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Learning Complex Motor Skills for Legged Robot
Fall Recovery

Chuanyu Yang1∗, Can Pu1∗†, Guiyang Xin2, Jie Zhang3, and Zhibin Li4

Abstract—Falling is inevitable for legged robots in challenging
real-world scenarios, where environments are unstructured and
situations are unpredictable, such as uneven terrain in the wild.
Hence, to recover from falls and achieve all-terrain traversability,
it is essential for intelligent robots to possess the complex motor
skills required to resume operation. To go beyond the limitation
of handcrafted control, we investigated a deep reinforcement
learning approach to learn generalized feedback-control policies
for fall recovery that are robust to external disturbances. We pro-
posed a design guideline for selecting key states for initialization,
including a comparison to the random state initialization. The
proposed learning-based pipeline is applicable to different robot
models and their corner cases, including both small-/large-size
bipeds and quadrupeds. Further, we show that the learned fall
recovery policies are hardware-feasible and can be implemented
on real robots.

Index Terms—Machine Learning for Robot Control, Reinforce-
ment Learning, Sensorimotor Learning, Legged Robots

I. INTRODUCTION

FAILURE-RESILIENT locomotion is crucial for the mis-
sion success of legged robots, including humanoid and

quadruped robots, in unstructured environments. When de-
ploying those robots in real-world unstructured applications,
situations are so unpredictable that falling becomes inevitable.
When a robot falls, it is important for it to recover back to a
canonical operational state and continue its tasks.

Humans and animals are remarkably resilient to falls, as
they have the ability to recover from various fall postures,
being good inspirations for designing controllers for fall recov-
ery maneuvers. Previously, fall recovery controllers for legged
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Fig. 1. Successful learning of fall recovery benchmarked on six different
types of small-/large-size legged robots: (A) Spotmicro; (B) Jueying Pro; (C)
Sigmaban; (D) A1; (E) B1; (F) Valkyrie.

robots were constructed by handcrafting trajectories that re-
semble a human or animal fall recovery maneuver through
heuristics, which is labor intensive [1],[2],[3]. Other methods
predict falls [4] or automate the process by calculating the
trajectory depending on the specific falling posture offline [5],
[6]. These automated approaches are able to operate under a
wider range of fall postures compared to heuristic approaches.
However, the nature of such offline planning is not event-based
and thus lacks the real-time responsiveness that is critical to
react to external disturbances.

To overcome the limits of laborious handcrafting trajec-
tories, optimization-based approaches can compute feasible
solutions for fall recovery without direct manual handcrafting
of trajectories [7], [8]. However, they still demand a large
amount of computational time due to complex robot dynamics
and uncountable possibilities of a mixture of continuous and
discrete whole-body contacts. This paradigm relies on explicit
specification of contacts, either manually or automatically, and
requires advanced optimization schemes, in which computa-
tional power and time grow exponentially when complexity
scales up, being too slow for real-time solutions and making
closed-loop control impractical for robot fall recovery. There
exists contact-implicit trajectory optimization approaches that
do not require a priori specification of contact sequence[9],
[10], [11], [12]. To the best of our knowledge, contact implicit
optimization has not yet been implemented to achieve fall
recovery for legged robots.

An alternative for obtaining fall recovery motions is model-
free reinforcement learning (RL), where an agent interacts
with its environment and learns the control policy through
a process of trial and error. The major advantages of using
RL are: it requires less prior knowledge from human experts
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and is less labor intensive compared to manual handcrafting;
the trained neural network is a feedback policy that can fast
compute actions in real-time, compared to the optimization-
based methods. Deep Reinforcement Learning (DRL) has
shown its successful use for learning fall recovery policies
in both simulation and real-world robots [13], [14].

