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A B S T R A C T   

Are eye movements unconsciously guided towards target locations in familiar scenes? In a recent eyetracking 
study, Ramey, Yonelinas, and Henderson (2019) measured eye-movement efficiency (scanpath ratio) and 
memory judgments when participants searched for targets in repeated and novel scenes. When trials judged new 
with high confidence were selected, scanpath ratio was lower for old scenes (misses) than for new scenes (correct 
rejections). In addition, familiarity as measured by recognition confidence did not significantly predict scanpath 
ratio. Ramey et al. attributed these results to unconscious learning guiding eye movements. In a re-assessment of 
Ramey et al.’s data, we show that their findings can be accounted for by a single-system computational model in 
which eye movements and memory judgments are driven by a common latent memory representation. In 
particular, (a) the scanpath ratio difference between high-confidence misses and correct rejections is a conse-
quence of regression to the mean, while (b) the null correlation between familiarity and scanpath ratio, partly a 
natural consequence of the low reliability of the scanpath ratio measure, is also reproduced by the model. Two 
pre-registered experiments confirm a novel prediction of the alternative single-system model. This work offers a 
parsimonious account of Ramey et al.’s findings without recourse to unconscious guidance of eye movements.   

1. Introduction 

A topic of great interest in cognitive psychology concerns the orga-
nization of memory. A widespread perspective holds that there are 
functionally distinct explicit (conscious) and implicit (unconscious) 
memory systems (Squire, 1992; Squire & Dede, 2015; Tulving & 
Schacter, 1990). Explicit memory is thought to underpin conscious 
recall of past experiences, whereas implicit memory is linked to 
behavioral changes arising from past experiences and is assumed to be 
inaccessible to awareness (Schacter, 1987). Evidence supporting this 
multiple-systems account has typically demonstrated that performance in 
explicit and implicit memory tasks can be dissociated. One illustrative 
dissociation entails a comparison of two tasks measuring priming and 
recognition respectively (e.g., Jacoby & Dallas, 1981; Richardson-Kla-
vehn, Clarke, & Gardiner, 1999). Priming refers to enhanced perfor-
mance in behavioral response to a stimulus due to prior exposure; in 
contrast, recognition refers to the mental faculty of judging whether a 
stimulus has been presented in a preceding context (i.e., a learning 
phase; Lange, Berry, & Hollins, 2019). 

The multiple-systems perspective, however, has been challenged on 
methodological and statistical grounds (e.g., Buchner & Wippich, 2000; 
Dunn, 2003; Poldrack, 1996). For instance, it has been argued that 
dissociations provide only weak constraints on underlying mechanisms 
(e.g., Newell & Dunn, 2008), and a number of researchers have pre-
sented evidence for an alternative single-system view, according to which 
performance on explicit and implicit tests is driven by a common 
memory source (e.g., Berry, Kessels, Wester, & Shanks, 2014; Berry, 
Shanks, & Henson, 2008; Berry, Shanks, Speekenbrink, & Henson, 2012; 
Lange et al., 2019; Newell, Dunn, & Kalish, 2011; Nosofsky & Zaki, 
1998). 

A recent eyetracking study by Ramey, Yonelinas, and Henderson 
(2019) asked whether eye movements can be unconsciously guided to-
wards target locations in familiar scenes. Their research built on previ-
ous attempts to address this issue specifically (Hannula et al., 2010; 
Hannula, Baym, Warren, & Cohen, 2012; Ryan, Althoff, Whitlow, & 
Cohen, 2000; Smith & Squire, 2017), as well as work on the more 
general question of the role of unconscious memory in the guidance of 
visual attention (see Chun & Jiang, 1998) – all of which have been the 
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subject of considerable controversy (Colagiuri & Livesey, 2016; Jiang, 
Sisk, & Toh, 2019; Kroell, Schlagbauer, Zinchenko, Müller, & Geyer, 
2019; Vadillo, Konstantinidis, & Shanks, 2016; Vadillo, Malejka, Lee, 
Dienes, & Shanks, 2022). 

In Ramey et al.’s (2019) experiment (see Fig. 1 for an overall sche-
matic), participants first saw a set of 64 real-world scenes each presented 

once alongside another set of 64 scenes that were presented three times 
in the learning phase. The scenes presented once were included because, 
as noted by the authors, it was anticipated that the distribution of 
recognition responses to scenes presented three times could be skewed 
due to ceiling memory performance. Either a small letter ‘L’ or ‘T’, the 
search target, was superimposed on each scene, and participants were 

Fig. 1. Schematic diagram of Ramey et al.’s (2019) task and Experiments 1 and 2. (A) In the learning phase participants searched for a target and responded to its 
identity. Here the target is magnified for illustration. (B) In the familiarity judgment stage (i.e., ‘test phase’), a preview of an old or new scene without its target was 
presented for 0.4 s at the beginning of each trial, which was then replaced by a recognition confidence rating screen. After the participant gave a rating, the same 
scene with its target was presented and participants searched for the target as in the first stage, with eye movements being monitored. (C) The additional 2AFC test 
stage in Experiment 1. (D) The additional single-item test stage in Experiment 2. 
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required to find and identify the target (Fig. 1A). In a subsequent test 
phase, a total of 160 scenes were presented. Of these, 128 were familiar 
ones previously presented during the learning phase, while the 
remaining 32 were new scenes serving as lures. In each trial (Fig. 1B), 
participants previewed the scene without its target and then indicated 
whether they recalled viewing it during the study phase based on a 6- 
point recognition confidence scale, ranging from 1 = I’m sure it’s new 
to 5 = I’m sure it’s old, with 6 = Recollect old as an additional response 
designed to capture judgments putatively driven by a conscious recol-
lection process distinct from familiarity-based memory (Yonelinas, 
1994, 2002). Then, the same scene (with the search target this time) was 
presented again, and participants searched for and responded to the 
target as they did in the previous learning phase. In both phases, eye 
movements were monitored. 

In order to investigate eye movements during target search, special 
emphasis was put on the scanpath ratio (SPR) as a measure of search 
efficiency. Scanpath ratio is defined as the ratio of the total distance 
travelled by the eyes when finding the target to the shortest possible 
distance from the fixation point to the target. Optimal performance is 
indicated by a scanpath ratio of 1, whereas high ratios indicate that 
inefficient paths have been taken. Focusing predominantly on data for 
the new scenes and those presented once in the learning phase, Ramey 
et al. (2019) found, among other things, that there was no significant 
difference in scanpath ratio in the test phase between old items that were 
recollected (i.e., with ratings of 6) and old items that were recognized 
with the highest level of familiarity-based confidence (i.e., with ratings 
of 5). Furthermore, familiarity strength (excluding recollection) in terms 
of recognition confidence (across ratings of 1–5) did not significantly 
predict the scanpath ratio. Even more strikingly, among scenes judged as 
‘sure new’ – that is, scenes for which no conscious memory was 
detectable – scanpath ratio was found to be significantly lower for old 
scenes (i.e., high-confidence misses) than for new scenes (i.e., high- 
confidence correct rejections), as shown in Fig. 2. The same patterns 
of results were observed in analyses on old scenes presented three times 
in the learning phase. Ramey et al. (2019) presented evidence that 
improved scanpath performance involved general improvement in effi-
ciency across all individual saccades in a search trial (the modal number 
of saccades was 7), rather than being driven by more efficient early 
saccades or fewer saccades in each trial. Importantly, Ramey et al. 
(2019) attributed these findings to facilitation by unconscious memory 
in scanpath efficiency of target search in repeated scenes. 

Are these findings truly evidence of unconscious memory? We 
address this question by formulating a model which assumes that a 
single latent memory representation determines both memory judg-
ments and eye movements. If this model is able to capture the key 
findings obtained by Ramey et al. (2019), then their interpretation is 

challenged. 

2. A single-system model of eye movements and memory 
judgments 

2.1. Model specification 

In the following, we present a single-system model and a post hoc 
model-fitting simulation. The single-system model follows a long tradi-
tion in assuming that a single latent source may drive both unconscious 
(implicit) and conscious (explicit) behavioral measures (Berry et al., 
2008; Berry et al., 2012; Jamieson, Holmes, & Mewhort, 2010; Schim-
mack, 2021; Shanks & Berry, 2012; Shanks & Perruchet, 2002; Vadillo 
et al., 2022; Zaki & Nosofsky, 2001). It is conceptually grounded in 
signal-detection theory (SDT; Green & Swets, 1988). The model assumes 
that both the performance measure (i.e., scanpath ratio) and the 
recognition confidence measure are driven by a common underlying 
memory representation, such that responding to each scene presented 
during the test phase is determined by a random, normally distributed 
latent memory strength variable S. In light of previous exposure during 
the learning phase, old scenes are on average associated with higher S 
values than new scenes. 

Ramey et al.’s (2019) data allow for a direct estimation of the 
magnitude of S for old and new scenes. Specifically, all correct recog-
nitions of old scenes presented once at study were treated as hits (i.e., 
responses receiving a confidence rating between 4 and 6), whereas all 
incorrect endorsements of new scenes as old ones were treated as false 
alarms (again, responses receiving a confidence rating between 4 and 6). 
This yielded a mean d' score of 1.373, which represents participants’ 
mean performance in the recognition task. In order to model the d' score, 
in the simulation, S takes a mean value of 1.4 for old scenes and 0 for 
new scenes, while the standard deviation (SD) of S for both types of 
scenes takes a value of 0.1. Furthermore, to generate recognition re-
sponses, a random, normally distributed error term (eREC) with a mean of 
0 and a SD of 1 is added to S to generate a continuous recognition var-
iable (REC): 

REC = S+ eREC (1) 

These imputed parameter values ensure that the required d' value is 
preserved. For the simulation results reported below, the ensuing value 
of d' is 1.376. We simulate a total of 1000 participants, each responding 
to 64 old (presented once at study) and 32 new scenes, identical to the 
number of trials of the respective scene types in Ramey et al.’s (2019) 
experiment. Since the underlying memory strength is likely to be 
different from one scene to another even if both scenes are of the same 
type, a value of S and a value of eREC are sampled afresh from the 

Fig. 2. Mean scanpath ratio (SPR) across different 
levels of recognition confidence during the test phase 
in Ramey et al.’s (2019) experiment, and simulation 
results. The blue regression line is the prediction of 
SPR across different levels of recognition confidence 
(excluding ratings of 6) for old scenes using the 
original data. Symbol sizes represent the relative 
proportions of scenes across different levels of 
recognition confidence. The shaded area represents 
the 95% confidence band of the regression line, and 
the error bars represent the 95% confidence intervals 
of the SPR means. (For interpretation of the refer-
ences to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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corresponding distributions for each trial, and then a value of REC is 
computed based on Eq. (1). 

