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Abstract

The analysis of time-varying interactions within multivariate systems has seen a

great deal of interest within the last decade, with the international oil market being

an archetypal and important system that demonstrates this behaviour. However,

unlike work on static systems, research on time-varying systems rarely leverages

specific information on the inter-system interactions for understanding the systems

temporal dynamics. This thesis utilises this information to present methodologies

for new descriptions of these systems, focussing on the international oil market.

This is achieved via three experiments.

The first experiment expands upon the state-of-the-art methodologies for in-

vestigating these systems; complex networks. Presenting a novel complex network

approach that encodes the transitional behaviour of the dynamic interactions. The

work introduces: two transition metrics, a complex network, and various metrics

and properties of this network. Using this approach it is shown that for the interna-

tional oil market the evolution favours staying in similar causality patterns before

switching to a new group of similar patterns.

The second experiment puts forth two novel paradigms for the evolution of a

dynamic multivariate system, and from these paradigms the principle features that

drive the systems dynamics. It is also shown demonstrated that a p-value representa-

tion of causality can improve the description of the dynamics. Through dimensional

reduction based on these paradigms and prediction of the systems future states on

the reduced system, that the international oil market dynamics are well captured by

the total change in causality of the system.

The third experiment further explores and validates a hypothesis of the inter-
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national oil markets dynamics based on the findings of the first two experiments.

Proposing a approach for the formal definition of such system dynamics, and ap-

plying this to the proposed hypothesis. This hypothesis is then validated via a novel

clustering approaches to determine that the international oil markets state is pri-

marily contained within clusters that slightly vary around central causality patterns,

and that the system does not follow a repeated gradual change when transitioning

between these clusters.

This work allows for a more detailed and alternative description of a system’s

dynamic behaviour than those given by other current methodologies.



Impact statement

The major contribution of this thesis is novel for descriptions of the behaviours of

dynamically changing Granger causality networks in multivariate systems gener-

ally, and specifically for the international oil market, increasing the understanding

of this system past its current state. To produce these findings this thesis also con-

tributes methodologies and frameworks for the investigation, description, and val-

idation of the dynamic behaviour of a multivariate system from the perspective of

its time-varying interaction structure.

These methodologies present 1) a complex network representation, amend-

able to analysis, that has descriptive power in regards to the dynamic change in the

system’s interaction structure; 2) a framework for the further analysis and dimen-

sionality reduction of the system’s dynamic behaviour, paradigms for the evolution

of a system, and the prediction of future causality patterns of that system, based

on information gathered from the presented complex network; 3) a framework for

the construction and investigation of specific descriptions of the dynamic behaviour

of a system in terms of the interaction structure of the system. Thus, by offering

time-varying behavioural descriptions and methodologies that include information

from the interaction structure, this work extends past current literature.

The interest in the dynamic behaviour of multivariate systems has seen a dra-

matic increase in the last decade across a wide range of disciplines in both academia

and industry, ranging from neuroscience to climatology and economics. In particu-

lar significant interest has been shown in finance by investors, policymakers, regu-

lators, and risk analysts. Due to the breadth of this interest, the work presented here

can be significantly impactful in a wide range of areas and to various practitioners.
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The work provides several benefits within academia. Firstly, this work pro-

vides a foundation for the use of dynamic behaviour of the interaction structure of

a system for a more detailed description of a system’s behaviour, a relatively unex-

plored academic area. Secondly, the work presents frameworks and methodologies

that can be expanded to conduct further/targeted analysis, allowing for application

to many systems and investigation of specific behaviours; proposals for some such

extensions are provided. Thirdly, this work contributes explicitly to the body of

literature investigating the international oil market by providing novel findings and

descriptions for the dynamic behaviour within sample data of this market.

Outside of academia, there has been growing interest in complex system anal-

ysis, particularly in finance, where traditional analysis of markets has become

widespread and accessible to many, so the search to find new information has be-

come focused on more complex behaviours. This has lead to the usage of increas-

ingly complex methods, such as machine learning approaches. The work presented

here can be considered an addition to the suite of methodologies applied in this

area, with an example use case being that of feature selection. However, more

directly, this work can be applied in many areas such as risk management and pol-

icy design; proposals for some such use cases are provided. The work presented

here generally can facilitate analysis to provide a more detailed description of com-

plex time-varying systems. With the inherent complexity and interconnectedness

of real-world systems and an ever-increasing interest in these systems, this work’s

application and usage can be seen as interdisciplinary. As such, the dissemination

of this work is achieved through the submission of literature to an interdisciplinary

scholarly peer-reviewed journal.
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Chapter 1

Introduction

1.1 Motivation for this research

Nowadays it is commonplace for real-world systems to generate and store contin-

uous data steams. It is often the case that this data is naturally indexed by time;

being common in fields such as (i) finance, e.g. daily spot prices; (ii) biology, e.g.

monitory techniques such as magnetic resonance imaging (MRI); and (iii) meteo-

rology, with surface-air temperatures. This data is often naturally expressible as

time series, a sequence of data points indexed by the time of observations, which

occur at successive and, in many cases, equally spaced points in time. Hence time

series data can be seen to have an embedded discrete temporal ordering. This nat-

ural ordering makes analysis of time series data distinct from non-temporal data,

with time series analysis considering the series of data points, rather than individual

values at different instances.

A single time series, not under the effect of others, is a univariate system and

has been the focus of much research, solidifying it as a mature field. This research

has lead to data mining tools for the discovery of hidden patterns and the forecasting

of the series [5, 6, 7, 8].

Though there is significant interest in univariate data, most real-world data

comes from multivariate system’s, as discussed above, where confounding vari-

ables and interactions between variables occur. With the maturing of the field of

univariate research, there has been an increased interest in the analysis of multivari-
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ate systems, spurred on by ever-increasing sources of complex datasets [9]. Work

on multivariate systems is a broad field and represents the high level area of interest

of this thesis, and understanding phenomena from this complex data often crucially

depends on the analysis of multivariate time series [10]. This analysis takes many

forms in the literature, with a notable separation between approaches for bi-variant

systems (those with only two variables) and multivariate systems with greater than

two variables.

When considering a multivariate system, a defining feature is the connec-

tions/interactions between the variables generating the time series, with these in-

teractions allowing for variables to drive and influence each other. Furthermore,

these interactions can cause emergent phenomena and behaviours to occur within

the systems. Hence understanding these interaction dynamics allows for a deeper

understanding of the system and desirable analysis such as forecasting. However,

the interactions and connections are not known for many real-world systems, par-

ticularly those with a high level of complexity. A natural approach to discovering

these connections is to perturb a variable and observe the reaction of another; in

reality, this approach is often unfeasible due to physical or legal limitations. Due

to this, researchers often rely on statistical measures to determine the connections

between time series. A popular method, particularly in the field of economics,

is the Granger causality test, which presents a statistical measure of causality be-

tween variables [11, 12, 13, 14], with a network of variables interacting via Granger

causality being referred to as a ”causality pattern” [3]. Following this the area of

interest for this thesis can be further specified to multivariate systems and where the

variables are interacting via Granger causality.

When these causal interactions (which for this thesis will be referred to in-

terchangeably as causality) are considered, it is predominantly as static measures

between the variables. There is a sizeable body of research focused on the static

causality structure within a multivariate system [15, 16, 17]. However, it is well

accepted that the dynamics governing these interactions are seldom genuinely static

and often are time-varying. Furthermore, the behaviours of these interactions tend
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to be nonlinear in nature [9]. Therefore the temporal dimension of this data can be

seen as crucial for their understanding. The area of interest for this thesis can hence

be given as multivariate systems interacting via Granger causality, where the causal

interactions change throughout time.

This property of many real-world systems has led to an increasing interest in

time-varying interaction dynamics within multivariate systems. Interest in this field

ranges from predicting stocks, feature selection for models, risk management, reg-

ulation, and early warning of instability, with scholars, investors, and regulators, to

name a few, all benefiting from advances in the field. This interest is expressed in

two influential papers on network instability by Bardoscia et al. [18] and May [19],

using spectral theory to investigate network complexity. These papers exemplify a

core reason why the study of these systems and their behaviour is important, demon-

strating that instability in a multivariate system of stable components can evolve (as

an emergent property) and that this instability is connected to the size and topology

of the connectivity of the system. Due to the nature of this research, diverse fields

like finance, climatology, fluid dynamics, neurophysiology, engineering, and eco-

nomics, have demonstrated the potential of this area of research [20, 9]. However,

characterising complicated dynamics from multivariate time series data can still be

considered a fundamental problem of continuing interest [21].

A specific system that has received significant attention in this field is the inter-

national oil market, with several authors demonstrating the presence of time-varying

nonlinear behaviour within the interaction dynamics of this market, illustrating the

complexity apparent within the comprehension of the market’s behaviour and pre-

diction of future aspects of it [3, 22, 23, 24, 25, 26, 4, 27, 28]. Understanding the

nature of the interactions in the international oil market can be seen as necessary for

portfolio managers, investors, and speculators to construct diversified portfolios,

make good risk management decisions and enhance returns. It is also important

for policymakers and regulators, who are interested in avoiding disturbances in the

stock market caused by oil price shocks, particularly during periods of financial

turmoil, and in the implementation of policies [22].
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The body of research focusing on the time-varying interaction dynamics of

a multivariate system has seen a significant increase in contribution over the last

decade (discussed further in Chapter 2). This work has taken a number of forms,

including comparing causality patterns of specific time segments (see Long et al.

[29]) and leveraging the established field of complex networks, which has success-

fully investigated nonlinear dynamics in a variety of applications from a broad range

of disciplines [30, 31, 32, 33, 9]. These applications of complex networks to time-

varying interaction in a multivariate system can be seen as the state-of-the-art within

this field [34, 35, 36], with these networks being able to be analysed in-depth to pro-

vide insight into the original time series [33]. Of particular note is the work of Qi

et al. [1], who use a mode based network, Yu et al. [37], who use a visibility

graph based network, and Jiang et al. [3], who use a transition order based network

(discussed further in Chapter 2).

Though the recent research into this field has been insightful, it is still an active

area of research, with many open questions and ample scope for new developments

[9, 33, 38].

The work applying complex networks to this problem can be broadly sum-

marised as creating a complex network of complex networks. This can be achieved

by producing a new network, where the nodes are representations of each causality

pattern that the system visits throughout time, the edges are the directed temporal

ordering of these causality patterns (i.e. two nodes are connected if their causality

patterns occur consecutively in time), and the edges are weighted by the frequency

of the temporal ordering throughout the history of the system.

In general, these complex network methods construct a form for the data that

is amenable to description, with the goal of uncovering behaviour of the original

system of time series. This descriptive approach often employs classic network

metrics, properties, and comparison (discussed further in Chapter 3) to draw conclu-

sions on the dynamics of the system. Compared to many static (non-time-varying)

descriptions of the interactions of multivariate systems, the time-varying descrip-

tions achieved via the complex network approach can be seen as abstracted or at a
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“higher-level”. This higher level can be seen to lose information on the underlying

transformation of the system, specifically the actual change that the causality pattern

undergoes (i.e. the change of the links in the causality pattern). In broad terms, the

static analysis is comparable to a network of interactions, and the dynamic analysis

is comparable to a network of static networks. Therefore the interaction structure

can be seen as “low-level” behaviour, and the movement of this structure can be

seen as “high-level” behaviour. As mentioned, current methods focus on this high-

level behaviour and hence miss information contained in the low-level behaviour

and how this changes through the movement of the structure. By taking this high

level view a number of implicit assumptions become embedded in the analysis and

conclusions of these types of approaches. Specifically this network construction

embeds the assumptions that the important network features are the connectivity

of the nodes and the frequency of the edges. Though these features may be im-

portant these assumptions add limitations for systems that break them, such as a

system where poorly connected nodes or less travelled edges are of great impor-

tance (e.g. a market going from high to low stability, this edge and node may be

rarely visited but of great impact). As such the causality pattern can be see as a key

feature of a system, and hence its change can be seen as a key feature of the systems

evolution. This is the gap in prior research that this thesis aims to fill, by investi-

gating methodologies for constructing time-varying descriptions of a multivariate

system’s behaviour that include information about the changes in the low-level be-

haviour. This nuance of the systems dynamics is thereby captured in investigation

and behavioural descriptions.

1.2 Research objectives

Given the current interest in the behaviour of time-varying interactions within mul-

tivariate systems and their wide interdisciplinary impact, this thesis investigates an

aspect of this domain. There are many questions open to investigate, however this

thesis puts forth the hypothesis that information describing how the structure of the

interactions in the multivariate system change from one time step to another can



1.2. Research objectives 23

be used to give new insight into the behviour of the system. This can hence be

stated as the following research question “ how can behaviours in the structure of

the interactions be harnessed to gain a richer description of the system’s dynamic

behaviour?”. Hence other research questions are out of the scope of this work.

To answer this research question one can not trivially “add” this information to

the system, there are a number of factors that must be considered. The current com-

plex network approaches produce a network of relative simplicity that facilitates

its usability (these networks are widely applicable to current research methods), yet

through adding additional information to these networks they can easily lose this us-

ability. Therefore, a solution most overcome these competing aspects. An approach

that could be taken to mitigate this is creating specific solutions for the exact prob-

lem and data set at hand, however this approach is time consuming, non-scalable,

and creates analysis and conclusions that are challenging to compare to other prob-

lem specific solutions. Thus a more general approach is needed. However, to cre-

ate a general approach it is challenging not to include implicit assumptions about

the key features, leading to conclusions being driven by these assumptions and not

the actual underlying data (these can be seen as simply re-introducing the research

question). Finally, the analysis of complex systems (especially dynamic complex

systems) needs be explainable. This explainability is needed to correctly draw con-

clusions on the underlying system, and to make the analysis more amenable to a

wider audience, which is important in the multidisciplinary field of complex dy-

namic systems. It is not immediately clear how a solution to this research question

can be found while also retaining the current level of explainability.

Based on these challenges the aim of the work presented in this thesis is to pro-

vide tools and frameworks for discovering new descriptions of a system’s dynamic

behaviour, while maintaining explainability and usability.

As a case study, this work investigates the international oil market, as men-

tioned in the previous section and expanded upon in Chapter 2.4. This hypoth-

esis is investigated through three different conceptual approaches to utilising this

low-level information; complex networks, time series, and configuration space.
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This split aligns with the statements by Takeishi and Yairi [39], and Li, Pedrycz,

and Jamal [40], that investigations of multivariate time series can be often bro-

ken into three conceptual approaches: (i) graph-based (network) methods, (ii)

transformation-based (dimension reduction) methods, and (iii) generative model-

based (state-space) methods. These approaches are most suited for different forms

of investigation of a dynamic system: behaviour discovery, analysis of dynam-

ics, and behaviour description (each of these discussed further below) respectively.

This thesis draws on each of these approaches sequentially through three logical

groupings of contributions. First, a new complex network is proposed to directly

address the research question and allow for behavioural discovery. Second, a new

question is asked “are there archetypal important behaviours in this space?”; to an-

swer this question two new paradigms of behavioural evolution are proposed. Third,

an answer is sought for the question “given a set of independent conclusions drawn

from multiple analyses, can their combined hypothesis be validated?”; to do this, a

new methodology for exploring hypotheses of the dynamic causality behaviour is

proposed. These three contributions are presented as the following research ques-

tions:

1. Can time-varying behaviour of a system be more fully explored via the

inclusion of information on the transition properties between causality

patterns?

The meaningful information that best describes the behaviour of a system of

interacting components throughout time is predominantly viewed in litera-

ture as the transition order and frequency of interaction (causality) patterns.

Therefore when transforming these systems into a form more readily anal-

ysed (such as a complex network) the order and frequency of transitions is

the information maintained and brought to the forefront. This thesis posits

that though the order and frequency of transition is very informative, so is

the nature of the transition (i.e. what change in the system occurred in this

transition). This information allows for describing the temporal dynamics of

the system in terms of its interaction dynamics.



1.2. Research objectives 25

This type of description of the systems dynamics allows for a deeper under-

standing and context that is important for many use cases, such as investigat-

ing instability and changes in the financial markets [41, 42].

The type of system form and analysis needed to generate this kind of descrip-

tion are difficult to achieve due to the complex nature of the systems in ques-

tion. To investigate the dynamics of these systems some level of abstraction

is required, this abstraction reducing the information explicitly expressed.

To investigate this research question a novel network representation is pro-

posed that incorporates two novel metrics embodying the nature of the tran-

sition between temporally consecutive causality patterns.

The introduction of this network also addresses an important aspect of the

analysis of time-varying interacting system. Currently, after transformation

into the amenable complex network form the analysis techniques applied are

typically network specific, but non-specific to the underlying system (do not

contain knowledge of what the nodes and edges represent), there by limiting

the meaningful information that can be extracted from the network.

To allow for a more complete analysis of the novel network, five novel prop-

erties/metrics are proposed based on knowledge of the underlying system and

the information of it captured in the network.

This network and analysis is validated on a synthetic data set and employed

to find novel information on sample data from the international oil market.

2. Can a meaningful one-dimensional time series representation of a time-

varying system be constructed based upon that system’s overall transi-

tion behaviour?

An advantage of a one-dimensional time series representation of a system’s

history is its exact rendering of the temporal transition order, especially for

the recent history of the system. This allows for an understanding of where

in the system’s dynamic trajectory the current state is and can be impor-

tant for predicting future states of the system. The process of reducing a
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multi-dimensional time series (a system of interacting components) to a one-

dimensional representation inherently loses/obscures information. This loss

of information is an unavoidable aspect of dimensionality reduction, how-

ever what information is lost and what information is brought forward is

dependent on the methods used. This thesis posits that knowledge of the

transition behaviour between causality patterns of the system can be used to

reduce the dimensionality of the system in such a way as to maintain infor-

mation relevant to the time-varying nature of the system, and hence produce

a one-dimensional representation that exhibits similar dynamic properties to

the original system. Reversely the demonstration of the dimensionality reduc-

tion successfully capturing the systems dynamics demonstrates the accuracy

of the description used to reduce it.

To investigate this hypothesis a novel analysis, and dimensionality reduction

methodology are proposed. These are based on two novel paradigms for the

time-varying dynamics of a system, with the predominate paradigm for a sys-

tem determining the dimensionality reduction applied.

The proposed analysis and dimensionality reduction is applied to sample data

from the international oil market to create a one-dimensional time series rep-

resentation. This representation is then investigated through a proposed pre-

diction algorithm, as well as three other alternative approaches.

3. Can a configuration space be utilised to test a hypothesis of specific sys-

tem’s dynamic behaviour, described at both low- and high-level?

When investigating a system using multiple separate analyses, a singular idea

of the system’s dynamics is often reached through combining hypotheses

from each. However, it can difficult, due to the breadth of approaches used for

analysis, to formalise these many hypotheses into a single model hypothesis

that can be tested. This thesis posits that a configuration space can offer an

environment well suited to investigating complex hypotheses on the dynamics

of a time-varying system.
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To investigate this a novel methodology is proposed. First, a novel represen-

tation is proposed for the temporal trajectory of a time-varying system in a

multi-dimensional configuration space. Second, using sample data from the

international oil market as a case study a hypothesis for its dynamics is pro-

posed and formalised using the configuration space. Third, a novel clustering

algorithm is created to see the system’s alignment to the proposed hypothe-

sis model. This methodology results in a novel conclusion on the dynamic

behaviour of the international oil market.

The above research questions give novel insight into the dynamics of the in-

ternational oil market, as well as providing a framework that can be more gener-

ally applied to investigate the temporal dynamics any complex system providing a

novel description. These new descriptions can be utilised for complex and impor-

tant use cases, such as early warning systems of instability or market changes. This

work expands upon the literature through a focus on the dynamics contained within

the transitions between causality patterns, in three core areas: behaviour discovery,

analysis of dynamics, and behaviour description.

1.3 Thesis structure
The structure of this thesis is as follows:

Chapter 2 covers the background and current literature on characterizing the

dynamics of multivariate systems. Going into detail on interaction measures and

the cutting edge complex network representations of the dynamics of these systems.

Chapter 2 also introduces the international oil market as a focus of the analysis in

this thesis. With a sample data set of this market being analysed and transformed to

be amenable to investigation throughout this thesis.

Chapter 3 presents novel analysis of the interactional oil market by introducing

a methodology for the inclusion of information from the causality pattern transitions

in a complex network, and proposing several properties and metrics for a system

under this methodology. A validation of this methodology and metrics is also given

on synthetic data.
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Chapter 4 presents a novel time series representation for the international oil

market, and demonstrates this representation for the prediction of interaction states.

This is done through the introduction of a methodology for the construction of a

time series based upon paradigms of the dynamics of the underlying causality pat-

terns.

Chapter 5 presents and tests a formal definition of the temporal behaviour of

the international oil market. This is achieved through the introduction of a configu-

ration space methodology for the formal construction of temporal behaviour within

multivariate interacting systems. This methodology is validated against a synthetic

data set.

Chapter 6 summarises the presented methodologies and analysis results of the

research and outlines potential future extensions.

1.4 Related publication
The following publication is related to this thesis:

Leo Carlos-Sandberg and Christopher D. Clack. Incorporation of causality struc-

tures to complex network analysis of time-varying behaviour of multivariate time

series. Scientific Reports 11, 18880 (2021).

https://doi.org/10.1038/s41598-021-97741-2



Chapter 2

Background, Literature Review, and

Data

This chapter introduces the necessary background and literature to give context to

this research and notes specific work that this thesis is expanding upon, giving mo-

tivation and an overview to research focussed on the dynamic behaviour of interact-

ing systems, paying attention to the recent adoption of network representations. In

addition, presented is a general overview of interaction measures, and a discussion

on Granger causality and its application in time-varying multivariate systems. This

chapter concludes by introducing the international oil market and some initial anal-

ysis on it. The aim of this chapter is to contextualise this thesis and give an idea

of where it falls within this branch of research. Therefore more specific literature

on content presented later in this work will be discussed in the chapter in which it

appears.

2.1 Characterizing behaviour from time series
Times series data describes many real-world complex systems of interest; due to

this, the investigation of these systems often focuses on the analysis of these time

series. This has led to a large body of research building up around the analysis of

time series.

One branch of this research focuses on complex systems where multiple time

series describe interacting components. Within this further research focuses on
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these time series systems where the interactions are non-static and change with time

[43, 44].

