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Abstract — WiFi based passive sensing is attracting 

considerable interest in the scientific community for both 
research and commercial purposes. In this work, we aim at 
taking a step forward in an endeavor to achieve good sensing 
capabilities employing compact, low-cost, and stand-alone WiFi 
sensors. To this end, we resort to a reference-free non-coherent 
signal processing scheme, where the presence of a moving target 
echo is sought by detecting the amplitude modulation that it 
produces on the direct signal transmitted from the WiFi access 
point. We first validate the proposed strategy against simulated 
data, identifying advantages and limitations. Then, we apply the 
conceived solution on experimental data collected in a small 
outdoor area with the purpose of detecting a small cooperative 
drone. 

Keywords — ISAC, WiFi signals, passive sensing,  
non-coherent radar, IEEE 802.11, UAV detection.  

 INTRODUCTION 

In recent years, the steadily proliferating use of wireless 
devices has ensured that access points (APs) based on WiFi 
standards [1] are now available in almost all private and 
public environments. The parasitic exploitation of such 
transmitters as sources of opportunity to perform sensing 
purposes paves the way to the emerging technology of 
integrated sensing and communication (ISAC) systems, 
critical in responding to the growing congestion of the RF 
spectrum [2][3].  

The suitability of WiFi signals for local area and indoor 
monitoring has been investigated in [4]-[11] and related 
works. The implementation of such sensing solutions for 
monitoring public or private areas is very appealing since they 
are not affected by lighting conditions and they alleviate 
many privacy concerns and discomfort issues that cameras 
might cause. Specifically, RF radar sensors do not require any 
cooperation from the target, such as carrying a wearable 
device. Finally, the parasitic exploitation of existing RF 
sources brings in additional benefits in terms of energy 
consumption and potential interference with pre-existing RF 
systems operating in the same area. Therefore, nowadays, the 
field of application of passive WiFi sensing solutions ranges 
from occupancy estimation, detection and localization of 
humans or small unmanned aerial vehicles (UAVs) to the e-
healthcare applications such as human gait recognition or 
breath detection.  

 

However, most of the techniques proposed in the technical 
literature set strict requirements on the implementation of the 
WiFi sensor. For instance, channel state information (CSI) 
based approaches [8]-[10] require a perfect knowledge of the 
adopted WiFi Standards and are limited to work with 
orthogonal frequency division multiplexing (OFDM) signals. 
Moreover, they require accurate synchronization in both time, 
frequency, and phase. On the other hand, WiFi based passive 
radar (PR) approaches [4]-[7] can be in principle operated with 
any waveform modulation and have the potential to increase 
the sensitivity of the sensor. However, they are typically 
limited by the high computational complexity and the 
requirement for a reference signal.  

The authors have first addressed the computational 
complexity issue in [7], where a streamlined PR processing 
chain has been proposed. Then, in [11], the possibility of 
limiting the passive radar signal processing to a priori known 
portions of the physical layer protocol data unit (PPDU) 
without requiring any dedicated receiving channel or 
reconstruction has been considered. However, along with an 
expected signal-to-noise ratio (SNR) loss, the use of a 
synthetic reference signal does not guarantee synchronization 
in time, frequency, and phase with the main surveillance signal 
and ad hoc approaches must be implemented to restore the 
coherency. 

Despite the recent efforts, to facilitate the widespread use 
of WiFi-based sensors, key aspects must be taken into account 
such as the low cost and low computational complexity, the 
compactness and lightness, as well as the easy deployment and 
setup. For the above reasons, in this manuscript, we resort to a 
reference-free non-coherent approach and we investigate the 
possibility of detecting the presence of a moving target in the 
observed scene by observing the amplitude modulation that it 
induces on the main source signal. This principle of operation 
that exploits the interference amplitude pattern between the 
transmitted signal and reflections from the environment, has 
been widely investigated for non-coherent radar and forward 
scatter radar (FSR) [12]-[14] and has been recently proposed 
and adapted to the application at hand in [15].   

First, we present the proposed strategy approach in Section 
II; then, in Section III, we validate its effectiveness against 
simulated WiFi data employing different OFDM 
constellations. In Section IV, we present some experimental 
results against real-world data with a small UAV employed as 
cooperative target. Finally, Section V reports our concluding 
remarks. 



