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Abstract— Personalized federated learning (PFL) ad-
dresses the data heterogeneity challenge faced by general
federated learning (GFL). Rather than learning a single
global model, with PFL a collection of models are adapted
to the unique feature distribution of each site. However, cur-
rent PFL methods rarely consider self-attention networks
which can handle data heterogeneity by long-range depen-
dency modeling and they do not utilize prediction inconsis-
tencies in local models as an indicator of site uniqueness.
In this paper, we propose FedDP, a novel federated learning
scheme with dual personalization, which improves model
personalization from both feature and prediction aspects
to boost image segmentation results. We leverage long-
range dependencies by designing a local query (LQ) that
decouples the query embedding layer out of each local
model, whose parameters are trained privately to better
adapt to the respective feature distribution of the site. We
then propose inconsistency-guided calibration (IGC), which
exploits the inter-site prediction inconsistencies to accom-
modate the model learning concentration. By encouraging
a model to penalize pixels with larger inconsistencies, we
better tailor prediction-level patterns to each local site.
Experimentally, we compare FedDP with the state-of-the-art
PFL methods on two popular medical image segmentation
tasks with different modalities, where our results consis-
tently outperform others on both tasks. Our code and mod-
els will be available at https://github.com/jcwang123/
PFL-Seg-Trans.

Index Terms— Personalized federated learning; Medical
image segmentation; Self-attention mechanism

I. INTRODUCTION

Federated learning (FL) is an important topic in medical im-
age computing enabling model training while adhering to local
data protection rules [1], [2]. Recent studies have achieved
remarkable success in various lesion segmentation tasks, e.g.,
brain tumors [3], [4], polyp lesions [5] and multiple organ
segmentation tasks [6]–[8]. General federated learning (GFL)
allows multiple participating data sites to train a single global
model without centralizing their data. Knowledge aggregation
is achieved through averaging all local parameters on a cloud

Jiacheng Wang and Liansheng Wang are with the Depart-
ment of Computer Science at School of Informatics, Xiamen Uni-
versity, Xiamen 361005, China. (e-mail:jiachengw@stu.xmu.edu.cn,
lswang@xmu.edu.cn)

Yueming Jin and Danail Stoyanov are with the Wellcome/EPSRC
Centre for Interventional and Surgical Sciences (WEISS) and Depart-
ment of Computer Science, University College London, UK. (e-mail:
{yueming.jin, danail.stoyanov}@ucl.ac.uk)

Corresponding author: Liansheng Wang (lswang@xmu.edu.cn)

 Im
ag

e

Pr
ed

ic
tio

ns

In
co

ns
ist

en
ci

es

(b) Exploring inter-site inconsistencies at prediction-level.

(a) Personalized long-range dependencies at feature-level.

 Image  Model A  Model B  Model C  Model D

 Model A  Model B  Model C  Model D

Fig. 1. Illustration of the intuition behind our proposed method FedDP.
We use the learned different local self-attention models (Model A to D)
to infer the same image sample and visualize the (a) attention maps
for the center pixel and (b) predicted boundaries. FedDP performs
dual personalization focusing on these two aspects, (a) long-range
dependency modeling (feature-level) and (b) inter-site inconsistencies
(prediction-level) to improve local segmentation. Note that we use local
models to predict the same sample only for illustration. Data in one site
is not transferred to others in the real federation training process.

server [9]. However, a single global model can be sub-optimal
in handling heterogeneous data distributions and may result
in performance bias among different sites due to individual
distribution variation frequently occurring in practice [10]. A
single global model can therefore struggle to generate accurate
or optimal predictions for each site [11]. It is also possible
that averaging local parameters in one cloud server can be
susceptible to cyber attacks and training time attacks from
malicious data sites [12], [13].

Personalized federated learning (PFL) proposes to learn
multiple local models rather than a single model, and each
local model aims to adapt to a unique feature distribution or a
tailored prediction pattern for each site [11]. PFL proposes
to decouple partial model parameters out of the inter-site
communication and only learn them locally. For example,
some methods decouple parameters in the feature extractor
to fit feature distributions, such as the Batch Normalization
(BN) layers [14] and the high-frequency components of con-
volutional parameters [15]. Most existing methods propose
to learn personalized prediction layers for each local model,
e.g., the last full-connection layer in the network [5], [16],
[17]. Another stream of methods treats the model as a whole
and utilizes a weight decay strategy to save historical local
models [18], [19]. Each local model can be better adapted to
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its corresponding data distribution, by learning more intra-site
knowledge from historical models.

Despite recent progress, existing PFL approaches for image
segmentation have limited feature personalization regarding
modeling long-range dependencies, since they are designed
based on Convolutional Neural Networks (CNNs) with lim-
ited convolutional kernel size. However, modeling long-range
dependencies has been widely demonstrated its efficacy in
various vision tasks which can aggregate the contexts from
the whole image space for better representation learning. This
can potentially be addressed by self-attention networks, also
known as vision transformers [20]–[24], which can perform
feature extraction via long-range dependency modeling with
strong robustness proven to handle the distribution shifts in
self-supervised learning [25], multi-modality learning [26],
and general federated learning [27]. For architectures based on
long-range dependencies, personalizing their long-range mod-
eling plays a core role in the local feature distribution adaption,
however, it is still under-explored for medical segmentation
tasks. Furthermore, the presence of diverse imaging protocols
with varying settings across different clinical sites can result
in variations in the boundaries of the same target. Moreover,
different raters are prone to annotating the target boundary
with noticeable discrepancies [28], resulting in inconsistent
segmentation labels. These factors contribute to distinct opti-
mization paths in individual local models and, consequently,
significantly undermine performance when aggregating the pa-
rameters [11]. Such inconsistency across different sites tends
to highlight the respective uniqueness of each site. There-
fore, leveraging such inter-site inconsistency, for example,
the inconsistent results generated by different local models,
can benefit the perception of the tailored prediction pattern
in each local site. However, existing methods rarely consider
utilizing this information when personalizing predictions, and
the most relative attempt [5] introduces extra computational
costs during the inference.

In this paper, we propose a novel personalized federated
learning method, named FedDP, to comprehensively address
the dual personalization to boost the local segmentation per-
formance. (i) For the feature-level personalization, FedDP
proposes the local query (LQ) which decouples query/key
embedding layers of the self-attention networks, and saves
the query portion as the local part without sharing it with
other sites during the model learning. As query embeddings
generally represent each pixel’s specialized features while
key embeddings denote supportive features from other pixels,
locally training query embedding layers helps each site with
exploring its special long-range clues. (ii) For the prediction-
level personalization, FedDP proposes the inconsistency-
guided calibration (IGC) to leverage the inter-site prediction
inconsistencies. Concretely, we compute pixel-level inconsis-
tencies of each sample by gathering all local models to predict
the segmentation maps and then calculating disagreements of
maps. We encourage the model attending to pixels with large
inconsistencies, since such pixels inherently highlight each
site’s special prediction patterns. It is achieved by designing a
new loss to feed more supervision on inconsistent pixels, and
no extra computation costs are brought during the inference.

Our method is evaluated on two medical image segmenta-
tion tasks with different modalities, including polyp segmenta-
tion from endoscopic images and optic disc/cup segmentation
from retinal fundus images. We compare our method with
several GFL methods and the latest PFL methods, where our
method has consistently achieved superior performance.

