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Abstract

Registration is a fundamental problem in medical image analysis wherein images

are transformed spatially to align corresponding anatomical structures in each image.

Recently, the development of learning-based methods, which exploit deep neural

networks and can outperform classical iterative methods, has received considerable

interest from the research community. This interest is due in part to the substan-

tially reduced computational requirements that learning-based methods have during

inference, which makes them particularly well-suited to real-time registration appli-

cations. Despite these successes, learning-based methods can perform poorly when

applied to images from different modalities where intensity characteristics can vary

greatly, such as in magnetic resonance and ultrasound imaging. Moreover, registra-

tion performance is often demonstrated on well-curated datasets, closely matching

the distribution of the training data. This makes it difficult to determine whether

demonstrated performance accurately represents the generalization and robustness

required for clinical use.

This thesis presents learning-based methods which address the aforementioned

difficulties by utilizing intuitive point-set-based representations, user interaction

and meta-learning-based training strategies. Primarily, this is demonstrated with a

focus on the non-rigid registration of 3D magnetic resonance imaging to sparse 2D

transrectal ultrasound images to assist in the delivery of targeted prostate biopsies.

While conventional systematic prostate biopsy methods can require many samples

to be taken to confidently produce a diagnosis, tumor-targeted approaches have

shown improved patient, diagnostic, and disease management outcomes with fewer

samples. However, the available intraoperative transrectal ultrasound imaging alone
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is insufficient for accurate targeted guidance. As such, this exemplar application

is used to illustrate the effectiveness of sparse, interactively-acquired ultrasound

imaging for real-time, interventional registration. The presented methods are found

to improve registration accuracy, relative to state-of-the-art, with substantially lower

computation time and require a fraction of the data at inference. As a result, these

methods are particularly attractive given their potential for real-time registration in

interventional applications.



Impact Statement

This thesis describes novel methods for medical image registration, a key enabling

image analysis technique in healthcare settings. With the ever-increasing num-

ber of medical images being acquired and used for diagnosis, treatment planning,

and surgical guidance; the development of fast, robust, and accurate registration

methodologies has become increasingly important.

Within academia, this work addresses several notable challenges associated

with learning-based multimodal and interactive registration techniques. Specifically,

this thesis presents the first learning-based generalizable ‘model-free’ and non-

rigid point-set registration method (Chapter 3). Additionally, the first adaptive,

learning-based method for interactive registration is presented in Chapter 4 and

further extended in Chapter 5. The desire with the introduction of such methods is

that this thesis may not only further advance the existing state-of-the-art, but also aid

in the development of other general-purpose registration methods. By contributing

through multiple publications at the intersections of technical fields, such as deep

learning and computer vision, and clinically-focused areas, such as prostate cancer,

prostate biopsy guidance, and scoliosis quantification, this thesis has the potential to

enable and create new avenues for research. Several interesting directions for such

future work are discussed in Chapter 6.

Beyond academia, this work has implications for prostate cancer diagnosis: In

current clinical practice, prostate biopsies are used to assist in the initial diagnosis and

are additionally performed as a regular part of active surveillance programs. Though

the sampling process is systematic, it relies greatly on the hand-eye coordination

of the clinician, among other factors. However, if the prostate is undersampled,
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clinically significant tumors can be missed and misdiagnosis can occur, leading

to under-treatment of the patient. As a result, more samples are usually acquired,

which can introduce complications for patients. The developments and evidence

found through this research, whereby fast, data-efficient and adaptable methods for

registration can deliver sufficiently accurate registration, are of critical importance

in this instance. Migrating from current clinical processes and procedures where a

systematic approach for prostate cancer biopsy is the standard, to an approach that

is targeted and guided by fused preoperative and intraoperative imaging – without

increasing the number of samples required or the length of the procedure – has the

potential to make prostate biopsy procedures more effective and efficient. With

nearly 100,000 prostate biopsies occurring in the United Kingdom each year by

reducing the number of unnecessary biopsy samples; every minute saved during the

procedure, and every complication, infection, or re-admission avoided by requiring

fewer samples to be taken during the biopsy may result in considerable savings,

financially and in working hours, to the health care system and help improve the

quality of life of prostate cancer patients.
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Chapter 1

Background

This thesis is broadly focused on the development of novel methods for medical

image registration using deep neural networks, with a particular emphasis on the

registration of multimodal imaging for prostate cancer biopsy guidance and prostate

cancer therapies. Notably, this thesis presents the application of these same pro-

posed methods to other tasks, such as the quantification of spinal deformity for

scoliosis monitoring and interpatient image registration to better provide references

for comparing and analyzing individual patient images. The inclusion of these sec-

ondary applications demonstrates early-stage efforts toward extending the research

beyond the core focuses given in each chapter. However, despite the differences

in application, these works are fundamentally linked through their technical and

clinical backgrounds. As such, the background material which is relevant to the

entire thesis is presented in this chapter. In each further chapter, the distinct context

and a literature review required for those specific technical methods and clinical

applications are presented.

1.1 Prostate Cancer
Prostate cancer is the most common cancer affecting men in the United Kingdom

with over 57,000 new cases each year [1, 2], with approximately 1 in 8 men being

diagnosed in their lifetimes [1,3]. It is also the second most common cause of cancer-

related death in the United Kingdom, accounting for 14% of all cancer-related deaths

in men [3, 4]. Globally, an estimated 1.4 million new prostate cancer cases – and
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nearly 400,000 deaths occurred in 2020 [5]. Prostate cancer is the leading cancer

diagnosis in over 100 countries, and the leading cause of cancer-related death in

nearly 50 countries [5]. The burden of prostate cancer is continually increasing given

aging populations globally [6]. Over 95% of prostate cancers are adenocarcinomas,

a type of cancer that forms in the tissue surrounding fluid-producing glands within

the prostate [7].

1.1.1 Prostate Anatomy

The prostate is part of the male reproductive system found below the bladder and

in front of the rectum (Figure 1.1) [8]. The prostate is formed of glandular and

fibromuscular tissue, with the glandular tissue composing the interior of the gland,

and the majority of the fibromuscular tissue comprising the outer capsule of the gland.

The prostate has various functions, most importantly, the prostate produces seminal

fluid – a component of semen. Furthermore, it has a role in hormone production –

such as the conversion of testosterone to dihydrotestosterone – and helps to regulate

the flow of urine given its location and that the urethra passes through the center of

the prostate as it leaves the bladder and goes through the penis [8]. Prostate size

changes with age, typically enlarging over time [8].

The prostate is split into three distinct anatomical zones; the peripheral zone,

the central zone, and the transition zone (Figure 1.2). The peripheral zone, the largest

zone – which comprises nearly 70% of the volume in most men – encompasses

the outermost region of the prostate and encircles the central zone and most of the

transition zone [9]. The peripheral zone is also where most prostate cancers are

detected [9]. The central zone comprises approximately 25% of the prostate volume

and surrounds the ejaculatory ducts. The transitional zone comprises approximately

5% of the prostate volume and is the most central part of the prostate [9]. The

transitional zone encircles the distal end of the urethra. Additionally, the superior

part of the prostate is called the base, while the lower, narrower part of the prostate

is called the apex.
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Figure 1.1: Illustration of the prostate gland and surrounding anatomy. From Cancer Re-
search UK, licensed under CC BY-SA 4.0 (https://creativecommons.org/
licenses/by-sa/4.0), via Wikimedia Commons.

1.1.2 Diagnosis, Staging, Management and Treatment

1.1.2.1 Prostate Cancer Diagnosis

Diagnostic tests can assist in finding early-stage prostate cancers through digital

rectal examinations or testing for prostate-specific antigen (PSA) in a patient’s

blood [7,10]. In some regions, these are used as part of formal or informal screening

programs [11]. During a digital rectal examination, a clinician will attempt to feel for

any lumps or hardness which may indicate cancer. PSA is a protein that is produced

by the prostate and by cancerous cells within the prostate. While a low level of PSA

is common, increasing slightly with age as the prostate grows, a high PSA level

can indicate prostate cancer or highly-treatable conditions such as prostatitis – the

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
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Figure 1.2: Illustration of the prostate gland’s zonal structures and encompassed
anatomy. From Mikael Häggström, M.D., licensed under CC0 1.0 (https:
//creativecommons.org/publicdomain/zero/1.0), via Wikimedia Com-
mons.

inflammation of the prostate. However, such tests are not particularly accurate [12].

For example, a clinician may only be able to feel non-cancerous parts of the prostate,

highlighting the subjective nature of digital rectal examinations. Furthermore, some

men with high PSA levels may not have prostate cancer, and some men with low PSA

levels may have prostate cancer. This can lead to false positives or false negatives,

prompting unneeded interventions or giving a false sense of security to a patient who

actually does have cancer.

As a result of a PSA test, examination, or other factors which suggest a patient

may have prostate cancer, patients may receive diagnostic imaging, in the form of

magnetic resonance (MR) imaging or multiparametic magnetic resonance imaging

(mp-MRI) – the imaging and diagnostic methods for which are discussed in Sec-

tion 1.1.3.2 – or a prostate biopsy to further their diagnosis. Under the National

Institute for Health and Care Excellence (NICE) guidelines for prostate cancer di-

agnosis in the United Kingdom, mp-MRI – i.e. using multiple MR techniques in

combination – should be offered to those with a suspected localized cancer [13]. A

https://creativecommons.org/publicdomain/zero/1.0
https://creativecommons.org/publicdomain/zero/1.0
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follow-up prostate biopsy should be offered to those with intermediate- and high-risk

cancers based on the MR results [13]. However, for patients with low-risk cancers,

biopsy should only be offered after a discussion of the risks and benefits of the proce-

dure [13]. This ruling out of the need for a prostate biopsy is important, despite the

stress that lack of treatment may cause patients, given the low chance (approximately

10 – 30%) of clinically significant cancer being present despite low-risk imaging

results, and the complications associated with prostate biopsy [13]. It is of note that

the findings from MR are only indicative and do not constitute a definitive diagnosis

in these cases, therefore a confirmatory biopsy is used to confirm more high-risk

cancers where an MR indicates that the grade might be higher.

A prostate biopsy is a surgical procedure where at least 6, and often 10, small

samples of prostate gland tissue are systematically removed from the left and right

apex, base, and mid-gland [14]. These samples are subsequently examined to deter-

mine the differentiation between healthy and pathological tissue to map, diagnose,

and grade the cancer. Prostate biopsies may be transrectal or transperineal: In tran-

srectal biopsies, the needle is inserted through the rectal wall towards the prostate

(Figure 1.3a). In transperineal biopsies, the needle is passed through the perineum

and into the prostate (Figure 1.3b). The transperineal approach is considered more

convenient due to its shorter learning curve, however, transrectal biopsies are more

widely performed [15]. Transperineal biopsies permit access to the base of the

prostate more easily; something which is often technically very difficult during

transrectal biopsies. Furthermore, the transperineal approach is better suited to map-

ping biopsies where a relatively large number of samples are collected. Transrectal

biopsies may be performed at a much lower cost and under local anesthetic at the

patient’s bedside, unlike a transperineal biopsy which typically requires specialized

equipment, staff, general anesthetic, and an operating room. However, transrectal

biopsies require the biopsy needle to pass through the rectal wall, posing a risk

of infection that is substantially greater than that of transperineal biopsies [15, 16].

In current practice, a specific type of ultrasound (US) imaging, namely transrectal

ultrasound (TRUS) imaging, will always be used during the procedure to help guide
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the insertion of the biopsy needles towards known targets, in addition to traditional

systematic sampling. Previously acquired MR imaging may also be used in conjunc-

tion with TRUS to perform targeted biopsies, having been shown to improve cancer

detection rates, especially those with intermediate and higher risk cancers [17].

(a) Illustration of a TRUS-guided transrectal
biopsy.

(b) Illustration of a TRUS-guided transperineal
biopsy.

Figure 1.3: TRUS-guided prostate biopsy procedures. Subfigures (a) and (b) from Cancer
Research UK, licensed under CC BY-SA 4.0 (https://creativecommons.
org/licenses/by-sa/4.0), via Wikimedia Commons.

Notably, even when systematic biopsy sampling of the prostate is used during a

biopsy, underdiagnosis may occur if the locations and trajectories of the needles do

not accurately capture the full distribution of cancerous tissue [18]. This results in

reported sensitivities of approximately 70–80% for most procedures [19], overall,

potentially leading to false negative diagnoses in 3 in 10 patients. If there is justifica-

tion for obtaining more samples, such as from a region where there is evidence of

disease from pre-operative MR imaging, clinicians may acquire additional samples,

with additional sampling improving sensitivity by as much as 30%, depending on

which region of the prostate they are acquired from [20]. However, the collection of

more samples increases the length of the procedure, may cause increased discomfort

for the patient, increase the risk of infection, and increases the cost of histopathol-

ogy [18, 21–23]. Worryingly, while between 1993 and 2011 as many as 4.2% and

0.8% of patients who underwent prostate biopsy experienced post-procedural fever

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
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and required hospital re-admission [22], these numbers are now as much as 17.5%

and 6.3%, respectively [23], and are increasing in many developed countries, includ-

ing the United Kingdom, Canada, and the United States [23]. It is likely that these

numbers are increasing due to rising antimicrobial resistance [22–24], given that the

increases were cumulative, appearing over time, and were not observed per patient

between initial and repeat biopsies [23].

1.1.2.2 Prostate Cancer Grading and Staging

Cancer grading is used to describe the abnormality of the tumor cells in a given cancer,

as compared to normal cells. One often used method for grading prostate cancer

is the Gleason score [25, 26]: Gleason scores are determined by observing biopsy

samples in the areas that make up the majority of the cancer in the sample, based

on the amount of healthy tissue and the arrangement of any cancerous tissues [25].

While the numerical score attributed to each area may range from 1 to 5, scores 1

and 2 are rarely reported in practice as they indicate normal healthy tissue [26, 27].

The remaining scores indicate the amount of differentiation between the cancerous

and healthy tissue, ranging from well-differentiated (3) to undifferentiated (5) and

indicating low- and high-risk cancers, respectively [25, 26] (Figure 1.4).

To determine the Gleason score, a score is first assigned to the largest or most

obviously cancerous region, and then to the other areas of growth as a whole. The

sum of these two scores should add to a value between 6 and 10 to indicate the

summed score, which is used to grade the cancer [25]. A score of 6 indicates well-

differentiated cancer with cells that resemble healthy tissue. These cancers are likely

to grow slowly and be lower risk. On the other extreme, a score of 10 indicates

undifferentiated cancer with cells that look very different from healthy tissue. These

cancers may grow quickly and aggressively and are high-risk.

Other grading systems, such as the International Society of Urological Pathology

(ISUP) grade groups [28, 29], map Gleason scores onto a range of 1 to 5 instead of

2 to 10. Under the ISUP grade groups, the lowest grade is 1, not 6 – as in Gleason

scoring. These changes stand to help patients better understand their diagnosis

and disease progression, as well as their prognosis given the clear boundaries and
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Figure 1.4: The Gleason score system for grading prostate cancer. Lower scores indicate
tightly packed glands, whereas spread-out glands indicate higher-grade cancers.
From National Institutes of Health, Public domain, via Wikimedia Commons.

thresholds for each of the ISUP grade groups [30].

While the Gleason or ISUP score is an important aspect of grading prostate

cancers, several other factors are commonly used alongside Gleason scoring to assist

in determining the best treatment options. These factors include multiple diagnostic

findings, such as PSA scores, examinations, findings in patient imaging, how many

biopsy cores contained cancer, the concentration of cancer within those cores, and if

the cancer has metastasized. Cancer staging also incorporates this kind of diagnostic

information and is used to provide an overall indication of the size, growth rate,

and anatomical spread of a given cancer. Staging for prostate cancer is often done

using the TNM system [31], which is comprised of individual scores for the tumor

(T), lymph nodes (N), and metastasis (M) (the spread of cancer beyond the organ

in which it originated). The tumor can be classified into one of four stages (T1 –

T4): T1 cancers are too small to be seen in imaging, and often cannot be felt through
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examination [31]; T2 and T3 cancers denote cancers that are contained within the

prostate gland, and those which have only just broken through the prostate gland,

respectively [31]; T4 cancers have spread beyond the prostate [31]. Stages T1 – T3

also have various sub-stages which more accurately describe the exact nature of the

tumor size and spread within the prostate. The lymph nodes are classified as either

N0 if there are no cancer cells in nearby lymph nodes, or N1 if there are cancer cells

within the lymph nodes near the prostate [31]. Furthermore, two stages describe the

metastasis of the cancer; M0 and M1. M0 indicates no spread beyond the prostate,

whereas M1 indicates spread beyond the prostate. M1 has several sub-stages to

indicate the location of the metastasis, such as into bone or other organs [31].

Different staging and risk classification protocols utilize the TNM system

alongside other diagnostic information. In the United States, for example, the

American Joint Committee on Cancer (AJCC) TNM system [32] is commonly used.

In the United Kingdom and across Europe, the Cambridge Prognostic Group (CPG)

system [33] is often employed. The AJCC TNM system incorporates the TNM

system with PSA level and Gleason score to assign a stage between I and IV, where

stages II through IV have several sub-stages with multiple criteria [32]. The CPG

system also incorporates PSA and Gleason score to assign a stage between CPG 1

and CPG 5 [33]. There are no sub-stages within each stage in the CPG system. In

stages I and II, and in stages CPG 1 through CPG 3, there may be no immediate

treatment and Active Surveillance (AS) may be recommended. For the higher stages,

or depending on patient age and general well-being, and the patient’s attitude towards

treatment, localized or systemic treatments may be recommended.

1.1.2.3 Prostate Cancer Management and Treatment

AS is a treatment management option that is being increasingly recommended to

patients diagnosed with low-risk disease, where their prostate cancer is likely to not

be harmful during their lifetime. AS involves regular testing and monitoring, and

there is the possibility that an intervention may occur should the disease progress.

This permits a more managed and patient-specific approach. Several classification

and scoring systems, such as the D’Amico Classification [34] or the Gleason Score
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[25, 26], present clinically significant thresholds and scoring processes for low-,

intermediate-, and high-risk patients. Most patients who are recommended to receive

AS are those for whom their cancer is not causing harm in the absence of treatment,

and is localized to the prostate. Additionally, patients in these lower-risk categories

who are selected for AS will have other low-risk indicators, such as a low PSA

level. In short, those, and only those at high risk of a lower quality of life or

reduced life expectancy would be recommended for treatment in practice unless the

patient specifically requests an intervention (for instance, where the AS confers a

significant mental health impact). This leads to a key advantage of AS, the need for

potentially unnecessary surgery or other treatments and their accompanying side

effects is removed. However, there are notable disadvantages as well. Mainly, the

psychological stresses associated with a lack of treatment may be significant, and –

in extreme cases – if there is significant disease progression in between examinations,

the cancer may have spread beyond the prostate, preventing the effective use of less

aggressive treatment options.

Throughout AS, patients will receive routine examinations, PSA tests, and

prostate biopsies [7, 10]. For patients on AS, targeted interventions will only be

offered if, or when, significant disease progression is observed, typically through

changes to measures such as the patient’s Gleason Score. While AS provides most

patients a positive outcome after delaying or indefinitely postponing interventions

[35], many patients still undergo invasive or unnecessary treatments which can lead

to significant side effects without yielding improved outcomes [36].

In cases where treatment is required due to the stage of cancer, or treatment is

requested by the patient, the available treatment options for prostate cancer range

from localized treatments, where a specific area of the body is targeted, to systemic

treatments, where the entire body is targeted. For prostate cancer, local treatment

options broadly include different types of surgery and radiation therapy [10]. System-

atic treatments depend on the type, location, and stage of cancer, and may include

therapies such as chemotherapy, hormone therapy, and immune therapy. Most early-

stage cancers, especially those which have not spread into other parts of the body,
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are often treated using localized, tissue-sparing treatment approaches.

Surgical options involve the partial or complete removal of the prostate, and

often the surrounding lymph nodes, through a procedure called a prostatectomy.

The removal of the lymph nodes, and their subsequent dissection, may be done to

determine if the cancer has spread beyond the prostate and can help assess the sever-

ity of the cancer. Open, robotic, and laparoscopic prostatectomies are employed in

practice to excise the prostate and lymph nodes. All approaches have been reported

to cause similar side effects and complications, such as urinary incontinence or impo-

tence [37–39]. Importantly, robotic and laparoscopic approaches have demonstrated

shortened recovery times and cause less bleeding during surgery [38, 39].

Radiation therapy utilizes radiation to kill cancer cells, usually through a series

of treatments over time. External-beam radiation therapy, stereotactic body radiation

therapy, and brachytherapy are the more commonly utilized types of radiation

therapy options for prostate cancer [10]. External-beam radiation therapy involves

the use of focused beams of radiation directed at the cancer, delivered over multiple

sessions [40]. Stereotactic body radiation therapy provides radiation from various

angles while the patient is kept still through the use of a mesh-like shell so that

the cancer receives a high dose of radiation, while the surrounding structures and

tissues receive a much lower dose [41]. Brachytherapy involves the implantation

of radioactive seeds directly into the cancer for less than an hour or for up to a

year, in high-dose-rate (Figure 1.5a) and low-dose (Figure 1.5b) rate brachytherapy,

respectively [42]. Both external-beam radiation therapy and brachytherapy may be

offered independently for low-risk patients who opt for treatment in place of AS.

For patients with intermediate- or high-risk cancers, external-beam radiation therapy

and brachytherapy may be offered in tandem [43]. While the presence of common

surgical side effects, such as urinary incontinence and impotence are lessened with

radiation therapy [44], it is notable that for higher-risk cancers, prostatectomy has

been shown to deliver more reliable patient outcomes [40]. Proton beam therapy, a

newer form of radiotherapy, uses high-energy protons to kill the cancer cells [45].

While in some instances it reduces the damage to surrounding healthy tissues, the
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outcomes are no better than more widely used radiation therapy methods, and so

it is used less frequently than external-beam radiation to treat prostate cancer [46],

however; prostate cancer treatment is a major application for proton beam therapy.

(a) Illustration of a TRUS-guided high-dose
brachytherapy procedure where radiation is
delivered through wires inserted nearby and
into the cancerous regions of the prostate for
a short period of time.

(b) Illustration of a TRUS-guided low-dose
brachytherapy procedure where radiation
is delivered through implanted radioactive
seeds which are inserted nearby and into the
cancerous regions of the prostate over a long
period of time.

Figure 1.5: TRUS-guided prostate brachytherapy procedures. Subfigures (a) and (b)
from Cancer Research UK, licensed under CC BY-SA 4.0 (https://
creativecommons.org/licenses/by-sa/4.0), via Wikimedia Commons.

1.1.3 Prostate Imaging

1.1.3.1 Ultrasound Imaging

US is a widely-available non-ionizing imaging modality that produces cross-sectional

two-dimensional (2D) or three-dimensional (3D) images. It is typically used for

imaging internal structures, such as organs and other soft-tissue structures, but

can also be used to image bones. US images are produced from the emission

of high-frequency sound waves which are subsequently reflected and scattered at

tissue interfaces where there is a change in acoustic impedance in the internal

structure being imaged. Adopting a simplified pulse-echo model of ultrasound image

formation, reflected sound waves, or echoes, detected by a linear-array, piezo-electric

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
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ultrasound transducer, can be processed to form an image where each pixel in the

image corresponds to the location of the echo within the body, and the brightness of

each pixel corresponds to the ‘strength’ of the echo (i.e. amplitude of the received

signal) [47]. This type of US image is referred to as brightness mode, or ‘B-mode’,

and is one of the most commonly used US imaging methods [47]. In reality, small-

scale variations in the acoustic properties of tissue give rise to ultrasound energy

being scattered in all directions. Constructive and destructive interference of these

waves at the transducer surface gives rise to the characteristic ‘speckle’ that appears

in B-mode US images.

B-mode images are formed by placing an ultrasonic ‘transducer’, which acts

as both a source of and receiver of US waves, in contact with the subject’s skin.

The ultrasound waves are then emitted in short pulses, at a centre frequency, which

travel along a narrow beam into the body through the skin [47]. Most diagnostic US

frequencies range from 2 – 15 MHz. Lower frequencies are used for deeper structures,

and higher frequencies for more superficial ones because higher frequencies (with

shorter wavelengths) are more easily absorbed. Once inside the subject, the waves

are scattered and reflected off of different structures, which generates echoes. The

amount of resistance that the beams will encounter is called the acoustic impedance.

Acoustic impedance is a unique property of tissue, and it depends on the density of

the tissue and the velocity of the waves transmitted through the tissue. Relatively

large changes in acoustic impedance occur at tissue boundaries and are most easily

visually identified at the boundaries between tissues and between tissue and bone

because of the differences in densities. Because tissues are complex materials where

there is a continuous change in structure and density, the acoustic impedance varies

within a given tissue. This can give rise to distinct textures and patterns, even

within a single type of tissue. Once these echoes travel back to the transducer,

they are detected and used to generate the image. Based on the distance from the

transducer, calculated from the time taken to receive the echoes from the original

wave – assuming a constant speed of sound – and the strength of the echo when it

returns, the image can be reconstructed. As such, echoes from targets closest to the
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source are received first, and echoes that describe structures at further depths return

to the source after. This emission, reflection, and reconstruction process happens

around 10 – 100 times per second in most modern US devices, giving a real-time

depiction of the imaged area. The difference in acoustic impedance across tissue

interfaces and within a given tissue is what is ultimately shown in a US image.

The relative brightness within a given tissue or structure in a US image is termed

echogenicity. A tissue with higher echogenicity is ‘hyperechoic’, a tissue with lower

echogenicity is ‘hypoechoic’, whereas tissues that have similar echogenicity are

termed ‘isoechoic’. While many cancers are isoechoic or hypoechoic [48–50],

hyperechoic cancers are also possible, especially in prostate cancer [49]. Though

they are not as common, they are often more severe and can indicate a later stage

of disease [49]. In the US imaging of 200 patients, Spajić et al. found hyperechoic

lesions in 9.5% of patients, and 7.6% of the identified lesions were hyperechoic [49].

Additionally, while hypoechoic and isoechoic lesions had mean Gleason scores of

5.6 and 5.4, respectively, hyperechoic lesions had a mean Gleason score of 7.0 [49],

suggesting that hyperechoic lesions are more likely to be cancerous. It is also notable

that calcifications within the prostate, more common in older patients, are also

hyperechoic, and may resemble cancers in US imaging.

While most B-mode transducers are designed for external use (Figure 1.6a),

there exist several types of transducers which are made for intracavity use (Fig-

ure 1.6b). TRUS, commonly used for targeted prostate biopsies, as discussed in

Section 1.1.2.1, often uses a radial arrangement of transducer elements, unlike the

linear or curvilinear arrangements common in external transducers (Figure 1.7).

While linear-array transducers give a consistent field of view throughout the entire

image (Figure 1.8a), the radial arrangement is particularly suited to internal imaging

as it gives a very wide field of view of up to 360° (Figure 1.8b), either by virtue

of a circular transducer or through the rotation about the central axis of a smaller

transducer [47].

TRUS is commonly used for prostate imaging given the prostate gland’s position

anterior to the rectum, permitting clear visualization and evaluation of the prostate
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(a) A linearly-arranged ultrasound
transducer, typically used for
externally imaging through di-
rect contact with the subject’s
skin (Ultrasonix L14-5/38 Lin-
ear array Ultrasound Trans-
ducer Probe, Ultrasonix Medi-
cal Corporation, Richmond, BC,
Canada).

(b) A radially-arranged transrectal ultrasound transducer,
used for internally imaging within the rectum (BK 8848
Endocavity Biplane Transducer Probe, BK Medical - a
GE HealthCare Company, Burlington, MA, USA).

Figure 1.6: Different types of ultrasound transducers.

Figure 1.7: Linear (left), curvilinear (middle), and radial (right) transducer scanning arrange-
ments.

in real-time (Figure 1.8) [51, 52]. However, most prostate cancers sampled during

TRUS-guided biopsies are not easily visible in TRUS due to their isoechoic nature

relative to other tissues in the prostate gland [49, 52]. Because of the difficulties

associated with visualizing some prostate cancer pathologies in US and TRUS

imaging, MR imaging is being increasingly used to assist in the detection and

diagnosis of prostate cancers.

1.1.3.2 Magnetic Resonance Imaging

MR imaging is a 3D volumetric imaging modality that produces detailed anatomical

images by exciting – and subsequently detecting the changes made to – protons
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(a) Sagitally-oriented linear US image of the
prostate gland, acquired from a TRUS trans-
ducer.

(b) Axially-orientated radial US image of the
prostate gland, acquired from a TRUS trans-
ducer.

Figure 1.8: Sample sagitally- and axially-oriented TRUS images of the prostate gland
acquired during a prostate biopsy procedure.

found in the water within tissues [53]. Through the use of powerful magnets, a

strong magnetic field is produced which aligns protons in the subject’s tissues with

that magnetic field. During image acquisition, a radiofrequency current is repeatedly

pulsed through the subject. This causes the protons in tissues to excite, and start to

spin out of equilibrium, causing a pull against the magnetic field. Between these

pulses, the energy released through ‘relaxation’, as the protons realign with the

magnetic field, is detected and measured. The relaxation time and energy release

which are required to realign with the field are what give different tissues, structures,

and organs their distinct appearances in MR imaging and this is measured by the

scanner [53]. MR imaging is particularly well suited to soft tissues, however, it

typically provides poor visualization of bony regions since there is little to no water

within such structures unless specialized imaging techniques are used.

Precise differentiation between certain tissues can be obtained by modifying

the timing of the sequences of radiofrequency pulses. The two most common MR

sequences are called T1- and T2-weighted images. In general, T1-weighted images

use shorter times between pulses, and T2-weighted images use longer times between

pulses [53]. In practice, this means that T1-weighted images are more effective for
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identifying fatty tissues and obtaining morphological information. For T2-weighted

images, the visualization of inflammation and lesions (due to high water content),

as well as the ability to assess the zonal anatomy of the prostate, is improved

(Figure 1.9).

(a) Sagitally-oriented T2-weighted MR image of
the prostate gland.

(b) Axially-oriented T2-weighted MR image of
the prostate gland.

Figure 1.9: Sample sagitally- and axially-oriented MR images of the prostate gland and
surrounding anatomical structures. From PROSTATE-MRI [54], licensed under
CC BY 3.0 (https://creativecommons.org/licenses/by/3.0), via The
Cancer Imaging Archive [55].

