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Abstract—Probabilistic programming languages rely funda-
mentally on some notion of sampling, and this is doubly
true for probabilistic programming languages which perform
Bayesian inference using Monte Carlo techniques. Verifying
samplers—proving that they generate samples from the correct
distribution—is crucial to the use of probabilistic programming
languages for statistical modelling and inference. However, the
typical denotational semantics of probabilistic programs is in-
compatible with deterministic notions of sampling. This is prob-
lematic, considering that most statistical inference is performed
using pseudorandom number generators.

We present a higher-order probabilistic programming lan-
guage centred on the notion of samplers and sampler operations.
We give this language an operational and denotational seman-
tics in terms of continuous maps between topological spaces.
Our language also supports discontinuous operations, such as
comparisons between reals, by using the type system to track
discontinuities. This feature might be of independent interest,
for example in the context of differentiable programming.

Using this language, we develop tools for the formal verification
of sampler correctness. We present an equational calculus to
reason about equivalence of samplers, and a sound calculus
to prove semantic correctness of samplers, i.e. that a sampler
correctly targets a given measure by construction.

Index Terms—Probabilistic programming, operational and de-
notational semantics, verification

I. INTRODUCTION

Probabilistic programming languages without conditioning
– that is to say, programming languages capable of drawing
random samples – and the concepts of Monte Carlo methods
and randomized algorithms have been around as long as
true computers have1; however, the introduction of languages
with conditioning, higher-order features, continuous variables,
recursion, and their application to statistical modelling and
machine learning, is a product of the twenty-first century
[36], [26], [15], [27], [40], [7], [3]. Since a probabilistic
programming language with conditioning must come equipped
with a range of inference algorithms and sampling methods,
and since the rate of introduction of these has increased in
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1See [4] for an overview of probabilistic programming languages, [6] for
a historical overview of the Monte Carlo method, and [23] for a history of
pseudorandom number generation.

recent years, new formal methods must be developed for the
verification of these algorithms.

We aim to make the verification of inference algorithms
straightforward by introducing a language endowed with a
sampler type, featuring many of the sampler operations used
in these inference algorithms, and a calculus for reasoning
about correctness of these samplers relative to intended ‘target’
distributions. The semantics of our language is fully determin-
istic, in order to allow the use of deterministic – pseudorandom
– samplers, in a simple manner and without paradox.

When assigning operational and denotational semantics to
probabilistic programs, an interesting asymmetry emerges: the
simplest reasonable denotational semantics of a first-order
language with continuous datatypes is in terms of probabil-
ity measures [21], while the simplest reasonable operational
semantics is in terms of sampled values – the latter being much
closer to the intuitions used by programmers of languages with
the ability to draw samples.

The denotational semantics of probabilistic programming
languages, in terms of measures (broadly construed) is well-
understood [21], [16], [12], [38], [8]. The most common
approaches to the operational semantics of such a language,
as highlighted by [12], are trace semantics and Markov chain
semantics. The latter is the chosen operational semantics for
a number of probabilistic λ-calculi [11], [22], [5], [13], [12],
[14] and probabilistic languages [34], [38], but does not speak
of sampled values, only of distributions on execution paths.
From the perspective of the asymmetry described above, it is
thus closer to a denotational semantics.

Trace semantics, originally developed in [21] and later
applied in [32], [5], [9], [2], assumes that for each distribution
in the language, an infinite set of samples has been produced
ahead-of-time. When a sample is requested, the head of this
sequence is popped and used in the computation, and the tail
of the sequence is kept available for further sampling. This
perspective models samplers, such as rand(), as functions with
hidden side effects on the state of the machine – in line with
a programmer’s intuition on the nature of sequential calls to
rand(). The natural notion of adequacy with respect to the de-
notational semantics is to show that subject to the assumption
that each element of these sequences is sampled independently
from its corresponding distribution, the resulting pushforward979-8-3503-3587-3/23/$31.00 ©2023 IEEE



through the program is identical to the program’s denotational
semantics. We see two issues with this approach.

First, the supposition that all samples are pre-computed
ahead-of-time is incompatible with pseudorandom generation
of ‘random’ values, since computationally-generated samples
and truly-random samples are in fact distinguishable. For
example, if (x0, x1, . . .) is a sequence of samples targeting
the distribution P which was produced via iteration of a
computable map xn+1 = T (xn), then the program T (x) − x
will behave differently if x is a ‘truly random’ sample from
P than if x is produced by the aforementioned iterative
procedure, and so the operational and denotational semantics
no longer cohere; similar counterexamples exist for any pseu-
dorandom number generator. If (x0, x1, . . .) is a deterministic
sequence, meaningful coherence between the operational and
denotational sequence can only be assured if it is assumed
that this sequence is Martin-Löf random (first defined in [29],
later generalised to computable metric spaces in [17]); unfor-
tunately, all Martin-Löf random sequences are uncomputable.
Pseudorandom numbers are in fact used in simulation far more
commonly than ‘true’ physical randomness, as they are typi-
cally faster to obtain, have the advantage of being reproducible
given a particular seed, and, subject to certain assumptions,
can even have better convergence properties [24]. We find the
inability of trace semantics to describe pseudorandom number
generation to be a significant weakness.

Second, from the trace semantics perspective, the notion of
a sampler type is inextricably bound up in issues regarding
side-effects, which makes verification challenging. In order
to properly assign the syntax rand, without parentheses,
a meaningful semantics as a function, we must give it a
monadic interpretation as in [32], accounting for its hidden
effect on the trace. The correctness of code which inputs and
outputs samplers – sampler operations – is then subject to the
state of the trace when computation is started, which is not
contained within either the code of the sampler operation in
question or the code of the samplers it inputs. This pattern, of
using sampler operations to create composite samplers which
make use of other ‘primitive’ samplers, is a central theme
in computational statistics. In particular, inference algorithms
within Bayesian statistics, to which probabilistic programming
languages with conditioning compile, make heavy use of this
technique. Commonly-used sampling methods, such as impor-
tance sampling, rejection sampling, and particle Markov chain
Monte Carlo methods, are naturally understood as composite
samplers of this type [1], [33]. We prefer a side-effect-free
perspective from which the correctness of sampler operations
can be demonstrated subject to assumptions about the samplers
input to these programs, as opposed to a perspective in which
their correctness depends also on the state of the machine on
which these operations are run.
Contributions. We develop a language based around the idea
of sampler types and sampler operations, which allows reason-
ing about deterministic and real-valued samplers, and which
is designed to make verification of these samplers natural. A
syntax, operational semantics, and denotational semantics for

our language are introduced in § III, and an adequacy result
relating them is shown. § IV lays out a notion of equivalence
of samplers, which will be applied to simplify programs.
Finally, in § V, we discuss methods for proving that samplers
target the desired probability measure (i.e. verifying samplers),
and introduce a sound calculus for verifying the correctness
of composite samplers which is capable of demonstrating
the soundness of common Monte Carlo techniques such as
importance sampling and rejection sampling.

II. EXAMPLES

The purpose of this section is twofold. First, we present
examples of how samplers are transformed in order to create
new samplers. We use this opportunity to informally introduce
a language with a sampler type constructor Σ and opera-
tions for constructing and manipulating samplers. Second,
we present techniques to reason about the correctness of
sampling algorithms. These come in two flavours. We reason
equationally about the equivalence between samplers (see
§ IV), and we reason semantically about whether a sampler
does the job it is designed to do – namely, generate deviates
from a target distribution (see § V).

A. Von Neumann extractor
We begin with a simple family of discrete samplers known

as von Neumann extractors. This example will illustrate the
concept of a sampler’s self-product, a central concept for a
language featuring sampler types. The von Neumann extrac-
tor [37] is a simple procedure which, given flips from a biased
coin on {True, False} with probability p ∈ (0, 1) of landing
True, produces flips from an unbiased coin with probability
1/2 of landing True. We view this as a sampler v of Boolean
type – notation v : Σ B – which, given another Boolean-valued
sampler flip : Σ B representing our biased coin, constructs an
unbiased Boolean-valued sampler. A simple implementation
of the von Neumann extractor is given in Listing 1.

let choice = λb : B × B .
if (fst(b) and snd(b)) or (not fst(b) and
not snd(b)) then 0 else 1

in let proj = λb : B × B . fst(b)
in map(proj, reweight(choice, flip2))

Listing 1: von Neumann extractor

The idea behind this algorithm is that if (b1, b2) are
sampled independently from a Bernoulli distribution with
parameter p, then the probabilities of the outcomes (b1, b2) =
(False, True) and (b1, b2) = (True, False) are both p(1−p),
and so the first element b1 of each pair is an unbiased flip.
In Listing 1, samples (b1, b2) where b1 = b2 are removed by
the reweight operation, which sets the weight of such pairs
to zero; then, the command map applies the function proj

to each pair (b1, b2), returning the sampler whose outputs are
only the first element b1.

