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A B S T R A C T   

The COVID-19 pandemic changed the way people lived, worked, and studied around the world, with direct 
consequences for domestic energy use. This study assesses the impact of COVID-19 lockdowns in the first two 
years of the pandemic on household electricity and gas use in England and Wales. Using data for 508 (electricity) 
and 326 (gas) homes, elastic net regression, neural network and extreme gradient boosting predictive models 
were trained and tested on pre-pandemic data. The most accurate model for each household was used to create 
counterfactuals (predictions in the absence of COVID-19) against which observed pandemic energy use was 
compared. Median monthly model error (CV(RMSE)) was 3.86% (electricity) and 3.19% (gas) and bias (NMBE) 
was 0.21% (electricity) and − 0.10% (gas). Our analysis showed that on average (electricity; gas) consumption 
increased by (7.8%; 5.7%) in year 1 of the pandemic and by (2.2%; 0.2%) in year 2. The greatest increases were 
in the winter lockdown (January – March 2021) by 11.6% and 9.0% for electricity and gas, respectively. At the 
start of 2022 electricity use remained 2.0% higher while gas use was around 1.9% lower than predicted. 
Households with children showed the greatest increase in electricity consumption during lockdowns, followed by 
those with adults in work. Wealthier households increased their electricity consumption by more than the less 
wealthy and continued to use more than predicted throughout the two-year period while the less wealthy 
returned to pre-pandemic or lower consumption from summer 2021. Low dwelling efficiency was associated with 
a greater increase in energy consumption during the pandemic. Additionally, this study shows the value of 
different machine learning techniques for counterfactual modelling at the individual-dwelling level, and our 
approach can be used to robustly estimate the impact of other events and interventions.   

1. Introduction 

Coronavirus infectious disease (COVID-19) was declared a global 
pandemic by the World Health Organisation in March 2020 [1]. As a 
result of COVID-19 and the measures taken by governments to reduce its 
impact, populations around the world experienced huge changes to their 
ways of life, work, and study. Few areas of life, industry and the econ
omy were unaffected, and the energy sector was no exception. In the first 
five months of the pandemic the downturn in industrial output and 
commercial activities reduced electricity demand by 3–12% in most EU 
countries and US states [2]. Great Britain (GB) reportedly experienced 
the “strongest cumulative decline… of 11.4%”, as well as being one of 
the few countries to remain below baseline levels beyond July 2020 [2]. 

Mehlig et al. [3] reported a fall in both national electricity and gas de
mand during lockdown 11: 15.6% ± 1.8% (electricity reduction) and 
12.0 ± 0.8% (gas reduction), and during lockdown 2: 6.3% ± 2.3% 
(electricity reduction) and 4.1 ± 1.1% (gas reduction). The shift for 
many people to full-time stay-at-home living, working and schooling 
affected the frequency, duration and timings of space and hot water 
heating and of appliance use [4], effects captured in household energy 
consumption data. Gausden [5] reported a 17% increase in domestic 
electricity consumption during the first UK lockdown, while Tubelo et al. 
[6] reported a 5% increase in April 2020 and a 17% average increase 
during April 2020 – January 2021. 

While several studies (e.g. [3–11]) have attempted to estimate the 
impact of COVID-19 lockdowns on household energy use (an area noted 
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as a recent ‘research hotspot’ [12]), few studies look beyond the first 
year of the pandemic to capture the potential persistence of changes in 
energy demand. There is a distinct lack of research on both changes in 
household gas demand and on the differences between changes in homes 
with different household and dwelling characteristics. Finally, the 
methods used to estimate changes attributable to the pandemic often 
require improbable assumptions, such as identical weather conditions2 

as in previous year(s) or preceding weeks. 
In this study we train and test three types of predictive machine 

learning algorithm on pre-pandemic data for 508 (electricity) and 326 
(gas) homes in England and Wales. The predictive models produce 
counterfactuals (predictions) for what dwelling-level daily energy con
sumption would have been in the absence of the pandemic, accounting 
for local weather conditions, historic demand, and day of the week/time 
of the year. We compare this counterfactual demand with measured 
daily household demand data to address the following research 
questions:  

• How did daily energy consumption change in the two years from the start 
of the COVID-19 pandemic in England and Wales?  

• How were different types of household/dwelling affected differently? In 
particular, household composition (presence of children or working 
adults), self-reported financial wellbeing, and Energy Performance Cer
tificate (EPC) band. 

Following this initial introduction, Section 1.1 provides a literature 
review, Section 1.2 describes the lockdown and restrictive periods in 
England and Wales during the pandemic, Section 2 describes the 
methods used, and Section 3 presents and discusses the results. Finally, 
conclusions are summarised in Section 4. 

1.1. Literature review 

Previous studies on the impact of COVID-19 on domestic electricity 
consumption in GB lack consensus on the scale of the effects observed; 
estimates for average increase in lockdown 1 range from 0 to 17% 
[6,7,13]. An energy supplier detected a 17% increase from 2277 smart 
meters by comparing a 3-week period during lockdown 1 with a 3-week 
period prior [5]; a very simplistic approach that benefits from a large 
sample, but does not account for weather or time of year. 21 energy- 
efficient homes in Nottingham, England were found to have increased 
their electricity consumption by 5% in April 2020 and by 17% on 
average from April 2020 – January 2021, calculated by comparing with 
the same period in the previous year [6]. This approach is preferable to 
comparing with an earlier period in the same year, but lacks weather 
correction, non-energy-efficient homes, or regional diversity. A study of 
280 social housing households in Cornwall [13] did not find statistically 
significant changes in total domestic electricity or gas consumption 
during lockdown 1, although most homes included long-term sick or 
disabled or retired residents, a group likely to spend more time at home 
before the pandemic than the national average. However, their 
approach was more robust, employing mixed linear regression using 
data from the two years before the first lockdown to create counter
factuals against which to compare the observed domestic electricity, gas 
and water use. Studies on domestic gas use are noticeably absent from 
the literature, as are longitudinal studies beyond the first year of the 
pandemic – important gaps we address with this study. 

A key feature of this study is the use of pre-pandemic data to train 
counterfactual models at the individual household level, in order to 
overcome the limitations of many methods used in previous studies. The 
first studies on the impact of the pandemic compared consumption 
during the first lockdown with a preceding period – a ‘pre-post’ 

methodology. The simplest approach was to compare the first week or 
two of lockdown with the preceding week(s), such as in [14–16], or 
three weeks during lockdown with 3 earlier weeks [5]. Similarly, Kirli 
et al. [17] compared the week of 23rd March 2020 (start of lockdown) 
with the week of 2nd March 2020. Rouleau and Gosselin [18] studied 
the first 4 months of lockdown with the preceding months while Snow 
et al. [19] compared the first seven weeks of lockdown with the pre
ceding seven weeks and also with the corresponding seven weeks in the 
previous year. While these comparisons provided results quickly and 
required minimal historic data, they assume that the weather conditions 
did not change between the two comparison periods and that people 
hadn’t started to change their behaviours in reaction to COVID-19 
before official lockdowns began. In fact, the UK Government began 
advising the public to stay home from 16th March 2020 ahead of the 
legal requirement to stay home from 24th March. 

To avoid some of these issues, other studies compared the lockdown 
period with the same period in the preceding year(s) (e.g. [6,20,21]) or 
by analysing historical trends in 2017 – 2020 [22,23]. These approaches 
removed the initial (pre-lockdown) effects of the pandemic from the 
control group but ignored weather fluctuations between years. Analysis 
of ECMWF weather data revealed that in GB the weather during the first 
lockdown was unseasonably warm and sunny, and the combination of 
temperature and solar irradiance was unlike any period in the previous 
18 months [4]. One simple way to overcome this, as used by Chinthavali 
et al. [24], is to only compare energy consumption on days with similar 
weather conditions. Alternatively, using weather-correction factors 
(typically determined via regression) to improve the comparability be
tween energy demand in different years has been employed by several 
studies on the impact of the pandemic on energy consumption, e.g. 
[10,11,25–27]. 