The work relevant to this thesis is concerned with analysing dynamic interac-

tion relationships between time series in a time-varying multivariate system. Due

to the breadth of the literature, this chapter does not intend to give an exhaustive

list of every approach but rather an overview of the state of the field and the re-

search directions it has taken. For further insight, readers are directed to the recent

and comprehensive literature reviews by Silva at al [33], and Zou et al. [9], which

cover aspects of this field in more depth.

Univariate systems

Much of the work on multivariate time series is inspired by or expands on method-

ologies for univariate time series (where the dynamic behaviour of one time se-

ries is investigated). This univariate analysis takes many different conceptual ap-

proaches to this problem, however, a large section of this work focuses on com-

parison/interaction between regions of the time series [45, 46]. To investigate the

dynamics within a univariate time series, an approach that has become mainstream

is mapping the time series to a complex network representation. This allows for

the structure of the network to be assessed to understand the dynamic characteris-

tics of the original time series. This methodology coincides with a decade of rapid

development within the study of complex networks [47, 48, 48, 49], leading to the

emergence of multidisciplinary methodologies for the use of complex networks for

characterising these dynamic systems. These complex networks are briefly dis-

cussed below, with the reader directed to Gao et al. [49] who present a review of

the significant work in this field.

Significant literature exists covering multiple methodologies for the transfor-

mation of a time series to a complex network, such as using phase spaces [21, 50],

visibility graphs [51, 52, 53, 54, 55], network patterns [56, 57, 58], multiple resolu-

tions [59], and other specific approaches[60, 61]. Of particular note are [23]:

• Visibility graphs [62, 63] (discussed further in Section 2.3), with a number

of versions of this approach existing: visibility graph [64], horizontal visibil-
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ity graph (HVG) [65], and multiscale limited penetrable horizontal visibility

graph (MLPHVG) [54].

• Phase space reconstruction [50, 66, 38] (discussed further in Chapter 5).

Multivariate systems

As mentioned above, this work on univariate time series has inspired research on

dynamic multivariate time series. This move to multivariate time series comes from

questioning the assumption in univariate work that the time series can be consid-

ered independently from other factors. This is untrue for many real-world cases,

with confounding variables and complex multivariate behaviour being frequent and

important. In particular, multivariate systems approaches leverage the univariate

work on complex network representations. These complex network representations

gain their power from the new perspective they give to dynamic systems, allowing

for a potential reduction in complexity and amenability for analysis on dynamic

behaviours.

The most intuitive usage of complex networks in multivariate systems is to

apply them to a static system; generally, these representations take the approach

of mapping components (variables/time series) in the system to nodes in the net-

work and interactions/relationships between components to edges within the net-

work [67, 10, 68, 69, 70, 71, 72]. This approach has been expanded in various ways

to construct methodologies to investigate time-varying multivariate systems and the

dynamic behaviour contained therein, through approaches such as statistical com-

parisons of networks and time series [73, 74, 75], investigation of network features

[76, 77, 78, 79, 80], modelling of systems and processes [81, 40, 82, 83, 84, 85], di-

mensionality reduction [86], visibility graphs [10, 87, 88], and application of further

or specialised networks [89, 90, 91].

This literature contains numerous problem-specific and focussed approaches

and breadth of more interdisciplinary solutions. An important example of this is

the literature focused on instability within these systems, such as the landmark pa-

per by May [19] that employs spectral theory to examine how a systems stability
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reacts to its complexity in size and connectivity, finding that systems can quickly

move from stable to unstable at a certain complexity. More recently Bardoscia

et al. [18] investigated how the interaction topology of the system influences its

susceptibility to instability, finding that highly connected components can act as

propagators increasing the instability in the system. These two papers represent

significant contributions to the study of stability in complex systems and networks.

May’s work focuses on the general stability of complex systems, while Bardoscia et

al.’s research specifically examines the pathways towards instability in financial net-

works. Both papers highlight the importance of considering the interconnections,

dynamics, and feedback effects within complex systems when assessing their sta-

bility. They contribute to the broader literature on the spectral theory of networks

and systems’ stability by providing insights and frameworks for understanding the

stability and potential vulnerabilities of complex systems in different domains.

Three conceptual approaches that represent the state of the literature for inves-

tigating time varying multivariate systems, that do not impose an investigation of

specific behaviours, build upon the view that the relationships between time series

may exhibit short term variations that, taken together, can describe dynamic features

of the system. These three approaches are introduced below.

The first conceptual approach comes from considering what constitutes the

“short” term? This leads into a discussion of scale and what behaviour the system

exhibits at different scales. This work constitutes one of the conceptual approaches

to time-varying multivariate system analysis, where a system is investigated at mul-

tiple scales. Work of this type is often combined with some form of frequency anal-

ysis and is focussed on the comparison of behaviour and properties exhibited by the

complex networks at different scales [28, 22, 92, 93, 94, 95] (this is mentioned for

completeness and is not within the scope of this thesis).

The second conceptual approach comes from considering what short-term part

of the original system should be investigated? This question naturally leads to

the concept of changes in the short term behaviour at different time intervals or

segments of the original system. Therefore analysis can be achieved by compar-
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ing complex networks constructed from different segments of the original system

[29, 87, 96]. More targeted forms of this analysis select known segments of a sys-

tem, e.g. those corresponding to specific world events, or known regions of turbu-

lence or calm behaviour, allowing for analysis of the reaction of the systems inter-

action dynamics to qualitative events [67, 97]. This comparison of the system at dif-

ferent time intervals can easily be conceptually expanded to investigate the dynamic

change of the system over time. A temporal list of complex networks can be found

by splitting the original system into consecutive segments and then constructing a

complex network for each of these segments. The tracking of the dynamic change

of features of these complex networks through time can give a method for investi-

gating the dynamics of a time-varying multivariate system [98, 99, 100, 101, 102].

The third conceptual approach to the investigation of time-varying multivari-

ate systems discussed here utilises the series of complex networks produced in the

above method and, inspired by approaches for univariate time series, a complex

network of this series of complex networks [3, 27, 56, 26, 103, 23, 104, 105, 1].

These methodologies for complex network construction define a transformation to

nodes and edges from a time-varying multivariate system; this is covered in gen-

eral by three primary methodologies discussed further in Section 2.3. Therefore

these approaches can be seen as creating a complex network encoding the “high

level” dynamic behaviour of the system (where the “low level” behaviour is related

to a complex network of the interactions between the variables of the system, the

“high level” behaviour is hence related to the total movement between these struc-

tures). This type of complex network has significant power due to the represen-

tation of individual system states (interaction structures of the system) as separate

nodes, making it particularly amenable to analysis of recurring complex non-linear

dynamic behaviour, with methods such as clustering being popular. This type of

approach abstracts away from the actual structure of the low-level behaviour when

constructing a complex network; therefore of note are recent works that, to some

level, reincorporate this low-level behaviour into the analysis [2, 37].

This section gave an overview of the current state of the literature, specifically
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in terms of the research direction and inspiration of this thesis. From this, the state-

of-the-art can be seen as the usage of complex networks to capture the dynamic

time-varying behaviour of a system (discussed further in Section 2.3), with initial

work utilising purely high-level information and current work starting to incorporate

low level and high-level information for analysis of the dynamic behaviour.

2.2 Interaction measures

The research discussed above depends on making some form of measure related to

the interaction/connection of two or more different time series. Before discussing

the state-of-the-art, mentioned above, in more detail, first a discussion is given of

how interactions might be measured. The field of research devoted to the discovery

of interaction dynamics between systems has been active for a significant period,

and hence a vast collection of literature exists on this subject [106, 107, 108, 109].

From this literature, two important conceptual approaches can emerge; those based

on perturbation [110] and those based on statistical measures [106, 107]. Perturba-

tion measures generally look at systems where one component can be altered to see

if it affects a change in another. In contrast, statistical measures are based on the

concept that the system can not be interacted with and hence a relationship must

be determined based purely on historical data. For many systems, a perturbation is

not possible, either because the system can not be interacted with in that manner or

because it would be immoral or illegal to do so. This is the case for many popular

research areas in the field of time-varying dynamical systems, such as the finan-

cial markets or neuroscience. Therefore the predominant interest falls on statistical

measures of relationships between time series data.

This section gives a general overview of three often-employed statistical rela-

tionship measures within the field of time-vary dynamical systems. Many versions

and formulations of these measures exist, often designed for specific problems (e.g.

for non-linear or multivariate systems). However for the purpose of contextualising

this work and comparing the conceptual approach of these measures the overview

given here will focus on basic forms of these measures as applied to a general lin-
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ear bivariate system. These measures are also discussed only in terms of their

classic non-temporal forms, used for finding static interactions between variables.

This discussion in justified as the temporal aspect of these interactions is handled

through the complex network and a rolling window, allowing for multiple consec-

utive static measures to be taken, giving an overall dynamic behaviour that can be

investigated. This is a popular, and as discussed above state of the art, approach for

investigating temporal correlation and causality often referred to as dynamic corre-

lation networks [111]. There also exists a number of other methods for estimating

temporal correlations causality such as: detrended cross-correlation analysis, which

looks at segements of a time series [112]; Dynamic Conditional Correlation, which

uses generalized autoregressive conditional heteroskedasticity (GARCH) models

for the variables and estimates the dynamic correlation from the residuals [20]; State

Space Models, often focussed on dynamic volatility, which aims to incorporate la-

tent state space variables to detect the time varying aspects of these systems [113];

and Bayesian Approaches, which allow for the incorporation of prior beliefs on the

correlation and can use approaches such as Markov chain Monte Carlo (MCMC) to

estimate time varying correlation [114]. However, these methods do not afford the

same amenability to investigating the general dynamic behaviours of a multivariate

system, and hence this thesis chooses to focus on dynamic networks.

Correlation

Correlation can in general be summarised as the degree to which two variables are

linearly related. This measure gives a continuous result between −1 for strongly

anti-correlated and 1 for strongly correlated, being formally defined for the Pearson

correlation coefficient as [115]:

ρX ,Y = corr(X ,Y ) =
cov(X ,Y )

σX σY
=

E[(X−µX)(Y −µY )]

σX σY

With ρX ,Y being the correlation between variables X and Y , cov() being the covari-

ance, σ being the standard deviation, and µ being the expected value.

This method is helpful in its continuous measure of relationships; however, it
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lacks any direction to this (with corr(X ,Y ) = corr(Y,X)) and of course cannot be

readily seen as a measure of causality within a system.

Transfer entropy

Transfer entropy is generally summarised as the amount of directed information

transfer between two variables. In other words, transfer entropy measures the

amount of uncertainty reduction in the prediction of values from variable Y given

the past values of variable X , and in both cases using the past values of variable Y

[116]. More formally, this can be expressed as:

TX→Y = H(Yt |Yt−K:t−L)−H(Yt |Yt−K:t−L,Xt−1:t−L)

With TX→Y being the transfer of entropy of variable X to variable Y , H() being

Shannon entropy [117], and K and L being lags.

This method contains direction and can infer causality, at least in a statistical

sense, to the passage of information.

Granger Causality

The third statistical relationship measure discussed is Granger causality, which can

be described as a test to determine if one variable causes another, i.e. does the

information contained in one variable improve the prediction of another over the

information already contained in that other variable [11]. In detail the Granger

causality test can be described as follows: for two variables X and Y, where X

causes Y (written as X→ Y ) an unrestricted regression model is created:

yt =
p

∑
i=1

αiyt−i +
q

∑
j=1

β jxt− j + εt , (2.1)

where εt denotes the residual error for time t, i1..p and j1..q denote the lag intervals,

with α and β being free variables that are chosen via least squares regression [118].

This model is then compared via a hypothesis test to a restricted model:

yt =
p

∑
i=1

αiyt−i + εt , (2.2)
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which takes the position of the null hypothesis in the test. Therefore for a Granger

causal link to be detected the null hypothesis must be rejected.

A popular choice in Granger analysis is the F test, defined as follows [3, 119,

120]:

F =
(RSSr−RSSu)/q

RSSu/(T − p−q−1)
(2.3)

Where RSSr and RSSu are the residual sum of squares for the restricted and unre-

stricted model respectively, and T denotes the sample size [3]. From the F-statistic,

the p-value can be calculated, and it is then considered that X→ Y if the p-value is

less than or equal to a predefined alpha level (often set as 0.05). A causal link is

then denoted as 1 and a non-causal link as 0.

This method determines if one variable causes another in a statistical sense and

has seen great popularity in many fields such as economics and neuroscience.

Comparison of measures

The presented methods represent only a small selection of those present in research

but illustrate the general approaches to determining interaction dynamics for sim-

ple cases. The work in this thesis is interested in capturing the specific dynamics

of the interactions; hence a method is needed that determines directionality. When

comparing transfer of entropy and Granger causality, it has been shown that in spe-

cific linear systems, they are equivalent [121]. One downside of transfer entropy

against Granger causality is that it has been shown to require more data [122]; in

general cases, data size does not often present a problem, however, in the analysis

of interest, windowing is used that artificially reduces data size (discussed below).

Therefore for this thesis, Granger causality is selected as the measure of interaction

dynamics to be used going forward. However, it should be noted that much of the

work is within reason agnostic to the underlying method.

2.2.1 Granger causality in detail

Given the selection of Granger causality for this work a more detailed discussion of

it is given here, as well as how this will be applied going forward.
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Linearity

Granger causality was initially introduced for linear interactions [11] and though

there have since been expansions to include non-linear interactions [123] much us-

age still employs the original linear approach. For this thesis the classic linear

Granger causality analysis is used with the following justifications. The novel work

presented in this thesis utilises the results of the Granger analysis, but is invariant to

the manner in which these results are achieved (e.g. through a linear or non-linear

analysis) and hence either is appropriate for usage. The system that thesis investi-

gates to determine a novel understanding of and to demonstrate the presented work

is a sample of the international oil market (discussed further in Section 2.4), this

data set has been previously investigated using linear approaches and has had time-

varying interactions discovered (prompting its usage in this thesis) [3]. Therefore,

it is assumed here that a linear version of Granger causality is appropriate for usage

on this system, though it is acknowledge that systems exhibiting linear behaviour

may also contain additional non-linear behaviour. The use of linear Granger causal-

ity, allows for the complexity of this thesis to be more precisely focussed on the

introduced novel work, instead of the underlying causality measure (which is well

known and used across a many of fields), which is being employed but not ex-

panded upon. Additionally the novel work presented in this thesis is designed to

capture some level of non-linearity in the form of temporal dynamics of the causal-

ity, so even with the use of classic Granger causality the non-linear behaviour of

interest can still be captured.

Statistical validation

Granger causality, similar to many measure of this type, contains noise in its analy-

sis and hence statistical validation is needed when drawing any meaningful findings

from its results. In this thesis a common approach for the statistical validation of

these results is employed, as discussed in detail in section 2.2. The F-statistic is

used as an estimator, due to its suitability to validation of nested models. For the

choice of significance level (alpha level) at which point to considered the p-value

produced by the F-statistics as significant, the common practice is again taken at
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5%.

Multivariate Granger causality

The classical approach to Granger causality is restricted to a bivariate system where

either A causes B, B causes A or both. However, more than two variables will

be present within the systems universe for many real systems of interest. A naive

approach to this problem is to apply Granger causality in a bivariate approach to

each possible pair of variables within the system; however, this approach can lead

to cases of spurious causality. This is due to the other variables in the system acting

as confounding variables. For a trivariate system, this can be demonstrated in two

models: indirect interaction and driver interaction. For an indirect interaction, the

causal system may be C→ B→ A; however, when analysis via a bivariate Granger

approach, one may also find the relation C ⇁ A (where ⇁ represents a spurious

link). For a driver case, the causality may be C → B, C → A, however during

a bivariate analysis; one may also find B ⇁ A. To account for this conditional

Granger causality can be employed [124]. This expansion of Granger causality can

be defined as follows (building upon the bivariate description given above):

First, a bivariate Granger causality analysis is conducted; for this discussion,

assume that this analysis produces the results C→ B, C→ A, and B→ A. In this

case, potential spurious causal links could be C→ A (in an indirect case) or B→

A (in a driver case). Therefore these two links will be tested using a conditional

Granger causality method. This approach follows a similar concept to the bivariate

case; however, the restricted and unrestricted models change here. Taking the link

C→ A as an example, construct an unrestricted model as follows (For details on the

model, see above):

At =
p

∑
i=1

αiAt−i +
q

∑
j=1

β jBt− j +
r

∑
k=1

γ jCt− j + εt

A restricted model can now also be constructed as follows:

At =
p

∑
i=1

αiAt−i +
q

∑
j=1

β jBt− j + εt
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These two models can now be compared following the standard hypothesis ap-

proach; if the restricted model is rejected, the link C→ A can be considered non-

spurious. For the discussed system, this process must also be taken for the link

B→ A with an unrestricted model:

At =
p

∑
i=1

αiAt−i +
r

∑
k=1

γ jCt− j + εt

If this model is rejected over the unrestricted model, then the link B→ A is non-

spurious.

This conditional Granger causality can be seen as comparing the additional

predictive power of a variable whose link is in question to the ensemble of all other

predictive variables. Therefore to expand this approach to a multivariate case where

more than one alternative predictor exists, one needs to test against the ensemble of

other predictors. Therefore the above case can be generalised such that the unre-

stricted model contains the complete set of variables and the restricted contains the

complete set minus the one in question [15].

Windowing

When applying the Granger causality method (as well as other causality methods)

to time series that are dynamic and whose interaction behaviour change over time,

one cannot simply take the entire length of the time series and apply the method to

it, as this would obscure the dynamics of the interactions. To maintain the dynamic

nature of the interactions often a rolling window is employed, this breaks the time

series into consecutive subset where the causality method can be applied to each

subset.

When implementing a rolling window two parameters need be set, the length

of the window and the number of time steps between the start of consecutive win-

dows (with different combinations leading either overlapping, or non-overlapping

windows). When considering the choice of these parameters the goal is to select a

time series long enough to allow for robust statistical estimation, and short enough

to capture the time-varying dynamics of the interactions [125]. The the parameters



2.3. Network representations for multivariate time series analysis 41

chosen for use in this thesis are given and justified in Section 2.4.

For clarity, an overview of this approach is as follows: taking a system of N

time series, each of length T , and selecting a window size of w and a distance be-

tween the start of the windows as l, a series of causality patterns can be constructed.

First, the N time series are each split into segments of length w, where each segment

starts l time steps after the first, i.e. the first segment is in the range [0,w], the next

[l,(l+w)], then [2l,(2l+w)], and so on till the step T −1 is reached. For each win-

dow, a causality pattern can be constructed from the segment of the N time series.

This process can be repeated for each segment to generate a series of these patterns.

Limitations and assumptions

Granger causality is a statistical method and hence has a number of assumptions

and limitations associated with it that should be considered when using its results,

these are [11]:

• Granger causality assumes a linear relationship between two components, and

may not detect or incorrectly detect non-linear relationships.

• Granger causality requires a lag selection for the number of time steps in the

past to consider causality to come from, hence the measure of causality is

sensitive to the lag length selected.

• Granger causality assumes that the data it is applied to is stationary.

• Granger causality assumes that there are no confounding variables, and that

all relevant variables are included in the analysis.

• The causality detected by Granger causality is a correlation of data, and not

actual true causal connect.

2.3 Network representations for multivariate time se-

ries analysis
In this section a more detailed discussion of the state-of-the-art is given along with

a brief discussion of complex networks which this work is based on.
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2.3.1 Complex Networks

As previously discussed in this chapter the state-of-the-art in dynamic interactions

in multivariate systems utilise complex networks. Like classic networks they are

composed of nodes and edges (with these edges either being directed or non-

directed), however they expand upon classical networks (such as lattices and ran-

dom graphs) through their non-trivial topological features [126, 127] (such as non-

regular nor random patterns). Two often discussed archetypes of complex networks

are scale-free networks [128] and small-world networks [129].

2.3.2 Archetypical Approaches

This section discusses in detail the three methodologies (mentioned in Section 2.1)

that represent the majority of approaches to the construction of a complex network

from a series of complex networks (these methodologies are not presented as a

complete list, more as a selection of prominent approaches of particular relevance

to this thesis). For each of these methodologies, a research paper is selected as a

case study. The methods presented in these papers are discussed in a generalised

sense with reference to the papers where appropriate.

These methods all employ a windowing approach to construct the series of

complex networks from which they build, this is done similarly or the same as the

method described in Section 2.2.1.

Symbol based network approach

The first methodology discussed is an approach very commonly employed for sys-

tems where correlation is taken to measure the interaction dynamics (resulting in

correlation patterns). The discussion of this approach follows the work of Qi et al.

and others [1, 105, 104], with a graphical summary shown in Fig. 2.1, this approach

can be described as follows:

1. Select a fixed window size, then apply a sliding window approach to the time

series data to separate the series into sub-periods.

2. Analyse the interactions between the sub-periods for each time series that

correspond to the same time frame (e.g. via a correlation analysis).
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3. Assign a symbolic representation to categorise the analysis results (e.g. if

the correlation is ≥ 0.8, assign the symbol P). This will produce a single

time series of symbols representing the interactions throughout the initial time

series.

4. Select a fixed window size, then apply a sliding window approach to the time

series of symbols. Each of these windows represents a “mode” and is com-

posed of an ordered series of symbols. If more than one window contains the

same ordered series of symbols, their assigned mode is the same.

5. Construct a complex network, where the nodes are the found modes, and the

edges exist for consecutive modes. With the weighting being the number of

times these modes appear consecutively (the frequency) (i.e. if modei tran-

sitions to mode j n times in the series, then a directed edge would exist from

modei to mode j weighted by n).

This approach has great potential for determining group transition behaviours, i.e.

behaviours concerning the modes, seeing usage in areas such as the five day trading

week and allowing for behaviours relating to the mode of each week to be uncov-

ered [1]. However, this method does face drawbacks where behaviours over shorter

scales may be obscured, e.g. where the change between individual trading days

becomes important.