II. RELATED WORK

A. Personalized Federated Learning
Model personalization in federated learning aims to learn

unique local models specialized to each distinct feature dis-
tribution and prediction custom, through which the local
accuracy can be improved and different solution demands
are satisfied [11]. There are a variety of methods to achieve
this goal by local finetuning [29]–[31], meta-learning [32],
knowledge distillation [33], weight decay [18], [19], and
model decoupling [5], [14]–[17]. The simplest strategy, local
finetuning, tunes each local model’s parameters by training
them for a few epochs on the local dataset after the federated
learning process, obtaining large improvements in the local
accuracy especially of the sites with imperfect federation
accuracy. According to which parameters it tunes, the meth-
ods can achieve different personalization goals, i.e., tuning
prediction layers denotes the prediction-level personalization.
The methods using meta-learning, knowledge distillation, and
weight decay, additionally build a set of local models that are
entirely different from the global modal and transmit the global
knowledge into the local models, thus significantly reducing
the negative effects of the global bias. Another group proposes
not additionally training the local models, but decoupling
partial parameters to be saved locally [14]–[17] and globally
sharing the rest of parameters. The local parameters are used
to tune the features by personalizing normalization layers [14]
and convolutional layers [15], and to tune the predictions by
personalizing the prediction layers [16], [17]. However, all
these methods are designed for convolutional networks and
lack the ability to personalize the long-range dependencies
and predictions for self-attention-based networks. In addition,
the prediction personalization is not well handled as they lack
the exploration of inter-site prediction inconsistencies. More
recently, the CNN-based work [5] proposes to explore the
inter-site inconsistencies by transmitting all local prediction
layers into each local site at each federation round, which
increases the transmission costs. What’s more, it uses incon-
sistencies through an attention module which also increases
the computational complexity. In comparison, FedDP requires
one-time transmission and utilizes the inconsistency to re-
weight the supervised loss which is efficient in terms of the
transmission and computation.

B. Self-Attention Networks
Self-attention architectures are firstly proposed for the

sequence-to-sequence machine translation [34] and subse-
quently extended to other Natural Language Processing (NLP)
tasks. Recently, they have been broadly applied in the im-
age processing field to model the long-range dependencies
in the whole view of an image, which are also known as
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Fig. 2. Visualization of the feature-level personalization by decoupling the query embedding layers Uq (red) out of the self-attention networks
to be trained locally. Instead, the key embedding Uk and the value embedding layers Uv (blue and green) are shared in all local sites. The unique
long-range dependency modeling paradigm can be constructed in each local site, contributing to a better feature distribution adaptation.

vision transformers. For example, the first vision transformer,
ViT [35], achieves the best performance on ImageNet clas-
sification by splitting an image into patches and applying
self-attention to catch the global contexts. The following
work improves the architecture by enhancing the multi-scale
representations and local context modeling ability [36], [37]
and is applied to image denoising [38], segmentation [39],
detection [40], [41]. Medical image segmentation also benefits
from the advancement of self-attention networks, i.e., 3D
brain tumor segmentation [20], skin lesion segmentation [21],
[24], polyp segmentation [22], and other areas [23], [42]. It
proves that self-attention networks can handle well targets with
large shape and size variance and have better robustness on
unseen data compared to convolutional networks. However,
these networks are all trained by only using the data within
one local site, not considering training the models using
the multi-institution data with patient privacy protection. One
latest work [27] empirically applies self-attention networks to
federated classification tasks and finds that their performance
in the heterogeneous setting has a significantly larger increase
in the convergence speed and test accuracy compared to the
convolutional networks. Yet, this work addresses the hetero-
geneity using general FL algorithms and has not implemented
them on the segmentation tasks which are more challenging
with pixel-level representations. Hence, we fill this gap and
propose to personalize the long-range dependency modeling
to enhance the local accuracy when applying self-attention
networks to PFL segmentation tasks.

III. METHOD

To personalize federated medical image segmentation, we
propose a novel PFL framework FedDP, accomplishing the
personalization at dual feature- and prediction- levels. The
overall learning framework is described in Section III-A. The
feature-level personalization and prediction-level personaliza-
tion are then introduced in Section III-B and III-C, respec-
tively.

A. Overall Pipeline
We start with a brief background explanation of the general

federated learning (GFL) and existing personalized federated
learning (PFL) solutions, and then describe the pipeline of our
federation FedDP with dual personalization.

1) Backgrounds: Assumed that there are K local sites with
their unique distributions {Dk}Kk=1 and the joint image and
label space is denoted as {(Xk,Yk)}Kk=1. For the k-th site,
a set of Nk samples {(xi,k, yi,k)}Nk

i=1 establish the non-iid
distribution Dk, where (xi,k, yi,k) ∈ Dk. The most typical
general FL framework, i.e., FedAVG [9], aims to learn a single
global model w to suit all distributions by first collecting the
gradients from all local sites and then doing the average, as

wt+1 = wt − ηEk∈[K]E(xi,k,yi,k)∈Dk
∇L(fw(xi,k), yi,k). (1)

Here, fw is the model function parameterized by w; L is
the loss function; η is the learning rate and t denotes the
communication round.

As a single model can not satisfy the distinct solutions
owing to the distribution and prediction difference, general
FL methods usually suffer from poor local accuracy when the
inter-site drift is large. Instead, PFL methods propose to learn
the respective local models {vk}Kk=1 for all the local sites,
where each local model vk aims to suit the k-th site’s special
feature distribution and prediction custom.

2) Federation with Dual Personalization: FedDP proposes
dual personalization with local query (LQ) and inconsistency-
guided calibration (IGC), to respectively enhance FL from two
perspectives, i.e., long-range dependency modeling and inter-
site prediction inconsistency exploration. The overall pipeline
is shown in Algorithm 1. It contains two learning stages
that are the dependency personalization stage and the pre-
diction calibration stage, where LQ and IGC are respectively
performed. During the stage of dependency personalization,
all local models undergo parallel training on their respective
local devices. Subsequently, the globally shared parameters
are transmitted to a cloud server, where their averaged values
are computed. These averaged parameters are then sent back
to the local sites and combined with the locally personalized
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Algorithm 1: Federated learning with dual personal-
ization (FedDP).
Input: Local datasets {(Xk,Yk)}Kk=1, Number of

communication rounds T .
Output: Personalized local models {v∗k}Kk=1.

1 Initialize query parameters for each model {ρ0k}Kk=1;
2 Initialize the rest parameters shared by all models γ0;
/* Dependency Personalization */

3 for t = 0, 1, ..., T − 1 do
4 for k = 1, 2, ...,K do
5 Send γt to each site ;
6 γ̂t+1

k , ρt+1
k ← LQ((Xk,Yk); γt, ρtk);

7 end
8 γt+1 = 1

K

∑K
j=1 γ̂

t+1
j ;

9 end
/* Merge Parameters */

10 for k = 1, 2, ...,K do
11 v̂k := γT ∪ ρTk ;
12 end

/* Prediction Calibration */

13 for k = 1, 2, ...,K do
14 Send {v̂j}Kj=1 to each site;
15 v∗k = IGC((Xk,Yk); v̂k, {v̂j}Kj=1);
16 end

parameters, resulting in a set of preliminary local models.,
{v̂k}Kk=1. At the second stage, each local site collects all the
local models through one-time communication, and computes
the inconsistencies among them on the each local device. Each
model’s parameters are then tuned under the guidance of inter-
site inconsistencies, resulting in the finely calibrated models
{v∗k}Kk=1 eventually.

B. Long-range Dependency Personalization

In the group of PFL methods, decoupling partial parame-
ters to save locally is helpful to make the models adaptive
to several unique distributions. There are several alternative
types of layers to be decoupled, e.g., Batch Normalization
layers [14] or Prediction layers [16], [17], regarding the feature
personalization or prediction personalization. However, these
solutions have not leveraged the great robustness of self-
attention-based networks to enhance PFL. As their superior
performance is heavily attributed to the ability of long-
range dependency modeling, how to personalize long-range
dependency to refine each site’s feature distribution is crucial
when developing a self-attention-based PFL framework. To
fill this gap, FedDP proposes the local query embedding
where each local self-attention model obtains its personalized
query embedding custom and all local models share the key
embedding standards.