To account (usually more fully) for differences between years, his
toric data can be used to model the relationship between energy con
sumption and relevant factors (such as weather, time of the year, day of 
the week) to develop counterfactuals (also known as baselines) against 
which actual energy consumption during COVID-19 can be compared. A 
study comparing different methods for data from different countries 
found ARIMA dynamic harmonic regression that incorporated temper
ature, holidays, and seasonality to be most consistently accurate at 
predicting the training data [2]. Their models were trained with data 
from 2016 to February 2020 and counterfactuals created for March – 
July 2020 with real temperature data. Mehlig et al. [3] used data from 
2017 to 2019 to create a counterfactual model for 2020 electricity and 
gas demand using ordinary least squares (OLS) regressions with heating 
and cooling degree days and separate models for weekdays and for 
weekends/holidays. Similarly, Rana et al. [28] used simulations and 
regression models to account for external temperature and time of day in 
their study of a residential building in Canada. A case study of resi
dential buildings in India applied Multiple Criteria Decision Making 
(MCDM) based Best Worst Method (BWM) to determine the most rele
vant factors for energy consumption during the pandemic [8]. Mean
while a Canadian study applied changepoint analysis, descriptive 
statistics and k-means clustering to explore the impact of COVID-19 on 
electricity bills [9]. The only domestic GB study to use counterfactual 
modelling was the Cornwall study by Menneer et al. [13], where mixed 
linear regression using data from the two years before the first lockdown 
was used for domestic electricity, gas and water counterfactual models. 

Some of the most common data-driven models for domestic energy 
prediction more generally are artificial neural networks (ANNs), support 
vector machines (SVMs), statistical regression, decision trees (DTs) and 
genetic algorithms (GAs) [29]. The review by Wei et al. [29] provides 
many examples of studies using these methods for energy demand pre
diction. Less common but with the benefit of greater simplicity, elastic 
net regression is an extension of linear regression, used successfully by 
studies such as Sâtre-Meloy [30] to model energy consumption in 
buildings, and shown to out-perform other methods tested by the author. 
Of the artificial intelligence models, ANNs are reportedly the most 

2 Weather is known to be a significant driver of domestic electricity and gas 
demand [49]. 
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prevalent for energy forecasting/prediction [31] (for reviews see, for 
example, [29,32–34]). While ensemble method Extreme Gradient 
Boosting (XGBoost) is a relatively new technique to be applied for en
ergy prediction, it has shown strong performance within the field in 
studies such as [35–38]. Given the ability of machine learning methods 
to capture complex relationships between predictor variables and their 
track record for more accurate predictive abilities, this study develops 
and compares some of these more advanced methods, applied for the 
first time to estimate the impact of the pandemic on domestic electricity 
and gas consumption in England and Wales. 

1.2. COVID-19 lockdowns in England and Wales 

The UK Government began recommending working from home in 
March 2020, and the first official lockdown commenced 23rd March 
2020. A wide range of measures were employed at different times and 
varying between regions, including between England and Wales. We 
define six periods before all restrictions ended based on official timelines 
and best estimates for transitions between full lockdowns and highly 
restrictive periods when daily routines were yet to return to normal. 
Table 1 summarises the timelines of key legislation and official recom
mendations in England and Wales. 

2. Methods 

2.1. Research framework 

The research framework is presented in Fig. 1. There are four main 
stages: data pre-processing, counterfactual modelling, model evaluation 
(and selection), and results analysis. These are described in detail in the 
sections which follow. 

2.2. Data pre-processing 

The Smart Energy Research Lab (SERL) [42–45] collects half-hourly 
electricity and (where available) gas data, and survey data for homes 
across GB. The earliest energy data dates back to August 2018 from the 
first recruitment wave, when ~1700 participants were recruited in 

September 2019 [46]. Additional recruitment increased the sample to 
over 13,000 households [44]. However, due to the need for sufficient 
pre-pandemic data for counterfactual modelling, only households 
recruited in September 2019 could be included in this study. We used 
the 5th edition of the SERL Observatory dataset [47] for half-hourly 
electricity and gas data, hourly ERA5 reanalysis climate data3 [48], 
and the SERL survey. After filtering (described below), the final samples 
for the counterfactual modelling comprised 508 households with elec
tricity data (our ‘electricity households’) and 326 households with gas 
data (‘gas households’). Of these, 286 households have both electricity 
and gas data.4 Appendix A describes the sample representativeness in 
terms of region, IMD quintile, EPC rating, and a selection of dwelling 
and household characteristics. 

2.2.1. Date and time variables 
Days of the week were classified as weekdays, weekends, or national 

holidays. A sinusoidal transform was applied to days of the year so that 
the transform output assigned similar values to days that were close 
together (see Appendix B for details). Model development involved tri
alling different time resolutions: half-hourly, by period of the day 
(Table 2), and daily. Eight time periods were constructed by identifying 
times of the day when average energy use is approximately constant 
[45]. Due to the night-time period starting at 11 pm, all days were 
redefined to start at 11 pm rather than midnight. 

2.2.2. Energy data 
The pre-pandemic model training period was chosen to be 1st April 

2019 – 29th February 2020 since a) starting it sooner significantly 
reduced the number of eligible households, and b) COVID-19 was 

Table 1 
COVID-19 lockdowns and periods with lockdown-related restrictions in England and Wales. In some cases, dates are approximate where lockdowns ended gradually, or 
dates differed between the two countries. In our figures (Section 3) we indicate lockdowns 1–3 with dark yellow shading and local lockdowns/other restrictions with 
pale yellow shading. Lockdown information from [39–41].  

Period Dates Details (England) Details (Wales) 

Lockdown 1 23rd March – 15th June 2020* 
*End date approximate as gradual 
restriction easing which differs 
between England and Wales 

Non-essential workers ordered to stay at home except for 
outdoor exercise and essential trips, schools and nurseries 
closed for all but the children of key workers. Some return 
to work from 13th May, some household mixing 
restrictions lifted 1st June, some schools open from 1st 
June, non-essential shops reopen 15th June. 

Non-essential workers ordered to stay at home except for 
outdoor exercise and essential trips, schools and nurseries 
closed for all but the children of key workers. Some return 
to work from 11th May, some household mixing 
restrictions lifted 8th June, schools open from 29th June, 
non-essential businesses remain closed. 

Local lockdowns/ 
other 
restrictions 

19th June − 4th November 2020 23rd June ‘2m social distancing rule’, some localised 
lockdowns in July, most continue to work from home. 
Schools reopen 1st September, household mixing remains 
restricted, working from home reintroduced in later 
months. 

Some localised lockdowns in September, most continue to 
work from home, schools reopen 1st September, household 
mixing remains restricted. 

Lockdown 2 5th November − 1st December 
2020 (England lockdown dates) 

Official lockdown although schools remain open. Welsh national lockdown 23rd November – 9th December 
(schools closed). 

Local lockdowns/ 
other 
restrictions 

2nd December – 5th January 2020 Some local lockdowns throughout December, non- 
essential businesses closed, household mixing relaxed 
slightly on Christmas day. 

Schools closed, most non-essential businesses closed, 
household mixing relaxed slightly on Christmas day. 

Lockdown 3 6th January – 8th March 2021 National lockdown, schools closed. National lockdown, schools closed. 
Local lockdowns/ 

other 
restrictions 

9th March – 19th July 2021 Schools reopen, ‘stay at home’ remains in place to 29th 
March, home working no longer required from 29th 
March, non-essential businesses reopen 12th April, 
household mixing allowed from 17th May, all businesses 
reopen 19th July when most legal limits on social contact 
removed. 

Schools reopen, household mixing relaxed slightly 22nd 
February, home working no longer recommended from 
29th March, non-essential businesses reopen 15th March, 
all businesses reopen 7th August.  

3 Note: neither the European Commission nor the European Centre for 
Medium-Range Weather Forecasts is responsible for any use that may be made 
of the Copernicus information or data it contains.  

