conway. A course in functional analysis, volume 96. Springer, 2019.

James W Cooley and John W Tukey. An algorithm for the machine calculation
of complex fourier series. Mathematics of Computation, 19(90):297–301, 1965.

Noel Cressie and Christopher K Wikle. Statistics for spatio-temporal data. John
Wiley & Sons, 2015.

Marco Cuturi and Mathieu Blondel. Soft-dtw: a differentiable loss function for
time-series. arXiv preprint arXiv:1703.01541, 2017.

150

Marco Cuturi and Arnaud Doucet. Autoregressive kernels for time series. arXiv
preprint arXiv:1101.0673, 2011.

Marco Cuturi, Jean-Philippe Vert, Oystein Birkenes, and Tomoko Matsui. A
kernel for time series based on global alignments. In 2007 IEEE International
Conference on Acoustics, Speech and Signal Processing-ICASSP’07, volume 2,
pages II–413. IEEE, 2007.

Snehal S Dahikar and Sandeep V Rode. Agricultural crop yield prediction
using artificial neural network approach. International Journal of Innovative
Research in Electrical, Electronics, Instrumentation and Control Engineering,
2(1):683–686, 2014.

Alexander G De G. Matthews, Mark Van Der Wilk, Tom Nickson, Keisuke
Fujii, Alexis Boukouvalas, Pablo León-Villagrá, Zoubin Ghahramani, and
James Hensman. Gpflow: A gaussian process library using tensorflow. The
Journal of Machine Learning Research, 18(1):1299–1304, 2017.

Laurent Decreusefond et al. Stochastic analysis of the fractional brownian
motion. Potential analysis, 10(2):177–214, 1999.

Joscha Diehl and Jeremy Reizenstein. Invariants of multidimensional time series
based on their iterated-integral signature. Acta Applicandae Mathematicae,
164(1):83–122, 2019.

Timothy Dozat. Incorporating Nesterov Momentum into Adam. In Proceedings
of the 4th International Conference on Learning Representations, pages 1–4,
2016.

Harris Drucker, Christopher JC Burges, Linda Kaufman, Alex J Smola, and
Vladimir Vapnik. Support vector regression machines. In Advances in Neural
Information Processing Systems, pages 155–161, 1997.

Tyrone E Duncan, Yaozhong Hu, and Bozenna Pasik-Duncan. Stochastic
calculus for fractional brownian motion i. theory. SIAM Journal on Control
and Optimization, 38(2):582–612, 2000.

Vincent Dutordoir, Nicolas Durrande, and James Hensman. Sparse gaussian
processes with spherical harmonic features. In International Conference on
Machine Learning, pages 2793–2802. PMLR, 2020.

Thomas Fawcett. Problems in stochastic analysis: Connections between rough
paths and non-commutative harmonic analysis. PhD thesis, University of
Oxford, 2002.

Adeline Fermanian. Embedding and learning with signatures. arXiv preprint
arXiv:1911.13211, 2019.

151

Seth Flaxman, Dino Sejdinovic, John P Cunningham, and Sarah Filippi.
Bayesian learning of kernel embeddings. In Proceedings of the Thirty-Second
Conference on Uncertainty in Artificial Intelligence, pages 182–191, 2016.

Seth R Flaxman. Machine learning in space and time. PhD thesis, Carnegie
Mellon University, 2015.

Peter K Friz and Martin Hairer. A course on rough paths. Springer, 2020.

Peter K Friz and Nicolas B Victoir. Multidimensional stochastic processes as
rough paths: theory and applications, volume 120. Cambridge University
Press, 2010.

Kenji Fukumizu, Francis R Bach, and Michael I Jordan. Dimensionality
reduction for supervised learning with reproducing kernel hilbert spaces.
Journal of Machine Learning Research, 5(Jan):73–99, 2004.

Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf. Ker-
nel measures of conditional dependence. In Neural Information Processing
Systems, volume 20, pages 489–496, 2007.