Most self-attention models exploit the long-range depen-
dency through the multi-head self-attention mechanism, based
on the qkv calculation. Given an input image x, it is divided
into several square patches rigidly and each patch is encoded
by a Multi-Layer-Perception (MLP) module. The obtained

patch embedding is concatenated with a positional embedding
and flattened to form the sequential embeddings, which are
then augmented through the cascaded self-attention blocks.
Assuming that z denotes the input embedding of one self-
attention block with the length of L, the qkv calculator firstly
outputs the query (q), key (k), value (v), as [q,k,v] = zUqkv,
where Uqkv is a full-connection layer, and q,k,v ∈ RL. After
that, each element (a.k.a. each pixel embedding) in query ql

is then compared to all the elements in key in the long-range
view by computing the similarity matrix, as

Al = softmax(qlk
⊤). (2)

Similarity weight in matrix Al ∈ RL is multiplied with
value v in element wise and all weighted contexts are then
added as

z∗l = Alv. (3)

As shown in the equations above, for the l-th element zl,
its enhancement z∗l captures the long-range contexts majorly
through the calculation of the similarity matrix Al. Hence,
personalizing the matrix calculation process for each local site
leads to personalized long-range dependencies. To achieve this
goal, two choices are naturally considered, i.e., personalizing
the query embedding or the key embedding. As shown in
Eq. 2, the similarity matrix of the l-th element is calculated
between the l-th query embedding and all key embeddings. To
this end, the query embedding can represent the specialized
semantic cues of each pixel, while the key embedding repre-
sents the supportive information from all pixels that is used to
augment the current one.

Therefore, we propose the local query that each site pre-
serves its personalized query embedding custom, while all
sites share the key and the value embedding standards. Specif-
ically, let v denote the entire parameter set of a transformer-
based segmentation network, i.e., a feature pyramid network
(FPN) [43] with the backbone of a pyramid vision transformer
(PVT-b0) [44]. Let ρ denote the parameters of query em-
bedding layers Uq (local) and γ denote the rest parameters
(global), i.e., v → ρ ∪ γ and ρ ∩ γ = ∅. As shown in Fig. 2,
local parameters are updated only by the local gradients as

ρt+1
k = ρtk − ηE(xi,k,yi,k)∈Dk

∇L(fvk(xi,k), yi,k), (4)

and the global parameters are optimized through the global
gradients as

γt+1
k = γtk − ηEk∈[K]E(xi,k,yi,k)∈Dk

∇L(fvk(xi,k), yi,k). (5)

After training, each local site obtains its intermediate person-
alized parameters v̂k.

C. Calibrating Prediction with Inter-site Inconsistencies

Exploring the inconsistency knowledge among multiple
annotations from different clinical experts or raters for an
image sample has been proven to be able to enhance rep-
resentation learning and improve segmentation results [28]. In
the federated learning paradigm, clinical raters from different
centers generally have different labeling standards, therefore,
the trained local models can inherently generate inconsistent
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Fig. 3. Visualization of the proposed inconsistency-guided calibration
(IGC) in the k-th site. It explores the inter-site prediction inconsistencies
(red) and enlarges the supervision of pixels with large inconsistencies.
Note that the red heart denotes the pixels with large inconsistencies and
the white heart denotes the pixels with no inconsistencies. The errors
are calculated through the entropy loss in our implementation and we
simplify the process using the minus in this figure.

predictions with rich information, which can strengthen the
regions holding more uniqueness in each local site. However,
most existing PFL methods overlook the potential of this
inter-site knowledge. We propose an inconsistency-guided
calibration (IGC), which perceives the inter-site prediction
inconsistencies in a cost-effective way. With a new loss,
IGC encourages more penalization of the inconsistent regions
during model learning and brings no extra cost to the inference.

The illustration of our IGC is presented in Fig. 3. It can be
denoted as

v∗k ← IGC(v̂k, Dk, {v̂j |j = 1...K, j ̸= k}︸ ︷︷ ︸
AuxiliarySupervision

). (6)

Concretely, given trained local models from the first stage with
intermediate parameters v̂, we first transmit all the K local
models to each site, and infer them on each sample to obtain
segmentation maps. Denoting the i-th sample in the k-th site
as (xi,k, yi,k), we can obtain K segmentation maps produced
by K local models, as {ŷji,k}Kj=1. The inconsistencies are
measured by computing the distance between the segmentation
map inferred by the current site model and those inferred by
others, as

δi,k =
1

K − 1

K∑
j=1

(ŷki,k − ŷ
j
i,k)

2, (7)

where the larger elements in the δi,k suggest the larger incon-
sistencies for the i-th sample. We devise a new loss function
to let inconsistencies guide the model learning, increasing the
supervision for the pixels with larger disagreement:

Laux(ŷ
k
i,k,yi,k) = −StopGradient(δi,k)∗

[ŷki,k ∗ log(yi,k) + (1− ŷki,k) ∗ log(1− yi,k)].
(8)

In addition to the weighted supervision, the general segmenta-
tion loss is also used for model optimization. The overall loss
function is defined as L = Lseg + λLaux, where λ is used to
balance the two objectives and is set to 1 as default.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics
Datasets: We conduct the experiments on two public datasets
with real-world site division and different modalities. It
includes the polyp segmentation from endoscopic images
(EndoPolyp) and the optic disc/cup segmentation from retinal
fundus images (RIF). The detailed statistics are as follows.

• EndoPolyp dataset has 2187 samples collected and la-
beled from four different data centers [46]–[49], each of
which contains {1000, 380, 196, 612} images and labels.
Here, we resize all images and labels to 384 × 384 and
follow the train-test division used in the latest polyp
segmentation work [22]. Specifically, the training sample
numbers are respectively 900, 328, 170, and 550, and
the rest are regarded as the test set. Since some polyp
images are extracted from the same patients, we split the
train-test sets in patient-level to ensure generalization.

• RIF dataset is built in the recent work for disc and
cup segmentation in retinal images [50], whose data is
collected from four different clinical sites [51]–[53]. The
target region with the size of 800 × 800 in each image
is center-cropped and resized to 384 × 384 following
the previous work [50]. The sample number of each
data site is {101, 159, 400, 400}, and in each site, the
training number is {50, 99, 320, 320}, respectively. Since
each image is collected from a unique patient, the image-
level separation has ensured the generalization.

Metrics: We quantitatively evaluate each local site’s optimized
model on its test data by two commonly-used metrics, in-
cluding a region-based metric, Dice score, and a boundary-
based metric, average symmetric surface distance (ASSD). The
larger Dice and smaller ASSD represent the better segmenta-
tion results. The detailed computation process of the prediction
ŷ and the ground-truth y is:

ψDice(ŷ, y) = 2 ∗ |ŷ ∗ y|
|ŷ|+ |y|

,

ψASSD(ŷ, y) =

∑
a∈Pb

d (a,Gb) +
∑

b∈Gb
d (b, Pb)

|Pb|+ |Gb|
,

(9)

where Pb and Gb denote the predicted boundary points and
the ground-truth boundary points in the ŷ and y, and d(·, ·)
denotes the minimum Euclidean distance function. Despite
the two metrics being the commonly used ones to assess the
segmentation results, they also have limitations in measuring
the under or over-segmentation. Specifically, the Dice coef-
ficient may not be sensitive enough to detect small under-
segmentation errors or over-segmentation errors. The ASSD
may be sensitive to outliers and may not accurately reflect
the accuracy of the overall segmentation. Therefore, using
the two metrics can provide comprehensive quantification.
Moreover, as the segmentation task we investigate in this paper
is binary segmentation, which does not distinguish different
target objects, all target objects in an image are considered
collectively as foreground pixels. The averaged scores of all
local sites are used for the eventual assessment.