 INTERFERENCE DOPPLER PROCESSING 

We consider a train of consecutive packets emitted by a 
WiFi AP. Let 𝑇! be the temporal duration of a given packet, 
composed by 𝑁!𝑁!"# = 𝑇!𝑓!   samples, being 𝑓! the employed 
sampling frequency,	𝑁!  the number of samples inside each 
symbol and 𝑁!"# the number of symbols inside each packet. 
Note that, altough a practical transmission tipically includes 
packets with different durations, we can always assume to cut 
the packets to a common length of 𝑁!"# symbols. Proof of 
the advantage of this choice is reported in [15]. The collected 
signal is given by the coherent superposition of the direct 
signal transmitted by the AP, the delayed and Doppler shifted 
echoes from 𝑁$  moving targets, as well as thermal noise. 
Additionally, the direct signal reflections on stationary 
obstacles, e.g., walls, might be present. Assuming negligible 
multipath contributions, the discrete version of the complex 
baseband signal received for the pth WiFi packet is written as 
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where 
• 𝑠%(𝑙) represents the waveform transmitted at the pth 

packet, 𝑠%
(-)(𝑙) is its resampled version, delayed by 𝜏. 

The pth packet waveform is modeled as a zero-mean 
unitary power random process whose characteristics 
depend on the modulation scheme. 

• 𝛼&,% is the complex amplitude of the diret signal at the 
pth packet, assumed constant within the packet. 

• 𝛽(,%	and	𝜏(,%	(𝑞	 = 	1, … ,𝑁$)  are the complex 
amplitude and the delay of the qth target echo at the pth 
packet. The typical duration of WiFi packets compared 
with the velocity of the targets of interest is such that 
𝛽(,%	 and 𝜏(,%  variation can be assumed negligible 
within the packet;   

• 𝜑(,%(𝑙) encodes the motion induced phase variation for 
the qth target echo at the pth packet, and it is defined as 
𝜑(,%(𝑙)  = 2𝜋 2",$(1)

3
, being 	𝜆  the wavelength and 

𝑅(,%(𝑙) = 𝑅$45$6$",$(𝑙) + 𝑅245$6$",$(𝑙) − 𝐵  the 
relative bistatic range law of the qth target along the pth 
packet, being B the distance between the Tx and the Rx, 
and 𝑅$45$6$",$(𝑙)  and 𝑅245$6$",$(𝑙)  the time-varying 
distances between the target and the Tx and between 
the target and the Rx, respectively. 

• 𝑑%(𝑙) is the thermal noise affecting the pth packet at the 
Rx. It is assumed to be a white, zero-mean complex 
Gaussian process with variance 𝜎78 , statistically 
independent of the source signal. 

 
An illustrative scenario is sketched in Figure 1 as well as 

the main blocks of the processing scheme proposed in [15] and 
aimed at recognizing the presence and extracting the 
instantaneous Doppler frequency of moving targets.  

 
Figure 1. Processing blocks of the  

Interference Doppler Processing scheme. 

This approach is referred to in [15] as Interference Doppler 
Processing (IDP). First, the square modulus of the signal is 
extracted, thus discarding the phase information. Then, the 
output of the square modulus undergoes a low-pass filter and 
downsampling stage with the purpose of removing the high 
frequency amplitude variations caused by the signal itself, to 
its multipath replicas and the noise contribution. A simple way 
to implement this block with WiFi signals is to resort to an 
energy detector at packet level, namely: 
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Once this stage has been performed, the obtained 
sequence undergoes the DC removal stage aimed at removing 
the strongest stationary scene interferences, such as the direct 
signal transmitted by the AP: 

𝑧̅(𝑝) = 𝑧(𝑝) − 𝑧79(𝑝) 
(3) 

where 𝑧79(𝑝) denotes the average value of 𝑧(𝑝), evaluated 
over an appropriate time window 𝑇79 . Finally, 𝑧(̅𝑝) 
undergoes a time-frequency analysis, which results in a 
spectrogram where the target Doppler signature is detected. 
Note that, if the packet emission rate is constant over time, 
this stage can be implemented with a Short Time Fourier 
Transform (STFT) against partially overlapped batches of 
𝑇:$;$  seconds each, thus encompassing 𝑁< = F𝑇:$;$/∆𝑇& I 
packets: 
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where 𝑝& is the first packet of the current batch and ℎ(𝑝) 
is a weighting function, used to control the Doppler sidelobes 
level. Otherwise, if the sequence	𝑧̅(𝑝) collects samples that 
are not taken at equally spaced time instants, one can either 
resort to an appropriate interpolation stage, which basically 
yields a resampled version of the sequence 𝑧̅(𝑝)  before 
proceeding with the FFT, or resort to a nonuniform discrete 
Fourier transform at each batch.  