As reported by Ramey et al. (2019), the proportions of old scenes 
receiving ratings of 1–6 were, respectively, 20%, 19%, 12%, 14%, 24%, 
and 11%; in contrast, for new scenes, the proportions were, respectively, 
54%, 25%, 13%, 5%, 2.5%, and 0.5%. Collapsed across the two types of 
scenes, the overall proportions of ratings 1–6 were, respectively, 
31.54%, 22.03%, 12.29%, 11.14%, 16.28%, and 6.72%. Accordingly, 
we computed five REC cut-offs based on the overall cumulative pro-
portions of the six ratings (defined by C1 – C5; see Table 1) and then split 
the REC values generated for each simulated participant into 6 bins, 
corresponding to the 6-point recognition confidence scale. 

Because both recognition and SPR are assumed to be driven by a 
common memory source, for each scene, the same value of S is used to 
generate its recognition rating and SPR. Importantly, in light of the 
differences in task requirements between recognizing a scene and 
finding a search target, it is further assumed that an independent source 
of error reflecting non-memorial noise (eSPR) contributes to SPR. As 
such, the value of S for a given scene is combined with a different error 
term, which is normally distributed with a mean of 0 and a SD of 1. 
These parameters are the same as those assumed for eREC. Since smaller 
SPR values indicate better performance, SPR is assumed to be an inverse 
function of S: 

SPR =
a

b + S + eSPR
(2)  

where parameters a and b serve merely as scaling factors to ensure that 
SPR values are in the observed range of scanpath ratios. It then becomes 
possible to test whether the pattern of results obtained by Ramey et al. 
(2019) can be reproduced based on the simulated REC and SPR data. 
Code for the simulation is available at https://osf.io/8nfqj/. 

The parameters of the model can be grouped roughly into three sets. 
One set (including mean S (new) and the means and SDs of eSPR and eREC) 
are simple default values. The second set includes parameters whose 
values are determined by general aspects of the observed data. This set 
includes mean S (old), whose value determines the obtained overall 
recognition d' value, and C1 – C5, whose values are computed after the 
raw simulated data are generated in order to distribute responses across 
the 6 recognition bins in the correct frequencies. Lastly, parameters a 
and b (Eq. 2) are free parameters whose values are determined by 
maximum likelihood, and the SD of S (old) = SD of S (new) was set by 
manual trial-and-error. The best-fitting parameter values are shown in 
Table 1. The simulation results reported below depend heavily on the 
SDs of S (old) and S (new) being small relative to the SDs of the error 
terms. We assess the sensitivity of the results to the chosen parameter 
values below. 

In addition to the scanpath ratio, Ramey et al. (2019) also assessed 

first saccade accuracy (FSA), the angular (degree) error with which the 
first eye movement in a trial was directed towards the target. A lower 
degree error value indicates that the first saccade was more accurate. 
Unlike the scanpath ratio results, Ramey et al. (2019) did not find a 
significant difference in FSA between old and new scenes given the 
lowest recognition confidence rating, though, like scanpath ratio, FSA 
was also not significantly predicted by familiarity strength. As Ramey 
et al. (2019) did not attribute the FSA findings to unconscious memory, 
we do not attempt to model this dependent variable, save that we 
comment on the contrast between the FSA and SPR results below. 

2.2. Simulation results 

The model was fitted to the data using maximum likelihood 
parameter estimation, based on Nelder and Mead’s (1965) Simplex al-
gorithm as implemented in R (R Core Team, 2022). The fitted data 
comprised all the points in Fig. 2 – that is, the SPR values for old scenes 
given recognition ratings of 1–6 and new scenes given a rating of 1; SPR 
values for new scenes given ratings of 2–6 were excluded, as in Ramey 
et al.’s (2019) analyses. Specifically, there were seven data points to be 
fitted averaged across a total of 1400 trials from 23 participants in 
Ramey et al.’s experiment, after excluding invalid trials. On a number of 
trials response times (RTs) over 20 s were recorded due to eyetracking 
software error, even though all trials should have been terminated at 20 
s without response. In these trials, participants did not give any response 
to identify the target letters. We decided to treat such trials as invalid, 
even if scanpath ratio data were recorded, as it was not clear whether the 
software error would affect the scanpath ratio data or whether partici-
pants performed the search for target letters in these trials. Additionally, 
trials with missing scanpath ratio data were also excluded. 

The simulation results are shown in Fig. 2, and the model parameters 
are reported in Table 1. 

Note that the observed SPR data in Fig. 2 are slightly different from 
those reported by Ramey et al. (2019), which were estimated marginal 
means derived from their linear mixed effects models. 

It is striking that the simulated SPR results across all recognition 
confidence levels approximate the original findings quite closely. 
Crucially, a difference in mean SPR values between old and new scenes 
at the lowest confidence level (i.e., judgment of ‘sure new’) is evident, 
even though both recognition and SPR are based on the same latent 
memory variable S. The simulated data also reveal a negligible associ-
ation between familiarity (ratings 1–5) and SPR. In other words, 
enhancement in scanpath efficiency for unrecognized scenes is present, 
as well as minimal association between familiarity and SPR, even though 
the model does not distinguish between conscious and unconscious 
memory. 

To evaluate the sensitivity of the results to the specific parameter 

Table 1 
Best-fitting parameter values.  

Parameter Value Remark 

S (old) M 1.4 
d' is equal to mean S (old)/ SD(REC). Because SD(REC) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

SD(S)2 + SD(eREC)
2

√

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.12 + 12

√
= 1.005, the value of mean S (old) ensures the appropriate 

d' value. 

SD 0.1 

S (new) 
M 0 
SD 0.1 

eREC 
M 0 

Default values. 
SD 1 

eSPR 
M 0 
SD 1 

C1 − 0.48 

The parameter values are z-transformed overall cumulative proportions of ratings 1–6, computed by taking the inverse of the cumulative distribution 
function of the generated REC values. They distribute each participant’s responses into 6 recognition bins in the same frequencies as in the behavioral data. 

C2 0.09 
C3 0.41 
C4 0.74 
C5 1.50 
a 38.10 

Best-fitting parameter values based on maximum likelihood estimation. 
b 3.29 

− 2 log-likelihood = 25.24; Akaike Information Criterion = 29.24; Bayesian Information Criterion = 29.13. 
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values, we focus on the key comparison of new versus old scenes 
endorsed as ‘sure new’ (i.e., ratings of 1) in terms of mean SPR. As 
illustrated in Fig. 3, the model is remarkably robust in producing the SPR 
difference in the expected direction (i.e., higher SPR for new than old 
scenes) across a range of parameter values. 

Why does the model generate these patterns? We explore this ques-
tion in the following sections. 

3. Regression to the mean and post hoc scene selection 

It is reasonable to assume, and indeed is a fundamental tenet of 
classical test theory (Hambleton & Jones, 1993), that when an aggre-
gated set of data is analyzed, errors cancel out resulting in mean error of 
zero. However, the same cannot be said for a selected subset of data. It is 
easy to see why this is the case by re-examining Eq. (1). Here, although S 
and eREC are independent and thus uncorrelated, observed REC values 
are necessarily correlated with eREC as they share a common term (i.e., 
eREC itself). In light of this positive correlation, higher observed REC 
values on average incorporate higher eREC values, and vice versa. 

It follows that observed REC values of scenes selected post hoc are 
susceptible to systematic bias induced by non-zero error components on 
average (Rothkirch, Shanks, & Hesselmann, 2022; Shanks, 2017). 
Whereas the old/new status of a test item is determined in advance by 
the experimenter, assignment to the high-confidence miss or correct 
rejection categories occurs post hoc, depending on the participant’s de-
cision. This fact is fundamental to the model’s behavior. Recall that the 
distribution of S values for old scenes is much higher than for new 
scenes. On average, any given REC value of a ‘sure new’ old scene is 
likely to comprise an underlying memory representation value S that is 
not particularly extreme combined with an extreme error term (i.e., a 
large negative eREC value). But because eREC and eSPR are independent, it 
is improbable that the same underlying S value will be combined with a 
eSPR value that is as extreme as eREC; hence regression to the SPR mean 
for old scenes will occur, leading to a relatively low SPR value. On the 
other hand, any REC value for a new scene judged ‘sure new’ will tend to 
be made up of a less extreme eREC value. When its underlying S value is in 
turn combined with an independent eSPR value, regression to the mean 
will again occur (this time to the mean SPR for new items), yielding a 
relatively high SPR value. Indeed, this is the pattern that emerges in the 
current simulation, as shown in Fig. 4 which decomposes the simulated 
recognition ratings into their constituent parts S and eREC. 

Fig. 4 shows several noteworthy patterns, all inevitable statistical 
consequences of the model equations and post hoc selection. First, while 
mean error is zero overall for both scene types, the errors are not zero 
within each recognition confidence category: this is the essence of the 
bias introduced by post hoc selection (see also Rothkirch et al., 2022; 

Shanks, 2017). Secondly, while it is intrinsic to the model that mean S is 
greater for old than new scenes, this is also the case within any given bin 
(red lines). Just because old and new scenes might evoke the same 
recognition judgment, this does not entail that the latent memory 
strengths underlying them are identical. Instead, they evoke similar 
judgments because post hoc selection ensures that within each bin, eREC is 
larger for new than old scenes (blue lines). Thirdly, if we focus on the 
crucial recognition confidence = 1 category, it can be seen that the 
description given in the previous paragraph is borne out: old scenes in 
this category have extreme negative values of eREC. The values of S for 
old and new scenes in this category are divergent (just as for all other 
categories), and this difference explains the SPR difference for old and 
new scenes. 

It follows that a difference in SPR values between the two types of 
scenes selected post hoc is bound to emerge due to regression to the 
mean, which occurs for any bivariate data based on imperfectly corre-
lated measures (Campbell & Kenny, 1999; Mee & Chua, 1991). As such, 
the post hoc data selection method employed by Ramey et al. (2019) is 
ill-suited for demonstrating unconscious memory, unless SPR and 
recognition confidence are perfectly correlated and not subject to 
measurement error. Needless to say, these criteria are virtually impos-
sible to meet. 

4. A novel test of the model: Reversing the variables 

To further illustrate that Ramey et al.’s (2019) finding is likely a 
statistical inevitability due to post hoc scene selection from noisy 
bivariate data (Campbell & Kenny, 1999; Rothkirch et al., 2022; Shanks, 
2017), we ran an additional analysis on their data by turning the 
dependent and independent variables around. The logic of this analysis 
is that as far as the model is concerned, recognition confidence and SPR 
are two parallel measures of a common latent memory representation, 
and so regression to the mean is expected to occur not only when SPR is 
conditionalized on recognition confidence (Fig. 2) but also when 
recognition confidence is conditionalized on SPR. 