4 A household which does not belong to the ‘gas households’ may still use gas, 
but either we are unable to collect the data due to no mains gas or no gas smart 
meter, or there is insufficient valid gas data. A household which does not belong 
to the ‘electricity households’ will be due to a lack of valid data in the training 
and prediction periods. 
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already affecting life in GB in March 2020. Data before April 2019 was 
also included for model training and validation where available. The 
counterfactual period was taken to be 1st April 2020 to 31st March 2022 
to allow for full-month analysis over two years. Households were filtered 

from the dataset that did not have at least 15 days’ valid data in every 
month in the training and counterfactual periods. Electricity demand 
was calculated as the net consumption data (imports minus any exports 
(for those with solar PV, for example)). Gas demand measured in cubic 

Fig. 1. Research framework of this study. For each fuel, each household’s data is processed, and the counterfactual models developed separately. Once the coun
terfactuals have been developed the data is combined for sample and subgroup analysis. Training data dates back to at least April 2019; earlier where available. 
Acronyms: EPC (Energy Performance Certificate), CV(RMSE) (Coefficient of Variation of Root Mean Squared Error), NMBE (Normalised Mean Bias Error), IQR 
(Interquartile range). 
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metres was converted5 to kWh. Half-hourly energy data was averaged 
when period-of-the day or daily were the time resolution of the model. 

2.2.3. Weather data 
Temperature, solar irradiance, and rainfall were selected to be the 

predictor weather variables, as these were deemed most relevant to 
energy consumption [49]. By including these variables in the model, we 
account for changes in energy consumption caused by changing weather 
conditions (e.g. extra heating use due to a particularly cold winter would 
be predicted by the model rather than attributed to the effects of the 
pandemic). Linear interpolation was used to generate half-hourly data
points from the hourly weather data in the SERL Observatory (see Ap
pendix B). Following interpolation, means were calculated for each 
period of the day and each day. In addition to current weather condi
tions, temperature and solar irradiance on the preceding days can affect 
the thermal mass of the building. These variables were therefore 
included for each of the three preceding days in the set of possible 
predictor variables. 

2.3. Counterfactual modelling 

We created counterfactual models for each household individually so 
that the relationship between energy consumption and predictor vari
ables could be individually tailored; a novel approach in light of our 
literature review. Three types of algorithm were trained and tested: 
elastic net regression, neural network and extreme gradient boosting. 
Different regression formulas were trialled for each, using various 
combinations of and interactions between predictor variables. All 
analysis was performed using R version 4.1.2 [50] and the following 
packages: caret [51], data.table [52], doParallel [53], forcats [54], ggplot2 
[55], ggpubr [56], glmnet [57], lubridate [58], monochromeR [59], stringr 
[60], timeDate [61], and xgboost [62]. 

2.3.1. Elastic net regression 
Elastic net regression is an extension of linear regression (which aims 

to minimise the error between the outputs of a linear combination of 
predictor variables and true observations (dependent variable)). Coming 
from the simplest family of predictive models, this is a good first model 
to develop. Being susceptible to overfitting,6 regularisation (or 
‘shrinkage’) methods have been developed to combat this issue. Regu
larisation reduces model variance at the expense of a small increase in 
model bias. Common regularisation methods include ridge regression; 
penalising (but not eliminating) large coefficients, lasso regression; 
penalising many predictor variables through variable elimination, and 
elastic net regression; a combination of the two. We chose to use elastic 

net regression as it can benefit from both approaches, and has been 
found to outperform other methods at predicting electricity consump
tion [30]. 

In elastic net regression, for n outcome data points yi (in our case 
energy demand) and p predictor variables xj, the coefficients βj for each 
predictor are determined by minimising the residual sum-of-squares 
plus the elastic net penalty (using a gradient descent method): 

∑n

i=1

(

yi − β0 −
∑p

j=1
βjxij

)2

+ λ
∑p

j=1

(
αβ2

j +(1 − α)
⃒
⃒βj

⃒
⃒
)

(1) 

Tuning parameters α ∈ [0, 1] and λ ≥ 0 are determined by trialling 
different values to determine a combination for optimal performance. 
α = 0 is the ridge penalty; α = 1 is the lasso penalty, and in between is a 
combination of the two. Prior to minimisation the response is centred (yi 

sum to 0) and the predictors standardised (for each predictor variable j, 
∑

ixij = 0 and 
∑

ix2
ij = 1). 

We performed elastic net regression using R packages glmnet [57] 
and caret [51] with 10-fold cross-validation and tune length 10 (10 
values of α and 10 values of λ tried in each model run). As the simplest 
algorithm used, the elastic net regression took the shortest time to run 
(between 3 and 8 times faster than neural networks (the second quick
est), depending on the number of variants tested). 

2.3.2. Artificial neural network 
Artificial neural networks also learn a function relating predictor and 

output variables but, in contrast with elastic net regression, permit 
nonlinear relationships. A neural network consists of a network of 
multiple ‘neurons’ or ‘units’ which are connected in ‘hidden’ layers so 
that the outputs of the units in one layer are used as inputs to the units in 
the next. This is known as a ‘feedforward neural network’. Each unit is 
represented by an equation similar to the elastic net regression equation: 
a linear sum of the inputs multiplied by parameters known as weights 
and a bias term. The output of this equation is then passed through an 
‘activation function’ which is usually nonlinear. A neural network can 
consist of many such units which means they can estimate highly 
nonlinear relationships between input and output variables. 

Neural networks have become popular for modelling energy con
sumption (for reviews see, for example, [29,32–34], although the focus 
has predominantly been on forecasting applications, rather than pre
dicting high-resolution energy consumption counterfactuals. Similar 
approaches to ours include a study that trained a single-hidden-layer 
neural network using calendar and weather variables to predict hourly 
energy use for a hotel (to estimate savings from energy efficiency 
measures) [63], and the ASHRAE Great Energy Predictor III competition 
to predict hourly nondomestic energy consumption [64] in which 
several of the winning entries used neural networks (combined in an 
ensemble approach). 

For this study we tested a range of single-layer neural network 
models trialling (for simplicity) between 3 and 10 units and decays of 0, 
0.01, 0.05, 0.1 and 0.5, using the R package nnet [65] implemented with 
caret [51]. 

2.3.3. Extreme gradient boosting 
Extreme gradient boosting is a type of ensemble method, which work 

by learning from and combining the best attributes of many models 
together. They start with a base learner (the first model) and use an 
iterative learning process called boosting. We chose to build on the 
elastic net regression modelling and use a linear base model which is 
simpler to develop than, for example, decision trees. Boosting learns 
from training multiple models on re-weighted versions the dataset such 
that harder-to-predict points take higher weights in later model runs, 
and the final model is the result of averaging over the set of models 
[66,67]. Extreme gradient boosting (‘XGBoost’) is one type of scalable 
boosting technique which improves upon gradient boosting in terms of 
computational efficiency and in combatting over-fitting [68]. It has 

Table 2 
Definitions of each period of the day, used as the input data time resolution by 
some models.  

Period Description Definition (local time) Duration (hours) 

A Night-time 23:00 – 06:00  7.0 
B Early morning 06:00 – 08:30  2.5 
C Mid/late morning 08:30 – 12:00  3.5 
D Lunchtime 12:00 – 14:00  2.0 
E Mid-afternoon 14:00 – 16:00  2.0 
F Late afternoon 16:00 – 17:30  1.5 
G Evening peak 17:30 – 20:00  2.5 
H Mid-late evening 20:00 – 23:00  3.0  

5 Gas volume (kWh) = Gas volume (m3) * 1.02264 * calorific value / 3.6 and 
we used a calorific value of 39.5 MJm− 3.  

6 Overfitting is when a model fails to generalise to new data because it has 
become too closely aligned to training data and missed the general trends. 
Linear regression is less susceptible to over-fitting than more complex nonlinear 
models such as neural networks. 
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become popular as a regression (and classification) tool, particularly 
known for its success in Kaggle and other machine learning competitions 
[68,69]. 

In recent years XGBoost has proven effective compared with other 
methods for predicting energy consumption. For example, in Fan et al. 
[35] XGBoost outperformed six other methods including support vector 
regression (SVR) and elastic net regression in terms of feature extraction 
and prediction accuracy for day-ahead building cooling load profiles. 
XGBoost also outperformed all eight other models including SVR when 
predicting domestic space cooling in Feng et al. [36], and against five 
other models in a study exploring household CO2 emission patterns and 
the underlying drivers [37]. Less conclusively, depending on the metric 
used, XGBoost performed as well or better than the top three-performing 
algorithms of seven developed to predict district heating load (showing 
similar performance to SVR and long short-term memory networks) 
[38]. Given its strong performance for energy demand prediction and 
predictive modelling more widely, we chose to use XGBoost using the R 
package xgboost [62] implemented with caret [51] and linear booster 
’gblinear’. We set 150 rounds, step size η = 0.1 and tested α and λ in {0, 
0.25, 0.5, 0.75, 1}. Depending on the fuel and data granularity (daily or 
by period of the day), the model took between 2 and 20 hours to run. 

