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Influence of tracking duration on the privacy of individual 
mobility graphs
Nina Wiedemanna*, Henry Martina,b*, Esra Suela,c, Ye Honga and Yanan Xina

aInstitute of Cartography and Geoinformation, ETH Zurich, Zurich, Switzerland; bInstitute of Advanced 
Research in Artificial Intelligence (IARAI), Vienna, Austria; cCenter for Advanced Spatial Analysis, 
University College London, London, UK

ABSTRACT
Location graphs, compact representations of human mobility 
without geocoordinates, can be used to personalise location- 
based services. While they are more privacy-preserving than 
raw tracking data, it was shown that they still hold 
a considerable risk for users to be re-identified solely by the 
graph topology. However, it is unclear how this risk depends 
on the tracking duration. Here, we consider a scenario where 
the attacker wants to match the new tracking data of a user to 
a pool of previously recorded mobility profiles, and we analyse 
the dependence of the re-identification performance on the 
tracking duration. We find that the re-identification accuracy 
varies between 0.41% and 20.97% and is affected by both the 
pool duration and the test-user tracking duration, it is greater 
if both have the same duration, and it is not significantly 
affected by socio-demographics such as age or gender, but 
can to some extent be explained by different mobility and 
graph features. Overall, the influence of tracking duration on 
user privacy has clear implications for data collection and 
storage strategies. We advise data collectors to limit the track-
ing duration or to reset user IDs regularly when storing long- 
term tracking data.
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1. Introduction and background

Companies are increasingly gathering and using spatio-temporal location 
data from personal mobile devices. User location data have substantially 
improved location-based services (LBS) and personalised offers (Keßler and 
McKenzie 2018). However, detailed mobility traces collected from individuals 
may contain sensitive personal data associated with high privacy risks 
(Banerjee 2019; Primault et al. 2018). A particular concern is the increasing 
integration of user data from different sources (Thompson and Warzel 2019), 
enabling companies to build more detailed and complete user profiles 
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(Melendez and Pasternack 2019). Therefore, identifiability (and matching) of 
individuals from different datasets is a critical dimension of data privacy risk 
(Keßler and McKenzie 2018).

Previous studies showed that removing basic identity information from 
mobility traces is insufficient in this context, as users can be re-identified 
using the information on frequently visited locations (De Montjoye et al. 2013; 
De Mulder et al. 2008; Gambs, Killijian, and Del Prado Cortez 2014; Golle and 
Partridge 2009; Rossi, Walker, and Musolesi 2015; Zang and Bolot 2011). One 
solution proposed in the literature is to obscure the geographic coordinates to 
guarantee ε-differential privacy (Andrés et al. 2013; Duckham and Kulik 2005; 
Haydari et al. 2021; Wang et al. 2017) or k-anonymity (Charleux and Schofield  
2020; Gruteser and Grunwald 2003; Shokri et al. 2010; Sweeney 2002). For 
reviews of geoprivacy attacks and protection methods, we refer readers to 
Kounadi et al. (2018) and Fiore et al. (2020). Nevertheless, location obfuscation 
and related methods only provide limited privacy protection. For example, Tong 
et al. (2022) extend the notion of ‘location uniqueness’ to ‘trajectory uniqueness’ 
and show that full trajectories may be exploited for improving re-identification, 
and Zhen et al. (2019) argue that k-anonymity does not protect from a semantic 
inference about visited locations.

Another promising possibility for privacy-preserving storage and processing 
of individual tracking data is given with so-called location graphs or mobility 
networks (Raubal, Bucher, and Martin 2021; Rinzivillo et al. 2014). In these 
graphs, nodes represent visited locations and edge weights correspond to the 
number of observed movements between these locations. Graph representa-
tions offer several benefits: 1) they can be enriched with node and edge features 
based on the application needs, 2) they are compact and grow sub-linearly in 
size with increasing tracking duration, 3) they still provide rich insight into 
mobility behaviour despite their compactness (Martin et al. 2023; Rinzivillo 
et al. 2014; Wiedemann, Martin, and Raubal 2022) and can be analysed effi-
ciently with graph neural networks for various applications such as activity 
purpose imputation (Martin et al. 2018).