This work has developed a DRL-based framework to solve
the problem of learning fall recovery control policies for
legged robots. We also proposed a contact transitional graph
to represent the possible transitions between different contact
configurations during a long sequence of fall recovery mo-
tions. Key postures within the graph are used to initialize
the robot during training. Such initialization of the robot
state narrows down the sample distribution in the solution
space during exploration, allowing successful learning of fall
recovery policies. Our initialization approach enables effec-
tive learning of fall recovery for humanoids and speeds up
the learning for quadrupeds. Our framework is able to: (i)
generate necessary movements in real-time and recover to an
upright standing posture given any initial fall configurations,
while requiring minimal human design efforts; (ii) respond to
external disturbances in a robust manner and adapt to unknown
irregular terrains not seen during training; (iii) generalize
across various quadruped and humanoid robots of different
sizes and morphologies (Fig. 1).

The contributions of this work are summarised as follows:
1) We proposed a guideline based on ground contact pat-

terns to design key poses for the state initialization to
facilitate the RL exploration;

2) We developed a generic fall recovery learning frame-
work that can generalize across quadruped and hu-
manoid robots of various sizes and morphologies;

3) The framework successfully learned fall recovery poli-
cies that are responsive and robust to changes in friction,
external pushes, and irregular terrains;

4) We validated the feasibility and effectiveness of the
learning framework with the successful implementation
on a real quadruped robot.

II. RELATED WORK

For humanoids, getting up and standing on two feet is not
an easy task, as it involves a sequence of using multiple
contact points with the ground. Such scenarios are difficult
to model and thus impose many challenges for optimization-
based controllers. One common approach to achieve fall recov-
ery for humanoid robots is to handcraft a standing motion that
imitates that of humans. Stückler et al. designed a controller
for standing up by scripting the target joint angles of the entire
trajectory of the standing routine manually [3]. Kanehiro et al.
designed a controller for fall recovery for the HRP-P2 robot by
constructing a graph consisting of the key contact states within
the standing motion with a Zero Moment Point (ZMP)-based
controller for the transitions between contact states [2].

Compared to humanoid robots, quadrupedal robots are more
stable and are less prone to falling failures that will render
the robot inoperable. Nevertheless, there are still quite a few
papers that have tackled fall recovery in quadrupedal robots.

HyQ2MAX quadruped robot used a self-righting sequence for
the recovery [1]. Castano et al. used a finite-state machine
to achieve fall recovery for the wheeled quadrupedal robot
CENTAURO [15]

DRL has shown new results in many fields in recent years.
Model-free DRL proves to be a viable alternative for solving
the problem of fall recovery. With model-free DRL, the learn-
ing agent is able to obtain the policy through massive amounts
of interactions with the environment, avoiding the need to
model complex interactions involving real-world dynamics
explicitly. The effectiveness of DRL for robot control has been
demonstrated by existing works [16], [13], [17], [18]. Fall
recovery policies have been successfully trained with DRL
and deployed on various different quadruped robots, such as
ANYmal and Jueying [19], [13], [20]. Also, DRL has been
used to learn fall recovery for humanoid character animation
in physics simulation [14].

III. METHODOLOGY

A. Contact Transitional Graph

We developed a contact transitional graph for humanoid
and quadruped robots to serve as a guideline for designing
initialization states for learning robot fall recovery policies.
The graph describes the possible transitions between different
contact configurations during a fall recovery motion sequence
(Fig. 2). Inspired by Borràs et al.’s approach of using simpli-
fied contact models for analyzing whole-body multi-contact
motions [21], instead of specifying and numerating multiple
contact points. we simplify our description of body-ground
contact configurations by specifying which and how many
body segments are in contact with the ground. The selection
of key body postures follows three criteria: (i) It needs to
represent common ground contact patterns; (ii) It needs to be
stationary configurations; (iii) It has to contain a diverse set
of contact configurations.

During training, initializing the robot with the key body
postures provides statically balanced configurations that are
closer to the desired solutions, effectively narrowing down
the sample distribution and the search space. This minimizes
invalid exploration of states far from the desired solution
compared to the random initialization. The transition and
connectivity illustrate the order of the contact configurations
during a fall recovery motion. Key posture transitions are
not explicitly specified during training, therefore enabling the
policy to naturally explore feasible dynamic motions and learn
diverse transitional motor skills between key postures.