The morphological assessments possible with T2-weighted images can be

combined with other MR imaging techniques through mp-MRI. Often, techniques

such as diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE)

imaging will be included as part of the diagnostic imaging process for prostate

cancer [56]. A type of functional imaging, DWI exploits the variations in the motion

of water by measuring the random Brownian motion of water molecules in tissue [53].

The contrast in DWI comes from the variation of motion in water, and the signal

is inversely correlated to the degree of random motion in the water molecules. A

magnetic field gradient is applied, dephasing the spin of the water molecules, and

causing the spin phases to vary along the gradient direction. A second gradient

is then applied in the opposite direction, to cancel the previous dephasing. This

results in the moving water molecules experiencing a different gradient intensity,

https://creativecommons.org/licenses/by/3.0
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while the non-moving water molecules experience the same gradient intensity. This

leaves the moving water molecules dephased and the non-moving water molecules

in phase. The higher motion then has a higher signal loss, and the lower motion has

a lower signal loss. In most of the normal, glandular tissue throughout the prostate,

water molecules move freely. Conversely, prostate cancer growth depletes normal

tissue, replacing it with a more dense tissue, which restricts the movement of water

molecules. These regions appear brighter in the acquired images due to the lower

signal loss (Figure 1.10). While the combination of DWI and T2-weighted imaging

improves diagnostic capabilities [57], DWI has relatively poor spatial resolution and

specificity [57].

To overcome the resolution and specificity issues associated with DWI, quantita-

tive maps may be extracted from multiple DWI with different weightings to form an

apparent diffusion coefficient (ADC) map. The ADC map represents a measure of the

magnitude of diffusion of water molecules within tissue at a given voxel location. An

ADC map is obtained by acquiring several conventional DWI images with different

weightings to obtain a “pure” diffusion coefficient at each voxel. While a minimum

of two acquisitions are required to create an ADC map, the accuracy of the map can

be improved by obtaining multiple acquisitions at different attenuation coefficients.

In the ADC map, tissues appear with inverse intensity characteristics to DWI, giving

normal tissue a brighter appearance and prostate cancer a darker appearance (given

the smaller magnitude of diffusion) in the generated map (Figure 1.10).

DCE imaging utilizes T1-weighted imaging, acquired before, during, and after

the administration of a contrast agent. The contrast most often used is gadolinium-

based, which is administered intravenously. Due to the contrast agent’s ability to

enhance the visibility of vasculature, and the highly-vasculature nature of tumors,

DCE can be a useful tool for obtaining diagnostic information in certain circum-

stances (e.g. for risk stratification in the transition zone for ambiguous lesions [59]),

but consideration must be given to whether the potential diagnostic benefits outweigh

the risks of administering a contract agent [59]. The blood vessels in tumors tend to

be more porous and ‘open’ relative to normal tissue, which results in rapid and early
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Figure 1.10: T2-weighted imaging (left column), diffusion-weighted imaging (DWI) (mid-
dle column), and apparent diffusion coefficient (ADC) maps (right column)
demonstrating prostate MR scans for three different patients. Yellow contours
clinically significant indicate prostate cancer lesions. From [58], licensed
under CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/
by-nc-nd/4.0/) / Cropped from original.

enhancement, as well as the early and rapid outflow of the contrast agent. In DCE

imaging, gadolinium-rich regions reduce the relaxation time of the voxels, leading to

a brighter image at a given time-point, which can indicate the presence of a tumor.

However, given the toxicity of gadolinium, the need for additional scanning time,

and the lack of significant value for diagnosis, the effectiveness and continued use of

DCE imaging for prostate cancer diagnosis are debated [59].

Overall, while T2-weighted imaging on its own has diagnostic use, the combi-

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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nation of multiple mp-MRI sequences, such as those described above, can provide

additional diagnostic value [56]. The use of T2-weighted imaging with DWI and

the use of T2-weighted imaging with DCE imaging have both been shown to assist

in more accurately detecting prostate cancer [60, 61]. Tanimoto et al. demonstrated

a significant change in diagnostic accuracy for prostate cancer over analysis of 83

series of patient imaging when using T2-weighted imaging and DWI compared to

solely T2-weighted imaging, where accuracies were 84% and 64%, respectively [61].

While US imaging requires direct contact with the subject’s skin, MR images

may be obtained by placing the subject inside the bore of an MR scanner (Fig-

ure 1.11), which contains a large, superconducting electromagnet. Because MR

image acquisition can take from seconds to many minutes, scanning sessions can

take an hour or more, and subjects must remain still to prevent any motion artifacts

in the images.

Figure 1.11: An ‘open bore’ MR scanner, where there is an opening on both sides of the
subject. From United States Navy, Public domain, via Wikimedia Commons.

MR imaging has various roles within prostate cancer diagnosis and management,

owing to its accurate imaging capabilities. One such use, MR-guided biopsy, offers
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the ability to precisely target specific regions during diagnosis, as discussed in

Section 1.1.2.1. However, MR also plays an invaluable role in cancer grading and

staging, treatment planning, and management [62]: With respect to grading, in

addition to PSA values and Gleason scores, MR assessment is an important part

of risk classification systems [34] and provides accurate visualization of regional

metastatic spread [62]. A widely used reporting system is the Prostate Imaging-

Reporting and Data System (PI-RADS). PI-RADS is used for the evaluation of

suspected prostate cancer based on findings from mp-MRI and is used to predict the

chance that a given cancer is clinically significant [63]. Here, clinically significant

means that the patient will likely require treatment and is defined as a Gleason

score of at least 7, a tumor volume of over 0.5 mL, or any tumor growth which has

progressed beyond the outside of the prostate [63, 64]. Under PI-RADS, lesions are

given a score from 1 to 5, where 1 indicates a very low and 5 indicates a very high

probability of clinically significant cancer being present. Lesions can be scored on

T2-weighted imaging as well as in DWI or DCE. The scoring from each of these

types of imaging also depends on whether the lesion is located in the transition- or

peripheral zone of the prostate [63, 64].

MR imaging plays an increasingly important role in surgical and treatment plan-

ning, its use often being crucial for determining potential surgical candidates [65].

As tumors that are solely contained within the prostate meet the eligibility criteria for

prostatectomy, MR-based assessment can be useful for determining suitability for the

procedure [62]. Furthermore, MR has been used for patient selection for brachyther-

apy, as well as determining optimal planning for the placement of the radioactive

seeds to appropriately target the tumor site within the prostate while avoiding critical

structures such as the rectum and urethra [66]. During post-treatment disease manage-

ment, MR has found uses for detecting tumor recurrence after prostatectomy [67,68]

and to assess patient and tumor response to different radiation therapies [62].
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1.2 Medical Image Registration

1.2.1 Overview

Medical imaging technologies, such as US and MR, have become commonplace

throughout many aspects of healthcare. They have fundamentally changed how

diagnosis, treatment planning, and surgical guidance are performed, and continue

to do so. Often in these types of clinical tasks, multiple images may be acquired.

Importantly, these images are acquired at different times – minutes, days, or even

months apart – using different modalities, and may even be from different patients

(for population-based assessments). The need to simultaneously visualize and com-

pare these images is apparent and is accomplished through a process called image

registration; now a task of fundamental importance to the field. Medical image

registration describes the process in which correspondence is established between

a pair of medical images such that they may be spatially transformed to align the

images themselves and the anatomical structures within each of the images [69].

Medical image registration methods are historically divided into intensity-

based methods and feature-based methods [69, 70]: In the literature, intensity-based

methods are distinguished according to whether the registration seeks to align images

through the inherent patterns in image intensities (or image intensity distributions)

through one or more similarity measures. This is done without the explicit use of

extracted image features. Feature-based methods, on the other hand, are distinguished

by whether the registration seeks to align images through the establishment of

correspondence between features derived or extracted from the images, such as

points, contours, or surfaces. These features may be extracted explicitly, for instance,

through the manual or algorithm-based identification of organ boundaries and other

anatomical landmarks.

An often-used case of medical image registration is so-called ‘pairwise’ regis-

tration, where two images are aligned. Here, one image is referred to as the ‘source’

image and the other is the ‘target’ image. The source image is spatially transformed

to align with the target image through a process that requires a transformation model,

a similarity metric, and an optimization method.
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Formally, a registration task may be described as the problem of determining

the transformation T , which optimally aligns the corresponding pixels, voxels, or

other features in image xsource, to those in image xtarget image and can be expressed

as:

T (xsource)≈ xtarget (1.1)

We may define a similarity measure, discussed further in Subsection 1.2.3, in terms

of T , xsource, and xtarget as a function fsim such that:

S = fsim(T (xsource), xtarget) (1.2)

We may find the optimal parameters θθθ optimal for a parametric transformation

T (θθθ optimal) that maximizes the similarity measure of fsim by some optimization

process – as described in Subsection 1.2.4:

θθθ optimal = arg max
θθθ optimal

fsim(T (xsource), xtarget) (1.3)

Parametric transformations are explored further, along with non-parametric transfor-

mations, in Subsection 1.2.2.

1.2.2 Transformation Models

Medical image registration algorithms may be differentiated by the transformation

models they use to describe the spatial transformation which relates the source and

target image spaces. Broadly, transformations can be described as either rigid or non-

rigid. Rigid transformations are typically composed of rigid-body translations and

rotations [69]. Affine transformations also include scaling and shearing [69]. Rigid

transformations are inherently global and are applied to the entire image. As such,

they are typically applied for the registration of rigid structures, or as part of a coarse,

initial registration, ahead of an additional refinement step. These qualities make it

difficult to model local differences between images, and the anatomical structures

within them. In such instances, additional deformation is required, and this is often



1.2. Medical Image Registration 65

defined or applied by using non-rigid transformations [71]. Non-rigid transforma-

tions can either be parametric or non-parametric, where parametric transformations

are described by a model with a given number of parameters or functions, and

non-parametric transformations allow each element of an image to be displaced inde-

pendently. Thin-plate splines [72], B-splines [73, 74], and diffeomorphisms [74, 75]

are examples of parametric non-rigid transformations, whereas elastic- [76, 77] and

optical flow- or fluid-based [78] transformations are considered to be non-parametric.

1.2.3 Similarity Measures

Similarity measures are used to measure the extent of spatial alignment following a

registration, typically via the assessment of two separate terms, combined into one

similarity measure, also called a ‘cost function’. The first term measures some aspect

of the relationship between voxel intensities for intensity-based image registration

methods and some form of structural similarity for feature-based image registration

methods. The second term is used to impose constraints or a form of regularization

on the deformation which defines the registration. Numerous similarity and reg-

ularization measures exist for both intensity- and feature-based methods. Several

common measures for each are described below.

1.2.3.1 Intensity-Based Similarity Measures

Many intensity-based similarities have been used in practice, however, most methods

typically utilize the intensity differences or cross-correlations which may exist

between the source and target images. Measures based on the intensity differences

between the warped source and target images may be derived from the sum of

squared differences (SSD) [79, 80], typically when the intensities are correlated,

as in unimodal registration. The SSD aims to demonstrate similarity through the

premise that when well registered, each voxel or pixel in the images should have

the same intensity, giving a lower SSD. The use of cross-correlation operates in

much the same way [81, 82], though instead of assuming identical intensities, the

assumption is that there is a linear relationship between the intensities of similar

structures in each image. Conversely to the SSD, most correlation-based measures
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desire a higher value to indicate a better correlation between the images and in-turn

a better registration.

While these measures are both often used in image registration, these tend to be

more effective in unimodal registration tasks - where the source and target images

share the same intensity distribution, such as MR-MR registration tasks. However,

this is not always the case, possibly due to the noise which may be present in the

image. One such example is in modalities such as US, where these measures can

be less effective. Furthermore, in scenarios where multimodal image registration

is required, e.g. MR-US, these measures may fail when computed on the images

directly. An often-used method for multimodal (and unimodal) image registration is

Mutual Information (MI), an information-theoretic measure that describes the mutual

dependence between two given images [83–86]. In essence, MI describes how well

each image can explain the other, where we assume there exists some deterministic

function between each image, such that all information in each image is shared; a

high value for the MI similarity measure should indicate a better registration between

two images.

1.2.3.2 Feature-Based Similarity Measures

Feature-based similarities often involve minimizing distances between the source

and target data through features, such as point-sets, contours, or binary segmentation

maps, extracted from, or defined by the source and target images. Typically, these

features will represent the region of interest (e.g. the organ). As with intensity-based

registrations, the SSD may be used here, though it will define a spatial distance

between corresponding points or structures, rather than the difference in intensities.

Other metrics for spatial distances between image features, such as the Euclidean

distance or Chamfer Distance (DC), have been used to describe aggregate point-

closeness [87, 88]. For both measures, a smaller distance typically indicates a

better registration (i.e. a closer ‘fit’ between the source and target features). In

the case of segmentation maps, overlap measures typically used for evaluating a

given segmentation, such as the Dice similarity coeffcient (DSC) or Intersection over

Union (IoU), may be used to measure similarity in feature-based image registration



1.2. Medical Image Registration 67

processes. In such instances, the similarity or degree of overlap of the segmentation

maps is determined, respectively. In both cases, a higher value for such overlap-based

metrics indicates higher similarity, and likely a more accurate registration.

1.2.3.3 Regularization Measures

Multiple regularization measures exist for preserving smoothness or constraining

the deformations in the registration. Existing approaches have used measures such

as the L1 Norm of the displacement gradient [73], or the sum of squared first-order

derivatives of the transformation [89]. However, the most common approaches

utilize the second-order derivatives of the transformation to regularize the bending

energy [73] or the Jacobian determinant to apply an incompressibility constraint to

the registration [90].

1.2.4 Optimization Methods

On the assumption that the optimal value of a given similarity measure corresponds

to correctly registered images, the goal of the optimization algorithm is to find,

often iteratively, the transformation that maximizes or minimizes (depending on

the measure) the similarity measure. While several optimization methods exist,

methods and solutions which are based on gradient descent (or ascent) [73, 91, 92]

and least-squares approaches [93,94], such as the Procrustes method [69], are among

the most commonly employed. Gradient descent is commonly applied in both

intensity- and feature-based methods. In gradient descent, following the computation

of the similarity and gradient, a step is taken along the search space in the direction

of the computed gradient. This occurs iteratively until convergence is achieved.

Least-squares methods are conventionally applied in feature-based methods. In least-

squares approaches, the rigid transformation which minimizes distances between

points is computed by determining the rotation and translation which define the

optimal alignment.



1.3. Deep Learning 68

1.3 Deep Learning

1.3.1 Overview

Deep learning represents a class of machine learning algorithms that are composed

of processing layers that can learn high-level representations and features from data

at various levels of abstraction [95]. Deep learning has enabled great improvements

and redefined the state-of-the-art in numerous fields through its ability to universally

approximate functions that relate complex datasets. Most deep learning methods

are based on the Artificial Neural Network (ANN), a system built from perceptrons,

the fundamental building block of ANNs. These perceptrons loosely model the

connections in a brain to learn to perform a specific task without utilizing hand-

engineered rules or heuristics and can be described mathematically as:

a = ϕ

(
n

∑
i=1

wixi +b

)
= ϕ

(
wwwT xxx+b

)
(1.4)

where a is the unit’s activation, the layer www is a vector of weights, xxx is a vector of

inputs, b is the bias, and ϕ is the activation function. The flow of the inputs through

a single perceptron unit is illustrated in Figure 1.12.

Figure 1.12: The flow of multiple inputs through a single perceptron unit, and associated
activation function, into a single numerical output unit activation.

Activation functions map the weighted inputs of the perceptron to the unit’s

output. Often, these functions are nonlinear and are designed to mimic the firing

of biological neurons, such as the logistic sigmoid function: ϕ(x) = (1+ e−x)−1.
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Given its smooth shape and range of [0, 1], the logistic sigmoid function was

more commonly used as an activation function before the introduction of rectifier-

based functions, such as the Rectified Linear Unit (ReLU) [96] – computed as

ϕ(x) = max(x, 0). ReLU provides many benefits in deeper network architectures,

such as sparse activations, better gradient propagation and efficient computation [96].

On its own, an individual perceptron has limited mapping ability. However,

perceptrons can be assembled into networks comprising multiple layers, each with

multiple perceptron units, referred to as a multi-layer perceptron (MLP), where the

input is propagated layer-by-layer through the network (Figure 1.13). The first layer

will receive input data, and the final layer will provide the inferred output. The layers

between the input and output are referred to as hidden layers. Each given node in a

layer is typically ‘fully connected’ in the sense that each node is connected to every

node in the subsequent layer and permits the learning combinations of non-linear

features within the neural network. This means that each perceptron unit has its own

bias and weights for every pair of units in consecutive layers.

Figure 1.13: A MLP with four input nodes, two hidden layers comprised of eight nodes
each, and a single numerical output.

Once assembled, these networks are capable of learning through a training

process. This occurs in an iterative, epoch-based manner over many different training
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examples, where the number of epochs indicates the number of passes through the

training data that will occur during training. Formally, this may be considered a type

of minimization problem, where, given a neural network f and learnable parameters

θθθ , the goal of a deep learning approach is to determine the optimal parameters of

θθθ , θθθ
∗ which minimizes an expected loss Lexpected on data (xxx,yyy), distributed with

respect to the joint distribution of inputs and target labels P(X, Y), as:

θθθ
∗ = argmin

θθθ

Lexpected = argmin
θθθ

E(xxx, yyy)∼P(X, Y)L(yyy, f (xxx; θθθ)) (1.5)

where xxx∈X is an input and yyy∈Y a corresponding target label. Notably, the learnable

parameters θθθ may contain weights www and biases bbb, as described above for a MLP.

It is also of note that the true distribution of P(X, Y) is unknown. This means

that we must alternatively find θθθ which empirically minimizes Lempirical and gives

an approximate solution to θθθ
∗ as θ̂θθ on data (xxx,yyy), distributed with respect to an

available dataset D:

θ̂θθ = argmin
θθθ

Lempirical = argmin
θθθ

E(xxx, yyy)∼DL(yyy, f (xxx; θθθ)) (1.6)

This learning objective is employed across several fundamental learning

paradigms, of which supervised learning and unsupervised learning are among

the most commonly employed. Both are described in the following sections. In most

cases, supervised learning is used; however, a key requirement is so-called ‘labeled’

data, where the target output is known for each training input and defines the label

for that input datum. Unsupervised learning, on the other hand, learns without any

labeled data.

1.3.1.1 Supervised Learning

In supervised learning, the training is guided by a loss function, which determines

the goodness-of-fit (e.g. the difference) between the network’s output (typically, a

prediction generated by the neural network) and the target output for the given input

data. The weights between each node in the network are then adjusted based on

a learning rule and the computed value of the loss function. Over several training
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epochs, the network’s output should converge to become more and more similar to

the target output for the input data. Training may be terminated based on several

criteria, such as a fixed number of training epochs or through achieving a pre-defined

performance threshold on an external set of independent validation data. Supervised

learning has the advantage of being able to learn how to explicitly model the data

given to it and be able to give a specific prediction on new, unseen data, often

generalizing well to unseen data which is within or near its training data distribution.

However, supervised learning can be restricted in its knowledge and its ability to

robustly infer anything about inputs that are greatly outside of its training data

distribution. Additionally, supervised learning requires a large amount of labeled

data to be effective, and the data must be labeled or reviewed by a human expert.

This can be a time-consuming and expensive process and may be difficult to obtain

in some cases, such as in the case of image segmentation where each pixel must be

labeled.

1.3.1.2 Unsupervised Learning

In unsupervised learning, training is also guided by a loss function. However, instead

of comparing the goodness-of-fit of the network’s output to the target output, the

network’s output is typically compared to the input data. Like supervised learning, the

weights between each node in the network are then adjusted based on a learning rule

and the computed value of the loss function to, over several training epochs, improve

the network’s ability to reconstruct the input data. Unlike supervised learning,

unsupervised learning may be considered to be a type of discovery or organization

task. Often, the network attempts to uncover patterns and representations in the

data by learning to mimic or reconstruct its input. Notably, different networks may

infer different patterns from the same data. Unsupervised learning is advantageous

in many ways, two of the most salient being that it permits the learning of trends

and patterns within the underlying data which humans may not have been able to

infer, and the data does not require any labeling. Unfortunately, while these trends

and patterns may be useful, they often require domain knowledge and expertise to

fully utilize and understand. Additionally, unsupervised methods may be considered
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more difficult to validate, as there is not necessarily a metric that corresponds to the

effectiveness of a prediction in practice. Unsupervised learning is also more difficult

to apply, as it requires a large amount of data to be effective.

1.3.1.3 Convolutional Neural Networks

When applied to images, most deep learning-based methods will utilize a Convo-

lutional Neural Network (CNN) (Figure 1.14), which is a special type of ANN.

In CNNs, a mathematical operation called a convolution, specifically designed for

image processing, is used in place of the matrix multiplication typically performed

in ANNs. Unlike fully connected layers, the convolutional layers in CNNs are

not connected as densely, providing more flexibility and decreasing the number of

weights per layer. This reduces some computational requirements without sacrificing

the ability to derive features, shapes, and textures from images. Importantly, this

feature extraction process occurs automatically through the training process, where

the network determines identifying characteristics, representations, and features

within the input.

Figure 1.14: A CNN with a three-layered MLP to predict a single numerical output.

CNNs are typically composed of multiple convolutional layers, which form the

main building block of CNN architectures. Most of the computation within a CNN

occurs in these layers through the convolution operation. Here, each of the layer’s

convolution kernels iteratively moves across the image. At each iteration, the dot

product is taken between the input and kernel. Over these iterations, the output from

the series of dot products is built up into a feature map.

Each layer of a CNN is used to learn how to detect a different feature of the
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input image. Because of this, the output feature map from each layer becomes the

input for the subsequent layer. Through every subsequent layer, the kernels often

become increasingly complex to better identify the unique features which represent

the input image. Additional components such as pooling layers or MLPs may be

present in the CNN to aid in reducing the number of parameters to be estimated,

network complexity, and to perform classification on the extracted features to identify

the input image, respectively.

1.3.2 Datasets and Data Considerations for Deep Learning

In deep learning, the dataset is typically divided into three parts: training, validation,

and test sets. The training set is used to train the model by repeatedly adjusting

the weights to minimize the loss function (see Section 1.3.1). The validation set is

used to evaluate the performance of the model during training. Often, it is used to

help tune the model’s hyperparameters, such as the learning rate. The validation

set is typically used to select the best model among a set of models with different

hyperparameters. The test set is used to evaluate the performance of the model after

training is complete. The test set is used to assess performance metrics that are

relevant to the task and can be used to ensure that the model does not overfit to the

training set. Overfitting is a common problem in machine learning, where the model

learns the training data too well and is unable to generalize to new, unseen data.

Overfitting can occur when the model performs well in training, but poorly on new,

unseen data. By holding out a portion of the dataset for validation and testing, the

model can be evaluated on data that it has not seen during training, which helps to

ensure that the model can generalize well and make accurate predictions on new

data.

The use of training, validation, and test sets is important because the per-

formance of deep learning models depends heavily on the available training data.

Critically, in the absence of high quantities of high-quality data, models can perform

sub-optimally. Larger datasets often produce better performance as they will have

more examples from which the model can learn [97]. However, obtaining large

datasets may be laborious, time-consuming, expensive, and simply not possible in
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some cases, e.g. if a certain imaging technique is not widely adopted.

In the medical imaging domain, ethical and legal implications must be con-

sidered, including patient confidentiality, data security, and other applicable regu-

lations [98]. Notably, other features of the data, such as any biases from the data

selection, must also be carefully assessed. In some instances, the data sampling,

populations, or annotation process may be biased. This can lead a model to produce

inaccurate or ‘unfair’ predictions (i.e. those based on historical biases), which can

have a variety of negative consequences [99–101]. These biases can yield diagnos-

tic errors [99, 101] or amplify existing societal biases [99, 100], and as such, are

important to be able to identify and mitigate.

Beyond considering the acquisition of large data, and the identification and

mitigation of existing biases in those data, the data obtained must be of high quality.

Poor-quality data, from either the input data or the ground-truth annotations and

labels, can also negatively impact model performance by introducing errors into the

training process.

Additional considerations must be made to ensure data diversity. Diverse data

contain a range of examples taken from and which reflect real-world variability

in attributes such as patient population, image modality, image quality, or disease.

Using diverse data can help to control for changes in the distributions of training and

testing data. In circumstances where the training and testing data have inherently

different characteristics, poor generalization may result.

Data are a critical component of any deep learning method, which can greatly

impact the performance, reliability, and effectiveness of a model. Careful consid-

eration of the quality, size, diversity, and annotation of the dataset is important to

ensure that the model can generalize well, make accurate predictions, and mitigate

inherent biases. Poor-quality data, small datasets, biased datasets, and inadequate

annotations can all lead to inaccurate or unfair predictions, while a diverse dataset

with high-quality annotations can improve model robustness and generalization.
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1.3.3 Deep Learning in Medical Imaging

One domain where deep learning and CNNs have had a large impact is medical

image analysis [102–108]. Part of this impact stems from their ability to rapidly

learn to optimize the kernels within their convolutional layers. This reduces the

reliance on hand-engineered features and human intervention in image processing

tasks such as disease prognosis and diagnosis, object detection, image segmentation,

and image registration [102–108].

Computer-assisted disease prognosis and diagnosis can be an effective method

of obtaining an additional opinion for a clinician, based on the information present

in a patient’s images. Often, only a single diagnostic variable is to be determined; is

the disease present or not present? While conventional computer-assisted systems

leverage human-engineered features [109], deep learning methods have been able

to assist in the differentiation of different types of lesions and determine disease

progression and staging from various forms of imaging [102, 105, 106].

In many radiological workflows, the localization of lesions or anatomical struc-

tures is of critical importance. Traditionally, clinicians manually delineate different

anatomical regions or structures. It follows that the ability to derive such annotations

or detect objects automatically in a given image, as well as over time or between dif-

ferent patients, may be of great benefit to clinical practice to localize or track lesions,

as well as for image discrimination (i.e. the identification of images that require

further analysis or where a clinical decision has been indicated) [102,106]. A step be-

yond identifying regions of interest with bounding boxes, or other arbitrarily-shaped

geometric regions, is the generation of a pixel- or voxel-level segmentation for a

2D image or a 3D image volume. Image segmentation is the process of partitioning

an image into multiple regions, each of which has a certain property or semantic

meaning. In segmentation, each pixel or voxel is assigned a label for a pre-defined

class, which can be used to identify the region of interest. This is done through the

delineation of the boundaries of the region of interest, which can be used to generate

the segmentation. These segmentations permit the quantitative analysis of images

with respect to features such as shape and volume. When performed manually, this
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can be a laborious and time-consuming process. Early automatic methods were

based on discrete mathematical methods for digital signal/image processing, such

as edge-detection filters. However, most recent approaches utilize deep learning

methods. The applicability and effectiveness of deep learning-based segmentation

methods have caused image segmentation to become one of the most common appli-

cations of deep learning in the medical imaging literature [106]. The most prevalent

and widely used method for medical image segmentation, UNet [110], has been ap-

plied to countless different imaging modalities and anatomical regions [106]. While

originally only intended for 2D images, extensions of UNet for 3D segmentation

that are trained with 2D image slices [111] or 3D volumes [112] are now available.

Not only do such methods often improve on the performance of conventional or

hand-engineered methods, but they also typically require less time to compute the

required segmentation [102, 106].

1.3.4 Deep Learning in Medical Image Registration

Deep-learning-based methods for medical image registration can be distinguished

beyond the classifications of intensity- and feature-based, or rigid and non-rigid,

given in Section 1.2.1. Given the inherent nature of network architectures, training

processes (supervised, unsupervised, or otherwise), inference processes (one-shot

or iterative), and output type(s) (parametric or non-parametric), among various

defining characteristics, there are numerous other ways in which deep-learning-based

registration methods may be categorized [103, 104, 107]. Notably, there are two

widely-used approaches in the literature that have proven effective in obtaining

highly-accurate registrations. The first method involves the use of deep learning to

derive a similarity measure to be used in an iterative registration scheme (such as

those described in Section 1.2.4), whereas the second method involves the direct

prediction, often through regression, of the registration transformation itself, or,

equivalently, the parameters which define this transformation. These approaches are

described in the following subsections.
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1.3.4.1 Deep Similarity Measures

The need to derive learned similarity measures comes from a natural extension of

measures, such as MI, discussed in Section 1.2.3. In multimodal image registration,

while hand-engineered measures were traditionally adopted, deep learning-based

approaches have resulted in the development of novel learned similarity measures.

The expectation for the effectiveness of such an approach has been based on the

capabilities of deep-learning-based methods to outperform conventional solutions

for many image classification and segmentation tasks.

Reframing the measurement of a similarity measure as a classification problem

(e.g. as a measure of aligned or misaligned, as in [113]) or regression task (e.g.

as a measure of similarity which may not be otherwise easily hand-engineered, as

in [103, 104, 107]), it follows that learned similarity measures can take the place of

conventional similarity measures when optimizing an iterative registration scheme.

In several instances, these measures would be learned by training a network to

classify the alignment of two input images as either aligned or not aligned, based on

the image-pair-level label assigned to the image pair based on a predefined manual

alignment. Other approaches sought the regression of objective, imaging-agnostic

metrics, such as Target Registration Error (TRE), which is used widely to quantify

registration accuracy relative to expert-aligned images as the reference standard [113].

With these learned measures, the trained network would subsequently produce the

resulting similarity score or regressed metric during the iterative registration process

to solve the registration problem [103, 104, 107].

1.3.4.2 Transformation Regression

The regression of a transformation or transformation parameters avoids the time-

consuming iterative nature of a registration process to optimize a given similarity

measure, regardless of whether this measure is learned or hand-engineered. However,

solving the registration problem in this way brings new challenges: typically, ground-

truth transformations are not available. This makes the use of supervised learning

for deep learning-based registration methods non-trivial, or reliant on artificially-

generated or simulated transformations. While it is possible to generate target
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transformations from which the network may learn, such generated or simulated

transformations may not accurately represent the desired ground-truth transformation,

or consider biomechanical constraints appropriately within the context of a given

application or domain. Importantly, this lack of ground-truth can lead to poor

performance on real-world data if the generated or simulated transformation is too

different from the true transformation [103, 104, 107].