Visibility graph based network approach

The second method discussed is an expansion of an approach commonly used for

univariate time series, the Limited Penetrable Visibility Graph (LPVG) [51]. Here

the work of Yu et al. [2] is followed, who uses a directed multivariate version of

LPVG called Directed Limited Penetrable Visibility Graph (DLPVG): this is em-

ployed via a network approach they title Multivariate Time Series-Dynamic Asso-

ciation Network (MTS-DAN). A graphical summary of this approach is shown in

Fig. 2.2, and can be described as follows:

1. Select a fixed window size, then apply a sliding window approach to the time

series data to separate the series into sub-periods.
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Figure 2.1: Figure from the work of Qi et al [1], detailing their method of taking a bivariate
system through several stages to produce a complex network. These stages
are: 1) applying a Pearson correlation analysis to a series of windows of the
original time series, 2) turning this series of correlation results into a symbolic
series (they call this ”symbolization”), 3) turning this series of symbols into a
series of modes, using windowing, 4) turning the series of modes into a complex
network.

2. Analyse the interactions between the sub-periods for each time series corre-

sponding to the same time frame (e.g. via transfer entropy) to produce an

association pattern for each sub-period.
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3. Apply the Principle Component Analysis (PCA) algorithm to each pattern

to reduce it to a one-dimensional vector, resulting in a time series of these

one-dimensional vectors.

4. Construct a complex network by applying the Directed Limited Penetrable

Visibility Graph (DLPVG) approach to this time series of one-dimensional

vectors, DLPVG can be summarised as follows (and can be seen in Fig. 2.3):

(a) Transfer the time series to a graphical representation, where data is plot-

ted in order as columns representing the value of the individual data at

each time step.

(b) Select a limited penetrable distance D, this defines the number of

columns a time step can see through (explained in the following).

(c) For each column connect it to any column it can see from its peak that

is not blocked by another column (it may be able to ignore D other

columns to do this). This can be more formally defined as, two data

points ((ti,yi) and (t j,y j)) will have visibility and be connected to each

other as long as≤D data points between them (tc,yc) satisfy the follow-

ing: yc ≥ yb +(ya− yb)
tb−tc
tb−ta

[51].

(d) The directed nature of this approach means that all connections will

be directed forward in time; also, no weights are associated with the

connections.

(e) A complex network can be constructed, with nodes as the data points

and edges as the links discovered above.

This method incorporates some knowledge of the underlying behaviour of each

pattern into its complex network through its use of PCA. However, this approach

has a particular linkage method, which may not be appropriate depending on the

system, e.g. if one does not desire connections between non-consecutive patterns.
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Figure 2.2: Figure from the work of Yu et al [2], detailing their method of taking a mul-
tivariate system through a number of stages to produce a complex network.
These stages are: 1) apply a windowing approach to the data, 2) find the asso-
ciation patterns for each window via transfer entropy, 3) reduce the association
patterns to one-dimension via PCA, 4) apply MTS-DAN method to this series
to construct a complex network.

Transition order based network

The third method captures the historic probablity of transition between system

states. To demonstrate this approach the work of Jiang et al. [3] is followed, with a

graphical summary shown in Fig. 2.4 the method can be seen as follows:
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Figure 2.3: Figure from the work of Yu et al [2], detailing the approach to finding con-
nections between a time steps of a series of one-dimensional values, using a
Limited Penetrable Visibility Graph (LPVG).

1. Select a fixed window size, then apply a sliding window approach to the time

series data to separate the series into sub-periods.

2. Analyse the interactions between the sub-periods for each time series corre-

sponding to the same time frame (e.g. via Granger causality) to produce a

causality pattern for each sub-period.

3. Construct a complex network where the nodes are the patterns (with two or

more identical patterns relating to the same node), and the edges are the di-

rected transition between patterns, weighted by the frequency of the occur-

rence. i.e. the frequency is the number of times the patterns have occurred

consecutively in time.

This method captures the historic and potential consecutive temporal pathways

of the system, and the historic probability associated with each step in these path-

ways. This network describes well the general evolution of the system.

Comparison of approaches

Each of these methodologies represents valuable tools for analysing time-series

data, each being suited to different problem sets. Each of these methods contains
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Figure 2.4: Figure from the work of Jiang et al. [3], detailing their method of taking a mul-
tivariate system through several stages to produce a complex network. These
stages are: 1) apply a windowing approach to the data, 2) determining the
causality pattern for each window, 3) turning the series of these patterns into
a complex network by taking the patterns as nodes and the transitions between
them as edges.

similarities and differences. In particular, the edge selection is similar between the

work of Jiang et al. [3] and Qi et al. [1], whereas the node selection is similar

between Jiang et al. [3] and Yu et al. [2]. For application to general systems com-

posed of time-varying interacting components, the work of Qi et al. and Yu et al.

impose assumptions that can not always be assumed. For Qi et al. the assump-

tion that mode like structure exist in the high-level time-varying behaviour of the

system (as well as that needed frequency of these modes is accurately determined),

and that even if it does, that this is the behaviour of merit, makes it more sorted
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for investigating this specific behaviour than to apply to general systems. For Yu

et al. the assumption that the principle component of the interaction pattern is a

subtle linkage factor, assumes that stronger interacting patterns are of more impor-

tance, and have merit in being linked, than weaker interacting patterns. Though this

may be the case in some system, and for analysis, this is certainty not the case in

all system, where weakly interacting states may be very important in the temporal

ordering, making this approach better suited to systems with known behaviours for

their interacting patterns. The work of Jiang et al. does not impose assumptions on

the importance of one structure over another, and treats all transitions and structures

the same. Due to this, this network is the most general being able to be used without

the assumptions associated with the other two approaches.

Inclusive of limitations these approaches allow for a breadth of analysis to be

applied to systems of time-varying interacting components, however an important

source of information on these systems dynamics that is excluded from the above

is the the nature of change to the system state when a transition occurs, captured

primarily only in direction and frequency. This gap is tackled in Chapter 3 of this

thesis, owing to its flexibility as an approach, the network representation presented

by Jiang et al. is chosen as a starting point for filling this gap.

2.4 Causality in the international oil market

When adding new research and results to those presented in this chapter it is desir-

able to have a real-world data set on which to investigate.

There are a few key requirements to consider when selecting this data; the data

should be stationary for the Granger causality test to be applicable, the data should

be known to exhibit time-varying behaviour, and it would be desirable for the data

to be from a topic of genuine interest within the field.

There are many types of data known to satisfy the first requirement of sta-

tionarity. In particular, for many financial variables, though their raw time series

are non-stationary, they often exhibit stationary in the mean for their returns [130].

Therefore the financial markets are selected as the area from which the case study
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shall be drawn.

A region of the financial markets that has received much attention for its time-

varying behaviour, especially within the last decade, is the international oil market

[22, 23, 24, 25, 26, 3, 4, 27, 28]. In particular, this market has been shown to

containing time-varying Granger causality relationships [3] and has been noted as

an example system for time-varying behaviour [3]. Therefore the international oil

market can be seen to fulfil the second requirement.

The research in [3] was conducted due to interest in this market by investors,

regulators, policymakers, and economists. Driving this interest and establishing

the international oil market as an important area of research is the evidence that

fluctuations in this market are linked to stock returns and factors of market stability

[22, 131, 132, 133, 134, 135, 136, 137]. This connection demonstrates that the

international oil market satisfies the third requirement, with time-varying behaviour

in this market being of interest to many practitioners.

Hence this market is selected as the area from which the data used within this

thesis is drawn.

Due to the international oil market being the focus of much work, many dif-

ferent data streams have been utilised. This research can be roughly categorised

into two groups: those that look at the relationships between the international oil

market and other markets or factors [22, 23], and those that look at relationships

within the international oil market [24, 25, 26, 3, 4, 27, 28]. For the first of these,

the international oil market is predominately represented by a single data source,

e.g. the spot price of one crude oil source, that acts as a proxy for the market as

a whole. For the second group, where the international oil market is investigated

internally, more than one oil price source is required, and hence this research often

selects several sources that are seen as benchmarks to act as the proxies for regions

of the oil market. A data set where the sources are justifiably linked is presented by

Jia et al. [3], who select four spot price time-series: China-Daqing and its three ref-

erence benchmark oil prices Brent, Dubai, and Minas. This selection can be seen as

authoritative for the international oil market, with Daqing representing the crude oil
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price in China and the reference benchmarks being selected to represent the three

important regions of the North Sea, the Middle East, and the Asia Pacific. Therefore

in this thesis, these four sources were selected for use, with the specific time series

being the same as those used by Jia et al. [4]. These time series are for the period

of December 27th, 2001 - October 3131st , 2011, and are shown in Fig.2.5.
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Figure 2.5: The daily price in US dollars per barrel of Daqing, Minas, Dubai, and Brent,
over the period December 27th, 2001 - October 3131st , 2011, data sourced from
Jia et al [4].

Data transformation and analysis

For usage this data is transformed to its returns, to fulfil the stationarity condition.

The returns are defined as the difference of natural logarithms of price, formally as

rt = ln(Pt)− ln(Pt−1) [130]. The returns of this data can be seen in Fig.2.6. These

returns are then tested for stationarity using a Augmented Dickey-Fuller (ADF) test,

results shown in Table.2.1, indicating that all return series are stationary.

These returns can now be analysed using the previously described multivariate

Granger causality tests. It should be noted that self causality is not investigated (as

it is not relevant when considering the interaction between returns), and hence all

self causality links will be automatically assumed not to exist (therefore set at 0).
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Figure 2.6: The daily price returns in US dollars per barrel of Daqing, Minas, Dubai, and
Brent, from the daily price shown in Fig.2.5.

Table 2.1: Results of stationary tests using a Augmented Dickey-Fuller (ADF) test. A p-
value<0.01 indicates the rejection of the null hypothesis for the test at a 1%
level.

ADF-Statistic (3 sf) p-value
Daqing -11.7 0.001
Minas -20.3 0.001
Dubai -51.8 0.001
Brent -9.79 0.001

Here a static analysis of the whole series is conducted, the collection of causality

links discovered will be referred to as a causality pattern (following the convention

of [3]). The static causality pattern, representing the causality calculated from the

full data length, can be seen in Fig.2.7

To create a complex network representation of this data, the method used by

Jiang et al. (discussed in Section 2.3.2) is employed. This method requires window-

ing to separate the time-series data into sub-periods. When selecting this window

length, two important considerations are; (i) the length of the window should fit the

goal of the analysis, i.e. for analysis of short term behaviours, smaller sizes are

appropriate, and for longer-term behaviours, larger sizes are, (ii) the diversity of the
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Figure 2.7: The static causality pattern of the sample data returns, 1 represents a Granger
casual link from le f t to top and 0 represents no link. The Granger tests were
done at a significance level of 0.05.

causality patterns and transitions among them should fit the goal of the analysis,

with an increase in window size the results of separate windows will become more

similar to the original time series. More generally these considerations can be de-

scribed from the perspective of statistical estimation. The window size determines

which data will be used in the estimations, for dynamic interactions longer window

sizes may capture this behaviour and then further behaviour, leading to the esti-

mation potentially obscuring short lived interactions. Therefore, the window size

can be seen as determining the causality pattern. The gap between these window

starts determines how much similar data is being used to define consecutive causal-

ity patterns, for non-overlapping windows completely new data is being analysed,

whereas for predominately overlapping windows most data is identical. Therefore,

for the former it is possible to have very different consecutive causality patterns

discovered, whereas for the latter it is probable that consecutive causality patterns

will be very similar. Therefore the window spacing can be seen to determine the

transitions between causality patterns.

The analysis in this thesis is focussed on short term variation within the system,

looking for distinct short term behaviours within the system; therefore, a window

size that maintains a large diversity of causality patterns is most appropriate. For

the causality patterns produced further analysis is intended to be employed, hence

a time-series of causality patterns of significantly length is desirable. Furthermore,

the transition throughout time of the causality patterns of the system are of interest,
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hence a small step size between windows that allows for a gradual change in the

causality pattern will be of benefit. Due to the these reasons a rolling window

increasing by on time step at a time is chosen. To determine the window length the

number of nodes and edges in networks produced from different window sizes is

investigated and shown in Fig.2.8. Following the above argument and the results

of Fig.2.8 a window size of thirty time steps is selected (similar arguments and

conclusions have been drawn within the literature [3])
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Figure 2.8: The number of nodes and the number of edges for complex networks generated
from window sizes 20, 30, 40, 50, 70, 100, 130, 160, 200, 250, 300, and 350,
for the data shown in Fig. 2.6.



Chapter 3

Properties of Dynamic Causality

Patterns in a Complex Network

Chapter 2 introduced three of the main approaches currently employed within the

field to transform a time-varying multivariate system of time series to a complex

network representation. A discussion was also presented of how in general these

methods can be seen as decreasing the level of complexity of the problem by re-

ducing the knowledge of the causality pattern structure (the underlying structure;

the system interactions during a time step). The literature review also presented

a discussion of the use of this knowledge, with many systems being characterized

by their causality pattern structure in other forms of analysis such as static systems

[72, 23, 67, 69]. Therefore, it is apparent that within literature a systems causality

pattern is considered to hold valuable descriptive information, and that it is also the

case that this information is limited in its incorporation into analysis of dynamic

causality systems.

This chapter seeks to fill this gap by presenting a novel approach to the in-

corporation and investigation of time-varying multivariate causality patterns, hence

allowing for new and efficient descriptions of these systems. This is achieved by

proposing a method to incorporate the knowledge of the change in causality pattern

over a time step into a new complex network representation, further a number of

properties and metrics are presented to demonstrate the ease of analysis offered by

this approach. These properties and metrics are validated via synthetic data, finally
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an analysis of the international oil market is conducted using this method.

3.1 Background and related work

This section discusses two aspects of literature: complex networks construction

approaches and properties/metrics applied to complex networks.

As mentioned above, this chapter is interested in the use of knowledge from

the underlying causality patterns of the system that has dynamic behaviour. There-

fore it is important to understand how this causality information is traditionally in-

corporated into complex network representations, which are the predominate form

of analysis for this type of system. In Chapter 2 a literature review of this topic

was presented that discussed three of the main approaches to achieving a complex

network representation. To summarise, these approaches on the whole reduce the

complexity of the data by limiting the knowledge of the causality patterns and their

transitions. However it should be noted that some of the methods incorporate some

level of knowledge of the underlying causality patterns and their transitions, this

is most notable in the work presented by Yu et al [2], Multivariate Time Series-

Dynamic Association Network (MTS-DAN) (discussed in detail in Chapter 2.3.2).

Yu et al take a slightly different approach to edge construction than the alterna-

tives. They construct the network’s edges via an edited form of limited penetrable

visibility graph (LPVG), which is of note due to its requirement for each node to

have a value, representing its causality pattern, associated with it. This is achieved

via Principle Component Analysis (PCA) to determine a one-dimensional vector

representation of the interaction pattern (causality pattern) representing each node.

This one-dimensional vector associated with each node is then used to determine

the edges between the nodes in the complex network. This approach does some-

thing that the other complex network transformation methods do not, and that is to

take some knowledge of the interaction pattern for a subcomponent and incorporate

that into the constructed complex network. This approach however has a number of

short comings for the analysis that is of concern in this chapter: the constructed net-

work is not exclusively temporally ordered and hence edges between nodes do not
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exclusively represent consecutive causality patterns, hence they can not be weighted

by the frequency of transitions between patterns, and the causality pattern and its

transitions are encoded in a manner that obstructs behaviours associated with them

from further analysis (a further discussion is given in Chapter 2.3.2).

Complex networks, such as those used to represent time-varying systems, are

often examined through characterisation of local and global properties. The field

of complex networks is considered mature, with a significant amount of literature

existing on the topic [9]. However since the usage of complex networks for time-

varying systems is a more recent development the application of characterisation to

these cases has received less investigation. Here an overview of a prominent aspects

of this work is presented.

Notable work on this type of complex network is presented by Jiang et al [3],

Yu et al [2], Qi et al [1], Dong et al [56], and Yu et al [37] (and talked about in

detail in Chapter 2). Here a briefly introduction and discuss of some of the analysis

methods that these authors have applied to their networks.

An important metric in a network is the ”degree” of each node within the net-

work. This is the weighted sum of the edges connected to a certain node, and can

be seen as a measure of how important that node is to the network at large. Work

has been done using this metric to determine the importance of certain causality

patterns to the dynamic behviour of the system, this primarily is done by investigat-

ing if certain nodes have significantly larger degree values than others. A common

technique is to compare the distribution of degree across the network to a power

law or a scale free network, to show that a small subset of the causality patterns

exert a large amount of importance over the dynamic behviour. Comparison with

the average weighted degree is also sometimes used to determine important nodes

[3, 2, 1, 56].

Following the metric focused on the nodes, one can apply similar logic to

the edges of the network. The distribution of the edges based on the frequency

of that edge can be compared to power laws to determine how the transition be-

tween causality patterns is spread throughout the behviour, allowing the isolation
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of particularly prominent edges. The edges can also be investigated to look at self-

transformations/self-loops (i.e. when a causality pattern does not change over a time

step). This is done at a global level to determine the total percentage of self-loops

in a network, giving an understanding of how stable that network is, but can also be

applied to nodes of interest to determine their individual self-loop weighting [3, 56].

A popular network method that has been employed is the closeness of the net-

work, measuring how well connected the entire network is. This is defined as the

number of edges within the network divided by the total potential number of edges

that could exist in the network [138]. This represents the tightness of transition

between different causality patterns, demonstrating the wilingness of causality pat-

terns to transition to any other available pattern [1].

Another measure that has been employed is the betweenness of a node, this

represents the number of times a node appears as part of the shortest path between

two others. This metric is important for determining causality patterns that are

highly important for multi pattern transitions, allowing for the movement from one

causality pattern to another [2, 1, 56, 37].

Determining groups of nodes that are more likely to transition internally than

externally can be important for understanding the dynamic behviour of the causality

pattern. In particular an algorithm by Blondle et al based on maximising modularity

has been used to make determination of clusters of nodes that can be considered as

distinct groupings within the network [139]. These groupings can be used to cate-

gorise broad behaviours of the dynamics of the causality pattern, including further

analysis on the individual clusters such as average path length [3].

3.2 USIC: a new complex network

The analysis of non-linear behaviours, and structures, of time varying causality in-

teractions within multivariate systems can be challenging due to the complex nature

of this information. An approach to make the data more amenable to analysis is

to encode the evolutionary information into a network representation [138], as dis-

cussed in Chapter 2.
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The transfer of a time-varying multivariate system to a complex network to

analyse its evolution has been employed in a number of studies [3, 2, 1, 56, 37].

Although the exact methodology for this transfer varies, the general approach can

be seen as similar. This thesis will be following the approach presented by Jiang et

al [3] which employs Granger causality, a comparison of approaches is discussed in

Chapter 2.3.2 and in the following section, but for the purpose of this Chapter the

method presented by Jiang et al can be seen as a good basis for expanding upon.

This method can be described as constructing a complex network where the nodes

represent causality patterns and the edges represent the frequency of transition be-

tween these patterns and is described in Chapter 2.3.2. Below a formal description

of this general approach is presented, to provide an unambiguous foundation for

the discussion that follows. To the authors knowledge a formal specification of this

nature has not been presented elsewhere.

This specification is given by defining the following:

• A set V , which is the set of all labelled time-series variables vx where x ranges

from 1 to n inclusive. Using the notation [[a,b]] to indicate the set of all

integers from a to b inclusive, written as:

V = {vx} ∀x ∈ [[1,n]]

• An individual Granger causality metric cx,y which gives 1 if time-series vari-

able vx Granger-causes vy and 0 otherwise. Using the previously-introduced

Granger causation arrow, written as:

cx,y =

1, if vx→ vy

0, otherwise

• A time-labelled individual Granger causality metric cx,y,t from time-series

variable vx to vy at time t (where t is the time label of the sliding window,

as previously described). Using N0 to indicate the set of natural numbers in-
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cluding 0, define cx,y,t to be the 2-tuple (cx,y, t) such that the predicate t ∈ N0

holds. Written as:

cx,y,t = (cx,y, t) | t ∈ N0

• A multivariate causality pattern C, which is the set of all individual causality

metrics cx,y where x and y both range from 1 to n inclusive. This is written as:

C = {cx,y} ∀x,y ∈ [[1,n]]

• A time-labelled multivariate causality pattern Ct , which is the set of all time-

labelled individual causality metrics cx,y,t where x and y both range from 1 to n

inclusive and t is the end time of the sliding window, as previously described.

Thus:

Ct = {cx,y,t} ∀x,y ∈ [[1,n]]

Each time the sliding window moves forward in time a new causality pattern is

observed. If observations start at time 0 and end at time T , define a set O to be the

set of all observed time-labelled causality patterns Ct where time t ranges from 0 to

T inclusive. Thus:

O = {Ct} ∀t ∈ [[0,T ]]

Next define a network N of nodes and edges by N = (N,E) where nodes in N are

representative causality patterns (defined below) and edges in E are weighted di-

rected connections between representative causality patterns (nodes). If two or more

observed causality patterns Ct1 , Ct2 , . . .Ctk ∈ O have the same pattern of causality

(albeit measured at different times) then they are represented by a single node in

N . Thus, first define the equivalence sets of the observed time-labelled causality

patterns (each equivalence set contains all observed Ck that share the same underly-
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ing pattern of causality) and then define the associated labelled representative node

Rl to be the associated underlying causality pattern. This also requires a function to

extract the underlying pattern of causality from any such Ck. Therefore define:

• A function patt(), which gives the set of all time-independent individual

Granger causality metrics that correspond to all of the time-labelled individ-

ual Granger causality metrics in a causality pattern Ct . Thus:

patt(Ct) = {cx,y} ∀(cx,y,t) ∈Ct

• A labelled equivalence set Rset
l with label l (a natural number) is a set of all

2-tuples comprising a causality pattern Ck and label l, for all Ck in the set O

of observed causality patterns, such that all members of a given Rset
l will have

the same pattern of causality returned by the function patt (i.e a Rset
l will exist

for each unique found causality pattern and will contain all instances of that

pattern observed in O). Thus (using “and” to connect multiple quantifiers,

and “∧” for the logical conjunction of predicates):

Rset
l = {(Ck, l)} ∀Ck ∈ O and ∀(Cp, l),(Cq, l) ∈ Rset

l | l ∈ N ∧ patt(Cp) = patt(Cq)

• A labelled representative node Rl (node in the network) with label l (a natural

number) is a 2-tuple comprising (i) the underlying causality pattern of any Ct

in the equivalence set with the label l, and (ii) the label l. The label provides

a one-to-one mapping between each Rl and its associated Rset
l (so knowing Rl

implies knowledge of Rset
l ):

Rl = (patt(Ct), l) | (Ct , l) ∈ Rset
l ∧ l ∈ N

• The set N is a set of labelled representative nodes such that for each observed

causality pattern Ct there exists at least one representative node in N that
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contains the underlying pattern of causality of Ct . Thus:

N = {Rl} ∀Ct ∈ O and ∃Rk ∈ N | Rk = (patt(Ct),k)

• The set E is a set of weighted edges, each being a 3-tuple of the start node

(Rl1), the end node (Rl2) and the weight. Initially the weight is the number of

transitions from Rl1 to Rl2 taking place over one time step; this is commonly

referred to as the frequency “F”. Start by defining the function freq() (where

freq() ∈ N0) to calculate the desired result — it does this by summing all

transitions that exist from a causality pattern Ct in Rset
l1

to a causality pattern

at the next time step Ct+1 in Rset
l2

(i.e. the number of times one causality pattern

transitions into another), Using the notation |{}| to give the cardinality of a

set, thus:

freq(Rl1,Rl2) = |{((Ct , l1) ∈ Rset
l1 ,(Ct+1, l2) ∈ Rset

l2 )}| ∀t ∈ [[0,T ]] and f ∈ N0

Now define the set E as follows (with the additional constraint that an edge

doesn’t exist in E if the calculated frequency is zero):

E = {(Rl1,Rl2, f )} ∀l1, l2 ∈ [[1, |N|]] | f = freq(Rl1,Rl2) ∧ F > 0

Following this definition the evolution of the causality between time series

variables, V , can be expressed as the complex network N .