Therefore, we divided each participant’s SPR values, collapsed 
across old and new scenes, into 6 equal SPR bins (i.e., sextiles). We then 
calculated the mean recognition confidence ratings for old and new 
scenes across all SPR bins. These data are shown in Fig. 5. Crucially, 
focusing on the lowest SPR bin (i.e., representing the least learning), the 
mean recognition confidence rating for old scenes (M = 3.35, SD = 0.71) 
is revealed to be significantly higher than that for new scenes (M = 1.51, 
SD = 0.68), t(22) = 13.09, p < .001, dz = 2.79.1 Fig. 5 also shows that the 

Fig. 3. Mean simulated scanpath ratio (SPR) differ-
ence between old and new scenes rated 1 across 
variations in parameter values. The blue bar repre-
sents the difference based on the best-fitting param-
eter values. Each of the remaining bars represents the 
difference when the specified parameter change is 
made, holding all others at their values in Table 1. 
The dashed line represents the SPR difference in the 
behavioral data. (For interpretation of the references 
to colour in this figure legend, the reader is referred to 
the web version of this article.)   

1 The effect size is calculated as dz =
t̅̅̅̅
df

√ (Lakens, 2013; Rosenthal, 1991). 
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same pattern emerges when the simulated data are analyzed in the same 
way: the model generates a difference in mean recognition confidence 
ratings between old and new scenes at the lowest SPR bin, as well as a 
weak association between recognition confidence and SPR bins 
(excluding the highest SPR bin, for ease of comparison with Fig. 2). 
Indeed, recognition confidence ratings across all SPR bins closely 
approximate those based on Ramey et al.’s (2019) data after running the 
equivalent analysis. This is not a mere coincidence: insofar as bivariate 
data are concerned, the model makes the same prediction about 
regression to the mean regardless of which variable is selected post hoc. 
It does so here for a reason conceptually identical to that described 
previously and illustrated in Fig. 4. Fig. A.1 in Appendix A.1 shows a 

breakdown of the S and eSPR values that underlie the simulated data, 
analogous to Fig. 4. It is striking that this close fit is achieved with the 
same parameter values chosen to fit the data in Fig. 2.2 

If we follow Ramey et al.’s (2019) line of reasoning, this result would 
lead us to the conclusion that recognition judgments are driven by 2 
dissociable processes. It goes without saying that such a conclusion is 

Fig. 4. Mean values of eREC and S for old and new scenes across different levels of recognition confidence in the model simulation. Symbol sizes represent relative 
proportions of scenes across different levels of recognition confidence. The proportions of old scenes receiving ratings of 1–6 were, respectively, 14.86%, 21.92%, 
15.32%, 15.14%, 22.09%, and 10.68%; in contrast, for new scenes, the proportions were, respectively, 64.04%, 21.79%, 6.85%, 4.10%, 2.70%, and 0.52%. 

Fig. 5. Mean recognition confidence across different SPR bins based on the test phase data in Ramey et al.’s (2019) experiment, and corresponding data from the 
simulation reported above. The SPR bins are arranged in ascending order of search performance (i.e., the SPR bin of 6 indicates the most learning, whereas the SPR 
bin of 1 indicates the least learning). The blue regression line is the prediction of recognition confidence across SPR bins (excluding bin 6) for old scenes using the 
original data. The shaded area represents the 95% confidence band of the regression line, and the error bars represent the 95% confidence intervals of the recognition 
confidence rating means. Symbol sizes represent the relative proportions of scenes across different SPR bins. For the original data, the proportions of old scenes across 
SPR bins 1–6 were, respectively, 14.58%, 16.58%, 17.39%, 15.85%, 17.12%, and 18.48%; for new scenes, the proportions were, respectively, 22.81%, 18.07%, 
15.51%, 17.52%, 14.60%, and 11.50%. For the simulated data, the proportions of old scenes across SPR bins 1–6 were, respectively, 5.05%, 11.73%, 16.71%, 
19.99%, 22.44%, and 24.08%; for new scenes, the proportions were, respectively, 39.90%, 26.53%, 16.58%, 10.03%, 5.12%, and 1.84%. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

2 Although the model was formally fitted to the 7 datapoints in Fig. 2, the 
additional 7 datapoints in Fig. 5 should be included in any calculation of the 
total number of datapoints to free parameters. In total the model simulates 14 
datapoints via 3 freely-varying parameters, a, b, and SD S (old) = SD S (new). 
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unparsimonious. Instead of inferring that Ramey et al.’s data provide 
evidence for a total of 4 distinct processes (2 guiding eye-movements 
and 2 determining recognition judgments), the model captures all key 
aspects of the data with a single latent memory variable. 

5. Reliability and nonsignificant association 

Since the extent of regression to the mean depends on the reliability 
of the measures concerned (Campbell & Kenny, 1999; Rothkirch et al., 
2022; Shanks, 2017), it stands to reason that the less reliable the SPR and 
recognition confidence measures, the more likely we are to observe 
lower SPR values for ‘sure new’ old compared to new scenes; in the limit, 
if the measurement of recognition is completely unreliable, then the 
mean SPR values for these scene types at each recognition level will 
simply equal the grand mean values. Although Ramey et al. (2019) did 
not provide any reliability estimates regarding their experimental tasks, 
by analyzing the original test phase dataset, it is possible to estimate the 
split-half reliabilities of the two measures. 

Specifically, all test trials for each participant were randomly split 
into two equal halves and means were computed for each of the halves. 
For each measure, the means for the two halves were correlated across 
participants to serve as a measure of reliability. To minimize the influ-
ence of sampling error, we repeated this procedure over 5000 random 
splits of each participant’s data (Parsons, 2020). For the recognition 
confidence measure, we obtained an uncorrected mean reliability esti-
mate of r = 0.77, 95% CI [0.64, 0.88]. After applying the Spearman- 
Brown correction for attenuation (Brown, 1910; Spearman, 1910), this 
yielded r = 0.87, 95% CI [0.78, 0.94]; in contrast, for the SPR measure, 
the uncorrected mean reliability estimate obtained was only r = 0.43, 
95% CI [0.18, 0.68], and the Spearman-Brown corrected estimate was r 
= 0.59, 95% CI [0.30, 0.81].3 Although the recognition measure has 
adequate psychometric properties, the reliability of the SPR measure is 
disappointingly low and falls short of the commonly accepted lower 
threshold of 0.70 (Savage, 2018). As a consequence, regression to the 
mean induced by measurement error, particularly in light of the low 
reliability of the SPR measure, may have been substantial. 

Not only is reliability of the measures pertinent to the magnitude of 
regression to the mean, but it also has implications for interpreting the 
other major finding reported by Ramey et al. (2019), namely that 
scanpath ratio was not significantly predicted by familiarity strength for 
old scenes at test. This is because one measure cannot correlate with 
another if it does not correlate with itself, which is what reliability refers 
to. Ramey et al. (2019) reported a non-significant association between 
scanpath ratio and familiarity strength based on the conventional fre-
quentist approach, as well as moderate Bayesian evidence (i.e., BF10 =

0.14) for a null relationship between the two variables (Jeffreys, 1961). 
Consistent with their frequentist finding, by analyzing the original 

dataset, we obtained a statistically nonsignificant estimate of the 
repeated measures correlation between SPR and familiarity, r = 0.024, p 
= .83, 95% CI [− 0.186, 0.231], after adjusting for between-subjects 
variance (Bakdash & Marusich, 2017). But as noted above, this null 
association can be simulated by the single-system model (as in the 
simulation results in Fig. 2). Therefore, the finding of nonsignificant 
association between familiarity and scanpath ratio does not provide 
evidence of true independence at the latent level but may instead be 
partly ascribed to the low reliability of the SPR measure. In a similar 
vein, one should also be cautious when interpreting the Bayesian 

evidence in light of the low reliability of the measure. As demonstrated 
by Malejka, Vadillo, Dienes, and Shanks (2021), even moderate evi-
dence in favor of the null hypothesis as indicated by a Bayes factor is 
undermined when uncertainty (e.g., measurement uncertainty) is taken 
into account, especially if the prior assumes a weak correlation (as 
opposed to a prior which regards all correlations as equally plausible). 
This concern might be circumvented in future studies if they include a 
greater number of test trials to measure SPR with increased reliability. 

Whatever its explanation, the key point is that the single-system 
model also predicts a low recognition/SPR correlation as shown in 
Fig. 2. The mean simulated value, r = − 0.047, 95% CI [− 0.078, 
− 0.016], is within the confidence interval of the observed correlation. 
Hence this null association is not diagnostic of two latent memory 
sources. 

Note that the reliabilities of the recognition confidence and SPR 
measures are much lower in the simulated data than in the empirical 
data. The reason for this is straightforward. Reliability depends crucially 
on between-participants variance (Hedge, Powell, & Sumner, 2018): 
when this variance is low, reliability is also low. The model does not 
incorporate such variance – it models each participant as identical, apart 
from trial-by-trial sampling variation, and with the same mean value of S 
(old).4 Under these conditions reliability is not conceptually meaningful. 

Systematic between-participants variance can be incorporated into 
the model by sampling mean S (old) for each participant from a distri-
bution. In Appendix A.2 we describe such a model, which achieves a 
virtually identical fit to the primary data while also generating recog-
nition confidence and SPR measures with reliabilities similar to those in 
the behavioral data. However this is achieved at the cost of making the 
model more complex and adding to the number of parameters. 

6. Do different eye movement measures dissociate conscious 
and unconscious memory? 

We noted earlier that Ramey et al. (2019) analyzed a second eye- 
movement measure as a function of memory responses, namely FSA. 
We did not attempt to model this dependent measure because our focus 
is on unconscious drivers of eye movements, and this dependent variable 
did not show a difference between old and new scenes judged ‘sure new’. 
However, another finding from this measure deserves comment. Ramey 
et al. (2019) found that FSA (but not scanpath ratio) as measured by 
degree error of the first saccade was significantly smaller for scenes 
participants recollected (i.e., a rating of 6) compared to those rated as 
‘sure old’ (i.e., a rating of 5). By decomposing eye movements on these 
trials, Ramey et al. (2019) also presented some evidence that this 
conscious recollection effect caused a subset of first saccades to be 
highly accurate, rather than causing a more incremental improvement in 
FSA across all recollected trials. Ramey et al. (2019) noted that a feature 
of the task may have contributed to this pattern – namely that in the test 
stage, each scene was previewed prior to target search, meaning that 
conscious recollection could have affected planning for target search 
prior to the eye movement being measured. Be that as it may, in our 
model, recognition confidence = 6 and recognition confidence = 5 items 
are not equivalent – the former have higher values of S, and so, 
depending on the exact process by which FSA is assumed to be related to 
S, the effect could be a quantitative rather than qualitative one (see 
Mickes, Wais, & Wixted, 2009, for a discussion of whether recollection is 

3 The reliability estimates were computed based on Ramey et al.’s data after 
excluding trials in which RTs over 20 s were recorded, as mentioned in Section 
2.2 above. If the reliability assessment was conducted using a single odd-even 
split instead of many random splits, the estimates for the recognition confi-
dence measure would be 0.66 (uncorrected) and 0.80 (corrected) respectively, 
whereas the estimates for the SPR measure would be 0.42 (uncorrected) and 
0.59 (corrected) respectively. 