However, the privacy and unique identifiability properties of individual 
mobility graphs are not well understood. Recently, Manousakas et al. (2018) 
showed that the graph topology of personalised mobility graphs, even 
when all coordinate and time stamp information is removed from its 
nodes, is often uniquely identifiable. In this paper, we build upon their 
work and aim to understand the dependency of privacy preservation on 
tracking duration. Intuitively, location graphs over short periods contain 
less information about users and may reduce the risk of deanonymization. 
To investigate this possibility, we divide a tracking dataset of 137 users into 
distinct periods of different durations and analyse attack scenarios where 
a new location graph is matched to a pool of location graphs of known 
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users. Our experiments indeed show that matching performance depends 
on the tracking duration of both pool data and new data; however, there is 
a considerable re-identification risk even with just a few weeks of tracking 
duration.

2. Materials and methods

2.1. Data and preprocessing

We analyse the time dependency of topology privacy on a high-quality tracking 
dataset, collected through the SBB Green Class 1 tracking study (Martin et al.  
2019). The study was conducted by the Swiss Federal Railways (SBB) to evaluate 
the impact of a mobility-as-a-service offer on individuals’ travel behaviour. Study 
participants are predominantly male with above-average income. All study 
participants were tracked over a full year using an application installed on 
their phone that segments tracking data into stationary periods called stay-
points, labelled with activity purpose, and movement behaviour called triplegs, 
labelled with transport modes. All preprocessing is done in Python and 
PostgreSQL using the Trackintel movement data processing library (Martin 
et al. 2023). The staypoints are clustered into locations with the DBSCAN algo-
rithm with the parameter ε ¼ 30m, and a minimum number of one point per 
cluster, i.e. each staypoint is assigned to a location. The Trackintel library merges 
consecutive staypoints and triplegs into trips as long as they are not interrupted 
by an activity (staypoints with duration >25 min or labelled with a purpose other 
than wait and unknown) or by a temporal gap (here 25 minutes). Finally, when 
constructing the graph, we filter out users with low tracking coverage during 
the selected time period. The users are required to have a tracking coverage of 
at least 70% in at least one-third of the days. In our experiments, this leads to 
a varying number of 132–137 users depending on the time periods used.

Based on the sequence of locations and trips of a user, we construct the 
individual location graph (or mobility network) as described by Manousakas 
et al. (2018): In the graph GðV; EÞ, each location is one node, and each trip 
between two locations increases the weight of the directed edge by one. The 
edge weight wðeÞ thus corresponds to the number of transitions during the 
observation period. To analyse the impact of different tracking periods, we build 
the graphs on subsets of the dataset that are created by binning the dataset into 
non-overlapping time periods of 1, 2, 4, 8, 16, 20, 24, and 28 weeks (see Figure 1).

Furthermore, we use the SBB Green Class 2 study (Martin et al. 2019), which 
was a smaller follow-up study where 50 different participants were tracked 
under similar conditions for a full year directly after the Green Class 1 study. 
The data is processed in the same way as the Green Class 1 data, but due to the 
lower number of users, we will only use this dataset to validate our results in 
section 3.2, section 3.3 and section 3.4.
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2.2. Feature based graph matching

Graph matching describes the problem of either identifying if two graphs 
are isomorphic (exact graph matching) or identifying the best match from 
a set of candidate graphs (inexact graph matching) (Riesen, Jiang, and 
Bunke 2010). The exact solutions for both problems are computationally 
intractable, therefore we rely on heuristics to accomplish inexact graph 
matching. Related works have proposed so-called R-convolution graph 
kernels (Haussler 1999) that measure the difference between two graphs 
in terms of counts of certain substructures, such as paths. Similarly, we 
compare the distributions of selected graph features to approximate the 
graph similarity. We represent each graph in a fixed-size vector vðGÞ that 
expresses graph characteristics, e.g., the distribution of node in-degrees. 
Two graphs G1 and G2 are compared in terms of the distance between their 
vector representations, dðvðG1Þ; vðG2ÞÞ. As distance metrics d, we test 

Figure 1. Experimental setup: The tracking data, comprising 56 weeks, are split into non- 
overlapping bins of varying duration. In the attack scenario, new tracking data from one period 
is matched to a pool of users at a previous time period. In example 1) the test data of four weeks 
length can be compared to the pool in the preceding 1, 2, 4 and 8 weeks. In the second example 
(marked as 2), a test user with tracking data from the second 24-week period is matched to 
users from all directly preceding tracking data, which includes one from each tracking duration 
except for 28 weeks.
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a simple Mean Squared Error (MSE), Kullback-Leibler divergence, and 
Wasserstein distance.