The use of unsupervised learning and alternate forms of supervision, such as

weakly-supervised learning, have permitted direct regression of the required transfor-

mation without a ground-truth transformation. With these methods, the transformed

source image and the target image, or features derived from these images, may be

used to directly regress a transformation with the learning guided by a computed sim-

ilarity measure on the images or features [103,104,107]. Most unsupervised methods

for medical image registration will compare the transformed source and target images

directly with an intensity-based similarity measure, additionally applying some form

of regularization in order to enforce smoothness on the predicted transformations

or displacement field. In weakly-supervised methods, a higher level of correspon-

dence is used, such as the segmentations of anatomical regions-of-interest on their

own [114], or in tandem with the images [115], to compute a similarity measure

based on the features and/or image intensities. Often, some form of regularization

measure is applied as well.

While unsupervised and weakly-supervised registration methods do not often

significantly outperform the state-of-the-art conventional iterative methods, they

have been reported to perform required registrations much faster, while delivering

comparable accuracy [103, 104, 107]. Beyond performance, rapid computation is

also an important consideration for many clinical and interventional applications. In

many instances, the reduction of computation time from, potentially, tens of minutes

to sub-second can be essential for ensuring clinical translation may be viable given

the reduction in the computational capacity required, as well as the elimination of

time inconveniency to the end-user [103].
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1.4 Medical Image Registration in Prostate Cancer

Applications
Medical image registration is a core enabling technology for prostate cancer diagnosis

and treatment through interventions such as MR-TRUS-guided, targeted prostate

biopsy and brachytherapy, as discussed in Section 1.1.2. The use of registration to

combine or spatially align or match high-quality, preoperative, diagnostic imaging,

such as MR, to real-time, non-invasive imaging modalities, such as TRUS, has

been investigated by many groups, and across many different application domains,

including for prostate cancer interventions. Several existing works focus on the

automatic rigid or non-rigid registration of MR to TRUS using intensity-, feature-,

or learning-based methods [116,117]. However, the intensity differences between

MR and TRUS imaging makes accurate intensity-based registration difficult given

the lack of detailed intraprostatic information and corresponding landmarks within

the images themselves, especially within TRUS. This has led to much of the recent

research in MR-TRUS registration in prostate cancer applications to focus on feature-

based methods, and, more recently, learning-based methods [103, 118–120].

In conventional, iterative, intensity-based registration methods between MR

and TRUS, MI is often used as a similarity measure. However, much of its use stems

from variants that account for correlation-based ratios [121], or are conditioned

contextually [122]. Normalized cross-correlation [123] and Modality Independent

Neighbourhood Descriptors (MIND) [124] – as well as its multi-channel variant [125]

– have also been investigated to account for the spatial and structural similarities

between modalities, even when intensity characteristics differ greatly.

Looking to feature-based methods, the segmentation and subsequent extraction

of relevant image features are, in general, always performed first. Subsequently,

these features are registered. While not prostate or MR-TRUS specific, several

common methods that have been widely applied to register extracted point-set

or surface features, such as Iterative Closest Point (ICP) [126], Coherent Point

Drift (CPD) [127], Thin-Plate Spline Robust Point Matching (TPSRPM) [128], or

the application of a Gaussian mixture model (GMM) [129] for probabilistic point
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correspondence prediction.

In practice, feature-based registration algorithms may require some form of

deformable model in order to ensure that realistic and physically plausible defor-

mations are accounted for [130–134]. Statistical deformation models which utilize

surface points [135], or surface and intraprostatic points [130, 131] have been used

for this purpose, whereas population-based models have also been developed to

describe prostate motion in registration [132], which are then instantiated to generate

a model for individual patients. Registration based on finite element model (FEM)

deformation has also been used to constrain surface-based methods [133, 136].

Learning-based registration methods have demonstrated significant improve-

ments over hand-engineered intensity- and feature-based methods, and are considered

to be the state-of-the-art in terms of registration accuracy for many medical image

registration tasks [103, 104, 107]. This is no different when considering the task

of MR-TRUS registration. Owing to their ability to learn and infer deep similar-

ity metrics and predict, or regress, the transformation or transformations directly

through effective learning processes, as described in Sections 1.3.4.1 and 1.3.4.2,

the prediction of similarity or transformation can often be performed in one or only

a few forward passes through the model.

The application of learning-based methods to MR-TRUS registration has taken

many forms, where inputs and training protocols may differ greatly. Several methods

for learning deep similarity measures have been established [103, 104]. Notably,

effective learning of similarity in terms of TRE in an adversarial manner has been

demonstrated, where simulated deformation was added to previously manually-

aligned images during the training process [137]. MR-TRUS-specific similarities can

be learned directly from rigidly-aligned images. This permits improved registration

accuracy when applied to conventional iterative registration processes – such as those

described in Section 1.2.4 – as compared to “hand-engineered” measures, such as

MI and MIND [113].

In practice, the direct regression of a transformation, either from images, fea-

tures, or images and features together, is more commonly applied than the learning
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of a similarity measure in prostate MR-TRUS registration [103, 104]. Earlier deep-

learning-based approaches utilized images more readily; Onofrey et al. [138] applied

image synthesis to translate MR images into TRUS images. In doing so, this enabled

the conversion of a multimodal registration problem into a unimodal one, where

only the TRUS-TRUS registration must be performed, yet could still be applied to

the MR images. The application of weak supervision, where image labels are used

during training to compute a loss, but only the MR and TRUS images are needed at

inference, has also demonstrated considerable success [114]. This approach has been

shown to achieve high accuracy through a time and data-efficient inference process,

where no separate segmentation is required [114]. Biomechanically-constrained

point-set-based methods have also been learned, both from images [139] – where the

deformation space is learned and applied as a constraint to the resulting deformation –

and from FEM-based analysis of the prostate gland segmentations themselves [118].

In summary, though intensity-, feature- and learning-based methods may utilize

different inputs, feature extraction processes, or compute different types of outputs,

there are commonalities in approach and the challenges associated with each method.

These challenges, with respect to their application in feature- and learning-based

approaches (for both intensity- and feature-based learning approaches), are further

examined in Section 3.1. Additionally, the application of different learning and

training protocols and the use of user interaction (commonly required in many

conventional image registration methods) are explored further in Sections 4.1 and 5.1.



Chapter 2

Motivation and Objectives

2.1 Clinical Motivations

The overarching clinical goal and motivation for medical image registration is to

combine useful information present in two (or more) different images, from a single

or different modalities, such that this information can be presented as a single image

(or more generally, as a single visual representation). In doing so, the accuracy and

reliability of diagnoses, surgical guidance, and a variety of other clinical decision-

making processes or tasks may be improved or optimized. Having such registration

algorithms and processes at the disposal of clinicians may reduce the cognitive load

significantly, avoiding the necessity for a human operator to align image-derived

information mentally, which is both a complex task and subject to significant inter-

and intra-operator variability.

In the context of the application emphasized throughout this thesis, multimodal

registration for enabling targeted prostate cancer biopsy guidance, there is an inherent

desire to fuse the diagnostic and structural information available in MR imaging

with real-time information available from TRUS imaging. Using both modalities in

tandem may be critical to accurately and reliably performing effective biopsies. This

is of importance in many real-world scenarios, such as when there is probe-induced

tissue motion that may affect the registration. With real-time, adaptive methods, the

impacts of unexpected tissue motion on the registration process may be lessened.

Given the persistent issues with undersampling and underdiagnosis that can occur
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during systematic biopsy procedures [18], the resulting action is often to acquire

more samples [20] putting patients at higher risk for complications [18, 21]. This

demonstrates a clear need to deliver simpler and more accurate methods for guidance

that reduce cognitive load through rapidly employed, automatic, intraoperative

registration and visualization.

The development of registration methods which permit more effective biopsies

could permit the automation of a typically cognitive alignment process. During this

process, where pre-operative MR is available, the optimal biopsy needle placements

must be estimated based on separate (i.e. un-registered) MR and TRUS images.

Therefore, with an effective and accurate registration, there is a potential for a

reduction in cognitive load and subjectivity. Registration may permit faster, more

accurate, and more consistent procedures with lower risk to patients, better sample

localization and improved outcomes through lessened uncertainty and the targeting

of a specific suspect or known cancerous regions in place of what is often referred

to clinically as random prostate sampling. Similar benefits may be seen in prostate

cancer therapies as well, such as those discussed in Section 1.1.2.3, where accurate

registration can provide more accurate delivery of therapy, potentially reducing side

effects due to localization errors or undertreatment, which is turn will improve patient

outcomes.

While there is substantial evidence that supports the use of such registration-

based image guidance methods to redefine and improve the standard of care for

prostate biopsy [140–145], where improved outcomes are attained regardless of the

clinician’s level of experience [143], the issues surrounding the cost-effectiveness

[141], practicality [145], ease-of-use [142,143,145] and the possible requirement for

additional training [142, 143, 145], remain. During an MR-TRUS fusion-guided tar-

geted biopsy procedure, for example, each step of a typical TRUS volume acquisition,

contouring (if required) and registration process can require several minutes [146].

In an already, relatively speaking, short procedure, typically taking approximately

30 minutes [147, 148], this additional time can have a substantial impact.

As a result, methods that deliver comparable or improved accuracy, but that
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are also time- and data-efficient, may lessen the impact of the aforementioned

concerns associated with adopting targeted protocols. Given the success that targeted

biopsies have had, and their ability to successfully guide clinicians to improve biopsy

outcomes and performance [149], efforts to reduce the difficulty in performing

such procedures accurately may carry many additional downstream benefits for

patient management. Thus, registration methods that require minimal time and can

be performed during acquisition, instead of after, may be a critical step towards

adopting image fusion-guided targeted biopsy approaches as the standard of care.

2.2 Thesis Objectives
The work described throughout this thesis has been performed with the aforemen-

tioned clinical motivations in mind, and with the underlying aim and objectives of

developing novel deep-learning-based methods which permit fast, accurate, gener-

alizable, yet data-efficient registrations. These methods are applied to scenarios in

which the utilization of real-time imaging, such as US, is a key enabling technology.

This includes the development of methods that:

1. Enable sparse, data-efficient, real-time interventional image registration;

2. Utilize human interaction to guide the learning of a patient-specific model;

3. Facilitate single-image-pair optimization for refining interpatient atlas gener-

ation, population-based assessments, as well as intrapatient longitudinal or

change detection problems.

Given these objectives, the main contributions of this thesis are as follows:

1. Development and validation of a “model-free”, non-rigid method for general-

purpose, unsupervised point-set registration of biomedical images;

2. Development and validation of a framework that intuitively combines error

correction through user interaction with rapid adaptation through meta-learning

and few-shot learning in order to optimize weakly-supervised biomedical

image registration performance within a target domain;
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3. Development and validation of a novel neural network training paradigm that

combines conventional population-based, generalizable deep learning with

single image pair optimization with a meta-learning approach.

2.3 Thesis Structure
The remaining chapters of this thesis are grouped into two main parts, where the

major contribution and overarching methods presented in each part are summarized

below.

Part 1 focuses on the non-rigid point-set registration problem as a solution for

non-rigid multimodality image registration. In Chapter 3, a generalized framework

for feature-based registration of biomedical images is presented, focusing on two

applications where real-time registration processes are beneficial:

1. MR-TRUS registration, using complete and with partial/sparse TRUS image

data for guiding prostate biopsy;

2. Spinal deformity quantification for scoliosis monitoring.

Part 2 explores the use of meta-learning-based approaches for prostate-imaging-

related registration applications, first, for inference-time refinement and rapid adap-

tation of a real-time MR-TRUS registration process, with sparse imaging, which

may be utilized to enable registration simultaneously during acquisition (Chapter 4).

Then, in Chapter 5, meta-learning-based methods are applied to paired volumet-

ric TRUS imaging, using an unsupervised approach for test-time optimization to

improve inter-patient registration.

The final section of the thesis is a conclusion, which summarizes these aforemen-

tioned works in learning-based medical image registration and presents directions

for future research.



Part I

Feature-based Multimodal

Registration
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Chapter 3

Learning Non-Rigid Partial Point-Set

Registration

This chapter is based on the works entitled: “Multimodality biomedical image reg-

istration using free point transformer networks”, published in MICCAI ASMUS

Workshop 2020 [119], “Real-time multimodal image registration with partial intra-

operative point-set data”, published in Medical Image Analysis [120], and “Learning

generalized non-rigid multimodal biomedical image registration from generic point-

set data”, published in MICCAI ASMUS Workshop 2022 [150].

3.1 Introduction
Multimodal image registration is a subproblem of image registration wherein the

images to be registered come from different scanner or sensor types. Multimodal

registration methods have proven effective in image-guided interventions, where

the aligned diagnostic information from preoperative imaging, such as MR or Com-

puterized Tomography (CT), and intraoperative imaging, such as US, is displayed.

This registered imaging aids in overcoming the typical restrictions and limitations

of intra-operative imaging modalities, such as time-constraint, portability, ease of

access, resolution, and field of view.

In many multimodal registration applications, such as MR-US or MR-CT

alignment, intensity-based registration methods that minimize information-theoretic

measures, such as mutual information and normalized mutual information [82, 124,
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151–154], or other statistical image similarity metrics [81, 82, 123, 155–158] have

been widely investigated.

Despite the success of intensity-based registration methods, these can perform

poorly for input image modalities with very different pixel/voxel intensity character-

istics, such as MR and US. Most saliently, these differences often make it difficult to

develop robust intensity-based registration methods that can generalize to different

healthcare settings. In such cases, feature-based registration approaches provide

a viable alternative for many clinical applications when features, such as organ

boundaries, can be defined with minimal user interaction.

Feature-based methods have been widely employed within the field of medi-

cal imaging research not only for multimodal image registration methods but for

registration in general [77, 159–161]. This is often due to their simpler and less com-

putationally complex nature, with respect to intensity-based methods. Notably, many

sparse, surface-point-set matching algorithms require some form of regularization.

For example, statistical deformable models may be used to permit only physically

plausible soft-tissue deformations [130–134, 162]. Additionally, the use of simple

data formats, such as point-sets, can provide visually intuitive and easy-to-interpret

representations of anatomical structures, which can aid clinical use and be an effec-

tive basis for clinical user interaction, such as manual refinement [163], providing

feedback on registration uncertainty and quality [164].

Feature extraction has seen rapid advances in recent years given the development

of automatic, well-validated, learning-based medical image segmentation methods.

Such methods can yield real-time delineation of anatomical surfaces [110]. These

surfaces may be sampled into point-sets for surface matching, for example, using

classical point-set registration algorithms, such as ICP [126]. More contemporary

alternatives, such as CPD [127] and TPSRPM [128] provide a solution for non-rigid

registration. GMM have been used to compute registrations using probabilistic point

correspondences [129].

Deep learning-based methods have gained traction in medical image registration,

having made possible, or yielded improvement on, tasks thought previously infeasi-
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ble without sufficient computational capacity. As such, making deep learning-based

methods well suited to multimodal image registration problems. For consistency, the

conventions surrounding intensity-based and feature-based registration defined in

Section 1.2.1 are extended to deep-learning approaches. Therefore, feature-based

deep learning registration methods are characterized as methods that utilize image

features as network inputs (e.g. [118–120, 150, 165]), as opposed to using images

as network inputs (e.g. [113, 114, 137]). Such feature-based methods may leverage

existing, well-established, and well-validated automatic segmentation algorithms

to, in some sense, convert the images into an image-acquisition-independent rep-

resentation, required during inference. These representations shall have the same

potential benefits, as those from the classical feature-based registration as argued

above, to improve the generalization of developed methods by removing any artifacts

or inconsistencies, and providing an intuitive and protocol- or scanner-independent

form of the image.

CNNs have also been widely used to perform multimodal image registration.

Some works approach the problem by learning similarity metrics directly from the

images [113, 137], through image synthesis methods that convert the appearance

of one or both input modalities such that they closely resemble the other before

registration [138, 166, 167], or through reinforcement learning [168–170]. Image

segmentation data may be used to learn non-rigid statistical deformation models

which may, at inference, be used to guide a non-rigid surface registration [139].

Segmentations have been used to determine the correspondence between different

imaging modalities in a weakly-supervised framework, with the advantage that the

input images are only required at inference [114].

Despite the abundance of intensity-based deep learning methods described

above, few methods utilize image features, such as surfaces, point-sets, or segmen-

tations in addition to, or instead of, the images themselves. However, given the

challenging nature of multimodality image registration, it may prove useful to lever-

age deep learning methods which can consume irregular data in addition to or instead

of image data. The classical iterative methods for feature-based registration meth-
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ods previously described [126–129] are not well-suited for applications requiring

real-time registration since they are computationally intensive when processing large

point/surface datasets. In contrast, the computationally efficient inference and the

ability to model complex, nonlinear transformations of deep learning-based methods

has motivated the development and application of neural networks to real-time regis-

tration [171–177]. Several such methods (for example, [171, 172]) have exploited

PointNet [178], a deep learning framework for the classification and segmentation of

point-sets as a feature-extraction method, precluding any learning of a registration

process. One such method, PointNetLK [171], combined PointNet with the Lucas

and Kanade algorithm to create an iterative, rigid point-set registration algorithm.

Other works have applied PointNet as a means to learn hierarchical features to their

method for 3D scene flow [172]. Other methods have been developed which do not

use PointNet, such as those that provide iterative, self-supervised, rigid registration

of partial point-sets with Partial Registration Networks (PRNet) [174], and rigid

registration as a pre-cursor to ICP with Deep Closest Point [173]. Other approaches

regressed correspondence between point-sets by using local and global features to

compute the singular value decomposition for rigid registration [177].

It is notable that the above-mentioned methods only present rigid point-set

registration, whereas for the purpose of image-guided interventions, non-rigid reg-

istration is more important. Non-rigid registration permits the fusion of imaging

with spatial information and enables soft tissue motion compensation. Models which

integrate local deformations have demonstrated improved registration in soft tissues

by compensating for patient motion and other anatomical deformations [71]. Some

non-rigid, point-set-based registration methods have also been proposed and applied

to medical data. One for the analysis of lung motion, achieved by repurposing exist-

ing iterative algorithms within a deep learning framework [165]. A second provides

multimodal image registration through the use of a deformation field defined by a

weighted surface and volume point-set loss function through a matching process

that explicitly models underlying biomechanical constraints [118]. Though these

methods have shown promise, there have been limited subsequently published works



3.2. Contributions 91

on deep learning-based multimodal image registration methods which are inherently

feature-based. This may be explained by the difficulty associated with adequately

selecting an effective parametric transformation model that does not explicitly define

constraints on spatial coherence or smoothness. Additionally, these methods often

rely on constrained models or need to explicitly model noise, outliers, and missing

data. As such, these models may be inadequate to handle real-world data.

At inference, deep learning-based methods for multimodal image registration,

be they intensity- or feature-based, typically require complete 3D volumetric data.

In feature-based methods, this dependence on complete data makes the use of accu-

rate and well-validated segmentation methods a necessity, as it is often considered

impractical or infeasible for clinicians to manually segment all available images.

When manual segmentations are performed, they are often inconsistent, error-prone

and differ due to intra- and inter-observer variability [179]. In contrast, few deep

learning-based registration methods explore the use of sparse or partially available

data [171, 174] which is frequently encountered in surgical and interventional ap-

plications. However, these works produce only rigid or affine transformations, are

not applied to medical image registration, and operate on sparsity or partial data

availability in such a way that does not accurately reflect clinically realistic scenarios.

3.2 Contributions

This chapter describes a deep neural network architecture for non-rigid point-set

registration, called FPT. The network consists of two parts: a global feature extraction

module and a point transformation module. Importantly, FPT is not limited by the

inherently unordered or only partially available structure of point-sets and predicts a

non-rigid transformation that aligns them.

This work demonstrates the generalizability of FPT for point-set registration

through a series of extensive experiments across multiple domains. First, robust-

ness to noise, deformation, and missing data are demonstrated on the ModelNet40

dataset. Second, using FPT’s model-free approach and data-driven learning process,

a pre-trained FPT is applied to the registration of real-world 3D reconstructions of
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segmented US scans and a generic spine atlas for quantification of spinal curvatures.

Third, to investigate the application of FPT for the registration of partial volumetric

point-sets comprising points extracted from MR and TRUS images. This exemplar

application illustrates a common situation with applications in which real-time, in-

terventional imaging, such as TRUS, is used where partial (and potentially noisy)

point data is available, in this case, because of the use of 2D US imaging. This work

aimed to compare the accuracy and speed of FPT-based point-set registration with

alternative methods.

The sections below provide a detailed description of the methodology for un-

supervised point-set registration; a method that accepts unordered and unstructured

point-sets with a variable number of points. FPT introduces the “model-free” ap-

proach which allows non-rigid registration using data-driven learning without known

correspondence or heuristic constraints. The implementation and training strategies

of the two modules contained within FPT are introduced and thoroughly described.

These modules transform points that are independent of those which define the

registration and, as a result, enable various types of practically useful applications.

Lastly, the rigorous analysis and validation experiments that present the results of

FPT, and compare its performance to different learning-based methods and classical

iterative methods for the different clinical tasks are presented.

3.3 Methods

3.3.1 Free Point Transformer

Given a pair of source and target point-sets, {ps | s = 1, . . . , Ns} and {pt | t =

1, . . . , Nt}, respectively, where ps andpt are D-dimensional vectors denoting indi-

vidual point spatial coordinates in x-, y-, and z directions (here, D = 3). The FPT

framework aims to learn a model for inferring a transformation function T {ps}→{pt},

between a pair of point-sets, such that it will map any new point, represented by the

vector p̃s in source coordinate space, to the target coordinates p̃′s as follows:

p̃′s = T {ps}→{pt}(p̃s) (3.1)
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where p̃s is usually sampled from the source point-set domain, but not necessarily an

element of {ps}.

FPT models such a spatial point transformation using a parametric neural

network T {ps}→{pt}
θ

(p̃s), with network parameters θ , together with an end-to-end

network training approach. The FPT network contains two modules: a global feature

extraction module and a point transformation module. The global feature extraction

module converts point-sets into a feature vector, whereas, the point transformation

module predicts a displacement vector for the given input point p̃s using the feature

vector. A detailed illustration of the two modules and the network training scheme

is shown in Figure 3.1. In the following sections, the construction and training

details for these two modules, using a training set consisting of examples of different

point-set pairs, is provided.

Figure 3.1: Schematic representation of the FPT network design for non-rigid point-set
registration. The global feature extraction module takes a target and source
point-set and applies shared input and feature transformations to both, creating
a global feature vector. The point transformation module serves as a per-point
transformation of the source point-set by determining the displacement to be
added in order to obtain the transformed point-set.

Point-sets have important attributes which have been exploited in the design

of the FPT, and which deliver several advantages for registration purposes: First,

FPT accepts unordered and unstructured point-sets with a variable number of points.

This requires the global feature extraction module to learn a representation, which

determines a permutation, rotation, and cardinality invariant feature extraction step.
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The global feature extraction module adapts the previously proposed PointNet ar-

chitecture [178] to register a pair of point-sets. Second, the FPT has two separate

functions: i) predicting a transformation from the network input, registration of the

two input point-sets; ii) predicting displacements for individual given points.

These two functions are implemented with the global feature extraction module

and the point transformation module, which are trained together but may be used

for independent point-sets – i.e., those to register {ps} and {pt} – and those to be

transformed {p̃s}. This flexibility is important as it allows the network inputs to

be different from the point-sets used for computing the loss, which may only be

available during training. Third, the point transformation module in the proposed

FPT is defined without an explicit or parameterized registration method, permitting a

“model-free” approach. This leads to non-rigid registration using a data-driven learn-

ing approach that prevents any collapse or folding that arguably may not be reflective

of the data. FPT is trained without heuristic constraints, such as deformation smooth-

ness or hand-engineered noise models. Training in this manner may ultimately be

beneficial, as the restrictions imposed by such constraints or models enforce defor-

mation that may over-simplify the complex soft tissue deformation and observable

inter-structure motion that is possible with certain anatomical structures. As a result

of these attributes and considerations, FPT is versatile and permits generalization to

partial data while learning from complete data, as well as generalization to unseen

types of objects. The FPT supports different types of learning supervision, including

fully-supervised, semi-supervised, and partially- or weakly-supervised training see

also a brief discussion in Section 3.3.2. However, in this work, the focus is placed on

training the FPT using an unsupervised learning approach, which allows it to learn

from raw point-set data without the need for ground-truth transformations. As is

demonstrated through multiple applications and use-cases, permitting an end-to-end

process to be achieved, which includes data acquisition followed by registration in

real-time; an ability that is important in many tasks, such as time-critical medical

applications of image registration.
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3.3.1.1 Global Feature Extraction Module

PointNet [178] was originally designed to convert point-sets into permutation and

rotation invariant feature vectors for classification and segmentation tasks. From

the original PointNet architecture [178], this work has utilized the input and fea-

ture transformation and global information aggregation components to create high-

dimensional feature vectors. Unlike the original PointNet architecture, which learns

a 3×3 transformation matrix and subsequently multiplies this learned transform by

the coordinates of the input points [178], FPT’s global feature extraction module

learns a 4× 4 transformation matrix to better allow for the representation of 3D

translation in homogeneous coordinates, in addition to any rotation, scaling, shearing

or reflections which may be represented in the original 3×3 transformation matrix.

As in PointNet, this 4×4 transformation matrix is then used to transform the coordi-

nates of the input points. This modification resulted from initial experimental results

wherein a lower translational error was observed when the adapted PointNet was

given the ability to encode translational differences more easily between point-sets

in its feature representations. Additionally, batch normalization layers were removed

from the PointNet to prevent the normalization of translational differences between

source and target point-sets. In FPT, the above modifications create a single PointNet

shared between the input point-sets {ps} and {pt}, as illustrated in Figure 3.1. The

module, in turn, generates feature vectors gs and gt with pre-defined lengths, from

the source and target {ps} and {pt}, respectively. These feature vectors are used to

determine a global feature vector g:

g = f {ps}→{pt}
θ f eat

(3.2)

where g = [gT
s , gT

t ]
T is the concatenated K-dimensional global feature vector and

f {ps}→{pt}
θ f eat

denotes the modified PointNet that represents a set-order-sensitive feature

extraction function, i.e. f {ps}→{pt}
θ f eat

̸= f {pt}→{ps}
θ f eat

, which is invariant to the point-order

in each set. θ f eat are the network parameters in the global feature extraction module.
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3.3.1.2 Point Transformation Module

The point transformation module serves as a per-point transformation model fg that

predicts the displacement vector that transforms a point p̃s to p̃′s, conditioned on the

computed global feature vector g (given in Eq. 3.2):

p̃′s = fθtrans(p̃s | g) (3.3)

In this work, a MLP network is used to model this transformation with network

parameters θtrans. Without loss of generality, the hidden units at lth layer in an

L-layer MLP, x(l) =
[
x(l)j

]T
, j = 1, . . . , J(l), representing the output feature vector

with J(l) (l = 1, . . . , L) elements can be given in a recursive form:

x(l)j = a(l)
(

∑
J(l−1)

j=1 w(l)
j x(l−1)

j +w(l)
0

)
(3.4)

where a(l) is the element-wise activation function (rectified linear units are used

in this work); and w(l)
j ( j = 1, . . . , J(l−1)) are the weights for each of the J(l−1)

elements in the input feature vector x(l−1) =
[
x(l−1)

j

]T
( j = 1, . . . , J(l−1)) from the

previous layer. Together with the scalar bias weight w(l)
0 , the point transformation

module parameters are θtrans =

[[
w(l)

j

]T

j=0, 1, ..., J(l−1)

]T

l=1, ..., L
.

The point transformation module fθtrans is specified by the module input and

output, the point-concatenated global feature vector x(0) =
[
gT , p̃T

s
]T and the dis-

placement vector di = x(L), respectively; therefore, J(0) = K +3 and J(L) = 3. The

transformed point can be computed by p̃′s = p̃s +di. Predicting the displacement di,

instead of the transformed points p̃′s directly, which was found empirically to simplify

the initialization for model training. It is important to note that the transformation

model parameterized by the above-described MLP does not have constraints on the

transformation smoothness, which are commonly imposed with assumptions such as

coherence between adjacent points, giving a less constrained transformation.

The use of MLP parameterization also facilitates an efficient one-dimensional

(1D) convolution implementation for multiple feature vectors during the FPT network

training. For each network input point-set pair, {ps} and {pt}, the global feature
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extraction module computes a global feature vector g (Eq. 3.2). In the general case,

the point transformation module aims to transform a point-set {p̃s} , s = 1, . . . , Ñs,

using Eq. 3.3, conditioned on the same global feature vector g. Assume a row-wise

concatenated “feature matrix” MMM(l), l = 1, . . . , L, at lth layer, such that:

MMM(l) =



(
x(l)s=1

)T(
x(l)s=2

)T

...(
x(l)

s=Ñs

)T


, where MMM(0) =



[
gT, p̃T

s=1
][

gT, p̃T
s=2
]

...[
gT, p̃T

s=Ñs

]

 and MMM(L) =


dT

i=1

dT
i=2
...

dT
i=Ñs

 (3.5)

Now, for computing the output feature vector at the lth layer, substituting the

network weight w(l)
j in Eq. 3.4 with a scalar weight k1,(l)

j , the jth of the J(l−1) 1D

convolution kernels for each of the J(l) elements. The J(l−1)× J(l) kernels are

convolved over all Ñs elements in the column space of the feature matrices MMM(l)

because the MLP weights are shared between all the input row vectors
[
gggT, p̃T

s
]

in

the feature matrices. The rows representing different feature-vector-concatenated

points in {p̃s} remain independently multiplied by the 1D kernel.

3.3.2 FPT Network Training

The FPT network described here was trained to optimize the network parameters

θ =
[
θ T

f eat , θ T
trans

]T
by minimising the distance between the transformed source

point-set {p̃′s} and a given target point-set {p̃t}, t = 1, . . . , Ñt . The specific form

of the function L({p̃′s}, {p̃t} | θ) serves as the training loss and is described in

Section 3.3.2.1, while the goal of the network training is:

θ̂ = argmin
θ

EΩ

[
E

Ω̃

[
L({p̃′s}, {p̃t})

]]
(3.6)

where substituting the transformed source point-set {p̃′s} as:

θ̂ = argmin
θ

EΩ

[
E

Ω̃

[
L
(
{T {ps}→{pt}

θ
(p̃s)}, {p̃t}

)]]
(3.7)
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where p̃′s = T
{ps}→{pt}

θ
(p̃s) = fθtrans

(
p̃s

∣∣∣ f {ps}→{pt}
θ f eat

)
is parameterized by two neural

networks, as described above; EΩ [·] and E
Ω̃
[·] denote the expectation operators over

the training point-set-pair domains Ω and Ω̃, training examples for {ps} and {pt} to

compute the global feature, and training examples of {p̃s} and {p̃t} for computing

the distance-based loss, respectively. This general form of training lets FPT provide

the flexibility to allow the network input point-sets {ps} and {pt} to differ from the

training “ground-truth” point-sets {p̃s} and {p̃t}. This formulation can be applied in

the following scenarios:

1. Unsupervised learning of point-set registration, i.e., {p̃s}= {ps} and {p̃t}=

{pt}.