We understand that this limitation can impact the accuracy
of our segmentation results and have discussed this in the
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TABLE I
QUANTITATIVE RESULTS ON ENDOPOLYP DATASET. WE REPORT THE MEAN SCORES AND THEIR STANDARD DEVIATIONS FOR EACH SITE AS WELL

AS THE AVERAGING RESULTS. THE BEST DICE (↑ ) AND ASSD (↓) SCORES ARE HIGHLIGHTED IN BOLD.

Site Dice (%) ↑ ASSD (pix.) ↓

A B C D Average A B C D Average
Local Train 75.85±23.67 57.85±20.15 29.82±23.68 83.26±22.19 61.69±20.59 17.77±17.22 22.09±17.53 47.85±55.29 10.59±18.11 24.57±14.05

FedAVG [9] 83.07±18.39 95.42±1.75 69.60±37.62 80.72±25.87 82.20±9.17 11.89±13.46 1.60±0.70 19.63±28.32 16.26±38.38 12.35±6.78

FedGKD [33] 80.02±20.30 94.92±1.91 73.53±30.48 80.55±27.39 82.26±7.82 13.71±15.89 1.76±0.73 15.91±22.14 13.68±29.33 11.27±5.56

FineTune [45] 83.07±18.40 95.56±1.62 69.60±37.61 82.19±24.41 82.61±9.19 11.89±13.46 1.55±0.63 19.61±28.30 14.65±36.90 11.93±6.60

DITTO [18] 78.61±22.10 93.47±2.24 67.41±36.89 80.82±25.20 80.08±9.25 15.02±17.15 2.91±0.78 19.38±24.95 12.53±25.71 12.46±6.03

FedRep [16] 79.62±20.38 94.03±2.00 80.69±23.79 79.63±26.99 83.49±6.10 14.86±16.77 2.38±0.62 8.72±12.24 12.91±21.08 9.72±4.78

IOP-FL [19] 79.91±21.62 95.30±1.88 77.21±26.88 81.97±23.73 83.60±6.96 13.10±16.01 1.63±0.69 12.22±16.86 14.50±36.81 10.36±5.11

FedBABU [17] 78.96±21.38 94.62±2.37 77.88±26.15 82.76±23.31 83.56±6.64 14.90±17.57 1.87±0.76 10.47±15.62 10.33±16.47 9.39±4.71

FedLC [5] 82.24±20.05 95.10±1.75 81.50±25.21 78.61±28.92 84.36±6.34 12.53±16.24 1.75±0.69 9.88±18.17 16.97±40.82 10.28±5.54

FedDP (Ours) 83.21±18.52 95.16±1.24 84.51±19.43 83.45±24.71 86.58±4.98 11.03±13.15 1.68±0.47 7.86±10.69 10.87±24.72 7.86±3.78

TABLE II
QUANTITATIVE RESULTS ON RIF DATASET. WE REPORT THE MEAN SCORES AND THEIR STANDARD DEVIATIONS FOR EACH SITE AS WELL AS THE

AVERAGING RESULTS. THE BEST DICE (↑ ) AND ASSD (↓) SCORES ARE HIGHLIGHTED IN BOLD.

Site Dice (%) ↑ ASSD (pix.) ↓

A B C D Average A B C D Average
Local Train 90.31±5.87 88.69±3.72 90.24±3.38 90.53±3.00 89.94±0.73 6.25±1.93 5.70±1.53 5.39±1.48 4.53±0.82 5.47±0.62

FedAVG [9] 92.07±5.78 88.65±4.27 91.30±3.54 92.21±3.16 91.06±1.43 4.58±1.81 5.04±1.18 4.07±1.48 2.94±0.76 4.16±0.78

FedGKD [33] 91.91±5.48 88.79±3.95 91.35±3.43 92.29±3.05 91.09±1.36 4.73±1.80 4.99±1.23 4.09±1.45 2.92±0.77 4.18±0.80

FineTune [45] 92.19±6.08 89.91±4.51 91.77±3.38 92.21±3.16 91.52±0.95 4.49±1.93 4.22±1.72 3.82±1.35 2.94±0.76 3.87±0.59

DITTO [18] 92.02±5.97 90.34±4.18 91.78±3.10 92.00±3.14 91.53±0.70 4.60±1.93 4.08±1.64 3.80±1.31 3.00±0.83 3.87±0.58

FedRep [16] 92.23±5.25 89.41±4.02 91.71±3.32 92.19±3.71 91.38±1.16 4.51±1.57 4.63±1.15 3.83±1.34 2.93±0.91 3.98±0.68

IOP-FL [19] 92.42±5.36 89.34±4.16 91.68±3.65 92.52±3.57 91.49±1.28 4.22±1.74 4.49±1.20 3.61±1.52 2.48±0.80 3.70±0.77

FedBABU [17] 92.53±5.37 89.20±4.12 91.80±3.39 92.67±3.26 91.55±1.39 4.13±1.59 4.55±1.26 3.56±1.41 2.45±0.79 3.67±0.79

FedLC [5] 92.63±5.62 90.62±3.91 92.39±3.21 92.91±2.86 92.14±0.89 4.04±1.73 3.78±1.39 3.25±1.29 2.36±0.75 3.36±0.64

FedDP (Ours) 92.96±5.80 91.33±3.54 92.46±2.98 93.03±2.80 92.44±0.68 3.83±1.79 3.42±1.56 3.21±1.16 2.33±0.73 3.20±0.55

manuscript. Specifically, we have highlighted that the Dice
coefficient and ASSD are not perfect metrics to quantify under
and over-segmentation and have their own limitations. For
example, the Dice coefficient can be biased towards larger
objects, and the ASSD can be sensitive to outliers. Therefore,
we have also discussed the limitations of these metrics in the
manuscript and have emphasized that they should be used in
conjunction with other metrics and visual inspection of the
segmentation results to ensure their accuracy.

B. Implementation Details

During the dependency personalization stage, all sites adopt
the same hyper-parameters. The AdamW optimizer with an
initial learning rate of 0.001 is used to optimize the parameters.
The gradients during training are clipped to −1 to 1 for the
stable training process. Each minibatch contains six samples
in all sites considering the efficiency and accuracy. For the
communication round setting, enlarging the round number
improves the knowledge aggregation while increasing the
transmission costs. Considering the trade-off of efficiency
and convergence, we empirically train the models with 200
communication rounds (T = 200), and the local models
are trained for one epoch during each round. After that, we
tune each local model for 20 epochs with a reduced learning
rate of 0.0001. During training, the parameters with the best
IoU score are saved for the final assessment to make the
evaluation metrics more convincing and comprehensive. The
whole training process is achieved on the PyTorch platform
using one NVIDIA Titan 3090 GPU.

C. Comparison with State-of-the-Arts

1) Experimental Setting: We conduct the comparison to a
series of GFL and PFL methods, including (a) the plain
federated learning framework, FedAVG [9], (b) the latest GFL
method solving data heterogeneity with no personalization,
FedGKD [33], and (c) recent state-of-the-art PFL methods,
i.e., FineTuning [45], DITTO [18], FedRep [16], IOP-FL [19],
FedBABU [17], and FedLC [5]. We also locally train the
models by only using their own datasets in different sites
without FL technique as the baseline (Local Train), where we
use the same self-attention-based model architecture as ours
for fair comparison.

2) Quantitative Results: We report the experimental results
on the EndoPolyp dataset in Table I, where our methods
have achieved the best average Dice score and ASSD score,
and the improvements compared to other PFL methods are
obvious. Firstly, it is noticeable that all federated learning
methods have gained significant improvements compared to
the local training method. Particularly on Site C, as this
site has less than 200 images that are not enough to train
a good transformer, the results of the local training method
are extremely bad and our method brings the largest per-
formance improvement. Secondly, it is also noteworthy that
the results from other FL methods on Site D are worse than
the local training result. The underlying reason may be that
the cases in Site D are easy to segment while the cross-
site model communication harms the model learning due to
the distribution difference. Despite this challenge, our method
still achieves nearly the best performance verifying that our
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Fig. 4. Visual comparison of our method, FedDP, and other GFL and state-of-the-art PFL methods in EndoPolyp dataset. Each row denotes a
randomly selected sample from a unique site.