 
Figure 2. Simulated geometry. 

The effectiveness of the proposed approach is 
demonstrated in the following against both simulated and real 
WiFi data. 

 VALIDATION AGAINST SIMULATED DATA 

We generate a simulated dataset for the scenario depicted 
in Figure 2. A stream of OFDM modulated WiFi packets is 
simulated at the receiver, encompassing the signal transmitted 
by the AP, the signal backscattered by the point-like moving 
target and thermal noise. Additional details on the simulated 
scenario are reported in Table 1. 

Figure 3 reports the output of the IDP strategy in the 
absolute bistatic velocity – time plane. The latter is 
normalized in order for the noise level to be around 0 dB. The 
target Doppler signature is clearly distinguished during its 
entire trajectory in Figure 3, demonstrating the capability of 
recognizing the target motion by only observing the 
amplitude fluctuation that it produces.  

Also, we observe that the average background-to-noise 
(BNR) level competing with the target response is of approx. 
37.5 dB, which is almost equal to DNR2 and might jeopardize 
the detection of small radar cross section (RCS) targets. The 
authors have addressed this issue in [15], where it was shown 
that the background level depends on different parameters, 
among which the employed OFDM constellation.  

Therefore, we report in Figure 4 the results obtained 
against simulated datasets using the same parameters as 
 

 

Table 1 Simulation Parameters. 
Parameter Value 
Carrier frequency (f0) 5.18 GHz 
Sampling frequency (fs) 20 MHz 
Packet repetition interval (PRI) 3 ms 
Number of OFDM symbols per packet 5 
OFDM Constellation  16-QAM 
Target initial position (x0,y0) (10, 10) m 
Target initial velocity (vx,vy) (-1.5, 0) m/s 
Target constant acceleration (ax,ay) (0.2, -0.1) m/s2 
Target signal-to-noise ratio (SNR) -10 dB 
Direct signal-to-noise ratio (DNR) 20dB 

       

 
Figure 3. Absolute bistatic velocity-time map after the IDP. 

above but with the stream of WiFi packets employing the 
three remaining OFDM constellations usually employed in 
WiFi Standards. Specifically, BPSK, QPSK and 64-QAM 
OFDM modulated packets are used to get Figure 4(a), (b) and 
(c), respectively.  

Observing Figure 4, the different disturbance background 
levels are evident, being the BPSK [Figure 4(a)] the 
constellation that yields the darker map, denoting the lower 
level which in turn is expected to offer the highest capability 
of discriminating a target. This is confirmed by Table 2, 
where we report the average BNR for the different considered 
OFDM constellations, estimated on the final map obtained 
from simulated data in a target-absent condition. Based on 
Table 2, we confirm that, with the considered simulation 
parameters, the BNR level can vary of approximately 8 dB 
depending on the employed constellation. 

 
Table 2 Average background level for different  

OFDM constellations and DNR = 20 dB. 
OFDM constellation DNR BNR 
BPSK 20 dB 31.20 dB 
QPSK 20 dB 32.79 dB 
16-QAM 20 dB 37.49 dB 
64-QAM 20 dB 39.01 dB 

Table 3 Average background level for different  
OFDM constellations and DNR = 30 dB. 

OFDM constellation DNR BNR 
BPSK 30 dB 50.52 dB 
QPSK 30 dB 52.31 dB 
16-QAM 30 dB 57.37 dB 
64-QAM 30 dB 58.95 dB 

 
A further demonstration is obtained by observing the results 
in Table 3, obtained by repeating the analysis considering 
DNR = 30 dB. Note that, altough high BNR levels might not 
be an issue for large RCS targets, they might represent a 
limitation and jeopardise the capability to detect smaller 
targets.  



        

 
(a) 

 
(b) 

 
(c) 

Figure 4. Results of the IDP approach against streams  
of OFDM modulated packets with  

(a) BPSK (b) QPSK (c) 64-QAM constellation. 
 