2. Partial data registration with full data available in training, e.g., {ps} ⊆ {p̃s}

or {pt} ⊆ {p̃t}. This will provide a loss computed from, in general, stronger

supervision {p̃s} and {p̃t}, while test data at inference are more likely to have

a different distribution that is similar to what is represented by {ps} and {pt}.

3. Training-time bootstrap resampling [180], when {p̃s}, {ps}, {p̃t} or {pt} is

large or the difference between their sizes – i.e., the difference in the number

of points – is large. This allows sampling a subset of any of these point-

sets during a stochastic or mini-batch gradient descent while maintaining an

unbiased gradient.

4. Weakly-supervised learning, i.e., {ps} ⊇ {p̃s} or {pt} ⊇ {p̃t}, yet {p̃s} and

{p̃t} are point-sets with known point-to-point correspondence, which are

available during training, while {ps} and {pt} are the network input available

during inference.

In the remainder of this chapter, several of these formulated scenarios are

explored. In Section 3.4, Scenario 1 and Scenario 2 are demonstrated on a general-

purpose computer vision dataset, with simulated transformations – unknown to the

network and training process – and occluded data. In Section 3.5, Scenario 2 is

demonstrated using pre-trained models applied to a challenging spinal curvature
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quantification problem. Notably, training FPT with the data used in this section

would present a use-case for the formulation described in Scenario 3 given the

large nature of the source and target point-sets. In Section 3.6, Scenario 1 and

Scenario 2 are demonstrated on a prostate MR to TRUS registration problem with

full and partial data. The use of known landmarks (such as lesions, calcifications,

or other anatomical structures) for known point correspondence in training during

this problem, though not presented in this work, would represent the formulation

presented in Scenario 4.

3.3.2.1 Loss Functions

In this work, two loss functions are compared to measure the distance between two

point-sets. The first is a widely used metric for determining the mean nearest neighbor

distances between point-sets; the DC [181]. Second, a negative log-likelihood of a

GMM is employed to encourage the network to minimize the difference between the

distributions of the point-sets. A two-way DC is used in this work as follows:

LDC({p̃
′
s}), {p̃t}) =

1

Ñt

(
∑t∈[1, Nt ]

min
s∈[1, Ñs]

∥p̃t− p̃′s∥2
2

)

+
1

Ñs

(
∑s∈[1, Ns]

min
t∈[1, Ñt ]

∥p̃t− p̃′s∥2
2

) (3.8)

Unlike DC, the negative log-likelihood of a GMM is one of the alternatives

which requires explicit parameters when considering outliers or noise levels. It is

assumed that the spatially transformed source point-set {p̃′s} defines the centers of

the Ñs Gaussian clusters in a mixture model with Ñs +1 clusters, with the additional

cluster being a uniform distribution (with a probability of 1
Ñt

) for potential outliers

[127]. Given the target point-set {p̃t} as the model-fitting data, the GMM training

loss can then be defined as the negative log-likelihood function of the mixture model,

as follows:
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LGMM({p̃′s}, {p̃t}) =−∑
Ñt

t=1 log

u
1

Ñt
+(1−u)

1

Ñs
∑

Ñs

s=1

e−
∥p̃t−p̃′s∥2

2σ2

(2πσ2)
D
2

 (3.9)

where σ2 is the isotropic covariance; 1
Ñs

is the equal membership probabilities among

the Ñs Gaussian clusters that are defined by the source point-set; and u, 0≤ u≤ 1,

weights the uniform distribution. The loss function thus has two parameters, σ2

and u. As the FPT architecture does not explicitly constrain transformations from

potential folding, collapse, or severe distortion of the transformed point-sets, the

two-way construction of the loss functions, including both the DC and negative

log-likelihood of a GMM, are employed in this work. It is interesting to find that,

during the training, relaxing constraints such as ‘one-to-one’ correspondence did not

cause unrealistic, extremely non-smooth deformation.

3.4 Simulated Registrations on Computer Vision

Datasets
The rigid and non-rigid registration performance of FPT is presented with added

noise, deformation, and missing data. In these experiments, the Princeton Model-

Net40 dataset [182] is used. The use of ModelNet40 permits a simple comparison

between FPT and existing classical and learning-based methods to determine if the

framework is sound and effective for general-purpose rigid and non-rigid point-set

registration ahead of utilizing it for more challenging biomedical applications, where

smaller datasets and more varied data distributions are common.

3.4.1 Data

The Princeton ModelNet40 dataset, which consists of 12,311 geometric surface

models of objects spanning 40 categories, split object-wise into a 9,843 object

training set and 2,468 object testing set [182]. ModelNet40 is a commonly used

collection of 3D models of the most common categories in the world for computer

vision classification, segmentation, and registration methods. The input point-set for
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FPT comprised 2,048 points sampled from the surfaces of ModelNet40 shapes. The

points were used for the target and source point-sets in training and testing.

3.4.2 Network Implementation and Training

The previously described FPT was implemented in TensorFlow [183] and Keras

[184]. The FPT network architecture used in the below experiments uses a value

of K = 1024; thus, extracting a 1024-dimensional feature vector from each of

the twin weight-sharing PointNets. In the point transformer module, L = 6, and

U = {1024, 512, 256, 128, 64, 3}. The set of activation functions, a, was defined

such that the first five layers used the ReLU activation function [96], but the final

layer used no activation function (i.e. a linear activation).

All networks were trained for 2,000 epochs with the Adam optimizer [185], a

minibatch size of 32, and an initial learning rate of 1 ·10−3 when training. Networks

were trained on an NVIDIA DGX-1 system using a single Tesla V100 Graphics

Processing Unit (GPU).

During training, the points in PT and PS were permuted, scaled, and deformed

on-the-fly. The points were scaled, per-sample, between [−1, 1] in each of the X , Y

and Z directions. PS was further transformed on-the-fly with deformation, rotation,

and displacement. Rotation angles were randomly sampled from [−45°, 45°] about

each of the X , Y and Z axes. Displacements were randomly sampled from [−1, 1] in

each of the X , Y and Z directions. Non-rigid deformation was simulated by a radial

basis function (RBF) deformation model with a Gaussian kernel. RBF deformation

was defined by a perturbation of the control points by Gaussian random shift (µ = 0,

σ = 0.1). The scaled, deformed, and transformed version of the input was used as

the source point-set.

Given the number of training samples and iterations required in training, compu-

tational efficiency was important when selecting a deformation model. A RBF was

used as it produces smooth deformations and is computationally efficient enough to

be applied on-the-fly during training and prior to inference during testing. Experi-

ments with other deformation models, such as elastic body spline models [186], are

needed to assess FPT’s ability to reconstruct more localized displacements.
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When training FPT for partial registration, occlusion was simulated by selecting

a random point on the model surface and discarding the 512 (25% of the input

points) nearest neighbor points. Following point removal, translation, rotation, and

deformation were performed as described above.

3.4.3 Comparison with Classical and Learning-Based Methods

It is of note that FPT predicts point displacements with one pass through the network

and no subsequent refinement. However, the classical and learning-based methods

that are compared to in the below-described experiments solve registration in various

ways. ICP [126] and PointNetLK [171] compute the rigid transformation matrix

directly. CorsNet [177] and PRNet [174] predict point correspondence and compute

the optimal rigid transformation through a least-squares fit. Some methods are

applied iteratively [127, 174] whilst others preclude refinement [171]. No existing

methods provide partial and deformable registration, focusing instead on only one of

the problems in isolation.

Unseen Objects. FPT was evaluated on rigid and non-rigid transformations. Trans-

formations are generated as in training, although for the rigid transformations, no

non-rigid deformation was added. As such, the inherent design and training of FPT

is unchanged - meaning it may predict a transformation that contains deformation

to the input point-sets, but the ground-truth transform between the input point-sets

does not have any deformation added for the rigid transformation registrations. In

this experiment, FPT is compared to rigid iterative and learning-based methods, as

well as non-rigid iterative methods.

Unseen Objects with Gaussian Noise. FPT was evaluated with Gaussian noise

introduced to the source point-set. Non-rigid transformations are generated as in

training, with Gaussian noise of variable standard deviation (SD) added to simulate

noisy data.

Unseen Objects with Varying Deformation. FPT was evaluated while increasing

deformation in the source point-set. Non-rigid transformations are generated as in

training, though variable deformation was introduced by modifying the SD of the

distribution from which perturbations of the control points which defined the RBF
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were drawn.

Partial Registration of Unseen Objects. FPT’s performance was evaluated for

partial registration. Transformations are generated as in training for the ‘partial-to-

full’ registrations, where point removal is only performed on the source point-set.

For ‘partial-to-partial’ registrations, point removal is performed on both the source

and target point-sets. FPT is compared to rigid iterative and learning-based methods.

Notably, one such method [174] is designed explicitly for partial registration, whereas

FPT is not. In training FPT for this experiment, only the input data is modified, as

in Section 3.4.2, and not the architecture. This change allows assessment of the

effectiveness of FPT’s architecture on a broad range of registration problems wherein

the input is not two complete point-sets.

3.4.4 Evaluation Methods

The accuracy of the registrations was evaluated by measuring the root mean square

error (RMSE) of the rotational (R) and translational (t) errors. Angular measurements

are given in degrees. The accuracy of the point-level registration errors is given by

the DC and the Hausdorff Distance (DH). As the DC was used as the loss function

for all experiments, it serves as a useful indicator of network generalization on

test data, while the DH gives a worst estimate of the distances between the point-

sets. Additionally, the computational time was also recorded for each registration

experiment.

3.4.5 Results & Discussion

Unseen Objects. Figure 3.2 shows FPT’s registration performance with rigid and

non-rigid input transformations. Table 3.1 gives registration performance of FPT

and other methods on unseen objects. FPT outperformed all other evaluated methods

with respect to rotational error. FPT was comparable or superior to other methods

with respect to translational error when presented with rigid and non-rigid input

transformations. FPT matched or outperformed other learning-based methods with

respect to inference time, and was over 50 times faster than CPD - an established and

widely used iterative non-rigid registration method. Additionally, FPT performed
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consistently in both rigid and non-rigid registration, demonstrating its ability to

effectively perform both types of registration.

Figure 3.2: Rigid (top) and non-rigid (bottom) registrations with FPT. Blue: source, yellow:
target, green: transformed source.

Table 3.1: Registration performance of FPT and other methods on unseen objects in the
ModelNet40 dataset. The lowest mean value in each section is bolded.

Method Transformation Time (s) RMSE (R) RMSE (t)

ICP [126] Rigid 0.05 28.84° 0.193
PointNetLK [171] Rigid 0.14 14.47° 0.045
CorsNet [177] Rigid 0.08 16.24° 0.012
CPD [127] Rigid 5.94 8.29° 0.049
CPD [127] Non-Rigid 6.01 8.39° 0.051

FPT Rigid 0.08 5.01° 0.015
FPT Non-Rigid 0.08 5.18° 0.032

Unseen Objects with Gaussian Noise. Figure 3.3a shows FPT’s non-rigid regis-

tration performance with Gaussian noise. Table 3.2 gives non-rigid registration

performance of FPT with Gaussian noise. The rotational and translational errors

were not largely affected by the introduction of Gaussian noise to the source point-set.

Further, DC and DH metrics, as computed on the registration performed with the

training set, remained fairly constant until larger amounts of Gaussian noise are

introduced. This suggests that outlier points have the most substantial effect on

the registration of those outlier points; however, the overall registration quality, as
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measured by RMSE, was not largely unaffected by noise, likely owing to the fact

that FPT extracts global features.

Figure 3.3: Non-rigid registration with added Gaussian noise (a) and varying deformation
(b) using FPT. Gaussian noise added at 0.01 SD (left), 0.02 SD (center), 0.04
SD (right). Deformation added at 0.1 SD (left), 0.2 SD (center), 0.4 SD (right).
Blue: source, yellow: target, green: transformed source.

Table 3.2: Non-rigid registration performance on unseen objects with added Gaussian noise.

Noise (SD) RMSE (R) RMSE (t) DC DH

0 5.17° 0.032 0.029 0.101
0.005 5.47° 0.032 0.030 0.103
0.01 5.40° 0.033 0.031 0.108
0.02 5.55° 0.034 0.035 0.123
0.04 5.59° 0.037 0.042 0.167

Unseen Objects with Varying Deformation. Figure 3.3b shows FPT’s registration

performance at varying amounts of deformation in the non-rigid input transfor-

mations. Table 3.3 gives the registration performance of FPT in the deformation

experiments. FPT’s rotational and translational errors, DC, and DH, as computed by

an FPT registration performed with the training set, was more noticeably affected

when deformation was introduced with σ = 0.2. This suggests that larger defor-

mations have a greater effect on the overall registration, as FPT was not able to as

successfully reconstruct the original shape - as in Figure 3.3b. As FPT was trained

with perturbation added at σ = 0.1, it is suspected that introducing larger deforma-

tions in training may improve FPT’s ability to perform successful registrations with

greater deformation.

Partial Registration of Unseen Objects. Figure 3.4 shows FPT’s ‘partial-to-full’ and

‘partial-to-partial’ non-rigid registration performance. Table 3.4 gives registration
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Table 3.3: Non-rigid registration performance on unseen objects with varying deformation.

Deformation (SD) RMSE (R) RMSE (t) DC DH

0 4.99° 0.015 0.023 0.068
0.05 5.00° 0.021 0.026 0.079
0.1 5.17° 0.032 0.029 0.101
0.2 6.54° 0.061 0.037 0.161
0.4 14.73° 0.120 0.058 0.279

performance for FPT and other evaluated methods for ‘partial-to-full’ and ‘partial-

to-partial’ registrations. Here, it is seen that FPT was comparable or superior to

other learning-based methods. While PRNet maintains superior performance in both

rotational and translation error, it is explicitly designed for partial registration and

iteratively refines the predicted registration [174]. Furthermore, the use of a modified

DC limits FPT’s ability to perform partial registration as it relies on the existence

of a one-to-one correspondence between point-sets. When points are removed from

the source or target point-set, as in partial registration, a two-way DC will compute

distances in a one-to-many manner, as some points will be distant from the other

point-set. However, this limitation may be alleviated through the formulation of a

one-way DC loss for partial registration applications. As such, FPT’s performance in

partial registration must be further validated with other losses and training protocols

in future work.

Table 3.4: Partial registration performance of FPT and other methods on unseen objects.

Method Type Transformation RMSE (R) RMSE (t)

ICP [126] Partial-to-partial Rigid 32.40° 0.279
PointNetLK [171] Partial-to-partial Rigid 16.58° 0.048
PRNet [174] Partial-to-partial Rigid 3.20° 0.016

FPT Partial-to-partial Rigid 6.97° 0.063
FPT Partial-to-partial Non-Rigid 7.99° 0.082

FPT Partial-to-full Rigid 5.79° 0.053
FPT Partial-to-full Non-Rigid 6.34° 0.068
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Figure 3.4: Non-rigid ‘partial-to-full’ registrations at 25% occlusion of the source point-
set (top) and ‘partial-to-partial’ registrations at 25% occlusion of the source
and target point-sets (bottom) with FPT. Blue: source, yellow: target, green:
transformed source.

3.5 Quantification of Scoliotic Spine Curvature
As a preliminary real-world use-case for generalized non-rigid point-set registration,

FPT’s effectiveness in the quantification of spinal curvature for scoliosis measure-

ment is investigated. Scoliosis is a spinal deformity identified in 3% of adolescent

children [187]. Scoliosis is often monitored and measured with X-ray imaging

(X-ray), however, repeated use of X-ray has been linked to an increased incidence of

cancer [188]. US imaging has been proposed as a safer, more accessible option for

scoliosis monitoring and measurement [189–191]. Recent deep learning methods

for automatic bone segmentation in US have been shown to adequately reconstruct

the overall spinal curvature in pediatric patients with scoliosis [191]. However,

compared to X-ray, these reconstructions are not sufficient without additional visual

context. This is due in part to the lack of some meaningful features, depending

on the orientation of the images used to acquire the images used in the reconstruc-

tion, which can support clinical decision-making and create clear visualizations

for patients. The registration of an overall shape or curvature to a generic spine

model stands to provide appropriate and meaningful spine visualization. Manual

registration of such reconstructions to generic spine models for visualization and

measurement is possible, though the process is time-consuming, error-prone, and

operator dependant [190]. These limitations reveal the need for fast, automatic
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methods which register US-based reconstructions to generic anatomical models for

use in place of or to supplement traditional medical imaging.

3.5.1 Data

Using Ungi et al.’s method for automatic bone segmentation from US [191], 13

different curvatures from 7 different patients were reconstructed. The surfaces of

the reconstructions, as well as a generic spine model (Figure 3.5) were resampled

into point-sets, and subsequently registered to evaluate FPT’s ability to generalize to

unseen shapes.

3.5.2 Network Implementation

To demonstrate FPT’s generalizability to unseen objects from outside the domain of

the training set, the implementation of FPT used for this experiment was not fine-

tuned with any data from this application. Instead, the resulting trained network from

the experiments in Partial Registration of Unseen Objects, given in Section 3.4.3,

was used directly.

3.5.3 Evaluation Method

Spinal curvature is commonly quantified by the Cobb angle - the angle formed

between lines drawn on the end-plates of vertebrae above and below the main

curvature [192]. However, as vertebral end-plates are not visible in US, they do

not appear in the 3D reconstructions. As such, spinal curvature is reported using

the transverse process angle (TxA) as it is visible in X-ray and US, and has a very

strong correlation to Cobb angle [189]. TxA is defined by the angle formed between

lines drawn through the lateral ends of each transverse process above and below the

main curvature [189]. TxAs were calculated on the X-ray and the deformed spine

model. The reported TxA in the X-ray was defined by two lines in 2D. The TxA in

the deformed model was defined by two lines in 3D, with the reported TxA being

that which was computed by projecting these lines into 2D in the coronal plane. The

lines annotated on the X-ray and the deformed model were drawn by a doctor of

chiropractic medicine with over 10 years of experience in scoliosis measurement in

X-ray and over 5 years of experience with US.
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Figure 3.5: The generic spine atlas (left) and a sample ultrasound reconstruction (right)
which were subsequently resampled into point-sets to be registered using FPT,
wherein the generic spine becomes is used as the source point-set and the
reconstruction is used as the target. Figure from [150].

3.5.4 Results & Discussion

TxAs were measured in both the X-ray and in the deformed spine models to per-

mit comparison between the clinical standard for scoliosis measurement and FPT’s

registration. The 13 spinal curvatures acquired from X-ray in the dataset measured

between 6.4° and 11.5°. The maximum difference between TxA measurements from

X-ray and the deformed model was 2.3°. The average difference between TxA mea-

surements from X-ray and the deformed model was 1.3± 0.8°. Figure 3.6 graphically
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demonstrates the aforementioned results. Figure 3.7 illustrates an anterior-posterior

and lateral visualization of a representative case from the dataset.

Figure 3.6: Scatter plot of per-patient TxA measured from the deformed spine models vs.
X-ray-based measurements. Figure from [150].

In practice, only curvatures larger than 5° are considered clinically significant.

Additionally, the curvature from X-ray measurements may vary by up to 5° due to

inter-observer variability and the time of day at which the images are acquired [193].

As such, for monitoring and measuring scoliosis, an accuracy within 5–10° is

considered acceptable and serves its purpose for determining the next steps and

course of care for a given patient. While this proof-of-concept experiment is limited

by the patient sample size, and the scale of the curvatures, given the availability of

paired US imaging and corresponding X-ray, it is clear that the results presented

are clinically acceptable. Without any fine-tuning, and having provided FPT with

geometries that are external to the training set, FPT was able to register the spine

models with an average error of less than 1.5°. Importantly, all measured differences

fell within the 5° clinical error range, permitting a promising future use for the
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Figure 3.7: Sample anterior-posterior (top) and lateral (bottom) visualization from patient
data. Left to right: X-ray image, 3D reconstruction, deformed spine model,
deformed spine model overlaid on 3D reconstruction, deformed spine model
overlaid on the X-ray image. Solid lines show measurements in X-ray images,
dashed lines show measurements on deformed spine models. Figure from [150].

creation of accurate 3D visualizations that may be used for monitoring and measuring

scoliosis without the need for error-prone manual registration processes, or the use

of X-ray imaging and its associated ionizing radiation.

3.6 Prostate MR-TRUS Registration
In this section, prostate MR-TRUS registration is employed as an additional example

that demonstrates how FPT may be applied for real-world clinical applications.

Prostate MR-TRUS image fusion is a technique for using MR images to perform

tumor-targeted needle biopsy [194, 195] and minimally-invasive treatments [196] in

patients for whom clinically significant prostate cancer is suspected or confirmed.

The techniques involve presenting information on the location and size of MR-visible

lesions/tumors to complement the information provided by real-time TRUS images

so that needles and other instruments can be placed to accurately target specific tissue
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regions. MR-derived lesion/tumor information is typically displayed as a visual

overlay superimposed on TRUS images, as a composite MR-TRUS image, or with

the MR and TRUS images presented side-by-side. Displaying the images using any

of these methods requires accurate registration.

3.6.1 Data

The experimental dataset used in the evaluation comprised 108 pairs of pre-operative

T2-weighted MR and intraoperative TRUS images from 76 patients which were

acquired during the SmartTarget clinical trials [146]. A mixture of 1.5T and 3T

MR scanners at University College London Hospital were used for the T2-weighted

MR acquisition. A standard clinical TRUS machine equipped with a bi-plane trans-

ducer probe at University College London Hospital was used for TRUS acquisition.

Parasagittal slices were acquired and reconstructed into a 3D volume based on the

interpolated TRUS intensity values at measured locations across a rectangular grid.

Before point-set generation from the prostate contours, each of the MR and TRUS im-

ages was resampled to an isotropic voxel size of 0.8×0.8×0.8 mm3. Prostate gland

boundaries were segmented in the resampled MR and TRUS images. Segmentations

of the prostate gland in the MR images were acquired as part of the SmartTarget

clinical trial protocols [146]. Additionally, segmentations of the prostate gland in the

TRUS images were manually edited by biomedical imaging researchers based on

automatically contoured prostate glands from the original TRUS slices [197]. Each

annotator had at least 5 years of experience in MR-TRUS registration, for manual

segmentation of both image types. One additional annotator with over 10 years of

experience performed a final quality control check for all cases. All annotators had

previously completed a two-day advanced course for radiologists, hosted by the

Urology Department and the Radiology Department at University College London

Hospitals, on the use and interpretation of MR and TRUS images for prostate cancer

diagnosis and treatment.

Using segmented MR and TRUS images, the contours and volumes of each

prostate gland were extracted to generate two 3D point-sets – PT from the TRUS

images and PS from the MR images – using a grid-based sampling approach in which
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each voxel was converted into a vector of its [x, y, z]T 3D Euclidean coordinates

in the segmented image volume. When the points are displayed, this gives the

appearance of a grid-like point-set. As such, each voxel’s location represented a

single point in space in the generated point-set (Figure 3.8).

Figure 3.8: Point-sets depicting (from left to right) the anterior, right, posterior, and left
views of a prostate volume obtained from a segmented TRUS (top) and MR
volume (bottom) for one pair of patient images. Figure from [120].

3.6.2 Network Implementation and Training

This series of experiments was performed using the afore-described implementation

of FPT given in Section 3.4.2. As previously, the FPT network architecture was

employed with a value of K = 1024. In the point transformer module, L = 6, and

U = {1024, 512, 256, 128, 64, 3}. The set of activation functions, a, was defined

such that the first five layers used the ReLU activation function [96], but the final

layer used no activation function (i.e. a linear activation). An illustration of FPT

network, as applied for prostate MR-TRUS fusion is presented in Figure 3.9

All networks were trained for 2,000 epochs with the Adam optimizer [185], a

minibatch size of 8, and an initial learning rate of 1 ·10−5 when training with the

DC Loss (“FPT-Chamfer”). When training with the GMM Loss (“FPT-GMM”), all

hyperparameters were identical to those used when training with the DC Loss, apart

from a minibatch size of 2 due to larger memory requirements for the computation

of the loss. Additionally, hyperparameters σ2 and u in the GMM Loss were set as
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Figure 3.9: Schematic representation of the FPT network design for non-rigid point-set
registration as applied to the MR-TRUS fusion task. Figure from [120].

0.001 and 0.1, respectively. Networks were trained on an NVIDIA DGX-1 system

using a single Tesla V100 GPU.

During training, the points in PT and PS were permuted, scaled, and resampled

on-the-fly. The points were scaled, per-sample, between [−1, 1] in each of the X , Y

and Z directions. Both point-sets were then shuffled and randomly subsampled to

the desired cardinality. PS was further transformed on-the-fly with scaling, rotation,

and displacement. Rotation angles were randomly sampled from [−45°, 45°] about

each of the X , Y and Z axes. Displacements were randomly sampled from [−1, 1] in

each of the X , Y and Z directions.

3.6.3 Gaussian Radial Basis Function Network

To demonstrate the effectiveness of FPT, it is compared to the use of a parametric

transformation, similar to that proposed by [118]. This network uses a Gaussian radial

basis function (G-RBF) model to compute, and account for, the complex deformation

between the surfaces of the source and target point-sets. In the implementation

of the G-RBF network, the global feature extraction module developed for FPT is

used, however, the point transformation module is replaced with a G-RBF module.

This G-RBF module determines the point displacements by predicting the control
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points (XControl) and spline coefficients (XCoe f f icients) required to compute the G-

RBF transformation. Subsequently, the input point-sets are registered by non-rigid

transformation via computation of the displacement between source and target point

clouds, providing the transformed source points as:

p̃′s = fθG−RBF (p̃s) = αααks + p̃s (3.10)

where ks = [k1
s , k2

s , . . . , kNc
s ]T is the Nc× 1 Gaussian kernel vector kc

s(pc, p̃s) =

e−
∥pc−p̃s∥2

2σ2 [198], computed for each point p̃s, with respect to a set of control points

pc, c = 1, . . . , Nc. The Nc control points pc and the 3×Nc spline coefficients ααα are

directly predicted by the G-RBF point transformation network. In this work, the

G-RBF uses Nc = 27 control points and a kernel parameter σ = 1, unless otherwise

indicated. The G-RBF network was trained with the same amount of training data,

the same data augmentation methods, and the same loss functions as the FPT.

Two variants of the proposed G-RBF network were compared, each with differ-

ent loss functions used in training: First, using the DC Loss (“G-RBF-Chamfer”),

and secondly, using the (“G-RBF-GMM”), both as previously described in Sec-

tion 3.3.2.1. An illustration of the G-RBF network, including the G-RBF point

transformation module is presented in Figure 3.10

3.6.4 Comparison with G-RBF and Classical Methods

In addition to the previously described G-RBF networks, the FPT was compared

to two example pairwise iterative methods for point-set registration: the widely

used rigid ICP algorithm and the non-rigid CPD algorithm. In the experiments, the

ICP algorithm was permitted to complete up to 25 iterations. All other parameters

and initializations were performed as described by Besl and McKay [126]. For the

CPD algorithm, w = 0, where the value of w (0 ≤ w ≤ 1) indicates the assumed

amount of noise present in the point-set and permitted the algorithms to complete up

to 250 iterations. All other parameters were set to the default values described by

Myronenko and Song [127].

A series of experiments were performed to demonstrate the FPT’s performance
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Figure 3.10: Schematic representation of the G-RBF network design for non-rigid point-set
registration. Similarly to FPT, the global feature extraction module takes a
target and source point-set and applies shared input and feature transformations
to both, creating a global feature vector. The G-RBF point transformation
module applies a non-rigid transformation using the predicted control points
and spline coefficients, as in Eq. 3.10, to obtain the transformed point-set.
Figure from [120].

compared to the G-RBF networks (G-RBF-Chamfer and G-RBF-GMM), ICP, and

CPD for registration of MR to TRUS data. In these experiments, the same dataset

described above (see Section 3.6.1) is utilized, comprising 108 pairs of MR and

TRUS images. These data were split into a training and testing set, wherein 70% of

the data (75 MR-TRUS pairs) were reserved for training, and 30% of the data (33

MR-TRUS pairs) were reserved for testing. Any patient who had multiple series of

imaging was assigned to the training set to ensure that images from a single patient

were not included in both the training and the test set. A hold-out set was not used

to prevent bias by an exhaustive hyperparameter search when creating and training

FPT to demonstrate the ability of its data-driven architecture compared to other

methods. It should be noted that this two-way split experiment may systematically

underestimate the registration performance of the G-RBF network and other methods

which rely on extensive hyper-parameter tuning.
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MR to TRUS Registration. The non-rigid registration performance of FPT when

aligning complete volumetric MR and TRUS point-sets was evaluated similarly to

the first scenario presented in Section 3.3.2. Performance in this registration problem

was tested by varying the size of {ps} and {p̃s}. Both the FPT and the G-RBF

network were trained using both loss functions, using 1,024, 2,048, 4,096, or 8,192

points in {ps}. Owing to the cardinality invariance of the FPT and G-RBF network

architectures, each of these trained networks was then used to predict registrations

with 1,024, 2,048, 4,096, or 8,192 points in to test the sensitivity to different sampling

rates between network inputs during training and at inference. The ICP and CPD

algorithms do not require training and were evaluated on the computed registrations

they produced with 1,024, 2,048, 4,096, or 8,192 input points.

MR to Partial TRUS Registration. Additionally, the non-rigid registration perfor-

mance of FPT when aligning complete volumetric MR point-sets to partial volumetric

TRUS point-sets was evaluated similarly to the second scenario presented in Sec-

tion 3.3.2. This series of experiments was designed to reflect three clinical scenarios

in which only point-data defining part of the prostate surface are available due to

a small number of 2D TRUS images being acquired, each representing a different

slice through the organ. For each of these scenarios, surface points extracted from

only two or three segmented ultrasound slices were used as inputs to the registration

algorithms, reducing the amount of available data considerably.