We experiment with five vector-based graph representations vðGÞ:

● vindegree: Distribution of (unweighted) node in-degrees, i.e., the number of 
connections of one location to other locations. The distribution of in- 
degrees over the 20 most popular locations is used.

● voutdegree: Similar to the in-degree, the distribution of out-degrees over the 
20 locations with the highest out-degree is computed.

● vtransition: The distribution of transition weights over the 20 most popular 
trips. Intuitively, some users commute between very few locations more 
frequently than other locations, whereas some users transit more evenly 
among locations (Pappalardo et al. 2015).

● vshortest path: The distribution of shortest-path lengths in the graph. All-pairs 
shortest paths were computed with the Floyd-Warshall algorithm (Floyd  
1962; Warshall 1962). The ratio of shortest paths with length x for x � 10 is 
reported in vshortest path.

● vcentrality : The betweenness centrality (Freeman 1977) of a node denotes its 
centrality in terms of network hops with respect to other nodes, which is 
bounded between 0 and 1. Since many nodes have low centrality in 
mobility graphs, we construct 10 bins from 0 to 1 in log space and report 
the number of nodes per centrality bin.

Finally, we concatenate all five graph descriptors into one combined vec-
tor vcomb.

2.3. Experiment design

We analyse the following privacy attack scenario: The adversary is a data broker 
with access to a pool of users and their tracking data. The attacker then gets 
access to additional tracking data of a test user, which she wants to match to the 
correct user in the pool to create a combined user profile. All tracking data are 
represented as weighted and directed individual location graphs without node 
or edge features such as coordinates. In the following, we define upool

i ði 2 ½1::n�Þ
as the i-th user in a pool of n users, and utest

j ðj 2 ½1::m�Þ as a user of the test 

dataset, Dtest ¼ futest
j g. Let Gpool

i and Gtest
j further denote the corresponding 

location graphs.
The adversary now aims to find the best match out of the pool users for 

each test user utest
j . This is accomplished by computing the distance of the 

graph descriptors presented in section 2.2. The pairwise distances from a test 

user to all users of the pool are computed as dðvðGtest
j Þ; vðGpool

i ÞÞ and the pool 

users are ranked according to their distances. As a result, we obtain the rank 
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assigned to the true match of a user in the pool. In other words, we are only 
interested in the rank that was assigned to the user in the pool that 

corresponds to the test user (upool
i ¼ utest

j ) and the assigned rank rj ¼ rðutest
j Þ

means that this user had the rj-highest similarity to herself compared to all 
other users in the pool.

To obtain statistically robust results, we evaluate the scenario on all possible 
tracking period combinations for the pool and the test user. Figure 1 gives an 
overview of the experimental setup and demonstrates that the tracking period 
combinations are not unique. For example, for our total tracking time of 56  
weeks, there are 14 distinct 4-week periods and 7 distinct 8-week periods. We do 
not evaluate all possible combinations (here 98) but regard only combinations 
where the test user is matched to the closest, directly preceding tracking period 
in the pool. This choice of valid pool and test user pairs is exemplified by the 
black arrows in Figure 1. In section 3.6, we additionally consider periods that are 
not directly successive in order to understand the effect of temporal gaps 
between the pool and test user.

For every valid time bin combination for a given combination of tracking 
periods, we match every available test user to the users from the pool and 
evaluate the matching success using the metrics introduced below. All code for 
the experiments is publicly available1, however, we can not publish the tracking 
dataset to protect the privacy of the study participants.