3.2.1 Limitations of current network approaches

As discussed earlier in this Chapter and in Chapter 2.3.2 the current network ap-

proaches for the analysis of time varying multivariate causality patterns reduce

the data in such a way as to abstract away from the actual change occurring in

the causality pattern between time steps. This change in causality pattern struc-

ture (which variables are causality related to each other in each time step) contains

information that can inform and contextualise these transitions. With the topol-
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ogy of a network being important to its function, and the change of this topology

over time being connected to important in the system it represents [140, 141, 142].

Whereas previous approaches focus on which causality patterns follow each other

(in time) but not what these temporal orderings mean for the systems evolution

[3, 2, 1, 56, 37]. This lack of information on the transitions of causality patterns

leaves gap in the literature for a more informative description of the time varying

nature of these systems.

3.2.2 A causality pattern based complex network

Here a novel method for encoding the information on the transition of the causality

patterns in a complex network for analysis is presented, this is done through the

introduction of two metrics to encode the information and a complex network to

carry it. This introduce a network approach that allows for more efficient discover

of some behaviours and novel discovery of others.

3.2.2.1 Two New Metrics

As discussed in the previous section, the general approach in construction of a com-

plex network to represent the evolution of causality patterns only encodes informa-

tion relating to frequency and temporal ordering. This approach produces a network

that is easily handled by existing network approaches, and therefore generalised

network analysis is often employed [138, 31]. This approach to analysis can yield

important results about the system and can be seen as a significant tool in the anal-

ysis of time varying causality patterns. However, these existing standard network

approaches focus on frequency-weighted edges, and this does not allow for fur-

ther exploration of the changes occurring between the causality patterns in the start

and end nodes of each edge. This is a problem because it removes the potential

to uncover complex behaviours taking place related to the change in structure of

the underlying causality patterns, which may hide important information about the

evolution of those causality patterns.

There do exist complex network mapping methods that take some account of

the underlying structure of the system’s interactions (referred to earlier). Of note
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is the work of Yu et al who introduce a Multivariate Time Series-Dynamic Asso-

ciation Network (MTS-DAN) using a Directed Limited Penetrable Visibility graph

(DLPVG) approach [2]. The incorporation of the underlying pattern structure in

this method is achieved by using Principle Component Analysis (PCA) to produce

a one-dimensional representation of each causality pattern, and then based on this

representation to add new links between nodes. This approach constructs a complex

network that is unweighted, directed forward in time (but not necessary temporally

sequential), and contains links not associated directly with transitions. This con-

struction therefore contains some implicit information of the causality patterns in

its linkage choice. Though this network construction may be of interest in certain

areas of analysis, by definition it does not contain much of the information encoded

in Jiang et al’s construction [3], namely a guaranteed temporal ordering (if two

causality patterns are sequential they will be linked) and a frequency weighting of

sequential transitions (how many times one causality pattern has transitioned to a

specified other).

It is desired to counter these issues and present a novel methodology that is

amenable to analysis and incorporates information on the change in causality pat-

tern during evolution. The proposed methodology takes a similar initial approach

to that of Jiang et al’s [3] (discussed earlier), but includes a greater amount of in-

formation content through the addition of new edge weights that are specifically

constructed to encode select information on the transition. This chapter proposes

an extension to the complex network model presented by Jiang et al [3] (and dis-

cussed earlier), in regard to transitions over one time step, by adding new weights

to the edges. These weights correspond to information regarding the start and end

nodes, to encode information on the evolution of the causality pattern over the cor-

responding transition, i.e. how the causality pattern changed over one time step.

The manipulation and comparison of the full causality patterns in the start and end

nodes of an edge can be unwieldy where there are large numbers of times-series

variables. In this chapter it is therefore proposed to use two simple values to encode

the structural change in causality pattern, as described below (where either or both
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aspects may occur over a single time step).

As a preliminary step, this chapter defines a metric that encodes an important

informational aspect of a causality pattern. This is the arithmetic sum of all of the

individual causality metrics in the causality pattern of a single node. This is labelled

as the “total causality” of a node, and it is calculated by the auxiliary function

total(), also used is the auxiliary function fst(), which returns the first item of a

2-tuple:

total(Rl) = ∑
a,b
(ca,b ∈ fst(Rl))

When a causality pattern changes, the overall strength of causation (the “total

causality”) may or may not change. Therefore, in this chapter two new metrics

to encode these two characteristics of a change in causality pattern are proposed:

1. Total Difference in Causality (α): this captures the changes in individual

causality metrics, regardless of the “total causality”, and define it as the sum

of the differences between corresponding individual causality metrics (each

difference is squared and rooted, to make it a positive number independent

of direction). This is calculated with the function alpha() as follows (where

alpha() ∈ Z):

alpha(Rl1,Rl2) = ∑
a,b

√
((ca,b ∈ fst(Rl2))− (ca,b ∈ fst(Rl1)))

2

2. Net Change in Causality (β ): this captures the overall change in “total causal-

ity”, regardless of any change in which causality links do and do not occur

and define it as the difference of the “total causality” metrics for the start and

end nodes. This is calculated with the function beta() (where beta() ∈ Z):

beta(Rl1,Rl2) = total(Rl2)− total(Rl1)
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3.2.2.2 USIC-Network

Following the introduction of these two metrics this chapter proposes a new network

called Underlying Structural Information Consideration Network (USIC-Network)

that makes use of these metrics. This network construction takes each unique rep-

resentative causality pattern as a node and takes edges between them to exist if the

two causality patterns appear sequentially in the evolution. Each edge is weighted

with three quantities; the frequency of transition (F), the Total Difference in Causal-

ity (α), and the Net Change in Causality (β ). The layout of this transformation is

shown in Fig. 3.1. By expanding on the earlier formal definition of a complex

network representation, the USIC-Network can be defined such that the set E of

weighted edges is modified to have a weight that is a 3-tuple containing F , α and

β (defined above). For convenience define a labelled edge ei, j as follows (with an

example of a edge of this form being shown in Fig. 3.2):

ei, j =(Ri,R j,( f ,α,β )) | i, j ∈ N ∧ F > 0

where f = freq(Ri,R j)

and α = alpha(Ri,R j)

and β = beta(Ri,R j)

The definition of E can now be rewritten as:

E ={el1,l2} ∀l1, l2 ∈ [[1, |N|]]
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Figure 3.1: Outline of the methodology of the USIC-Network model for a sub system of
the international oil market comprising the returns of the spot price variables
Daqng, Minas, Dubai, and Brent. Causality patterns and complex network
displayed are for representation purposes only.
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Figure 3.2: Example of the edge weightings between two nodes (Node 0 and Node 1, where
the transition T0,1 has occurred seven times) that contain the causality patterns
for a system composed of three variables in a USIC-Network model.

Further three auxiliary functions can be defined get-f(), get-α(), and get-β ()

that return the three components of an edge weight:

get-f((Rl1,Rl2,( f ,α,β ))) = f

get-α((Rl1,Rl2,( f ,α,β ))) = α

get-β ((Rl1,Rl2,( f ,α,β ))) = β

With this new definition of E and using the previous definition of N the USIC-

Network can be defined as USIC-Network= (N,E) for the set of time series vari-

ables V .

3.3 Node metrics and network properties using the

USIC network
The previously mentioned studies employing complex networks for the evolution

of multivariate systems by Jiang et al, Yu et al, Qi et al, Dong et al, and Yu et al

[3, 2, 1, 56, 37] also subsequently analyse their constructed networks. This analysis

takes a number of forms but primarily it determines properties and metrics of the

network that can then be used to describe the evolution of the original system. This
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analysis can be characterised as the following types: determination of the degree

of the nodes, the distribution of this degree, and the comparison of this to stan-

dard network models, such as a scale free network [3, 2, 1, 56]; the distribution

of edge weights (frequency), comparison to power law distribution, and total level

of self-loops within the network (i.e. when a causality pattern does not change

over a time step) [3, 56]. Common network methods are used, such as the close-

ness of the network [1], and the betweenness of nodes [2, 1, 56, 37]. Clustering is

also often employed for more in-depth analysis of the behaviour of the system, for

example modularity-based methods [3, 139]. These approaches do not explicitly

allow for description of the evolution in terms of the changes in the structure of the

causality pattern. The proposed USIC-Network encodes this information allowing

it to become more accessible, and hence more amenable to analysis. Numerous

approaches, including many classic examples, can be applied to the USIC-Network

to make use of this data. However, it has been shown that unique network methods

are often needed to uncover specific system related knowldge [143], for example

generic network methods may look for high degree nodes, however for a specific

system low degree nodes maybe just as important [144]. Therefore, in this sec-

tion it is chosen to propose five properties/metrics of the USIC-Network, based on

knowldge of what the network represents, that can be used to discover informative

descriptions of the evolution of the original system, to allow for a richer overall

understanding of the system. These are meant for any system that can be expressed

via the USIC-Network model, however for context each approach is motivated with

an example use case, demonstrating behaviour it is amenable to uncover.

3.3.1 Node metrics

The first set of properties/metrics are specific to each node, and do not require any

grouping

3.3.1.1 Pattern stability

Interactions between financial instruments are often used when considering finan-

cial risk, and this is particularly true when portfolio construction is concerned.
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Within a portfolio, assets that are correlated can be seen as increasing risk, as this

limits diversification and makes the portfolio less resistant to shocks: conversely

assets that are negatively correlated are some times used to mitigate risk by the

increase in one counteracting the decrease in the other. Similarly the causality

structure within a portfolio (where known) can be carefully selected to reduce over-

all risk, leading to the effectiveness of the portfolio being heavily connected with

this causality structure. Due to this it is important for portfolio managers that this

causality structure does not change as it could force them to have to reconstruct

their portfolio, and this motivates a desire for a metric for how likely a system is

to maintain its current causality structure. In the context of the USIC-Network this

property can be observed using the metric of the likelihood of a transition from a

causality pattern to have no Total Difference in Causality, i.e. α = 0. This process

is often referred to as a self-loop or self transition, where the causality pattern does

not change over a time step (loops that taken multiple time steps to return to their

original position are not classically considered self-loops and are not of interest

here).

The concept of self-loops occurs in many branches of research, for example:

(i) in modularity techniques, for the purpose of separating the internal links of a

community from those connecting the community to others [145, 146, 147]; (ii) in

Markov chains, where each state will have a probability of transitioning to itself,

and is often a pre-defined value [148]; and (iii) in complex networks, where the

overall percentage of self-loops for a network is analysed, and specific self-loop

edges with a high frequncy are discussed [56]. For the above case this chapter is

interested in a self-loop measure that can be discussed in terms of individual nodes,

where each node has a probability of self-loop associated with it. Due to the variety

of self-loop usage in the literature here a definition of this metric for use with the

USIC-Network is given.

This problem can be seen as similar to that of determining the degree of a node,

though unlike the degree that is often for a directed network separated out into a in

and out degree it is desired to separate this further into a self-loop degree. Here a
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definition of the chance of a self loop is presented, using the following functions

that are applicable to any given representative node in network N :

• The function kloop() gives the number of times a representative causality pat-

tern Rl transitions over one time step to the same representative causality

pattern:

kloop(Rl) = get-f(el,l)

• The function kout() gives the number of times a representative causality pat-

tern Rl transitions over one time step to any next representative causality pat-

tern in N (including itself):

kout(Rl) = ∑
Rx∈N

get-f(el,x)

• The probability of a self-loop occurring for a representative causality pattern

Rl is given by Ω
loop
Rl

, defined by:

Ω
loop
Rl

=
kloop(Rl)

kout(Rl)

3.3.1.2 Directional change in causality

Causal interconnectivity within the financial markets has been shown to lead to a

number of undesirable behaviours for market health when it becomes too high. This

includes market behaviours such as crashes, bubbles, and other instabilities in price,

leading to fallout that is both difficult and costly for regulators and governments to

resolve [149]. It is therefore beneficial for market regulators to have a forecast for

how the degree of causal interactions within the market are likely to change, to allow

them to enact policy to limit adverse market behaviour before those changes occur.

To give an indication of the change (either an increase, decrease, or no change)

expected in the total causality at the next time step, it is desirable to have a one-
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dimensional value representing the multi-dimensional data (edges) that describes

the previous changes from the relevant node.

This problem regards the out links from the node, and their associated β

weightings. For a classic network where weightings represent frequency of occur-

rences this problem can be seen as analogous to the out degree of the node, where

the sum of the weights of all out links is calculated. Here a metric is presented

that gives an indication of whether causality pattern (node) is likely to increase, de-

crease, or maintain the same total causality, based on its history. To do this first

define the following functions that are applicable to any given representative node

in network N :

• An aggregation of the previous transitions of a specific representative causal-

ity pattern Rl can be found by summing the frequency of the out edges from

that node, kout(Rl) (defined previously).

• To give knowledge of the direction of these transitions a new function

kweighted() can be employed, that weights each edge as it is added to the sum

by the sign of its β weight (giving information relating to whether the tran-

sition increase, decreases, or does not change the total causality). This sum-

mation hence will give a value representing the average directional change in

causality, which can be taken as a prediction of future directional changes in

causality. First define an auxiliary function sign() as follows:

sign(x) =


−1, if x < 0

0, if x = 0

1, if x > 0

(3.1)

And now define kweighted() as follows:

kweighted(Rl) = ∑
Rx∈N

(get-f(el,x)× sign(get-β (el,x))

• The value of kweighted() can be heavily skewed by the number of edges, and
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the frequency of those edges, making comparison of this value between dif-

ferent nodes difficult. To account for this a normalised measure of this value

is proposed, Ωdirected
Rl

. This is normalised by dividing kweighted() by the total

number of out transitions given by kout(), and hence gives a value between

−1 and 1.

Ω
directed
Rl

=
kweighted(Rl)

kout(Rl)

3.3.2 Network properties

The second set of properties/metrics are network specific, and define groupings of

nodes within the network.

3.3.2.1 Noise Clusters

In feature selection one potential aim is to determine from a set of variables those

variables that Granger-cause a target variable. These variables can then be used to

train a machine learning model for the purpose of forecasting the target variable.

It is important for the correct subset of variables to be selected, with too large a

subset increasing the cost and time of training, and too small a subset offering in-

ferior forecasting results [150]. For feature selection it hence may be considered

important to find the maximum number of potentially casual variables for a single

underlying causality structure, while still minimising the total number of selected

features, to reduce the number of retraining periods and present the best set of in-

formation for machine learning model to be trained on. However, many real sys-

tems, such as the financial markets, contain messy data and are susceptible to noise

within their causality calculations. For example, the presence of noise can cause

deviations in causality patterns and may cause a system with a singular underlying

causality structure to be represented through analysis by a number of causality pat-

terns. Therefore it can be considered beneficial to determine all potential causality

patterns that may represent an underlying causal structure, allowing features to be

selected from these patterns as a group, rather than just a single pattern.

Using the USIC-Network representation this problem can be seen as cluster-
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ing nodes based on their Total Difference in Causality (α), with the objective of

clustering together nodes with a small Total Difference in Causality. This prob-

lem can be seen as similar to those dealt with by density-based clustering methods,

as this problem relates to a “small distance” measure and not a “large frequency”

measure as used in alternative clustering approaches [151, 152, 153]. An initial

starting point for density-based clustering is the single-linkage model, a hierarchi-

cal method that operates by grouping nodes within a given “distance” of each other

and then increasing this distance till all nodes are clustered [154, 151]. A notable

expansion to this model was introduced by Wishart to eliminate a “chaining” effect

that could lead to the linkage of widely spaced nodes via a chain of more closely

connected nodes. This expansion introduced the idea of a minimum number of

nodes within a set “distance” from each node in the network, a node that does not

meet this minimum is then removed from a cluster [155]. The single-linkage model

and the Wishart expansion act as first step for the desired clustering, however in this

use case not all nodes need be clustered and due to links not existing between all

nodes the colorblue usage of minimum degree does not apply. These differences in

scope therefore warrant further expansion of this model for this problem.

To define this clustering property, based on some notion of measurement-based

noise or variation in the network, within a USIC-Network the following steps are

taken:

• Here a parameter Parnoise
max α is introduced, which defines a maximum amount of

deviation that can be expected between separate measures of the same causal-

ity pattern in a system (e.g. for a physical system a user may know that their

measurement tools have an associated error and hence this metric embodies

how that error translates to the measurement of a causality pattern). In the

USIC-Network this measure takes the form of an α value, being the maxi-

mum expected α value between two causality patterns that could be consid-

ered the same within deviation. The exact choice of this parameter is complex

and heavily system dependent, so this is left as a user defined value (a more

formal definition of its exact value is considered to be out of the scope of this
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thesis).

• To incorporate the notion of noise that Parnoise
max α provides into the complex net-

work, an initial USIC-Network, N = (N,E), is updated by removing both

edges with an α greater than Parnoise
max α and any nodes that are now uncon-

nected. This defines a new network, N
′
= (N

′
,E
′
), as follows:

E
′
= {el1,l2}∀el1,l2 ∈ E | get-α(el1,l2)≤ Parnoise

max α

N
′
= {Rl1}∀Rl1 ∈ N and ∃Rl2 ∈ N | el1,l2 ∈ E

′
∨ el2,l1 ∈ E

′

• The network N
′

now only contains transitions that are within this defined

noise/deviation range. For this network this chapter hypothesise that causality

patterns (nodes) that relate to each other and are just products of noise/error

will exhibit some clustering behaviour. To discover this clustering a popular

method known as modularity is employed, selecting the Clauset-Newman-

Moore greedy modularity maximization algorithm [156, 127, 157]. For this

the edge weightings and self-loops are not considered, and a set of non-

overlapping clusters are produced. Although this algorithm may not be ap-

propriate for cases where noise clusters overlap, it is assume that for most

real world systems noise clusters will be adequately spaced, partly due to the

binary values (quantisation) of causality, and hence overlapping clusters will

not be a consideration in practice. It should also be noted that if Parnoise
max α

is set such that all links are included, e.g. no consideration of α is taken,

this approach reduces to the clustering approach employed by Jiang et al [3].

Each cluster produced is labelled as Λnoise
i , where these sets, and the set Λnoise

comprising all these clusters, can be expressed as:

Λ
noise = {(X , i)}∀X ⊆ N

′

Λ
noise
i = X | (X , i) ∈ Λ

noise
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3.3.2.2 Regimes of Total Causality Level

The concept of regimes within the evolution of a system is a popular topic in many

fields [149, 83, 158]. The type of grouping defining a regime can take a number of

forms, in the context of the USIC-Network a potential construction for a regime is

a grouping of system states (causality patterns) that have the same total causality

(i.e. the level of interaction within the system is the same throughout the regime).

A real world situation where this type of regime may be of interest is the behaviour

between market makers during a flash crash. A particular example of this is the 2010

flash crash that has been connected to hot potato trading between market makers

[159]: during a period of hot potato trading the amount of interaction between the

market makers is likely to increase [160]. Therefore the regime of the total causality

between market makers is likely to be different during periods of calm compared

with periods of market instability such as hot potato trading, and detecting these

changes in regime may be an indicator of coming instability [149, 83, 158].

This chapter is particularly interested in causal regimes whose internal edges

have no net change in total causality. To this end a regime is defined as a set of

nodes in the USIC-Network whose internal edges all have β = 0. This means that

the total causality for each node in a regime is constant, but the causality structure

may not be.

For this clustering, an approach inspired by single linkage can be used, where

the minimum “distance” is set as β = 0 and does not increase iteratively [154, 151].

To tackle the potential problem of chaining as previously described, a parameter

is introduced,Parregime
min f req to represent the lowest allowed frequency level for a link.

This allows for the removal of “pathways of low travel” between high travelled

clustered regions. Though this can be set to some calculated value, such as the

average frequency of edges, hence removing all edges below that, it is chosen to

leave this as user selected as it is felt that an appropriate value will be system-

dependent. The process to find these causal regimes can be described as follows:

• From an initial USIC-Network N = (N,E), a new network can be derived

where all edges with a β value not equal to zero and a frequency value less
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than Parregime
min f req are removed. This network is labelled as N

′′
= (N

′′
,E
′′
) and

define it as follows:

E
′′
= {el1,l2}∀el1,l2 ∈ E | get-f(el1,l2)≥ Parregime

min f req ∧ get-β (el1,l2) = 0

N
′′
= {Rl1}∀Rl1 ∈ N and ∃Rl2 ∈ N | el1,l2 ∈ E

′′
∨ el2,l1 ∈ E

′′

• The network N
′′

is constructed in such a way that if the desired causal

regimes exist they will be components (groups of connected nodes that are not

connected to the rest of the network). Therefore to find these causal regimes

one extracts these components, labelling each component as a separate set

Λ
regime
i . These sets, and the set of all these regimes can be expressed as:

Λ
regime = {(X , i)}∀X ⊆ N

′′

Λ
regime
i = X | (X , i) ∈ Λ

regime

3.3.2.3 Net causality change pathways

A broad type of structural feature that naturally arises when discussing complex net-

works is a “pathway”, a series of sequential nodes connected by edges, that defines

some route through the network. Specific instances of pathways can be defined in

numerous ways, for example in the context of the USIC-Network these definitions

could be based on the F , α , or β weightings. Pathways based on F or α naturally

lead to the implementation of either minimum F constrains (i.e. highly travelled

pathways) or a maximum threshold value for α (i.e. closely “spaced” pathways)

However, pathways based on β can take more interesting formulations and to the

authors knowledge have not been previously explored.