B. Sample Distribution Augmentation

Sample distribution affects the learning result of the control
policy. We augment the sample distribution using Key State
Initialization (KSI) and early termination [22].

1) Initialization from Key States: Key postures are drawn
randomly from the contact transitional graph (Fig. 2), which
will be then used as the key state to initialize Valkyrie and
Spotmicro robots during training. The same initial postures
are used for Sigmaban, A1, B1, and Jueying Pro after slight
adjustments to the height and joint angles.
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Fig. 3. Overview of the control framework .

2) Early Termination: During the early training iterations,
the replay buffer will be dominated by samples in which the
robot is struggling to get up due to the existence of gravity,
resulting in a lack of sample diversity. Therefore, we set a
time limit of 10 s to terminate the episode early and initialize
the episode in different states to ensure the sample diversity.

C. Control Framework

The control framework consists of a neural network policy
that generates position references for all joints at 25Hz and
PD control that interpolates the target positions and generates
torque at 500Hz. The PD controller receives target joint angles
and converts them to joint torques for the motor using equation
τ = Kp(q̂ − q) + Kd(0 − q̇). The PD gains Kp and Kd are
manually specified for each joint.

The policy network consists of two hidden layers that uses
ReLU activation function, each with 256 neurons. The size
of input and output neurons depends on the DoF of the
robot (Fig. 3). The policy network outputs are the mean
µθ(st) and covariance σθ(st) for the Gaussian distribution
ut ∼ N (µθ(st), σθ(st)

2), acting as a stochastic policy. A tanh
function is used to project the output of the stochastic policy
at = tanh(ut) within at ∈ (−1, 1), which is then re-scaled
to the limits of each joint as the target joint angle in radians.

TABLE I
STATE INPUT DIMENSION.

Physical quantity Input dimension
Quadruped robot Sigmaban Valkyrie

Gravity vector 3 3 3
Base angular velocity 3 3 3
Base linear velocity 3 3 3
Joint position 12 18 23
Joint velocity 12 18 23
Extremity position 12 12 12

1) State Representation: The state representations selected
are: (i) gravity vector, (ii) base angular velocity, (ii) base linear
velocity, (iv) joint position, (v) joint velocity, (vi) limb extrem-
ity position. The orientation has a vectorized representation
using a gravity vector, a 3D unit vector pointing along the
direction of gravity in the local frame of the robot base. The
limb extremity positions are the xyz coordinates of the feet
and hands in the local frame of the robot base. The state input
dimension is in Table I. All feedback states are filtered by a
low-pass Butterworth filter with a cut-off frequency of 10Hz.

D. Deep Reinforcement Learning
1) Soft Actor Critic: The off-policy Soft Actor Critic (SAC)

algorithm [23] is used to maximize an expected sum of rewards
augmented with an additional maximum entropy objective:

JSAC(π) =

T∑
t=0

E(st,at)∼ρπ
(r(st, at)) + αH(π(·|st)), (1)

where
∑T

t=0 E(st,at)∼ρπ
(r(st, at)) is the expected sum of

rewards, and H(π(·|st)) is the expected entropy of the policy
π over the sample distribution ρ. The temperature term α
controls the relative importance of the entropy term. Higher α
results in more exploration.

E. Smoothing Output Action
Control policies learned by deep reinforcement learning

in simulation may occasionally generate abrupt and jerky
motions that are of high-frequencies and large amplitudes.
We applied a first-order Butterworth filter with a 5Hz cut-
off frequency on the policy output to restrict undesired jerky
actions [18], [20], [24], [25].
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TABLE II
SAC TRAINING HYPERPARAMETERS.