2.4. Metrics for re-identification performance

To evaluate the success of the matching attack, we employ two metrics: the top- 
k matching performance and the mean reciprocal rank (MRR). Both rely on the 
rank assigned to the true match of a test user in the pool as introduced 
above, rðutest

j Þ.
We then report the top-k matching performance in one set of test users 

Dtest as 

AccðDtest; kÞ ¼
1
jDtestj

X

uj2Dtest

1frðutest
j Þ � kg:

This considers a match as successful if the true match of the test user is among 
the top-k closest users in the pool.

Furthermore, we use the MRR as a second evaluation metric, defined as the 
average of the inverse of the ranks in a test dataset. It is a common metric in 
information retrieval and re-identification tasks (Craswell 2009). The MRR of 
a test set is 

MRRðDtestÞ ¼
1
m

X

uj2Dtest

1
rðutest

j Þ
:
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The MRR can be interpreted as the harmonic mean of the ranks, with the 
property that good matches (high rank) have a much higher influence than 
bad matches (low rank).

3. Results and discussion

We run the experiment described in section 2.3 for all combinations of 
tracking periods and consecutive start times, resulting in 827 combinations. 
For each of these combinations, we attempt a matching for every user 
available in the dataset, which results in over 13 million user-to-user compar-
isons (Green Class 1). We find that the best matching performance is 
achieved with the combined graph descriptor vcomb and the mean squared 
error (MSE) as the similarity metric d. See Table 2 and section 3.2 for more 
details on this choice.

In the following, we report the MRR and top-k matching accuracy for each 
combination of the pool- and test-user tracking duration. We report the average 
result and the standard deviation if several accuracy results for a tracking period 
combination are obtained (due to multiple time bin combinations).

3.1. Effect of tracking period on re-identification performance

Figure 2 shows the average matching performance and the standard deviation 
for all duration combinations of the pool and the test users. All metrics show 
a significant dependency on both the duration of the pool and the duration of 
the test user data. This result implies that privacy-friendly applications should be 
designed such that their tracking duration is as short as possible. This is 
especially true when new tracking data is to be collected because a privacy- 
concerned person does not have control over the duration of the pool in our 
scenario, as the pool represents data already collected by a third party.

Furthermore, even for the shortest tracking duration that was tested (i.e., one 
week combined with one week), the re-identification capability of our simple 
matching strategy is substantially better than random (see Figure 2). A random 
rank assignment would result in a top-10 accuracy of 7.6%, compared to the 
accuracy of 19.4% from the shortest tracking duration. Thus, the graph repre-
sentation, even without any additional context or coordinate information, is not 
anonymous, which is in line with the conclusion reported from Manousakas et 
al. (2018).

We further analysed the importance of the pool duration, the test user 
duration, and the difference between their durations, using linear regres-
sion with the duration as the independent variable and the average 
performance as the dependent variable. The resulting coefficients are 
shown in Table 1. While both duration variables positively impact the 
performance, the influence of test duration is slightly stronger. For every 
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additional week of test tracking duration, the top-10 identification accu-
racy increases by 1.06% on average. As the pool is not under the user’s 
control, a potential solution to minimise the privacy risk is to require data 
brokers to reset user IDs after a specific tracking period. Notably, Table 1 
also reveals a major effect from the similarity of pool and test tracking 
duration, corresponding to the strong performance on the diagonals in 
Figure 2. This can be explained by the higher similarity of graphs con-
structed from the same tracking duration, making it easier to match the 
correct user.

For the interpretation of the results, it is important to note that the 
results with small bins are statistically more robust than those with large 
bin combinations because more bins are available. For several combina-
tions of large bins, only one trial was available; therefore, no standard 
deviation was reported, and no distinct time bins were available for the 
combination of 28 weeks pool duration and 24 weeks test tracking 
duration.

3.2. Ablation of approximate graph matching workflow

In section 2.2, we proposed several graph descriptors to calculate the 
distance between graphs. Table 2 lists the matching performance of differ-
ent graph features and distance functions. We note that the distance 
function does not strongly affect the matching performance. In contrast, 
the features result in very different re-identification abilities. The transition 
weight and in-degree distribution are the most useful features, whereas 
node centrality obtains low matching capability. Based on the results in 
Table 2, we chose the MSE of all features combined, as this performs best 
on average according to three out of four error metrics. While our focus is 
on the time-dependency of privacy preservation, future work could analyse 
the limits of re-identification of location graphs by using more complex 