2.4. Model evaluation 

The final model selection process considered monthly error and bias 
(full details in Appendix C). Table 3 summarises the selected models for 
each fuel. XGBoost was the dominant algorithm for our sample; the most 
accurate for 92% of electricity households and 100% of gas households. 
Predictions for period A (night-time) were often found to have high bias 
and modelling period A separately reduced error and bias in most such 
cases. Predicting gas demand during summer was much less accurate 
than during winter when demand is high, so modelling the summer 
separately was also trialled for gas models, with frequent success 
(different definitions of ‘summer’ were explored). 

More models were tested than shown in the table, altering the for
mula, modelling all periods of the day separately/night-time separately/ 
all periods together, and for gas using different months in the definition 
of ‘summer’ to model separately. Extreme gradient boosting was tested 
with fewer variations than the other models due to its much longer run 
time (for example it was not feasible to model all periods separately). 

Following our extensive model development and testing process the 
final models were all well within the guideline accuracy thresholds, and 

at the sample level mean error (CV(RMSE)) and bias (NMBE) were 
extremely close to zero (defined in Appendix C). Median CV(RMSE) was 
3.86% for electricity counterfactuals and 3.19% for gas (recommended 
to be <15% [70]). Median NMBE was 0.21% for electricity and − 0.10% 
for gas (recommended within ±5% [70]), where positive NMBE in
dicates under-prediction. 

3. Results and discussion 

3.1. Change in total daily energy consumption 

Table 4 reports median annual observed energy consumption, 
counterfactual, and differences between the two. The first 12 months of 
the pandemic saw much greater increases in use of both fuels compared 
to the following 12 months, when restrictions were much lighter or 
removed completely. Only gas saw a decrease in consumption, in 2021/ 
22, but only in absolute terms; as a percentage there was a small in
crease.7 Our estimated median increase in electricity consumption of 8% 
in the first year of the pandemic is lower than the 17% increase among 
21 energy-efficient homes found by Tubelo et al. [6]. This could be due 
to our use of the median rather than the mean (which would be higher, 
but in our view, less representative of most households), or because our 
sample slightly over-represents retired households, whose electricity 
consumption we found (below) to be less impacted by the pandemic. To 
our knowledge the existing literature does not offer a GB comparison for 
our result that in year 2 electricity consumption increased by around 2% 
on average, or for any of our annual gas consumption results. 

Fig. 2 shows observed and counterfactual average8 daily energy 
consumption each month. Observed electricity consumption was 
noticeably higher than the counterfactual from April 2020 to September 
2021, after which observations approximately matched counterfactuals, 

Table 3 
Summary of selected models and the number of households for which each was the most accurate. *June – September was the “summer” definition used for this 
particular model. Periods defined in Table 2.   

Algorithm Time granularity Night-time modelled separately? Summer modelled separately? Number of households 

Electricity Elastic net regression Daily No No 2 
Neural network Daily Yes No 16 

Half-hourly Yes No 19 
By period Yes No 5 

XGBoost Daily No No 466 
Gas XGBoost Daily No No 66 

By period Yes No 67 
By period Yes Yes* 193  

Table 4 
Average annual totals and percentage change of the sample (sample median of observed, counterfactual and observed minus counterfactual (change) energy con
sumption for each 12-month period (April – March).   

Median daily mean (kWh) Median annual total (kWh) Median % difference 

Fuel Year Observed Counter-factual Difference Observed Counter-factual Difference  

Electricity 2020/21  7.9  7.2  0.5 2867 2621 182  7.8% 
2021/22  7.4  7.2  0.1 2712 2630 49  2.2% 

Gas 2020/21  35.1  32.9  2.0 12,815 12,013 733  5.7% 
2021/22  32.6  32.6  − 0.2 11,914 11,911 − 85  0.2%  

7 Mathematically this is explained by households with observations <
counterfactuals (decrease) had larger counterfactuals than those that saw an 
increase, and so their percentage change was lower in absolute terms, leading to 
a positive sample average percentage change.  

8 Unless stated otherwise, ‘average’ refers to an approximation of the sample 
median, as the mean can be skewed by outliers. Note that medians and other 
percentiles here are always the mean of the 10 closest values to the true 
percentile, to prevent disclosing a value created by a specific household, due to 
best-practice statistical disclosure control protocols. 
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roughly coinciding with COVID-19 restrictions ending. Daily electricity 
demand increased by around 500 Wh (8.9%) during April – June 2020 
(~lockdown 1); lower than the 17% increase in electricity demand 
estimated by Krarti and Aldubyan [7]. Note that our analysis accounts 
for solar irradiance and subtracts solar PV exports (to give net demand), 
which given the extremely sunny weather during lockdown 1 [4], may 
be partially responsible for our lower estimate of demand increase. The 
greatest difference between observations and counterfactuals was dur
ing lockdown 3 (January – March 2021) when schools and workplaces 
were closed during winter,9 increasing electricity demand by around 
800 Wh/day (11.6%). In the final quarter (almost two years on from 
lockdown 1) electricity consumption was around 100 Wh/day (2.0%) 
higher than predicted. 

Gas is predominantly used for space heating in GB and therefore 
shows much stronger seasonal effects than electricity demand. Lock
down 1 showed no discernible effect on gas demand, as found by Mehlig 
et al.’s UK study [3] and in a Canadian study by Rouleau and Gosselin 
[18]. In contrast, winter lockdown/restrictive periods showed notice
able increases, with lockdown 3 seeing the greatest increase in gas de
mand of around 5500 Wh/day (9.0%). This difference implies that the 
behavioural effects of staying home during lockdowns is seasonal for gas 
consumption; greater occupancy does not lead to increased heating use 
when the weather is warm. The increase in gas use did not repeat in 
winter 2021/22 (after restrictions had ended), with gas demand slightly 
lower than predicted (~2% lower in Q1 2022). Gas prices had already 
started to increase at the end of 2021 (before the large increases 
following the invasion of Ukraine later in 2022) due to utility companies 
going out of business and their customers being moved onto more 

expensive tariffs [71,72], which may have played a role in reducing gas 
demand compared to the counterfactuals. 

3.2. Comparing weekends and weekdays 

During lockdowns we might expect the greatest changes in energy 
demand to be on weekdays due to the closure of schools and workplaces, 
but our results paint a somewhat different picture. Fig. 3 compares how 
energy demand is estimated to have changed10 on weekends and 
weekdays. We analyse by quarter as there are fewer data points when 
splitting by weekends/weekdays which reduces monthly model 
accuracy. 

Electricity demand increased by a very similar amount on weekends 
and weekdays during most of the two-year period; by around 500 Wh/ 
day in the first 12 months and by 100 Wh/day in year 2 on both 
weekends and weekdays. 

Gas demand also changed similarly on weekends and weekdays; in 
year 1 gas demand increased by around 1900 Wh/day on weekdays and 
by 2100 Wh/day on weekends, while in year 2 both day types saw a 
decrease compared to predictions of around 200 Wh/day. Even in 
lockdown 3 (the quarter with the greatest absolute difference) gas 
increased by around 5000 Wh/day on weekdays and by around 6200 
Wh/day on weekend days. The reasons for the slightly greater increase 
on weekends are unclear but may relate to the absence of winter 
weekend breaks during lockdown, unlike in the previous year. 

3.3. Within-sample differences in total consumption changes 

While Fig. 2 captured the sample average observation and 

Fig. 2. Monthly average daily electricity and gas consumption (observed and counterfactual) in kWh (508 electricity households, 326 gas). See text for average 
calculation details. Shading: dark yellow (national lockdown), pale yellow (restrictions in place), white (no restrictions). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

9 A very small number of these homes have electric heating, but most would 
see an increase due to increased appliance use including lighting and cooking. 
Air-conditioning currently has low prevalence among UK homes, so summer 
electricity demand is typically lower than in winter. 