Hyperparameter Value Hyperparameter Value
Discount factor 0.995 Batch size 128
Target network update 0.999 Gradient update steps 4
Learning rate 3e-4 Smoothing loss 1e-3
Weight decay 1e-6 Data samples per episode 5000

TABLE III
MATHEMATICAL NOTATIONS FOR THE REWARD TERMS

Nomenclature
φbase A unit vector in the robot base frame that points towards

the direction of gravity
φtorso A unit vector in the robot torso frame that points towards

the direction of gravity
hbase The robot base height (z) in the world frame
hhead The robot head height (z) in the world frame
vbase The linear velocity of the robot base in the world frame
τ The vector of all joint torques
q The vector of all joint angles
q̇ The vector of all joint velocities
(̂·) The desired quantity of placeholder property (·)
pfoot,n The n-th foot horizontal placement in the world frame
pbase The xy coordinates of the base in the world frame

TABLE IV
DETAILED DESCRIPTION OF TASK REWARD TERMS FOR HUMANOIDS.

Task reward terms
Base pose w1 ×K(φbase, [0, 0,−1], c1)

Base height w2 ×K(hbase, ĥbase, c2)
Base velocity w3 ×K(vbase,[0,0,0], c3)
Joint torque regular-
ization

w4 ×K(τ, 0, c4)

Joint velocity regu-
larization

w5 ×K(q̇, 0, c5)

Body-ground contact w6×
{
0, upper body contact with ground
1, .

Upper torso pose w7 ×K(φtorso, [0, 0,−1], c7)

Head height w8 ×K(hhead, ĥhead, c8)
Left foot placement w9 ×K(pfoot,left, pbase, c9)
Right foot placement w10 ×K(pfoot,right, pbase, c10)

Using action filtering solely is not sufficient, as it only limits
the frequency but not the amplitude of the action. Hence, a
loss function called smoothing loss is implemented to regulate
the amplitude of the action [20].

Lsmooth(µ(st)) = ∥µ(st)− q∥22 , (2)

where µ(st) is the deterministic mean outputs of the stochastic
policy that are used as joint references, and q is the mea-
sured joint angles. The smoothing loss Lsmooth minimizes the
difference in joint angles between the target µ(st) and the
current measurement q. The smoothing loss Lsmooth is added
to the SAC training loss LSAC(π) = −JSAC(π). The final loss
function to train the policy network during backpropagation is:

LSAC(π) + λLsmooth(µ(st)). (3)

The training hyperparameters are listed in Table II.

F. Reward Design

We use a Radial Basis Function (RBF) to design the
bounded reward function:

K(x, x̂, c) = ec(x̂−x)2 , (4)

TABLE V
WEIGHTS wi AND NORMALIZATION FACTOR ci OF THE REWARD TERMS.

Quadruped Robots Humanoid Robots
Spotmicro JueyingPro A1 B1 Sigmaban Valkyrie

i wi ci ci ci ci wi ci ci

1 5
16

-1.02 -1.02 -1.02 -1.02 1
17

-1.02 -1.02
2 5

16
-22.22 -8 -22.2 -8 4

17
-12.5 -2

3 3
16

-2 -2 -2 -2 2
17

-2 -2
4 1

16
-0.222 -2e-4 -2e-3 -2e-4 1

17
-0.031 -2e-5

5 1
16

-1.183 -0.012 -5e-3 -5e-3 1
17

-0.109 -0.025
6 1

16
N/A N/A N/A N/A 1

17
N/A N/A

7 0 N/A N/A N/A N/A 1
17

-1.02 -1.02
8 0 N/A N/A N/A N/A 4

17
-5.556 -0.692

9 0 N/A N/A N/A N/A 1
17

-16.33 -2
10 0 N/A N/A N/A N/A 1

17
-16.33 -2

B
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Fig. 4. Joint configurations of the Valkyrie robot. (A) Original joint range
(left column) and modified joint range (middle column) of the Valkyrie robot.
(B) Human-like key postures that are enabled by enlarged joint range.

where x is the physical quantity used for the evaluation, x̂
is the desired value, and c is the parameter that controls the
width of the RBF [20], [22].