4 In particular, there is zero between-participants variance in the simulated 
recognition confidence measure: the mean rating is the same for every partic-
ipant, which results from the binning of REC values based on the same C1 - C5 
values for each participant. In such an extreme case, any split-half reliability 
estimate is necessarily − 1, as it is equivalent to correlating the difference be-
tween the grand mean and the mean of one half of trials with the difference 
between the grand mean and the mean of the other half of trials. The reliability 
of the simulated SPR measure is r = 0.03, Spearman-Brown corrected. 
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truly a distinct process or simply represents high-confidence memory). 
But even if the effect represents a genuine and qualitatively distinct 
mechanism contributing to eye movements, the key point is that it is a 
conscious, not unconscious, mechanism. 

A more fundamental point raised by Ramey et al. (2019) concerns 
the relationship between FSA and SPR. They noted that the primary 
objective of their study was to investigate whether different kinds of eye 
movement behaviors are influenced selectively by either conscious or 
unconscious memory. Ramey et al. (2019) contended that if one type of 
eye movement is solely influenced by conscious memory, while another 
type is only influenced by unconscious memory, then this would provide 
strong evidence for the existence of distinct conscious and unconscious 
processes. To assess conscious memory, they focused on the comparison 
between old scenes receiving a ‘recollect old’ rating (6) and those 
receiving a ‘sure old’ rating (5); in contrast, to assess unconscious 
memory, they focused on the comparison between old and new scenes 
receiving a ‘sure new’ rating (1, the main focus of the sections above). 
Ramey et al. (2019) interpreted their FSA and scanpath efficiency 
findings as follows: 

Whereas conscious recollection for a scene uniquely improved the 
accuracy of the first eye movement in a search task, unconscious 
memory uniquely improved participants’ search efficiency and 
gradually guided the eyes towards the target over the course of a 
trial… Furthermore, Bayesian analyses indicated that these memory 
effects on eye movements may be independent, such that conscious 
memory did not influence scanpath efficiency, and unconscious 
memory did not influence first saccade accuracy… (Ramey et al., 
2019, p. 78). 

In sum, Ramey et al. (2019) interpreted their findings as a whole as 
evidence of a double dissociation, namely that FSA was uniquely 
influenced by conscious memory whereas scanpath efficiency was 
uniquely influenced by unconscious memory.5 

How compelling is this interpretation? Ramey et al. reported a sig-
nificant difference in FSA between ‘recollect old’ and ‘sure old’ old 
scenes, but not between old and new scenes endorsed as ‘sure new’ (for 
which Bayesian evidence supported a null effect); in contrast, there was 
a significant difference in scanpath efficiency between ‘sure new’ old 
and new scenes, but not between old scenes receiving ‘recollect old’ and 
‘sure old’ ratings (for which Bayesian evidence again supported a null 
effect). From this pattern it is clear that the dissociation rests on con-
trasts between statistically-significant and non-significant effects. But of 
course just because one effect is significant and another non-significant, 
it does not follow that the effects themselves are significantly different in 
magnitude (Nieuwenhuis, Forstmann, & Wagenmakers, 2011; Palfi & 
Dienes, 2020).6 The reported Bayes factors in favor of the null effect in 
the two contrasts are also not diagnostic of whether conscious and un-
conscious memory uniquely affected FSA and SPR respectively. 

To see this, Fig. 6A presents the raw effects of conscious and un-
conscious memory on FSA, SPR, and reaction time (RT), and their 
confidence intervals. A 2 (memory type: conscious vs. unconscious) x 2 
(eye-movement measure: FSA vs. SPR) analysis of variance, after 

excluding an extreme outlier,7 finds a non-significant interaction, F(1, 
14) = 3.23, p = .09, η2 = 0.05, and a Bayesian analysis confirms that the 
evidence is inconclusive (BF10 = 0.95). This is reflected in the over-
lapping confidence intervals of the conscious and unconscious effects on 
the two eye movement variables, such that the data only support the 
strong claim that “conscious recollection for a scene uniquely improved 
the accuracy of the first eye movement” to the extent that the conscious 
effect on FSA was statistically significant while the unconscious effect on 
FSA was not. But they challenge this claim to the more important extent 
that the conscious effect on FSA was not significantly larger than the 
unconscious effect on FSA. By the same token, the data only support the 
strong claim that “unconscious memory uniquely improved partici-
pants’ search efficiency” to the extent that the unconscious effect on SPR 
was statistically significant while the conscious effect on SPR was not. 
But, again, they challenge this claim to the extent that the unconscious 
effect on SPR was not significantly larger than the conscious effect on 
SPR. It is invalid to interpret the significance of one effect and non- 
significance of another as evidence that the two effects are themselves 
significantly different. 

While the raw effects in Fig. 6A allow us to assess Ramey et al.’s 
claims about the relative magnitudes of the conscious and unconscious 
effects on each eye-movement measure (and on RT), this may not be the 
most appropriate way to test whether a double dissociation is present in 
the data. The reason for this is that the conscious (difference in the 
relevant eye-movement measure between old scenes given a ‘recollect 
old’ versus a ‘sure old’ rating) and unconscious (difference between old 
and new scenes given a ‘sure new’ rating) effects are based on quite 
different contrasts, and there is little reason to think that these two types 
of difference score lie on a common measurement scale. To better 
characterize the influence of conscious and unconscious memory on FSA 
and SPR, Fig. 6B instead presents them in terms of effect sizes. This panel 
allows the double dissociation claim to be more directly assessed, with 
the conscious and unconscious effects being placed on a common scale 
across the two measures. When standardized in terms of Cohen’s dz, we 
see that the conscious effect on FSA was not significantly greater than 
that on SPR, and the unconscious effect on SPR was not significantly 
greater than that on FSA. This again demonstrates that the key double 
dissociation claim is not convincingly supported by the data. At most, 
the data reveal a (numerically) somewhat greater conscious effect on 
FSA than SPR and a somewhat greater unconscious effect on SPR than 
FSA. 

It is worth noting that, in the above analyses, SPR-related estimates 
were obtained based on SPR data that included the first eye movement.8 

Since a significant effect of conscious memory on FSA was reported by 
Ramey et al. (2019), there may be concerns as to the validity of the 
comparisons presented above. Specifically, to the extent that FSA, a 
measure involving the first eye movement, was significantly affected by 
conscious memory, other measures involving the first eye movement, 
such as the aforementioned SPR estimates, may also be contaminated by 
this conscious effect. In other words, there may be shared variance be-
tween the SPR and the FSA estimates. Recognizing this potential issue, 
Ramey et al. (2019) included additional analyses in which only scanpath 
ratios from the second saccade onward were taken into account. These 
revealed the same pattern of results compared to results based on SPR 
including the first eye movement. Crucially, while the magnitude of the 
reported effect size of the unconscious effect on SPR was numerically 
smaller when the first saccade was excluded (first saccade excluded: d =
− 0.24; first saccade included: d = − 0.42), the magnitude of the 
conscious effect on SPR was also numerically smaller when the first 
saccade was excluded (first saccade excluded: d = − 0.10; first saccade 

5 Note also that Ramey et al.’s interpretation is clearly about memory pro-
cesses and not just subjective experiences. The interpretation is about causes 
(‘influence’ is a causal term), yet subjective experiences do not have causal 
powers independent of the representations and processes on which they 
supervene.  

6 The experiment was sufficiently sensitive to detect an overall effect of scene 
repetition. Based on the original dataset, we found that new scenes differed 
significantly from old scenes, collapsed across all recognition confidence rat-
ings, in terms of FSA, SPR, and reaction time (RT). For FSA (Mnew scenes = 87.75 
degrees error, Mold scenes = 81.09 degrees error), t(22) = 2.44, p = .01, dz =

0.52; for SPR (Mnew scenes = 10.07, Mold scenes = 8.15), t(22) = 3.76, p < .001, dz 
= 0.80; for RT (Mnew scenes = 4617 ms, Mold scenes = 3973 ms), t(22) = 4.48, p <
.001, dz = 0.95. These p-values are one-tailed. 

7 The extreme outlier was identified by the standard boxplot method, i.e., 3 
interquartile ranges above the third quartile or below the first quartile.  

8 No scanpath ratio data based on the second saccade onwards are included in 
Ramey et al.’s (2019) dataset. 
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included: d = − 0.17). Indeed, it stands to reason that excluding the first 
eye movement would not only affect the SPR of both old and new items 
rated 1, but also the SPR of old items rated 5 and 6. Inasmuch as the 
interaction effect discussed above is concerned with whether the 
conscious and unconscious effects exhibited different slopes for FSA and 
SPR measures, if the effect size estimates for both conscious and un-
conscious effects on SPR are reduced due to exclusion of the first eye 
movement, then the interaction effect is likely to remain non-significant. 
Assuming, for the sake of argument, that excluding the first eye move-
ment entails a greater reduction in the magnitude of the estimated effect 
size of unconscious memory on SPR (as suggested by results reported by 
Ramey et al., at least numerically), this will result in a shallower slope 
between conscious and unconscious effects for SPR. In other words, a 
significant interaction effect is even less likely to be revealed. 

Finally, we assessed whether the required pattern of conscious and 
unconscious effects was manifested at the individual-participant level. 
After excluding 7 participants with missing data in one of the 4 condi-
tions (2 memory types: conscious vs. unconscious; 2 eye-movement 
measures: FSA vs. SPR), as well as one extreme outlier, we found that 
only 7 out of the remaining 15 participants exhibited a dissociation 
pattern, namely a larger conscious than unconscious effect on FSA as 
well as a larger unconscious than conscious effect on SPR (See Appendix 
A.3 for more information on participant-specific patterns). All in all, the 
data lend little weight to Ramey et al.’s (2019) claim of double 
dissociation. 

7. Experiments 1 and 2 

Insofar as our simulation results indicate that the regression to the 
mean phenomenon may arise from post hoc data selection, the single- 
system model makes a novel and testable prediction in a two-stage 
awareness test. Suppose that Ramey et al.’s (2019) procedure is 
repeated and that in the test stage (Fig. 1B), old and new scenes 
receiving ratings of 1 are identified. Although these items receive the 
same recognition confidence rating, the model hypothesizes that they do 
not have the same true, latent memory strength: S is larger for old items, 
but is compensated for by a smaller (more negative) value of eREC. It 
follows that if we now administer a second awareness test (Fig. 1C and 
D), focusing on the old and new scenes rated 1 in the familiarity judg-
ment stage, participants should reliably differentiate between them. If 

we assume that the errors are independent each time the latent strength 
of an item is sampled from memory, then eREC will be identical for the 
selected old and new items, but the old items will continue to have larger 
S values. 

To test this prediction, we conducted two online studies in which an 
experimental design similar to Ramey et al.’s (2019) was adopted with a 
second awareness test. Specifically, the second awareness test comprised 
either a two-alternative forced choice (2AFC) task (Experiment 1; 
Fig. 1C) or a single-item recognition rating task (i.e., the same recog-
nition measure adopted in the familiarity judgment stage) (Experiment 
2; Fig. 1D). Due to the online nature of the experiments, no eyetracking 
measure was incorporated; instead, akin to conventional contextual 
cueing experiments, RT across trials was taken as the primary indicator 
of participants’ search performance. 