Examples of each prostate TRUS imaging scenario investigated are illustrated

in Figure 3.11. The first scenario represents the case where three evenly distributed

2D TRUS slices are obtained. The second scenario represents the case where two or

three TRUS slices are obtained, but the slices are biased to one lateral direction. The

third scenario represents the case where only two TRUS slices are obtained which

provide poor coverage of the prostate gland, with the slices skewed to the left or

right side.

To quantitatively describe and validate the differences between each scenario,

two metrics were defined and used: ‘slice centroid distance’ and ‘slice span’. The

slice centroid distance was defined as follows:
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Figure 3.11: Illustration of possible TRUS images acquired from the TRUS transducer.
Images are captured in the sagittal plane (left) and are shown with other image
slices that may be acquired in each of the three scenarios, from an axial view
(right). Figure from [120].

Slice Centroid Distance = ∥cp− cs∥2 (3.11)

where cp is the geometric center of the TRUS prostate point-set, and cs is the

geometric center of the point-set comprising all the selected TRUS image slices.

Additionally, the slice span was defined as follows:

Slice Span =

√
1
n ∑

n
i=1 ∥cp− ci

s∥2
2 (3.12)

where the set {ci
s | i = 1, . . . , n} describes the centroid points comprising the

individual selected TRUS image slices from n slices. These metrics are illustrated in

Figure 3.12 and expected and computed values for the metrics which quantitatively

describe the distribution of points and individual frames in each scenario are given

in Table 3.5.

In the first set of experiments, changing the point sampling rates in training and

at inference is seen to not affect the selected registration metrics (see Section 3.6.4).

Therefore, in this second set of experiments, only instances of FPT-Chamfer and G-

RBF-Chamfer with input point-sets containing 4,096 points in each of the three TRUS
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Figure 3.12: Illustration of the Slice Centroid Distance (left) and Slice Span (right) in two
simulated instances of the possible scenarios. The green point indicates the
centroid of the points in the selected image slices, and the blue point indicates
the centroid of the entire prostate volume. Figure from [120].

Table 3.5: Qualitative metrics which describe the three clinical scenarios. Values: Mean ±
SD mm

Slice Centroid Distance Slice Span
Expected Actual Expected Actual

Scenario 1 Lowest 4.07 ± 0.94 Highest 10.40 ± 1.28
Scenario 2 Between S1 & S3 4.78 ± 1.43 Between S1 & S3 8.45 ± 1.31
Scenario 3 Highest 10.6 ± 2.63 Lowest 4.74 ± 1.05

scenarios were trained. An input size of 4,096 points was selected empirically as the

previous experiment demonstrated no clear difference in registration quality when

varying input point-set sizes. The DC Loss was selected as it reduced training time

and produced superior results for registration error when compared to FPT networks

trained with the GMM Loss in the previous experiment. For additional comparison,

the ICP and CPD algorithms were also evaluated in these three previously described

scenarios with input point-sets containing 4,096 points.
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3.6.5 Evaluation Methods

The accuracy of the prostate surface point registrations was quantified using the

DC, the DH, and TRE, calculated as the distance between points defining the 3D

locations of corresponding, manually identified anatomical landmarks in the TRUS

and MR images [114, 199]. The DC was used as the loss function for some of the

experiments and therefore indicates the network generalization to independent test

data. Together with the DH, the registration accuracy on the point-set-represented

individual prostate glands can be measured. The TRE is defined as the root-mean-

square of each of the distances computed between the geometric centroids of the

registered pairs of source and target landmarks for each patient. The landmarks

consisted of 309 pairs of points, including points defining the apex, base, urethra,

visible lesions, junctions between the gland, gland zonal separations, vas deferens and

the seminal vesicles, and other patient-specific point landmarks such as calcifications

and fluid-filled cysts [146]. It is noted that while the term ‘landmark’ is often used to

denote a ‘point landmark’, here it is used to define a pixel-wise label of the structure

in the image. As such, for non-point or non-spherical structures, the geometric

centroid of the structure is used as the landmark for the purpose of computing

TRE. Additionally, it should be noted that the overall spatial distribution of these

landmarks may be representative of the full TRE distribution in this application

[114,118–120,123–125,130–133,137,139,154,157,162,167,169,170,200–207], but

landmark-based TREs nevertheless provide a useful estimate of the errors associated

with localizing tumors within the prostate. The computational time was also recorded

for each registration experiment.

3.6.6 Results & Discussion

3.6.6.1 MR-TRUS Registration

Table 3.6 shows the mean and SD for DC, DH, and TRE for each of the different

methods and input point-set sizes. A Shapiro-Wilk test was performed on the values

for DC, DH, and TRE of each method at each point-set size. In all instances, the

test did not show evidence of non-normality (p > 0.05). Across all variants and
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experiments in MR to TRUS registration, FPT-Chamfer achieves a mean TRE of

4.71 mm, compared to 5.16 mm for FPT-GMM, 5.29 mm for G-RBF-Chamfer,

5.25 mm for G-RBF-GMM, 6.02 mm for ICP, and 5.08 mm for CPD. Without any

form of alignment on the dataset, TRE of 25.43 mm is observed. FPT-Chamfer

gives the lowest average DC and TRE in nearly all instances, while CPD gives the

lowest average for DH. The prostate contours from a sample slice in the transverse

plane from resulting registrations of three cases with each of the learning-based and

iterative methods are shown in Figure 3.13.

Table 3.6: DC, DH, and TRE for each method used and at each point-set size in the first
MR-TRUS registration experiment. The lowest mean value in each section is
bolded. Significant differences with respect to FPT-Chamfer are denoted with an
asterisk (*), based on two-tailed paired t-tests at α = 0.05. Values: Mean ± SD
mm.

Points in {p̃s} Method DC DH TRE

8,192

FPT-Chamfer 1.10 ± 0.17 6.18 ± 1.36 4.75 ± 1.45
FPT-GMM 1.14 ± 0.18 6.65 ± 1.53* 5.49 ± 1.68*
G-RBF-Chamfer 1.15 ± 0.17 7.20 ± 1.43* 5.50 ± 1.61*
G-RBF-GMM 1.17 ± 0.16* 7.70 ± 2.00* 4.87 ± 1.33
ICP [126] 1.29 ± 0.19* 8.48 ± 1.79* 5.94 ± 1.68*
CPD [127] 1.25 ± 0.19* 6.12 ± 1.32 5.12 ± 1.35

4,096

FPT-Chamfer 1.38 ± 0.19 6.27 ± 1.41 4.69 ± 1.41
FPT-GMM 1.41 ± 0.20 6.66 ± 1.36* 5.34 ± 1.50*
G-RBF-Chamfer 1.42 ± 0.19 7.30 ± 1.48* 4.92 ± 1.34
G-RBF-GMM 1.45 ± 0.21* 7.83 ± 1.66* 5.19 ± 1.46*
ICP [126] 1.53 ± 0.22* 8.58 ± 1.86* 6.03 ± 1.62*
CPD [127] 1.44 ± 0.20 5.98 ± 1.34 4.99 ± 1.39

2,048

FPT-Chamfer 1.72 ± 0.21 6.46 ± 1.20 4.55 ± 1.34
FPT-GMM 1.75 ± 0.23 6.81 ± 1.32 4.70 ± 1.52
G-RBF-Chamfer 1.77 ± 0.23* 7.50 ± 1.56* 5.42 ± 1.75*
G-RBF-GMM 1.80 ± 0.24* 7.94 ± 1.78* 5.52 ± 1.40*
ICP [126] 1.89 ± 0.23* 8.63 ± 1.84* 6.09 ± 1.53*
CPD [127] 1.73 ± 0.22 6.07 ± 1.13* 4.98 ± 1.42*

1,024

FPT-Chamfer 2.16 ± 0.29 6.73 ± 1.22 4.83 ± 1.42
FPT-GMM 2.19 ± 0.29* 7.10 ± 1.30 5.09 ± 1.40
G-RBF-Chamfer 2.20 ± 0.30* 7.82 ± 1.56* 5.34 ± 1.64*
G-RBF-GMM 2.24 ± 0.30* 8.16 ± 1.79* 5.40 ± 1.89*
ICP [126] 2.34 ± 0.33* 9.17 ± 2.03* 6.01 ± 1.79*
CPD [127] 2.10 ± 0.25* 6.49 ± 1.42 5.21 ± 1.34*

For the FPT-Chamfer and FPT-GMM implementations, between 14 and 50
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Figure 3.13: Example image slices illustrating registration results from three different cases,
shown in the transverse plane. Each image shows the original TRUS image
with the transformed source (MR) contours (red) superimposed onto the target
(TRUS) contours (green). Columns indicate registrations from each method;
from left to right: FPT-Chamfer, FPT-GMM, G-RBF-Chamfer, G-RBF-GMM,
ICP, and CPD. Figure from [120].

registrations may be performed per second, depending on the size of the input point-

set at inference. These registration times are nearly identical to those achieved with

the G-RBF network (G-RBF-Chamfer and G-RBF-GMM), approximately 5–8 times

faster than those observed with ICP, and approximately 200–5,000 times faster than

those observed with CPD. Table 3.7 shows the mean and SD of the registration times

for the different methods.

Table 3.7: Time to compute a single registration at a given point-set size for FPT, G-RBF,
ICP and CPD. Values: Mean ± SD s

Points in {p̃s}
Method 1,024 2,048 4,096 8,192

FPT 0.02 ± 0.00 0.02 ± 0.01 0.04 ± 0.01 0.07 ± 0.01
G-RBF 0.02 ± 0.00 0.02 ± 0.01 0.04 ± 0.01 0.07 ± 0.01
ICP [126] 0.10 ± 0.01 0.15 ± 0.02 0.31 ± 0.02 0.45 ± 0.02
CPD [127] 4.17 ± 1.04 17.89 ± 3.15 85.58 ± 10.52 357.73 ± 25.74

To assess if the changes in DC and DH when using different numbers of points

at inference is related to the size and inherent point density of {p̃s}, the results of MR

to TRUS registrations performed on a grouped series of random subsamples without

replacement is also reported. By creating multiple unique and non-intersecting
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subsets of points for each MR and TRUS prostate volume, each of the predicted

registrations may be grouped, and subsequently combined with, their accompanying

subsets. This was performed at four different thresholds for the size of {p̃s}; in

essence, eight registrations were performed on eight subsets of 1,024 points, four

registrations were performed on four subsets of 2,048 points, two registrations were

performed on two subsets of 4,096 points, and one registration was performed on the

original 8,192 points. The results of these grouped registrations are presented with

the mean and SD of DC, DH, and TRE at the four different thresholds in Table 3.8.

Table 3.8: DC, DH, and TRE for each method used and at each grouped registration threshold.
Values: Mean ± SD mm

Points in {p̃s} Groups Method DC DH TRE

8,192 1

FPT-Chamfer 1.10 ± 0.17 6.03 ± 1.35 4.80 ± 1.28
FPT-GMM 1.16 ± 0.18 6.82 ± 1.49 5.33 ± 1.70
G-RBF-Chamfer 1.15 ± 0.18 7.33 ± 1.43 5.43 ± 1.73
G-RBF-GMM 1.18 ± 0.17 7.88 ± 1.99 5.58 ± 1.40

4,096 2

FPT-Chamfer 1.10 ± 0.17 6.20 ± 1.34 4.74 ± 1.25
FPT-GMM 1.12 ± 0.16 6.60 ± 1.47 5.37 ± 1.68
G-RBF-Chamfer 1.14 ± 0.16 7.21 ± 1.45 5.21 ± 1.76
G-RBF-GMM 1.17 ± 0.19 7.76 ± 2.04 5.12 ± 1.58

2,048 4

FPT-Chamfer 1.10 ± 0.16 6.37 ± 1.36 4.67 ± 1.22
FPT-GMM 1.12 ± 0.17 6.30 ± 1.48 4.94 ± 1.59
G-RBF-Chamfer 1.13 ± 0.19 7.07 ± 1.46 5.28 ± 1.69
G-RBF-GMM 1.16 ± 0.18 7.57 ± 2.01 5.35 ± 1.68

1,024 8

FPT-Chamfer 1.09 ± 0.17 6.00 ± 1.33 4.79 ± 1.27
FPT-GMM 1.11 ± 0.18 6.31 ± 1.50 5.23 ± 1.57
G-RBF-Chamfer 1.15 ± 0.19 7.23 ± 1.39 5.18 ± 1.62
G-RBF-GMM 1.16 ± 0.18 7.55 ± 1.96 5.21 ± 1.56

It is observed that grouping registrations with different point sampling rates at

inference does not appear to affect DC or DH. This demonstrates that differences in

DC and DH in prior experiments may be due to point-set density; where a less dense

point-set produces a higher value for the same metrics. It may be concluded that, with

sufficient points sampled in each set, the obtained TRE became less sensitive to the

tested different sampling strategies and increase of the sampling density, a practically

desirable property of the proposed method. While there are small variations in the

average reported TRE for the grouped registrations, FPT-Chamfer still produces the
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lowest overall average TRE in the registrations performed at each threshold for the

size of {p̃s}.

3.6.6.2 MR-Partial TRUS Registration

Table 3.9 shows the mean and standard deviation for DC, DH and TRE for each of

the different methods in each different clinical scenario. A Shapiro-Wilk test was

performed on the values for DC, DH, and TRE of each method in each scenario. In

all instances, the test did not show evidence of non-normality (p > 0.05). Across

all methods and scenarios in the MR to partial TRUS registration, FPT-Chamfer

achieves the lowest average DC, DH and TRE in all instances. Among the deep

learning-based methods, average DC, DH, and TRE are similar to those in the first

series of experiments where complete data were available and {p̃s} contained 4,096

points. ICP and CPD demonstrate lower average performance in all metrics relative

to their results in the previous experiment. Most saliently, DC and DH for CPD are

1.5–6 times higher on average than in the previous experiment, and computed values

of TRE nearly double on average. Based on two-tailed paired t-tests at α = 0.05,

the differences in DH and TRE across all three scenarios between FPT-Chamfer and

G-RBF-Chamfer, FPT-Chamfer and ICP, and FPT-Chamfer and CPD are statistically

significant (p < 0.005, p < 0.005, p < 0.001, respectively). The differences in DC

across all three scenarios between FPT-Chamfer and ICP, and FPT-Chamfer and

CPD are also statistically significant (p < 0.005, and p < 0.001, respectively). 3D

visualizations of the prostate shapes before and after registration with variants of

FPT for three different cases are given in Figure 3.14. The prostate contours from a

sample slice in the transverse plane from resulting registrations of three cases with

each of the scenarios for FPT-Chamfer are shown in Figure 3.15. A box plot of the

TREs at comparing FPT-Chamfer, G-RBF-Chamfer, ICP, and CPD at the patient

level for MR to TRUS and MR to partial TRUS registrations in all three scenarios is

given in Figure 3.16.

3.6.6.3 Discussion

Unlike intensity-based methods, wherein similarity metrics are often utilized, the

FPT leverages the geometric and spatial information from point-sets to drive the



3.6. Prostate MR-TRUS Registration 125

Table 3.9: DC, DH, and TRE for each method used in the partial MR-TRUS registration
experiment. All point-sets are of size 4,096. The lowest mean value in each
section is bolded. Significant differences with respect to FPT-Chamfer are denoted
with an asterisk (*), based on two-tailed paired t-tests at α = 0.05. Values: Mean
± SD mm.

Scenario Method DC DH TRE

Scenario 1

FPT-Chamfer 1.40 ± 0.20 6.38 ± 1.48 4.88 ± 1.56
G-RBF-Chamfer 1.45 ± 0.20 7.38 ± 1.68* 5.39 ± 1.79*
ICP [126] 1.93 ± 0.41* 9.07 ± 1.95* 6.54 ± 2.19*
CPD [127] 2.25 ± 0.42* 15.74 ± 4.29* 9.35 ± 3.04*

Scenario 2

FPT-Chamfer 1.41 ± 0.21 6.36 ± 1.70 4.81 ± 1.75
G-RBF-Chamfer 1.46 ± 0.22 7.68 ± 1.73* 5.27 ± 1.95*
ICP [126] 1.94 ± 0.43* 9.28 ± 2.24* 6.48 ± 2.24*
CPD [127] 3.32 ± 0.72* 21.38 ± 6.28* 9.69 ± 3.36*

Scenario 3

FPT-Chamfer 1.42 ± 0.21 6.62 ± 1.90 4.76 ± 1.71
G-RBF-Chamfer 1.45 ± 0.23 7.71 ± 2.11* 5.55 ± 2.38*
ICP [126] 1.94 ± 0.62* 9.12 ± 2.59* 7.04 ± 2.33*
CPD [127] 6.58 ± 1.03* 36.78 ± 7.27* 10.30 ± 3.74*

learning and subsequent registration process. While the effectiveness of this work

relies on the extraction of features from the imaging data, the point-sets required may

be generated efficiently and automatically via accurate image segmentations obtained

from emerging deep learning methods [118, 197]. For MR-TRUS registration, only

a few 2D US images may need to be segmented to produce a sufficient number of

input points for registration using the aforementioned grid-based sampling approach

described in this work. Furthermore, using FPT-Chamfer, TREs are lower or com-

parable to all other methods, with a mean TRE in the first and second experiments

of 4.71 mm and 4.81 mm, respectively. As illustrated in Table 3.9, FPT-Chamfer

significantly outperforms other methods in the partial registration, in all metrics,

except for G-RBF-Chamfer, with a two-way DC loss (Eq. 3.8), when evaluating also

using DC. Other independent metrics, including DH and TRE, have all supported the

superior generalization ability from FPT, with statistical significance.

Previous work comprehensively reports registration accuracies for full data sets,

i.e., full 3D prostate gland segmentations may reduce variance in registration error

given the results observed in this work, although additional validation is needed to
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Figure 3.14: MR-TRUS prostate glands showing the overlap of the transformed source
(MR) and target (TRUS) point-sets. The green shape illustrates the target
point-set, while the red shape illustrates the transformed source point-set. The
first column shows the source and target after center-alignment. The remaining
columns show registrations from various methods; from left to right: FPT-
Chamfer, FPT-Chamfer trained with Scenario 1 image slices, FPT-Chamfer
trained with Scenario 2 image slices, and FPT-Chamfer trained with Scenario
3 image slices. Figure from [120].

draw further conclusions.

Though there is a measurable difference in the mean TRE, DC, and DH obtained

between the full volumetric registrations and partial registrations for FPT-Chamfer,

it is notable that these variations provide little qualitative difference, as seen in

Figures 3.14 and 3.15; only sub-millimeter differences in quantitative performance

were observed between each of the three clinical scenarios. This highly comparable

performance demonstrates FPT’s flexibility and generalizability between different

input data and illustrates that the network can adapt to multiple varied distributions

and availabilities of input data and still learn to predict a desirable registration.

Intensity-based methods for multimodal image registration are also able to uti-

lize information from the entire prostate gland, typically providing a qualitatively and

quantitatively good intraprostatic deformation. To emulate this, volumetric point-sets

were utilized, as this allows the network to learn intraprostatic deformation instead
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Figure 3.15: Example image slices illustrating registration results from three different cases,
shown in the transverse plane. Each image shows the original TRUS image
with the transformed source (MR) contours (red) superimposed onto the target
(TRUS) contours (green). Columns indicate registrations from FPT-Chamfer
for registrations with; from left to right; full volumes, Scenario 1, Scenario 2,
and Scenario 3. Figure from [120].

of relying on surface-driven deformations to interpolate intraprostatic deformation,

which may result in unlikely interior deformations.

Recently, intensity-based deep learning methods have achieved reported TREs

below 5 mm for the MR-TRUS registration application explored in this work [114,

137, 169, 206]. The TREs obtained for this application in this work fall within the

expected range previously defined clinically significant thresholds of 2.97 mm [208]

and 5 mm [200] found in the literature. However, it is difficult to make direct

comparisons between these results and others due to variations in the quality of data

(for example, due to different clinical setups, image acquisition protocols, and user

experience) and validation methods. In particular, the number and spatial distribution

of landmarks used to estimate TRE is likely to have a significant impact on the

numerical error. In the dataset used, the landmarks used to calculate TRE, such as the

apex and base of the prostate, are located on the surface or towards the periphery of
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Figure 3.16: Boxplots of the root-mean-square TRE per patient for the MR to TRUS and MR
to partial TRUS registrations obtained from FPT-Chamfer, G-RBF-Chamfer,
ICP, and CPD with 4,096 points. Figure from [120].

the prostate gland (unlike the urethra, for instance). Furthermore, the aforementioned

works do not consider the practical scenario of primary interest in this work, where

only partial data are available due to a limited number of image slices. An important

finding of this study is the minimal impact of using partial point data on accuracy

when using the FPT method compared to other methods tested. Without extensive

validation, It is unclear if the performance of intensity-based methods and/or other

forms of representations, such as binary masks, would also be minimally impacted

by this reduction of data. As such, the practical effects of partial data when applied

to existing registration methods and frameworks merit a thorough validation and



3.7. Conclusion 129

assessment but are considered out of the scope of this work given the inherent

challenges associated with successfully modifying these methods to represent and

accurately register partial data. These results demonstrate that the FPT can learn

descriptive, data-driven features directly from partial data without compromising

registration accuracy. Unlike conventional image-based registration methods, these

features enable efficient computation of a set of accurate displacements without cost-

prohibitive hardware and are rapid enough to be suitable for real-time applications.

An important direction to further this work is to test the feature-based methods’

ability to develop modality-, protocol-, and scanner-independent registration methods,

owing to their non-reliance on the direct imaging data; a wider patient population,

coming from multiple centers and with different acquisition protocols wherein there

may be increased data heterogeneity is of value in future validation of the presented

methods.

3.7 Conclusion

This chapter has introduced FPT, a novel approach to point-set registration using

deep neural networks which learns the displacement field required to produce individ-

ual point displacements. Through evaluation with synthetic non-medical data from

computer vision benchmarking datasets, US-based spine atlas reconstructions, and in

a challenging real-world multimodal image registration task with MR and TRUS im-

ages, FPT was found to be robust to deformation, noise, and the partial availability of

data; demonstrating multiple real-world use cases and clinical applications. Through

the evaluation of atlas-based registration to US-based spine reconstructions, FPT has

been shown to be generalizable to geometries external to its training data domain.

Furthermore, this work demonstrates that partially available data, generated from

automatically segmented MR and TRUS images, may be used to enable continual

real-time MR-TRUS image registration during prostate biopsies. In other medical

imaging problems where training data may be limited, FPT’s generalizability may

be of interest, given its ability to rapidly register point-sets extracted from imaging

acquired at different times or from different modalities. This demonstrates FPT’s
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utility as a generally-applicable method for learning-based non-rigid registration,

representing significant progress for non-iterative, non-rigid point-set registration.

As a registration method that non-iteratively performs non-rigid registration without

needing established point correspondence, FPT also represents significant progress

towards a generally applicable method for learning-based non-rigid registration in

medical imaging.
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Chapter 4

Meta-Learning Initializations for

Interactive Registration

This chapter is based on the work “Meta-learning initializations for interactive

medical image registration”, published in IEEE Transactions on Medical Imaging

[207].

4.1 Introduction

4.1.1 Novel Training Paradigms for Learning-Based Medical

Image Registration

Beyond the use of methodologies from “classical” iterative registration algorithms,

learning-based methods have recently been proposed for medical image registra-

tion in ways that enhance performance, relative to non-learning-based methods,

while generalizing well to unseen images. All this, while maintaining their rapid

inference and substantially reduced computational requirements at test-time. While

learning-based registration methods have been proposed to use different network

architectures, such as convolutional neural networks [114, 209] and vision transform-

ers [210], they have additionally been proposed with different training objectives and

strategies, such as generative adversarial networks [137, 167], supervised [114, 137],

unsupervised [119, 120, 209, 211] or reinforcement learning [114, 169, 212]. Fur-

thermore, depending on the available data and the application, parametric trans-

formations may be used which are spline-based [211], or with and without further
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desirable constraints, such as diffeomorphic [213] or biomechanical [118] constraints.

Since the registration has been formulated as a machine learning problem for di-

rectly predicting transformation between a given image pair, methodologies such as

semi-supervised learning [214], few-shot- and meta-learning [215], unsupervised

contrastive learning [216], inference-time augmentation [217], and amortized hyper-

parameter learning [218] have also been trialed to improve the data efficiency and

generalizability of the trained registration networks.

4.1.2 Interactive Machine Learning

Learning-based methods often achieve state-of-the-art performance in medical image

registration [107]. However, this performance is often demonstrated on well-curated

datasets which closely match the distribution of the training data. As such, reported

performance may not consistently demonstrate the generalization, robustness and

accuracy required for clinical use [108]. Often, these differences in performance are

due to the challenges associated with the deployment of medical image analysis meth-

ods, such as inconsistent image quality, varied imaging protocols, and interpatient

variation [219]. In many cases, issues may be efficiently and effectively identified

or corrected by an experienced human observer. When errors may be corrected via

user interaction, their integration into a conventional machine learning framework

may assist in predicting more accurate solutions [220–223]. This integration is

referred to as interactive machine learning (IML); the design and implementation

of learning-based methods and their accompanying interfaces which integrate user

interactions to guide prediction [224] (Figure 4.1). In IML, user interactions may

take various forms, and may or may not require additional steps of gradient descent

to update the trained model to yield a more accurate prediction. Potential interactions

and their use in refining trained models are further discussed in Sections 4.3.2 and

4.4.3, respectively.

Performance in challenging real-world interventional or surgical registration

tasks may be assisted by IML. Though it may be undesirable to couple interactions

with real-time processes, interactions may compensate for deficiencies in the method

that are difficult or even infeasible to account for during training. However, inter-
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Figure 4.1: A schematic of conventional machine learning and interactive machine learning
approaches at inference. In the conventional approach (top), previously unseen
test data is passed through a trained model to produce a prediction. In contrast,
the interactive machine learning approach (bottom) leverages user interactions
to provide feedback to the model, based on the intermediate prediction, to obtain
a more accurate prediction.

action may increase computational complexity and cognitive effort and needs to

be carefully weighed against its performance gain. Therefore, such interactions

must be simple and feasible to acquire for training, for example, by using simulated

interactions [220–223]. Recently, IML-based methods for medical image analysis

have predominantly performed error correction with user interaction for image seg-

mentation [220–223]. To be viable for practical application, most existing methods

used simple annotations as user interactions. UI-Net [220] and iUNet [223] integrate

‘scribbles’ as inputs to indicate areas that should (i.e. False Negatives) or should not

(i.e. False Positives) be considered by the segmentation method when refining the

segmentation, with simulated and user-provided scribbles for training and inference,

respectively. BIFSeg combines an initial user-defined bounding box as an input to

guide the initial prediction, and scribble-based interactions during inference [221].

DeepIGeoS takes a different approach that uses two networks; one for initial segmen-

tation and another for refinement [222]. Though there is a lack of existing IML-based

methods for medical image registration in the literature, interaction has previously

been utilized in non-learning-based methods for interactive registration. Such meth-

ods focus on the interactive selection of anatomical landmarks [225] or spatially
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tracked intra-operative surgical instruments [226], to improve the alignment of the

initially fused patient images. Though these aforementioned registration methods

are not learning-based, both are still widely used and are considered to be among the

gold-standard for interactive medical image analysis methods - demonstrating the

practicality of coupling interactions with learning-based registration methods.

4.1.3 Gradient-Based Meta-Learning

A neural network may be pre-trained with a large set of natural images (e.g. ImageNet

[227]) to obtain an initialization. From this initialization, a new network may then

be trained, or ‘fine-tuned’, on a similar domain to reduce training time or the amount

of data required. This approach has been shown to deliver, at worst, comparable

performance to training networks from scratch [228].

Meta-learning [229, 230] can be used to formalize the pre-training-then-fine-

tuning intuition for improving fine-tuning capabilities by iteratively learning how to

improve future performance on a distribution of related tasks over multiple learning

episodes. In particular, approaches categorized as ‘gradient-based’ meta-learning,

such as Model-Agnostic Meta-Learning (MAML) [231] and Reptile [232], learn

easily adaptable initializations from the gradients observed during a learning episode.

By allowing for direct optimization of performance to new labeled data from “future”

unseen tasks during the adaptation (or fine-tuning) stage, meta-learning contrasts

conventional machine learning methods which optimize for generalized performance,

without the use of any adaptation stage.

These aforementioned gradient-based meta-learning algorithms are simple,

learn quickly, and generalize well at test time with limited examples, as evidenced

by their successful application in the medical imaging domain [215, 233–236]. Park

et al. [215] utilize Reptile to learn domain-agnostic initializations for medical image

registration which adapt rapidly to unseen domains with limited data. Liu et al. [233]

introduce shape-aware meta-learning for domain generalization by optimizing the

compactness and smoothness of the segmentations under simulated domain shift to

allow for adaptation to images from new datasets. Similarly, Khandelwal and Yushke-

vich [234] and Khadga et al. [235] utilize MAML as a means to learn a segmentation
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initialization that may be quickly adapted to other datasets. Additionally, novel

gradient-based meta-learning algorithms have been shown to outperform MAML

and Reptile for rapid domain adaptation in medical image segmentation tasks [236].

It is of note that such efforts utilize generalized domain-agnostic information to

enable rapid training, and improved performance in unseen domains, not to improve

domain-specific performance.

Contrarily to these aforementioned examples, in this work, a focus is placed on

improving performance within the domain of a specific task, as the author was not

able to identify any existing domain-specific meta-learning-based imaging registra-

tion methods in the literature. The use of an existing gradient-based meta-learning

algorithm, Reptile, makes sense - given its simplicity in incorporating new-task data,

efficiency in adaptation and the afore-summarized effectiveness in various computer

vision and medical imaging applications. These are important features to adopt when

formulating an interactive registration framework, such as the framework described

in the following sections. Other meta-learning methodologies, such as those based

on bi-level optimization [231, 237] and reinforcement learning [134], should be

tested in future development. It is interesting to note that several existing interactive

segmentation algorithms, described in Section 4.1.2, may also be considered as

instances of meta-learning algorithms.

4.2 Contributions
This chapter describes a framework to meta-learn network parameter initializations

for interactive image registration. In practice, this framework consists of three

components:

1. A learning-based medical image registration algorithm,

2. A form of user interaction that refines predictions at inference and is easily

simulated during training, and

3. A gradient-based meta-learning protocol that learns a rapidly adaptable net-

work initialization.