In the context of this thesis β is an interesting base for pathway construction

for the previously discussed regimes (defined with edges of β = 0), with a system

moving from one regime to another having to change its total causality and hence

have a β 6= 0 between a node in one regime and a node in the other regime. The

transition from one regime to another may occur over one time step or over many
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time steps. In the latter case this results in a multi-step pathway existing between

the two regimes. These pathways defining a change in total causality are a general

structural feature of complex causality networks, whose start and end nodes need

not be members of a regime.

Here a type of pathway is defined based on the β weighting of the network.

This pathway is a structure that moves the causality pattern from one level of total

causality to another, with no self-loops that might be deceptive during analysis. For

this initial discussion of these types of pathways it is chosen to maintain the sign

of the β weighting throughout the pathway (i.e. a pathway will either be composed

only of edges weighted as β > 0 or only of edges weighted as β < 0). This decision

is well motivated for pathways between regimes, as defined above, since as soon as

a β = 0 edge is found a new regime may have been reached.

In defining these pathways the two following constraints are considered:

• As explained above, the initial interest is in pathways with a β constraint:

constructed of either only edges containing β > 0 or only edges containing

β < 0.

• For the USIC-Network (and most complex network representations) an edge

is “representative” of one or many transitions at different times between ob-

served causality patterns. As a result, these pathways are statistical in nature

and don’t necessarily represent a timed sequence of transitions: it is not nec-

essarily true that two edges in a pathway occur in the same temporal order

as their representative transitions were observed. Therefore typically only

“common” pathways are considered by utilising a further constraint, which is

to consider only edges with a frequency F that exceeds some threshold. The

threshold will be system-dependent and experiment-dependent and therefore

let it be expressed as the user-defined parameter Parpath
minfreq.

Based on these constrains a formal definition of the pathways described above

is presented for the USIC-Network N = (N,E). It is elected to split this formal

definition of these pathways into two components, the pathways themselves them
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selves, and the first and last edges in each pathway. Label the set of all first edges

(the head edges) as H and the set of all last edges (the tail edges) as T (where these

are both subsets of E).

Employing these head and tail sets define each pathway as a 2-tuple of a set

X (the pathway) and a label i such that X is a subset of E, and there exists exactly

one first edge ea,b in H and exactly one last edge ec,d in T (where neither edges are

self-loops, so b 6= a and d 6= c) such that for all edges em,n in X three conditions

must hold:

1. the edge em,n must either be the first edge ea,b or there must exist a unique

edge ep,q in X such that ep,q directly precedes em,n (i.e. m = q),

2. the edge em,n must either be the last edge ec,d or there must exist a unique

edge ep,q in X such that ep,q directly succeeds em,n (i.e. n = p), and

3. all edges ep,q must have the same β sign, sign(get-β (ep,q)) (where this sign

will be defined via the head and tail edges).

Using the notation ∃! to denote uniqueness quantification (i.e. ∃!x means

“there exists exactly one x”), define the set of all such labelled pathways ΓH,T in

a given set of edges E with initial (head) edge in H and final (tail) edge in T as

follows (with N = (N,E) assumed from here onwards):

Γ
H,T ={(X , i)}∀X ⊆ E | H ⊆ X ∧ T ⊆ X ∧ i ∈ N

∧ (∃!ea,b 6=a ∈ H and ∃!ec,d 6=c ∈ T | ∀em,n ∈ X ((m = a)∨ (∃!ep,q ∈ X |m = q))

∧ ((n = d)∨ (∃!ep,q ∈ X |n = p))

∧ (sign(get-β (em,n)) = sign(get-β (ea,b)))

∧ (get- f (em,n)≥ Parpath
minfreq))

One can select a single pathway in ΓH,T by referencing its label as follows:

Γ
H,T
i = X | (X , i) ∈ Γ

H,T
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Since the interest is in both β > 0 pathways and β < 0 pathways, four sets of

edges are defined: head edges and tail edges for β > 0 pathways and head edges

and tail edges for β < 0 pathways. Of particular interest are maximal pathways

in a system: for example, a head node of a maximal β > 0 pathway will have no

in-edges with β > 0 and a tail node of a maximal β > 0 pathway will have no

out-edges with β > 0, and these constraints can be incorporated into the definitions

of the sets of candidate head edges and tail edges for β > 0 pathways. Similarly,

of interest are maximal β < 0 pathways whose head nodes have no in-edges with

β < 0 and whose tail nodes have no out-edges with β < 0. For all these sets the

frequency constraint discussed earlier also still applies.

The sets of head and tail edges for pathways are labelled β > 0 as H+ and T+

respectively, and for pathways of β < 0 as H− and T− respectively. For example,

H+ is defined to be the set of all edges ei, j such that ei, j is in E, the edge has β > 0,

and any edge ek,i whose end node is the same as the start node of ei, j has a β 6> 0.

Therefore it can be written:

H+= {ei, j} | ei, j ∈ E ∧ get- f (ei, j)≥ Parpath
minfreq

∧ get-β (ei, j)> 0

∧ ∀ek,i ∈ E get-β (ek,i) 6> 0

T+= {ei, j} | ei, j ∈ E ∧ get- f (ei, j)≥ Parpath
minfreq

∧ get-β (ei, j)> 0

∧ ∀ek,i ∈ E get-β (ek,i) 6> 0

H−= {ei, j} | ei, j ∈ E ∧ get- f (ei, j)≥ Parpath
minfreq

∧ get-β (ei, j)< 0

∧ ∀ek,i ∈ E get-β (ek,i) 6< 0

T−= {ei, j} | ei, j ∈ E ∧ get- f (ei, j)≥ Parpath
minfreq

∧ get-β (ei, j)< 0

∧ ∀ek,i ∈ E get-β (ek,i) 6< 0
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Therefore two sets of pathways can be written: ΓH+,T+ is the set of maximal

β > 0 pathways, and ΓH−,T− is the set of maximal β < 0 pathways. Individual

pathways would for example be written as Γ
H+,T+
i and Γ

H−,T−
i .

For the specific problem of the algorithmic detection of pathways a simple but

effective approach is to start with a node in H and look along connected out edges

to find a new node, and then repeat this process on the new node until no new nodes

can be found (where each out edge must meet the requirements specified above). In

the case where a node connects directly to multiple other nodes a pathway would

be constructed for each possible choice (it should be noted that this may give rise to

pathways with overlapping regions). To discover the set of all pathways this process

would be applied to all possible start nodes.

3.3.3 Summary of properties and metrics

This section has presented a number of metrics/properties that can be used to charac-

terise a system represented by the USIC-Network, and hence describe the behaviour

of the underlying system. To review: two node level metrics were presented, pattern

loop chance and directional change in causality, that both relate to the transitional

likelihood of the node, with overlap in their presented information existing i.e. if a

node is likely to self-loop then its directional change will be near zero. Two station-

ary node grouping properties were presented, noise grouping and regime grouping,

that both group nodes together based on similarity related to the underlying causal-

ity patterns, both behavioural structures within the network. Finally one dynamic

property was presented that categorised a type of temporal movement through the

network, related to the a consecutive increase or decrease change in the total causal-

ity. These presented metrics/properties each can be used to characterise a system

individually, though depending on their results they may be taken together to give a

richer description of the systems dynamic behaviour.

3.4 USIC network validation on synthetic data
To demonstrate the characterisation of the properties presented above, and to val-

idate the ability of the metrics to observe those properties, this section applies the
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metrics to two types of synthetic networks; a random network model and edited

random networks, designed to contain artefacts appropriate to the properties.

A random ErdősRényi model is used for generating the random network. This

is done by predefining a number of nodes, whose causality pattern is randomly

selected without repetition. A time series path of nodes (series of causality patterns)

is produce by taking an initial node and then selecting the next node uniformly from

all nodes in the system (where the probability of selecting node j while at node i is

Ti, j), and then repeating this process till a path of desired length is achieved. This

path can then be transformed into a network following the method described in

Section 3.2 to produce a random network. Following this procedure the following

parameter selections are made: Four variables are chosen to make up the underlying

system, leading to each node representing a 4×4 causality pattern. A hundred nodes

(causality patterns) are randomly produced (without repetition of their causality

patterns), to create a hundred potential system states for the system to transition

between. The network is then populated by by generating a path of ten-thousand

steps with the transition probabilities Ti, j =
1

100 ∀i, j.

Characterisation of this random network is then achieved by investigating the

proposed properties and metrics occurrence within it. For this the parameters of

properties and metrics are set as follows: Parnoise
maxα = 2, Parregime

min f req = 10, Parpath
min f req =

10, and Parpath
minlen = 3.

The results of these methods can be seen in Fig. 3.3, these results are as ex-

pected for a random network, not demonstrating any significant behaviour of inter-

est. As may be expected for a random network there exists few noise clusters, that

in total account for 10% of the networks nodes, with no single cluster accounting

for more then 3% of the network. No Pathways or Regime Clusters were detected.

The Causal Direction appears to be well distributed, not demonstrating any strong

behaviour. The Loop Chance sits around zero, which is expected when each node

only has a one in a hundred chance of transitioning to itself.

To confirm that the metrics and properties manifest as discussed above when

present in a network, a Monte Carlo experiment is run for each approach separately.
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Figure 3.3: Results of analysis methods for each node (0-99) on a random network. Ω
loop
i

and Ω
sign
i display the associated value for each node, Λnoise, Λequ, and Γ display

the cluster/Pathways if any a node is a member of (node cluster/pathway label
starts at 0).

With the detection of these metrics and properties in these Monte Carlo experi-

ments indicating the success of their definitions, i.e. that these definitions cover the

existence of these behaviours when defined through the statistics of a networks for-

mulation. These experiments are set up by defining an edited network, where this

network is generated following the same procedure as above but during its creation

an artefact pertaining to the properties or metrics of interest is implanted (described

below). For each metric and property the experiment is run ten times, with the gen-

eration, probabilities, and networks being independent on each run. For each run

the artefact is implanted on the same node numbers to aid in comparison between

the runs and so that any unintended effects on the networks are not conflated with

intentionally edited nodes (this does not impact the experiment in any way but vi-

sually since all the nodes are randomised for each run, and hence the node IDs are

only for reference within a single experiment).

These artefacts are inserted by selecting a set of nodes and editing the causal-

ity patterns and the probability of transition between them, such that if a node was

edited to have a 50% probability to transition to a certain other node, the remain-
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ing 50% would be equally divided between all other nodes. The rest of the graph

remains random, where all other nodes’ causality patterns were randomly gener-

ated and the probability of transition between nodes was uniform for all non-edited

probabilities.

Only one artefact is implanted in each network, with the node number being

used for references in later visualisations and discussions but having no other mean-

ing. The results of these Monte Carlo experiments are shown as the node (its ID)

vs the metric or property being investigated (i.e. if it belongs to a regime, noise

cluster, etc) to demonstrate the existence and detection of the implanted artefact.

For each of the ten runs, and for each experiment, one run is selected and for the

first hundred time steps (out of the ten thousand time steps run for) the node (its

ID) and causality links of the causality pattern that the system is in are shown, to

demonstrate the evolutionary behaviour of the system.

The five metrics assessed in this validation are (i) Ωloop, to determine if it

detects pattern stability, (ii) Ωsign, to determine if it detects directional change in

causality, (iii) Λnoise, to determine if it detects noisy regimes, (iv) Λequ, to determine

if it detects net causality equilibrium, and (v) ΓH,T , to determine if it detects net

causality pathways. For each of these the associated embedded artefact is defined

below, together with its validation results.

Pattern stability. For pattern stability nodes 0-4 are edited, only the transition prob-

ability of these nodes was edited to T0,0 = T1,1 = T2,2 = T3,3 = T4,4 = 0.7, so that

they each had a 70% chance of a self loop.

The detection for each run is shown in Fig. 3.4, where only the edited nodes

showed any signs of being affected and are easily discernible from the non-edited

nodes. The first one hundred time steps are shown in Fig. 3.5 appearing mostly

random but showing a few instances where the pattern stability artefact occurs (e.g.

from time steps 10-14 and 42-44).
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Figure 3.4: Results of analysis methods for pattern stability, for each node (0-99) for the
ten runs of the Monte Carlo experiment, the x-axis represents the node ID and
the y-axis the loop probability Ω

loop
i . The edited nodes are marked with vertical

lines representing where the pattern stability behaviour is expected to occur.
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Figure 3.5: Causality pattern of first hundred time steps of a single run shown in Fig 3.4,
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(bottom), with a black square representing a link. Pattern stability is seen from
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Directional change in causality. For directional change in causality nodes 29-33

are edited so that they contain 8, 10, 12, 14, and 16 causality links respectively.

Their transition probability was also edited such that T29,32 = T29,33 = T30,32 =

T30,33 = T32,29 = T32,30 = T33,29 = T33,30 = 0.35 and T31,29 = T31,30 = T31,32 =

T31,33 = 0.2, so that it is probable 29 and 30 will have a positive Causal Direction, 32

and 33 should have a negative Causal Direction, and 31 will have an approximately

neutral Causal Direction (though for 31 the 20% random transition probability will

likely shift it above or below a 0 Causal Direction, but it is still expected to sit

between 29-30 and 32-33).

The detection for each run is shown in Fig. 3.6, this demonstrates random be-

haviour for the majority of the nodes (as expected) but shows the artefact appearing

for the edited nodes in all runs (nodes 29 and 30 have a positive Causal Direction,

32 and 33 have a negative Causal Direction, and 31 has a Causal Direction between

29-30 and 32-33). The first one hundred time steps are shown in Fig. 3.7 appearing

random.

Noisy regimes. For noisy regimes nodes 49-53 were edited to all be α = 1 from

a random causality pattern (that was not manually placed into the network, this

selection of α = 1 defines these nodes as “close” to the random node such that

they could represent a noisy regime). Their transition probability was also changed

to T49,50 = T49,51 = T49,52 = T49,53 = T50,49 = T50,51 = T50,52 = T50,53 = T51,49 =

T51,50 = T51,52 = T51,53 = T52,49 = T52,50 = T52,51 = T52,53 = T53,49 = T53,50 =

T53,51 = T53,52 = 0.15, so that the selected nodes are most likely to transition to

each other, who are other close nodes, creating a noise regime.

The detection for each run is shown in Fig. 3.8, with the artefact (nodes 49-

53 belonging to a single noise regime) being detected in all runs, there are also a

number of other noisy regimes that appear, which is not unexpected for a random

network and this type of behaviour. The first one hundred time steps are shown

in Fig. 3.9 appearing mostly random but showing some repeated similar causality

patterns when the system enters a noise regime e.g. at time steps 66-70 and 80-85.
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Figure 3.6: Results of analysis methods for directional change in causality, for each node
(0-99) for the ten runs of the Monte Carlo experiment, the x-axis represents
the node ID and the y-axis the expected causality change Ω

sign
i . The edited

nodes are marked with vertical lines representing where the directional change
in causality behaviour is expected to occur.
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Figure 3.7: Causality pattern of first hundred time steps of a single run shown in Fig 3.6,
showing node ID (top, with continuous line for readability), and causal links
(bottom), with a black square representing a link.
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Figure 3.8: Results of analysis methods for net causality equilibrium, for each node (0-99)
for the ten runs of the Monte Carlo experiment, the x-axis represents the node
ID and the y-axis the cluster the node is in (if it is in one) Λnoise. The edited
nodes are marked with vertical lines representing where the noisy regimes be-
haviour is expected to occur.
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Figure 3.9: Causality pattern of first hundred time steps of a single run shown in Fig 3.8,
showing node ID (top, with continuous line for readability), and causal links
(bottom), with a black square representing a link.
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Net causality equilibrium. For net causality equilibrium nodes 69-73 were edited

so that they all contained 5 causal links, though their structure was left random.

Their transition probability was also edited to T69,70 = T69,71 = T69,72 = T69,73 =

T70,69 = T70,71 = T70,72 = T70,73 = T71,69 = T71,70 = T71,72 = T71,73 = T72,69 =

T72,70 = T72,71 = T72,73 = T73,69 = T73,70 = T73,71 = T73,72 = 0.15, so that these nodes

form a group that is more likely to transition internally than externally.

The detection for each run is shown in Fig. 3.10, with the artefact (nodes 69-73

belonging to the same cluster) being detected in all runs. The first one hundred time

steps are shown in Fig. 3.11 appearing random.

0

2

4

6

8

10

Λ
re
gi
m
e

0

2

4

6

8

10

0

2

4

6

8

10

Λ
re
gi
m
e

0

2

4

6

8

10

0

2

4

6

8

10

Λ
re
gi
m
e

0

2

4

6

8

10

0

2

4

6

8

10

Λ
re
gi
m
e

0

2

4

6

8

10

0 20 40 60 80 100
Node (i)

0

2

4

6

8

10

Λ
re
gi
m
e

0 20 40 60 80 100
Node (i)

0

2

4

6

8

10

Figure 3.10: Results of analysis methods for noisy regimes, for each node (0-99) for the
ten runs of the Monte Carlo experiment, the x-axis represents the node ID and
the y-axis the cluster the node is in (if it is in one) Λequ. The edited nodes are
marked with vertical lines representing where the net causality equilibrium
behaviour is expected to occur.
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Figure 3.11: Causality pattern of first hundred time steps of a single run shown in Fig 3.10,
showing node ID (top, with continuous line for readability), and causal links
(bottom), with a black square representing a link.

Net causality pathways. For net causality pathways nodes 89-93 were edited so

that they contained 2, 3, 5, 6, and 8 causality links respectively. The transition

probabilities were also edited to T89,90 = T90,91 = T91,92 = T92,93 = 0.8, so that these

nodes formed a pathway from node 89 to node 93.

The detection for each run is shown in Fig. 3.12, with the artefact (nodes 89-93

belonging to a pathway) being detected in all runs. The first one hundred time steps

are shown in Fig. 3.13 appearing random.
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Figure 3.12: Results of analysis methods for net causality pathways, for each node (0-99)
for the ten runs of the Monte Carlo experiment, the x-axis represents the node
ID and the y-axis is ΓH,T , the pathway cluster the node is in (if it is in one).
The edited nodes are marked with vertical lines representing where the net
causality pathway behaviour is expected to occur.
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Figure 3.13: Causality pattern of first hundred time steps of a single run shown in Fig 3.12,
showing node ID (top, with continuous line for readability), and causal links
(bottom), with a black square representing a link.
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3.5 USIC network case study: the international oil

market
In this section the characteristics of the international oil market data presented in

Chapter 2.4 are investigated using the methodology presented in this chapter. Us-

ing the series of causality patterns for this data defined in Chapter 2.4 the USIC-

Network is constructed. Then the analysis introduced in this chapter is applied to

this network, using parameters Parnoise
maxα = 2, Parregime

min f req = 1, Parpath
min f req = 2, and

Parpath
minlen = 4 (this configuration was selected through experimentation), with re-

sults for each node in the network shown in Fig. 3.14. From the results in Fig. 3.14
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Figure 3.14: Results of analysis methods for each node on a network of Oil spot prices.
Ω

loop
i and Ωdirected

i display the associated value for each node. Λnoise and
Λregime display the cluster labels of the node if applicable. ΓH,T displays path-
way labels of the node if applicable, these are for both ΓH+,T+ and ΓH−,T−

pathways. Note that the cluster and pathway labels starts at 0.

looking at the individual analysis methods one can draw the following conclusions:

• On the whole nodes tend to favour having a chance of self-looping

(mean(Ωloop
i ) = 0.32), however a few nodes have a very high chance of
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self-looping. This implies that there exists a few highly stable causality

patterns within the evolution.

• The causal direction of nodes during transition is on average close to zero but

favours negative transitions (mean(Ωdirected
i ) = −0.27), showing that on the

whole transitions tend to decrease the total causality of the network.

• The majority of the network belongs to one of eight noise clusters (Λnoise)

with sizes of: 17, 14, 13, 12, 10, 10, 7, and 6. These clusters are defined

such that no causality pattern within them may differ more then 12.5%. This

demonstrates that the causality pattern of the international oil market transi-

tions throughout time between groupings of very similar patterns. Implying

that the specific causality patterns are non-random, and can be seen as devia-

tions within these clusters.

• The network shows virtually no regime clustering (Λregime), implying that

causality patterns do not maintain their overall causality during transitions in

non-self-loop cases. This suggests that the evolution of the system is effected

by individual causal links and not the overall causality of the system.

• There only exists a few pathways of Net Change in Causality ΓH,T that are

longer than a few nodes within the network, implying that changes in net

causality primarily take place over a short number of nodes. This indicates a

lack of significance in Net Change in Causality in the systems evolution.

To further investigate the behaviour of noise clusters within the network (from

the context of the methodology), the cluster the system is in at each time step during

its evolution is plotted, results displayed in Fig. 3.15. From these results one can see

that cluster 6 is very dominant within the evolution, with the system spending the

majority of its time within this cluster. It can also be seen that on the whole when the

system leaves this cluster it tends to stay in whichever other cluster it transitions to

for a extended number of time steps. This demonstrates that the systems evolution

is heavily dominated by these clusters, with causality patterns staying similar for

extended time steps.
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Figure 3.15: Noise cluster occupancy for the current node against time, for the whole sys-
tem evolution: a black line indicates the current node is in the indicated noise
cluster at the indicated time step.

The change in the self-loop metric during the evolution is also investigated,

through smoothing the results with a rolling average of 50 time steps, shown in

Fig. 3.16. The rolling average shows an approximate cyclic pattern to the evolution

of this metric, where the system goes through periods of increasing self-loop chance

before going through periods of decreasing self-loop chance. This implies that the

system state may be moving between regions of stability, with unstable regions in-

between.

These results taken together demonstrate that this evolution is highly dependent

on the individual links and structure of the causality patterns and not on the overall

causality. Furthermore the system favours transitions to causality patterns with a

similar structure, illustrated by the evolution being able to be decomposed into a

number of noise clusters. Nodes nodes with a high chance of self-looping may

be considered more stable aspects of these noise clusters, with nodes with a low

chance of self-looping being taken as noise/transition nodes around and between

these clusters.
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Figure 3.16: Chance of self-loop at each time step for the current node (blue circles). The
red line is the rolling average with a window of 50 time steps for the self-loop
chance in the evolution.