Table 1. Regression analysis of the effect of the pool- and test-user tracking duration on the 
matching performance. Both positively affect the re-identification performance (=negative 
impact on privacy); however, the effect of the test duration is slightly higher. The matching 
performance is higher if the absolute difference between the pool and test user duration is low. 
All results are significant (p-values << 0.01).

test 
duration

pool 
duration

absolute difference between pool and test 
duration intercept

R2 
score

MRR 0.01 0.01 −0.01 0.09 0.90
1-Accuracy 0.41 0.43 −0.42 2.42 0.90
5-Accuracy 0.83 0.82 −0.87 10.89 0.89
10-Accuracy 1.06 0.97 −1.10 18.76 0.87

8 N. WIEDEMANN ET AL.



Figure 2. Dependency of matching performance on tracking duration. Top-k accuracy and MRR 
increase with both the tracking duration of the pool users as well as the test user.

Table 2. Matching performance of different combinations of features, distance functions, and 
evaluation metrics. The highest matching accuracy is achieved with an R-convolution kernel 
that computes the MSE between all graph-features distributions combined.

Recip. rank 1-Accuracy 5-Accuracy 10-Accuracy

Distance metric d vðGÞ Mean Max Mean Max Mean Max Mean Max

transition 0.10 0.19 3.92 9.60 13.19 28.46 21.73 40.80
in_degree 0.10 0.20 3.29 10.40 12.05 24.80 20.83 41.60

KL- out_degree 0.09 0.17 3.07 7.32 11.74 24.80 21.06 36.29
divergence shortest_path 0.07 0.11 1.77 4.13 7.45 14.52 13.59 26.61

centrality 0.04 0.06 0.79 2.02 4.14 8.06 8.52 15.32
combined 0.16 0.35 7.96 23.33 21.41 51.20 31.25 62.40
transition 0.10 0.19 3.89 9.24 12.98 28.00 21.80 41.60
in_degree 0.10 0.18 3.49 9.76 12.22 22.40 20.73 35.48
out_degree 0.09 0.16 2.76 6.61 11.48 25.60 20.52 39.20

MSE shortest_path 0.07 0.11 1.89 4.04 7.80 15.32 14.16 29.03
centrality 0.05 0.07 1.17 3.25 5.26 11.16 9.67 16.74
combined 0.17 0.34 8.40 20.97 22.36 46.40 32.73 64.00
transition 0.10 0.19 3.82 9.21 13.32 30.08 21.50 41.60
in_degree 0.10 0.19 3.38 10.40 12.18 25.60 20.96 36.00

Wasserstein out_degree 0.09 0.17 2.96 8.13 11.64 24.00 20.70 40.32
distance shortest_path 0.06 0.11 1.64 4.20 6.48 16.00 11.94 24.00

centrality 0.05 0.09 1.14 4.13 5.03 11.38 9.69 16.53
combined 0.15 0.36 7.14 24.00 19.71 52.80 28.94 61.60

Sum all metrics combined 0.16 0.36 8.07 22.50 21.81 52.80 31.67 62.40
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matching methods such as deep graph kernels (Yanardag and 
Vishwanathan 2015).

3.3. Validation of matching methodology based on related work and the 
Green Class 2 dataset

We first validate our results by conducting the same experiment on the Green 
Class 2 data described above. The full pool-user-duration matrices can be found 
in Figure A1 in Appendix A. The results show a similar dependency on pool and 
tracking duration, but, due to the lower number of users, the re-identification 
accuracy is generally higher (up to 82% top-10 accuracy) and the results are less 
stable.