4.3. Interactive Medical Image Registration with Meta-Learning 137

This framework is unlike other existing works as it seeks to utilize and combine

the error-correcting benefits of user interaction with the rapid adaptation capabilities

of gradient-based meta-learning to optimize registration performance within a single

target domain, by considering individual patients as separate tasks.

To investigate the application of such a framework to clinical data, this work

seeks to register 3D MR volumes to a series of interactively-acquired sparse 2D

TRUS images for use in targeted prostate biopsy guidance. This exemplar application

illustrates a clinical scenario in which real-time, interventional imaging, such as

TRUS, is acquired interactively to iteratively refine the registration throughout

a single acquisition of interventional imaging modality as it traverses the target

anatomy. This work aims to compare the accuracy of the proposed interactive

registration method with alternative learning-based methods.

First, a detailed description of the framework for meta-learning an initialization

for interactive medical image registration and describe how such an interactive

framework may enable a wide range of practically useful applications. Subsequently,

the registration, interaction, and meta-learning strategy are introduced and described

for the exemplar clinical application. In addition, a novel implementation of a

learning-based volume-to-sparse-slices registration algorithm is also introduced to

align MR to TRUS images in this application. Lastly, rigorous analysis and validation

experiments are presented which compare the proposed methodology to different

learning-based methods for the prostate MR-TRUS image registration application,

including validation on multiple variations to the meta-learning parameters to assess

their effects on the interactive registration process.

4.3 Interactive Medical Image Registration with

Meta-Learning
The proposed framework for interactive medical image registration with meta-

learning is described below by each of its three components, as previously summa-

rized in Section 4.2. In this section, the general motivation, rationale and formulation

for each component are proposed, leading to the specific algorithm proposed in
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Section 4.4.

4.3.1 Learning-based Image Registration

Learning-based registration may be categorized from an imaging application per-

spective, network inputs may be unimodal, multimodal, inter-patient, or intra-patient

- with each image bearing its own dimensionality [107], which in turn requires

different types of loss functions, including those based on unsupervised image simi-

larity [211], weakly-supervised label similarity [114], or some combination of the

two [209]. Moreover, each image pair may encompass any number of anatomical

sites of clinical interest, requiring a registration method to utilize different deforma-

tion models, commonly; rigid, affine, or deformable [107].

Given N pairs of training source and target images, {xxxsource
n } and {xxxtarget

n },

and accompanying source and target labels, {lllsource
n } and {llltarget

n }, respectively,

where n = 1, . . . , N, existing approaches predict the voxel correspondence or trans-

formation uuuφ
n = f φ (xxxsource

n , xxxtarget
n ) using a registration network f φ with network

parameters or weights φ . The training goal thus is minimizing an image and/or label

loss function Lsim over N training pairs, to obtain the optimal φ̂ :

φ̂ = argmin
φ

∑
N
n=1

[
Lsim(φ)+α

de fLde f (φ)
]
, (4.1)

where Lde f
(
φ | xxxsource

n , xxxtarget
n

)
=Lde f

(
f φ (xxxsource

n , xxxtarget
n )

)
provides regularization

on the smoothness of the deformation uuuφ
n weighted by a hyperparameter αde f . In

general, the similarity-based loss can further combine a negative unsupervised image

similarity function Limage
sim (xxxsource

n (uuuφ
n ), xxxtarget

n ), between the transformation-warped

images xxxsource
n (uuuφ

n ) and the target images xxxtarget
n , and a negative weak-supervision

loss based on label similarity Llabel
sim (lllsource

n (uuuφ
n ), llltarget

n ), between the warped source

labels lllsource
n (uuuφ

n ) and the target labels llltarget
n :

Lsim(φ | xxxsource
n , xxxtarget

n , lllsource
n , llltarget

n ) = α
imageLimage

sim (xxxsource
n (uuuφ

n ), xxxtarget
n )

+α
labelLlabel

sim (lllsource
n (uuuφ

n ), llltarget
n )

(4.2)
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where hyperparameters α image and α label can be set to zero to represent the previously

proposed weak supervision and unsupervised algorithms, respectively. This general

formulation includes both image- and label-based losses for the learning-based

registration methods to permit the formulation of a general interactive registration,

as described in the remainder of this chapter. However, other methods such as those

based on adversarial learning and reinforcement learning may need further adaptation

to incorporate interaction.

4.3.2 Interaction for Image Registration

In general, the performance improvement seen in other interactive applications,

such as the above-discussed interactive segmentation [233–236], may be expected

from interactive registration. Other benefits, such as those related to expandability,

and owing to the human-in-the-loop of machine learning models for registration

applications are also important but are considered out of the scope of this work.

To adapt existing learning-based registration methods to accept interactions,

potential interactions which can be learned during training must first be defined. In

this work, interaction is considered to be any action, taken by one entity (i.e. the user

or an automated computer algorithm) that has a reciprocated action taken by the other

entity as a result of the initial action. Notably, each interaction may be formulated as

a collection of interactions; either as some combination of the same or of different

types of interaction. Depending on application-specific needs, the combination

of multiple interactions may best provide additional information for improving

registration or, equivalently, error correction. This interactive process should be

learnable during model training and feasible at test-time. Below, several instances of

possible registration-based interactions are described across two categories of actions;

namely, computer-to-user and user-to-computer. Both categories are formulated as

the addition of new data, using a single form of interaction to facilitate interactive

learning-based algorithms.

When a computer algorithm takes an action (e.g. makes a predictive registra-

tion, in this case), the user provides a reciprocated interaction for error correction.

Following this correction, a new prediction may be immediately made. For example,
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image re-acquisition or annotation within areas that are not well aligned. Image

re-acquisition can occur on a local (i.e. one, or a few images) or global scale (i.e.

the entire image volume) when, for example, image quality is poor, or there has

been patient motion. Image re-acquisition may be especially pertinent when using

real-time imaging modalities, such as US, given that image quality may be operator

dependent, and that images may be rapidly re-acquired. This computer-to-user

interaction enables user-defined annotations to indicate regions in the registration

that are poorly aligned.

This work proposes that both image reacquisition and annotation may be for-

mulated generally as additional labeled data, where the quantity and availability

of labels and images may vary depending on different applications. In practice, to

learn an interactive registration model, the utility of each type of interaction may be

highly application-specific. The determination of the most practical use-cases for

each interaction is considered out of the scope of this thesis, though in this chapter,

a thorough description and evaluation of the addition of new data interactions in

an TRUS-guided prostate biopsy application is provided to illustrate the use of an

interactive registration learning framework.

4.3.3 Meta-Learning Interactive Initializations

Learning interactive medical image registration through a meta-learning protocol

allows the model to learn an easily adaptable initialization from which rapid and

task-specific fine-tuning may occur, instead of simply fine-tuning or adapting the

input on a conventionally-trained model. In this work, it is proposed that during

adaptation the model accepts the aforementioned newly labeled data and provides

a reciprocated action. Following this addition of data, a new prediction may be

immediately made, or some task-specific fine-tuning may first occur before giving a

refined prediction, thus improving the registration.

As discussed in Section 4.3.2, such newly labeled data may include image

acquisition, annotation, or indicate areas that should be aligned or have already been

well-aligned. As such, the use of a meta-learning protocol permits the interactive

model to be trained in such a way that it learns how to utilize this new data to best
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predict a better registration. This may be achieved by fine-tuning the same set of

network parameters in an outer-loop of the meta-leaning for learning the adaptation

ability across different interaction tasks, together with the inner-loop that optimizes

the registration network for the given task. Details of a general implementation based

on gradient-based meta-learning are proposed in Section 4.4.2.

4.4 Methods

4.4.1 Images and Annotations as Interaction

Following the discussion in Section 4.3.2, possible pairs of interactions which are

“sampled” from the source and target images are denoted as {iiisource
mn } and {iiitarget

mn },

from n training data. Each nth pair is also associated with Mn, the number of

possible interactions that are possible on image pair n,m = 1, . . . , Mn, respectively.

Without loss of generality, it is proposed to represent these time-agnostic interactions

as sets of interactively obtained images ({xxxsource
mn } and

{
xxxtarget

mn
}

) and annotations

which are generally in the form of segmentation labels ({ℓℓℓsource
mn } and

{
ℓℓℓtarget

mn
}

), i.e.

iiisource
mn = [(xxxsource

mn )T , (ℓℓℓsource
mn )T ]T and iiitarget

mn = [(xxxtarget
mn )T , (ℓℓℓtarget

mn )T ]T . For notational

brevity, both images and annotations can include the previously available annotated

data, for individual subject, therefore the interactions {iiisource
mn } and {iiitarget

mn } are

interchangeably used with interaction-updated source and target, respectively. A

sequence of interactions may benefit from explicit sequential modeling; however,

this is considered out of scope of this work, where only a few steps of interaction are

considered feasible in the application of interest.

This formulation does not distinguish between registrations which may have

different initial image and annotation data from one without such initial registration,

as they can be consistently represented by both the non-interactive registration

formulation, described in Section 4.3.1, and the interactive adaptation, described in

Section 4.4.2.

It is of note that not all the interactive image or annotation data need to be

available or varying for a given interaction. Below, a sample of scenarios that

demonstrate the versatility of interactive registration are described. Additionally,
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active learning methodologies [108] may appear similar in nature and may be able

to utilize similar scenarios for interactive learning in practice. This application is

developed and validated with respect to Scenario 4, a special case of Scenario 3.

Though not tested, other scenarios are included for discussion purposes.

1. A user may iteratively add successive annotations to an image to improve the

registration between two images over multiple interactions, i.e. variable labels

ℓℓℓsource
m=a, n ̸= ℓℓℓsource

m=b, n and ℓℓℓtarget
m=a, n ̸= ℓℓℓtarget

m=b, n with fixed images xxxsource
m=a, n = xxxsource

m=b, n

and xxxtarget
m=a, n = xxxtarget

m=b, n, when a ̸= b.

2. An unsupervised learning algorithm, without initial labels ℓℓℓsource
m=0, n and ℓℓℓtarget

m=0, n,

may benefit from further interactively-defined annotations to improve the

alignment, which requires the simulation of ℓℓℓsource
m>0, n and ℓℓℓtarget

m>0, n during training

to mimic such a scenario.

3. An image-guidance application may have a fixed pre-operative image xxxsource
mn ,

but with potential interactions to add new intra-operative images, i.e. xxxsource
m=a, n ̸=

xxxsource
m=b, n and xxxtarget

m=a, n = xxxtarget
m=b, n, when a ̸= b. This same application may use

additional interactively-defined annotations on both the pre-operative and

intra-operative images, i.e. variable source and target labels, as in Scenario 1.

4. A TRUS-guided prostate cancer application, such as that used in this work

and further described in Section 4.4.2, may be similar to Scenario 3, but does

not require the use of, or generation of, additional annotations on the source

images, whilst the additional annotations on the target images may be acquired

automatically using an independent prostate TRUS segmentation network, i.e.

using the generation of labelled intra-operative TRUS images as the interaction,

xxxsource
m=a, n = xxxsource

m=b, n, ℓℓℓsource
m=a, n = ℓℓℓsource

m=b, n, xxxtarget
m=a, n ̸= xxxtarget

m=b, n and ℓℓℓtarget
m=a, n ̸= ℓℓℓtarget

m=b, n,

when a ̸= b.

4.4.2 Meta-Learning for Interactive Registration

As the interaction data {iiisource
mn } and {iiitarget

mn } are defined as images and annotations

- in Section 4.4.1 - {xxxsource
mn },

{
xxxtarget

mn
}

, {ℓℓℓsource
mn } and

{
ℓℓℓtarget

mn
}

, they are consistent
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with the data used in the non-interactive registration formulation - in Section 4.3.2 -

{xxxsource
n },

{
xxxtarget

n
}

, {lllsource
n } and

{
llltarget
n

}
. The proposed formulation for training

an interactive registration network f φ̃ results from adapting the optimization given

in Eq. (4.1) to a bi-level optimization [230, 238], therefore learning the interactive

image registration becomes a meta-learning problem:

φ̃ = argmin
φ

∑
N
n=1 ∑

Mn

m=1

[
L∗sim(φ

∗(φ))+α
de fL∗de f (φ

∗(φ))
]
, (4.3)

s.t. φ
∗ = argmin

φ
∑

N
n=1 ∑

Mn

m=1

[
L∗sim(φ)+α

de fL∗de f (φ)
]
, (4.4)

where the similarity term L∗sim is obtained from the substitution of interaction data

into Eq. (4.2):

L∗sim = Lsim
(
φ | xxxsource

mn , xxxtarget
mn , ℓℓℓsource

mn , ℓℓℓtarget
mn

)
, (4.5)

similarly, L∗de f = Lde f
(
φ | xxxsource

mn , xxxtarget
mn

)
. L∗sim(φ

∗(φ)) and L∗de f (φ
∗(φ)) denote

the initialized functions of φ , by optimized φ∗ at the inner-level. φ∗ is hereinafter

used for brevity.

It is noteworthy that, unlike the training defined in Eq. (4.1) which minimizes

the expected loss over the N pairs of training images, the task-specific inner-level

Eq. (4.4) aims to minimize the expected loss over the Mn samples of interactions.

At the outer-level, Eq. (4.3), different N pairs of images and annotation are usually

sampled to learn the optimal network parameters, such that, at inference, the network

f φ̃ can be adapted to new pairs of interactions
{

iiisource
m, test

}
and

{
iiitarget
m, test

}
, where m =

1, . . . , Mtest and be generalized to this new test task, i.e. the training meta-tasks

are defined as the N different cases that need registration, rather than Mn steps of

interactions.

Such a meta-learning framework learns an initialization of network parameters

φ̃ which enables data-efficient adaptation to a new task at inference. The efficient

adaptation means that registering a new pair of images xxxsource
test and xxxtarget

test may only

require a few Mtest steps of interaction, often constrained by human effort and



4.4. Methods 144

time-critical applications.

4.4.3 Gradient-Based Meta-Learning Algorithms for Network

Initialization

Gradient-based meta-learning algorithms, discussed in Section 4.1.3, are applica-

ble for training the proposed interactive registration networks and are comprised

of the meta-learning and the meta-test phases. At the start of meta-training, the

registration model is initialized with random weights. Then, during each iteration

of the outer-level loop, one task (iiisource
mn , iiitarget

mn )n is randomly sampled from the

task set
{
(iiisource

mn , iiitarget
mn )n=1, ..., N

}
that contains all available tasks, with a set of k

interactions
{
(iiisource

mn , iiitarget
mn )n, m=1, ..., k

}
randomly sampled from this given task, to

form an episode (Figure 4.2). Each sampled task corresponds to a task-specific loss

in Eq. (4.4) using only data from this task, the meta-learning task is defined as a

pair of source and target images with their associated source and target annotations

to be registered. During each episode, ‘task-level learning’ occurs using Stochastic

Gradient Descent (SGD), or a similar variant (e.g. Adam [185]), for k SGD steps,

the task-specific gradient gm
n (φ) can be computed to update the network weights φ :

φ
∗
m← φ −β

task ·gm
n (φ), (4.6)

where gm
n (φ) =

∂

∂φ

[
L∗sim(φ)+α

de fL∗de f (φ)
]
, (4.7)

and β task is the learning rate. After an episode of k steps, a cross-task gradient gn(φ
∗)

is used to update the network weights at the outer-level loop, corresponding to Eq.

(4.3):

φn← φ −β
meta ·gn(φ

∗), (4.8)

where gn(φ
∗) =

∂

∂φ

[
L∗sim(φ)+α

de fL∗de f (φ)
]
(φ∗), (4.9)

and β meta is the meta-learning rate. With gradient-based meta-learning methods,
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Figure 4.2: Diagram illustrating one episode of task-level learning wherein a task
(iiisource

mn , iiitarget
mn )n is sampled. For each interaction of the k interactions in the

sampled task, the image pair {xxxsource
mn },

{
xxxtarget

mn
}

is coupled with an associated
annotation {ℓℓℓsource

mn },
{
ℓℓℓtarget

mn
}

. Figure from [207].

such as MAML [231], the cross-task meta-gradient gn(φ
∗) is computed directly to

obtain the Jacobian for updating parameters, at the inner-loop-optimized weight

values φ∗. However, estimating the Jacobian involves computationally problematic

second derivates; First-Order MAML [231] and Reptile [232] have been proposed

to approximate this meta update step, and this work adapts such approximations to

train the proposed interactive registration network.

In the meta-test phase, parameters φ̃ are adapted to the test task through a few-

shot learning process. During meta-testing, a few interactions
{

iiisource
m, test

}
and

{
iiitarget
m, test

}
are acquired directly from the test task to compute a few steps of test-task-specific

gradients, to update the model using Eq. (4.6), before it predicts the transformation

using the pair of images xxxsource
test and xxxtarget

test , as illustrated in Figure 4.3.
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Figure 4.3: Schematic representation of a framework for interactive medical image registra-
tion with meta-learning. A learning-based registration method is trained over
multiple episodes during the meta-training phase (left) to learn an initialization
for adaptation at inference. During each task-level learning episode, a task
is sampled; comprising a set of image and annotation pairs. Following each
episode, the meta-update (red arrow) updates the learning-based registration
method based on the direction (dashed line) of the k task-level learning gradients
(white arrows) and continues onward from the previously learned gradients (blue
arrows). Once training is complete, the registration method is optimized in the
meta-test phases (right). Here, few-shot learning on the target data, coupled
with user-defined interactions, yields a fine-tuned registration model. Figure
from [207].

4.4.4 Exemplar Clinical Application

In this section, the application of the proposed meta-learning framework for interac-

tive registration is presented for a real-world clinical application. The selected meth-

ods and implementations are described for prostate MR-TRUS image registration,

where only sparse TRUS images are available, within the context of a meta-learning

framework for interactive weakly-supervised multimodal image registration.

Prostate MR-TRUS image registration is a method for leveraging MR imaging

to aid in performing tumor-targeted needle biopsy [195, 239–245] and minimally-

invasive treatments [196, 246] when it is suspected or confirmed that a patient

has clinically significant prostate cancer. Image registration techniques allow the

presentation of MR-visible information such as tumor size and location. This permits

needles and other instruments to be placed advantageously to target specific tissue



4.4. Methods 147

regions within the patient’s prostate. Often, this is displayed as a visual overlay,

where the MR-derived lesion and tumor information is superimposed on the TRUS

images as a composite image or is presented alongside the TRUS image. Displaying

these images simultaneously in an effective and useful manner demands an accurate

registration.

4.4.5 Volume-to-Sparse Weakly Supervised Multimodal Image

Registration

A weakly-supervised training methodology is a special case of the general formula-

tion, as discussed in Section 4.3.1, in turn, training an interactive registration network

with a label-driven loss can be considered as a meta-learning problem described

in Eq. (4.3) and Eq. (4.4), with α image = 0, without using explicit intensity-based

similarity measures which have been considered less effective [114]. Furthermore,

accommodating sparse US images that are readily available as part of the interactions

in this application, a volume-to-sparse registration algorithm is first developed, where

the training target images being a set of TRUS slices
{

xxxtarget
mn

}
and annotations of

anatomical structures identified on these slices
{

llltarget
mn

}
, with source MR images

{xxxsource
mn } and the corresponding MR annotations {lllsource

mn }. These annotations can

contain multiple types of anatomical structures, with similar applicability discussed

in the weak supervision algorithm [114]. This notation is however omitted in this

work, for brevity. A discussion of the detailed representation of the counterpart

interactive data is given in Section 4.4.6, and the need for the availability of TRUS

slice location information is further summarized in Section 4.7.

In this implementation, a recent method for weakly-supervised image registra-

tion called LocalNet [114] is utilized. LocalNet has an encoder-decoder structure

comprised of four down-sampling blocks and four up-sampling blocks and can pre-

dict a Dense Displacement Field (DDF) that may be summed over multiple resolu-

tions. LocalNet is similar to the UNet [110] architecture found in VoxelMorph [209]

– often used for unsupervised and weakly-supervised image registration. Compared

to UNet, LocalNet has a smaller memory requirement and is more densely connected,

featuring multiple types of residual shortcuts and summation-based skip layers to
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allow the model to benefit from deeper supervision [114].

4.4.6 Interactive Acquisition of Labelled TRUS Images

Conventionally, when registering MR and TRUS images to guide tumor-targeted

needle biopsies, the acquisition of a complete 3D TRUS image volume is required.

However, this presents some unique challenges, given the inherent difficulty in

acquiring a dense set of images from which the volume may be reconstructed. In

cases where this initial acquisition is not sufficient for registration, an entirely new

image volume is typically acquired. Therefore, this work proposes a new paradigm

for MR-TRUS registration whereby a volume-to-sparse registration continually re-

occurs throughout the acquisition, preventing the need to subsequently reacquire

any images or image volumes. As such, to augment a volume-to-sparse registration

framework with continuous registration throughout the acquisition, the addition

of new data, in the form of TRUS images and their accompanying automatically

acquired prostate gland segmentation, using TRUS segmentation methods such

as [197], as an interaction is proposed. As such, at inference, this continuous stream

of interactively acquired data provides the model with additional information, context,

and the potential to compute a constantly up-to-date registration, possibly yielding

more accurate registration results.

In this work, the interaction stems from the continual acquisition of frames in

a single sweep of the TRUS probe. Therefore, during few-shot learning, each new

frame is incorporated into the image volume as part of the input to the model. This

requires knowledge of the spatial relationship between each frame, so that the new

frame may be inserted into the correct location within the TRUS volume. To provide

initial spatial information for the network, the first interaction comprises two frames,

and subsequent interactions require only one new frame. By gathering images in

sequence, the ability to fine-tune a registration model based on patient-specific data

becomes feasible. This may prevent the need to capture a complete 3D TRUS volume

as several sparse images may provide comparable registration accuracy. Given the

current clinical workflow for tumor-targeted needle biopsies, the selected interaction

may not introduce any additional time delay or modify existing protocols.
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To simulate this interaction during training, one pair of target interactions iiitarget
mn

is selected by randomly selecting a series of TRUS images in a clinically feasible

manner, whilst the target “interaction” is the fixed MR images and their annotation

iiisource
mn , as described in Scenario 4 in Section 4.4.1. The label pair ℓℓℓsource

mn and ℓℓℓtarget
mn

may define either the prostate boundary, the apex and base of the prostate, or any

other patient-specific landmarks; such as zonal structure boundaries, water-filled

cysts, and calcifications [146]. The binary mask is randomly generated to include

some number of randomly selected frames F , where F ∈N : F ∈ [Fmin, Fmax], which

defines the image slices within the TRUS volume xxxtarget
mn . Once generated, this binary

mask is used to mask out sections of the input image xxxtarget
mn , and corresponding label

ℓℓℓtarget
mn , leaving only TRUS slices and corresponding labels which are obtained from

the simulated acquisition.

4.4.7 Meta-Learning an Initialization with Reptile

A visual summary of the below described meta-learning phases for the presented

application is shown in Figure 4.4.

4.4.7.1 Meta-Training Phase

Reptile [232] is adopted as the gradient-based meta-learning strategy for the proposed

interactive registration framework. Reptile provides a computationally efficient

optimization of the gradient-based update procedure to approximate Eq. (4.8) and

Eq. (4.9):

φn← φ −β
meta ·∑

k
m=1(φ −φ

∗
m), (4.10)

where φ∗m can be estimated using Eq. (4.6). In this work, the Adam optimizer [185]

is used in the meta-optimization.

It is interesting to note that, given that the complete prostate (or other patient-

specific landmarks) labels are available, a stronger form of supervision is employed

in this work to compute the losses during the meta-training phase, such that the

similarity of the entire label is computed instead of a partial similarity on the sparse

labels. This allows the initialization to be learned from complete data, facilitating
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Figure 4.4: Schematic representation of the proposed framework for interactive medical
image registration with meta-learning as applied to a weakly-supervised volume-
to-sparse prostate MR-TRUS registration problem. The weakly-supervised
learner is trained over multiple episodes during the meta-training phase (left)
to learn an initialization for adaptation at inference. During each task-level
learning episode, a task is sampled; comprising a set of images, labels, and
some number of frames F . After each episode, the meta-update step updates the
learner using the Reptile algorithm based on the task-level learning gradients.
Once training is complete, the learner is optimized during the meta-test phases
(right). Here, interactively-acquired, patient-specific, data is coupled with few-
shot learning to yield a fine-tuned registration model, in real-time, as the TRUS
image acquisition occurs. Figure from [207].

guidance by a loss that incorporates complete segmentation labels. This illustrates

how the interactive labels and images may be used in computing training losses

may differ from those seen in the meta-test phase in order to better guide learning,

benefitting the adaptation capabilities during meta-testing.

4.4.7.2 Meta-Test Phase

During the meta-test phase, for evaluation, few-shot learning is completed with

F gradient updates on interactions xxxtarget
mn and ℓℓℓtarget

mn sampled from the test task.

This fine-tunes the registration model to obtain adapted parameters φ ′ which can

perform accurate registrations on the test patient. Unlike the random generation of

interactions during the meta-training phase, xxxtarget
mn and ℓℓℓtarget

mn define a continuous

TRUS acquisition. Therefore, the first few-shot learning gradient update contains
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Fmin images and each subsequent update adds an image, until the final update,

comprised of Fmax− 1 images. This ensures that the inference step is computed

on an input with Fmax images. During the meta-test phase, only the label which

defines the prostate boundary is used. This is done to emulate the labels which may

be available (via automatic segmentation) in practice with the application of the

proposed method.

4.5 Experiments

4.5.1 Baseline Model Implementation and Training

The previously described meta-learning framework was implemented in Tensor-

Flow [183] and Keras [184]. The implementation of the weakly-supervised image

registration framework and corresponding loss functions used in this work were

adapted from DeepReg (deepreg.net), an open-source Python package for medical

image registration [247]. Hyper-parameters are all kept at defaults as described

in [114] unless otherwise specified below. For data augmentation, each image-label

pair was transformed by a random affine transformation, without flipping, before

being input to the model during training.

The “Baseline” interactive registration model was trained for 250,000 iterations

with the Adam optimizer [185], a minibatch size of 4, and an initial learning rate,

β task, of 1 ·10−5. In the meta-training phase, the value of k for task-level learning

was 10, and the initial meta-learning rate, β meta, was set to 0.5, with a linear decay

to 1 · 10−5 at the final training iteration. Loss weights γ and α were both set to

1.0. Fmin is set as 2 and Fmax as 10. Requiring at least 2 frames allows the input

to contain some spatial relationship between frames to help guide the registration.

Training took approximately 120 hours on an NVIDIA DGX-1 system using a single

Tesla V100 GPU. It is important to note that the number of iterations comprises each

episode of task-level training, but does not include the meta-update; such is to say

that when k = 10, a total of 25,000 (i.e. 250,000
k ) episodes of task-level learning (and

subsequent meta-update) are performed, where each episode of task-level learning

encompasses k gradient updates.
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4.5.2 Loss Functions

Two loss functions are employed to optimize the model parameters in training. In

a weakly-supervised registration, the expected label similarity is maximized using

a multiscale soft probabilistic DSC [114], which has been shown effectiveness

especially when small foreground labels do not overlap initially. Substituting the

interactive acquired TRUS labels ℓℓℓtarget
mn and the pre-operative MR labels ℓℓℓsource

mn :

L∗sim(φ) =
1
Z ∑σ

SDSC

(
fσ (ℓℓℓ

target
mn ), fσ (ℓℓℓ

source
mn (uuuφ

n ))
)
, (4.11)

where SDSC is the soft probabilistic DSC [112], fσ is a 3D Gaussian filter with an

isotropic SD σ ∈ {0, 1, 2, 4, 8, 16, 32} in mm, and Z = |σ |. These published hy-

perparameter values [114] are used for comparison. In the proposed implementation,

the deformation regulariser L∗de f (φ) that estimates bending energy [73] on uuuφ
n is

used together with L∗sim(φ) in Eq. (4.3) and Eq. (4.4).

4.5.3 Data

To train and evaluate the interactive registration model, a dataset comprising 108 pairs

of pre-operative T2-weighted MR and intraoperative TRUS images from 76 patients

which were acquired during the SmartTarget clinical trials [146] is used. Images

were split into training and test sets comprising 88 and 20 patients, respectively,

where no patient appears in both sets. Each of the MR and TRUS images were

normalized to zero-mean and unit variance and resampled to an isotropic voxel

size of 0.8× 0.8× 0.8 mm3. Prostate gland boundaries were segmented in the

resampled MR and TRUS images. Segmentations of the prostate gland contours

and landmarks in the MR images were acquired as part of the SmartTarget clinical

trial protocols [146]. Additionally, segmentations of the prostate gland contours in

the TRUS images were acquired automatically from the original TRUS slices [197],

while the prostate gland landmarks were manually segmented. The data collection

and annotation protocols for the data used in the below experiments are afore-

described in Section 3.6.1.
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4.5.4 Comparison with Meta-Learning Variants

Without extensively searching or refining all meta-learning hyper-parameters, which

may lead to a misrepresentation of generalization capabilities, a sample of experimen-

tal results and validation on several variants of the proposed Baseline are provided.

Each variant modifies one meta-learning hyper-parameter. Apart from the hyper-

parameters which are specified to have changed in each variant described below, all

hyper-parameters were kept fixed.

First, two of the proposed variants modify the number of gradient updates

performed in each episode of task-level learning, k, changing from the Baseline

value of 10, to 1 and 100. It is of note that when k = 1, the Reptile algorithm

corresponds to a single step of SGD on the expected loss [232]. As such, it may

interpreted that the k = 1 variant indicates jointly training the model on a mixture

of all tasks, without meta-learning, before few-shot learning to obtain a fine-tuned

model. Though k is often defined as ≤ 10 in other meta-learning applications [232],

training with a higher value of k is presented in the k = 100 variant, to demonstrate

the resulting performance of a model which has been training with gradients that

deviate greatly from those encountered in regular training. Due to the changes

introduced to the training process (for k = 1), and the deviation of the gradients from

those which would normally be encountered in a non-meta-learning-based training

protocol (for k = 100), these variants are hypothesized to likely underperform relative

to the baseline.