We expected that participants would exhibit overall enhanced search 
performance in the initial test stage for images that were repeatedly 
presented (i.e., old images) compared to non-repeated images (i.e., new 
images) and, additionally, that they would exhibit improved search RT 
for old images receiving the lowest familiarity confidence rating 
compared to new images receiving the same rating. Furthermore, 
following our simulation results, we predicted that search RT would be 
only weakly associated with familiarity, such that old images receiving 
lower recognition confidence ratings would be associated with slightly 
higher search RT. More crucially, regarding the 2AFC task (Experiment 
1), we expected that participants would demonstrate higher-than- 
chance accuracy in identifying old images that had been judged new 
in the preceding part of the test phase, whereas with respect to the 
second single-item recognition rating task (Experiment 2), we expected 
that old scenes would be rated higher than new scenes. These two ex-
periments were preregistered on the Open Science Framework (respec-
tively https://osf.io/ht9z3 and https://osf.io/246ha) and the data are 
available at https://osf.io/8nfqj/ and https://osf.io/eyrhd/ 
respectively. 

7.1. Methods 

7.1.1. Participants 
For Experiment 1, in which the 2AFC task was adopted, an a priori 

analysis using G*Power (version 3.1.9.7; Faul, Erdfelder, Lang, & 
Buchner, 2007), conducted before data collection, indicated that a 

Fig. 6. (A) Raw effects of conscious and unconscious memory on first saccade accuracy (FSA), scanpath ratio (SPR), and reaction time (RT). RT was rescaled from 
milliseconds to deciseconds. (B) Effect sizes of conscious and unconscious influences on FSA, SPR, and RT. The error bars represent 95% confidence intervals (CIs). 
The CIs of the effect sizes were estimated using the noncentrality parameter method (Cumming & Finch, 2001). 
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sample of 93 participants would be needed to detect a correlation be-
tween search performance and familiarity (r = − 0.255) with a power of 
0.80 at a one-tailed alpha level of 0.05. A total of 107 participants 
located in the UK (48 males and one non-binary; Mage = 36.30, SDage =

10.39, range = 18–59) were recruited via Prolific. For Experiment 2, in 
which a second single-item recognition rating task was added to the 
standard task, another a priori analysis using G*Power and conducted 
before data collection indicated that a sample of 71 participants would 
be needed to detect a small effect (dz = 0.30) in the second awareness 
test with a power of 0.80 at a one-tailed alpha level of 0.05. A total of 90 
participants located in the UK (40 males and one non-binary; Mage =

39.78, SDage = 10.77, range = 20–60) were recruited via Prolific. In both 
experiments, all participants had normal or corrected-to-normal vision 
and were asked to complete the experiment via a web browser in a quiet 
environment without distractions. Informed consent was obtained from 
all participants. Participants in the first experiment were paid £3.75, 
whereas those in the second experiment were paid £6 (due to a longer 
experimental procedure and inflation). Both studies were approved by 
the UCL Research Ethics Committee. 

7.1.2. Materials 
The experiments were programmed with PsychoPy (Peirce et al., 

2019). A total of 96 realistic full colored images of indoor and outdoor 
scenes were used as stimuli. The images were displayed at an aspect 
ratio of 4:3 irrespective of the device on which the experiment was run. 
In Experiment 1, a small red letter ‘T’ or ‘L’ with a letter height of 0.03 
serving as the search target was embedded in each image during the first 
two stages. After excluding the center (0.1 × 0.1 in height units) and the 
periphery (outer 15%) regions of the images as the spawning locations 
for the search targets, the exact locations of the targets were randomly 
generated such that they were evenly spread over the four quadrants of 
the screen across the images. The identity of the target letter for each 
scene was also predetermined from the outset and remained constant 
throughout the experiment. A counterbalancing measure was adopted to 
reduce potential stimulus effects. Specifically, the 96 images were 
separated into three equal sets with 32 images each. One set of images 
was then randomly assigned as lures to be introduced in the familiarity 
judgment stage, while the other two sets were assigned as stimuli for the 
search stage, across participants. 

In Experiment 2, two slight changes were made. The size of the target 
letters was set at a smaller letter height of 0.015, so as to reduce the 
possibility of a ceiling effect on participants’ search speed; the contex-
tual cueing effect was expected to be increased as a result of this change. 
In addition, an improved counterbalancing method was adopted. Spe-
cifically, at the beginning of the experiment, a set of 64 images was 
randomly selected from the overall pool of the 96 images to be used as 
the old scenes across the participants, while the remaining 32 images 
were used as lures (i.e., new scenes). 

7.2. Procedure 

Both of the experiments, consisting of three stages, were imple-
mented on the Pavlovia website (pavlovia.org). Fig. 1 illustrates the 
tasks. For both experiments, the first two stages were the search stage 
(Fig. 1A) and the familiarity judgment stage (Fig. 1B) respectively. In 
these two stages, Ramey et al.’s (2019) procedure was followed closely. 
The experiments could be run on any device of the participant’s choice, 
apart from mobile devices. In the search stage, participants completed a 
learning phase of 64 trials during which they looked for target letters 
across a series of randomly ordered images. Each trial started with a 
fixation cross presented at the center of the screen for 1.5 s followed 
immediately by presentation of the image. In each trial, participants 
were asked to locate the search target in the image and respond to the 
identity of the target letter using either the key <T> or <L>. Each trial 
ended when a response was registered, or after 20 s in the absence of a 
response. If the response was incorrect, or no response was given within 

20 s, an error message in red was presented at the center of the screen for 
1 s before moving on to the next trial. No indication of a subsequent 
memory test phase was provided. Participants were given a short break 
upon completion of the first stage before proceeding to the test phase. 

The familiarity judgment stage of the experiments followed the 
search stage. After presentation of a fixation cross at the beginning of 
each trial, a preview of an image lasting 0.4 s without its target was 
presented. The image was either one that had appeared in the search 
stage or a new one. Immediately after each preview, participants were 
instructed to report whether or not they thought the image had been 
presented in the search stage, with no time limit. Responses were 
recorded based on a combination of a recollection response option with 
a value 6 (Recollect old), and a 5-point familiarity confidence scale, with 
values 5 (I’m sure it’s old), 4 (Maybe it’s old), 3 (I don’t know), 2 (Maybe 
it’s new), and 1 (I’m sure it’s new). An explanation of the rating options 
was provided before the commencement of the second stage. Specif-
ically, participants were informed that a response of ‘recollect old’ (6) 
should be selected if they could recall details of their experience of 
having seen the image in the first stage, such as an emotion felt or 
sensations experienced when they viewed the image previously. In 
contrast, participants were instructed to select a response of ‘sure old’ 
(5) if they were certain that they had viewed the image while not being 
able to recall any accompanying episodic details. After giving the rating 
response in each trial, another fixation cross at the center was presented 
to participants, followed by presentation of the same scene, though with 
the search target this time. Participants were instructed to search for the 
target letter as they did in the first stage. There were 96 trials (64 old 
images and 32 new images) in the familiarity judgment stage, and the 
images were randomly ordered as before. Participants were given 
another short break upon completion of this stage. 

For Experiment 1, the third and final stage was the 2AFC stage 
(Fig. 1C). Before the 2AFC task began, participants received the 
following instructions: “In the final stage of the experiment, two images 
will be shown side-by-side on the screen in each trial. One of the images 
will be one that you have viewed twice since the beginning of the 
experiment, while the other image will be one that was only presented to 
you once during the second stage of the experiment. Your task is to 
choose the image that you have viewed twice by pressing either the ‘left’ 
or ‘right’ arrow key. You may take as long as you need to think carefully 
and make a decision in each trial.” Each trial began with a fixation cross, 
after which a pair comprising an old and a new image were presented 
side-by-side, with another instruction, serving as a reminder, being 
shown near the top of the screen. This stated that participants should 
select the image they had viewed twice since the beginning of the 
experiment by pressing either the ‘left’ or ‘right’ arrow key. Participants 
were given as long as they needed to select the old image (i.e., the image 
that had appeared twice previously), and the trial ended only when they 
made a decision by pressing one of the arrow keys. 

A programming snippet was written to ensure that, whenever 
possible, each image pair comprised a new and an old image receiving 
the same recognition rating in the second stage. Specifically, the pairing 
algorithm took each new image given a rating of 1 in the first stage of the 
test and paired it with an old image receiving the same rating, then did 
the same for new images given a rating of 2, and so on. In cases where 
there were new images left unpaired because there were not enough old 
images given the corresponding rating, these new images were paired 
with randomly chosen old images given different ratings (these pairings 
were excluded from the key analysis, of course). As a result of the pairing 
process, the 2AFC task comprised a total of 32 trials. The sequence of 
image pairs appearing in this task was again randomized. 

In contrast, for Experiment 2, the final stage (Fig. 1D) involved a 
second single-item recognition rating task. Before the task began, par-
ticipants received the following instructions: “In the final part of the 
experiment, you will view the images from the previous stages. Your 
task is to provide a memory response indicating whether you recognize 
the image from the first part of the experiment by pressing the 
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corresponding number key above the top row of letters. You may take as 
long as you need to make a judgment.” Each trial began with a fixation 
cross, after which an image was presented, accompanied by a question 
and the rating options shown at the bottom of the screen. The question 
asked whether the image was from the first part of the experiment. 
Participants were given the same 6-point rating options as in the fa-
miliarity judgment stage and were given as long as needed to arrive at a 
decision. Unlike the task in the familiarity judgment stage, the trial 
ended as soon as the participant selected a rating response, and no 
search task was incorporated into this stage. There were 96 trials (64 old 
images and 32 new images) in this stage, and the presentation sequence 
of the images was again randomized. 

After completion of the third stage in both experiments, participants 
were thanked and debriefed. 

7.3. Data pre-processing and analysis plan 

With respect to Experiment 1, following the pre-registration, in order 
to ensure that only those participants who were sufficiently attentive to 
the experimental tasks were included in the subsequent analyses, we 
excluded 13 participants who failed to achieve 95% accuracy in 
reporting the correct identity of the search target in the first two stages. 
Thus, a final sample of 94 participants from this study was included in 
the subsequent analyses. For Experiment 2 the exclusion threshold was 
lowered to 85% accuracy, as stated in the pre-registration, since the 
reduced size of the target letters was expected to increase the difficulty 
of the search task. This resulted in exclusion of 7 participants and a final 
sample of 83 participants. 