We further compare our results on both datasets to the results reported by 
Manousakas et al. (2018). In their longitudinal study, Manousakas et al. (2018) 
split the tracking data user-wise into two parts at a random point in time, 
sampled uniformly between 30% and 70% of the whole period (around 
one year). The most comparable experiment from our study is the one where 
both the pool and the test duration are 28 weeks. Following the evaluation by 
Manousakas et al. (2018), we show the distribution of ranks and the ‘privacy loss’ 
in Figure 3. Although the absolute ranks are not informative due to the different 
pool sizes (132 users/27 users2 for our dataset versus 1500), the re-identification 
ability can be compared in terms of the shift of true rank. Specifically, the mean of 
the true rank is shifted from 62 (random) to 17.1 (informed adversary) for Green 
Class 1 and from 13 (random) to 7.6 (informed adversary) for Green Class 2, 
whereas the experiment in (Manousakas et al. 2018, p. 13) yields a shift from 750 

Figure 3. Evaluation of rank distribution and privacy loss as proposed by Manousakas et al. 
(2018).
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to 140. The study by Manousakas et al. (2018, p. 14) also reported a median 
privacy loss of 2.52 which means ‘the informed adversary can achieve a median 
deanonymization probability 3.52 times higher than an uninformed adversary’. In 
our experiments, the median privacy loss is 2.85 for the Green Class 1 data and 
1.31 for the Green Class 2 data. Overall, we reproduced the results successfully 
and extended their results with additional analysis of the impact of tracking 
durations.

3.4. Intra-user vs inter-user variability of re-identification performance

The main results of this study (Figure 2) are reported as average matching 
performance. We now further analyse the sources of variance of the matching 
performance by analysing the variance of the rank assigned to users during the 
matching. In particular, we aim to answer the following question: Is the variance 
due to strong differences between users (e.g., easy-to-match vs hard-to-match 
users), or due to a change in a user’s re-identification ability over time? To 
answer this question, we calculate the standard deviation between different 
users in the same timesteps (inter-user) and for the same user over several 
timesteps (intra-user).

Figure 4 shows that the inter-user standard deviation is consistently higher 
than the intra-user standard deviation for both datasets. This indicates the 
existence of user groups that are consistently hard or easy to match. 
Moreover, the intra-user standard deviation in general decreases as the tracking 
duration increases for both datasets, which can be explained by the higher 
stability of long-term location graphs.

Figure 4. Inter vs intra person variability of matching performance. The variance over users is 
higher than the variance over time bins. Intra-user variance decreases with growing tracking 
duration.
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3.5. Factors that explain re-identification performance

Given the high variance in the re-identification ability over users, we 
further analyse features that could drive the degree of recognition of 
a user. For this purpose, we compute features commonly used to describe 
individual mobility behaviour, such as the radius of gyration, the typical 
trip distances, and the entropy of location sequences (random and real 
entropy) (Song et al. 2010). Additionally, we compute graph features 
proposed by Martin et al. (2023), which describe the complexity and 
centeredness of the location graphs. Last, we regard socio-demographics 
extracted from surveys in the context of the Green Class 1 and Green Class 
2 studies, namely age, gender and whether the user subscribed to a public 
transport subscription in Switzerland (PT). Note that all features are com-
puted as a single value for all users since there is only one value per user 
for sociodemographics and classical mobility features. We use the average 
value over both 28-week bins for the graph features to describe the user’s 
stable graph topology.

In Table 3, the coefficients of a regression analysis with the above- 
presented features as independent variables and the normalised rank as 
the dependent variable are given. The normalised rank is the true user’s 
rank in the matching process, normalised by the total number of users, 
which allows to combine the users of Green Class 1 with the ones from 
Green Class 2 in this study. We further checked the correlation r between 
attributes to exclude potential collinearity issues, but r< 0:6 for all pairs. 
A significant positive coefficient indicates that a feature hampers the re- 
identification ability since it leads to a higher rank. The model is fitted 
separately for each tracking duration (1, 2, 4, ..., 28), whereby we only 
consider scenarios with the same pool- and user tracking duration, corre-
sponding to the diagonal of the matrices in Figure 2, and we average all 
available rank predictions for each user (i.e., average over time bins).