Second, a further two of the proposed variants use a modified initial meta-

learning rate, β meta, changing from the Baseline value of 0.5 to 0.25 and 1.0. The

linear decay remains unchanged, with a value for the meta-learning rate of 1 ·10−5

at the final training iteration. An initial meta-learning rate β meta which is too small

was found to degrade performance as the resulting initial gradient steps may be

uninformative, or overall, require additional training time, whereas a value that is too

large may cause the gradients to deviate from those encountered in regular training.

To prevent arbitrary selection, values that correspond closely with those initially

presented with Reptile [232] were chosen.
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Finally, the last two proposed variants modify the maximum number of frames

used in training, Fmax, to 5 and 15. The Fmax variants are primarily used to assess

whether a different number of possible interactions or a different number of frames

presented in training yields any difference in performance. It is expected that a higher

and lower Fmax would result in better and worse performance, respectively. Though if

the increase in performance gained per additional frame diminishes as the number of

frames increases, training with a smaller Fmax may be beneficial. Conversely, if the

increase in performance per additional frame does not significantly diminish, training

with a higher Fmax and acquiring additional frames throughout the acquisition may

be prudent in practice.

4.5.5 Comparison with State-of-the-Art Approaches

To demonstrate the effectiveness of the interactive meta-learning approach, it is

compared to the application of a ‘registration’ without any initial alignment, and

with a simple initialization whereby the prostate gland centroids are aligned. Fur-

thermore, it is compared to two state-of-the-art approaches for deformable pairwise

medical image registration; the weakly-supervised training approaches for LocalNet,

described in [114], and VoxelMorph, described in [209].

In all comparisons, complete 3D volumes are utilized for source and target input

images – unlike the proposed interactive meta-learning approach, which provides a

sparse target input. Hyper-parameters are all kept at defaults as described in [114]

and [209], and loss weights γ and α are set to 1.0 in both instances.

4.5.6 Comparison with Non-Meta-Learning Approaches

To further demonstrate the effectiveness of the proposed interactive meta-learning

approach, the sparse 2D target input of the proposed interactive meta-learning

approach is emulated on the aforementioned State-of-the-Art approaches by training

instances of LocalNet and VoxelMorph with 5 or 10 randomly sampled 2D target

input images. Furthermore, the effects of the few-shot learning process used during

adaptation of the meta-learning approach on these conventionally trained models and

the meta-learning Baseline are also demonstrated by performing inference without
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any few-shot learning. Lastly, to illustrate the effectiveness of the meta-learning

approach to derive an initialization that may be rapidly adapted, LocalNet and

VoxelMorph models are randomly initialized, and have few-shot learning applied to

the untrained networks.

It is important to note that the impact of sparse data, as used throughout this

series of comparisons, was not investigated by [114] or [209]. This means that it is

unclear if the performance of these approaches will be adversely impacted by this

reduction of data. However, this assessment may give perspective on the potential

improvements and effects that a meta-learning- and few-shot learning approach may

provide for image registration. It also provides a useful benchmark against which

the performance of the proposed meta-learning approach may be gauged, where the

comparison uses comparable amounts of input data.

4.5.7 Evaluation of Registration Methods

To compare the performance of the Baseline to all aforementioned methods, interac-

tions are simulated which represent a clinically realistic scenario, on the real-world,

clinical test data. This scenario reflects the continuous acquisition of frames through

a right-to-left sweep through the prostate with the TRUS probe, obtaining a series of

sagittal images that are uniformly distributed through the prostate (Figure 4.5). As

noted in Section 4.4.7, two images are initially acquired, as Fmin = 2, to make some

spatial information between frames available in this first acquisition to help guide

the registration.

The accuracy of the prostate surface point registrations was quantified using the

DSC, and TRE; calculated as the distance between the 3D locations of corresponding,

manually identified anatomical landmarks in the TRUS and MR image labels [114,

199]. All statistical tests which compare an evaluated method to the Baseline are

based on two-tailed paired t-tests, at significance level α = 0.05.

The DSC reported is computed between the warped MR label and the ground-

truth label of the entire TRUS volume. The TRE is defined as the root-mean-

square of each of the distances computed between the geometric centroids of the

registered pairs of source and target landmarks for each patient. In the utilized
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Figure 4.5: Illustration of possible TRUS images acquired from the TRUS transducer in the
presented clinical scenario. Newly acquired images (dashed lines) are captured
in the sagittal plane (left) and are shown with the previously acquired images
(solid lines) throughout one continuous ‘sweep’ through the prostate with the
TRUS probe until full coverage of the prostate has been obtained. Figure
from [207].

dataset, introduced in Section 3.6.5, the landmarks consisted of 309 pairs of points,

including points defining the apex, base, urethra, visible lesions, junctions between

the gland, gland zonal separations, vas deferens and the seminal vesicles, and other

patient-specific point landmarks such as calcifications and fluid-filled cysts [146].

As mentioned in Section 3.6.5, such landmarks have been previously utilized to yield

an overall spatial distribution that is representative of the full TRE distribution in

this application [114, 118–120, 123–125, 130–133, 137, 139, 154, 157, 162, 167, 169,

170, 200–207], and permit this work to provide not only an evaluation of registration

accuracy but to provide an estimate of the registration errors, such as those associated

with tumor localization. For the Baseline model, the computational time per few-shot

learning gradient update and subsequent registration in the meta-test phase are also

reported.

4.6 Results

4.6.1 Baseline Performance

During few-shot learning in the meta-test phase, a gradient update and inference

step for the Baseline model requires 0.67 ± 0.07s and 0.37 ± 0.05s, respectively.

Therefore, during adaptation, a fine-tuned task-specific Baseline model may be

obtained, from which a predicted registration can be computed in approximately 6s
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(8 gradient updates and 1 inference step). It is important to note that this computation

takes place during acquisition, making it possible for such a method to be used in

real-time in an iterative process whereby an image is acquired, segmented, and a

gradient update is performed with this new data, until sufficient images are acquired.

Given that the registration process occurs during acquisition, this is considerably

less time than the 2 - 4 minutes required for image acquisition, contouring, and

registration processes in conventional image-fusion targeted biopsies, such as those

utilized in the SmartTarget clinical trials [146].

After 8 gradient updates of few-shot learning, the Baseline interactive registra-

tion model achieved a median TRE of 4.26 mm (mean = 5.06 mm) and a mean DSC

of 0.85 were obtained with 10 input TRUS frames. With a median TRE of 4.26 mm,

the registration performance obtained with the Baseline method is within range of

previously defined clinically significant thresholds of 2.97 mm [208] and 5 mm [200].

Detailed results summarizing TRE and DSC throughout various steps of the few-shot

learning process in the meta-test phase are given in Table 4.1. Example slices of

input MR and TRUS image pairs and the registered MR images are provided in

Figure 4.6 for qualitative visual assessment of the registration results for the Baseline

at each step of few-shot learning in the meta-test phase, based on the test data.

Table 4.1: Summary TRE and DSC for the Baseline network at each step of Few-Shot
Learning in the Meta-Test phase in the MR-TRUS registration experiment. Mean
values are presented ± SD. TRE is given in mm.

FFF Gradient Updates Mean TRE Median TRE Mean DSC

2 0 8.37 ± 4.08 7.02 0.77 ± 0.06
3 1 8.02 ± 3.98 6.98 0.79 ± 0.06
4 2 7.15 ± 4.17 6.02 0.81 ± 0.06
5 3 6.63 ± 4.11 5.61 0.82 ± 0.07
6 4 6.34 ± 4.16 5.34 0.82 ± 0.07
7 5 5.99 ± 4.08 5.27 0.83 ± 0.07
8 6 5.53 ± 4.12 4.34 0.84 ± 0.06
9 7 5.35 ± 4.13 4.37 0.84 ± 0.06
10 8 5.06 ± 4.19 4.26 0.85 ± 0.06
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Figure 4.6: Example image slice from one test case. The left-most column contains image
slices from the source MR volume. The right-most column contains the corre-
sponding target TRUS image slice. Other columns present the warped source
MR image, resulting DDF, alternating vertical slices of the warped MR and
target TRUS image, and warped MR prostate gland contour (Red) overlaid on
the target TRUS prostate gland contour (Green), using the Baseline at a given
shot of training during few-shot learning, with F frames (e.g. the 2nd column
indicates no few-shot learning, i.e. using the learned initialization with no fine-
tuning, and two input frames, the 3rd column indicates one-shot of learning and
three input frames, etc.). Figure from [207].

4.6.2 Performance of Baseline Variants

When varying k in meta-training, after 8 gradient updates of few-shot learning, k = 1

had a median TRE of 4.48 mm (mean = 5.68 mm) and mean DSC of 0.83, whereas

k = 100 had a median TRE of 4.58 mm (mean = 6.04 mm) and mean DSC of 0.85.

A Shapiro-Wilk test was performed on the TRE and DSC values for each variant. In

all instances, the test did not show evidence of non-normality (p > 0.05). In both

variants, no significant difference was found between TRE (p = 0.68, p = 0.46) or

DSC (p = 0.58, p = 0.91), based on two-tailed paired t-tests at α = 0.05, relative to

the Baseline. Detailed results summarizing the effects of different values of k during

training on TRE are illustrated in Figure 4.7 and summarized for TRE and DSC at

each step of few-shot learning in the meta-test phase in Table 4.2.

When varying β meta in meta-training, after 8 gradient updates of few-shot

learning, β meta = 0.25 had a median TRE of 4.33 mm (mean = 5.80 mm) and mean

DSC of 0.84, whereas β meta = 1.0 had a median TRE of 3.29 mm (mean = 5.07

mm) and mean DSC of 0.87. A Shapiro-Wilk test was performed on the TRE

and DSC values for each variant. In all instances, the test did not show evidence

of non-normality (p > 0.05). In both variants, no significant difference was found
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Figure 4.7: Tukey’s boxplots of TRE for the Baseline and all variants in the MR-TRUS
registration experiment. Whiskers indicate 10th and 90th percentiles. Results
are presented for registrations with 10 frames unless otherwise indicated. For
Fmax variants, results are presented at 10 frames for direct comparison to the
Baseline and other variants, and also with the number of frames corresponding
to the value of Fmax used in training. Figure from [207].

between TRE (p= 0.60, p= 0.85) or DSC (p= 0.74, p= 0.38), based on two-tailed

paired t-tests at α = 0.05, relative to the Baseline. Detailed results summarizing

the effects of varying β meta during training on TRE are illustrated in Figure 4.7 and

summarized for TRE and DSC at each step of few-shot learning in the meta-test

phase in Table 4.3.

When varying Fmax in meta-training, after Fmax−Fmin gradient updates of few-

shot learning, Fmax = 5 had a median TRE of 4.50 mm (mean = 6.18 mm) and

mean DSC of 0.85, whereas Fmax = 15 had a median TRE of 3.58 mm (mean =

5.49 mm) and mean DSC of 0.84. A Shapiro-Wilk test was performed on the TRE

and DSC values for each variant. In all instances, the test did not show evidence

of non-normality (p > 0.05). In both variants, no significant difference was found

between TRE (p = 0.36, p = 0.82) or DSC (p = 1.00, p = 0.91), based on two-tailed

paired t-tests at α = 0.05, relative to the Baseline.

Additionally, to yield a more direct comparison to the Baseline, after 8 gradient

updates of few-shot learning, Fmax = 5 had a median TRE of 4.44 mm (mean = 5.85
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Table 4.2: Summary TRE and DSC for the k = 1 and k = 100 variants at each step of Few-
Shot Learning in the Meta-Test phase in the MR-TRUS registration experiment.
Mean values are presented ± SD. TRE is given in mm.

kkk FFF Gradient Updates Mean TRE Median TRE Mean DSC

1

2 0 8.30 ± 3.75 7.79 0.76 ± 0.06
3 1 8.15 ± 3.88 7.55 0.78 ± 0.06
4 2 7.57 ± 3.97 7.03 0.79 ± 0.06
5 3 6.94 ± 3.90 5.79 0.80 ± 0.06
6 4 6.80 ± 3.90 5.59 0.80 ± 0.06
7 5 6.33 ± 4.12 5.49 0.80 ± 0.06
8 6 5.83 ± 4.07 4.93 0.81 ± 0.06
9 7 5.71 ± 4.01 4.43 0.83 ± 0.06
10 8 5.68 ± 3.96 4.48 0.83 ± 0.05

100

2 0 8.52 ± 3.86 7.83 0.76 ± 0.06
3 1 8.42 ± 4.00 7.05 0.78 ± 0.06
4 2 7.77 ± 4.12 6.49 0.79 ± 0.06
5 3 7.31 ± 4.20 5.88 0.81 ± 0.06
6 4 7.04 ± 4.32 6.03 0.82 ± 0.06
7 5 6.66 ± 4.43 5.64 0.83 ± 0.06
8 6 6.27 ± 4.44 5.18 0.84 ± 0.05
9 7 6.15 ± 4.48 4.78 0.84 ± 0.05
10 8 6.04 ± 4.48 4.58 0.85 ± 0.04

mm) and mean DSC of 0.85, whereas Fmax = 15 had a median TRE of 4.83 mm

(mean = 6.30 mm) and mean DSC of 0.81. In both variants, no significant difference

was found between TRE (p = 0.56, p = 0.30) or DSC (p = 1.00, p = 0.31), based

on two-tailed paired t-tests at α = 0.05, relative to the Baseline. Detailed results

summarizing the effects of varying Fmax during training on TRE are illustrated in

Figure 4.7, and summarized for TRE and DSC at each step of few-shot learning in

the meta-test phase in Table 4.4.

Notably, the Fmax = 5 variant performs better than the Fmax = 15 variant for

all values of F ≤ 5. This is likely due to the distribution of the input images in the

presented clinical scenario, whereby one continuous sweep of the prostate occurs,

as presented in Figure 4.5. For example, when F = 5, while the input frames of the

Fmax = 5 variant will be evenly distributed across the entire prostate, while the 5

input frames of the Fmax = 15 variant will be condensed into the right-most third of
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Table 4.3: Summary TRE and DSC for the β meta = 0.25 and β meta = 1.0 variants at each
step of Few-Shot Learning in the Meta-Test phase in the MR-TRUS registration
experiment. Mean values are presented ± SD. TRE is given in mm.

βββ
meta FFF Gradient Updates Mean TRE Median TRE Mean DSC

0.25

2 0 8.08 ± 4.00 7.06 0.75 ± 0.07
3 1 7.90 ± 3.95 6.95 0.76 ± 0.07
4 2 7.33 ± 4.03 6.44 0.78 ± 0.06
5 3 6.80 ± 3.88 5.70 0.80 ± 0.05
6 4 6.49 ± 4.00 5.35 0.80 ± 0.05
7 5 6.27 ± 4.04 5.26 0.81 ± 0.05
8 6 5.97 ± 4.06 4.62 0.82 ± 0.05
9 7 5.87 ± 4.11 4.31 0.83 ± 0.05
10 8 5.80 ± 4.11 4.33 0.84 ± 0.05

1.0

2 0 8.37 ± 3.76 7.54 0.79 ± 0.05
3 1 7.91 ± 3.77 7.17 0.81 ± 0.05
4 2 6.88 ± 3.73 6.62 0.83 ± 0.05
5 3 6.21 ± 3.64 5.05 0.84 ± 0.05
6 4 5.88 ± 3.64 4.41 0.84 ± 0.04
7 5 5.53 ± 3.71 4.22 0.85 ± 0.04
8 6 5.27 ± 3.84 3.64 0.86 ± 0.04
9 7 5.13 ± 3.93 3.22 0.87 ± 0.04
10 8 5.07 ± 3.97 3.29 0.87 ± 0.04

the prostate, resulting in less spatial information being presented about the remaining

prostate volume.

Example slices of input MR and TRUS image pairs and the registered MR

images are provided in Figure 4.8 for qualitative visual assessment of the registration

results, for each above-described variant, based on the test data.

4.6.3 Performance of State-of-the-Art Approaches

When applying no initial registration or alignment, a median TRE of 32.4 mm (mean

= 36.1 mm) and mean DSC of 0.66 are obtained. Further, a median TRE of 18.4

mm (mean = 20.2 mm) and mean DSC of 0.77 are obtained if only prostate gland

centroid alignment is performed on the images.

The performance of the Baseline model was not found to be significantly

different, based on two-tailed paired t-tests at α = 0.05, than LocalNet [114] for

TRE and DSC (p = 0.99, p = 0.36), where a median TRE and mean DSC of 3.97
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Table 4.4: Summary TRE and DSC for the Fmax = 5 and Fmax = 15 variants at each step
of Few-Shot Learning in the Meta-Test phase in the MR-TRUS registration
experiment. Mean values are presented ± SD. TRE is given in mm.

FFFmax FFF Gradient Updates Mean TRE Median TRE Mean DSC

5

2 0 7.90 ± 3.80 6.49 0.79 ± 0.06
3 1 7.01 ± 3.94 5.67 0.82 ± 0.06
4 2 6.34 ± 3.91 4.58 0.84 ± 0.05
5 3 6.18 ± 3.93 4.50 0.85 ± 0.04

15

2 0 8.10 ± 4.01 7.19 0.76 ± 0.04
3 1 7.98 ± 4.08 6.82 0.77 ± 0.05
4 2 7.89 ± 4.19 6.53 0.78 ± 0.05
5 3 7.60 ± 4.27 6.33 0.79 ± 0.05
6 4 7.08 ± 4.16 5.71 0.80 ± 0.05
7 5 6.72 ± 4.14 5.51 0.81 ± 0.06
8 6 6.54 ± 4.10 5.36 0.81 ± 0.06
9 7 6.46 ± 4.06 5.44 0.81 ± 0.06
10 8 6.30 ± 4.03 4.83 0.81 ± 0.06
11 9 6.07 ± 3.99 4.37 0.82 ± 0.06
12 10 5.78 ± 3.96 4.03 0.83 ± 0.06
13 11 5.60 ± 3.95 3.86 0.84 ± 0.06
14 12 5.52 ± 4.01 3.64 0.84 ± 0.06
15 13 5.49 ± 4.00 3.58 0.84 ± 0.06

mm (mean = 5.27 mm) and 0.87 are obtained. Additionally, the performance of

the Baseline model was not found to be significantly different, based on two-tailed

paired t-tests at α = 0.05, than VoxelMorph [209], for TRE and DSC (p = 0.85,

p = 0.47), where a median TRE and mean DSC of 4.32 mm (mean = 5.62 mm) and

0.84 are obtained. A Shapiro-Wilk test was performed on the TRE and DSC values

for each approach. In all instances, the test did not show evidence of non-normality

(p > 0.05).

Detailed results summarizing the TRE of the Baseline and the non-meta-

learning-based methods are illustrated in Figure 4.9. Example slices of input MR

and TRUS image pairs and the registered MR images are provided in Figure 4.10 for

qualitative visual assessment of the registration results, for each approach, based on

the test data. It is important to note that these methods use complete 3D volumes

for source and target input images, and achieves comparable performance to the
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Figure 4.8: Example image slices from one test case. The left-most column contains image
slices from the source MR volume and the corresponding target TRUS image
slice. Other columns present the warped source MR image, resulting DDF,
alternating vertical slices of the warped MR and target TRUS image, and warped
MR prostate gland contour (Red) overlaid on the target TRUS prostate gland
contour (Green), using the above-labelled network; either the Baseline or one of
its variants. Figure from [207].

proposed method, which uses between two and ten frames of the target image in

training and at inference. This represents between 1.6% and 8.5% of the complete

3D volume, which contains 118 image slices.

4.6.4 Performance of Non-Meta-Learning Approaches

When emulating the sparse target input of the proposed interactive meta-learning

approach on LocalNet, though training without meta-learning, a median TRE of 7.51

mm (mean = 8.62 mm) and a mean DSC of 0.76 are obtained with 5 input images.

Additionally, a median TRE of 6.26 mm (mean = 7.48 mm) and mean DSC of 0.79

are obtained with 10 input images. Performance of the fine-tuned Baseline model

is significantly different than that observed when providing 5 and 10 inputs images,
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Figure 4.9: Tukey’s boxplots of TRE for the Baseline and all state-of-the-art methods in the
MR-TRUS registration experiment. Whiskers indicate 10th and 90th percentiles.
Figure from [207].

for TRE (p < 0.01, p = 0.04). However, no significant difference is observed with

respect to DSC (p = 0.07, p = 0.08).

When using VoxelMorph, a median TRE of 7.36 mm (mean = 8.46 mm) and a

mean DSC of 0.78 are obtained with 5 input images. Additionally, a median TRE

of 5.86 mm (mean = 7.29 mm) and mean DSC of 0.81 are obtained with 10 input

images. Performance of the fine-tuned Baseline model is significantly different

than that observed when providing 5 inputs images, but not for 10 images, for TRE

(p < 0.01, p = 0.08). However, no significant difference is observed with respect to

DSC (p = 0.09, p = 0.12).

Applying few-shot learning to these same models at inference, LocalNet obtains

a median TRE of 7.64 mm (mean = 8.83 mm) and mean DSC of 0.76 are obtained

with 5 input images. Additionally, a median TRE of 7.23 mm (mean = 8.15 mm)

and a mean DSC of 0.73 are obtained with 10 input images. VoxelMorph obtains a

median TRE of 7.30 mm (mean = 8.74 mm) and a mean DSC of 0.79 are obtained

with 5 input images. Additionally, a median TRE of 5.81 mm (mean = 7.33 mm) and

a mean DSC of 0.81 are obtained with 10 input images. Overall, this illustrates that

few-shot learning has minimal effects when applied to the conventionally trained
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Figure 4.10: Example image slices from two test cases, shown on the left and right, re-
spectively. The left-most column contains image slices from the source MR
volume and the corresponding target TRUS image slice. Other columns present
the warped source MR image, resulting DDF, alternating vertical slices of
the warped MR and target TRUS image, and warped MR prostate gland con-
tour (Red) overlaid on the target TRUS prostate gland contour (Green), using
the above-labelled network; either the Baseline or one of the state-of-the-art
methods. Figure from [207].

LocalNet and VoxelMorph instances, without the meta-trained network initialization.

Using the Baseline, without any few-shot learning at inference, a median TRE

of 4.57 mm (mean = 6.01 mm), and a mean DSC of 0.82 are obtained. While

not significantly different, these values indicate poorer performance as compared

to the Baseline when using few-shot learning. Together with the above results

obtained when applying few-shot learning to the conventionally trained LocalNet

and VoxelMorph, these results may indicate that the few-shot learning process is

more effective on a meta-learned initialization.

Lastly, to assess the effects of the initialization, applying the few-shot learning

process to an untrained model, where the weights are initialized randomly, results in
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a median TRE of 19.4 mm (mean = 24.5 mm) and a mean DSC of 0.76 for LocalNet,

and a median TRE of 20.1 mm (mean = 25.1 mm) and a mean DSC of 0.77 for

VoxelMorph.

In all the above experiments, a Shapiro-Wilk test was performed on the TRE

and DSC values for each variant. In all instances, the test did not show evidence of

non-normality (p > 0.05).

Detailed results summarizing the TRE of the Baseline and the non-meta-

learning-based methods are illustrated in Figure 4.11. Example slices of input MR

and TRUS image pairs and the registered MR images are provided in Figure 4.12 for

qualitative visual assessment of the registration results, for each approach, based on

the test data.

Figure 4.11: Tukey’s boxplots of TRE for the Baseline and all non-meta-learning methods
in the MR-TRUS registration experiment. Whiskers indicate 10th and 90th
percentiles. Results for the Baseline presented for registrations with 10 frames,
and indicated explicitly for other methods, whereby the number of frames
indicated is the number of frames used in training and evaluation. Figure
from [207].

4.7 Discussion
This work presented a detailed description of the proposed deep-learning frame-

work for meta-learning initializations for interactive medical image registration.

Additionally, the registration, interaction, and meta-learning approach for the exem-
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Figure 4.12: Example image slices from one test case. The left-most column contains
image slices from the source MR volume and the corresponding target TRUS
image slice. Other columns present the warped source MR image, resulting
DDF, alternating vertical slices of the warped MR and target TRUS image, and
warped MR prostate gland contour (Red) overlaid on the target TRUS prostate
gland contour (Green), using the above-labelled network; either the Baseline
or one of the non-meta-learning-based methods. Figure from [207].

plar clinical application; a multimodal volume-to-sparse prostate MR-TRUS image

registration problem, are defined. Unlike conventional learning-based registration

methods, where inadequate performance can occur given inconsistent image quality,

varied imaging protocols, or interpatient variation; the use of interactions assists the

proposed method in predicting a more accurate solution. By introducing additional

data at inference, the proposed method is permitted to refine its predictions in real-

time, thereby compensating for deficiencies that may be infeasible to address during

training, while learning a patient-specific registration model. This is made all the
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more effective by framing the proposed method as a gradient-based meta-learning

problem. This formalizes the pre-training-then-fine-tuning pathway for improving

fine-tuning capabilities with fast adaptation to new data at inference.

As illustrated in Fig. 9, the performance of the Baseline network for volume-to-

sparse of the proposed method provides registration accuracy which is not statistically

different from the compared 3D-to-3D method and is significantly lower than the

compared volume-to-sparse 3D-to-2D methods. Furthermore, analysis of Baseline

variants indicates that the proposed method is not highly sensitive to changes in the

defined meta-learning hyper-parameters, as demonstrated by the absence of statistical

difference between the reported accuracies of all variants. The highly comparable

and/or improved performance of the proposed method, compared to non-meta-

learning methods, demonstrates the flexibility and generalizability obtained from a

wide range of hyper-parameters illustrate the usefulness of interactive registration

methods and meta-learning. These improvements provide the basis to enable the use

of such a framework in other medical image registration applications.

A point of critical importance for multimodal image registration, when using

intensity-based methods, is the lack of clear voxel-level spatial correspondence

between pairs of images. To overcome this challenge, the weakly-supervised regis-

tration method described by [114], used as the underlying registration method in this

work, employs corresponding labeled structures during training, while requiring no

labels at inference. However, as few-shot learning is utilized during the meta-test

phase, real-time prostate gland segmentations are required. High DSC values and

rapid inference times have been reported for single slice prostate gland segmentation

from TRUS images [118, 197], and previously adopted into end-to-end registration

frameworks [118]. As such, the need for a method that generates TRUS prostate

gland segmentations must be considered when implementing such a registration

framework in clinical practice, but should not be considered prohibitive to the real-

time implementation of interactive registration in practice given that the addition of

these additional segmentation inference steps would add, at most, several seconds to

the total time required to compute the registration.
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Furthermore, it is worth noting that both the proposed interactive registration and

the 3D-to-2D methods, presented in Section 4.5.6, require the positional information

for all TRUS images relative to each other, or a fixed reference to establish spatial

correspondence between images. This positional information permits the creation

of a volume comprising each frame, to which the MR volume may be registered.

In practice, this spatial information may be obtained using some form of positional

tracking; where the probe is affixed to a stepper for mechanical tracking, or where

the probe is used freehand with electromagnetic or optical tracking. Without this

positional information, the current implementation is unlikely to successfully predict

a suitable registration. Further experiments are required to assess the suitability of

the proposed framework for registration of MR to un-tracked TRUS images, however,

this is considered out of the scope of this work, where it was sought to compare the

3D-to-sparse-2D method directly to the widely-researched 3D-to-3D registration.

4.8 Conclusion
This chapter has presented a novel meta-learning-based framework for interactive

medical image registration. In summary, the work has demonstrated one such

exemplar application through partial registration of MR to sparsely acquired intra-

operative TRUS images. This method obtains similar registration accuracies to

state-of-the-art 3D image registration methods which require complete image vol-

umes. Additionally, this method significantly outperforms those same state-of-the-art

methods when applied to the same challenging partial data problem. This demon-

strates the effectiveness and efficiency of the proposed real-time interactive MR to

partial US image registration method, which may be applied during intraoperative

procedures, such as prostate biopsy.



Chapter 5

Test-Time Meta-Registration

Optimization

This chapter is based on the work entitled “Meta-Registration: Learning Test-Time

Optimization for Single-Pair Image Registration”, published in MICCAI ASMUS

Workshop 2022 [248].

5.1 Introduction
“Classical” pairwise approaches pose the image registration problem as an optimiza-

tion for transformation, which maximizes a given image similarity measure between

the transformation-warped source image and the target image. Much work has been

dedicated to variants in transformation models, similarity metrics and optimization

algorithms [225]. While these classical methods are usually applied to a single pair

of images, recent learning-based methods utilize deep neural networks to predict the

transformation, or simply a DDF, between any source and target images. Typically,

these networks are optimized with a set of pairs of training images, minimizing a

loss function that is based on image similarity measures or distance between corre-

sponding segmentations [249–251]. Other works [207, 215] have proposed to use

meta-learning to adapt registration networks to new types of images, with a distinct

aim of efficient intra- or inter-domain adaptation.

More recently, deep neural networks have also been proposed to represent,

or parameterize, the spatial transformation between a single pair of images. This
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becomes analogous to classical methods; permitting the network to be optimized

“without training data” [252]. In this chapter, this single-pair optimization process is

considered as an iterative optimization as opposed to a learning-based problem where

the phrase “learning without training data” may be used. Thus, it follows that this

same optimization of a single pair of images may then also be applied to improve a

registration network obtained from the learning-based methods as a case of test-time

optimization [217], and not only from the original source and target images. Both

single-pair optimization approaches have been shown to improve existing methods

which use learning-based registration networks alone. This may be due to the use

of networks or data which are prone to overfitting, perhaps due to sensitivity to

initialization, limited available training data or highly variable clinical imaging, and

sometimes to underfitting due to over-constrained transformations.

Observed from these prior studies, both the single-pair methods, including

those using neural networks, and the learning-based methods may have advantages

in seeking pair-specific features and population-statistics-based features that are

useful to align the image pair of interest. As such, this chapter proposes the use

of meta-learning to combine population-based, generalizable learning and single-

pair optimization, by considering image pairs in training as different meta-tasks.

This allows the meta-training to optimize a meta-registration network that can be

effectively and efficiently adapted to individual test image pairs, using single-pair

test-time optimization.