10 Average change is calculated by taking, for each household, the mean dif
ference between daily observed and counterfactual energy demand for each 
household (which form a distribution), and then taking the median. 
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counterfactual energy consumption, Fig. 4 reveals more about the dis
tribution of change across the sample. The darker lines show the sample 
median daily change11 in consumption each month, and the lighter lines 

indicate the interquartile range in absolute terms (kWh) and as a per
centage. While most households increased their electricity consumption 
until autumn 2021, some increased by significantly more than others, 
with the upper quartile increasing electricity consumption by at least 
2400 Wh/day (~32%) during lockdown 3. Although on average the 
effects of the pandemic seem to have worn off after this period, some 
households continued to use up to around 1 kWh of electricity per day or 
15–20% more than predicted throughout 2021/22, while others 
decreased consumption by similar levels in the same period. 

Fig. 3. Median estimated change in mean daily energy demand (kWh), comparing weekends and weekdays (508 electricity households, 326 gas). Boxed yellow 
shading indicates restriction severity each quarter: dark yellow (national lockdown), pale yellow (restrictions in place), white (no restrictions). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

11 Median change is calculated by taking the mean difference between ob
servations and counterfactuals each day of the month for a household, and 
taking the household sample mean of these mean values. Likewise for the upper 
and lower quartiles (replacing median with 25% and 75% percentiles). 
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Change in gas consumption also varied widely by household. Whilst 
the lower quartile used the same or less gas than predicted during 
lockdown 3, the upper quartile increased daily consumption by around 
12,000 Wh/day (~12%) compared to counterfactuals. Towards the end 
of the two-year period gas use was generally lower than counterfactuals, 
although the upper quartile of the sample were still using at least 4900 
Wh/day (8%) more than predicted. We see large percentage increases in 
summer gas use due to the very low gas counterfactuals (i.e., we divide 
by very small numbers), so summer gas percentages should be treated 
with caution (more details about model accuracy in summer in Appen
dix C). 

3.3.1. Presence of children and working adults 
The wide range of change in energy use during the COVID-19 

pandemic shown in Fig. 4 motivates our subgroup analysis of energy 
demand change. Households were asked about the number of people in 
each age and working status category in the SERL survey when they 
signed up. We split those who responded (493 with electricity data 
(97%) and 315 with gas data (97%)) into three categories relating to 
school and work, which we refer to as ‘family status’:  

1. Households with children aged up to 16 years (107 with electricity 
data, 76 with gas data)  

2. Households all aged 17 + years with at least one person in work (159 
with electricity data, 98 with gas data)  

3. Households all aged 17 + years with no one in work (227 with 
electricity data, 141 with gas data). 

Fig. 5 shows the average change in daily electricity and gas con
sumption for each family status category in kWh and as a percentage 
(calculated in the same way as for Fig. 3). During lockdowns, households 
with children saw the greatest increase in electricity use, followed by 
child-free households with adults in work. In the first year of the 
pandemic, on average, households with children used around 1400 Wh/ 
day (14%) more electricity than predicted, child-free households with 
adults in work around 700 Wh/day (8%) more than predicted, and child- 
free households with no adults in work around 300 Wh/day (5%) more. 
In year 2, households with children used around 1100 Wh/day (11%) 
more electricity than predicted, child-free households with adults in 
work around 200 Wh/day (2%) more than predicted, and child-free 
households with no working adults used approximately their predicted 
energy consumption (i.e., a 0% change or return to normal). In Q1 2022 
(6 months post-restrictions) households with children were still using 
around 1100 Wh/day (11%) more electricity than predicted, whereas 
those without children but adults in work used <300 Wh/day (3%) 
more, and those with neither adults in work nor children had returned to 
predicted electricity consumption levels. We hypothesise that they may 
have bought more electronic devices and appliances during lockdown 
for home schooling and entertainment that continued to be used, that 
childcare practices changed and continued with increased home 

Fig. 4. Median, 25th and 75% percentile average change in daily energy consumption (508 electricity households, 326 gas). Change = observations minus coun
terfactuals, see text for average calculation details. Shading: dark yellow (national lockdown), pale yellow (restrictions in place), white (no restrictions). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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working, and that as children grow older, they naturally used more 
energy [73]. 

The results are less clear for changes in gas consumption. In the first 
year of the pandemic, on average, households with children used around 
1000 Wh/day (3%) more gas than predicted, child-free households with 
adults in work around 2000 Wh/day (5%) more than predicted, and 
child-free households with no adults in work around 2100 Wh/day (7%) 
more. In year 2, households with children used around 1000 Wh/day 
(2%) less gas than predicted, child-free households with adults in work 
around 700 Wh/day (4%) less than predicted, while child-free house
holds with no working adults were still using around 200 Wh/day (2%) 
more gas than predicted. Increases were similar across the groups in 

several quarters, although lockdown 3 saw households with children 
increasing their absolute gas consumption more than those without. 
From October 2021 consumption decreased across all groups, with the 
biggest decrease in October – December 2021 among those households 
with children. In the final quarter studied (Q1 2022) all household 
groups were using less gas than predicted (4%, 2% and 1% less for those 
with children, adults in work, and neither; respectively). 

The smaller differences between these groups in terms of change in 
gas consumption imply that gas use may be more closely related to 
building characteristics than occupant behaviour. Interestingly, in 
contrast to their increased electricity use, households with children cut 
back most on gas use in winter 2021/22. This highlights the potential 

Fig. 5. Average change in daily energy consumption each quarter by ‘family status’; see text for details including numbers in each category. Boxed yellow shading 
indicates restriction severity each quarter: dark yellow (national lockdown), pale yellow (restrictions in place), white (no restrictions). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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complex interplay between gas and electricity use. In GB, gas is mostly 
used for space heating. Most electricity use ends up as heat in a building. 
If appliance electricity use increases, then the gas heating system will 
require less energy for a given temperature because in effect the lights 
and appliances are part-heating the building. 

3.3.2. Household financial wellbeing 
The SERL survey asked our sample in autumn 2019 “how well would 

you say you yourself are managing financially these days? Would you say 
you are…” with five options. We grouped responses as ‘high’ or ‘low’ 
financial wellbeing as follows:  

• High financial wellbeing: ‘living comfortably’ or ‘doing alright’ (360 
with electricity data, 227 with gas data); we term these our 
‘wealthier’ households.  

• Low financial wellbeing: ‘just about getting by’, ‘finding it quite 
difficult’, or ‘finding it very difficult’ (115 with electricity data, 79 
with gas data); we term these our ‘less wealthy’ households. 

This data represents 94% of our electricity and gas households and 
the results are shown in Fig. 6. Wealthier households were predicted to 
use 21% more electricity (both years) and 28% or 31% more gas (year 1 
or year 2) than less wealthy households on average each year of the 

Fig. 6. Average change in daily energy consumption each quarter by self-reported financial wellbeing: ‘high’ (doing well) or low (struggling financially); see text for 
details including numbers in each category. Boxed yellow shading indicates restriction severity each quarter: dark yellow (national lockdown), pale yellow (re
strictions in place), white (no restrictions). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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pandemic. The higher energy consumption during ‘normal’ conditions 
was then exacerbated during the pandemic, with wealthier households 
increasing consumption by much more than less-affluent households, 
particularly during lockdowns 1 and 3 (in both kWh and as a percentage 
change). 

In year 1 of the pandemic wealthier households increased their 
electricity consumption by around 600 Wh/day (9%) compared to less 
wealthy households’ 300 Wh/day (5%) increase; in year 2 wealthier 
households used around 200 Wh/day (3%) more than predicted while 
less wealthy households used around 100 Wh/day (2%) less than pre
dicted. The greatest differences between these groups occurred during 

lockdowns 1 and 3 with wealthier households using 10% and 16% more 
than predicted while the less wealthy used around 4% and 8% more in 
lockdowns 1 and 3, respectively. In Q1 2022 wealthier households were 
still consuming 500 Wh/day (~7%) more electricity than predicted 
while the less wealthy were using around 200 Wh/day (2%) less than 
predicted. We hypothesise that this could be due to wealthier house
holds buying more appliances during lockdown, being more likely to 
buy electric vehicles, and potentially being more likely to work in sec
tors where working from home is a possibility (unlike key workers, who 
were often on lower incomes, such as care workers, delivery drivers, 
refuse collectors, and supermarket staff). 