Note the appearance of flip2 in the von Neu-
mann extractor; this is the ‘self-product’ of the sam-
pler flip. Where flip : Σ B produces Boolean-valued sam-
ples, flip2 : Σ (B× B) produces samples which are pairs of



` flip2 : Σ (B× B) Ber(p)2 ` choice : B× B→ R+

` reweight(choice, flip2) : Σ (B× B) JchoiceK · Ber(p)2 ` proj : B× B→ B

` map(proj, reweight(choice, flip2)) : Σ B JprojK∗ (JchoiceK · Ber(p)2) = Ber(1/2)

Fig. 1: Validity of von Neumann extractor

` rand2 : Σ (R× R) U2 ` plus : R× R→ R

` map(plus, rand2) : Σ R JplusK∗ U
2 ` phi : R→ R+

` reweight(phi, map(plus, rand2)) : Σ R JphiK · (JplusK∗ U2) = P

Fig. 2: Validity of importance sampling in Listing 2

Booleans. Given a sampler t : Σ T of type T, the self-product
t2 : Σ (T×T) is a sampler whose elements are adjacent samples
from T; the same construction, detailed in § III, is easily
extended to arbitrary self-powers tK : Σ (TK).

The main application of our language is to serve as a
setting for the formal verification of its samplers. Let v : Σ B
be the von Neumann extractor defined in Listing 1; the task
of verifying v is the task of showing that v ‘targets’ the
uniform distribution Ber (1/2) – meaning, informally, that in
the limit of increasing sample size, v generates unbiased flips.
In § V-B, we define a relation  between samplers and
distributions which reifies this notion: we read ` v : Σ B  
Ber (1/2) as ‘the sampler v targets the measure Ber (1/2)’. The
aforementioned self-product operation plays a crucial role in
sampler verification, as it does not suffice, in order to conclude
that v targets Ber (1/2), to assume that flip targets Ber(p)
for some p ∈ (0, 1). Instead, we are required to make the
stronger assumption that flip2 targets Ber(p)2: in essence,
that adjacent samples from flip act as if they are independent.
Following the literature on pseudorandom number generation,
we refer to this property as K-equidistribution (in this case,
for K = 2): we will say that a sampler s is K-equidistributed
with respect to the distribution P if sK targets PK . For
example, the assertion that a pseudorandom number generator
which takes values in {0, . . . , N − 1} is K-equidistributed
with respect to the uniform distribution is the assertion that
all K-length words w ∈ {0, . . . , N − 1}K are produced in
equal proportion. Several commonly-used discrete PRNGs,
such as xorshift and the Mersenne twister, have well-known
K-equidistribution guarantees; see [39], [30].

In our calculus for asymptotic targeting, the validity
of the von Neumann extractor is shown in Fig. 1. Be-
fore we begin this derivation, it must be shown that the
von Neumann extractor v is equivalent to the simplified
sampler map(proj, reweight(choice, flip2)) in a con-
text in which access to a Boolean-typed sampler flip

is assumed, where proj and choice are defined as in
Listing 1. We write this equivalence as flip : Σ B `
v ≈ map(proj, reweight(choice, flip2)) : Σ B; this equiv-
alence relation is discussed in § IV, and is shown in this
particular case using the let-binding rule of Table IV.

Having rewritten v in this way, and using the hypothesis
of 2-equidistribution ` flip2 : Σ B Ber(p)2, we derive our
conclusion in Fig. 1 by applying the rules from § V-B corre-

sponding to the sampler operations reweight and map. These
rules show us that v targets the measure JprojK∗ (JchoiceK ·
Ber(p)2). (Here, as we will discuss in § V-B, JfK∗ µ denotes
the pushforward of the measure µ through the function f , and
the notation f · µ denotes the measure µ reweighted by the
density f .) To complete the proof, we show that this measure
is identical to Ber(1/2), the uniform measure on B; this is
straightforward. It is easily seen first that JchoiceK · Ber(p)2

assigns probability 1/2 to the samples (True, False) and
(False, True) and zero probability to all other samples; the
desired result then follows by observing that the function proj

simply drops the second sample.

B. Importance sampling

A central application of the reweighting operation is its role
in importance sampling. This is a commonly used technique
[33], [6] in Bayesian learning and statistical inference, which
transforms samples from a ‘proposal’ distribution Q on the
latent space X into approximate samples from a ‘target’
distribution P , where P is absolutely continuous with respect
to Q with Radon-Nikodym derivative dP

dQ (x). Its operation
is straightforward: for each sample xn ∼ Q, compute the
sample’s weight wn = dP

dQ (x), and then the weighted sample
(xn, wn) is informally understood as an approximate sample
from the target P . Formally, the normalised empirical measure∑N
n=1

wn∑N
i=1 wi

δxn
, where δx is the Dirac measure at x ∈ X ,

converges weakly as N →∞ to the target measure P .
For example, consider the Bayesian inference problem in

which the prior P0 is the triangular distribution on [0, 2] and
the likelihood of the observation y = 3 given the latent value
x is a standard Gaussian L(x) = 1√

2π
exp

(
− (3−x)2

2

)
. Let

P represent the corresponding posterior distribution, whose
density is proportional to the pointwise product of the trian-
gular and Gaussian densities; a simple importance-sampling
procedure for sampling from P in our language is shown
in Listing 2. Here, we assume access to a sampler rand

which targets the uniform distribution on [0, 1]; recalling
that a triangular random variable is the sum of two inde-
pendent uniform random variables, and assuming rand has
the necessary independence property of 2-equidistribution, we
sum two draws from rand to produce a triangular random
variable. Finally, we reweight the result according to the
likelihood L(x), yielding a sampler which targets the posterior
distribution P corresponding to the observed datum y = 3.



` tri⊗ rand : Σ T Tri⊗ U ` accept : T→ R+

` reweight(accept, tri⊗ rand) : Σ T JacceptK · (Tri⊗ U) ` proj : T→ R

` map(proj, reweight(accept, tri⊗ rand)) : Σ R JprojK∗ (JacceptK · (Tri⊗ U)) = P

Fig. 3: Validity of rejection sampling in Listing 3

let phi = λx : R . 1/sqrt(2*pi) * exp(-1/2*(3-
x)*(3-x))

in let plus = λu : R × R . fst(u) + snd(u)
in reweight(phi, map(plus, rand2))

Listing 2: Importance sampling

The validity of this sampler – i.e. the fact that it targets
the correct posterior distribution – follows easily in our
targeting calculus. Under the hypothesis that rand produces
2-equidistributed samples with respect to the uniform distribu-
tion U , the derivation Fig. 2 proves that the sampler defined in
Listing 2 targets the measure JphiK · (JplusK∗ U2). It remains
to show that this measure is the desired P ; once one shows
that the sum of two independent uniform variates is triangular,
this follows by definition of the reweighting operation ·. The
same argument suffices for any observation y.

C. Rejection sampling

Our final example of sampler verification is an instance
of the technique known as rejection sampling. Listing 3
applies rejection sampling from the prior to the same Bayesian
inference problem discussed in § II-B to yield a sampler
which targets the same posterior distribution P . Of particular
importance is the discontinuity of the accept-reject step, which
significantly complicates the argument of sampler verification
in the presence of pseudorandom number generation.

let phi = λx : R . 1/sqrt(2*pi) * exp(-1/2*(3-
x)*(3-x))

in let accept = λ(u,v) : T .
if v ≤ phi(u)*sqrt(2*pi) then 1 else 0
in let proj = λz : T. fst(cast〈R×R〉(z)) in
map(proj, reweight(accept, tri ⊗ rand))

Listing 3: Rejection sampling

In order to show the validity of rejection sampling from
the prior, we must assume access to a sampler on the prior
distribution (here tri), an independent standard uniform ran-
dom sampler (here rand), and an upper bound supx∈R L(x) =
1
2π supx∈R exp(− (3−x)2

2 ) = 1
2π on the likelihood, which is

used in the acceptance condition. Fig. 3 proves that, subject
to the natural independence assumption for the samplers tri

and rand, the rejection sampler defined by Listing 3 targets
the measure JprojK∗ (JacceptK·(Tri⊗U)). We can then show,
using standard methods, that this measure is identical to P ,
the posterior distribution also targeted by Listing 2.