This is particularly useful for registering US images. US often creates challeng-

ing registration tasks with clinically acquired data given their known high variability

and varying quality, due to user- and view-dependency. The registration of US to

US images to other images can help to create a more complete and accurate picture

of the area being imaged. This is particularly useful in the context of prostate imag-

ing, where the prostate gland is often imaged from different angles and at different

times. Through registration, clinicians can more easily compare and analyze the

images to identify any changes or abnormalities. In longitudinal or change detection

scenarios, where changes in the size or shape of the prostate gland, and possible
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lesions, may need to be measured accurately over time, ensuring that measurements

are consistent and accurate, allowing for more reliable tracking of any changes in

the prostate gland. US to US registration can also be especially useful in the context

of population-based assessments, as it allows for the aggregation and analysis of

data from multiple patients to identify trends or patterns. Additionally, the gener-

ation of interpatient atlases can provide a reference for comparing and analyzing

individual patient images, allowing for more accurate and consistent diagnoses and

treatment planning in the future. In all instances, a rapid optimization process can

be critical in enabling real-time image guidance in potentially many surgical and

interventional applications, as well as for image analysis more broadly. In this work,

3D US images obtained from TRUS-guided prostate cancer interventions are used to

demonstrate the feasibility, accuracy, and speed of single image-pair optimization

using the proposed meta-registration algorithm.

5.2 Contributions

This chapter describes a meta-learning and network training paradigm for combining

population-based, generalizable learning and single-pair optimization, by considering

image pairs in training as different meta-tasks. In doing so, this work demonstrates

the effectiveness of meta-registration methods as compared to strictly generalizable,

conventional learning-based methods and single-pair optimized classical iterative

methods.

The below sections provide a thorough description of unsupervised learning-

based image registration, a meta-registration framework, and the test-time single-pair

optimization process which are applied to the exemplar application of unimodal

image registration on US images. Subsequent validation and analysis of registration

performance are presented and compared to different learning-based methods and

classical iterative methods.
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5.3 Methods

5.3.1 Unsupervised Learning-Based Image Registration

This section describes the proposed meta-registration using an unsupervised loss,

as outlined in Figure 5.1. Similarly to a general purpose learning-based image

registration method, as defined in Section 4.3.1, when given N pairs of training source

and target images, {xxxsource
n } and {xxxsource

n }, where n = 1, . . . , N, existing approaches

predict the voxel correspondence uuuφ
n = f φ (xxxsource

n , xxxtarget
n ), i.e. the transformation

that aligns the two images, using a registration network f φ with network parameters

φ . Where this differs, is that for an unsupervised learning algorithm, the training

goal thus is minimizing a loss function over N training pairs, to obtain the optimal

φ∗:

φ̂ = argmin
φ

∑
N
n=1

[
Lsim(φ | xxxsource

n , xxxtarget
n )+α

φLde f (φ | xxxsource
n , xxxtarget

n )
]
, (5.1)

where Lsim(φ |xxxsource
n , xxxtarget

n ) = Lsim(xxxsource
n (uuuφ

n ), xxxtarget
n ) is a negative image-based

similarity measure, a function between the transformation-warped source images

xxxsource
n (uuuφ

n ) and the target images xxxtarget
n , and Lde f (φ |xxxsource

n , xxxtarget
n ) = Lde f (uuu

φ
n ) is

the deformation regularization, encouraging the smoothness of the transformation

uuuφ
n weighted by a hyperparameter αφ . Unlike the proposed interactive registration

framework from Section 4, a negative weak-supervision loss based on label similarity

is not added, given the unsupervised nature of the method, where only image-level

similarity is used to guide learning.

As such, during test time with an unseen pair of images, xxxsource
test and xxxtarget

test ,

the trained network f φ̂ predicts the transformation that aligns the two, uuuφ̂

test =

f φ̂ (xxxsource
test , xxxtarget

test ).

5.3.2 Test-Time Single-Pair Optimization

Consider an optimization problem to align a pair of test images xxxsource
test and xxxtarget

test :
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Figure 5.1: Schematic representation of the proposed unsupervised meta-registration method
for single-pair test-time optimization. A learning-based registration is trained
over multiple episodes during the training phase (left). In each episode, a pair of
images is sampled and repeatedly registered. Following each episode, the meta-
update updates the registration model based on the learned gradients from the
episode which was just completed. Once training is complete, the registration
model may be optimized at test-time for a single pair of images (right) using
few-shot learning to yield a registration model optimized for a specific pair of
input images. Figure from [248].

θ̂ = argmin
θ

[
Lsim(θ | xxxsource

n , xxxtarget
n )+α

θLde f (θ | xxxsource
n , xxxtarget

n )
]
, (5.2)

where αθ is the deformation hyperparameter. This is equivalent to the classical

pairwise registration, iteratively optimizing a transformation network f θ with its

randomly initialized parameters θ , which (re-)parameterize the transformation uuuθ
n =

f θ (xxxsource
test , xxxtarget

test ) between xxxsource
test and xxxtarget

test .

Alternatively, when the parameters are initialized by the trained registration

network parameters, θ = φ̂ , as obtained in Eq. (5.1) and Eq. (5.2), represents

test-time optimization for the given test pair.

It is also noteworthy that the transformation network f θ could be a different

network to the registration network f φ , whilst this study uses a single network

to facilitate a model-agnostic implementation of the proposed meta-registration

algorithm.
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5.3.3 Model-Agnostic Meta-Learned Test-Time Optimization

This section describes the proposed meta-registration algorithm. Each pair of images

is considered a different meta-task, such that a meta-training scheme can be adopted

to improve the test-time optimization. During the meta-training, different meta-tasks

are sampled. The resulting bi-level optimization thus becomes:

φ
∗ = argmin

φ
∑

N
n=1

[
Lsim(θ | xxxsource

n , xxxtarget
n , θ

∗(n)(φ))+

α
φLde f (φ | xxxsource

n , xxxtarget
n , θ

∗(n)(φ))
]
,

(5.3)

s.t. θ
∗(n)(φ) = argmin

θ

[
Lsim(θ | xxxsource

n , xxxtarget
n , φ)+

α
θLde f (θ | xxxsource

n , xxxtarget
n , φ)

]
,

(5.4)

where, the outer optimization in Eq. (5.3) obtains the optimum meta-parameters

φ∗, such that θ ∗(n)(φ) is an optimized network for individual nth tasks. In the

proposed meta-registration, θ and φ are shared network parameters. Therefore,

model-agnostic meta-learning algorithms such as MAML [231] or Reptile [232] can

be readily applied to solve this bi-level optimization problem.

The proposed meta-registration may be considered by two different views of

combining the learning-based method and the test-time optimization:

1. it optimizes a learning-based registration network that can be used for better

test-time optimization;

2. it is an iterative method for registering a single pair of images, using a neural

network to parameterize the spatial transformation, which can be initialized

with prior knowledge learned from training data.

It is also interesting to note that data augmentation methods may be considered as

the samples of individual tasks in the proposed meta-registration.
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5.4 Experiments

5.4.1 Meta-Registration Implementation

Reptile [232] is adopted as the gradient-based meta-learning strategy employed in the

meta-registration framework as it provides a computationally efficient optimization

of the gradient-update procedure. Reptile was designed to quickly learn to perform a

new task with minimal training, which suits the test-time single-pair optimization

process. This is achieved in practice through a bi-level optimization. In the inner

optimization loop, an episode of task-level learning is applied over k mini-batches. In

the outer optimization loop, SGD is performed by using the difference between the

model weights prior to and after the inner optimization loop’s episode of task-level

learning.

The meta-learning methodology described in this work adapts a learning-based

registration method available from the unsupervised image registration framework

within DeepReg [247]. This ‘Baseline’ meta-registration model architecture utilizes

LocalNet [114], and was trained for 200,000 iterations with the Adam optimizer

[185], a mini-batch size of 4, and an initial learning rate of 1 · 10−5. Through

the meta-training phase, the value of k used was 10, with an initial meta-learning

rate, β meta, of 0.5, linearly decaying to 1 · 10−5 over the course of the 200,000

iterations. The SSD loss as Lsim and bending energy [73] as Lde f . The deformation

hyperparameter αde f was set to 10.0 to weight the deformation regularization relative

to the image similarity loss. During the inner optimization, data augmentation is

applied to the source and target images. Each image was independently transformed

by a random affine transformation, without flipping, prior to being used as input.

Training required approximately 120 hours on an NVIDIA DGX-1 system using a

single Tesla V100 GPU.

In the meta-test phase, test-time optimization is performed via few-shot learning

with 5 gradient updates on the sampled pair of test images. This yields a test-time

optimized registration model which can perform accurate registrations on the test

data. In this optimization process, a mini-batch size of 1 is used, and 5 gradient

updates are performed to fine-tune the model. Apart from these values, the few-shot
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learning uses the same hyperparameters as in the inner optimization loop during the

meta-training phase.

5.4.2 Data

To train and evaluate the meta-registration, 108 intraoperative TRUS images from

76 patients, acquired during the SmartTarget clinical trials [146], are utilized. The

TRUS images were split into a training set and a test set, with each comprising 88

and 20 images, respectively, where no patient appears in both sets. Images were nor-

malized and resampled to an isotropic voxel size of 0.8×0.8×0.8mm3. The TRUS

segmentations of the prostate gland boundary were acquired automatically [197],

and any additional landmarks used to compute registration accuracy, such as apex

and base, were segmented manually. The data collection and annotation protocols

for the data used in the below experiments are afore-described in Section 3.6.1.

5.4.3 Comparison Studies

To demonstrate the effectiveness of the meta-registration approach it is compared to a

classical iterative non-rigid registration method, and two state-of-the-art architectures

for deformable medical image registration [114, 209]. Additionally, the effects of

the test-time optimization are demonstrated by comparing it to the meta-registration

baseline without any few-shot learning.

The meta-registration method is first compared to a conventional iterative

registration approach, whereby SGD is applied over 3,000 iterations to directly learn a

DDF which describes the transform between a given pair of source and target images.

Here, a learning rate of 0.01 is applied, and use the same loss and deformation

hyperparameter as in the training of the meta-registration method. Subsequently,

the meta-registration method is compared to two widely-used approaches, LocalNet

[114] and VoxelMorph [209], for deformable pairwise medical image registration

using unsupervised learning. In both instances, these networks are trained with

identical loss, training, and deformation hyperparameters to the meta-registration

method. To illustrate the effects of the test-time optimization process, as well as

demonstrate the effectiveness of the meta-learned initialization, a comparison to
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only the meta-learned initialization without any test-time optimization or fine-tuning

applied is presented.

5.4.4 Evaluation of Registration Methods

The accuracy of the prostate surface registrations was quantified using the DSC,

and TRE; calculated as the distance between the 3D locations of corresponding,

manually identified anatomical landmarks in the TRUS images [114, 199]. Reported

DSC are computed between the transformed prostate gland label of the source image

and the ground-truth prostate gland label of the target image. TRE is reported as the

root-mean-square of the distances between landmark centroids of the pairs between

the transformed source image and the target image. The computational time required

at inference, on GPU, is reported for each method.

5.5 Results and Discussion
During few-shot learning in the test-time single-pair optimization process, a gradi-

ent update and inference step require approximately 0.67s and 0.37s, respectively.

Therefore, during the test-time optimization, the meta-registration method requires

approximately 3.7s to be fine-tuned and provide a prediction for the specific image

pair. This is notably much less than the classical method evaluated by nearly 100

times, while delivering comparable performance. Conversely, this 3.7s is nearly 10

times slower than other existing and evaluated learning-based methods which do not

use any test-time optimization.

While requiring an additional 3s compared to other existing learning-based

methods, the performance of DSC and TRE is significantly improved. This perfor-

mance is significantly different with respect to DSC and TRE from LocalNet and

VoxelMorph, based on two-tailed paired t-tests, at a significance level of α = 0.05.

After 5 gradient updates of few-shot learning through the meta-test phase, the

Meta-Registration method yields a mean TRE of 6.1 mm and a DSC of 0.74. This is

comparable, but improved, to the Meta-Registration initialization which is learned

during meta-training, which yields a mean TRE of 6.2 mm and a DSC of 0.73.

Both of these results are also comparable to the Classical Non-Rigid optimized
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method, which gives a mean TRE of 6.5 mm and a DSC of 0.72. Interestingly, the

SD of the TRE is lower in these results, at 2.1 mm, compared to 3.8 mm and 3.7

mm for the Meta-Registration and test-time optimized Meta-Registration methods,

respectively. Most notably, as previously discussed, the performance of existing

registration architectures, when trained under comparable conditions and with similar

hyperparameters, is significantly worse, with mean TREs over 7.5 mm and higher

SDs, and mean DSCs of 0.68 in both cases.

Inference time, DSC and TRE are summarized in Table 5.1. Detailed results

presenting DSC and TRE for each method are summarized in Figure 5.2 and Fig-

ure 5.3. Example slices of input TRUS image pairs are provided in Figure 5.4 for

qualitative visual assessment of the registration results for each method based on

samples from the test data.

Table 5.1: Summary of DSC, TRE and computation time for the Meta-Registration method
as compared to the other methods evaluated. All values are presented as Mean.
DSC and TRE are presented ± SD.

Method Time (s) DSC TRE (mm)

Classical Non-Rigid 372.36 0.72 ± 0.07 6.5 ± 2.1
LocalNet [114] 0.38 0.68 ± 0.09 7.5 ± 4.3
VoxelMorph [209] 0.39 0.68 ± 0.10 7.6 ± 4.5

Meta-Registration 0.38 0.73 ± 0.10 6.2 ± 3.8
Meta-Registration (Test-Time Optimization) 3.74 0.74 ± 0.06 6.1 ± 3.7

5.6 Conclusion
This chapter has presented a meta-registration framework for test-time single-pair

optimization of ultrasound images. Results that were comparable to time-consuming,

classical iterative methods were obtained in a fraction of the time. Additionally, the

meta-registration method outperforms existing learning-based methods with minimal

additional time required during inference for the test-time optimization process.

These results demonstrate a critical step in enabling adaptive, tailored real-time

image guidance in many surgical and interventional applications.
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Figure 5.2: Tukey’s boxplots of DSC for all methods. Whiskers indicate 10th and 90th
percentiles. Figure from [248].

Figure 5.3: Tukey’s boxplots of TRE for all methods. Whiskers indicate 10th and 90th
percentiles. Figure from [248].
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Figure 5.4: Example image slices from one test case. The left-most column contains image
slices from the source and target images. Other columns present the warped
image, a checkerboard of the warped and target images, the warped prostate
gland contour (Red) overlaid on the target prostate gland contour (Green), and
the resulting DDF using the above-labelled method. Figure from [248].



Chapter 6

Conclusion

In this thesis, several novel approaches which provide fast, accurate, and general-

izable medical image registration have been presented. The development of such

methods illustrates multiple avenues by which the data efficiency and user interactiv-

ity may be increased and optimized for different registration tasks within a broad

sample of target application domains.

Chapter 3 introduced FPT, a learning-based approach for point-set registration.

This approach demonstrated the ability to learn effective individual point displace-

ments without the need for point correspondence in several synthetic, non-medical

domains as well as in US-based spine atlas reconstructions and in MR-TRUS image

registration. In all instances, FPT was shown to be robust to deformation, noise, and,

more saliently, robust to partial input data. This ability to effectively and efficiently

manage partial data problems opens the door to solving other medical image regis-

tration problems where the absence of complete training data is a limiting factor for

existing solutions.

Chapter 4 introduced a meta-learning-based framework for interactive med-

ical image registration. In MR-TRUS image registration using sparsely acquired

intra-operative TRUS images, similar registration accuracies to state-of-the-art full-

volume methods were obtained. Notably, when compared to the same state-of-the-art

methods trained only with partial data, the interactive method significantly outper-

forms. This provides further evidence of the data efficiency and effectiveness of

an interactive registration approach for scenarios where real-time registration is an
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important enabling technology, as in prostate biopsy.

Chapter 5 introduced a second meta-learning-based framework for test-time,

single-pair optimization of US images. Compared to the classical, iterative methods

for single-pair optimized image registration, the proposed solution was found to

achieve comparable or more accurate registration with a large reduction in com-

putational time required owing to the efficient and adaptive test-time optimization

process. Overall, the proposed method demonstrates a critical advance in learning-

based registration methods, which are often entirely iterative or entirely reliant on

a single prediction, towards time-efficient registration tailored to specific clinical

applications.

The validation data presented for the deep-learning-based medical image reg-

istration methods presented in this thesis indicate fast, accurate, data-efficient, and

patient-specific registrations. Given the common challenges with the often limited

size of datasets available in medical imaging, the data-efficient approaches presented

are of interest for further study in other related applications where registration is re-

quired. Furthermore, given other inherent challenges with medical image registration,

especially in multimodal applications where non-linear relationships exist between

image intensities, the ability to learn descriptive, data-driven features directly from

limited amounts of partial data without compromising registration accuracy presents

several new directions for research through the application of application-specific

constraints or interactions. Additionally, while the ability of the presented methods

to adapt to new patient populations or varied image intensities remains untested, the

potential for such methods to do so presents powerful opportunities for future work.

In summary, this thesis represents significant progress towards generally-applicable,

data-efficient, and adaptable learning-based non-rigid registration methods.

6.1 Future Work

While image registration itself is not a recently developed concept, the application of

deep-learning-based methodologies to image registration is relatively new. There

are several key advantages to deep learning approaches – generally, and in medical
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image registration specifically – namely the rapid inference times, comparable or

improved accuracy to classical or conventional methods, and the ability to derive

novel interpretations and features from the data. Such advantages have made real-

time image registration a clinical possibility, especially when paired with real-time

imaging modalities, such as US, unlike some classical, iterative methods. Despite

the success of many deep learning methods, the inherent reliance on data availability

and the potential lack of robustness on new, unseen data – as compared to classical

methods – is problematic. Without the underlying data (or the ability to appropriately

simulate sufficiently realistic data) for a specific application or task, it may not be

possible to even attempt a given problem when using a deep learning approach.

Several aspects of the work presented in this thesis have demonstrated the

promise of methods such as weak supervision, user interaction, and the use of partial

data for medical image registration. However, there are still several challenges which

need to be addressed before these methods can be used in a clinical setting. The

following sections outline some of these challenges; such as the difficulties in deter-

mining appropriate regularization/constraints, defining effective user interactions,

and working with datasets of limited size as avenues for future work.

6.1.1 Learning to Constrain ‘Free’ Transformations

In Chapter 3, a ‘model-free’ approach for point-set registration is introduced. The

rationale for introducing such a method is due in part to the difficulty associated

with adequately selecting an effective parametric transformation model that does

not explicitly define constraints on spatial coherence or smoothness. Often such

constraints need to be made explicit and are hand-engineered to be capable of

handling noise, outliers, and missing data. This makes it difficult to apply methods

that use these constraints to real-world data. In current practice, the key to devising

effective transformation models, or to not using an inherent model, is to strike a

pragmatic balance between exploiting expert/domain knowledge versus generating

‘knowledge’ using data. This can be thought of more generally as what ‘we’ know

about the required transformation and data versus what a model may learn from large

quantities of high-quality labeled data.
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Given the sparseness of the zonal structures within the prostate, it has been

previously argued that smoothness constraints are required [114]. In intensity-based

registrations, not imposing physically plausible constraints on registration processes

can result in highly distorted local deformations, leading to poorer registration

accuracy, or a higher TRE. Heuristically designed deformation regularisations, such

as those discussed in Section 1.2.3.3 [73, 89, 90], have demonstrated their benefits

in various intensity-based registration applications, including the work done in this

thesis. However, in feature-based registration methods, the regularization process is

not always as well defined. This is due to the potential dependence on generating

plausible deformation from either smoothing or a finite element model- [131, 136,

162, 180, 253] or statistical model-based [118, 135, 162] approaches. While these

methods have been applied in practice, spatial smoothing may be considered too

simple to model prostate motion, and the generation of finite element or statistical

models can be cumbersome and computationally intensive.

Recently, the physics-informed neural network (PINN), a deep learning-based

method capable of embedding a knowledge of physics described by partial differ-

ential equations, has gained popularity by virtue of its ability to direct and con-

strain its learning process through prior knowledge of a series of specified physical

laws [254, 255]. In doing so, PINNs have the potential to maximize the information

content available within the training data by leveraging the embedded prior physical

knowledge in order to better generalize with less data [254, 255].

With PINNs, it may be possible to utilize existing learning-based methods and

additionally embed biomechanical constraints through a system of equations that are

solved alongside the registration loss in an end-to-end manner. By training in this

way, a generalizable, learned method for complex or elastic constraints may be devel-

oped, as has been shown in cardiac [256–258] and neuroimaging [259] applications.

This would remove the need to constrain registrations with the aforementioned finite

element- or statistical-based models or to develop registration algorithms with no

constraints as in the work of Chapter 3, which may lead to physically implausible de-

formations. The use of PINNs may improve the registration accuracy and quality by
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permitting learned deformations that are constrained differently in different regions

of the prostate that exhibit different biomechanical properties. They also ensure

that any large deformations are consistent and realistic in the context of prostate

motion. In practice, the FPT framework, presented in Chapter 3, may be extended to

regress not only the per-point displacements but additional information or inputs for

various required constraint or regularization loss functions. Such information or loss

functions may include the prediction of stresses or the computation of a loss on the

elastic energy based on the predefined properties at a given point.

Furthermore, because these rigidity constraints may be set – or learned – ex-

plicitly on a per-point basis, giving every point in the point-set a variable amount

of rigidity, the use of PINNs within the FPT framework could be extended to the

quantification of spine curvature in the registration of US-based reconstructions to

the generic spine models, presented in Section 3.5. While previous works have been

predominantly intensity-based, implementing different forms of rigidity or biome-

chanical constraints for surgical guidance using a combination of hand-engineered

heuristics [260, 261], recent works have adopted learning-based methods. These

learning-based methods have been used to regress a series of local level-wise trans-

formations between each vertebra [262] or to leverage weak supervision to constrain

the transformation by penalizing the overlap and DDF with localized rigid trans-

formation within the vertebral bodies [263]. Such methods, therefore, require the

decisions made with respect to the actual resulting deformation to be explicitly set,

rather than learned within a set of physics-informed guiding parameters and formulae

to determine the optimal registration.

Summarily, adopting learned biomechanical constraints into the FPT framework,

or otherwise, may provide a means to improve the registration accuracy and quality by

permitting learned deformations that are constrained differently in different regions

of the prostate that exhibit different biomechanical properties. This can benefit

patients through the reduction of TRE and MR-TRUS registration errors, which may

lead to more accurate biopsy targeting and treatment planning. Furthermore, the use

of PINNs within the FPT framework could be extended to the quantification of spine
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curvature in the registration of US-based reconstructions to the generic spine models,

presented in Section 3.5. This may provide a means to improve the accuracy of

the registration of US to the generic spine model, which may lead to more accurate

quantification of spinal curvatures.

6.1.2 Expanding Definitions of Interactivity

Throughout Chapter 4, an interaction was considered to be any action taken by the

user or model which has a reciprocated action taken by another entity – either the

user or model – as a result of the initial action. This permitted a formulation for

interactions in such a way that meant they do not have to be used independently.

From the two categories defined in Section 4.3.2, computer-to-user and user-to-

computer, and looking beyond the broad scenarios defined in Section 4.4.1, we may

further gain an understanding of the practical and potential uses for each type of

interaction.

Overall, the core differences between these two broad categories may best

be described by assessing which entity is ‘waiting’ to take an action. In user-to-

computer interactions – the category most similar to that considered in Chapter 4

– an example of a more classically interactive scenario is given. Here the model

waits for new data before being able to make its next prediction and then makes a

new prediction as the user continues their task of adding data or error correction.

Conversely, in computer-to-user interactions, the model is often making its best

initial prediction, where it may continue to accept new information from the user

should the user think it is required on the basis that it may improve or refine the

initial prediction.

Another perspective from which to consider these differences is to compare the

‘type’ of feedback given in each scenario. In user-to-computer interactions, typically

the interactions will illustrate a type of positive feedback where the user continually

provides a ‘positive’ form of interaction to the model. This may be in the form of new

data or additional annotations which can assist in the registration process. On the

other hand, in computer-to-user interactions, the interactions which may occur may

be considered more akin to ‘negative’ feedback. This negative interaction may be in
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the form of identifying mistakes that the model has made or replacing poor-quality

images so that the model may be able to derive an improved prediction from ‘better’

data. Given these positive and negative considerations and criteria, as well as for

the purposes of defining additional interactions, it may be helpful to consider the

user-to-computer or computer-to-user interactions in a given application as error

correction or as the introduction of new data. In the following, each of these options

and their possible implementations and accompanying implications are discussed.

With error correction, an interaction may be viewed as an instance where the

model takes an action (i.e. makes a prediction), and the user responds by providing a

reciprocated action. It is expected that this action would be in the form of an error

correction, or, perhaps, the confirmation of a successful registration as demonstrated

by the inability to identify errors. It follows that error correction interactions may

permit image re-acquisition or annotation within areas that are not well aligned, as

in Chapter 4, where image acquisition occurs on a local (i.e. one or a few images)

level. It is also possible that this acquisition may occur on a global level (i.e. over the

entire image volume) when some of the initially acquired images are of insufficient

quality or there has been significant patient motion. While image re-acquisition may

be most effectively used in tandem with real-time imaging, such as US, given that

image quality may be operator dependent and that images may be rapidly re-acquired,

this does not preclude volumetric acquisitions being omitted from consideration

for re-acquisition interactions. Volumetric image re-acquisition may be especially

effective as part of a rapid adaptation and registration process in scenarios where

interventional MR imaging is in use, as is needed for guidance in ablation- or

radiation therapy-based interventions for liver [264] and prostate cancers [265–267]

or for neurosurgical guidance [268, 269], where the registration of pre-operative and

intra-operative imaging is crucial.

Additional error-correcting interactions may include user-defined annotations

which can be used to indicate regions in the registration that are not well-aligned.

Such a scenario is more likely to apply when image registration is performed outside

of the operating room, and with reduced or negligible time pressure, potentially
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in a similar manner to existing interactive segmentation tools, such as MONAI

Label [270], where the user continues to delineate 3D images to actively re-train a

deployed segmentation model through their annotations.

While the processes mentioned above are inherently different methods from

which an interactive registration model may be learned, both of these error-correction

interactions may be formulated similarly. For example, the interactions may be

used to direct learning by only modifying the annotated or re-scanned regions of the

registration by applying constraints to the possible deformations instead of modifying

the entire registration. Such modifications may be implemented as constraints on the

transformation or deformation field, or perhaps as different weights for given voxels

or images for any image- or label-based loss functions, or otherwise.

Looking at ‘addition-of-new-data’ interactions, we may consider these actions

to follow a process whereby the user takes an action (i.e. providing new data

to the model), and the model provides a reciprocated action by giving a refined

prediction. Therefore, the addition of new data may include interactions such as

image acquisition, annotation of any well-aligned regions, or landmark segmentation.

As mentioned with error-correction interactions, these different types of interactions

may occur on a local or global level when additional data or annotation is thought

necessary by the user to predict an acceptable registration.

User-defined annotations, in contrast to those defined for error correction, may

also be used to indicate to the model which areas of the registration are visibly well

aligned. Additionally, user-defined or automatic segmentations of landmarks or

anatomical regions – and the manual confirmation of those regions – may be used

to indicate areas or structures which should be aligned to the model. This may be

especially useful in multimodal registration tasks where there are different intensities

between the pair of images being registered. The acquisition of new images may

be formulated as an interaction that modifies the models’ input data, whereas the

previously discussed interactions may be implemented similarly to error-correction

interactions, either as constraints on the resulting transformation or deformation field

or by differently weighting any image- or label-based loss function at the voxel-
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or image-level. In doing so, the interactions may be able to direct the model to

preserve the transformation or deformation field in regions that are well aligned and

only modify the registration elsewhere. Further, the addition of segmentations may

also be used as part of a label-similarity-based loss function to promote overlap

between corresponding labels in the images being registered in a supervised test-time

optimization approach.

6.1.3 Enabling Open and Reproducible Science in Multimodal

Medical Image Registration

The fusion of clinically important information, such as pre- and intra-operative

imaging, as is achieved by registering MR and TRUS images, remains important

to many surgical and interventional tasks. While the registration of such images

can assist in the delivery of prostate biopsy and focal therapy, as discussed and as

motivated in this thesis, and has transformed the standard of prostate cancer patient

care, there remain ongoing challenges with access to large quantities of high-quality

data (and any associated annotations) and the production of open and reproducible

science.

The data used in this thesis were not publicly accessible. Often, the data which

are openly available to the research community are often scarce and of low quality,

and frequently lack expert annotations. The process of annotation can be time-

consuming and costly, requiring extensive expert domain knowledge and experience.

While crowd-sourced labels have been used in previous works [271–273], the quality

of such labels is often unknown and may be inconsistent. Further, the use of crowd-

sourced labels may be limited to tasks where the labels are easily defined, such as

in image segmentation, and may not be easily applied to other tasks, such as image

registration.

As such, an ongoing major contribution of this thesis is the provision of well-

curated, expert-annotated, real-world data for research use – available through [274]

– through the organization and delivery of the ‘MR to Ultrasound Registration

for Prostate Challenge’ (µ-RegPro) [275] at the 26th International Conference on

Medical Image Computing and Computer Assisted Intervention. The µ-RegPro
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Challenge yields the release of one of the first multimodal medical imaging datasets,

complete with expert annotations for validation, for benchmarking advancement

in registration methodologies, as well as for future research in managing the most

common non-skin cancer in men.

The µ-RegPro Challenge will provide access to the MR and TRUS data of over

100 subjects with mp-MRI who underwent an MR-targeted TRUS-guided prostate

biopsy procedure to assist in the diagnosis and staging of their prostate cancer as

part of the SmartTarget Biopsy Clinical Trial [146].

This data will permit the µ-RegPro Challenge to evaluate the performance of

multimodal image registration methods between pre- and intra-operative imaging

methods for surgical and interventional tasks. Using intensity-based methods, feature-

based methods, or some combination of the two, participants will provide a function

that accepts as input a:

• target image,

• source image,

• source label.

The function must also produce as output a:

• warped source image,

• DDF.

Participants are permitted to deform or transform the images in any manner (e.g.

parametric or non-parametric transformation) which they should choose, however;

they must provide an equivalent DDF for purposes of metric computation on the

test data. To assist with benchmarking and to provide a baseline for state-of-the-art

performance, participants are provided with end-to-end weakly supervised solutions

based on LocalNet [114] and VoxelMorph [209].

As previously described, the overarching goal for the µ-RegPro Challenge is to

provide high-quality, open research data for the community. Though organized as a

single event in conjunction with 26th International Conference on Medical Image
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Computing and Computer Assisted Intervention that does not repeat yearly, it is

anticipated that the data will provide long-term value to the community with the

prospect of additional challenges and data being organized and released in the future.
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