(a) Image (b) GT (c) FedDP (ours) (d) Local Train (e) FedAVG (f) FedGKD (g) DITTO (h)FedRep (i) IOP-FL (j) FedBABU
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(k) FedLC

Fig. 5. Visual comparison of our method, FedDP, and other GFL and state-of-the-art PFL methods in RIF dataset. Each row denotes a randomly
selected sample from a unique site.

dual personalization addresses the shifts well. Thirdly, it is
seen that the methods exploring inter-site inconsistencies, i.e.,
FedLC and FedDP (ours), truly achieve better performance
than others not using this information. This fact further proves
that modeling the inter-site inconsistencies and taking their
advantage are useful to improve local accuracy. Furthermore,
our method outperforms FedLC obviously since the channel
selection strategy in FedLC is designed for convolutional
networks and fails to personalize the long-range dependency
modeling.

The experimental results of the RIF dataset in Table II also
verify the conclusions. Firstly, our method has consistently
achieved the best scores on all sites. Since the heterogeneity
in retinal images is not serious, all sites have gained a perfor-
mance boost after the model communication, and our method
results in the largest boost. Secondly, it is also observed
that other PFL methods only result in limited improvements

since the targets have extremely similar shapes and the slight
difference locates at the boundaries. Our method improves
accuracy by a large margin since our IGC can refine the
predictions by encouraging the model to pay attention to
analyzing site uniqueness, e.g., boundary regions.

3) Visualized Results: To further intuitively compare the
performance, we visualize the segmentation results of com-
pared methods on two datasets. For each dataset, we randomly
select a sample and present its predictions as well as the
ground-truth map in each site. The Dice and ASSD scores
are also shown in the figure.

The results of polyp segmentation are shown in Fig. 4. For
the challenging cases in Site A (the 1-st row) and Site C (the
3-rd row), nearly all other methods, including the local train,
GFL, and PFL methods, have bad segmentation results owing
to a large number of false detections. Instead, our method
can precisely recognize the lesion position and segment the
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TABLE III
ANALYTICAL ABLATION OF THE PROPOSALS, INCLUDING THE

SELF-ATTENTION NETWORKS (SA), THE LOCAL QUERY (LQ), AND THE

INCONSISTENCY-GUIDED CALIBRATION (IGC). THE BEST DICE (↑ )
AND ASSD (↓) SCORES ARE HIGHLIGHTED IN BOLD.

SA LQ IGC EndoPolyp RIF
Dice (%) ↑ ASSD (pix.) ↓ Dice (%) ↑ ASSD (pix.) ↓
78.72±9.49 14.94±8.79 88.57±3.20 4.98±1.64

✓ 82.20±9.17 12.35±6.78 91.06±1.43 4.16±0.78

✓ ✓ 84.80±5.96 8.85±4.20 92.14±0.89 3.36±0.64

✓ ✓ ✓ 86.58±4.98 7.86±3.78 92.44±0.68 3.20±0.55

lesion boundaries with better accuracy. For the easy cases
in Site B (the 2-nd row) and Site D (the 4-th row), though
all methods can achieve good performance with the Dice
score higher than 90%, our method improves the segmentation
accuracy obviously due to its superior ability in addressing the
ambiguous boundaries, which is achieved by exploring inter-
site inconsistencies to enhance the perception of such regions.

The results of the disc and cup segmentation are shown in
Fig. 5. Other PFL methods have not improved the segmen-
tation accuracy obviously since they don’t have the ability
to perceive the boundary knowledge. Nevertheless, IGC can
explore the difference in boundary predictions and take full
advantage of this information to boost the results. Therefore,
our method achieves the best scores on all the sites.

D. Ablation Studies
We make a detailed ablation analysis to study the effec-

tiveness of each key component in FedDP. Then we make a
series of elaborate experiments to study how each component
works to improve the personalized segmentation, including
the importance of changing convolutional networks into self-
attention networks, personalized long-range dependency, and
inconsistency-guided calibration.

1) Effectiveness of key components: We thoroughly inves-
tigate how each proposal affects each local site’s segmenta-
tion accuracy by gradually advancing the baseline configura-
tion. Specifically, the baseline method uses Feature Pyramid
Network (FPN) with ResNet-18 as the architecture design
and FedAVG as the federated learning algorithm. Then we
gradually modify the learning program by changing ResNet-
18 into the self-attention network, PVT-b0 (SA), adding the
local query, and using the inconsistency-guided calibration.
The results are shown in Table III. It could be seen that using
self-attention networks can truly improve the scores regarding
overall segmentation accuracy and boundary accuracy. Note
that PVT-b0 has much fewer parameters (3.4 M) than ResNet-
18 (11.7 M). Therefore, the performance improvements are
attributed to the strong robustness of self-attention networks.
Moreover, it is seen that LQ can further improve the metrics,
i.e., 2.6% Dice score on EndoPolyp and 1.08% Dice score
on RIF. IGC can further enhance the segmentation, especially
in the EndoPolyp dataset, bringing a 1.78% increase in Dice
and a 0.99 decrease in ASSD. The reason is that polyp lesions
generally show a highly similar appearance as the surrounding
tissues, and the inter-site prediction inconsistencies majorly
locate in the ambiguous boundaries. IGC can distinguish
the inconsistencies and make full use of this information to
enhance predictions.

Fig. 6. Test IoU scores changing with the communication rounds on
the EndoPolyp dataset using different backbones under FedAVG [9]
algorithm (left) and FedRep [16] algorithm (right).

2) Self-attention Networks in Federated Segmentation: The
preliminary study has proved that self-attention backbones
inherently contain larger potentials in addressing the heteroge-
neous FL problems [27] while only considering natural image
classification tasks. To additionally verify this, we replace
PVT with ResNet backbones and analyze the learning pro-
cess regarding convergence and performance. The experiments
are conducted on EndoPolyp and we implement them on
two FL algorithms. The comparison results are illustrated
in Fig. 6, which show the outperforming performance of
self-attention networks with faster convergence speeds and
higher test scores. The results are proved consistently using
two FL programs, demonstrating that the architecture of self-
attention plays a key role in higher federated qualities. It is also
observed that increasing the depth and channel boosts accuracy
slightly. It further verifies the importance of architecture design
in FL, where self-attention scheme brings main improvements
compared with increasing parameters. The probable reason
could be the surprisingly good robustness of capturing long-
range dependency by Transformer, instead of the local contexts
by convolutional networks.

3) Long-range Dependency Personalization: Recent self-
attention networks catch the long-range dependency through
the qkv design, where q denotes each element’s special
features and k,v denote all elements’ shared clues. Hence,
our FedDP proposes to learn query embedding locally to per-
sonalize the long-range dependencies. To deeply analyze the
effectiveness of this proposal, firstly we visualize the learning
curves of our method with only LQ embedded and other
compared methods in Fig. 7. We then show the performance
of personalizing different self-attention parts in Fig. 8.

The learning curves of compared methods on two datasets
are shown in Fig. 7, where FedLC∗ and Local Query (ours)
denote the two methods exploring inter-site inconsistencies at
the stage of parallel training. Firstly, the curves clearly verify
that exploring the inconsistencies can improve the performance
regarding the final accuracy and convergence speed. For the
EndoPolyp dataset, LQ shows much faster convergence speed
and higher accuracy on Site C which has a small number of
samples. It supports that personalizing the query embedding
process of each site truly boosts the local learning quality
and enhances the segmentation accuracy of sites with limited
data. For the RIF dataset, the average score curve clearly
shows that LQ’s performance grows obviously faster than
the other methods, and of greater significance, LQ generates
consistently better segmentation results on all the sites.