We have omitted, for the moment, one crucial part of
the proof. Note that, in both Listing 3 and Fig. 3, the
function accept, which one might expect to have type
R× R→ R+, instead has type T→ R+. Correspondingly, the
product tri⊗ rand must be assumed to produce samples of

type T, rather than R× R, and proj must accepts inputs of type
T rather than pairs R× R. The nature of this type T, a subtype
of R× R, will be explained in § III, but it encodes the fact
that accept is discontinuous when viewed as a function on
the standard topologies, as well as where those discontinuities
are allowed to lie. The type-inference of Listing 3, detailing
the structure of T, is given in [10, Fig. 6 and Fig. 7].

III. LANGUAGE

A. Syntax

We use a λ-calculus with a notion of subtype and a type
constructor Σ for samplers.

1) Types: Types are generated by the mostly standard
grammar in Fig. 4a, where the set Ground of ground types is

{N, R, R+} ∪ {f−1(i) | f ∈ {≤, <,≥, >,=, 6=}, i = 0, 1}.

Our ground types include the natural, real and nonnegative
real numbers, as well as important sets of pairs of reals: for
example, <−1(1) will be denoted, as the notation suggests,
by the pairs of reals whose first component is strictly smaller
than the second. The boolean type B , 1 + 1 will be treated
as a ground type.

The only unusual type constructors are the pullback types
Ts t which – as the name suggests – will be interpreted as

pullbacks (in fact inverse images), and the sampler types Σ T
which will be defined as the coinductive (stream) types defined
by the (syntactic) functors T × R+ × −. In other words, we
assume that samplers can be weighted; this covers the special
case of unweighted samplers, in which every weight is set to
1. As these are the only coinductive types we need, and to
highlight the central role played by samplers, we choose not
to add generic coinductive types to the language.

The subtyping relation / on types is the reflexive transitive
closure of the relation generated by the rules of Fig. 4b.

2) Terms: Fig. 4c presents the grammar generating the set
Expr of terms in our language. We assume the existence of
a set Func of built-in functions which come equipped with
typing information f : T → G, where G is a ground type.
Some built-in functions will be continuous w.r.t. to the usual
topologies, such as the addition operation + : R× R→ R, but
others will be discontinuous, such as the comparison operators
{≤, <,≥, >,=, 6=} : R× R→ B. Dealing with such functions
is the main reason for adding coproducts to the grammar, as
we will discuss in § III-C. We also employ the syntactic sugar

if b then sTrue else sFalse , case (b, _) of {(i, _)⇒ si}i∈B .

Most of our language constructs are standard for a typed
functional language without recursion, but we endow our
language with several nonstandard (sampler) operations:



S, T ::= G ∈ Ground | 1 | S× T | S + T | Ts t | S→ T | Σ T s, t : T

(a) Type grammar

f−1(0) + f−1(1) / R× R
f ∈ {<,≤, >,≥,=, 6=} S1 / S2 T1 / T2

S1 × T1 / S2 × T2

S1 / S2 T1 / T2
S1 + T1 / S + T2

S / T
Σ S / Σ T

∑
i∈n Si / S

∑
j∈m S′i / S∑

i∈n,j∈m Si ∩ S′j /
∑

i∈n Si

∑
i∈n Si / S

∑
j∈m S′j / S∑

i∈n,j∈m Si ∩ S′j /
∑

j∈m Sj

(b) Subtyping rules

t ::= x ∈ Var | b ∈ {True, False} | n ∈ N | r ∈ R | Variables and constants

f(t, . . . , t), f ∈ Func | cast〈T〉t | Built-in functions

case t of {(i, xi)⇒ si}i∈n | ini (t) | λx: T.t | t(t) | let x = t in t | Programming constructs

(t, t) | fst(t) | snd(t) | Products

prng(t, t) | t⊗ t | map(t, t) | reweight(t, t) | hd(t) | wt(t) | tl(t) | thin(t, t) Sampler operations

(c) Term grammar

Fig. 4: Grammars and subtyping rules

• The operation prng(f, t) is used to construct a sampler
as a pseudo-random number generator, using an initial
value t and a deterministic endomap f .

• s⊗ t represents the product of samplers s, t.
• The syntax map(f, t) maps the function f over the

elements produced by the sampler t to produce a new
sampler, in analogy to the pushforward of a measure.

• The operation reweight(f, t) applies the reweighting
scheme f to the sampler t to form a new sampler.

• Given a sampler t, the operation hd(t) returns the first
sample produced by t, wt(t) the weight of the first sample
produced by t, and tl(t) returns the sampler t but with
its first sample-weight pair dropped.

• The operation thin(n, t), given a natural number n and a
sampler t, returns the sampler which includes only those
elements of t whose index is a multiple of n.

The intuition and purposes of most of these language con-
structs was explained in § II, and their precise meaning will
be made clear when we introduce their semantics.

3) Well-formed terms: Our typing system is mostly stan-
dard and presented in Table I. The only non-standard rules are
the context-restriction rule on the second line of Table I, and
the typing rules for the sampler operations, which should be
straightforward given their descriptions above. The purpose of
the context-restriction rule is, in a nutshell, to be able to pass
the result of a computation of type T which is continuous w.r.t.
a topology τ on the denotation of T, to a computation using
a variable of type T but which is continuous w.r.t. to a finer
topology τ ′ ⊃ τ on the denotation of T. After application of
this rule, it is no longer possible to λ-abstract on the individual
variables of the context. There are good semantic reasons for
this feature, which we discuss in § III-C. For readability and
intuition’s sake, the rule is written using the syntactic sugar

t−1(Ti) , Tcast〈T〉ini(x) t where x : Ti (1)

For the subtyping rules Fig. 4b, we use the syntactic sugar

Si ∩ S′j , S
cast〈S〉ini(xi) cast〈S〉inj(x′

j)
where xi : Si, x

′
j : S′j

Our typed lambda calculus does not feature recursion for
two reasons. First, it is not necessary: as any computable prob-
ability measure can be obtained as a computable pushforward
of the uniform measure on the unit interval [18], [17], any
sampler language which features the sampler operation map

can, given a uniform sampler, target any computable proba-
bility measure. In particular, many rejection samplers, which
are commonly implemented recursively, can alternatively be
implemented using the operation reweight, as shown in
Listing 3. Second, the categorical semantics of a typed, proba-
bilistic, higher-order lambda calculus with recursion are a very
recent area of investigation [38]; we consider the inclusion of
recursive samplers to be further work.

B. Operational semantics

In practice, in order to evaluate a program containing a
sampler, one must specify a finite number of samples N ∈ N
which are to be produced. Our (big-step) operational seman-
tics correspondingly takes the form of a reduction relation
(t,N)→ v, where the left side consists of a well-typed closed
term t ∈ Expr and a number of samples N ∈ N, and the right
side is a value v ∈ Value, i.e. a term generated by the grammar

v ::= x ∈ Var | g ∈ G | (v, v) | ini (v) | λx: T. v (2)

The rules of this big-step operational semantics, shown
in full in [10, Table VI], are the usual rules for the stan-
dard language constructs, together with additional rules for
our implemented sampler operations; these are given in Ta-
ble II. For notational simplicity, these operations make use
of lists (a, b, c, d), which are in fact interpreted within our
language as nested pairs (a, (b, (c, d))). In order to keep the
rules readable, we also introduce the shorthand (t,N) →
((v1, w1), . . . , (vN , wN )) to denote the N reductions

(hd(t), wt(t))→ (v1, w1),

(hd(tl(t)), wt(tl(t)))→ (v2, w2), . . . ,

(hd(tlN−1(t)), wt(tlN−1(t)))→ (vN , wN ).