Kenji Fukumizu, Le Song, and Arthur Gretton. Kernel bayes’ rule: Bayesian
inference with positive definite kernels. The Journal of Machine Learning
Research, 14(1):3753–3783, 2013.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G
Wilson. Gpytorch: Blackbox matrix-matrix gaussian process inference with
gpu acceleration. In Advances in Neural Information Processing Systems,
pages 7576–7586, 2018.

Paul Gassiat et al. On the martingale property in the rough bergomi model.
Electronic Communications in Probability, 24, 2019.

Jim Gatheral, Thibault Jaisson, and Mathieu Rosenbaum. Volatility is rough.
Quantitative Finance, 18(6):933–949, 2018.

Chad Giusti and Darrick Lee. Signatures, lipschitz-free spaces, and paths of
persistence diagrams. arXiv preprint arXiv:2108.02727, 2021.

Ian Goodfellow, Honglak Lee, Quoc Le, Andrew Saxe, and Andrew Ng. Measur-
ing invariances in deep networks. Advances in Neural Information Processing
Systems, 22, 2009.

Benjamin Graham. Sparse arrays of signatures for online character recognition.
arXiv preprint arXiv:1308.0371, 2013.

152

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf,
and Alexander Smola. A kernel two-sample test. Journal of Machine Learning
Research, 13(Mar):723–773, 2012a.

Arthur Gretton, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan,
Massimiliano Pontil, Kenji Fukumizu, and Bharath K Sriperumbudur. Op-
timal kernel choice for large-scale two-sample tests. In Advances in Neural
Information Processing Systems, pages 1205–1213. Citeseer, 2012b.

Martin Hairer. An introduction to stochastic pdes. arXiv preprint
arXiv:0907.4178, 2009.

Martin Hairer. Solving the kpz equation. Annals of mathematics, pages 559–664,
2013.

Martin Hairer and Étienne Pardoux. A wong-zakai theorem for stochastic pdes.
Journal of the Mathematical Society of Japan, 67(4):1551–1604, 2015.

Ben Hambly and Terry Lyons. Uniqueness for the signature of a path of
bounded variation and the reduced path group. Annals of Mathematics,
pages 109–167, 2010.

Oliver Hamelijnck, Theodoros Damoulas, Kangrui Wang, and Mark Girolami.
Multi-resolution multi-task gaussian processes. In Advances in Neural In-
formation Processing Systems, pages 14025–14035, 2019.

James Hensman, Nicolas Durrande, and Arno Solin. Variational fourier features
for gaussian processes. The Journal of Machine Learning Research, 18(1):
5537–5588, 2017.

Calypso Herrera, Florian Krach, Pierre Ruyssen, and Josef Teichmann. Optimal
stopping via randomized neural networks. arXiv preprint arXiv:2104.13669,
2021.

Terrell L Hill. An introduction to statistical thermodynamics. Courier Corpora-
tion, 1986.

Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods
in machine learning. The Annals of Statistics, pages 1171–1220, 2008.

Helge Holden, Bernt Øksendal, Jan Ubøe, and Tusheng Zhang. Stochastic
partial differential equations. In Stochastic Partial Differential Equations,
pages 141–191. Springer, 1996.

D. Hoover and J. Keisler. Adapted probability distributions. Trans. Amer.
Math. Soc., 1984.

153

Kelvin Hsu, Richard Nock, and Fabio Ramos. Hyperparameter learning for
conditional kernel mean embeddings with rademacher complexity bounds. In
Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 227–242. Springer, 2018.

Laurence Hubert-Moy, Jeanne Thibault, Elodie Fabre, Clémence Rozo, Damien
Arvor, Thomas Corpetti, and Sébastien Rapinel. Time-series spectral dataset
for croplands in france (2006–2017). Data in brief, 27:104810, 2019.

Alfredo Huete, Kamel Didan, Tomoaki Miura, E Patricia Rodriguez, Xiang
Gao, and Laerte G Ferreira. Overview of the radiometric and biophysical
performance of the modis vegetation indices. Remote Sensing of Environment,
83(1-2):195–213, 2002.

Tommi Jaakkola, Mark Diekhans, and David Haussler. A discriminative
framework for detecting remote protein homologies. Journal of Computational
Biology, 7(1-2):95–114, 2000.