The nomenclature used for the reward are described in Table
III. Table IV shows the list of reward terms designed for
humanoids. The base and head height terms encourage the
robot to stand up and maintain the desired height. The upper
torso and base poses term regulate the upper body posture
of the robot. The base velocity terms penalize high velocity
and hence encourage learning a smooth standing-up motion.
The joint torque and velocity regularization terms penalize
high torques and velocities of the joints respectively. The body
ground contact term rewards the agent when upper body parts
are not in contact with the ground. The foot placement term
guides the left and right feet to be close to the projected pelvis
position on the ground. The weights and normalization factors
of the reward terms are shown in Table. V.

IV. RESULTS

A. Simulation Setup

To validate how generic our proposed learning method is for
fall recovery, we used six different robot models of different
sizes: (A) Spotmicro, (B) Jueying Pro, (C) Sigmaban, (D) A1,
(E) B1, and (F) Valkyrie (Fig. 1). The physics simulation
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uses PyBullet [26] in which the policy is trained and tests
are conducted.

The Spotmicro is an open-source project to replicate
the Spot quadruped from Boston Dynamics with a smaller
form-factor. The A1, B1, and Jueying Pro robot are high-
performance commercial quadrupeds with a weight of 12 kg,
50 kg, and 70 kg, respectively. All quadrupeds have 3 Degrees
of Freedom (DoF) per leg.

The Sigmaban robot is a humanoid robot developed by the
Rhoban football team for the humanoid kid-size league of the
Robocup soccer tournament [27]. It has a weight of approxi-
mately 6 kg and a height of approximately 0.6m. Valkyrie is a
humanoid robot designed by NASA for extra-terrestrial space
missions, and stands 1.87m tall and weighs approximately
130 kg. Valkyrie’s original design of joint ranges are overly
restrictive, which prevents human-like standing-up behaviours.
We modified the joint limits and collision mesh to increase the
range of motions to resemble that of humans. The augmented
Valkyrie robot is able to perform human-like squatting, crouch-
ing, kneeling, and sitting motions (Fig. 4). The rest of the
robots use the original models with real hardware restrictions
for the joint range, joint velocity limit, and joint torque limit.

B. Comparison of State Initialization

We compare our KSI to Random State Initialization (RSI).
Under RSI training configuration, the base orientation of
the quadruped robots is randomly initialized with θroll ∼
U(−π, π), θpitch ∼ U(−π

2 ,
π
2 ), θyaw = 0, while the base

orientation of humanoid robots is initialized with θroll ∼
U(−π

2 ,
π
2 ), θpitch ∼ U(−π

2 ,
π
2 ), θyaw = 0. The joint angles

are uniformly sampled within the joint range specified by
the robot model. Joint angle configurations that cause self-
collision are abandoned. The robots are then dropped above
the ground at the start of each training iteration.

All four quadrupeds are able to learn successful fall recovery
policies with both KSI and RSI training configurations. For
Jueying Pro, A1 and B1, KSI converges to a successful fall
recovery policy faster than RSI. For Spotmicro, KSI offers
no significant advantage over RSI. However, humanoid robots
struggle to learn successful fall recovery policies with RSI, as
indicated by the lower sum of rewards (Fig. 5).

We conducted an ablation study to investigate how the
selection of key states affects the learning of humanoid fall
recovery policies. Training configuration KSI-A uses only
standing and kneeling key postures for initialization, whereas
KSI-B removed the standing and kneeling key postures. When
the standing and kneeling postures are removed, the humanoid
robots fail to learn a successful policy (Fig. 5E & F). Results
show that stable upright standing postures are crucial for the
successful learning of humanoid fall recovery policies. With
RSI, the randomly generated initial configurations are mostly
far away from stable standing postures. Standing upright is a
process of going through configurations that can counterbal-
ance gravity, thus not random. This is the underlying reason
that can explain why RSI is less effective.