Γ ` g : G
g ∈ JGK

Γ, x : T,∆ ` x : T

Γ ` t : T

Γ ` f(t) : G
Func 3 f : T→ G

∆ ` t : S

Γ ` cast〈T〉t : T
S / T,Γ /∆

Γ ` t : T,

(x1, . . . , xn) :
∑

i∈m t−1(Ti) ` t :
∑

i∈m Ti

∑
i∈m Ti / T,Γ = x1 : S1, . . . , xn : Sn

Γ ` s : S Γ ` t : T

Γ ` (s, t) : S× T

Γ ` t : S× T

Γ ` fst(t) : S

Γ ` t : S× T

Γ ` snd(t) : T

Γ, x : S ` t : T Γ ` s : S

Γ ` let x = s in t : T

Γ, x : S ` t : T

Γ ` λx : S . t : S→ T

Γ ` s : S Γ ` t : S→ T

Γ ` t(s) : T

Γ ` t : Tj

Γ ` inj (t) :
∑

i∈n Ti
j ∈ n

Γ ` t :
∑

i∈I Ti Γ, xi : Ti ` si : T

Γ ` case t of {(i, xi)⇒ si}i∈I : T

Γ ` t : Σ T

Γ ` hd(t) : T

Γ ` t : Σ T

Γ ` wt(t) : R+
Γ ` t : Σ T

Γ ` tl(t) : Σ T

Γ ` s : Σ S Γ ` t : Σ T

Γ ` s⊗ t : Σ (S× T)

Γ ` s : T→ T Γ ` t : T

Γ ` prng(s, t) : Σ T

Γ ` t : Σ T Γ ` n : N

Γ ` thin(t, n) : Σ T

Γ ` s : Σ S Γ ` t : S→ T

Γ ` map(t, s) : Σ T

Γ ` s : T→ R+ Γ ` t : Σ T

Γ ` reweight(s, t) : Σ T

TABLE I: Typing rules

Note that the product of two weighted samplers has as its
weights the product of its factors’ weights. The product and
the operation reweight are the only operations modifying the
weights of samplers.

The following proposition shows that the operational se-
mantics is well-formed in that for any N ∈ N, samplers can
only reduce to weighted lists of length N .

Proposition III.1. [10, Appendix A] If ` s : Σ S is a closed
sampler, then for any N ∈ N, if (s,N) → v, then v has
the form ((v1, w1), . . . , (vN , wN )), where vn are values and
wn ∈ R≥0 are weights. If S is not a sampler type, then vn : S;
more generally, each vn might be a weighted list itself.

The self-product operation: Having clarified the meaning
of the product and of the thin operation, we are now in a
position to formally justify the operation which we referred
to, in § II, as the ‘self-product’ of a sampler. To motivate
it, consider a sampler t : Σ T which evaluates as (t, 2N) →
(x1, . . . , x2N ), where for notational clarity we have omitted
the weights. From the above operational semantics, the lagged
sampler thin(2, t⊗ tl(t)) : Σ (T× T) evaluates to

(thin(2, t⊗ tl(t)), N)→ ((x1, x2), (x3, x4), . . . , (x2N−1, x2N )).

This is the ‘self-product’ which was denoted t2 in § II. This
notion is important because it is the construction which allows
us to generate pairs of independent samples from a given
sampler. Note that simply taking t ⊗ t will produce pairs of
perfectly correlated samples: the operational semantics gives
(t⊗ t,N)→ ((x1, x1), . . . (xN , xN )). More generally, for any
K ∈ N, we define the K-fold self-product of a sampler as

tK , thin(K, t⊗ tl(t)⊗ . . .⊗ tlK−1(t)). (3)

Sampling from tK is intended to allow the sampling of K-
tuples of independent deviates generated by the sampler K.
Ultimately, it is only to define this self-product operation
that the sampler operation thin is included at all, it being
somewhat of an unnatural construct.

C. Denotational semantics
1) Denotational universe: We will see in § V that contin-

uous maps play a special role in the verification of sampler

properties. We therefore need a denotational domain in which
continuity is a meaningful concept. We also need a Cartesian
closed model, as we want to interpret the lambda-abstraction
operation of our calculus. A standard solution is to consider
the category of compactly generated topological spaces [35],
[31], [25] (henceforth CG-spaces). A topological space X is
compactly generated if it is Hausdorff and has the property that
C ⊆ X is closed iff C ∩K is closed in K for every compact
K in X [35, §1]. We need not worry about the theory of these
spaces, but the following facts are essential in what follows.

Proposition III.2 ([35], [25]). 1) The category CG of CG-
spaces and continuous functions is Cartesian closed.

2) The category CG is complete and cocomplete.
3) Every metrizable topological space is CG.
4) Locally closed subsets (i.e. intersections of an open and

a closed subset) of CG-spaces are compactly generated.

It is worth briefly describing the Cartesian closed structure
of CG. The product is in general different from the product in
Top, the category of topological spaces: if the usual product
topology is not already compactly generated, then it needs to
be modified to enforce compact generation [35, §4]. However,
in most practical instances the usual product topology is
already compactly generated – for example, any countable
product of metrizable spaces is metrizable, and thus compactly
generated by Prop. III.2. The internal hom [X,Y ] between CG-
spaces X,Y is given by the set of continuous maps X → Y
together with the topology of uniform convergence on compact
sets, also known as the compact-open topology [35, §5].

2) Semantics of types: With this categorical model in place
we define the semantics of types. The semantics of ground
types is as expected: JNK = N, equipped with the discrete
topology, and JRK = R, JR+K = [0,∞) with the usual
topology. The spaces f−1(i), f ∈ {≤, <,≥, >,=, 6=}, i ∈ 2
are interpreted precisely as the notation suggests, e.g.

q
<−1 (0)

y
= {(x, y) | x, y ∈ R ∧ x ≥ y},

q
=−1 (1)

y
= {(x, x) | x ∈ R}

together with the subspace topology inherited from R × R.
Since all these spaces are metrizable, our ground types are



((s(hd(t)), wt(t)), N)→ (v1, w1) . . . ((s(hd(tlN−1(t)), wt(tlN−1(t))), N)→ (vN , wN )

(map(s, t), N)→ ((v1, w1), . . . , (vN , wN ))

((hd(t), s(hd(t)) · wt(t)), N)→ (v1, w1) . . . ((hd(tlN−1(t)), s(hd(tlN−1(t))) · wt(tlN−1(t))), N)→ (vN , wN )

(reweight(s, t), N)→ ((v1, w1), . . . , (vN , wN ))

(s,N)→ ((v1, w1), . . . , (vN , wN )) (t,N)→ ((v′1, w
′
1), . . . , (v′N , w

′
N ))

(s⊗ t,N)→ (((v1, v′1), w1 · w′1), . . . , ((vN , v
′
N ), wN · w′N ))

(t,N)→ ((v1, w1), . . . , (vN , wN ))

(hd(t), N)→ v1

(t,N)→ ((v1, w1), . . . , (vN , wN ))

(tl(t), N − 1)→ ((v2, w2), . . . , (vN , wN ))

(t,N)→ ((v1, w1), . . . , (vN , wN ))

(wt(t), N)→ w1

(s,N)→ i (t,Ni)→ ((v1, w1), . . . , (vNi, wNi))

(thin(s, t), N)→ ((v1, w1), (vi+1, wi+1), (v2i+1, w2i+1), . . . , (v(N−1)i+1, w(N−1)i+1))

(t,N)→ v1 (s(t), N)→ v2 . . . (sN−1(t), N)→ vN

(prng(s, t), N)→ ((v1, 1), . . . , (vN , 1))

TABLE II: Big-step operational semantics of sampler operations

interpreted in CG by Prop. III.2.
Products (including the unit type) and function types are

interpreted in the obvious way using the Cartesian closed
structure of CG. Coproduct types are interpreted by coprod-
ucts in CG, and given two terms s, t : T interpreted as CG-
morphisms JsK : A → JTK , JtK : B → JTK, the pullback type
Ts t is interpreted as the pullback A ×JTK B of JsK along JtK.

All these spaces live in CG by Prop. III.2.
Since sampler types are coinductive types, their semantics

will hinge on the existence of terminal coalgebras.