Because the two experiments were very similar across the first two 
stages, the data were pooled for statistical analyses. Trials with incorrect 
search responses were excluded (2.96% of total trials). Statistical tests 
were conducted separately for the third stage of the two experiments. 
We set an a priori exclusion criterion for Experiment 2 such that data in 
the final recognition stage for participants who gave a rating of 1 to 
fewer than 3 old scenes or 3 new scenes in the familiarity judgment stage 
would be excluded. However, no equivalent criterion was set for 
Experiment 1, as the number of trials in the 2AFC stage was already 
comparatively small. As already mentioned, a priori power analyses 
were conducted for the experiments based on a one-tailed alpha level of 
0.05. Hence, p-values were estimated based on one-tailed tests for the t- 
statistics reported below, where we had strong a priori predictions in line 
with our hypotheses. It is also noteworthy that in the pre-registration of 
Experiment 1, we originally planned to exclude trials with RTs longer 
than 10 s before conducting the analyses in relation to the familiarity 
judgment stage. This exclusion threshold had been adopted in previous 
contextual cueing studies conducted in our laboratory. However, in light 
of the fact that no such threshold was adopted by Ramey et al. (2019) 
and that in our previous studies no search tasks involving real world 
images were incorporated, we conducted the main analyses below 
without applying the exclusion threshold. We further conducted reli-
ability analyses on the critical measures in the familiarity judgment 
stage and the final test stages of the two experiments, which can be 
found in Appendix A.4. In addition, potential issues relating to outliers 
were addressed in analyses in Appendix A.5. All the statistical analyses 
were carried out in R (R Core Team, 2022). 

7.4. Results 

7.4.1. Contextual cueing effect 
First, to investigate whether a contextual cueing effect, comprising 

facilitated search performance due to repeated exposure to the stimuli, 
emerged across Experiments 1 and 2 combined, we focused on the 
comparison of participants’ search performance (in terms of RT) for old 
and new images across all recognition confidence ratings during the 
familiarity judgment stage. A paired-samples t-test indicated that there 
was a significant difference between their search speed for new (M =

2.89 s, SD = 1.02 s) versus old images (M = 2.69 s, SD = 0.94 s), t(176) 
= 4.87, p < .001, dz = 0.37, suggesting that an overall contextual cueing 
effect was present. (See Appendix A.6 for an exploratory analysis of the 
cueing effect at the item level.) 

7.4.2. Performance in the familiarity judgment stage 
Recognition confidence ratings. The percentages of old scenes receiving 

ratings of 1–6 were, respectively, 16.81%, 20.97%, 16.60%, 16.18%, 
14.75%, and 14.69%; in contrast, for new scenes, the percentages were, 
respectively, 35.32%, 28.04%, 15.41%, 11.41%, 6.82%, and 3.00%. 
These distributions suggest that participants exhibited a higher level of 
confidence when recognizing old images compared to new images, as 
expected. 

Search speed. Fig. 7 illustrates search speed in the second stage, in 
terms of RT, as a function of memory response rating and image type.9 

Following our simulation results, our primary focus here was on whether 
there was any difference in search performance between old and new 
images receiving a rating of 1 (i.e., ‘sure new’). A secondary question is 
whether search performance for old images was associated with famil-
iarity confidence (i.e., ratings of 1–5). Regarding the former, mean 
search RT for old images which participants endorsed as ‘sure new’ was 
significantly lower than for new images receiving the same rating, 
t(162) = 4.79, p < .001, dz = 0.38, indicating that the participants were 
quicker at finding targets in old images compared to new images even 
though they failed to recognize the old images. This represents a con-
ceptual replication of Ramey et al.’s key SPR result but with search RT as 
the dependent measure. 

Mirroring the statistical strategy adopted by Ramey et al. (2019), we 
assessed the relationship between search performance for old images 
and familiarity confidence using a linear mixed effects model (LMM) 
with crossed random effects of image and participant so as to adjust for 
potential influence of stimulus effects and individual differences.10 We 
analyzed the data at the trial level and fitted the LMM using restricted 
maximum likelihood estimation based on the ‘lme4’ package (Bates, 
Mächler, Bolker, & Walker, 2015) while calculating the degrees of 
freedom of the predictors using Satterthwaite approximation based on 
the ‘lmerTest’ package in R (Kuznetsova, Brockhoff, & Christensen, 
2017). The results (see Table 2) indicated that search RT for old images 
was not significantly predicted by familiarity confidence (ratings 1–5), b 
= 0.01, t(9328) = 0.79, p = .21. This result conceptually replicates the 
absence of association already discussed above (see Fig. 2), and more-
over is in congruence with Ramey et al.’s (2019) data: in a re-assessment 
of their data based on the same LMM specifications, we found that their 
participants’ search RT for old scenes was not significantly associated 
with familiarity strength, b = − 0.05, t(1168.55) = − 0.77, p = .22. 

In an exploratory analysis we further investigated whether the non- 
significant association between search RT for old images and familiarity 
confidence was consistent across the two experiments. Specifically, we 
included experiment (i.e., Experiment 1 vs Experiment 2) and the 
interaction term between experiment and familiarity as two additional 
predictors in the LMM model. The results indicated that the main effect 
of familiarity on search RT for old images remained non-significant, 
b = − 0.01, t(9327) = − 0.33, p = .37, whereas the main effect of 
experiment was significant, b = 0.89, t(388.1) = 5.83, p < .001, which 
can be attributed to the longer RTs due to the increased task difficulty 
(i.e., smaller target letters) in Experiment 2. More crucially, the inter-
action effect of experiment and familiarity was non-significant, b = 0.05, 

9 Fig. 7 was plotted based on the linear mixed model as described below. All 
the estimates were derived from the LMM using the ‘emmeans’ package in R.  
10 The model specification that we entered in the lmer function was: Response 

time ~ familiarity confidence (ratings 1–5) + (1|subject) + (1|image). The 
random effects are italicized. Including random slopes in the LMM models 
resulted in singular fits. Thus, we decided to treat familiarity as a fixed pre-
dictor not subject to any random effect. 
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t(9302) = 1.53, p = .13, suggesting that there was no difference in the 
relationship between search RT and familiarity across the two 
experiments. 

7.4.3. Performance in the 2AFC stage in Experiment 1 
Mean accuracy for selecting the correct image, across pairs of images 

receiving the same ratings in the familiarity judgment stage, was the 
main dependent variable for the 2AFC task in this stage. Specifically, 
mean accuracy was represented in terms of the percentage of trials in 
which participants correctly selected the old image. As participants 
encountered a pair of old and new images in each trial, chance perfor-
mance is 50%. Our primary focus was on the pairs of images receiving 
ratings of 1, as these pairs incorporated the most confident misses and 
correct rejections (i.e., old and new scenes rated 1) in the previous stage. 
Among these pairs, participants exhibited above-chance accuracy (M =
55.00%, SD = 24.62%), t(85) = 1.88, p = .03, dz = 0.20. In a further 
exploratory investigation, we excluded 9 participants who encountered 
fewer than 3 pairs of images rated 1 in the 2AFC task before repeating 
the same analysis. This approach brings the exclusion criterion of the 
final test stage data in line with that of Experiment 2. Again, above- 
chance accuracy was revealed, (M = 58.18%, SD = 19.37%), t(76) =
3.71, one-tailed p < .001, dz = 0.43. Fig. 8A illustrates the respective 
distributions of mean accuracy across participants. (See also Appendix 
A.7 for an exploratory analysis of the number of trials encountered by 
participants across different accuracies for image pairs rated 1.) 
Together, these results indicate that participants on average exhibited 

Table 2 
Indices of the linear mixed model assessing association between RT and famil-
iarity ratings.   

Response Time 

Predictors Estimates CI p 

(Intercept) 2.71 2.41 – 3.02 < 0.001 
Confidence rating 0.01 − 0.02 – 0.04 0.21 

Random Effects    
σ2 3.67   
τ00 subject 0.87   
τ00 image 1.67   
ICC 0.41   
Nimage 96   
Nsubject 177   

Observations 9400 
Marginal R2 / Conditional R2 0.000 / 0.409 

Fig. 7. Estimated marginal response time (RT) means 
across different recognition confidence ratings during 
the familiarity judgment stage in Experiments 1 and 2 
combined. Symbol sizes represent the relative pro-
portions of scenes across different recognition confi-
dence ratings. The error bars represent the standard 
errors of the RT means. The blue line represents the 
regression line and the grey band represents the 
associated standard errors of the regression line 
across ratings. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   

Fig. 8. (A) Distributions of mean accuracy in the 2AFC task of Experiment 1 for pairs of images previously rated 1 (‘sure new’). The data are separated depending on 
whether the exclusion criterion of Experiment 2 was applied or not. (B) Distributions of mean ratings for old and new images in the final recognition stage of 
Experiment 2, limited to images that had been rated 1 in the familiarity judgment stage. 
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signs of awareness, as they were able to differentiate old images from 
new ones, despite having judged the old images as new with the highest 
level of confidence during the familiarity judgment stage. 

Furthermore, by examining the 2AFC data at the participant level, 29 
participants with chance level or worse accuracy, and receiving more 
than 3 trials rated 1, were identified. One interesting question is whether 
these participants would nonetheless exhibit a significant cueing effect 
among images rated 1 in the familiarity judgment stage. This is because 
these participants not only judged these old images as new with highest 
confidence in the familiarity judgment stage, but also failed to differ-
entiate them from new images rated 1 in the 2AFC stage, suggesting that 
they genuinely did not recognize such old images. We investigated this 
question in an exploratory analysis. No significant RT difference be-
tween old and new images rated 1 in the familiarity judgment stage was 
revealed, t(28) = 0.49, p = .31, dz = 0.09, and a Bayesian analysis also 
provided moderate support for the null difference (BF10 = 0.30). Thus 
there was no evidence of contextual cueing in participants whose 2AFC 
recognition memory was at or below chance. 

7.4.4. Performance in the second recognition rating stage in Experiment 2 
Regarding the final recognition stage of Experiment 2, the main focus 

here was on whether there was any difference in recognition confidence 
ratings between old and new images which had received a rating of 1 in 
the preceding familiarity judgment stage. Among the 71 participants 
who gave at least 3 old images and 3 new images ratings of 1 in the 
previous stage, a significant difference in rating between such old (M =
3.30, SD = 1.05) and new images (M = 2.97, SD = 1.02) was revealed in 
this final recognition stage, t(70) = 3.82, p < .001, dz = 0.46 (see 
Fig. 8B). This result again suggests that participants on average were 
able to differentiate between old and new images that they previously 
judged as new with the highest confidence, in congruence with the 2AFC 
results. 

Furthermore, as there were 22 participants who gave an equal or 
higher mean rating to new images compared to old images in this stage, 
another exploratory analysis focusing on these participants was con-
ducted, resembling that reported above for the 2AFC data. The fact that 
these participants did not on average rate old images higher than new 
images in the final recognition stage suggests that they were unable to 
differentiate them across the two recognition tests. Hence, it is inter-
esting to investigate whether they nonetheless exhibited a cueing effect 
in relation to images rated 1 in the familiarity judgment stage. The result 
indicated that there was no cueing effect among these participants, 
t(21) = 1.24, p = .12, dz = 0.27, BF10 = 0.76. 