For analyzing the effect of personalizing different parts in
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(a) Learning curves of compared methods on the EndoPolyp dataset.

(b)  Learning curves of compared methods on the RIF dataset.

Fig. 7. Test IoU scores versus the communication rounds of the average and each participated site (from left to right) on the (a) EndoPolyp dataset
and the (b) RIF dataset. To simplify the learning curves and make them clearer, we present the maximum score every ten rounds.

(a) Dice scores of different personalization. (b) ASSD scores of different personalization.(a) Dice scores of different personalization. (b) ASSD scores of different personalization.

Fig. 8. Quantitative comparison of personalizing different layers in the
self-attention networks on EndoPolyp dataset. q,k,v denote the query,
key, value embedding layers and qk denotes to personalize two types.

(a) Dice scores of the EndoPolyp dataset. (b) Dice scores of the RIF dataset.

Fig. 9. Quantitative comparison of different λ on two datasets. The
white circles denote the averaged Dice scores.

qkv, the results in Fig. 8 clearly show that personalizing the
query embedding layers is the most effective alternative on
both metrics. Personalizing both query and key embeddings is
the worst choice since it reduces too much parameter commu-
nication and thus gathers limited knowledge across sites. It is
also seen that personalizing value embedding layers have poor
performance since they denote the general context modeling
ability better to be shared by all sites. As for the comparison
of personalizing key embedding or query embedding layers, it
is found that the IoU performances of the two alternatives are
extremely close. The reason may be that during the calculation
of qk similarity matrix process (Eq. 2), personalizing q could
be equal to personalizing k. For the intuitive consideration that
q denotes each element’s specific features while k denotes the
shared features, we propose to locally personalize the query
embedding instead of the key embedding.

Fig. 10. Effect analysis of integrating IGC to other PFL methods, i.e.,
IOP-FL [19] and FedBABU [17]. The original (No Calib.) and calibrated
results on EndoPolyp dataset are presented.

4) Inter-site Inconsistencies: IGC proposes to strengthen the
supervision of regions with larger prediction inconsistencies.
In order to balance the normal segmentation supervision (Lseg)
and auxiliary inconsistency-guided supervision (Laux), the
combined loss objective utilizes the hype-parameter λ to
control the weight. Theoretically, the larger λ lets models
concentrate more on the inter-site inconsistencies and ignore
fitting the ground truths to some degree. Hence, we vary
this trade-off weight λ to study the effects by setting λ ∈
{0, 0.1, 1, 10}. The detailed Dice scores of two datasets are
shown in Fig. 9, where we highlight the averaged scores
using white circles. We can observe that the models with
λ ∈ {0.1, 1, 10} outperform the model with λ = 0, indicating
that exploring inter-site inconsistencies is always beneficial
to the local accuracy improvement. It is also found that
model performance decreases when increasing λ from 1 to
10, verifying that too large λ negatively affects model learning
with less optimization from pure segmentation loss.

Moreover, our IGC algorithm can be feasibly incorporated
into other PFL methods to improve their performance. Hence,
we conduct experiments to study the effects when apply-
ing IGC to refine the local models learned by other PFL
algorithms, i.e., IOP-FL and FedBABU. The results on the
EndoPolyp dataset are shown in Fig. 10. It is found that
only using normal segmentation supervision for calibration
(λ = 0) enhances the segmentation in all situations, while
our IGC attains obviously larger improvements. Especially in
our method, since LQ can encourage local models to learn
more discriminative long-range dependencies to yield better-
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TABLE IV
GENERALIZATION ANALYSIS ON UNSEEN DATA OF POLYP LESIONS. THE

BEST DICE (↑ ) AND ASSD (↓) SCORES ARE HIGHLIGHTED IN BOLD.

Model Dice (%) ↑

A B C D Ensemble
FedAVG [9] 71.24 70.93 70.81 71.84 72.10
IOP-FL [19] 71.21 71.52 71.68 72.53 72.52

FedBABU [17] 71.34 71.23 71.57 72.00 72.29
FedLC [5] 72.27 72.53 72.85 72.90 72.93

FedDP (Ours) 70.95 71.37 68.84 71.38 73.09

TABLE V
COMPUTATION AND TRANSMISSION EFFICIENCY ANALYSIS OF OUR

METHOD AND SELECTED COMPARED METHODS.

Model Train
Time

Finetune
Time

Infer.
Time

Transmission
(Joint, Local)

FedAVG 30 min 0 min 17.79 ms (∼8400 MB, 0)
FedLC 30 min 3 min 18.92 ms (∼8400 MB, 128 KB)
FedDP 30 min 3 min 17.79 ms (∼8400 MB, 1.68 KB)

personalized features in the first learning stage, IGC can
compute more valuable inconsistency knowledge to improve
prediction personalization.

E. Extensive Analysis
In this part, we further study the generalization ability

on unseen data sites and the computation and transmission
efficiency of FedDP.

1) Generalization on Unseen Sites: As a personalized learn-
ing method, FedDP mainly aims to improve the personalized
performance of the data sites participating in the federated
learning framework, hence it builds a unique local model for
each site and it is inevitable that there may be deviations in
fitting to other unseen distributions. To quantify the generaliza-
tion effects, we further collect a data site from Polyp-Gen [54]
(C1, 251 images from Ambroise Paré Hospital, Paris, France)
and assess the segmentation performance of the local models
trained by FedAVG and different PFL methods. Table IV has
shown the results where ”A-D” represents the local model
from Site ”A” to ”D” and ”Ensemble” denotes the ensemble
results of four local models. Since the local model has been
shifted to adapt its local distribution, FedDP does not perform
well when using the single local model. However, as the
model ensemble method reduces the personalization effects
and represents more segmentation ability, FedDP has achieved
the best performance in the end, indicating its powerful and
generalizable knowledge in target segmentation.

2) Efficiency Analysis: We compare the computation and
transmission costs in this part to indicate the advanced ef-
ficiency of FedDP in Table V. It shows the training time,
fine-tuning time, inference time, and the transmission costs
at parallel training and local finetuning on the EndoPolyp
dataset. Regarding computation efficiency, FedDP does not
introduce any extra layers so that the inference time per image
is the same as FedAVG (17.79 ms). However, the other method
which explores inter-site inconsistencies costs more inference
time (18.92 ms) since it models the inconsistencies through
extra layers rather than the extra supervision loss in this work.
As for the transmission costs, all methods nearly require the
same transmission load of 8400 MB at the stage of parallel

training since the personalized layers (1.6 KB in FedLC and
0.42 KB in FedDP) cover a little compared to the entire model
parameters (21 MB). At the stage of local fine-tuning, since
FedLC still requires the personalized layers of other sites at
each training epoch, its transmission costs are much higher
than FedDP, which needs the transmission only once. We also
present the training and finetuning time which shows that our
method spends a little more training time but gains valuable
performance improvements.

V. DISCUSSION

Distribution variance widely exists in real-world multi-
center resources, resulting in hard convergence and poor local
performance in the GFL process. The latest researches focus
on the PFL designs, allowing each participating site to save lo-
cal parameters that can fit the local distribution. Nevertheless,
these studies only handle the personalization of convolutional
networks, ignoring the accessibility of self-attention networks.
Naturally, personalized long-range dependency modeling for
self-attention networks is essential, while it has not been
explored in previous methods. To this end, our FedDP pro-
poses LQ which decouples the query embedding layers out
of the self-attention networks and saves them locally to make
each local model obtain its personalized long-range modeling
custom. FedDP further proposes IGC to improve prediction-
level personalization. By exploring inter-site prediction-level
inconsistencies, IGC integrates this inconsistency-based infor-
mation into the supervision and enlarges the objectives of
pixels with large inconsistencies. It facilitates local models
to learn the unique prediction patterns in respective sites.