Theorem III.1 (Adámek). Let C be a category with ter-
minal object 1, and F : C → C be a functor. If C has
and F preserves ωop-indexed limits, then the limit νF of

1 F1
!oo FF1

F !oo ...
FF !oo is the terminal coalgebra of F .

Since CG is complete, it has ωop-indexed limits. Recall
that we want to interpret Σ T as the coinductive type defined
by the ‘functor’ T×R+×−. Formally, given a type T we want

JΣ TK , ν(JTK× R+ × Id). (4)

Since products are limits, and limits commute with limits, it
is clear that the functor JTK×R+× Id preserves limits, and in
particular ωop-indexed ones. Adámek’s theorem thus guaran-
tees the existence of an object satisfying (4). More concretely,
since the termimal object 1 is trivially metrizable, and since
R+ is metrizable, each object in the terminal sequence will
be metrizable provided JTK is, and thus

∏
n(JTK× R+)n will

be metrizable whenever JTK is, and will therefore be equipped
with the usual product topology. The limit defining (4) is a
closed subspace of this product, which means that the limit
in CG defining JΣ TK is the same as in Top when JTK is
metrizable (for example, if T is a ground type or a product of
ground types). However, by defining JΣ TK coinductively rather
than simply as (JTK × R+)ω , we obtain a terminal coalgebra
structure on JΣ TK, and therefore the ability to define sampler
operations coinductively.

3) Semantics of the subtyping relation: Our language con-
tains the predicates f ∈ {≤, <,≥, >,=, 6=} (essential for
rejection sampling § II-C) and yet is meant to be interpreted in

a universe of topological spaces and continuous maps. These
predicates are not continuous maps R× R→ 2 for the usual
topology on R × R. However, for each such predicate f ,
the sets

q
f−1(0)

y
and

q
f−1(1)

y
are locally closed sets, that

is to say the intersection of an open set and a closed set
(for the usual topology on R × R), and therefore CG-spaces
by Prop. III.2, e.g.

q
<−1(0)

y
is closed and

q
<−1(1)

y
open.

Our central idea for dealing with discontinuities is that since
CG is cocomplete, the space

q
f−1(0)

y
+

q
f−1(1)

y
is a CG-

space. This space has the nice property that f is continuous
as a map f :

q
f−1(0) + f−1(1)

y
→ 2. Since each f−1(i) is

a type, we can enforce this semantics by simply typing these
built-in functions in Func as f : f−1(0) + f−1(1)→ B.

The topology on
q
f−1(0) + f−1(1)

y
is finer than the usual

topology on R × R, which means that the identity map
Id :

q
f−1(0) + f−1(1)

y
→ R × R is continuous. This is

the semantic basis for the axiom in Fig. 4b. From the other
rules it is easy to see by induction that the subtyping relation
is always between spaces sharing the same carrier set and
is semantically given by coarsening the topology. In other
words, if S / T, then JSK and JTK share the same carrier and
the corresponding identity map Id : JSK→ JTK is continuous.

Example III.1. Let p , if x = 0 then 1 else − 1; we will
first show how the context-restriction rule allows us to type-
check this program. For readability’s sake, let Eq , =−1(1)
and Neq , =−1(0). We now derive, using = : Neq + Eq→ R,

x : R ` x : R ` 0 : R

x : R ` (x, 0) : R× R

x : (x, 0)−1Neq + (x, 0)−1Eq ` (x, 0) : Neq + Eq
Neq + Eq / R× R

x : (x, 0)−1Neq + (x, 0)−1Eq ` x = 0 : B ` 1 : R ` −1 : R

x : (x, 0)−1Neq + (x, 0)−1Eq ` if x = 0 then 1 else − 1 : R

Anticipating the semantics on terms discussed shortly, it can
easily be shown that

q
(x, 0)−1Neq + (x, 0)−1Eq

y
= ((−∞, 0) ∪ (0,∞)) + {0}



and thus JpK is the continuous map

JpK : ((−∞, 0) ∪ (0,∞)) + {0} → R, x 7→

{
1 if x = 0

−1 else

4) Semantics of well-formed terms: Axioms, weakening,
subtyping, product, projections, let-binding, λ-abstraction,
function application, injections and pattern matching are in-
terpreted in the expected way (given that CG is a Cartesian
closed category with coproducts).

Continuous built-in functions, for example + : R×R→ R or
exp : R→ R, are interpreted in the obvious way. As explained
above, discontinuous built-in functions {≤, <,≥, >,=, 6=} are
typed in such a way that their natural interpretations are
tautologically continuous.

We can now describe the semantics of the context-restriction
rule. From the premise, our observations in § III-C3, and the
side-conditions, we have morphisms

JtK :
∏
j∈n

JSjK→ JTK , and Id :
∐
i∈m

JTiK→ JTK .

By Eq. (1) we interpret each ‘inverse image type’ t−1(Ti) as
the pullback (inverse image) of JtK along the inclusion JTKi ↪→∐
i∈m JTiK which is, as the notation implies, simply given by

JtK−1 (JTiK). Since
∐
i∈m JTiK and JTK share the same carrier,

it is clear that this defines a partition of JΓK, and we can thus
retype t as a continuous map

∐
i∈m

q
t−1(Ti)

y
→
∐
i∈m JTiK,

interpreting the rule.
As mentioned earlier in this section, context-restriction

prevents λ-abstraction; the following example illustrates why
this must be the case.

Example III.2. Consider the program x < y derived by:

x : R, y : R ` (x, y) : R× R

(x, y):(x, y)−1(<−1(0)) + (x, y)−1(<−1(1)) ` (x, y):<−1(0) +<−1(1)

(x, y) : (x, y)−1(<−1(0)) + (x, y)−1(<−1(1)) ` x < y : B

The interpretation of x < y is given by the continuous function

J<K : {(x, y) | x < y}+ {(x, y) | x ≥ y} → 2.

Although it has the same carrier R × R, the domain of this
map is no longer of product of topological spaces; it is now
a coproduct of topological spaces. This means that it is no
longer possible to λ-abstract over one of the variables of this
function using the Cartesian closed structure of CG.

In order to be able to λ-abstract the map <, we would
need a topology on R × R with the property that for any
given x0 ∈ R the function x0 < − : R → 2 is continuous.
This would introduce the open sets [x0,∞) to the topology
of R for each x0 ∈ R, meaning that we must equip R with
the notoriously problematic lower limit topology (a.k.a. the
Sorgenfrey line). Whether or not this is a CG-space seems to
be a thorny question, possibly independent of ZF [20].

Finally, we define the denotational semantics of sampler
operations using the coinductive nature of sampler types.

Recall that for a type T, JΣ TK , ν(JTK×R+×Id). In particular,
JΣ TK comes equipped with a coalgebra structure map

unfoldT : JΣ TK→ JTK× R+ × JΣ TK .

Moreover, for any other (continuous) coalgebra structure map
γ : X → JTK×R+×X , the terminal nature of JΣ TK provides
a unique JTK× R+ × Id-coalgebra morphism

beh(γ) : X → JΣ TK .

Since JΣ TK is interpreted in CG, it follows automatically that
both unfoldT and beh(γ) are continuous. However, what is
not immediately clear is that beh is in fact continuous in γ.

Proposition III.3. [10, Appendix A] Let F : CG → CG
satisfy the condition of Thm. III.1 as well as the condition that
int(νF ) 6= ∅ in

∏
i F

i1, and let behX : [X,FX] → [X, νF ]
be the (behaviour) map associating to any F -coalgebra struc-
ture on X the unique coalgebra morphism into the terminal
coalgebra. The map behX is continuous, i.e. is a CG-
morphism.

Using unfold and beh we define the denotational semantics
of all the sampler operations in Table III. These defini-
tions are precisely the infinite (coinductive) versions of the
finitary transformations defined in the operational semantics
of Table II. All the maps involved in these definitions are
continuous; this follows from Prop. III.3 and the fact that
evaluation and function composition are continuous operations
on the internal hom sets of CG ([35, 5.2,5.9]).