Tony Jebara, Risi Kondor, and Andrew Howard. Probability product kernels.
The Journal of Machine Learning Research, 5:819–844, 2004.

Jasdeep Kalsi, Terry Lyons, and Imanol Perez Arribas. Optimal execution
with rough path signatures. SIAM Journal on Financial Mathematics, 11(2):
470–493, 2020.

Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K Sriper-
umbudur. Gaussian processes and kernel methods: A review on connections
and equivalences. arXiv preprint arXiv:1807.02582, 2018.

Patrick Kidger and Terry Lyons. Signatory: differentiable computations
of the signature and logsignature transforms, on both CPU and GPU.
arXiv:2001.00706, 2020. URL https://github.com/patrick-kidger/

signatory.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural
controlled differential equations for irregular time series. arXiv preprint
arXiv:2005.08926, 2020.

Patrick Kidger, James Foster, Xuechen Li, Harald Oberhauser, and Terry Lyons.
Neural sdes as infinite-dimensional gans. arXiv preprint arXiv:2102.03657,
2021.

Franz J Király and Harald Oberhauser. Kernels for sequentially ordered data.
Journal of Machine Learning Research, 20, 2019.

154

https://github.com/patrick-kidger/signatory
https://github.com/patrick-kidger/signatory

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural operator:
Learning maps between function spaces. arXiv preprint arXiv:2108.08481,
2021.

Genki Kusano, Yasuaki Hiraoka, and Kenji Fukumizu. Persistence weighted
gaussian kernel for topological data analysis. In International Conference on
Machine Learning, pages 2004–2013, 2016.

Ho Chung Law, Dino Sejdinovic, Ewan Cameron, Tim Lucas, Seth Flaxman,
Katherine Battle, and Kenji Fukumizu. Variational learning on aggregate out-
puts with gaussian processes. In Advances in Neural Information Processing
Systems, pages 6081–6091, 2018a.

Ho Chung Leon Law, Dougal Sutherland, Dino Sejdinovic, and Seth Flaxman.
Bayesian approaches to distribution regression. In International Conference
on Artificial Intelligence and Statistics, pages 1167–1176. PMLR, 2018b.

Christina Leslie, Eleazar Eskin, Jason Weston, and William Stafford Noble.
Mismatch string kernels for svm protein classification. Advances in Neural
Information Processing Systems, pages 1441–1448, 2003.

Yunzhu Li, Antonio Torralba, Anima Anandkumar, Dieter Fox, and Animesh
Garg. Causal discovery in physical systems from videos. Advances in Neural
Information Processing Systems, 33, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural operator:
Graph kernel network for partial differential equations. arXiv preprint
arXiv:2003.03485, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew
Stuart, Kaushik Bhattacharya, and Anima Anandkumar. Multipole graph
neural operator for parametric partial differential equations. Advances in
Neural Information Processing Systems, 33, 2020c.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhat-
tacharya, Andrew Stuart, Anima Anandkumar, et al. Fourier neural operator
for parametric partial differential equations. In International Conference on
Learning Representations, 2020d.

Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, and Danica J
Sutherland. Learning deep kernels for non-parametric two-sample tests. In
International Conference on Machine Learning, pages 6316–6326. PMLR,
2020.

155

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris
Watkins. Text classification using string kernels. Journal of Machine Learning
Research, 2(Feb):419–444, 2002.

Francis A Longstaff and Eduardo S Schwartz. Valuing american options by
simulation: a simple least-squares approach. The Review of Financial Studies,
14(1):113–147, 2001.

Gabriel J Lord, Catherine E Powell, and Tony Shardlow. An introduction
to computational stochastic PDEs, volume 50. Cambridge University Press,
2014.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karni-
adakis. Learning nonlinear operators via deeponet based on the universal
approximation theorem of operators. Nature Machine Intelligence, 3(3):
218–229, 2021.

Anton Rask Lundborg, Rajen D Shah, and Jonas Peters. Conditional independ-
ence testing in hilbert spaces with applications to functional data analysis.
arXiv preprint arXiv:2101.07108, 2021.