A B

C D

E F

Fig. 5. Learning curve for the fall recovery policies of (A) Spotmicro, (B)
Jueying Pro, (C) A1, (D) B1, (E) Sigmaban, (F) Valkyrie. The results are
averaged over 6 trials, each with a different random seed. A separate testing
rollout is conducted at the end of each episode to evaluate the performance.
The deterministic mean of the learned Gaussian policy is executed during the
testing rollout. All policies are evaluated under the exact same environmental
condition and initial state configuration during the testing rollout, regardless
of initial state configuration during the training rollouts.

C. Fall Recovery of Quadrupeds

The fall recovery policies for Spotmicro and Jueying Pro are
able to recover from both supine and lateral postures (Fig. 6A1
& B1) (See accompanying video for quadruped fall recovery
maneuvers from lateral postures.).

From Fig. 6A3 and B3 we can observe that fall recovery
can be classified by three phases: (i) Self righting, (ii) standing
up, and (iii) stabilization. In the first phase, the robot reorients
itself to minimize the postural error compared to the nominal
standing posture. In the second phase, the robot starts to
support its weight and lift up its body. In the final phase,
the robot adjusts the body posture and stabilizes itself.

D. Fall Recovery of Humanoids

Compared to quadrupeds, humanoids have higher center of
mass and smaller support polygon, which makes them prone to
falling and thus learning effective fall recovery becomes much
more challenging. This is reflected in the learning curve, as
humanoid policies require more episodes to converge (Fig. 5).

The fall recovery policies for both Sigmaban and Valkyrie
are able to recover from supine, prone, and lateral postures
(Fig. 7A1 & B1) (See accompanying video for humanoid
fall recovery maneuvers from lateral and prone postures.).
From Fig. 7A3 and B3, we can observe that humanoid fall
recovery also has three phases similar to that of quadrupeds:
(i) Self righting, (ii) standing up, and (iii) stabilization. Despite
the differences in the size and shape between Sigmaban and
Valkyrie, when recovering from a supine posture, both robots
learn to roll and adjust into prone posture first which provides
the robots with enough clearance to utilize their arms. We can
see that the arm movements that support the upper body while
standing up are fairly human-like and natural.

In contrast to regular locomotion where only feet are in
contact, a successful fall recovery requires the quadruped and
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Fig. 6. Snapshots of Spotmicro (A1) and Jueying Pro (B1) performing fall recovery maneuvers in simulation. (A2 & B2) Contact status of body segments
over time corresponding to (A1) and (B1). (A3 & B3) Orientation error and Height of robot base corresponding to (A1) and (B1). See accompanying video
for fall recovery maneuvers of quadruped robot A1 and B1.
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B2
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Fig. 7. Snapshots of Sigmaban (A1) and Valkyrie (B1) performing fall recovery maneuvers in simulation.(A2 & B2) Contact status of body segments over
time corresponding to (A1) and (B1). (A3 & B3) Orientation error and Height of robot base corresponding to (A1) and (B1).

humanoid to undergo a complex sequence of ground contacts,
as shown by the data analysis of physical contact of all body
segments over time (Fig. 6A2, 6B2, 7A2, and 7B2). Such
contact sequences are difficult to handcraft and never exactly
the same twice, which show that fall recovery involves whole-
body, any-point contacts with the ground, and hence is indeed
a complex and interactive behavior.

E. Robustness against Uncertainties

To demonstrate the advantage of the learning-based feed-
back policy, we designed three extreme, unseen scenarios to
evaluate the robustness: 1. Uneven terrain. 2. Low friction.
3. Push disturbance. We show the capabilities of reactive
adaptation to external perturbations robustly with consistent
performance across different robots, which clearly a predefined
or replanned motion sequence cannot do. Due to concern of
hardware damage, the three extreme robustness test scenarios
are conducted in simulation (See accompanying video for
robot fall recovery maneuvers in robustness test scenarios.).