Exploring inter-site inconsistencies is exactly useful as
pointed out in the previous study [5], while it suffers from
heavy transmission loads. In [5], each site must obtain other
sites’ parameters to calculate inconsistencies in each com-
munication round during federation. Transmission loads shall
continue increasing dramatically when the site number en-
larges. Instead, we compute inconsistencies using well-trained
models, therefore, only require one-time communication in
IGC after the first learning stage. As model parameters have
been well-learned at this moment, representative inconsistency
knowledge can be attained to provide precise guidance.

Considering the inter-site inconsistencies in the model learn-
ing attracts large interest in the medical domain [5], [28]
owing to the special characteristics of medical data. However,
most prior studies incorporate the inconsistencies into the
model learning process through an extra feature-enhancing
module, i.e, an inconsistency-guided attention gate [5], [28].
This is indeed helpful to refine the features but inevitably leads
to more computation at the inference time. We propose to
leverage inconsistencies in a computation-free manner during
the inference, where the inter-site inconsistency information
is integrated into the model training loss, re-weighting penal-
ization for different pixels. Therefore, no extra computational
cost is needed at the inference.

The generalization ability on unseen data sites is a valuable
question to be discussed when forming a multi-site training
framework. Similar to other personalized learning methods,
FedDP focuses on improving the personalized performance of
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each site and hence ignores the performance effects on the
possible unseen data sites. On the other hand, when new sites
are participating in the federated learning process or attempt-
ing to use the trained model, various methods (i.e., continuous
learning, fine-tuning, and ensembling of personalized models)
can be used to enhance the segmentation performance on these
new data distributions. To make this paper more focused on
personalized performance improvements, we will study the
generalizable federated learning method in future work.

The varying number of data leads to the aggregation prob-
lem in general federated learning. This problem is mainly due
to the different convergence speeds that the model trained
on the fewer and easier data converges faster. To address
this issue, there are typical strategies such as re-weighting
the parameter aggregation by sample numbers or augmenting
the data from sites with fewer samples [55]. Nevertheless,
personalization encourages each local model to fit its own
distribution using the local parameters, which helps avoid the
negative effects of varying sample numbers of other sites.

One limitation in our method and also other PFL methods
is that local personalization and global knowledge communi-
cation cannot be satisfied simultaneously. Many studies have
verified that personalizing partial parameters does enhance
local accuracy [14], [16], [17], while personalizing excessive
parameters leads to inferior performance, such as personaliz-
ing all parameters. Therefore, it is important to control the
weight between local personalization and global knowledge
interaction. We plan to explore how to automatically adjust
the portion of shared parameters, to maximize the information
of local specialty and global universality in future work.

FedDP formulates the inconsistencies mainly regarding the
spatial features and predictions since the segmentation per-
formance relies on spatial perception. When applied to some
tasks that are not sensitive to spatial knowledge, FedDP could
be integrated with the channel-based methods, e.g., channel
selection in FedLC, to improve the personalization ability.
When processing volumetric data using 3D networks, FedDP
can be easily modified to explore the 3D inconsistencies by
personalizing 3D query embedding layers and calculating 3D
prediction inconsistencies. As for multi-modal data, it intro-
duces more intra-modal inconsistencies rather than inter-site
inconsistencies. Leveraging the advanced modality-adaptive
processing strategies in FedDP could be useful.

VI. CONCLUSION

This paper presents a novel personalized federated learning
framework consisting of the long-range dependency person-
alization and prediction personalization, named as FedDP.
It first introduces the self-attention network to the federated
segmentation area and extensively improves the local perfor-
mance through dual personalization. The long-range depen-
dency personalization is achieved by the local query which
decouples the query embedding layers out of the cross-site
communication since queries denote the specialized features
of each element. The inconsistency-guided calibration is
proposed to explore the inconsistencies between different local
models’ predictions and use the inter-site inconsistencies to

guide the local supervision. Briefly, the supervision is modified
by adding an auxiliary objective that enlarges the attention
of pixels with large inconsistencies. The effectiveness of our
method is well verified on two medical image segmentation
tasks with detailed ablation analysis. Besides the accuracy
improvement, our method has large potential in practical
application thanks to its cost-effective design.

VII. ACKNOWLEDGEMENT

This work is supported by the Ministry of Science and
Technology of the People’s Republic of China under grant
No. 2021ZD0201900 and 2021ZD0201904, and supported by
WEISS [203145/Z/16/Z]; and Horizon 2020 FET (863146).
For the purpose of open access, the author has applied a CC
BY public copyright licence to any author accepted manuscript
version arising from this submission.

REFERENCES

[1] N. Rieke, J. Hancox, W. Li, F. Milletari, H. R. Roth, S. Albarqouni,
S. Bakas, M. N. Galtier, B. A. Landman, K. Maier-Hein et al., “The
future of digital health with federated learning,” NPJ digital medicine,
vol. 3, no. 1, pp. 1–7, 2020.

[2] G. A. Kaissis, M. R. Makowski, D. Rückert, and R. F. Braren, “Secure,
privacy-preserving and federated machine learning in medical imaging,”
Nature Machine Intelligence, vol. 2, no. 6, pp. 305–311, 2020.

[3] W. Li, F. Milletarı̀, D. Xu, N. Rieke, J. Hancox, W. Zhu, M. Baust,
Y. Cheng, S. Ourselin, M. J. Cardoso et al., “Privacy-preserving feder-
ated brain tumour segmentation,” in Machine Learning in Medical Imag-
ing: 10th International Workshop, MLMI 2019, Held in Conjunction
with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings
10. Springer, 2019, pp. 133–141.

[4] S. Pati, U. Baid, M. Zenk, B. Edwards, M. Sheller, G. A. Reina,
P. Foley, A. Gruzdev, J. Martin, S. Albarqouni et al., “The federated
tumor segmentation (fets) challenge,” arXiv preprint arXiv:2105.05874,
2021.

[5] J. Wang, Y. Jin, and L. Wang, “Personalizing federated medical image
segmentation via local calibration,” in Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXI. Springer, 2022, pp. 456–472.

[6] H. R. Roth, D. Yang, W. Li, A. Myronenko, W. Zhu, Z. Xu, X. Wang,
and D. Xu, “Federated whole prostate segmentation in mri with person-
alized neural architectures,” in Medical Image Computing and Computer
Assisted Intervention–MICCAI 2021: 24th International Conference,
Strasbourg, France, September 27–October 1, 2021, Proceedings, Part
III 24. Springer, 2021, pp. 357–366.

[7] X. Xu and P. Yan, “Federated multi-organ segmentation with partially
labeled data,” arXiv preprint arXiv:2206.07156, 2022.

[8] P. Liu, M. Sun, and S. K. Zhou, “Multi-site organ segmentation
with federated partial supervision and site adaptation,” arXiv preprint
arXiv:2302.03911, 2023.

[9] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[10] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[11] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated
learning,” IEEE Transactions on Neural Networks and Learning Systems,
2022.

[12] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in International
Conference on Machine Learning. PMLR, 2018, pp. 5650–5659.

[13] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really
backdoor federated learning?” arXiv preprint arXiv:1911.07963, 2019.

[14] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou, “Fedbn: Feder-
ated learning on non-iid features via local batch normalization,” arXiv
preprint arXiv:2102.07623, 2021.

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2023.3299206

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on August 15,2023 at 18:48:36 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

[15] Z. Chen, M. Zhu, C. Yang, and Y. Yuan, “Personalized retrogress-
resilient framework for real-world medical federated learning,” in In-
ternational Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2021, pp. 347–356.

[16] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting
shared representations for personalized federated learning,” in Interna-
tional Conference on Machine Learning. PMLR, 2021, pp. 2089–2099.