Terry Lyons. Rough paths, signatures and the modelling of functions on streams.
Proceedings of the International Congress of Mathematicians, Korea, 2014.

Terry Lyons, Hao Ni, et al. Expected signature of brownian motion up to the
first exit time from a bounded domain. The Annals of Probability, 43(5):
2729–2762, 2015.

Terry et al Lyons. Coropa computational rough paths (software library). 2010.
URL http://coropa.sourceforge.net/.

Terry J Lyons. Differential equations driven by rough signals. Revista Matemát-
ica Iberoamericana, 14(2):215–310, 1998.

Terry J Lyons, Michael Caruana, and Thierry Lévy. Differential equations
driven by rough paths. Springer, 2007.

Alexander Graeme de Garis Matthews. Scalable Gaussian process inference
using variational methods. PhD thesis, University of Cambridge, 2017.

Remigijus Mikulevicius and Boris L Rozovskii. Stochastic navier–stokes equa-
tions for turbulent flows. SIAM Journal on Mathematical Analysis, 35(5):
1250–1310, 2004.

Jovana Mitrovic, Dino Sejdinovic, and Yee Whye Teh. Causal inference via
kernel deviance measures. arXiv preprint arXiv:1804.04622, 2018.

156

http:// coropa.sourceforge.net/

PJ Moore, TJ Lyons, J Gallacher, Alzheimer’s Disease Neuroimaging Initiative,
et al. Using path signatures to predict a diagnosis of alzheimer’s disease.
PLoS ONE, 14(9), 2019.

James Morrill, Patrick Kidger, Lingyi Yang, and Terry Lyons. Neural con-
trolled differential equations for online prediction tasks. arXiv preprint
arXiv:2106.11028, 2021.

Krikamol Muandet, Kenji Fukumizu, Francesco Dinuzzo, and Bernhard
Schölkopf. Learning from distributions via support measure machines. In
Advances in Neural Information Processing Systems, pages 10–18, 2012.

Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard
Schölkopf. Kernel mean embedding of distributions: A review and beyond.
arXiv preprint arXiv:1605.09522, 2016.

David R Musicant, Janara M Christensen, and Jamie F Olson. Supervised
learning by training on aggregate outputs. In Seventh IEEE International
Conference on Data Mining (ICDM 2007), pages 252–261. IEEE, 2007.

Hao Ni. The expected signature of a stochastic process. PhD thesis, Oxford
University, UK, 2012.

Junier Oliva, Willie Neiswanger, Barnabás Póczos, Jeff Schneider, and Eric
Xing. Fast distribution to real regression. In Artificial Intelligence and
Statistics, pages 706–714. PMLR, 2014.

Sudhanshu Sekhar Panda, Daniel P Ames, and Suranjan Panigrahi. Application
of vegetation indices for agricultural crop yield prediction using neural network
techniques. Remote Sensing, 2(3):673–696, 2010.

Anastasia Papavasiliou, Christophe Ladroue, et al. Parameter estimation for
rough differential equations. The Annals of Statistics, 39(4):2047–2073, 2011.

J Park and K Muandet. Regularised least–squares regression with infinite–
dimensional output space. arXiv preprint arXiv:2010.10973, 2021.

Junhyung Park and Krikamol Muandet. A measure-theoretic approach to kernel
conditional mean embeddings. Advances in Neural Information Processing
Systems, 33, 2020.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:
2825–2830, 2011.

157

François Petitjean, Jordi Inglada, and Pierre Gançarski. Satellite image time
series analysis under time warping. IEEE Transactions on Geoscience and
Remote Sensing, 50(8):3081–3095, 2012.

G. C. Pflug and A. Pichler. A distance for multistage stochastic optimization
models. SIAM J. Optim., 22(1):1–23, 2012.

Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit
feature maps. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 239–247, 2013.

Barnabás Póczos, Aarti Singh, Alessandro Rinaldo, and Larry Wasserman.
Distribution-free distribution regression. In Artificial Intelligence and Stat-
istics, pages 507–515. PMLR, 2013.

Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of
sparse approximate gaussian process regression. Journal of Machine Learning
Research, 6(Dec):1939–1959, 2005.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel
machines. Advances in Neural Information Processing Systems, 20, 2007.

Md Rejaur Rahman, AHMH Islam, and Md Ataur Rahman. Ndvi derived
sugarcane area identification and crop condition assessment. Plan Plus, 1(2):
1–12, 2004.

J. Ramsay, J. Ramsay, B.W. Silverman, Springer Science+Business Media,
and H.O.W.P.M.B.W. Silverman. Functional Data Analysis. Springer Series
in Statistics. Springer, 2005. ISBN 9780387400808. URL https://books.

google.co.uk/books?id=mU3dop5wY_4C.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes
for machine learning. The MIT Press, 2006.

Linda E Reichl. A modern course in statistical physics, 1999.

Jeremy Reizenstein and Benjamin Graham. The iisignature library: efficient
calculation of iterated-integral signatures and log signatures. arXiv preprint
arXiv:1802.08252, 2018.

Bastian Rieck, Tristan Yates, Christian Bock, Karsten Borgwardt, Guy Wolf,
Nicholas Turk-Browne, and Smita Krishnaswamy. Uncovering the topology
of time-varying fmri data using cubical persistence. Advances in Neural
Information Processing Systems, 33:6900–6912, 2020.

M. Rodell, P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng,
K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J. K. Entin, J. P.

158

https://books.google.co.uk/books?id=mU3dop5wY_4C
https://books.google.co.uk/books?id=mU3dop5wY_4C

Walker, D. Lohmann, and D. Toll. The global land data assimilation system.
Bulletin of the American Meteorological Society, 85(3):381–394, 2004. doi: 10.
1175/BAMS-85-3-381. URL https://doi.org/10.1175/BAMS-85-3-381.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533–536, 1986.

Cristopher Salvi, Thomas Cass, James Foster, Terry Lyons, and Weixin Yang.
The signature kernel is the solution of a goursat pde. SIAM Journal on
Mathematics of Data Science, 3(3):873–899, 2021.

Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. A generalized representer
theorem. In International Conference on Computational Learning Theory,
pages 416–426. Springer, 2001.

Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with
kernels: support vector machines, regularization, optimization, and beyond.
MIT press, 2002.

Erwin Schrödinger. Statistical thermodynamics. Courier Corporation, 1989.

Dino Sejdinovic, Bharath Sriperumbudur, Arthur Gretton, and Kenji Fukumizu.
Equivalence of distance-based and rkhs-based statistics in hypothesis testing.
The Annals of Statistics, pages 2263–2291, 2013.

Rajen D Shah and Jonas Peters. The hardness of conditional independence
testing and the generalised covariance measure. The Annals of Statistics, 48
(3):1514–1538, 2020.

Konstantinos Skianis, Giannis Nikolentzos, Stratis Limnios, and Michalis Vazir-
giannis. Rep the set: Neural networks for learning set representations. In
International Conference on Artificial Intelligence and Statistics, pages 1410–
1420. PMLR, 2020.

Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A hilbert space
embedding for distributions. In International Conference on Algorithmic
Learning Theory, pages 13–31. Springer, 2007.

Le Song, Jonathan Huang, Alex Smola, and Kenji Fukumizu. Hilbert space
embeddings of conditional distributions with applications to dynamical sys-
tems. In Proceedings of the 26th Annual International Conference on Machine
Learning, pages 961–968, 2009.

Le Song, Arthur Gretton, and Carlos Guestrin. Nonparametric tree graph-
ical models. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pages 765–772. JMLR Workshop and
Conference Proceedings, 2010.

159

https://doi.org/10.1175/BAMS-85-3-381

Le Song, Kenji Fukumizu, and Arthur Gretton. Kernel embeddings of condi-
tional distributions: A unified kernel framework for nonparametric inference
in graphical models. IEEE Signal Processing Magazine, 30(4):98–111, 2013.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman.
Causation, prediction, and search. MIT press, 2000.

Bharath K Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard
Schölkopf, and Gert RG Lanckriet. Hilbert space embeddings and met-
rics on probability measures. The Journal of Machine Learning Research, 11:
1517–1561, 2010.