Fig. 7. Average change in daily energy consumption each quarter by Energy Performance Certificate (EPC) band; see text for details. Boxed yellow shading indicates 
restriction severity each quarter: dark yellow (national lockdown), pale yellow (restrictions in place), white (no restrictions). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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In year 1 of the pandemic wealthier households increased their gas 
consumption by around 2100 Wh/day (6%) and less wealthy households 
increased by 1800 Wh/day (6%); in year 2 wealthier households used 
around 200 Wh/day less (0.5% more) gas than predicted and less- 
wealthy households used around 500 Wh/day (2%) less than pre
dicted. During lockdown 3 wealthier households increased consumption 
by more than less wealthy households (5800 Wh/day compared to 4500 
Wh/day), but as a percentage of their predicted consumption the in
crease was lower than for the less wealthy (an 8% increase compared 
with a 10% increase), because their pre-pandemic use had been higher 
(and therefore their counterfactuals higher). The following winter 
(2021–22) both groups used less gas than predicted, and changed their 
consumption in roughly similar ways – a very different picture to the 
diverging trends in electricity use between these groups. 

3.3.3. Dwelling Energy Performance Certificate 
Energy Performance Certificates (EPCs) for domestic buildings were 

introduced to estimate the energy costs (normalised by floor area) 
associated with comfortably running a home. EPC bands run from A to 
G, with A-rated homes being the most efficient. We would like to un
derstand whether energy use changed differently depending on EPC 
band. To ensure all categories included at least 10 households for 

statistical disclosure control, we combined categories E, F and G. There 
were no households in the sample in EPC band A and the next smallest 
category was band B in the gas sample (15 homes). Percentage break
downs are shown in Appendix A. 

Fig. 7 shows the average change in daily energy consumption by EPC 
band. Less efficient dwellings typically increased their electricity and 
gas consumption (compared to predictions) by more than more efficient 
dwellings. The trend was less clear in the gas data, with anomalies in 
some quarters, and similar increases across EPC bands in lockdown 3 
(the winter lockdown). 

Note that several factors correlate with EPC band which could be 
contributing to differences between groups, such as income, property 
size and tenancy. Some bands also have very low sample sizes in our 
study (particularly in band B (both fuels) and bands E-G for gas). With 
these caveats in mind, our less efficient homes increased their electricity 
use by more than the more efficient homes during the first year of the 
pandemic. In the second year those in band B used less than predicted 
throughout most of the year, in contrast to the other bands. Band B 
homes are more likely to have solar panels, which may have offset more 
of their demand, although if they had solar panels during the model 
training period the model should have accounted for that. In winter 
2021/22 band C-D homes were using more electricity than predicted, 

Table A1 
Sample breakdowns by various categories where data is available for the electricity and gas home samples and comparable population estimates exist. Some categories 
have been merged for statistical disclosure control due to low counts. *Excludes regions: North East, North West and Yorkshire and the Humber due to smart meter 
rollout delays in these areas during initial recruitment. **Census data excludes caravans and mobile and temporary structures as they are not included in our sample. 
***Census data uses 66 as the upper age limit rather than 65 years.  

Category (sample N electricity, gas) Subgroup Electricity household 
sample 

Gas household 
sample 

Population 
estimate 

Source 

Region* 
(508, 326) 

East Midlands 9% 10% 11% 2021 England & Wales 
Census West Midlands 13% 12% 13% 

East of England 14% 14% 15% 
London 11% 8% 19% 
South East 22% 21% 21% 
South West 18% 18% 14% 
Wales 13% 18% 7% 

Index of Multiple Deprivation (IMD) 
quintile (508, 326) 

1 (greatest deprivation) 10% 11% 21% Address Base 
2 18% 18% 21% 
3 20% 19% 21% 
4 24% 25% 20% 
5 (greatest affluence) 28% 28% 18% 

EPC rating (261, 170) Bands A & B 11% 9% 2% EHS 2019 to 2020: 
headline report data Band C 31% 37% 38% 

Band D 41% 40% 47% 
Bands E-G 17% 15% 14% 

Dwelling type** (493, 316) Detached house or bungalow 40% 42% 23% 2021 England & Wales 
Census Semi-detached house or bungalow 28% 28% 32% 

Terraced house or bungalow 22% 25% 23% 
Flat, maisonette or apartment 10% 5% 22% 

Tenure 
(493, 316) 

Owned outright, with mortgage or loan 
or shared ownership 

85% 88% 63% 2021 England & Wales 
Census 

Private rented or lives rent free 8% 4% 20% 
Social rented 10% 9% 17% 

Household size (489, 313) 1 person 31% 28% 32% 2021 England & Wales 
Census 2 people 43% 44% 37% 

3 people 12% 13% 17% 
4 people 10% 11% 14% 
5 or more people 4% 5% 7% 

Household composition*** (474, 302) 1 adult 65+, 
no children 

22% 21% 13% 2021 England & Wales 
Census 

1 adult < 65, 
no children 

7% 6% 17% 

1 adult 65 + and 1 adult < 65, 
no children 

7% 10% 4% 

2 adults 65+, 
no children 

23% 19% 9% 

2 adults < 65, 
no children 

13% 13% 18% 

3 + adults, 
no children 

11% 13% 12% 

1 + children 17% 19% 26%  
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unlike band E-G homes which returned to counterfactual levels of 
electricity consumption. Note that band E-G homes are more likely to 
use electricity and unmetered sources of energy such as oil and coal for 
heating (due to the way EPC bands are determined). 

We would expect to see a stronger trend in the gas analysis, as 
heating requirements should be more strongly related to EPC rating. 
That said, recent analysis has shown that the energy use in EPC bands C, 
D, F and G typically do not reflect the energy use predicted by EPCs, and 
the average energy use between these bands is very similar [74]. Fig. 7 
reveals that dwellings in bands D-G increased gas use by more than those 
in bands B and C during October 2020 – March 2021 (including the 
winter lockdowns). The following winter in the absence of restrictions 
bands E-G showed a greater (kWh) reduction in gas consumption than 
the more efficient homes (compared to their counterfactuals). Indeed, in 
January – March 2022 homes in bands E-G used 7.2 kWh/day less than 
predicted (14.0% less), while band C homes (those with the next greatest 
reduction) only reduced gas use by 1.7 kWh/day (3.7%). It is possible 
that these households may have been underheating them due to rising 

gas prices, coupled with the relatively higher costs of keeping less effi
cient homes warm. These results support the growing body of evidence 
for greater investment in insulating homes and supporting energy effi
ciency measures. However, also see the above note about unmetered 
energy use and electrical heating and note that this is a relatively small 
sample size of 25 E-G-rated homes. 

3.4. Learnings from the counterfactual modelling process 

Major events such as the COVID-19 pandemic can have substantial 
impacts on our day-to-day lives, from the loss of loved ones and the 
effects of Long COVID, to changes in how and where we work, school, 
shop, and travel. Measuring the impacts of such events on energy con
sumption is rarely straightforward. In the absence of an entirely unaf
fected control group, we require longitudinal datasets for pre- and post- 
event comparisons, longitudinal observations, or for training counter
factual models. Each approach brings its own advantages and 
complexities. 

Fig. C1. Coefficient of the Variation of the Root Mean Square Error (CV(RMSE)) each month for the best-performing models. Boxes show the median and inter
quartile range for the sample, vertical lines extend to the 5th and 95th percentiles. Error increases in summer for gas models as consumption is very low. March had a 
lack of training and testing data causing large errors for a small proportion of households. ASHRAE guidelines recommend monthly bias < 15%. 