[17] J. Oh, S. Kim, and S.-Y. Yun, “Fedbabu: Towards enhanced
representation for federated image classification,” arXiv preprint
arXiv:2106.06042, 2021.

[18] T. Li, S. Hu, A. Beirami, and V. Smith, “Ditto: Fair and robust
federated learning through personalization,” in International Conference
on Machine Learning. PMLR, 2021, pp. 6357–6368.

[19] M. Jiang, H. Yang, C. Cheng, and Q. Dou, “Iop-fl: Inside-outside per-
sonalization for federated medical image segmentation,” arXiv preprint
arXiv:2204.08467, 2022.

[20] H.-Y. Zhou, J. Guo, Y. Zhang, L. Yu, L. Wang, and Y. Yu, “nnformer:
Interleaved transformer for volumetric segmentation,” arXiv preprint
arXiv:2109.03201, 2021.

[21] J. Wang, L. Wei, L. Wang, Q. Zhou, L. Zhu, and J. Qin, “Boundary-
aware transformers for skin lesion segmentation,” in International Con-
ference on Medical Image Computing and Computer-Assisted Interven-
tion. Springer, 2021, pp. 206–216.

[22] B. Dong, W. Wang, D.-P. Fan, J. Li, H. Fu, and L. Shao, “Polyp-pvt:
Polyp segmentation with pyramid vision transformers,” arXiv preprint
arXiv:2108.06932, 2021.

[23] F. Shamshad, S. Khan, S. W. Zamir, M. H. Khan, M. Hayat, F. S. Khan,
and H. Fu, “Transformers in medical imaging: A survey,” arXiv preprint
arXiv:2201.09873, 2022.

[24] J. Wang, F. Chen, Y. Ma, L. Wang, Z. Fei, J. Shuai, X. Tang, Q. Zhou,
and J. Qin, “Xbound-former: Toward cross-scale boundary modeling in
transformers,” IEEE Transactions on Medical Imaging, 2023.

[25] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[26] R. Hu and A. Singh, “Unit: Multimodal multitask learning with a unified
transformer,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 1439–1449.

[27] L. Qu, Y. Zhou, P. P. Liang, Y. Xia, F. Wang, E. Adeli, L. Fei-
Fei, and D. Rubin, “Rethinking architecture design for tackling data
heterogeneity in federated learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
10 061–10 071.

[28] W. Ji, S. Yu, J. Wu, K. Ma, C. Bian, Q. Bi, J. Li, H. Liu, L. Cheng, and
Y. Zheng, “Learning calibrated medical image segmentation via multi-
rater agreement modeling,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 12 341–12 351.

[29] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[30] T. Yu, E. Bagdasaryan, and V. Shmatikov, “Salvaging federated learning
by local adaptation,” arXiv preprint arXiv:2002.04758, 2020.

[31] L. Zhang, L. Shen, L. Ding, D. Tao, and L.-Y. Duan, “Fine-tuning
global model via data-free knowledge distillation for non-iid federated
learning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 10 174–10 183.

[32] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning with theoretical guarantees: A model-agnostic meta-learning
approach,” Advances in Neural Information Processing Systems, vol. 33,
pp. 3557–3568, 2020.

[33] D. Yao, W. Pan, Y. Dai, Y. Wan, X. Ding, H. Jin, Z. Xu, and L. Sun,
“Local-global knowledge distillation in heterogeneous federated learning
with non-iid data,” arXiv preprint arXiv:2107.00051, 2021.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[35] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[36] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 10 012–10 022.

[37] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo,
and L. Shao, “Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 568–578.

[38] H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu,
C. Xu, and W. Gao, “Pre-trained image processing transformer,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 12 299–12 310.

[39] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng,
T. Xiang, P. H. Torr et al., “Rethinking semantic segmentation from a
sequence-to-sequence perspective with transformers,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2021, pp. 6881–6890.

[40] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European conference on computer vision. Springer, 2020, pp. 213–
229.

[41] Z. Dai, B. Cai, Y. Lin, and J. Chen, “Up-detr: Unsupervised pre-training
for object detection with transformers,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021, pp. 1601–
1610.

[42] Y. Xie, J. Zhang, C. Shen, and Y. Xia, “Cotr: Efficiently bridging cnn
and transformer for 3d medical image segmentation,” in Medical Image
Computing and Computer Assisted Intervention–MICCAI 2021: 24th
International Conference, Strasbourg, France, September 27–October
1, 2021, Proceedings, Part III 24. Springer, 2021, pp. 171–180.

[43] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[44] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and
L. Shao, “Pvt v2: Improved baselines with pyramid vision transformer,”
Computational Visual Media, vol. 8, no. 3, pp. 415–424, 2022.

[45] K. Wang, R. Mathews, C. Kiddon, H. Eichner, F. Beaufays, and
D. Ramage, “Federated evaluation of on-device personalization,” arXiv
preprint arXiv:1910.10252, 2019.

[46] J. Bernal, J. Sánchez, and F. Vilarino, “Towards automatic polyp
detection with a polyp appearance model,” Pattern Recognition, vol. 45,
no. 9, pp. 3166–3182, 2012.

[47] J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward
embedded detection of polyps in wce images for early diagnosis of
colorectal cancer,” International journal of computer assisted radiology
and surgery, vol. 9, no. 2, pp. 283–293, 2014.

[48] J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodrı́guez,
and F. Vilariño, “Wm-dova maps for accurate polyp highlighting in
colonoscopy: Validation vs. saliency maps from physicians,” Comput-
erized Medical Imaging and Graphics, vol. 43, pp. 99–111, 2015.

[49] D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. de Lange, D. Jo-
hansen, and H. D. Johansen, “Kvasir-seg: A segmented polyp dataset,”
in International Conference on Multimedia Modeling. Springer, 2020,
pp. 451–462.

[50] Q. Liu, C. Chen, J. Qin, Q. Dou, and P.-A. Heng, “Feddg: Federated do-
main generalization on medical image segmentation via episodic learn-
ing in continuous frequency space,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
1013–1023.

[51] F. J. F. Batista, T. Diaz-Aleman, J. Sigut, S. Alayon, R. Arnay,
and D. Angel-Pereira, “Rim-one dl: A unified retinal image database
for assessing glaucoma using deep learning,” Image Analysis &
Stereology, vol. 39, no. 3, pp. 161–167, 2020. [Online]. Available:
https://www.ias-iss.org/ojs/IAS/article/view/2346

[52] J. I. Orlando, H. Fu, J. B. Breda, K. van Keer, D. R. Bathula, A. Diaz-
Pinto, R. Fang, P.-A. Heng, J. Kim, J. Lee et al., “Refuge challenge:
A unified framework for evaluating automated methods for glaucoma
assessment from fundus photographs,” Medical image analysis, vol. 59,
p. 101570, 2020.

[53] J. Sivaswamy, S. Krishnadas, A. Chakravarty, G. Joshi, A. S. Tabish
et al., “A comprehensive retinal image dataset for the assessment of
glaucoma from the optic nerve head analysis,” JSM Biomedical Imaging
Data Papers, vol. 2, no. 1, p. 1004, 2015.

[54] S. Ali, D. Jha, N. Ghatwary, S. Realdon, R. Cannizzaro, O. E. Salem,
D. Lamarque, C. Daul, M. A. Riegler, K. V. Anonsen et al., “A multi-
centre polyp detection and segmentation dataset for generalisability
assessment,” Scientific Data, vol. 10, no. 1, p. 75, 2023.

[55] M. Duan, D. Liu, X. Chen, R. Liu, Y. Tan, and L. Liang, “Self-balancing
federated learning with global imbalanced data in mobile systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp. 59–
71, 2020.

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2023.3299206

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on August 15,2023 at 18:48:36 UTC from IEEE Xplore.  Restrictions apply. 