Ingo Steinwart and Andreas Christmann. Support vector machines. Springer
Science & Business Media, 2008.

Xiaohai Sun, Dominik Janzing, Bernhard Schölkopf, and Kenji Fukumizu. A
kernel-based causal learning algorithm. In Proceedings of the 24th Interna-
tional Conference on Machine Learning, pages 855–862, 2007.

Danica J. Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De,
Aaditya Ramdas, Alexander J. Smola, and Arthur Gretton. Generative
models and model criticism via optimized maximum mean discrepancy. In
5th International Conference on Learning Representations, ICLR, 2017.

Zoltán Szabó, Bharath K Sriperumbudur, Barnabás Póczos, and Arthur Gretton.
Learning theory for distribution regression. The Journal of Machine Learning
Research, 17(1):5272–5311, 2016.

Chang Wei Tan, Christoph Bergmeir, François Petitjean, and Geoffrey I Webb.
Time series extrinsic regression. Data Mining and Knowledge Discovery, 35
(3):1032–1060, 2021.

Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume
Androz, Chester Holtz, Marie Payne, Roman Yurchak, Marc Rußwurm,
Kushal Kolar, and Eli Woods. Tslearn, a machine learning toolkit for time
series data. Journal of Machine Learning Research, 21(118):1–6, 2020. URL
http://jmlr.org/papers/v21/20-091.html.

Roger Temam. Infinite-dimensional dynamical systems in mechanics and physics,
volume 68. Springer Science & Business Media, 2012.

Robert E Tillman, Arthur Gretton, and Peter Spirtes. Nonlinear directed
acyclic structure learning with weakly additive noise models. In Neural
Information Processing Systems, pages 1847–1855, 2009.

Michalis Titsias. Variational learning of inducing variables in sparse gaussian
processes. In Artificial Intelligence and Statistics, pages 567–574, 2009.

160

http://jmlr.org/papers/v21/20-091.html

Csaba Toth and Harald Oberhauser. Bayesian learning from sequential data us-
ing gaussian processes with signature covariances. In International Conference
on Machine Learning, pages 9548–9560. PMLR, 2020.

Mark van der Wilk, Matthias Bauer, ST John, and James Hensman. Learning
invariances using the marginal likelihood. Advances in Neural Information
Processing Systems, 31, 2018.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science
& Business Media, 2008.

Edward Wagstaff, Fabian B Fuchs, Martin Engelcke, Ingmar Posner, and
Michael Osborne. On the limitations of representing functions on sets. arXiv
preprint arXiv:1901.09006, 2019.

Kiri L Wagstaff, Terran Lane, and Alex Roper. Multiple-instance regression
with structured data. In 2008 IEEE International Conference on Data Mining
Workshops, pages 291–300. IEEE, 2008.

Charles Walkden. Ergodic theory. Lecture Notes University of Manchester,
2014.

Abdul-Majid Wazwaz. Solitary waves theory. In Partial Differential Equations
and Solitary Waves Theory, pages 479–502. Springer, 2009.

Veit Wild and George Wynne. Variational gaussian processes: A functional
analysis view. arXiv preprint arXiv:2110.12798, 2021.

Yuesheng Xu and Haizhang Zhang. Refinable kernels. Journal of Machine
Learning Research, 8(9), 2007.

Weixin Yang, Terry Lyons, Hao Ni, Cordelia Schmid, Lianwen Jin, and Jiawei
Chang. Leveraging the path signature for skeleton-based human action
recognition. arXiv preprint arXiv:1707.03993, 2017.

Jiaxuan You, Xiaocheng Li, Melvin Low, David Lobell, and Stefano Ermon.
Deep gaussian process for crop yield prediction based on remote sensing data.
In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. Deep sets. In Advances in Neural
Information Processing Systems, pages 3391–3401, 2017.

Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Kernel-
based conditional independence test and application in causal discovery.
arXiv preprint arXiv:1202.3775, 2012.