D. Adequacy

This language features an interesting asymmetry in that its
denotational semantics is written in terms of the coinductive
sampler type JΣ TK, while its operational semantics is written
in terms of finitary operations on finite sequences of samples.
Moreover, the operational semantics is given in terms of reduc-
tions to values, i.e. terms whose types are constructed without
the type constructor Σ , whereas the denotational semantics
does not make this distinction. To establish a connection, we
start by defining a generic way to convert terms of arbitrary
types into values, following the idea behind the operational
semantics. Given a type T and an integer N we inductively
define its associated value type valN (T) ∈ Value by:

valN (G) = G valN (Σ T) =
(
valNT

)N
valN (S ∗ T) = valN (S) ∗ valN (T), ∗ ∈ {×,+,→}

where G ∈ Ground.2 We now define the generalized projection
maps pNT : JTK→

r
valN (T)

z
recursively via

pNG = idJGK, pNS∗T = pNS ∗ pNT , ∗ ∈ {×,+}
pNS→T = idJS→TK pNΣ T = π1:N ◦ (pNT×R+)ω

The reader will have noticed that we have defined pNS→T

trivially. The reason is that, as a quick examination of the rules
of Table II will reveal, there is no conclusion and no premise

2Since we’re only interested in closed samplers here, and since pullback
types can only occur in a context, we need not define valN on pullback types.



JΓ ` t : Σ TK = f

JΓ ` hd(t) : TK = π1 ◦ unfoldT ◦ f
JΓ ` t : Σ TK = f

q
Γ ` wt(t) : R+

y
= π2 ◦ unfoldT ◦ f

JΓ ` t : Σ TK = f

JΓ ` tl(t) : Σ TK = π3 ◦ unfoldT ◦ f

JΓ ` s : NK = f JΓ ` t : Σ TK = g

JΓ ` thin(s, t) : Σ (T)K = evΣ T,Σ T ◦ (idΣ T × behΣ T) ◦
(
idΣ T ×

(
unfoldT ◦ (π3 ◦ unfoldT)(· −1)

))
◦ 〈f, g〉

JΓ ` s : Σ SK = f JΓ ` t : Σ TK = g

JΓ ` s⊗ t : Σ (S× T)K = behΣ S,Σ T (π1 × π4 × (π2 · π5)× π3 × π6 ◦ unfoldS × unfoldT) ◦ 〈f, g〉

JΓ ` s : Σ SK = f JΓ ` t : S→ TK = g

JΓ ` map(t, s) : Σ TK = evΣ S,Σ T ◦ (idΣ S × behΣ S) ◦ (idΣ S × ((−× idR+ × idΣ S) ◦ unfoldS)) ◦ 〈f, g〉

JΓ ` s : Σ TK = f
q
Γ ` t : T→ R+

y
= g

JΓ ` reweight(t, s)K = evΣ T,Σ T ◦ (idΣ T × behΣ T) ◦ (idΣ T × ((idT ×−× idΣ T) ◦ unfoldT)) ◦ 〈f, g〉

JΓ ` t : TK = f JΓ ` s : T→ TK = g

JΓ ` prng(s, t) : Σ TK = evT,Σ T ◦ (idT × behT) ◦ (idT × (idT × 1×−)) ◦ 〈f, g〉

TABLE III: Denotational semantics of sampler operations

of the type (t,N)→ v where t is of function type. The only
occurrence of terms of function types are within an evaluation,
or are values, i.e. terms trivially reducing to themselves.

Theorem III.2. [10, Appendix A] For any program ` t : T,
we have

(t,N)→ v ⇔ pNT (JtK) = JvK .

IV. EQUIVALENCE OF SAMPLERS

In order to implement a system for reasoning about whether
a deterministic sampler targets a particular probability distri-
bution, it is necessary to first define a notion of equivalence
between samplers. Having such a system gives a natural path
towards verifying a sampler: first rewrite a given sampler s
in an equivalent but simpler form, and then show that this
simplified form targets the correct distribution. This is the
approach taken in the derivations in § II, which implicitly used
several equivalence results – in particular, let-reduction and
the equivalence of the nested self-product (sm)n to the self-
product sm∗n for any sampler s. In this section, we introduce a
relation ≈ on programs which justifies this type of reasoning.

Definition IV.1. We say that two programs Γ ` s : T and
Γ ` t : T are equivalent, notation Γ ` s ≈ t : T, if they
are related by the smallest congruence relation on well-typed
terms containing the rules of Table IV.3

The rules of Table IV employ a number of shorthand
conventions for a more concise presentation. We introduce
identity functions idS , λx : S. x : S→ S, constant functions
1S , λx : S. 1 : S→ R+, function composition t ◦ s , λx :
S. t(s(x)) : S→ U where s : S→ T, t : T→ U, compositions
f0 , idS : S→ S, fn , f ◦ fn−1 for any n ∈ N, pointwise
products s · t , λx : S, y : T. s(x)∗ t(y) : S× T→ R+ of real-
valued functions s : S→ R+, t : T→ R+, and finally Cartesian
products s × t , λx : S, y : T. (s(x), t(y)) : S× T→ S′ × T′

of functions s : S→ S′, t : T→ T′.

3By congruence relation, we mean that ≈ is an equivalence relation
preserved by all operations in the language. For example, if Γ ` s ≈ t : Σ T
holds, then Γ ` tl(s) ≈ tl(t) : Σ T must hold as well, and the same for all
operations in the language.

Theorem IV.1. [10, Appendix A] The rules of Table IV are
sound: if Γ ` s ≈ t : T, then JΓ ` s : TK = JΓ ` t : TK.

The proof is a straightforward exercise in coinductive rea-
soning and can be found in the Appendix, along with the
full list of equivalence rules. The soundness of these rules
with respect to operational equivalence then follows from
abstraction, though it is also straightforward to show directly.

Recall that an important application of our sampler opera-
tions is to provide a formal definition of the self-product of
samplers, given in (3). It is crucial that our equivalence rules
should show that this self-product is well-defined.

Proposition IV.1. [10, Appendix A] For any Γ ` s : Σ S,
m,n ∈ N, the self-product satisfies Γ ` (sm)n ≈ smn :
Σ (Smn).

The equivalence rules in Table IV suggest a procedure
for simplifying samplers. Consider samplers which have no
occurrences of the operation prng. Of our remaining sampler
operations, we identify two groups: {tl, hd, wt, thin,⊗} and
{map, reweight}. Applying the rules of Table IV, we see that
for each combination of operations in the first and second
group, there is a rule which enables us to pull the first
operation into the body of the second. Therefore, any sampler
with no instances of prng can be written so that the sampler
operations tl, hd, wt, thin,⊗ are pulled all the way inwards.

Proposition IV.2. Let Γ ` t : Σ T be a sampler which contains
no instances of prng. Applying the rules of Table IV, it follows
that we can equivalently rewrite such a sampler in either
the form Γ ` map(f, reweight(g, map(f ′, . . . , s))) : Σ T or
Γ ` reweight(g, map(f, reweight(g′, . . . , s))) : Σ T, i.e. a
composition of invocations of map and reweight (including
the trivial case of zero occurrences of either), where crucially
the sampler s does not contain the sampler operations map or
reweight.

We can also show that the self-product distributes over the
operations map self-and reweight; such operations are useful
for representing the self-product of a composite sampler in a



Γ, s : S ` (λx : S.t)(s) ≈ t[x← s] : T Γ ` λx : S.t(x) ≈ t : S→ T

Γ, s : S ` let x = s in t ≈ (λx : S. t)(s) : T

Γ ` if True then s else t ≈ s : T Γ ` if False then s else t ≈ t : T

Γ ` fst((s, t)) ≈ s : S Γ ` snd((s, t)) ≈ t : T

Γ ` hd(map(s, t)) ≈ s(hd(t)) : T Γ ` wt(map(s, t)) ≈ wt(t) : R+ Γ ` tl(map(s, t)) ≈ map(s, tl(t)) : Σ T

Γ ` (hd(s), hd(t)) ≈ hd(s⊗ t) : S× T Γ ` wt(s) ∗ wt(t) ≈ wt(s⊗ t) : R+ Γ ` tl(s)⊗ tl(t) ≈ tl(s⊗ t) : Σ (S× T)

Γ ` hd(thin(n, t)) ≈ hd(t) : T Γ ` wt(thin(n, t)) ≈ wt(t) : R+ {Γ ` tl(thin(n, t)) ≈ thin(n, tln(t)) : Σ T | n ∈ N}
Γ ` thin(1, t) ≈ t : Σ T

Γ ` hd(prng(s, t)) ≈ t : T Γ ` wt(prng(s, t)) ≈ 1 : R+ Γ ` tl(prng(s, t)) ≈ prng(s, s(t)) : Σ T