Fig. C2. Normalised mean bias error (NMBE) each month for the best-performing models. Boxes show the median and interquartile range for the sample, vertical 
lines extend to the 5th and 95th percentiles. Gas models tend to underpredict in summer when consumption is very low. March had a lack of training and validation 
data causing large bias for a small proportion of households. ASHRAE guidelines recommend monthly bias within ± 5%. 
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To study change in total daily demand we developed counterfactual 
models using historic smart meter and weather data for each household. 
This allowed us to effectively account for weather, time of the year and 
day of the week when creating counterfactuals. Weather variables are 
particularly important to consider due to their potential to decrease (in 
the case of solar irradiance) or increase (rainfall and colder conditions) 
domestic energy consumption [49]. Whereas other studies assumed 
identical weather conditions to previous years/seasons, we used 
weather variables in the predictive models to avoid misattributing the 
cause of weather-related changes in energy demand. While more 
complicated than other types of analysis, it gave us a robust approach for 
predicting demand over two years, in a way that simple historic com
parisons cannot. An important caveat with this approach is that 
household circumstances may change between the training period and 
end of the prediction period in ways unrelated to the pandemic. For 
example, changes unrelated to the pandemic, such as the number of 
occupants, pets, and people working, the acquisition of new appliances 
and technologies such as electric vehicles and heat pumps, improved 
energy-efficiency measures such as added loft insulation or new win
dows, and extensions. Therefore, our confidence in and the validity of 
the counterfactuals reduces moving forward in time. While cross- 
validation is useful for selecting the best models, and our training/ 
testing error and bias measures give us confidence that our model is well 
within recommended guidelines, we do not provide confidence intervals 
with our counterfactuals, because the model uncertainty over time is 
unknown. We are reassured that our counterfactuals imply reasonable 
results that, on the whole, align with our prior beliefs about the 
pandemic and the changes in lockdown 1 estimated in other studies, 
however, we cannot say for certain that all differences between coun
terfactuals and observations are due to the pandemic and resulting 
restrictions. 

The counterfactual model development process gave new insights 
into predictive energy modelling. Extreme Gradient Boosting was the 
most effective model for most households in the sample; a method which 
is relatively untried in the area of energy modelling, compared to neural 
networks and support vector machines. Modelling the night-time period 
separately reduced overall error and bias because night-time demand 
has such a different relationship with weather and calendar variables 
compared to daytime demand. For gas we found it useful to model 
summer separately from the rest of the year for some households, as the 
infrequent use of heating meant one model for use in winter and summer 

was less effective. Additionally, although modelling each household 
separately is far more computationally intensive, it allows for different 
relationships between predictor and outcome variables for different 
households, without requiring the inclusion of variables that may 
partially explain differences between households (for example a 
regression with all households might use floor area and number of oc
cupants as predictor variables). This unique approach meant that the 
final predictions were created using a range of algorithms, with simpler 
models showing greater accuracy for some households. 

3.5. Limitations 

As discussed above, there are limitations to consider when inter
preting these results. Due to the timing of the pandemic, sample sizes 
were much lower than the full SERL sample and do not fully represent 
the wider population. We are aware that the samples tend to over- 
represent households in Wales, more efficient households, and house
holds comprising retired couples [44]. Gas results during summer, 
though not relevant for our findings, must be treated with caution due to 
the low levels of gas use which when divided by for percentage changes, 
can show misleadingly large differences between groups or months. The 
EPC analysis suffers from small sample sizes in each band grouping. 
Finally, the further from the training period (pre-February 2020), the 
more results in a given month/quarter must be treated with caution. 

3.6. Implications and further work 

Despite the huge impact of the pandemic and resulting lockdown 
restrictions our results showed relatively small sample-average changes 
in electricity and gas demand. Even during the winter lockdown when 
schools and workplaces were closed, on average electricity only 
increased by 12% and gas by 9% compared to counterfactuals. Of 
course, some households did increase their consumption by much more, 
and daily consumption does not show the whole picture. Forthcoming 
analysis by Pullinger et al. [75] found significant changes in demand 
profiles; indeed a key part of the pandemic was the within-day shifting 
of demand rather than large increases overall in the general population, 
many of whom continued to go out to work, or whose lives in retirement 
saw smaller day-to-day changes. While most of the drivers of energy 
consumption during the pandemic ended with or following the lifting of 
lockdown restrictions, some factors may continue to play a role going 
forward. Households with children or working adults and wealthier 
households were still consuming more electricity than predicted at the 
start of 2022 – potentially due to the persistence of greater home 
working [76] and/or the use of new appliances and devices bought 
during the pandemic [77,78]. If national lockdowns were to recur in 
future, this analysis highlights the vulnerability of particular groups to 
increased energy costs – in particular households with children, and 
those in less-efficient dwellings. During winter, those struggling finan
cially are likely to see a greater percentage increase in their gas demand 
than wealthier households, which could increase the prevalence of fuel 
poverty. 

The approaches employed here can be applied to estimating the 
impact of other events or interventions. We have shown the value of 
developing household-level counterfactual models to individually tailor 
the relationship between weather, calendar, and energy consumption 
variables, which overcome challenges such as unusual weather patterns 
compared to a simpler time-period comparison method. The authors 
plan further work to study the impact of the cost-of-living crisis in GB 
using similar techniques. 

4. Conclusions 

This paper assessed the impact of COVID-19 on domestic electricity 
and gas consumption in England and Wales over two years (April 2020 – 
March 2022). Machine learning counterfactual (predictive) models were 

Fig. C3. Overall mean monthly model error (measured with CV(RMSE)) and 
bias (NMBE). Dashed lines show the ASHRAE guideline threshold for acceptable 
accuracy/bias. Boxes show the median and interquartile range for the sample, 
vertical lines extend to the 5th and 95th percentiles. 
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trained on pre-pandemic energy, weather and calendar data for each 
household separately for 508 (electricity) and 326 (gas) households. The 
main conclusions are as follows12:  

• On average, electricity use was 8% higher than predicted in year 1 
and 2% higher in year 2. Consumption increased by around 500 Wh/ 
day (9%) in April – June 2020 (~lockdown 1), by 400 Wh/day (5%) 
in October-December 2020 (~lockdown 2), and by 800 Wh/day 
(12%) in January – March 2021 (~lockdown 3). By Q1 2022 elec
tricity consumption was only around 100 Wh (2%) higher than 
predicted.  

• On average, gas consumption was 6% higher than predicted in the 
first year of the pandemic and returned to predicted levels in year 2. 
Being primarily used for heating, gas use did not increase during 
lockdown 1, increased by around 2000 Wh (4%) in October- 
December 2020 (~lockdown 2), and by 5400 Wh/day (9%) in 
January – March 2021 (~lockdown 3). In Q1 2022 gas consumption 
was around 900 Wh (2%) lower than predicted.  

• Electricity and gas demand saw similar increases on weekends and 
weekdays. Electricity use increased by around 500 Wh/day in the 
first year of the pandemic and by 100 Wh/day in year 2 on both 
weekends and weekdays. In year 1 gas demand increase by around 
1900 Wh/day on weekdays and by 2100 Wh/day on weekends, while 
on year 2 both day types saw a decrease (compared to predictions) of 
around 200 Wh/day. 

• During lockdowns, households with children saw the greatest in
crease in electricity use, followed by child-free households with 
adults in work. In the first year of the pandemic, on average, 
households with children used around 1400 Wh/day (14%) more 
than predicted, child-free households with adults in work around 
700 Wh/day (8%) more than predicted, and child-free households 
with no adults in work around 300 Wh/day (5%) more. In Q1 2022 
(6 months post-restrictions) households with children were still 
using around 1100 Wh/day (11%) more than predicted, whereas 
those without children but adults in work used <300 Wh/day (3%), 
and those with neither adults in work nor children had returned to 
predicted electricity consumption levels. 

• In contrast, gas use increased most among households with no chil
dren and no adults in work. In the first year of the pandemic, on 
average, households with children used around 1000 Wh/day (3%) 
more gas than predicted, child-free households with adults in work 
around 2000 Wh/day (5%) more than predicted, and child-free 
households with no working adults around 2100 Wh/day (7%) 
more. In Q1 2022 all household groups were using less than or about 
the same as predicted (4%, 2% and 1% less for those with children, 
adults in work, and neither; respectively).  