The performance metric is the success rates sr = ns/nt,
where ns is the number of successful runs and nt is the total

Max peak
height

mlh )(  A

ml 1.0

lh /Terrain ruggedness

B

2

Fig. 8. Fall recovery on unseen rugged terrains: (A) Cross section view of
uneven terrains; (B) Overall view of uneven terrain.

number of runs. We trained 6 policies for each robot, each
has 10 runs, resulting in nt = 60. Fall recovery is considered
successful when the robot is able to recover to an upright
standing posture, defined as: (i) Feet have to be the only body
part in contact with the ground; (ii) Base orientation has to
satisfy |θpitch| < π

4 and |θroll| < π
4 ; (iii) Base height has to

satisfy hbase > hsuccess. The height criteria hsuccess is set
to 0.13m, 0.4m, 0.25m, 0.4m, 0.38m, 0.8m for Spotmicro,
Jueying Pro, A1, B1, Sigmaban, and Valkyrie respectively.

1) Uneven terrain: The uneven terrain is automatically gen-
erated using the following configurations. The terrain consists
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Fig. 9. Fall recovery experiment on real Jueying Pro robot: (A) Time-elapsed snapshots; (B1-B3) The joint torque, velocity, and angle of a single leg; and
(C1-C2) Robot base orientation and angular velocity.

A B

C

Fig. 10. Success rate calculated over 60 runs. We train 6 policies for each
robot and run the policies 10 times with different initial configurations. (A)
Terrain ruggedness. (B) Friction Coefficient. (C) Normalized Impulse.

of interconnected slopes each covering an area with width
of l = 0.1m. Adjacent slopes connect and form “hills” and
“valleys”. We measure the ruggedness of the terrain as the
ratio λ = h/l, where h is the maximum height of the hill peak
formed by the slopes. The height of each slope are randomly
sampled uniformly between (0, λ ·0.1m) (Fig. 8). All policies
are able to successfully perform fall recovery on uneven terrain
to a certain extent (Fig. 10A).

2) Low friction: Policies are tested under different slippery
grounds, with a range of friction coefficient µ of 0.2, 0.4, 0.6,
0.8. In general, quadruped robots are more robust to ground
friction changes than humanoids (see Fig. 10B).

3) Extremely large force disturbance: We applied force
disturbances to the robot sideways for a period of 0.2 s. The
mass and inertia of the robot affect how the robot responds
to disturbances. Therefore, we normalize the impulse by the
mass of the robot and use it for comparison across different
robots. The unit of the normalized impulse is Ns kg−1. It can
be seen that humanoid robots are less resilient to push (Fig.
10C). Even if the robots fail to resist push and fall over, they
are still able to recover and stand up again (see accompanying
video).

It shall be noted that for the generality of the method and
straightforwardness of replication, we kept a small number of
parameters to set up and minimal complexity for training. For
example, all policies were trained on a flat ground only with
a friction coefficient of µ = 1.0, and has no knowledge of the
terrain unevenness, actual friction coefficient, or push distur-

TABLE VI
MAXIMUM JOINT TORQUE, VELOCITY, AND POWER OF SPOTMICRO, A1,

AND B1 AVERAGED OVER MULTIPLE TRIALS.

Joint Torque [Nm] Velocity [rad s−1] Power [W]
Spotmicro mean±std limit mean±std limit mean±std limit
HipX 1.91±0.59 3 4.67±0.83 8 5.19±2.07 32
HipY 2.69±0.32 3 6.31±1.47 8 10.87±5.97 32
kneeY 1.48±0.41 3 6.79±1.45 8 5.28±2.70 32
A1 mean±std limit mean±std limit mean±std limit
HipX 12.16±4.96 33.5 4.63±1.02 21 40.1±28.7 704
HipY 28.01±4.45 33.5 7.49±0.78 21 137.5±35.2 704
kneeY 14.97±1.99 33.5 3.50±1.22 21 21.5±4.4 704
B1 mean±std limit mean±std limit mean±std limit
HipX 76.5±14.5 91.0 6.62±1.80 19.7 300±145 1792
HipY 88.4±13.0 93.3 8.05±1.71 23.3 526±192 2174
kneeY 40.1±25.0 140 4.78±1.78 15.6 215±150 2184

TABLE VII
MAXIMUM JOINT TORQUE, VELOCITY, AND POWER OF SIGMABAN

AVERAGED OVER MULTIPLE TRIALS.