7.5. Discussion 

Regarding Experiment 1, our prediction based on the single-system 
account is tested and confirmed by the results of the 2AFC task, where 
participants showed higher-than-chance accuracy in identifying old 
versus new images that they judged as new with the highest level of 
confidence in the previous stage. Although these items received the 
same recognition confidence rating in the familiarity test, the model 
hypothesizes that they do not have the same true, latent memory 
strength: S is larger for old items, but is compensated for by a smaller 
(more negative) value of eREC. Thus, in the subsequent 2AFC test, the 
model predicts that old items rated 1 will be reliably selected (assuming 
that eREC no longer differs because of independent sampling). Had the 
cueing effect for old images endorsed as new been brought about by 
unconscious learning, participants would have demonstrated chance 
level performance in identifying these very same images in the 2AFC 
task. 

Could this contrast between the single-item and 2AFC test stages be 
reconciled with Ramey et al.’s (2019) theoretical perspective? It would 
not help to propose, as some have (e.g., Bastin & Van der Linden, 2003; 
but see Bayley, Wixted, Hopkins, & Squire, 2008; Khoe, Kroll, Yonelinas, 
Dobbins, & Knight, 2000), that 2AFC may be more sensitive than single- 

item recognition to conscious memory signals such as familiarity, 
because the whole point of contrasting highest confidence misses and 
correct rejections is to equate them for conscious memory. Hence such a 
conjecture would be tantamount to conceding that the familiarity 
judgment task in Ramey et al.’s experimental method is insensitive to 
subtle differences in conscious memory. On the other hand, if 2AFC is 
more sensitive than single-item recognition to unconscious memory sig-
nals, then the results of this experiment could be accommodated within 
Ramey et al.’s framework. Such a view would propose that different 
patterns of unconscious eye movements elicited by the old and new 
images within each 2AFC pair can be used as the basis for a recognition 
decision, while at the same time the unconscious eye movements elicited 
by the same old and new images cannot support recognition decisions 
when the items are presented individually. Such a strong assumption 
would require independent verification, but in any case is manifestly less 
parsimonious than the single-system explanation.11 

In any event such speculation is rendered moot by the results of the 
final recognition stage of Experiment 2 in which old and new items 
previously rated ‘sure new’ were tested individually. The significant 
difference in ratings in this novel test lends even stronger support to our 
prediction and the regression to the mean hypothesis, since the recog-
nition measure adopted in this stage was identical to the one in the fa-
miliarity judgment stage. No explanation based on differential 
sensitivity can be made in this context. To the extent that participants on 
average rated old images higher than new images, both of which had 
been rated 1 previously, the result provides compelling evidence in favor 
of our hypothesis based on the single-system model and challenge a 
fundamental assumption of Ramey et al.’s (2019) logic, namely that old 
and new items rated new with high confidence in the familiarity test are 
equated for conscious memory. 

Remarkably, when focusing on data of participants who did not on 
average give a higher rating to old compared to new images in the final 
test, no significant RT difference between old and new images rated 1 in 
the familiarity judgment stage was revealed, suggesting that the cueing 
effect vanished among these participants. The same pattern was found 
for Experiment 1. This again is in line with our model: assuming 
respective eREC values associated with these old and new images are not 
different in this stage because of independent sampling, this would 
suggest that the latent memory strength S is not larger for old images 
among these participants. In this context, the model predicts that no 
facilitation in RT among these old images would occur. This is exactly 
what was observed in the exploratory analysis. 

It is noteworthy that, as the target identity was pre-determined and 
fixed for each image from the outset, there could be potential concerns 
in relation to the reported results involving RT as the dependent vari-
able. This is because, unlike conventional array-based contextual cueing 
tasks, there is a possibility that participants could develop a strong as-
sociation between the target identity and the scene in the learning stage. 
The observed cueing effect could thus be observed even if no search took 
place, and the RT difference may not reflect facilitated search perfor-
mance. To address this potential issue, we re-assessed Ramey et al.’s 
(2019) eyetracking data. Specifically, restricted to old scenes presented 
once in the test phase, we focused on the distance between the partici-
pant’s fixation and the target at the last saccade in each trial of the 
search task. It was revealed that the mean distance between the par-
ticipant’s fixation and the target was 29.95 pixels,12 and the maximum 
distance was below 50 pixels. This suggests that all participants across 

11 In the case of other indices of unconscious memory, there is clear evidence 
against this view: the densely amnesic individual E.P. shows normal priming – 
on this perspective, an unconscious memory signal – combined with chance- 
level 2AFC recognition (Hamann & Squire, 1997).  
12 While no information was provided regarding the unit of measurement for 

distance in the shared data, Ramey et al. (2019) referred to pixels when 
describing how the stimuli were prepared in their study. 
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all trials completed the search for the target before responding. There-
fore, we suggest that the issue regarding potentially strong associations 
between the target identity and the scene may be overstated. 

In sum, these findings, together with our simulation results, suggest 
that the seemingly unconscious cueing effect for old images judged as 
new in the familiarity judgment stage is rooted not in truly unconscious 
learning, but in statistical artifacts due to the inherent flaws of the post 
hoc data section approach. 

8. General discussion 

One widely employed method to demonstrate unconscious learning 
is to select post hoc items for which participants appear to lack some 
aspect of awareness (in this case, awareness of repetition as measured by 
familiarity), and check if performance is nonetheless enhanced by that 
aspect. By means of this method, Ramey et al. (2019) showed that old 
scenes endorsed as new with high confidence were associated with a 
lower average scanpath ratio than new scenes receiving the same 
recognition response. Ramey et al. attributed the enhanced scanpath 
efficiency to unconscious learning. Nevertheless, as demonstrated in this 
article through a post hoc model fitting simulation and a novel experi-
mental test, their results can be satisfactorily accounted for by a simple 
single-system model that assumes no unconscious memory representa-
tion at the latent level. Therefore, the scanpath ratio findings cannot be 
taken as unequivocal evidence of unconscious learning. 

The model suggests that Ramey et al.’s key finding is a statistical 
inevitability that stems from a ubiquitous but regularly overlooked 
phenomenon—regression to the mean, arising from post hoc data se-
lection. While it is perfectly reasonable to assume that errors are 
randomly distributed on average, as soon as the researcher selects items 
on the basis of their observed values, this randomness no longer holds. 
Part of the very reason why a scene is given an extreme recognition 
confidence rating is because its error component happens to be extreme. 
Independence between error and true score does not entail indepen-
dence between error and measured score. Regression to the mean then 
comes into play when a second measure is taken (SPR in this case) in 
which the error is no longer biased by selection. Fundamentally, we 
submit that the post hoc selection method – as instantiated here via the 
selection of high-confidence misses and correct rejections – is intrinsi-
cally not an appropriate tool to demonstrate unconscious processes (see 
also Rothkirch et al., 2022; Shanks, 2017). 

The novel prediction tested in two preregistered experiments, in both 
of which an additional awareness test was incorporated, lends support to 
this interpretation. Specifically, as shown in Experiment 1, even when 
old and new images received identical ‘sure new’ ratings (1) in the fa-
miliarity stage, participants were able to differentiate the old from new 
images in the subsequent 2AFC test. In addition, corroborating evidence 
is provided by the results of Experiment 2, in which the final awareness 
test adopted the same recognition confidence measure as used in the 
familiarity stage. Focusing on old and new images which were judged as 
new with the highest level of confidence in the familiarity judgment 
stage, participants nonetheless were able to differentiate between these 
two types of images by giving old images significantly higher recogni-
tion ratings in the final awareness test. Indeed, even setting aside our 
simulation results, the experiments reported here are sufficient to crit-
ically undermine the logic of Ramey et al.’s approach. Their analysis 
presupposes that conscious memory is equivalent between old and new 
scenes endorsed as ‘sure new’ and that therefore the lower average 
scanpath ratio for old scenes must result from unconscious memory. But 
our experiments show that old and new scenes judged ‘sure new’ in the 
familiarity test actually do not have equal latent memory strengths. This 
becomes evident in the subsequent recognition test in both experiments 
in which old scenes were reliably differentiated from new ones. On this 

basis, it can no longer be argued that the lower average SPR for old 
scenes is a hallmark of unconscious memory. 

In addition to explaining the SPR effect for unrecognized scenes, the 
null association between familiarity and scanpath ratio that Ramey et al. 
(2019) observed is also reproduced by the model. It is striking that a 
model which predicts above-chance recognition and contextual cuing on 
the basis of a common latent representation can at the same time predict 
a correlation of effectively zero between these measures. Many other 
researchers have taken a statistically nonsignificant correlation between 
an implicit and an explicit measure as evidence of unconscious pro-
cessing. Even though Ramey et al. reported additional results based on 
Bayesian analyses, which indicated moderate evidence in favor of a null 
association, this must be interpreted with caution, as such evidence is 
weakened when measurement uncertainty is taken into consideration 
(Malejka et al., 2021), particularly when weak correlations are expected 
to be more likely a priori. In addition to reviewing the problems with the 
approach which include wrongly slipping from a failure to reject the null 
to acceptance of the null, and demonstrating the danger of not ac-
counting for uncertainty when conducting Bayesian analyses, Malejka 
et al. (2021) describe alternative Bayesian methods. These permit Bayes 
factors with scientifically informed priors to be calculated which reflect 
evidence for the null. Malejka et al. (2021) also provided formal guid-
ance on how to conduct sample size planning. This allows the minimum 
sample size to be estimated for the given reliability of the two measures 
that would yield clear evidence in favor of a null correlation, if true. 

Ramey et al. (2019) interpreted their findings of a significant 
conscious and non-significant unconscious effect on FSA, in conjunction 
with a significant unconscious and non-significant conscious effect on 
scanpath efficiency, as evidence of a double dissociation. This inter-
pretation rests, however, on the fallacy of interpreting the significance 
of one effect and non-significance of another as evidence that the two 
effects are themselves significantly different. Again, even though Ramey 
et al. (2019) reported Bayes factors in favor of the null for the uncon-
scious effect on FSA and that for conscious effect for scanpath ratio, such 
results do not demonstrate that conscious and unconscious effects 
affected the two eyetracking measures differentially. In this regard, 
Fig. 6 shows that in fact there was no statistically significant difference 
between the conscious and unconscious effects on either FSA or SPR, and 
the interaction was not significant, where the Bayesian analysis pro-
vided no compelling evidence to suggest otherwise. Hence, Ramey 
et al.’s (2019) claim of double dissociation of conscious and unconscious 
influences on the two eye-movement measures is not supported by the 
data. 

Our claim is not that all aspects of eye movements are under 
conscious control. There are highly likely to be cues (e.g., luminance or 
motion) that influence eye movements independently of awareness 
(Spering & Carrasco, 2015). Rather our claim is that awareness is a 
necessary condition for memory-guided influences on eye movements. To 
the extent that learned statistical regularities, such as between particular 
scenes and target locations embedded within them, can affect eye 
movements, we conjecture that these regularities are available to 
conscious reports. Similar claims have been defended in relation to other 
seemingly ‘automatic’ behaviors such as Pavlovian conditioned re-
sponses (Lovibond & Shanks, 2002). 