• Wealthier households typically consume more than less wealthy 
households (on average 21% more electricity and around 30% more 
gas based on our counterfactuals), and this difference increased 
during the pandemic, particularly during lockdowns. For instance, 
on average wealthier households used 10% and 16% more than 
predicted while the less wealthy used around 4% and 8% more in 
lockdowns 1 and 3, respectively. In Q1 2022 wealthier households 
were still consuming 500 Wh/day (7%) more than predicted while 
the less wealthy were using around 200 Wh/day (2%) less electricity 
than predicted. During lockdown 3 wealthier households increased 
consumption by more than less wealthy households (5800 Wh/day 
compared to 4500 Wh/day), but as a percentage of their predicted 
consumption the increase was lower than for the less wealthy (an 8% 
increase compared with a 10% increase). By winter 2021/22 both 
groups had decreased their gas consumption by similar amounts 
compared to their predicted use.  

• Less-efficient dwellings (lower EPC band) typically increased their 
electricity and gas consumption (compared to predictions) by more 
than more efficient dwellings. The trend was less clear in the gas 
data, with anomalies in some quarters, and similar increases across 
EPC bands in lockdown 3 (the winter lockdown).  

• Extreme gradient boosting was the most accurate algorithm for most 
households (compared with neural networks and elastic net regres
sion). Modelling night-time demand separately reduced overall 
model error and bias for some electricity and most gas households; 
modelling summertime separately improved model performance for 
just over half of gas models. Modelling all households separately 
allows variable interactions to be tailored to each household indi
vidually and for the most accurate type of algorithm to be selected 
for each. 
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Appendix A. Sample representativeness 

Table A.1 breaks down the electricity and gas household samples by various measures of representativeness for England and Wales, and compares 
our sample with national estimates using 2021 England & Wales Census data [79], Ordnance Survey’s Address Base dataset [80], and the English 
Housing Survey (EHS) [81]. Not all data were available for all households; the numbers in each category with data are shown in brackets with the 
categories. Our sample excludes three regions in the north of England due to restrictions on the first SERL recruitment wave, and also under-represents 
households in London while over-representing households in Wales. We would expect regional differences in COVID-19 impact on energy con
sumption where restrictions varied – either during local lockdowns or when England and Wales had divergent policies. Households in more deprived 
areas (IMD 1) only make up around half of the target percentage, while those in IMD quintiles 4 and 5 are over-represented. Our results show clear 
divisions between households with different levels of financial wellbeing. Regional and IMD imbalances were redressed in later SERL recruitment 
waves. 

The samples over-represent the most energy efficient dwellings (rated A or B) at the expense of under-representing those in band D. Recent ev
idence suggests that the EPC provides a good indication of actual energy use for the most efficient bands (A and B), but not for all other bands [74]. 
Thus, the over-representation of the most efficient bands is likely to mean that there are more efficient homes in the sample than expected, but the 
over-representation of homes in less efficient EPC bands does not necessarily mean that these homes are particularly inefficient. 

Largely due to the slower rollout of smart meters in flats/apartments and in rental properties, our sample significantly under-represents these 
groups, while over-representing owner-occupiers living in detached houses and older people without children. However, household sizes are broadly 
representative in our sample compared with the latest census data. For information about the representativeness of the full SERL sample see [44]. The 
report by Few et al. [45] and accompanying datasets report annual, monthly and diurnal energy demand profiles for SERL households broken down by 
contextual variables. 

Appendix B. Data preparation 

Hourly weather variables were linearly interpolated to give half-hourly datapoints. Temperature T is an instantaneous variable, and therefore to 
create datapoints at the mid-point of each half hour, interpolation was performed as follows (where T̂ is interpolated temperature, hh:00 is to match a 
smart meter reading on hour hh, and hh:30 is to match with a smart meter reading at half past hour hh. Note that a smart meter reading at hh:00 is the 
total energy consumed from (hh-1):30 to hh:00. 

T̂ (hh : 00) = 0.75*T(hh : 00)+ 0.25*T((hh − 1) : 00) (B.1a)  

T̂ (hh : 30) = 0.75*T(hh : 00)+ 0.25*T((hh+ 1) : 00) (B.1b) 

Solar radiation and total precipitation are cumulative variables (like the energy readings); therefore, we simply halve the total accumulated in the 
relevant hour. For each of these variables, V, the interpolation is performed thus: 

V̂ (hh : 00) =
1
2
× V(hh : 00) (B.2a)  

V̂ (hh : 30) =
1
2
× V((hh+ 1) : 00) (B.2b) 

To capture seasonal effects on energy consumption, calendar day was transformed sinusoidally so that days at the start and end of the year had 
similar values. Each day of the year was assigned a number d indicating its position (1st January being number 1, 31st December being day D, usually 
364). Then we create two new predictive variables: 

sin_day = 1
2 sin

( 2πd
D
)
+1

2 (B.3a) 
cos_day = 1

2 cos
( 2πd)

D
)
+ 1

2. (B.3b) 

Appendix C. Model selection 

For each household, for each model we used 10-fold cross-validation to tune the hyperparameters and save the hold-out predictions for the optimal 
tuning parameters. Given the held-out predictions and the pre-pandemic observations we calculate the test error and bias for each model (for each 
household). We use coefficient of variation of the root mean squared error; CV(RMSE), and normalised mean bias error; (NMBE), defined as follows: 

CV(RMSE) =
1
y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(yi − ŷi)
2

n − 1

√

(C.1)  

NMBE =
1
y

∑
( yi − ŷi)

n − 1
(C.2)  

where n is the number of observations, yi is the ith observation, ŷi is the ith prediction, and y is the mean of the observations. ASHRAE guidelines [70] 
recommend requiring CV(RMSE) < 15% and NMBE within ±5% when calibrating predictions and observations at a monthly timescale. Thus, to 
compare our models we aggregate the predictions and observations from daily (or by period of the day) values to monthly values, and calculate the CV 
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(RMSE) (error) and NMBE (bias). 
For each household we are looking for a counterfactual model with low error and low absolute bias. However, since we are interested in monthly 

and quarterly analysis of the impact of COVID-19 over time, we also considered the error and bias in each month of the year. Accurately predicting 
summer demand was particularly difficult for the gas models, since heating is rare and total gas use very low (so dividing by y gives high error and 
bias). To select the final counterfactual model to be used for each household, we first removed any model with CV(RMSE) > 15% or |NMBE| > 5%, 
removing < 10 households for each fuel from the analysis. Then we selected the model with the lowest mean CV(RMSE) over all months. In some 
months gas use was zero which meant CV(RMSE) would be infinite. Therefore if y = 0 and 

∑(
yi − ŷi

)2
= 0 or 

∑(
yi − ŷi

)
= 0 (~perfect predictions), 

we set CV(RMSE) = 0 or NMBE = 0, respectively. If y = 0 and 
∑(

yi − ŷi
)2

> 0 (infinite error) we removed the month from the monthly accuracy 
analysis (we took the mean of all other months), and likewise for NMBE if 

∑(
yi − ŷi

)
∕= 0. 

Fig. C.1 shows the distribution of error each month for the best (selected) model for each household by way of boxplots. While we were able to 
reduce error in summer predictions considerably for gas by modelling summer separately for some households, the error is still higher than in winter, 
because consumption values are much lower, and so as a percentage a small difference is much bigger. March was the one month we didn’t require 
training data for as it reduced the sample size considerably, and was excluded from the 2020 analysis, so for some households there was limited data 
for training and testing in March, and therefore higher error. 

Fig. C.2 shows the mean bias each month for the final models. NMBE < 0 (as is more often the case for gas and in March for electricity) implies the 
model overpredicts the true values. This means that any results for summer gas use are more likely to be underestimating an increase in demand due to 
COVID-19. 

Fig. C.3 shows box plots for the test error and bias of each household’s final (selected) model error and bias. Dashed lines indicate the ASHRAE 
guideline thresholds. Due to statistical disclosure control (SDC) we are unable to show outliers or exact percentiles (instead showing the mean of the 10 
closest points to the true percentile). Following our extensive model development and testing process the final models are all well within the guideline 
accuracy thresholds, and at the sample level mean CV(RMSE) and NMBE are extremely close to zero. Median CV(RMSE) is 3.86% for electricity 
counterfactuals and 3.19% for gas. Median NMBE is 0.21% for electricity and − 0.10% for gas. Note that positive NMBE indicates under-prediction. 
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