Joint Torque [Nm] Velocity [rad s−1] Power [W]
mean±std limit mean±std limit mean±std limit

HipZ 3.87±1.92 8.4 1.56±0.51 4.7 4.38±2.60 39.5
HipX 5.43±1.77 8.4 1.35±0.34 4.7 4.40±2.01 39.5
HipY 6.60±0.95 8.4 2.42±0.23 4.7 9.44±2.63 39.5
KneeY 3.52±1.02 8.4 2.36±0.41 4.7 5.18±1.00 39.5
AnkleY 6.50±1.76 8.4 2.17±0.37 4.7 6.73±3.40 39.5
AnkleX 6.87±0.98 8.4 1.77±0.25 4.7 2.59±2.32 39.5
ShoulderY 7.11±0.63 8.4 3.57±0.86 4.7 15.81±4.42 39.5
ShoulderX 4.67±1.12 8.4 1.41±0.49 4.7 5.11±2.74 39.5
ElbowY 4.04±1.20 8.4 3.55±0.38 4.7 9.80±7.46 39.5

bance. The fact, that the policies are capable of generalizing
to situations outside of the training dataset, demonstrated the
robustness of the learned policy and the effectiveness of the
DRL framework.

F. Hardware Experiments

We validated our approach on a real Jueying Pro quadruped
robot. The real Jueying Pro robot is able to successfully
perform fall recovery maneuver using the trained policy (Fig.
9). The joint torques and velocities stay within the motor limits
(Fig. 9B1 & B2). The overall fall recovery motion is smooth
and steady as can be seen from the smooth movement of joints
(Fig. 9B3), and gradual change in base orientation and base
angular velocity (Fig. 9C1 & C2).

Due to the lack of hardware accessibility, we analyzed the
torque, velocity, and power of critical joints in simulation
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to determine the feasibility of hardware implementation of
Spotmicro, A1, B1, and Sigmaban. The torque constraint is
handled by clipping the commanded torque for the joint motor.
The mean of the maximum joint torque and joint velocity
respect the constraints of the joint motors. The mean of the
maximum joint power is within the power limit, where max
joint torque and joint velocity do not occur simultaneously
(Table. VI and Table. VII). Note that the power limit is
calculated by multiplying the torque limit and velocity limit.
The calculated power limit serves as a reference and is not the
actual power limit.

V. CONCLUSION

This work proposed a DRL framework that can learn
versatile fall recovery policies for different humanoid and
quadruped robots. We also proposed a design guideline for
the contact transition graph which is used for the selection of
key robot states for initialization. Compared to random initial-
izations, our approach speeds up the learning of quadruped fall
recovery policies and improves the performance of humanoid
fall recovery policies.

The fall recovery policies generated natural and animal-like
behaviors, demonstrating the feasibility of using DRL to au-
tomatically produce standing-up behaviours for legged robots.
The proposed learning framework is agnostic to robots with
very different morphologies, shapes, and sizes. The learned
policies are robust towards the environmental uncertainties,
as shown by the successful fall recovery in the unseen new
cases of rough terrains, low ground friction, and large push
disturbances. Moreover, the effectiveness and feasibility of the
learning framework were validated on the real Jueying Pro
quadruped robot.

In future work, our framework can be extended to learn
fall recovery motions for other robot types, including hexapod
robots and wheel-leg robots. Future work can further enhance
the performance of our framework by implementing dynamic
randomization for sim2real transfer and tailoring the training
curriculum for specific robots and applications. This can lead
to improved performance on real robotic systems in a wider
range of scenarios.
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