According to the regression coefficients (Table 3), socio-demographics 
do not affect the rank significantly. A higher radius of gyration makes 
a user harder to identify which might be related to an increased variability 
of the location graph over time due to a higher level of travel activity. For 
long durations, a high random entropy increases the identification perfor-
mance. The random entropy increases if time is spent at many different 
locations which increases the complexity and uniqueness of a graph and 
therefore makes it easier to match. The graph features, in particular the 
journey length, also significantly affect the rank, but in an unexpected 
direction: More star-shaped graphs, indicated by low journey length, low 
hub size, and high transition β, yield higher ranks.
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3.6. Influence of temporal difference between pool and user tracking period

The experiments reported so far were restricted to consecutive time periods (see 
Figure 1). Here, we further analyse the effect of a temporal gap between the 
tracking periods. Since the number of possible combinations becomes very high 
in this setting, we restrict the analysis to one pool- and user duration combination 
and analyse the 1.56 million combinations where pool- and user duration are four 
weeks and the pool was recorded before the user duration. Figure 5 shows the 
results, where the top-10 re-identification accuracy is shown by the temporal gap. 
As expected, the matching performance decreases as we increase the duration of 
the gap. However, it stabilises already at around 16 weeks between pool and test 
user, and remains surprisingly high even for the longest gap of 56 weeks. This 
finding implies that saved location data can be exploited by an attacker for a long 
time.

4. Conclusion

In this work, we present a set of experiments to analyse how tracking duration 
influences the re-identification ability of individual location graphs. Our experi-
ments on time-binned subsets of one-year tracking data show that the tracking 
duration indeed has a strong effect on the success of a privacy attack, with the re- 
identification accuracy at the longest tracking duration (28 weeks) being more 
than 3 times higher than when matching 1-week tracking data. We further show 
that the re-identification ability increases in roughly equal parts with increased 
tracking duration of the pool of candidate users on the one hand, and increased 
tracking duration of the test user on the other hand. Therefore, privacy-friendly 
applications should only require tracking data over periods that are as short as 
possible, and data brokers should be required to reset the user IDs of their data 

Figure 5. The re-identification accuracy decreases when there is a larger temporal gap between 
pool-bin and user-bin. However, the accuracy converges slowly and retains more than half of its 
former value even after one year.
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regularly to limit the pool duration. On top of that, long-term storage of tracking 
data should be impeded, since the re-identification accuracy only slowly 
decreases with increasing time between pool and test tracking period.

More generally, we confirm results from Manousakas et al. (2018) that loca-
tion graphs without coordinates or additional context information are sufficient 
to re-identify users with a success rate significantly higher than random. At the 
longest tracking duration, the de-anonymisation probability of an informed 
adversary is 3.85 times higher than the one of an uninformed adversary for 
our dataset. Our work reveals many opportunities for further work on location- 
graph privacy. For example, we found that certain users are consistently hard or 
easy to be identified. Characterization of these user groups should be explored 
in future work. We take a step in this direction with our analysis of the relation to 
different mobility-behaviour features and socio-demographics, but our results 
hint at more complex characteristics that make a user hard to re-identify. 
Evidence from more diverse datasets may help to find such influence factors. 
The reproduction of our experiments on new datasets is straightforward as the 
individual location graphs have very few requirements (e.g., no specific features 
or labels needed). At the same time, future work could also regard the re- 
identification risk of more complex location graphs, e.g., amended with tem-
poral information.

Finally, it is important to mention that we only employed a simplistic matching 
strategy, and a more sophisticated matching approach, such as learning graph 
similarities with deep neural networks (Guixiang et al. 2021), could lead to even 
higher success rates for matching. The results should therefore be considered as 
a lower bound of possible matching success. The presented analysis however 
augments the understanding of the privacy risk of tracking data – even if it is 
reduced to topology – and can improve the regulation of anonymisation practices.

Notes

1. https://github.com/mie-lab/topology_privacy.
2. For long time bin durations, not all users matched the criteria set for the tracking 

coverage.
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Appendix

A Validation on Green Class 2

To validate our results for the Green Class 1 data, we compute the matching performance 
results on the Green Class 2 data accordingly. Figure A1 visualises the results corresponding 
to Figure 2. Due to the lower number of users in Green Class 2, the re-identification accuracy 
is generally higher, but the same patterns as for Green Class 2 can be observed: Both the pool 
and the test duration impact the matching performance, and the best results are obtained 
when pool and test duration are the same.

Figure A1. Dependency of matching performance on tracking duration for the Green Class 2 data. 
Similarly to the results for Green Class 1, the top-k accuracy and MRR increase with both the 
tracking duration of the pool users as well as the test user. Due to the lower number of users, the 
re-identification performance is higher, reaching up to 82% top-10 accuracy.
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