 
Based on the results reported in this Section, an 

appropriate theoretical characterization of the predicted 
background level is needed and could pave the way for 
solutions or processing strategies aimed at reducing it. 

 VALIDATION AGAINST EXPERIMENTAL DATA 

In this Section, we demonstrate the effectiveness of the 
proposed IDP approach on real-world WiFi data, collected 
during an ad hoc acquisition campaign.  

A. Acquisition campaign 

The test was conducted in a private outdoor premise, see 
Figure 5. A commercial WiFi AP (TP-Link Archer VR600 
AC1600) was employed and set to transmit signal according 
to the IEEE 802.11ac Standard [1] at carrier frequency of 5.18 
GHz. This device was conneted to a transmitting directive 
antenna (Ubiquiti UMA-D), see the green square in Figure 5. 
The employed dataset was collected with an Ubiquiti UMA-
D directive antenna, connected to a National Instruments NI 
USRP-2955 board, see orange square in Figure 5. The NI 
USRP-2955 board features four receiving channels, 
independently down converted and simultaneously sampled, 
operating in the frequency range 10 MHz – 6 GHz, with 80 
MHz maximum instantaneous real-time bandwidth and 
additional gain for each channel from 0 to 95 dB, in 1 dB step. 
A small DJI Mavic Pro drone (see the red circle in Figure 5) 
was employed as cooperative target. We extract a one minute 
long portion of the acquisition, during which the drone moves 
back and forth twice along the trajectory described by the 
dashed red line.  

 

 
Figure 5. Acquisition geometry. 

B. Experimental results 

Figure 6 shows the output of the IDP technique on the 
described dataset. The two subfigures are obtained with 
OFDM modulated packets with different constellations. 
Specifically, Figure 6(a) is obtained selecting only ACK 
packets, while Figure 6(b) is obtained selecting only RTS 
packets, respectively employing a QPSK and a 16-QAM 
constellation for the OFDM symbols outside the PHY 
Preamble. In both cases, we extract 𝑁!"# = 	2  of those 
OFDM symbols.The DC component is removed in a sliding 
fashion with a window of 0.5s while the STFT is obtained 
with 𝑇:$;$ = 0.8s, with a Hamming tapering window applied 
to control the Doppler sidelobe level.  

Figure 6 shows that, although the target is characterized 
by a very low RCS, the proposed solution is able to detect it 
for a remarkable part of its trajectory against the competing 
background.  



We recall that this is obtained by only extracting the 
amplitude information from the collected signal. Specifically, 
we can clearly recognize the first part of the track between 5s 
and 35s, during which the target starts from its initial position, 
marked as a red dot in Figure 5, approaches the AP-Rx 
baseline, rotates on itself, and then turns back. Note that, 
when returning to its initial position, the target rapidly 
changes the altitude, explaining the signature between 25s 
and 30s.  

The aforementioned portion of the target trajectory is 
recognized in both subfigures regardless of the employed 
OFDM constellation; however, note that the average 
background level is quite different between the two 
subfigures. This confirms what shown before on simulated 
data, namely that the higher is the number of points in the 
employed OFDM constellation, the higher is the BNR level 
which might jeopardize the capability to detect small targets. 
This is evident in the second portion of the trajectory, between 
45s and 55s, where the target return is completely buried 
below the background level in Figure 6(b). In contrast, some 
small portion of the track would be visible in Figure 6(a), 
however the track continuity is jeopardized. 

This demonstrates the need to employ strategies that lower 
the background level to increase the ability to recognize 
targets.  

 CONCLUSIONS  

 In this paper we have proposed a reference-free non-
coherent approach for WiFi based passive sensing. This 
approach aims at providing the capability of monitoring a 
local area while meeting the requirements of compactness, 
low cost and complexity as well as stand-alone operability. 
Based on the proposed processing scheme, we look for the 
presence of a moving target by detecting the amplitude 
modulation that it produces on the direct signal emitted from 
the WiFi transmitter. We have validated the proposed 
strategies against simulated OFDM WiFi data; then we also 
reported an experimental validation against real-world WiFi 
data collected in an ad hoc acquisition campaign with a 
cooperative drone. We have demonstrated the effectiveness 
of the proposed strategy; however we have also identified the 
main limitation, represented by an high background level 
competing with the target response.  
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