3.6 Discussion
The work presented in this chapter addresses the first research question presented

in the Research Objectives, demonstrating that time-varying behaviour of a system

can be more fully explained via the inclusion of information on the transition prop-

erties between causality patterns. This is achieved through the proposal of: a new

methodology for the representation of a time-varying system using a complex net-

work; five new properties/metrics for the characterisation of said complex network;

synthetic validation of the methodology; and, investigation of the international oil

market using said methodology. Below a more detailed summary of this work is

given.

The work presented here aims to expand the field of research, presenting a new

methodology for information extraction from evolving causality networks. Explor-

ing the evolution characteristics of time-varying causality relationships holds the

potential for a deeper understanding of the dynamics of many complex multivariate

systems. This chapter a method to encode the evolution of the interaction dynam-

ics within a multivariate system into a series of causality patterns. The work of

authors, such as Jiang et al is expanded upon, by transferring these patterns to a

multi-weighted directed network, the USIC-Network, capable of containing three

key metrics of the evolution: frequency of transition, Total Difference in Causality,
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and Net Change in Causality. The addition of the latter two metrics allows for in-

formation regarding the change in the underlying causality structure to be encoded

into the network. This in turn supports further analysis methods to be performed

on this network. Five novel approaches for the analysis of the evolution of inter-

actions within a multivariate system are presented: these methods are based on the

presented network model and take advantage of the information of the underlying

causality pattern. Prior to the USIC-Network model presented in this chapter, this

causality information was not available in a manner suitable for network analysis

techniques.

This methodology is validated via application to two networks: a random net-

work, and a random network edited to contain the above properties and metrics.

This validation demonstrated that the above properties were discoverable using the

metrics and differed from a similar analysis of a random network.

To demonstrate these proposed approaches they are applied to sample data

from the international oil market, due to its popularity in research and its known

underlying interaction dynamics. For this data a behavioural description not readily

discoverable with current approaches to analysis employed in the research of com-

plex network representations of time-varying interaction dynamics was constructed.

The primary aspects of this description can be divided into four linked findings of-

fer new understandings of this market data: (i) The transitions over a single time

step primarily result in a small change in the overall causality of the system. (ii)

The change in the causality pattern from a transition over a single time step changes

the amount of causality in the system and not the structure of the causality (i.e. the

causality pattern remains mostly similar). (iii) The evolution contains clustering,

specifically eight clusters wherein the causality pattern of every member node is

very similar (differing by no more than two causality links). (iv) The evolution goes

through cycles of “high” and “low” stability (likelihood of self-loop), implying the

existence of and movement between favoured causality patterns. These results as

a whole can be taken to infer that the system favours a few causality (patterns plus

some deviation around these) that it moves between through the addition or subtrac-
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tion of a couple causality links. Therefore the structure/layout of the causality of

the market is important, with the overall amount of causality in the system playing

a less important role for the evolution.

This chapter offers new information on the dynamic behaviour of the interna-

tional oil market, demonstrating that the underlying structure of the causality pat-

terns has a role within its dynamic behaviour. This chapter also offers the methodol-

ogy and validation that behaviour can be discovered and described from a low level

perspective using a complex network.



Chapter 4

Paradigms of Temporal Dynamics in

Time-Varying Systems

Chapter 3 identified that the inclusion of knowledge of the underlying structure

leads to the discovery of behaviours within the time-varying dynamics of the sys-

tem. Specifically, Chapter 3 discovered that the international oil market has a dy-

namic behaviour that appears to be primarily governed by changes in the causality

of individual links rather than changes in the structure of the whole pattern. Based

on this analysis, this chapter explores a hypothesis that knowledge of this low-level

behaviour can be used to define two paradigms of temporal behaviour for systems of

this type. Further, that these paradigms describe the dominate evolutionary aspect

of this behaviour that can be used to reduce the complexity of the system during

analysis. The applicability of this hypothesis is investigated for the international oil

market through a methodology of dimensionality reduction based on the paradigms

and a simplistic prediction algorithm for the reduced time series.

4.1 Background and related work
As discussed in Chapter 2, and further expanded upon in Chapter 3, much of the

current literature concerned with time-varying multivariate systems takes a com-

plex network approach [33]. Specifically, this work on complex networks primarily

focuses on high-level behaviour within the system’s dynamic behaviour. However,

in Chapter 2 another approach to time-varying multivariate systems was discussed,
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this being the representation of the time-varying system as a time-series of causality

patterns [74] (or in some cases a few specific causality patterns, but with a temporal

ordering considered [23]). This work focusing on the causality patterns (or equiv-

alent interaction structure) often takes the form of comparison or tracking of a fea-

ture of the network (pattern) of the causality interactions (further discussed below).

Methodologies of this form allow for a time series of the system’s time-varying be-

haviour to be constructed. This time series is an alternative representation of the

data than a complex network approach, allowing for different forms of analysis and

investigation to be employed, and approaches of this manner should be of interest

to those investigating the dynamic behaviour of a time-varying multivariate system

(in particular, relating to the underlying causality structure).

Time-series analysis is a mature field consisting of numerous approaches and

methods for the investigation of information in this form [6, 7]. In particular, time-

series data can be seen as amenable to methodologies for prediction/forecasting

[161], with an often employed approach being model fitting. This methodology

fits a model to some training segment of the time series and then predicts future

values of the series via this model (and its fitted parameters) [162]. The most basic

usage of this is linear extrapolation, where a linear model is fitted to the data, with

predictions following the resultant line [163].

Most time-series approaches assume that each value within the series is one-

dimensional (a single value); this does not naturally fit with the time-series of

causality patterns being constructed for time-varying interactions of a system.

Therefore it is desirable to represent each causality pattern (a multi-dimensional

value) as a one-dimensional value. However, this represents a problem as for a

multi-dimensional value, as there does not exist a single one-dimensional value that

can be said to fully represent it in all aspects, with Li et al. [40] stating that “dur-

ing transformation process, information losses of multivariate time series become

inevitable”.

Due to this, several metrics (information aggregation/fusion strategies) have

been used within the literature to act as this value [40, 164], such as a one-
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dimensional value found via a Principle Component Analysis (PCA) [74], and the

total causality of the pattern, found by summing the causality [98, 83]. However,

due to this information loss, the analysis applied to these univariate time-series rep-

resentations is only applicable to the information contained within them.

In Chapter 3 an investigation via a complex network method was undertaken,

which implied that transitions in the time-varying behaviour of the international oil

market are dominated by the increase or decrease of a few causal links and not a sub-

stantial change in the structure of the causality patterns. Based on this prior work,

this chapter investigates a hypothesis: “can a meaningful one-dimensional time se-

ries representation of a time-varying system be constructed based upon that system’s

overall transition behaviour?”. The use of a dimensionality reduction method based

on a scientific understanding of the system opposed to a standard statistical method,

such as PCA, is three fold. PCA has three important limitations in its application,

which are that it assumes linearity and correlation of the causality results between

the time series (of each of the oil returns), that it is not robust to outliers, and that

the principle components (especially when reduced to one-dimension) have low in-

terpretability [165]. All three of these problems can be addressed with an approach

based on the scientific understanding of the system in question, with non-linear re-

lations being able to be considered, outliers having a more limited effect, and the

dimensionally reduced value having a pre-determined meaning.

4.2 Methodology: Paradigms of dynamic complex

networks
Following the above background and the work in Chapter 3 this section defines two

paradigms based on the transitions of the causality pattern that a system could be

in (these are not intend to be exclusive to all temporal dynamics, merely to capture

two dominate types of temporal dynamics based on the USIC-Network presented

in Chapter 3). For each of these paradigms, a one-dimensional representation of the

data is given that is deemed appropriate for the specific behaviour of the system.

A methodology for determining which paradigm is most applicable for a system
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is also presented. This paradigm approach splits the complexity of dimensionality

reduction into two aspects, choice of paradigm and lower dimensionality represen-

tation in that paradigm. This allows the actual dimensionality reduction approach

to be simpler and more meaningful to the specific system. These two paradigms are

described as follows:

1. Change paradigm: this paradigm is best described by the β metric (introduced

in Chapter 3), the transitions of a dynamic system under this paradigm will be

limited to the addition or removal of causality links in a manner that maintains

similarity between α and β . In other words, transitions under this paradigm

will primarily change the overall causality of the causality pattern. For clarity

examples are shown in Fig. 4.1.

2. Ordering paradigm: this paradigm is best described by the α metric (intro-

duced in Chapter 3), the transitions of a dynamic system under this paradigm

will primarily be rearranging the structure of the causality patterns, leading

to a dissonance between α and β . In other words, transitions under this

paradigm will primarily maintain the overall causality of the causality pat-

tern. For clarity examples are shown in Fig. 4.1.

Figure 4.1: Examples of causality patterns before and after a single transition, for a system
containing three variables. Change paradigm examples shown on left exhibit-
ing either addition or subtraction of causal links. Ordering paradigm examples
shown on the right exhibiting combination of addition and subtraction of causal
links.



4.2. Methodology: Paradigms of dynamic complex networks 102

These paradigms encapsulate two behaviours of the time-varying dynamics of

a system, these exist as a subset of a much large set of all possible behaviours,

and are not intend to be an exhaustive set. These two paradigms were specifically

chosen for where they sit in this larger set of all behaviours. For complex analysis

(such as that proposed in Chapter 3) it is desirable and common to have a number of

archetypal forms presented that represent the edges of behaviours (see small world

and scale-free networks in network theory [166]). The two paradigms presented can

be seen to represent two opposite types of evolution (that preserving total causality

but changing link layout, and that preserving link layout but changing total causal-

ity) and sitting at either end of a spectrum of paradigms, with paradigms mixing

these two evolutionary types occupying the space in the spectrum between them.

With these paradigms defined, an educated decision on what metric to employ

for the one-dimensional representation of the causality pattern can be made. This

choice of metric should be selected to give the best visibility to the behaviour of the

underlying structure. These choices are as follows:

1. Change paradigm: in this paradigm, movement is primarily driven by the β

metric, implying that transitions result in a change in the total causality of

the system, i.e. the new causality pattern will have a different amount of

causality than the previous causality pattern. Using this information it can

be seen that the total causality of the system will change time step to time

step (ignoring self-loops), allowing a time series of this measure to encode

the information change of each transition. Therefore this metric is chosen as

the one-dimensional representation of the causality pattern for this paradigm.

For convenience, this metric will be referred to as Sum of Causality (SoC)

and formally defined for a pattern i as SoC = ∑Ci (where Ci is a causality

pattern, defined in Chapter 3.2).

2. Ordering paradigm: for this paradigm movement is primarily driven by the

α metric, implying that transitions result in a change in the structure of the

causality pattern but an equivalent total causality. Due to equivalent total

causality, SoC is not applicable as a metric for this paradigm. This reveals
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that a transition should result in a new causality pattern with a different struc-

ture to the previous causality pattern (ignoring self-loops), i.e. resulting in an

α metric value greater than zero between them. A reference causality pattern

needs to be chosen to convert this form of transitional metric to a causality

pattern metric. A reference causality pattern Cr can either be manually se-

lected or taken as the mean causality pattern of some historical data, with

the latter being recommended. Using this reference pattern, a metric for the

causality patterns under this paradigm is proposed. For convenience, this met-

ric will be referred to as Sum Difference from Mean (SDM) and is the value of

the α metric between the causality pattern and the reference causality pattern.

For a causality pattern i this can be formally defined as SDM =∑

√
(Ci−Cr)2

The determination of a systems current paradigm naturally follows on from

the definitions and discussions given above. Given that a system is represented by

the USIC-Network proposed in Chapter 3, a comparison of the α and β transition

parameters for the network will allow for a determination of the paradigm. If for

the majority of transitions (edges) α =±β the system can be said to be in a Change

paradigm, and if for the majority of transitions α > |β | and β ≈ 0 the system can be

said to be in an Ordering paradigm. However, these determinations are qualitative,

and hence the specific conditions and level to which they hold will depend upon the

data and analysis being undertaken.

4.3 Paradigm results: International oil market
This chapter was motivated by the results in Chapter 3 which imply that the time-

varying behaviour of the international oil market data, laid out in Chapter 2.4, is

dominated by transitions changing a few links and changing the overall causality

of the causality patter. Following the proposals of paradigms set out above, these

findings suggest that the international oil market is dynamic behaviour is classifiable

as the Change paradigm. To investigate this hypothesis qualitative determination

approach set out above is followed below:

Taking the data presented in Chapter 2.4 and apply the method for complex
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network construction proposed in Chapter 3, a USIC-Network representation of the

data can be found. From this USIC-Network the α and β values for each edge

can be extracted, these weightings are shown in Fig. 4.2. The comparison of α
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Figure 4.2: α and β weightings for edges calculated in Chapter 3 for all edges within the
network.

against β shown in Fig. 4.2, do not appear to strongly support either paradigm, with

data points occurring for α = ±β and, α > |β | both for β = 0 and β 6= 0. Based

on this a further investigation can be undertaken, noting that the interest is on the

predominate behaviour, “outlier” and irrelevant edges (and their associated α and

β ) can be removed. To achieve this all edges with a frequency weighting of less

then or equal to five (F ≤ 5) are removed, and so are all self-loop edges (where

the source and end node are the same). After this data cleaning the data can be

re-plotted, with results shown in Fig. 4.3.

From the comparison of α against β shown in Fig. 4.3 it is clear that α =±β

for all investigated edges. With this knowledge, a conclusion can be made that the

international oil market is under the Change paradigm, concurring and furthering

the results from Chapter 3.

Following the methodology set out above, this analysis implies that the time

series data for the international oil market would be well represented by the Sum of

Causality (SoC) metric. To achieve this the series of causality patterns discussed in
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Figure 4.3: α and β weightings for edges calculated in Chapter 3 for all edges within the
network that are not self-loops and have F > 5.

Chapter 2.4 can be transformed into a time series of one-dimensional values, with

each value being the SoC for the causality pattern at that time step. This time series

is plotted and shown in Fig. 4.4.
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Figure 4.4: Time series of Sum of Causality (SoC) for the series of causality patterns for
the international oil market discussed in Chapter 2.4.
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4.4 Methodology: Predicting causality patterns un-

der a paradigm
Following the results above for the international oil market, this section constructs

a methodology for predicting this data, and hence validating the paradigms descrip-

tion. An investigation into this time series data is undertaken to achieve this, with

methods being proposed where appropriate. As such, the results of this section can

be seen as specific to the international oil market; however, the approach to the

construction of these methods can be seen as a framework for other investigations.

This section is split into three parts: a methodology for smoothing the time series

of causality patterns, an investigation of this new time series for predictability, and

a proposal of a simplistic prediction algorithm to demonstrate the strength of the

information contained in the series.

4.4.1 Time series smoothing

From observing the behaviour shown in Fig. 4.4 it can be seen that there appears

to be a dominant value to which the system reverts. The deviations from this value

appear in some instances to have a wind up/down behaviour, taking a few steps to

peak or come down. This implies that some behaviour may exist within this time

series; however, due to the step-like nature of the data, this behaviour is challenging

to observe. Therefore it may be informative for a smoother expression of this data

to be investigated.

Due to the relatively short number of time steps that appear to be involved

in the wind up/down behaviour, methods such as smoothing over multiple time

steps cannot be employed [167]. It is known from the formation of the Granger

causality test that a artificial quantisation is applied to the actual statistics, this is the

significance level that is applied to the continuous p-value. Therefore, a measure

called continuous Granger causality is proposed to investigate this system, based on

the raw p-value result as a representation of the strength of the causality [168]. This

measure is for use in intermediary analysis and should not be considered a definitive

measure of causality its self, for that, a significance level should be applied as in
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the traditional Granger causality test. For clarity the continuous Granger causality

measure is defined as 1− p-value (where the p-value is calculated as discussed in

Chapter 2), such that a “strong” causality is near 1 and a “weak” causality is near

0. This usage of the p-value is inspired by the discussions on the topic of this

quantity by R. Fisher [169], who describes the p-value as a rough numerical guide

of the strength of evidence against the null hypothesis [170, 171]. This endorses

the use of the continuous Granger causality metric as a rough guide to the system’s

dynamic behaviour. The aim of this metric being to give a smoother nature to the

dynamics allowing for behaviours to be correctly characterised and discovered. It

should also be noted that other interaction dynamics with a continuous measure of

interaction may offer alternatives to this approach, such as transfer of entropy [37]

and correlation [115], discussed in Chapter 2.

With this continuous Granger causality metric, the causality patterns can be

reconstructed, and hence so can the time series, as described above. For clarity

from here forward, the time series produced with the continuous Granger causality

metric will be referred to as the “continuous time series”, and the original series

shown in Fig. 4.4 will be referred to as the “binary time series” (after the binary

nature of classic Granger causality). The continuous time series can be seen in

Fig. 4.5.

The data shown in Fig. 4.5 appears to exhibits a much smoother behaviour

than that in Fig. 4.4, and to display oscillation around some value. Compared to the

data in Fig. 4.4 the SoC values produced are larger; this is due to the summation of

values that a significance filter would set to zero. In line with the earlier hypothesis,

this data exhibits more information on the wind up/down behaviour in the time-

varying behaviour, with more obvious movement both two and from the midpoint

being observable.

The variation of this data set can be investigated further by plotting the his-

togram of its distribution; this is shown in Fig. 4.6. From this distribution, one can

see that it appears approximately Gaussian, with a very often visited mean and de-

creasing visits to the extremities, creating tails. With this knowledge investigating
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Figure 4.5: Sum of Causality for each time step, where the measure of causality in each
pattern is calculated as 1−p-value (the continuous time series).
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Figure 4.6: Histogram of Sum of Causality for data shown in Fig. 4.5, bin size of 0.5.

the data from Fig. 4.5 with a line of best fit should return how well this data is dis-

tributed around this central value. A line of best fit, calculated using least squares,

is shown in Fig. 4.7 with a gradient of 2.354×10−5 and an intercept of 7.553. This

line of best fit implies that the data is approximately centred on this intercept and os-

cillates around it. A further test can be done to test if this data is stationary, here the

Augmented Dicker-Fuller (ADF) test was employed (results shown in Table 4.1),
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that shows this data is stationary at a 1% significance level.
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Figure 4.7: Sum of Causality for each time step, where the measure of causality in each
pattern is calculated as 1− p-value (the continuous time series). Line of best
fit with gradient of 2.354×10−5 and a intersect of 7.553.

Table 4.1: Results of stationary tests using a Augmented Dickey-Fuller (ADF) test. A p-
value<0.01 indicates the rejection of the null hypothesis for the test at a 1%
level.

ADF-Statistic (3 sf) p-value
Sum of Causality -10.7 0.001

From this analysis, it appears that the usage of a continuous Granger causality

measure allows for the expression of time-varying behaviour that the application of

a significance level can obscure. Further, the continuous time series appears more

amenable to an investigation of predictability than the binary time series due to its

stable, smoother, and stronger behaviour.

4.4.2 Investigation of predictability

Taking the continuous time series produced above an investigation of its amenabil-

ity to prediction is undertaken. This investigation can validate the usability and

suitability of the paradigms for expressing key temporal properties of the system.

The above transfer to a continuous time series from a binary one was motivated

by the presence of wind up/down periods in the series, where it increased to and
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decreased from high SoC values (or the reverse for lower values). In the continuous

time series, this behaviour is more apparent and can be investigated in more depth

as a rate of change. Predictability within the rate of change can be expanded upon

to determine predictability within the series itself. Here the rate of change from

the line of best fit (shown in Fig. 4.7) is conducted by: (i) calculating the deviation

of the value at each time step from the line of best fit, (ii) calculating the rate of

change of each time step, as the difference in the value of the current time step from

the last (thus these calculation create a list of values that ignores the first time step).

The behaviour of these values can be explored by plotting the deviation from the

line of best fit for each time step against its rate of change, these results are shown

in Fig. 4.8. The results shown in Fig. 4.8 demonstrate an overall behaviour for the
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Figure 4.8: Rate of change against deviation from the line of best fit for the data in Fig. 4.5.

systems movement, with strong clustering around the 0 rate of change, spreading

and increasing as the deviation approaches ±2, representing the systems reversion

to the line of best fit. This implies that the dynamic nature of this behaviour is

approximately linear between peaks, where large rates of change occur.

The next investigation into the predictability of the data is through the lags.

Taking lag time steps of 1, 5, 20, and 50, the comparison between values at these

different intervals is taken. This investigation is aimed at determining how well a
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current value can represent a future value. The results of this investigation are shown

in Fig. 4.9. From this investigation it can be seen that for low lag values there is
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Figure 4.9: Lag plot, with y(t) being the SoC value at time step t from Fig. 4.5.

some positive correlation, however this quickly drops off until there appears to be

no correlation. Implying that the current value may operate as a potential predictor

for a low number of time steps into the future.

This can be investigated further by looking at the autocorrelation of the con-

tinuous time series, with the results of this analysis shown in Fig. 4.10. From the

results in Fig. 4.10, it can be seen that for low lag values there exists rapidly decreas-

ing strong positive correlation, for high lag values there does not appear to be much

significant correlation. This corroborates the results shown in Fig. 4.9, suggesting

some predictability for a low lag order.

For clarity the results in Fig. 4.10 were re-plotted for low lag values, shown

in Fig. 4.11. From these results, the predictive power quickly degrades as the lag

increases, becoming non-significant at around a lag of 25 time steps, equivalent to

a period of 55 days.

4.4.3 Prediction algorithm

Following the above analysis, a prediction algorithm is proposed for this data. This

algorithm is designed to take advantage of the discovered auto predictability at low
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Figure 4.10: Autocorrelation of data from Fig. 4.5, with the horizontal dotted lines display-
ing the 99% confidence band and the solid horizontal line displaying the 95%
confidence band.
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Figure 4.11: Autocorrelation of data from Fig. 4.10, with the horizontal dotted lines dis-
playing the 99% confidence band and the solid horizontal line displaying the
95% confidence band.

lag values and the approximate linearity between peaks. This algorithm is inten-

tionally simplistic to show the power of the paradigm at expressing the nature of the

system, and not the power of a complex algorithm.