Γ ` hd(reweight(s, t)) ≈ hd(t) : T Γ ` wt(reweight(s, t)) ≈ s(hd(t)) ∗ wt(t) : R+ Γ ` tl(reweight(s, t)) ≈ reweight(s, tl(t)) : Σ T

Γ ` thin(n, thin(m, t)) ≈ thin(n ∗m, t) ≈ Σ T Γ ` map(g, map(f, t)) ≈ map(g ◦ f, t) : Σ T

Γ ` reweight(g, reweight(f, t)) ≈ reweight(f · g, t) : Σ T

{Γ ` thin(n, prng(s, t)) ≈ prng(sn, t) : Σ T | n ∈ N} Γ ` thin(n, map(s, t)) ≈ map(s, thin(n, t)) : Σ T

Γ ` s⊗ map(f, t) ≈ map(idS × f, s⊗ t) : Σ (S× T) Γ ` map(f, s)⊗ t ≈ map(f × idT, s⊗ t) : Σ (S× T)

Γ ` s⊗ reweight(g, t) ≈ reweight(1S · g, s⊗ t) : Σ (S× T) Γ ` reweight(f, s)⊗ t ≈ reweight(f · 1T, s⊗ t) : Σ (S× T)

Γ ` prng(f, a)⊗ prng(g, b) ≈ prng(f × g, (a, b)) : Σ (S× T) Γ ` thin(n, s)⊗ thin(n, t) ≈ thin(n, s⊗ t) : Σ (S× T)

TABLE IV: Rules for sampler equivalence

simpler form whose correctness can then be verified.

Proposition IV.3. [10, Appendix A] For any mapped sampler
Γ ` map(f, s) : Σ T and any n ∈ N, it follows that
Γ ` map(f, s)n ≈ map(f × . . . × f, sn) : Σ (Tn); for a
reweighted sampler Γ ` reweight(f, s) : Σ S, it follows that
Γ ` reweight(f, s)n ≈ reweight(f · . . . · f, sn) : Σ (Sn).

V. SEMANTIC CORRECTNESS OF SAMPLERS

The fundamental correctness criterion for a sampler is that it
should produce samples which are distributed according to the
desired target distribution. This section aims to sketch a simple
‘targeting calculus’ to compositionally verify this property.
We frame this correctness in terms of weak convergence of
measures; while other notions of convergence could be used,
weak convergence is standard and will suffice for our purposes.

A. The empirical transformation

First, we need to formalise what we mean when we say
that a sampler s : Σ T targets a probability distribution on JTK.
Given a topological space X , let us write PX for the space
of probability measures on (the Borel σ-algebra generated
by) X , equipped with the topology of weak convergence, i.e.
limn→∞ µn = µ in PX if for any bounded continuous map
f : X → R, limn→∞

∫
f dµn =

∫
f dµ. In fact, P defines

a functor Top → Top: if f : X → Y is a continuous map,
then P(f) , f∗ : PX → PY is the pushforward map, which
is easily shown to be continuous. We do not know if PX is a
CG-space when X is, and in particular we do not know if P
can be given a monad structure on CG. These questions are,
however, orthogonal to this work since P plays no role in the
semantics of § III-C.

For any stream σ : N→ X × R+ we define σ̂n ∈ PX as

σ̂n ,
1

n

n∑
i=1

π2(σ(i))∑n
j=1 π2(σ(j))

δπ1(σ(i)),

the empirical distribution based on the first n (weighted)
samples of σ. We also define P⊥X , PX+1, where 1 = {⊥}
is the terminal object and + the coproduct in Top.

Definition V.1. The empirical measure transformation is the
Topobj-collection of maps

εX : (X × R+)N → P⊥X,σ 7→

{
lim
n→∞

σ̂n if it exists

⊥ ∈ 1 else

The empirical measure transformation cannot be natural, as
the following example shows.

Example V.1. Let σ : N → X be a diverging unweighted
sampler on X , i.e. εX(σ) = ⊥, and consider the map to the
terminal object ! : X → 1. Then ε1(! ◦ σ) = ε1(⊥,⊥, . . .) =
δ⊥, but P⊥(!)(εX(σ)) = P⊥(!)(⊥) = ⊥.

However, if a sampler does define a probability measure via
ε, this is preserved by continuous maps.

Proposition V.1. [10, Appendix A] Let σ : N→ X ×R+ and
f : X × R+ → Y × R+ be continuous. If εX(σ) = µ, then
εY (f ◦ σ) = f∗(µ).

It is tempting to try to generalise this nice property of con-
tinuous maps to more general maps – for example, measurable
maps. The following example shows that this is not possible.

Example V.2. Let X = [0, 1] and σ : N → [0, 1] denote any
unweighted sampler such that ε(σ) is the Lebesgue measure
on [0, 1]. Now consider the map f : [0, 1] → {0, 1} defined
by f(x) = 1 if x = σ(i) for some i and 0 else. This function
is the indicator function of a countable, therefore closed, set,
and so is Borel-measurable. On the one hand we have that
ε(f ◦ σ) = δ1 since f ◦ σ is the constant stream on ones, but
on the other we have f∗(ε(σ))(1) = ε(σ)(f−1(1)) = 0 since
only a countable set is mapped onto 1 by f .

Even for functions with finitely many discontinuities, it is
impossible to extend the class of functions for which Prop. V.1



holds. However, the semantic framework adopted in § III-C
allows us to bypass this problem altogether. We illustrate these
two points by revisiting Ex. III.1.

Example V.3. Consider the sampler s , prng(λx :
R . x/2, 1) and the term p , if x = 0 then 1 else − 1
of Ex. III.1. Assume first that R is equipped with its standard
topology, i.e. that JpK is not continuous at 0. Since R is a
metric space we can use the Portmanteau Lemma and rephrase
weak convergence by limiting ourselves to bounded Lipschitz
functions. It is then easy to show that ε(JsK) = δ0: letting
f : R→ R be bounded Lipschitz, we have

lim
n→∞

∣∣∣∣∫ f dĴsKn −
∫
f dδ0

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ 1n
n∑
i=1

f

(
1

2i

)
− f(0)

∣∣∣∣∣
≤ lim
n→∞

∣∣∣∣∣ 1n
n∑
i=1

1

2i

∣∣∣∣∣ ≤ lim
n→∞

2

n
= 0

Prop. V.1 now fails on JpK, since ε(JpK ◦ JsK) =
ε(−1,−1, . . .) = δ−1 6= P(JpK)(ε(JsK)) = JpK∗ (δ0) = δ1.

Let us now equip R with the topology given by type-checking
p as described in Ex. III.1. This makes JpK bounded and
continuous, and we therefore no longer have ε(JsK) = δ0;
indeed limn

∫
JpK dĴsKn = −1 6= JpK (0) = 1. In fact

we now have ε(JsK) = ⊥, i.e. s is no longer a sampler
targeting anything for this topology, which prevents the failure
of Prop. V.1 on JpK.

This example also shows that our semantics has provided us
with many more morphisms satisfying Prop. V.1 than would
have been the case had we only considered programs which are
continuous w.r.t. the usual topology on the denotation of types.
Our semantics allows us to push forward a sampler s through
any piecewise continuous function, except in the narrow case
where this function has a point of discontinuity which is
asymptotically assigned positive mass by s. We illustrate this
further in the next example.

Example V.4. Consider the sampler of Ex. V.3, but now
let p , if x = 2 then 1 else − 1 instead. To make
this function continuous, our semantics adds the open set
{2} to the usual topology of R. This does not interfere
with the derivation that ε(JsK) = δ0, since we can write∫
f dĴsKn =

∫
{2}c f dĴsKn +

∫
{2} f dĴsKn =

∫
{2}c f dĴsKn,

and similarly for δ0. Because the discontinuity of JpK is not
assigned any mass by δ0, the topology on R making JpK
continuous no longer prevents ε(JsK) from converging, and
we can therefore safely push s forward through p using map.

B. Calculus for asymptotic targeting

Definition V.2. We will say that the sampler Γ ` s : Σ S
asymptotically targets, or simply targets, the continuous map
µ : JΓK→ P JSK if for every γ ∈ JΓK,

εJSK ◦ JsK (γ) = µ(γ).