Although the pattern of eyetracking results may be accounted for by 
the single-system model, admittedly this alone does not necessarily rule 
out the possibility of unconscious learning. The model could be falsified 
– and unconscious learning demonstrated – in a number of ways, for 
example if no discrimination of high-confidence misses and correct re-
jections occurs in a second memory test or if reliable contextual cuing 
occurred in participants whose discrimination is at chance in the second 
test. An important direction for future research, thus, is to construct 
alternative multiple-system models that assume distinct systems for 
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conscious and unconscious memory, and pitch them against the current 
single-system model. If they offer better model fits for eyetracking data 
based on standard model-selection criteria, such a finding may poten-
tially serve as evidence supporting the multiple-system perspective (see 
Berry et al., 2012, for an example of this approach). Furthermore, in this 
work we have not considered individual differences, as our main focus 
has been on the interpretation of Ramey et al.’s (2019) key qualitative 
results for unconscious processing. There may be differences in, for 
instance, the magnitude of the correlation between familiarity and 
scanpath ratio across participants. In future work the modelling could be 
extended to address such issues. 

In summary, the analysis presented here is part of a tradition going 
back at least 20 years (e.g., Shanks & Perruchet, 2002) in which artifacts 
arising from regression to the mean, appearing to reveal unconscious 
influences, can instead be shown to be consistent with single-system 
models. We submit that the model described here offers a cogent and 
parsimonious account of the memory-based control of eye movements in 
context-guided visual search. 

Declaration of Competing Interest 

The authors declare no conflict of interest. 

Data availability 

We have shared the links to our data/code in the main text. 

Acknowledgments 

This research was supported by a grant from the United Kingdom 
Economic and Social Research Council (ES/S014616/1). We thank 
Simone Malejka, Miguel Vadillo, David Luque, and Christopher Berry for 
their helpful suggestions, and Michelle Ramey for her valuable feedback 
on an early draft of this paper. Code for the simulation reported here, 
and data from the experiments, are openly available at https://osf. 
io/8nfqj/ and https://osf.io/eyrhd/.  

Appendix A 

A.1. Breakdown of the S and eSPR values across different SPR bins 

To further verify that, irrespective of which variable is selected post hoc, the single-system model makes the same prediction about regression to the 
mean, we assessed the mean values of S and eSPR for old and new scenes across different SPR bins based on the simulated data. As illustrated in Fig. A.1, 
a pattern of results similar to that shown in Fig. 4 emerged.

Fig. A.1. Mean values of S and eSPR for old and new scenes across different SPR bins in the model simulation. Symbol sizes represent relative proportions of scenes 
across different SPR bins. 

A.2. An extended model including between-participants variance 

Here we present an extended version of the model which incorporates between-participants variance. All aspects are identical to the model 
described in Section 2.1 except for the following. 

We first sample a mean value of S (old) for each participant from a normal distribution with a mean of 1.4 and SD of 0.5. Then, trial-by-trial S (old) 
values are sampled from each participant’s distribution with the respective mean S (old) (and SD = 0.1). In addition, instead of binning each par-
ticipant’s REC values into 6 recognition ratings based on the overall proportions observed in Ramey et al.’s (2019) data, we aggregate all REC values 
collapsed across participants, and then divide them into 6 recognition bins in accordance with the overall proportions. This approach ensures between- 
participants variance in recognition confidence ratings, as different participants now generate different sets of proportions of responses across the 6 
recognition bins, unlike the simulated data reported in the main text. Lastly, to approximate the observed reliability for the SPR measure, the SD of eSPR 
is slightly decreased from 1 to 0.8. 

As illustrated in Fig. A.2, the results generated by this simulation are virtually identical to those shown in Fig. 2. In addition, the simulated data for 
the novel test (i.e., reversing the SPR and recognition confidence variables) after incorporating between-participants variance are also similar to the 
results reported in Section 4. The simulated Spearman-Brown corrected reliability estimates based on 5000 random splits for the recognition con-
fidence and SPR measures are r = 0.88 and r = 0.68 respectively, close to the estimates based on Ramey et al.’s (2019) data (i.e., for recognition 
confidence, r = 0.87; for SPR, r = 0.59). 
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Fig. A.2. Mean scanpath ratio (SPR) across different levels of recognition confidence during the test phase in Ramey et al.’s (2019) experiment, and simulation 
results when between-participants variance is incorporated. The blue regression line is the prediction of SPR across different levels of recognition confidence 
(excluding ratings of 6) for old scenes using the original data. Symbol sizes represent the relative proportions of scenes across different levels of recognition con-
fidence. The shaded area represents the 95% confidence band of the regression line, and the error bars represent the 95% confidence intervals of the SPR means. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

A.3. Conscious and unconscious effects on SPR and FSA at participant level 

Table A.1 presents the difference between conscious and unconscious effects on SPR and FSA respectively at participant level. The difference scores 
are computed based on subtracting the unconscious effect from the conscious effect for both eyetracking measures. Insomuch as Ramey et al. (2019) 
concluded that conscious memory uniquely affected FSA while unconscious memory uniquely affected SPR, a negative difference score should be 
observed for SPR and a positive difference score should be observed for FSA across participants. Only 7 participants exhibited a pattern in line with 
Ramey et al.’s (2019) conclusion.  

Table A.1 
Difference scores between conscious and unconscious effects on SPR and FSA at participant level.  

Participant SPR FSA Is this pattern in line with the hypothesized dissociation? 

1 − 1.15 19.82 Yes 
2 − 0.33 23.62 Yes 
3 − 6.58 46.07 Yes 
4 − 10.79 26.10 Yes 
5 − 0.70 60.10 Yes 
6 − 1.44 31.76 Yes 
7 − 4.56 22.08 Yes 
8 − 3.42 − 24.20 No 
9 − 3.92 − 4.77 No 
10 − 3.51 − 54.92 No 
11 3.73 104.95 No 
12 − 1.64 − 11.33 No 
13 − 2.80 − 15.34 No 
14 2.47 44.01 No 
15 − 1.56 − 29.81 No  
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A.4. Reliability assessments of critical measures in Experiments 1 and 2 

Reliability assessments, based on the random-split approach as discussed in Section 5, were computed for the critical measures in the familiarity 
judgment stage and the final test stage. Split-half reliability estimates, both uncorrected and Spearman-Brown corrected, are presented in Table A.2. 
With the exception of the accuracy measure of the 2AFC stage, all measures were of very satisfactory reliability. The lower reliability of the 2AFC 
measure could be attributed to not only the binary nature of the response (Vadillo et al., 2022), but also the smaller number of trials compared to the 
recognition rating measures in other tasks.  

Table A.2 
Split-half reliability estimates based on 5000 random splits across different measures.  

Measures Split-half correlation Spearman-Brown 

Response time 
(familiarity judgment stage) 

0.861 0.925 

Recognition confidence rating 
(familiarity judgment stage) 

0.793 0.884 

Accuracy 
(2AFC stage) 

0.237 0.378 

Recognition confidence rating 
(final recognition stage) 

0.893 0.943  

A.5. Alternative analytic approach 

The results reported in sections 7.4.2–7.4.3 are largely in line with our a priori predictions. There are nevertheless some potential concerns that 
warrant scrutiny. First, different statistical approaches were adopted, such that while crossed random effects of participant and image were adjusted 
for when assessing the association between RT and familiarity, these random effects were not adjusted for in other critical comparisons involving 
paired sample t-tests. Second, in tests where RT was treated as a dependent variable, the inherent skewness of its distribution could potentially exert a 
non-negligible influence on the model estimates, even when a LMM was conducted (Lo & Andrews, 2015; see also Schielzeth et al., 2020). 

To address these potential concerns, we replicated all the planned statistical tests using an alternative approach. First, all RT data were subject to a 
natural log transformation from the outset. Afterwards, outlying log-RTs were identified and removed with respect to each of the image types (i.e., old 
and new images) based on the standard boxplot method. Specifically, log-RTs over 1.5 interquartile ranges (IQR) from the third quartile and those 
below 1.5 IQRs from the first quartile were deemed as outliers. As a result, 383 trials, amounting to 2.32% of total trials in the familiarity judgment 
stage, were excluded. After removal of outliers, log-RT distributions of both image types were largely symmetrical (skewness for old images: 0.41; 
skewness for new images: 0.44). Then, we conducted all the planned statistical analyses again, but this time using LMMs while adjusting for crossed 
random effects of participant and image across the board. Crucially, where applicable, log-RT was treated as the dependent variable in place of RT. 

Regarding the familiarity judgment stage, the overall contextual cueing effect remained significant, t(15830) = 6.86, p < .001, dz = 0.05, and the 
cueing effect restricted to images rated 1 was also significant, t(3501) = 2.13, p = .02, dz = 0.04. No significant association between log-RT and 
familiarity (rating 1–5) was found, b = 0.004, t(9057) = 1.19, p = .12. As regards the 2AFC stage of Experiment 1, higher-than-chance accuracy was 
revealed across participants as before, t(1406) = 3.57, p < .001, dz = 0.10. It is worth noting that as both old and new images were presented in any 
given trial during this stage, in addition to the random effect of participant, the random effects of both old and new image were adjusted for. 
Notwithstanding this, the LMM result indicated a significant fixed effect. Finally, with respect to the final recognition stage of Experiment 2, there was 
again a significant difference between old and new images that received ratings of 1 in the previous stage, t(1719) = 3.93, p < .001, dz = 0.09. All in all, 
the results based on the alternative analytic approach echoed the results of the planned statistical tests reported in the previous sections, thus 
evidencing their validity. 

A.6. Contextual cueing effect at the item level 

To further characterize the cueing effect in our study, we examined the effect at the item level, namely the respective cueing effects borne by 
individual images. Specifically, for each image, its search RT when used as a new image was compared to its search RT as an old image during the 
familiarity judgment stage. As illustrated in Fig. A.3, when all trials were included, a cueing effect was found in the small majority of images. 
Nevertheless, a substantial number (36 images, or 37.5% of the image set) did not evoke faster responses. This suggests that the cueing effect in this 
experimental task may not be as robust as the cueing effect evoked in the conventional array-based contextual cueing paradigm (Chun & Jiang, 1998, 
2003). 
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Fig. A.3. Contextual cueing effect in terms of response time (RT) across individual images. Positive values indicate that the search RT for the given image was higher 
when used as a new image than as an old image during the familiarity judgment stage, corresponding to the standard cueing effect. 

A.7. Trial count of image pairs rated 1 across different accuracies 

We further investigated whether participants’ accuracy in correctly identifying old images across image pairs varied systematically with the 
number of trials encountered in the 2AFC task. As illustrated in Fig. A.4, for image pairs rated 1, there was a largely even distribution of trial count 
across different levels of accuracy, except for extreme accuracies (i.e., zero accuracy and perfect accuracy), where the participants concerned 
encountered relatively few trials. Overall, no systematic variation between number of trials and accuracy was observed.

Fig. A.4. Mean accuracy for different trials counts, quantified as the number of pairs rated 1 that were presented in the 2AFC stage. Each point represents the given 
participant’s mean accuracy with the corresponding trial count. 
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