Based on this, a prediction algorithm is proposed called Rolling Linear Fit
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(RLF) prediction. This algorithm can be broken into four steps, which are as fol-

lows:

1. Training: this method the previous x time steps as training data. This training

data is then used to fit a linear model via least-squares [172, 173].

2. Prediction: this linear model is then used to predict the SoC values of the next

y time steps by predicting that it falls along the constructed line.

3. Conversion to causality pattern: the predicted SoC values are compared to the

SoC of all historic causality patterns, with the causality pattern that has the

closest SoC value to the predicted SoC value being predicted as its causality

pattern.

4. Retraining: after prediction is complete, the algorithm retrains on the new

x previous time steps, producing a new linear model via least squares. This

process is then repeated until no new data is being acquired.

As such, this algorithm can be seen to be parametrised on two user-defined

quantities, the training window and the prediction length.

4.5 Prediction results: International oil market
Follow the methodology laid out above, an investigation of this prediction algorithm

can now be undertaken on the international oil market, as described in Chapter 2.4.

Due to the above-stated training and prediction length parameters, the first step

in the investigation is to determine these. To achieve this, several parameter com-

binations are investigated, based on the autocorrelation results shown in Fig. 4.11.

Six training lengths are selected for testing: 5, 10, 15, 25, and 30 data points, and

four prediction lengths: 5, 10, 15, and 20 time steps. To understand the accuracy

of each combination of these parameters predictions were made over the full time

series with each combination. To achieve this the time series was split into windows

of training length + prediction length. Each predicted causality pattern (binary) was

compared to the true causality pattern at that time step via the Hamming distance
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between them [174]. This comparison results in a series of accuracy measurements;

taking the mean, a single value of the accuracy can be found (mean error). The

results of this experiment are shown in Fig. 4.12.
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Figure 4.12: The mean error of Rolling Linear Fit prediction for a number of training sizes
and prediction lengths.

From the results shown in Fig. 4.12 it can be seen that for the majority of the

prediction lengths, a training range of 10-20 data points is optimal and that a pre-

diction range of 5-10 maintains the best results. An explanation for this behaviour

is, if the training + prediction lengths are too large the fluctuation in the data (shown

in Fig. 4.5) is overshot, and a linear model is no longer appropriate. Based on these

results, a train length of 10 data points and a prediction range of 10 time steps is

chosen for the experiment going forward.

To understand this algorithm in context some benchmarking must be applied.

To achieve this, three simple alternative approaches for prediction are introduced

below:

• Line of Best Fit (LBF) prediction: This method assumes that the line of best

fit for the entire data set can be calculated as is shown in Fig. 4.7, and predicts

the associated SoC value for the relevant time step. This value is then com-

pared to find the continuous causality pattern within the series whose sum is
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closest to it. This pattern then has a significance level of 0.05 applied to pro-

duce a binary causality pattern that is compared via the Hamming distance to

the actual binary causality pattern at that time step to calculate an error.

• Static Evolution (SE) prediction: This method assumes that the system will

not change from the current causality pattern and will hence always predict

the current causality pattern. To calculate the error, the current causality pat-

tern is compared to the causality pattern at the predicted time step via the

Hamming distance.

• Network Based Transition (NBT) prediction: This method uses a network

prediction approach discussed by Jiang et al. [3]. For the current node in a

network, the next node is predicted as the one most often transitioned to from

the current. Therefore the current causality patterns node in complex network

representation (discussed in Chapter 3) is discovered, and the edge from it

with the highest frequency F is selected with the causality pattern relating to

the node it connects to being chosen as the prediction. The error for this is

calculated as the Hamming distance between this and the causality pattern at

the predicted time step.

An experiment investigating the mean accuracy (as described above) for sev-

eral different prediction lag lengths was conducted to compare the Rolling Linear

Fit prediction to these alternatives. This experiment was designed to compare the

result of the methods more accurately, considering the difference in their predic-

tion ranges. This experiment for the Rolling Linear Fit prediction can be described

as follows: the first 10 time steps were taken for training, with the next 10 being

predicted. The accuracy of the prediction for each lag (1-10) was noted separately.

This process was then rolled forward by one time step and repeated until the end of

the data was reached. This resulted in a series of accuracy measurements for each

lag value, the mean accuracy for each of these values was found. For the alterna-

tive three approaches, the prediction was compared to time steps 1-10 ahead of the

current step. This process was then rolled forward by one time step and repeated,
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the results for these predictions was then averaged for each lag. The comparison of

these results can be seen in Fig. 4.13.
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Figure 4.13: Mean error for each of the presented methods of prediction for lags between
1-10.

The significance of the results shown in Fig. 4.13 was compared via a t-test,

with results shown in Table. 4.2. These results demonstrate that for a lag of 1 time

step, RLF is statistically better than LBF, but is outperformed by both SE and NBT.

This result is somewhat expected as, has been previously implied (Chapter 3) the

system tends to remain in the same or a similar position over a single time step,

and given the occurrence of changes in the rate of change, there are expected to be

steps where SE and NBT outperform the RLF over a single time step. For a lag of

2 and 3 RLF outperforms LBF, but is not statistically different from SE and NBT.

This demonstrates that at only a lag of 2 the performance of SE and NBT have

degraded enough that the change in rate of change no longer offers enough of an

impact on RLF for out-performance. For lags 4-10 RLF statically outperforms all

presented alternatives. Notably, RLF can be seen as relatively stable in its prediction

throughout the whole prediction range, this is in contrast to SE and NBT whose

results continuously degrade.
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Table 4.2: Results of t-tests between the presented methods and each lag level. A p-
value<0.01 indicates the rejection of the null hypothesis for the test at a 1%
level.

Statistic/p-value (3 dp)
Lag RLF & LBF RLF & SE RLF & NBT
1 -5.772/0.001 9.587/0.001 11.496/0.001
2 -8.140/0.001 1.018/0.309 2.000/0.046
3 -7.747/0.001 -2.400/0.0164 -1.472/0.141
4 -7.214/0.001 -4.509/0.001 -3.571/0.001
5 -8.530/0.001 -8.560/0.001 -7.609/0.001
6 -8.374/0.001 -10.155/0.001 -9.446/0.001
7 -8.353/0.001 -11.725/0.001 -10.981/0.001
8 -8.761/0.001 -13.417/0.001 -12.739/0.001
9 -9.739/0.001 -15.804/0.001 -15.106/0.001
10 -9.311/0.001 -16.494/0.001 -15.999/0.001

4.6 Discussion
In this chapter several methodologies, investigations, and experiments, were con-

ducted. Demonstrating that the usage of the proposed paradigms and continuous

Granger causality can lead to better predictions of the causality patterns then the

previously proposed Network Based Transition (NBT) approach from complex net-

works. This investigation can is summarised as follows:

A methodology was proposed to encapsulate two forms of dynamic behaviour

based on the underlying causality pattern of a system: Change paradigm and Order-

ing paradigm. For both of these paradigms, a metric was proposed that would be

appropriate for the one-dimensional representation of a causality pattern for a sys-

tem under the paradigm: Sum of Causality (SoC) and Sum Difference from Mean

(SDM). Following this, an investigation of the international oil market concluded

that this data follows the Change paradigm, corroborating the results from Chap-

ter 4; this allowed for the expression of the time-varying data as a time series.

Based on this, a methodology was presented for the prediction of data in this

series. First, a hypothesis was constructed, and an experiment was conducted to

demonstrate that the dynamic behaviour could be more fully explored by taking

a continuous measure of causality. Following this a measure called continuous

Granger causality (1−p-value) was proposed and the time series was transformed
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into a “continuous time series”. An investigation of predictability was conducted on

this time series, demonstrating that for a low lag number, the series exhibits some

autocorrelation characteristics. Based upon these findings, a prediction algorithm

called Rolling Linear Fit (RLF) prediction was proposed. This method constructs

a linear prediction for short lag values and then retrains this model, rolling it along

the data.

Using this algorithm, an experiment was run on the international oil market.

This experiment concluded that the optimal training and prediction range were both

10 time steps. Furthermore, three alternative prediction methods were also pro-

posed and it was discovered that for lag ranges of 4 to 10 the RLF statistically

outperformed the presented alternative methods for the prediction of future causal-

ity patterns. These results imply that RLF can predict the causality pattern of the

international oil market 10 days ahead with, on average a deviation of less than one

causal link (with a mean error of 0.316).

This chapter demonstrates the usefulness of a univariate time series represen-

tation of a multivariate system for the analysis of dynamic behaviour, in a manner

not capture by, but complementary to, the complex network approach (shown in

Chapter 3). This chapter also showcases methodology for the informative selection

of dimension reduction to capture known aspects of the dynamic behaviour.



Chapter 5

Configuration Space Construction

Methodology for Behavioural

Investigations

The analysis of the international oil market presented in Chapter 3 and Chapter 4

found results that imply the presences of a overall behaviour in the evolution of the

system causality structure. From this analysis a hypothesis of a potential behaviour

described at a low level can be formed; clustering of similar causality patterns,

connected through repeated transitions (discussed in detail in this chapter). Though

this hypothesis is formed from validated investigations, its validity as a higher order

description of the system needs also to be validated.

This analysis has so far been built on construction of complex networks, these

offer a powerful tool for the investigation of a system but may be limited in the full

description of the behaviour of that system. Therefore, to explore the hypothesised

behaviour this chapter explores the usage of a configuration space as a framework

for constructing a description of the systems dynamic behaviour for investigation,

allowing the hypothesis to be tested. This is achieved via the proposal of a method-

ology to encode the evolution of the system in a manner that maintains the knowl-

edge of the underlying structure, with this methodology a formal description of the

hypothesis can be constructed. This is validated and the international oil market is

analysed via the creation of a algorithmic analysis and prediction method.
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This chapter hence presents an approach to expressing and validating high or-

der descriptions of a systems behaviour that have been drawn from the previously

shown analysis methodologies.

5.1 Background and related work

This chapter is specifically interested in representative methods that have a high

level of information encoded relating to the original time series. The limitations of

standard network transformation approaches and time series analysis for the cap-

ture of the full information regarding the time series evolution has been noted by

a number of authors [21, 175, 66, 38]. Transforming to these representations often

causes some level of obscuring of information contained within the original series.

A response to this, that has achieved success, has been through the usage of state

space representations for the behaviour of a dynamic time series [33]. In particular

phase space representations have been employed, often as an intermediary stage to

the construction of a complex network. In this thesis a phase space will not be em-

ployed, however within the literature it has been, therefore below an overview of its

usage is given for completeness.

A phase space operates as a multi-dimensional space in which the time series

can be encoded (discussed further on), the benefit of this approach is that the space

allows for distance between points to be measured (this also applies where points

are represented as vectors from the origin). This phase space additionally supports

the construction of a complex network whose nodes correspond to selected points

within the phase space and whose edges selected pairs of points in the phase space.

An example selection of edges might be all those whose points in phase space have

a distance less then some defined threshold. In prior work a transformation of a

time series into a phase space has been achieved via time delay embedding, with

Taken’s embedding theorem often cited as the motivation [176]. A phase space

representation such as this is based upon the concept of subdividing a single time

series into a number of disjoint time series, such that each of these disjointed time

series can be expressed by a single vector in the phase space. For this purpose a
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phase space for this is constructed such that each dimension represents a “delay”

i.e. a number of time steps from the current time step. Therefore a point in an m

dimensional phase space such as this represents a time series of m steps, that can be

seen as some subdividing of an original time series. Following the work of Gao and

Jin [21] a vector in this phase space, for a time series zt , where t = 1,2, ...,M, can

be expressed as follows:

~Xk = {xk(1),xk(2), ...,xk(m)}

= {zk,zk+τ , ...,zk+(m−1)τ}

Where k = 1,2, ...,N, N = M−(m−1)×τ/t, τ is a selected time delay, and m is the

dimension of the space. This and similar approaches have been used to great effect

by other a number of authors [66, 21, 50, 175, 92], and can be seen as defining a

space that is able to specify the state of the system. However, similar to much of

the literature in the field, the concern of this approach is on the dynamics of time

series, and not on the structure of the underlying causality generating the series (in

the case where the series is one of causality patterns).

For the methodology and investigations presented in this thesis a different rep-

resentation is required. A state space approach that is more suited to the representa-

tion of dynamic causality in a multivariate system, is a configuration space. Where

each point within this space encodes a causality pattern, and any causality pattern

can be represented. This state space is selected for usage in this chapter, and is

discussed further in the next section.

This chapter also explores groups of points in the above mentioned state space,

and their detection. Detection of groups of points in a state space is achieved

through clustering approaches, such as k-nearest neighbours, shared nearest neigh-

bours, single linkage, and other density or linkage based methods. However, these

classic approaches aim to define clusters, instead of finding pre-defined clustering

behaviour. In many systems clusters will often be the same, using a reduction in

the density of points in the space to determine the edge of a cluster, but for the

specific behaviour being investigated in this chapter this separation approach is not
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immediately applicable. Therefore, in this chapter an advancement to the clustering

literature is presented, to separate out groupings of points that are connected via

dense pathways. This work and its background is discussed further in Section 5.4.

5.2 Methodology: Configuration space

Following the above background a configuration space representation for time vary-

ing causal interactions in a multivariate system of time series is proposed. A config-

uration space consists of a space, which contains all possible configurations (states)

of the system, allowing for any state to be expressed within it [177]. In the con-

text of a causality pattern, this means a configuration space contains every possible

causal value for every possible causal link, hence any causality pattern can be ex-

pressed as a single point within the configuration space. This will allow for a space

in which the trajectory of a time series can be encoded, maintaining full information

regarding the underlying causality and the geometric relationship between them.

A configuration space (an N-dimensional Euclidean space) is created in which

all possible states (causality patterns) of a system are represented, with each pos-

sible state corresponding to a unique point in the configuration space. In this con-

figuration space it is possible to plot the trajectory of a series of causality patterns.

This is done by projecting each causality pattern onto the configuration space (i.e.

plotting them as points in the space), and tagging each point with its time stamp (the

time stamp is not a dimension of the space).

This configuration space is defined with a separate axis to represent each pos-

sible causal link, with these axes having a range from 0 to 1, in line with the con-

tinuous Granger causality measure defined in Chapter 4. Thus, for example, any

point in a configuration space with four dimensions could be represented by a point

of four coordinate elements, where each element can have values ranging from 0

to 1. The dimensionality of the configuration space will be directly linked to the

number of variables. For a bivariate system with variables X and Y , the axes would

be: X → Y , Y → X , X → X , and Y → Y . This gives a configuration space with four

dimensions, which can be generalised to N2 dimensions for N variables. This order
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can be reduced by ignoring self causality (e.g. X → X), which is not of interest in

this investigation, and with this restriction the order of the configuration space can

be collapsed to N2−N.

Therefore the systems state of a multivariate time series can be expressed in

this representation as follows. For an arbitrary multivariate system of N time series,

each of length T , the system state at time t (the causality pattern of the multivariate

system at time t) can be expressed as:

st,n = {ci, j}t∀i 6= j|i, j ∈ {1,2, ...,N} t ∈ {1,2, ...,T}

Where st,n is the system state (point in the configuration space) at time t for a space

of dimension n, n = N2−N, and ci, j is the continuous Granger causality from vari-

able (time series) i to j (the measure introduced in Chapter 4).

5.3 Constructing behaviour description
The configuration space representation discussed above, allows for a framework

within which descriptions of dynamic behaviours can be constructed. Using this

framework a description of the behaviour for the sample data from the international

oil market can be constructed and formally defined, where this behaviour hypothesis

is constructed based upon the results found in Chapter 3 and 4.

Based on the results found in the previous chapters two aspects of behaviour

are hypothesised: (i) Chapter 3 demonstrates the existence of noisy clusters that

the system state moves between, often staying within a cluster for a number of time

steps, it also implies a cyclic behaviour where the system state moves between more

stable states (high chance of self-looping) via less stable ones. Chapter 4 along with

Chapter 3 demonstrate that the transitions between system states is dominated by

small changes in the causality patterns with groupings designated by causality pat-

terns close in α . This behaviour underlies a hypothesis that there exists regimes

within the time-varying behaviour, where causality patterns that have a small differ-

ence in α are clustered and that the systems time-varying behaviour is dominated

by these. (ii) Chapter 4 shows that the transitions throughout the time-series of
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the causality patterns has a degree of smoothness to it, with a sharp but incremen-

tal build up and down between different levels of sum of causality, and Chapter 3

shows the incremental cyclic behaviour between the stability of causality patterns.

This behaviour underlies a hypothesis that there exists pathways of defining the

transitions between the above mentioned regimes, with these pathways being com-

posed of a number of system states over consecutive time steps. Taken together this

hypothesised behaviour can be described as causal regime shifting, as the system

moves between regimes of causality, both of these hypothesis are more formally

explored below.

Described in terms of binary causality, a causal regime shifting system (also

called a “regime changing” system) is a system that repeatedly transitions between a

fixed number of “stable” binary causality patterns, where a “stable” binary causality

pattern is described as one that the system state remains in for a defined minimum

number of time steps. An example of a similar network behaviour to this can be

seen in the work of Jiang et al [3] where it is shown that for four international crude

oil market benchmark prices there exists a number of well visited causality patterns

between which the system state predominately transitions.

The previous mentioned approach of Jiang et al [3] uses binary causality pat-

terns as nodes in a complex network (with edges representing the transitions through

time), as discussed in Chapter 2. To make use of richer information, in this chapter

the continuous measure of Granger causality is used, as introduced in Chapter 4, to

allow for discussion of small variations and gradual changes within the space.

It is assumed that observed system states (causality patterns) are affected by

noise and errors in detection and measurement, and therefore the observed states

are approximations of the “true” state of the system. For simplicity it is assumed

that such deviations have an identical and independent Gaussian probability density

function across all dimensions, therefore repeated visits to the same “true” system

state will gradually produce a symmetrical cluster within the configuration space.

The dynamic nature of the system will is a time ordered path through the con-

figuration space. This is defined as an ordered set Sn of observations st,n in the n-
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dimensional configuration space, where each observed point occurs at a consecutive

time step t (one observation per time step) and is a tuple of n real-valued contin-

uous Granger causality values ci, j (from variable i to variable j, with this measure

introduced in Chapter 4):

st,n = {ci, j}t∀i 6= j | ci, j ∈ R, t ∈ N∗

Sn = ({s1,n,s2,n, . . .sT,n},≺) | ∀sa,n,sb,n ∈ Sn sa,n ≺ sb,n ⇐⇒ a < b

∧ si,n ∈ Sn ⇐⇒ si,n ∈ {s1,n,s2,n, . . .sT,n}

It is assumed that for regime shifting behaviour the “true” system state will take one

of two positions: (i) being in a “stable” state, analogous to a node in a binary net-

work representation, where the state will remain for a number of time steps, or (ii)

being in a “moving” state, analogous to an edge in a binary network representation

(but where the edges consist of sequences of observed intermediate states, which are

not normally captured in a binary network representation), where the system state

will transition between “stable” states. This thesis refers to the noise distribution

centred on a “stable” state as a Point Cluster, and the sequence of noise distribu-

tions centred on intermediate states in a “moving” state as a Trajectory Cluster.

These Point and Trajectory clusters can be thought of using the analogy of K-

nearest neighbours and Markov-Chains. A Point cluster is made up of a group of

nearest neighbours, and Point Clusters are connected via Trajectory clusters each

of which is a path of points, each a nearest neighbour to the last. The temporal

pathway describing how the system moves from one neighbour to another can be

though of as a Markov-Chain, not jumping further then a nearest neighbour point

in a single time step, allowing the system to move within a Point Cluster and then

via a connected Trajectory Cluster to other Point Clusters throughout time. This is

visually analogous to two probability density functions representing Point Clusters

connected by a probability density representing a Trajectory cluster, as shown in

Fig. 5.1. The actual description of this behaviour is more formally described in the

following.
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Figure 5.1: A visual representation of what the probability density function of two described
Point Clusters connected by one Trajectory Cluster may look like if reduced in
dimensionality to a two dimensional plane.

For this work the Euclidean distance DP between any two points (system states)

is defined as:

DP((a1,a2, . . . ,an)t1 ,(b1,b2, . . . ,bn)t2) =

√
n

∑
i=1
{|bi−ai|}2

Given the assumption that noise has a Gaussian distribution, it is expected that

there will be more observed states close to the “true” system state in the centre of a

Point Cluster, and fewer observed states further away from that “true” system state,

and in practice it is expected that there be a maximum distance between observed

states in a Point Cluster — this maximum distance is referred to as δ . Following

this, the probability density function of these distances should peak for low values

and decline for larger values of δ . Further a Point Cluster is defined to be “stable”

if at least one visit to that Point Cluster lasts at least ζ time steps (where for ζ = 1

neither the previous or the next state are in the same Point Cluster as the current
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state). This allows us to define a Point Cluster PCa as follows:

PCa = {si,n ∈ Sn} | ∀ j,k DP(s j,n,sk,n)≤ δ

∧ (∀b)b6=a si,n ∈ PCa ⇐⇒ si,n 6∈ PCb

∧ ∃z sz,n,sz+1,n, . . .sz+ζ ,n ∈ PCa

These Point Clusters are connected together by trajectories, a consecutive pro-

gression in time of system states from one Point Cluster to another. A single trajec-

tory Ts,e,m from PCs to PCe is defined as:

Ts,e,m = {si,n,si+1,n, . . . ,si+ν ,n ∈ Sn} | si−1,n ∈ PCs

∧ si+ν+1,n ∈ PCe

∧ ∀o si,n,si+1,n, . . . ,si+ν ,n 6∈ PCo

It is assumed that for two Point Clusters connected by more then one trajectory

those trajectories can be grouped into Trajectory Clusters, categorising different

routes through the configuration space (though there may exist only one Trajectory

Cluster between two Point Clusters). Therefore a Trajectory Cluster is defined as

an unordered set of trajectories that connect the same Point Clusters and are within

a certain Euclidean distance κ of each other, given by the function DT (defined on

Page 133).

TCk = {Ts,e,m ∀m} | DT (Ts,e,i,Ts,e, j)≤ κ

A Point Cluster may have zero or more Trajectory Clusters entering it and zero

or more Trajectory Clusters leaving it.