161

	List of Figures
	List of Algorithms
	Acknowledgments
	Declarations
	Abstract
	Acronyms
	Symbols
	Chapter Introduction
	Outline of the thesis

	Chapter Background
	CDEs, signature and regression on paths
	Controlled differential equations
	The signature
	Signature-based basis functions

	PDEs, signature kernel, and kernel methods
	The signature kernel
	Kernel methods

	Neural controlled differential equations
	The NCDE model
	Extensions to less regular controls

	Chapter Scalable Gaussian Processes on Sequential Data
	Introduction
	Background
	Variational inference with orthogonal signature features
	The signature
	The signature kernel
	Parametrization of the signature kernel
	Variational orthogonal signature features

	Reverse-mode automatic differentiation for the signature kernel
	Differentiating along the direction of a path
	A PDE for the gradients of the signature kernel
	An explicit solution by variation of parameters

	Related work
	Experiments
	Classifying digits in sequential MNIST
	Detecting whale call signals
	Large scale classification of satellite time-series
	Weather forecast

	Conclusion

	Chapter Distribution Regression on Sequential Data
	Introduction
	Problem definition

	Background
	Paths and probability measures on paths
	A canonical Hilbert space of tensors
	The signature of a path
	Truncating the signature
	Robustness to irregular sampling

	Methodology
	A feature-based approach (SES)
	A kernel-based approach (KES)
	Evaluating the distribution regression kernel

	Related work
	Experiments
	A defective electronic device
	Inferring the temperature of an ideal gas
	Parameter estimation in a pricing model
	Crop yield prediction from GLDAS data

	Conclusion

	Chapter Kernel Mean Embeddings for Stochastic Processes
	Introduction
	Related work

	Preliminaries
	The signature transform and the signature kernel
	Stochastic processes and filtrations

	Higher order kernel mean embeddings
	Conditional kernel mean embeddings for stochastic processes
	Conditioning stochastic processes on their filtrations
	Second order kernel mean embedding and maximum mean discrepancy
	A filtration-sensitive kernel two-sample test
	Higher order kernel mean embeddings and maximum mean discrepancies
	Higher order distribution regression

	Applications
	Hypothesis testing on filtrations
	Applications of higher order distribution regression to quantitative finance
	Inferring causal graph for interacting bodies

	Conclusion

	Chapter Resolution-Invariant Learning of Spatio-temporal Dynamics
	Introduction
	Background on SPDEs
	Neural SPDEs
	The model
	Kernel parameterization 1: ODE solver approach
	Kernel parameterization 2: fixed point approach
	Space-time resolution-invariance

	Related work
	Neural CDEs, SDEs, RDEs
	Neural Operators

	Experiments
	Stochastic Ginzburg-Landau equation
	Stochastic Korteweg–De Vries equation
	Stochastic Navier-Stokes equations

	Conclusion

	Chapter Discussion
	Contributions of the thesis
	Future work

	Appendix Appendix to Chapter 3
	Additional proof
	Additional experimental details
	Data collection process
	Training procedure

	Additional algorithmic details
	Complexity analysis
	Computing the signature kernel and its gradients

	Appendix Appendix to Chapter 4
	Proofs
	Weak continuity of the expected signature
	Injectivity and weak continuity of the pathwise expected signature

	Experimental details
	Transforming discrete time-series into continuous paths
	Implementation details
	Hyperparameter selection

	Interpretability

	Appendix Appendix to Chapter 5
	Cross-covariance operators
	Hilbert-Schmidt conditional independence criterion for stochastic processes
	Construction of the estimator for the second order MMD

	Algorithms
	Algorithm for the first order MMD
	Algorithm for the second order MMD
	Algorithm for higher order MMDs

	Experimental details
	Rough volatility
	Higher order distribution regression

	Proofs

	Appendix Appendix to Chapter 6
	Computational aspects of SPDEs
	The Fourier Transform
	Stochastic simulation of Wiener processes
	Numerical solvers

	Further experiments
	Additional experimental details
	Stochastic Ginzburg-Landau equation
	The stochastic wave equation

	Insert from: "WRAP_Coversheet_Theses_new3.pdf"
	http://wrap.warwick.ac.uk/178148