In particular, ĴsK (γ)n always converges as n→∞; diverging
samplers do not target anything.

We will say that Γ ` s : Σ S is K-equidistributed with respect
to the morphism µ : JΓK → P JSK if for every γ ∈ JΓK,
εJSK◦

q
sK

y
(γ) = µK(γ), where the self-product sK is defined

in (3) and µK(γ) ∈ P(JSKK) is the K-fold product of the
measure µ(γ) with itself.

We introduce in Table V a relation  which is sound with
respect to asymptotic targeting; this is the relation which was
used in the proofs of § II. That is, if Γ ` s : Σ S µ, then s
is a parametrised sampler on S which asymptotically targets a
parametrised distribution µ on JSK. Here, we use Greek lower
case letters µ, ν to represent (parametrised) distributions in
order to emphasise their role as meta-variables, used only
in the context of the targeting calculus, and not within the
language itself. In the rule for reweight, we abbreviate the
operation of reweighting a measure µ on X by f : X → R≥0
as the product (f · µ)(A) =

∫
A
f(x) dµ(x)∫

X
f(x) dµ(x)

, assuming that the
integral in question is finite and nonzero.

Table V incorporates a rule for building samplers from
scratch as pseudo-random number generators defined by a
deterministic endomap t : T→ T and an initial value x : T via
prng(t, x) : Σ T.4 However, Table V also incorporates a set
of ‘axioms’ for built-in samplers randi, each targeting distri-
butions µi ∈ P JTiK; in some settings, it may be defensible
to assume access to ‘truly random’ samplers which generate
samples using a physical process.

The reader might wonder why Table V does not have a
rule for the thin operation: after all, if σ is a sampler
targeting a distribution µ, then only keeping every n samples
should produce a good sampler as well. Whilst this is true of
the sequences produced by ‘true’ i.i.d. samplers (for example
physical samplers) with probability 1, this rule is in general
not sound, as the following simple example shows.

Example V.5. Consider the sampler on {0, 1} defined by
the program prng(λx : R . 1 − x, 0). This sampler, which
generates the unweighted samples (0, 1, 0, 1, . . .), targets the
uniform Bernoulli distribution; however, applying thin(2,−)
to it yields a sampler which targets the Dirac measure δ0.

This example highlights the fact that samplers can be man-
ifestly non-random, and yet from the perspective of inference
– that is to say, from the perspective of the topology of weak
convergence – target bona fide probability distributions.

Theorem V.1. [10, Appendix A] Targeting  is sound: if
Γ ` s : Σ S µ, then εJSK ◦ JsK = µ.

We saw in § V-A how our (sub-)typing system can be used
to safely pushforward samplers through maps which are only
piecewise continuous. Our typing system also allows us to add
additional constraints to samplers. Specifically, we can ensure
that a sampler visits certain subsets infinitely often.

4Applying this rule requires showing that the initial point of the sampler is
typical; a point x ∈ JTK is called typical if it belongs to the µ-mass 1 subset
X ⊆ JTK in which the ergodic theorem holds [19, Theorem 9.6].



Γi ` randi : Σ Ti  µi
i ∈ I

Γ ` s ≈ t : Σ T Γ ` s : Σ T µ

Γ ` t : Σ T µ

Γ ` s : Σ S µ

Γ ` tl(s) : Σ S µ

Γ ` s : Σ S µ Γ ` f : S→ T

Γ ` map(f, s) : Σ T γ 7→ (JfK (γ))∗µ(γ)

Γ ` s : Σ S µ Γ ` f : S→ R+

Γ ` reweight(f, s) : Σ S γ 7→ JfK (γ) · µ(γ)

∫
JSK JfK (γ) dµ(γ) ∈ (0,∞)

Γ ` prng(f, x) µ
JfK : JTK→ JTK ergodic w.r.t. µ, x typical

TABLE V: Rules for asymptotic targeting

` rand3 : Σ S U3 ` idR × box : S→ T

` map(idR × box, rand3) : Σ T JidR × boxK∗ (U3) = U ⊗ N(0, 1) ` accept : T→ R+

` reweight(accept, joint) : Σ T JacceptK · (U ⊗N(0, 1)) ` produce : T→ R

` map(produce, reweight(accept, joint)) : Σ R+  JproduceK∗ (JacceptK · (U ⊗N(0, 1))) = Γ(α, 1)

Fig. 5: Validity of Marsaglia sampler in Listing 4

Proposition V.2. [10, Appendix A] Assume Γ ` s : Σ S  
µ, S / T and JTK second-countable; then Γ ` map(λx :
S.cast〈T〉x, s) : Σ T targets the same measure µ on T.
Moreover, if JTK is metrizable, if U is in the topology of JSK
but not JTK and µ(∂TU) > 0 (where ∂T denotes the boundary
in JTK) then s must visit ∂TU i.o. (infinitely often).

Example V.6. Suppose we want s : Σ R  Bern(1/2). A
sampler alternating between the sampler z , prng(λx :
R . x/2, 1) of Ex. V.3 and its shifted version map(λx :
R . 1 + x, z) will satisfy the condition, but will never visit 0
or 1! We can use the previous result to enforce that a sampler
s targeting Bern(1/2) should visit 0 i.o. by constructing s in
such a way that it has type Σ

(
(x, 0)−1Neq + (x, 0)−1Eq

)
(see

Ex. III.1). We can, in the same manner, enforce that a sampler
s′ targeting Bern(1/2) visits 1 i.o. Finally, using the last two
rules of Fig. 4b which build the coarsest common refinement of
two topologies, we can combine s and s′ to create a sampler
targeting Bern(1/2) and guaranteed to visit 0, 1 i.o.

Example V.7. We conclude with an example highlighting sam-
pler compositionality by chaining two well-known sampling
algorithms. Consider the following program:

let box = λu : R+×R+ . sqrt(-2*log(fst(u))) *
cos(2*pi*snd(u)) in

let joint = map(idR×box, rand3) in
let d = α - 1/3 in
let c = 1/(3*sqrt(d)) in
let accept = λ(u, x) : T .
let v = (1+c*x)^3 in
if v > 0 and log(u) < x^2 + d - d*v + d*
log(v) then 1 else 0 in

let produce = λz : T . d*(1+c*fst(cast〈R×R〉z))
^3 in

map(proj, reweight(accept, joint))

Listing 4: Marsaglia sampler for gamma random variables

First, the Box-Muller technique is a well-known technique
for generating standard normal random variates using two
independent uniform samples; its verification using the map

rule of Table V is straightforward. We then form a joint sam-
pler consisting of independent uniform and Gaussian samples,
and then consume both of these samples to generate gamma-

distributed random variables z ∼ Γ(α, 1), for shape α ≥ 1,
using a well-known rejection sampling technique; see [28] for
a proof. The validity of this sampler is sketched in Fig. 5; we
omit some types for brevity.

VI. DISCUSSION

We have presented a ‘probabilistic’ language designed to
compositionally construct samplers. We have given this lan-
guage an intuitive operational semantics and a denotational se-
mantics in the category of CG-spaces, and shown that the two
are equivalent for closed samplers. This denotational universe
is sufficiently rich to interpret sampler types coinductively, and
to interpret functions which are only piecewise-continuous on
the standard topologies given by the type system (§ III-C).

With the support of this language, we have shown how
to compositionally reason about the validity of sampler con-
structions, an essential aspect in the practice of probabilistic
programming. Our approach draws on a sound equational
system to reason about equivalent ways of constructing the
same sampler (§ IV) and a sound system for reasoning about
semantic correctness (§ V).

What distinguishes our approach is that we are in effect
providing a purely deterministic semantics for probabilistic
programs. This approach is much closer to the practice of
probabilistic programming, in which samples and samplers are
the most important concrete entities; this distinction between
samplers and the measures they target is necessary in order to
support pseudo-random number generation. Measure-theoretic
entities, which have typically been a part of the denotational
semantics of probabilistic languages, e.g. [21], [16], [12], [38],
[8], instead take a meta-theoretic role as verification criteria.

Two commonly-used schemes for producing samplers are
missing from our calculus: Markov chain Monte Carlo meth-
ods and resampling techniques, as applied in e.g. particle
filters. We consider adding these constructions to our language,
together with the corresponding correctness proofs in our
targeting calculus, to be future work.
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