The nodes and edges of Jiang et al’s[3] network representation map to the

Point Clusters and Trajectory Clusters of the presented configuration space repre-

sentation. The Trajectory Clusters hence capture the information (including error

deviation) of the transition from one node to another, with the point cluster captur-

ing the deviation that can exist within a node. The two new contributions of the
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configuration space representation are (i) the use of continuous Granger causality

patterns, and (ii) the explicit representation of deviations due to noise and measure-

ment error.

5.4 Constructing analysis and predictive algorithm

To validate the hypothesised behaviour described above an approach is required,

here an algorithm is proposed to discover Point Clusters and Trajectory Clusters

present in a data set (as described above). Furthermore this algorithm can be em-

ployed to predict the next Point Cluster, based on current state of the system, using

the Trajectory Cluster and Point Clusters that have been discovered. This func-

tionality allows for validation of the hypothesised behaviour against the actual be-

haviour (discussed in more detail later in this chapter).

To do this first a configuration space must be populated with historic data of

causality patterns (each with a time stamp to provide temporal ordering). For the

following discussion it is assumed that a new series of at least two consecutive

causality patterns is then introduced, where two points are required to establish

direction of movement in the configuration space. This new series is referred to as a

series of “test values” and it is desired to predict a future point in this series. When

introduced to the configuration space each of these test values will fall into one of

three states: part of a Point Cluster, part of a Trajectory Cluster, or neither a part of

a Point Cluster nor of a Trajectory Cluster.

The prediction aims to find the next Point Cluster (analogous to the next

regime) that the system will be in, by reference to where the test data is currently

located in the configuration space, in what direction it is moving in the configura-

tion space, and whether it overlaps with an historical Trajectory Cluster or Point

Cluster. It is of course possible the test values might establish a new route that does

not exist in the historic data, but for the purpose of prediction it is assumed that all

test values will follow historical data.

The discussion of the novel prediction method is split into three parts, first

the method of detection of Point Clusters is given, then the method for Trajectory
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Clusters, and finally the prediction method which utilises the previous two methods.

Point Clusters

To ground a Point Cluster in its relation to the underlying time series of the system,

it can be thought of as the collection of times (throughout time) that the Granger

causality between the time series of the system was very similar. This does not mean

that the actual time series themselves were similar during these periods, merely that

the interactions between them were. ζ then governs the length of time the time

series need to maintain these similar causal interactions to be included in this set.

Point Clusters can hence be seen as capturing meaningful behaviour across time

where a system returns to a similar state. Changes between Point Clusters can

hence be seen has changing from one repeated (throughout time) causal structure to

a sufficient different repeated causal structure, signifying a change in the interaction

between the time series. Compared to previous clusters (such as that done by Jiang

et al. [3]) which groups causality patterns that frequently transition between each

other, but may be distinctively different, this approach groups causality patterns that

are distinctively similar and hence may be treated as representing a single system

state.

A Point Cluster has two notable characteristics that can be used for detection:

(i) it is a region of high density within the configuration space, and (ii) it is a region

where at least one path will remain for at least ζ time steps. To detect Point Clusters

in the historical data first high density regions are detected within the configuration

space, and then these regions are filtered based on the second criterion to discover

those that are Point Clusters.

The detection of regions of high density is a problem often approached using

clustering algorithms. There is a large breadth of literature on clustering algorithms;

however, since a key characteristic in the problem is the density of the points, a

natural fit is the density-based clustering algorithms [151]. Density clustering is

based on the principle that regions of greater density exist within the space, which

can be separated into clusters[178]. In particular influence is taken from Shared

Nearest Neighbours (SNN)[179] and single linkage[154, 155], with neither of these
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methods being fully sufficient due to their assumption of greatly reduced density

between clusters. For example, with causal regime-shifting behaviour a Point Clus-

ter may occur where a Trajectory Path slows down temporarily and yet sufficiently

to be identified as a Point Cluster, and furthermore several Trajectory Paths may

pass through a Point Cluster; these are both problematic for standard algorithms

because the density boundary for a Point Cluster may not be sufficiently well de-

fined (it merges with the density distributions of the Trajectory Clusters entering

and leaving the Point Cluster) leading to possible unwanted linkage effects[76].

To address this problem, a network is defined G(N,E) with the set of nodes N

and the multiset of edges E where each edge gives the Euclidean distance between

two nodes. N is initialised as the set of all observations in the configuration space,

and E as all edges between those nodes, defining a fully connected network.

N = {ni} | ni ∈ Sn

E = {ei, j} | (∀i, j)i 6= j ni,n j ∈ N ∧ ei, j = DP(ni,n j)

Stage 1: From E an edge distance is estimated that within which the majority

of points in a Point Cluster are connected. It is expected that the elements in E

will have a multimodal probability distribution with modes relating to frequently

occurring distances such as the distance between Point Clusters, and between steps

in Trajectory Clusters. Following the given definition of perturbations due to noise

and errors one can expect the smallest edge lengths to be caused by noise and error

perturbations, and on this assumption the mode with the smallest value in the prob-

ability distribution of E (if such a mode exists, which it is assumed to) gives the

edge lengths generated by these perturbations.

To determine this initial mode an estimation of the probability distribution of

E is made as follows: after removing values above the median to remove outliers, a

histogram is generated of the remaining edge lengths using k fixed-width bins across

the range (k is chosen empirically — 500 is typical). The popular “find peaks”

library function[180] is used to determine the first mode in the (possibly noisy)

probability distribution of E; this is labelled as firstmode. The minimum element of
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E is also determined, which is labelled min.

Looking ahead to Stage 2 it is required that retained nodes have a sufficiently

high number of neighbours to facilitate a connectivity metric to distinguish between

the nodes within a Point Cluster and the nodes on the periphery of a Point Cluster

that connect to Trajectory Clusters; therefore a threshold edge length is calculated

that is somewhat larger than the first mode. Specifically, the threshold edge length

is defined as Ŝ = firstmode+(firstmode−min).

Therefore, E and N can be updated as follows:

E ′ ={ei, j ∈ E} | ei, j ≤ Ŝ

N′ ={ni ∈ N} | ∀n j ∈ N ei, j ∈ E ′ ∨ e j,i ∈ E ′

Stage 2: It is assumed that the majority of ei will now connect points within

the same Point Cluster, though some ei may connect points in a Point Cluster to

those in Trajectory Clusters (for example, where a Trajectory Cluster enters a Point

Cluster). It is assumed that the relevant ni (those with edges only to points within

the same Point Cluster) will have a different number of connections than those with

edges to points in a Trajectory Cluster. To remove edges between Point Cluster and

Trajectory Clusters, a filter is employed based on the number of connections (the

“degree”) of a node, given by deg(ni):

E ′′ ={ei, j ∈ E ′} | ∀na,nb ∈ N′ deg(na) = deg(nb)

∧deg(ni) = |{ec,d ∈ E ′ | c = i∨d = i}|

N′′ ={ni ∈ N′} | ∀n j ∈ N′ ei, j ∈ E ′′∨ e j,i ∈ E ′′

Stage 3: Finally the time condition ζ is used to construct a set of Point Clusters

PC = {PCi} where each Point Cluster PCi is a non-empty set of nodes that only

have edges to other nodes in the same Point Cluster and where a path through the
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Point Cluster takes at least ζ time steps:

PCi = {nk ∈ N′′} | (∀q)ep,q∈E ′′ np ∈ PCi =⇒ nq ∈ PCi

∧ ∃z, ∃nz,nz+1, . . .nz+ζ ∈ PCi

where (∀v)0≤v≤ζ−1 timediff(nz+v,nz+v+1) = 1

timediff(st1,n,st2,n) = t2− t1

Trajectory Clusters

The detection of Trajectory Clusters is dependent on the discovered Point Clusters,

PCi. The detection of Trajectory Clusters is split into two stages: (i) the grouping

of paths with the same beginning and terminating Point Clusters, PCs and PCe, and

(ii) analysing these groups to produce Trajectory Clusters.

Stage 1: Here a trajectory, Ts,e,k, is defined as an ordered set of time-

consecutive nodes between two Point Clusters, PCs and PCe:

Ts,e,k = ({ni,ni+1, . . . ,ni+δ ∈ Sn},≺) | (∃a ∈ PCs ∧ ∃b ∈ PCe)s 6=e

∧ timediff(a,ni) = 1 ∧ timediff(ni+δ ,b) = 1

∧ (∀v)0≤v≤δ−1 timediff(ni+v,ni+v+1) = 1

Hence a group of trajectories is defined as having the same start and end components

as Ts,e = {Ts,e,k ∀k}.

Stage 2: Differences in trajectories between two Point Clusters may be due to

two causes; the inherent noise from the “true” state or the existence of fundamen-

tally different routes. It is desired to broadly cluster together those trajectories that

follow approximately the same route, referring to these clusters as Trajectory Clus-

ters. To transform these groups into Trajectory Clusters requires some concept of

the distance between trajectories. Two popular distance metrics are Longest Com-

mon Sub-Sequence [181, 182] and Hausdorff distance [183, 184, 185], however
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for simplicity in this thesis the Euclidean distance between two trajectories is used,

assuming that their observations are identically spaced in time and have an equal

number of observations, n: [183]

DT (Ts,e,i,Ts,e, j) =
1
n

n

∑
k=1

DP(selectT (Ts,e,i,k),selectT (Ts,e, j,k)) | n = |Ts,e,i|= |Ts,e, j|

selectT (({a1,a2, . . . ,an},≺),k) = ak

With this distance measure a single linkage approach is used, clustering to-

gether trajectories which are closer than a set distance to another trajectory already

in the cluster. For simplicity this distance is set as the mean Euclidean distance of

the group of trajectories, assuming that separate routes will have a separation of

more than the mean. Therefore a Trajectory Cluster can be expressed as follows:

TCs,e,c = {Ts,e,k∀k} | ∀Ts,e,i,Ts,e, j ∈ TCs,e,c DT (Ts,e,i,Ts,e, j)≤ mean(Ts,e),

mean(Ts,e) =
∑i, j DT (Ts,e,i,Ts,e, j)

|Ts,e|
(∀ Ts,e,i,Ts,e, j ∈ Ts,e)i6= j

Prediction

The presented novel prediction approach is referred to as Assisted Prediction of

Causal States (APOCS), and describe its procedure as follows. When applied to

data APOCS can be separated into three stages: (i) create a causality configuration

space from historical time series data, (ii) identify Point Clusters and Trajectory

Clusters in the configuration space, and (iii) on the basis of newly observed values,

predict future values. Predictions can be made after stages (i) and (ii) are completed,

however in practice it is likely that a user will periodically wish to rerun stages (i)

and (ii) to include the newer data points into the historical data.

The method presented focusses on predicting the next Point Cluster, and for

usability transforming that prediction into a binary causality pattern. It is important

to note that this approach does not aim to predict a constant number of time steps

ahead, and hence the time range of the prediction will vary (but will always be
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given). It should also be noted that time steps are measured in causality patterns,

and hence one may wish to relate this to a number of data points by referring to the

windowing method. For a data point within a Point Cluster the prediction will be

for a single time step, but for a point in a Trajectory Cluster the prediction will be

for the number of time steps left in the trajectory plus one, to bring it to the next

Point Cluster.

Taking a set of newly observed data that gives two consecutive causality pat-

terns, si,n and si+1,n respectively, a prediction can be made as follows:

1. Identify the Point Cluster PC j that is closest to si+1,n, measured to the nearest

point within PC j, with this distance to the closest Point Cluster being dPC.

2. Identify the closest Trajectory Cluster TC to the Trajectory comprising the

two points si,n and si+1,n. Select two historically observed points PT1 and PT2

forming a two-point trajectory T ′ as follows:

T ′ = {PT1,PT2} | PT2 ∈ TC

∧ timediff(PT1,PT2) = 1

∧ dO = DP(si,n,PT1)

∧ dN = DP(si+1,n,PT2)

∧ dTC = (dN +dO)/2

∧ min
PT1,PT2

dTC

3. • If dPC < dTC, predict the Point Cluster PC j, and give a prediction time

of one time step.

• If dTC ≤ dPC predict the Point Cluster at which TC terminates. Give a

prediction time of the average remaining time steps in TC plus one.

4. Let the predicted Point Cluster be PCx. Then predict the average causality

pattern PCx of PCx. This done by calculating the mean values at each di-

mension (where the mean value for each dimension is xa,b for the dimension
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characterised as the causality between variable a and b) for all points in PCx:

PCx = {xa,b}∀a,b | xa,b =
1
|PCx|

|PCx|

∑
k=1

index(selectPC(PCx,k),(a,b))

index({ci, j},(a,b)) = ca,b

selectPC({a1,a2, . . .an},k) = ak

5. Apply an alpha level filter (0.05) to the causality pattern to produce the binary

causality pattern.

6. Predict the binary causality pattern and its associated time step from the cur-

rent time step.

5.5 Results: Synthetic data
To validate the APOCS algorithm it is applied to synthetic data generated via a

Monte Carlo approach. For benchmarking two alternative approaches are also ap-

plied to the same data set. These methods are (i) A Stationary approach, that takes

the current continuous Granger causality pattern in the test data and predicts that

the pattern will remain unchanged; and (ii) A Maximum Connected approach, that

turns all causality patterns into binary causality patterns and then predicts a change

in causality pattern will be the most frequent transition from the current pattern. As

mentioned previously the APOCS algorithm has a dynamic prediction range, since

the trajectory governing the transition may take a number of time steps to be re-

alised. For the purpose of comparison and not to overweight the accuracy of the

APOCS algorithm its predictions are compared to those of one time step for the

alternative approaches, as shown in Chapter 4, this range gives the highest predic-

tion accuracy for these methods. Due to this the Rolling Linear Fit (RLF) method,

from Chapter 4, will not be used as a bench mark here, since it was demonstrated

that at a prediction range of one time step this methods accuracy is lower then the

alternatives.

APOCS is stress tested by investigating its average performance over a range of
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system parameters for a system that follows the regime-shifting behaviour outlined

on Page 123. This uses a Monte Carlo simulation where each run is a new instance

of the configuration space and the historical data within it, with the parameters

defining this being reselected for each run (but remaining constant within a given

run). This simulation is not designed to directly simulate a real world system, rather

to test APOCS with numerical variations of regime shifting behaviour.

The following describes a single run of the above Monte Carlo simulation, and

an analysis of the results for the full Monte Carlo simulation.

Monte Carlo Run

For a single Monte Carlo run, initially generate a sequence of causality patterns

whose evolution follows the regime-shifting behaviour introduced on Page 123.

Then split this sequence so that the first two thirds are used as historical data to

populate the configuration space and the last third represents “newly observed” test

data whose behaviour will be predicted. Each run produces a sequence of prediction

results, one for each subsequent point in the test data.

For each run a number of system parameters are set to generate the sequence;

these parameters are probabilistically selected at the beginning of the run but stay

constant throughout a single run.

First the sequence of causality patterns is produced without noise or errors. To

achieve this the behaviour that this sequence will obey is define as follows:

• First define the points in the configuration space that represent the regimes be-

tween which the system will shift. Initially only the centre points are defined

— later, noise and errors will be added to create Point Clusters.

This is done by first selecting the number of points from a uniform distribution

(limit this distribution to be in the range [3,6] for simulation performance),

and setting the number of variables that the causality pattern will have (set this

for each run, with runs being done at 3,6,9 and 12). The actual p-values of

the causality patterns for these points are then produced, this is done through

a two stage process; (i) each link in the causality pattern is randomly selected

to either be causal or not causal, with a 50/50 probability. (ii) The p-value of
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each link is then selected from a uniform distribution, where for a causal link

the range is [0,α] and for a non-casual link the range is [α,1] (here α = 0.05

is used).

• Second, randomly choose one of these points to be the starting point for the

simulated historical sequence.

• The length of the sequence is parameterised on the number of transitions to

occur, here this is set as 100.

• The generation of the sequence proceeds via the following logic:

– If the most recently generated point is one of the previously defined

regime points, and if fewer than ζ immediately preceding points in the

sequence were also at the same regime point, then the next generated

point will be at the same regime point (typically set ζ = 3). However,

if this test fails then the sequence must consult a transition matrix (de-

scribed below) to move to the next regime (it is permitted that the target

might be the same as the current regime).

– To move away from one regime point to another, the target regime is

chosen from the transition matrix and four new points in the sequence

are generated, evenly spaced between the current regime point and the

target regime point (so that a transition between the same two points will

always follow the same path). If the current and target regime points are

different, the path will be a straight line, but if they are the same then

the path will be an arc.

– The transition matrix defining these transitions is given by M where

Mi, j represents the probability of point i transitioning to point j where

∑ j Mi, j = 1. This matrix is considered a parameter and the values within

it are selected from uniform distribution at the beginning of the run such

that ∑ j Mi, j = 1 ∀i, and held constant throughout a the whole run.

• Once the sequence is produced then add an error in all dimensions to every
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causality pattern within the sequence. This error is drawn from a Gaussian

distribution centred on 0 with a standard deviation of 0.005.

The Monte Carlo simulation described above was run for a total of a hundred

runs evenly split between four systems each with a different number of variables:

3, 6, 9, and 12. For each run two different metrics are produced and employed as

follows:

1. Metric 1; p-value comparison: For the APOCS and the Stationary method

(the Maximum Connected method was not included as it does not produce

p-value results). The Euclidean distance between the predicted value and the

true value (based on the methods prediction range) in p-value space divided

by the maximum possible distance for the dimensionality of the space (e.g.
√

n in n-dimensional space).

2. Metric 2; binary comparison: For the APOCS, the Stationary, and the Maxi-

mum Connected methods (an alpha level filter of 0.05 was applied to APOCS

and Stationary to produce binary causality patterns — the Maximum Con-

nected method results are already in the form of a binary causality pattern).

The Euclidean distance between the predicted binary causality pattern and

the true binary causality pattern divided by the maximum possible distance

for the dimensionality of the space.

The results for metric 1 are shown in Fig. 5.2 and the results for metric 2 are

shown in Fig. 5.3, for convenience the t-tests of the combined series across variable

numbers of these results are shown in Table. 5.1.

From the analysis one can see that in this synthetic stress test APOCS outper-

forms both presented alternatives to a statistically significant degree, of 1% for the

continuous case and for n = 9,12 for the binary case, and at a 5% level for n = 3,6

for the binary case. It should also be noted that while APOCS outperforms the

alternatives, it also provides predictions over a larger time scale than the alterna-

tives. When comparing the alternative methods to each other it can be seen from

Figure 5.3 that they produce very similar results, this is driven by the fact that for a
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Figure 5.2: Results following metric 1 in p-value space, comparing the prediction of results
of APOCS (on dynamic time scale) and a Stationary (one time step) approach.
Results are for four separate Monte Carlo simulations run with 3, 6, 9, and 12
variables.

Figure 5.3: Results following metric 2 in binary space, comparing the prediction of results
of APOCS (on dynamic time scale), a Stationary (one time step), and a Maxi-
mum Probability (one time step) approach. Results are for four separate Monte
Carlo simulations run with 3, 6, 9, and 12 variables. The Monte Carlo runs are
the same as those shown in Fig. 5.2

binary causality pattern often its most frequent transition is to itself, making the pre-

diction consistent with a Stationary approach. It can also be seen that the addition
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of a binary mask to the p-value results for APOCS and Stationary lead to a decrease

in accuracy of the predictions, this is particularly apparent with higher numbers of

variables. This is due to the hard cut in the result space implemented by a binary

approach potentially causing points in a p-value space that are close by to appear

further apart, hence these results show how a p-value approach can hence lead to a

better understanding of results, by not obscuring this information.

Table 5.1: Results of significance tests between APOCS method and the alternative meth-
ods for data presented in Fig. 5.2 and Fig. 5.3. A p− value < 0.01 represents
rejection of the null hypothesis at the 1% level, and a p−value< 0.05 represents
rejection of the null hypothesis at the 5% level.

Methods t-Statistic/p-value (3 sf)
num. var. (n) 3 6 9 12

Metric 1: p-value comparison
APOCS/Stat. -6.86/0.001 -7.13/0.001 -5.89/0.001 -5.98/0.001

Metric 1: binary comparison
APOCS/Stat. -2.50/0.0159 -3.32/0.00175 -3.66/0.001 -5.01/0.001
APOCS/Maxi. Con. -2.25/0.0291 -2.18/0.0341 -4.70/0.001 -6.47/0.001

5.6 Results: International oil market
Now that the regime shifting behaviour has been defined and a method for investi-

gating it proposed, an experiment can be run on the international oil market, using

the data presented in Chapter 2.4, to analysis the hypothesised behaviour for this

system.

The data set minus the last twenty values are taken for investigation (these

last twenty values are removed for validation, which will be explained later), this

data has the APOCS algorithm applied to determine the presence of Point Clusters

and Trajectory Clusters for a varying ζ parameter; the results of this analysis are

shown in Fig. 5.4. From this experiment it can be seen that as the ζ parameter is

increased the number of Point Clusters and Trajectory Clusters decreases rapidly.

This demonstrates that only a few Point Clusters in the system have “stability” of

more then a few time steps, however clustering with lesser stability is very common.

There is substantial difference in the number of Trajectory Clusters (maximum 6)

compared with the number of Point Clusters (maximum 382). This implies that
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Figure 5.4: Number of Point Clusters and Trajectory Clusters for data presented in Chap-
ter 2.4 with the last 20 values removed, for ζ values 1, 2, 3, 4, and 5, with
(Point Clusters, Trajectory Clusters), (382, 6), (81, 2), (16, 2), (4, 0), and (1,
0).

for this international oil market data most transitions between Point Clusters do not

form Trajectory Clusters according to the definition in Sec. 5.3; instead, most tran-

sitions appear to follow non-repetitive paths in the configuration space (or change

Point Cluster over a single step). The decrease in Trajectory Clusters can be seen

as linked to the decrease in Point Clusters, and is not directly determined by ζ but

by the number of Point Clusters that trajectories can go between. Therefore, this

decrease and lower number of Trajectory Clusters compared to Point Clusters im-

plies that only certain Point Clusters are linked by trajectories and that as these are

removed by increasing ζ the Trajectory Clusters are also removed. Further, this

implies that the Point Clusters that are linked by Trajectory Clusters are those with

a lower ζ and hence are less stable throughout time. From this it can be concluded

that some transitions between less stable Point Clusters may be governed by Tra-

jectory Clusters, but for more stable Point Clusters they are not.

This analysis determines the existence of clustering within the configuration
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space of the system (Point Clusters). Based on the prior investigations of this data

(Chapter 3 and 4) that demonstrates the system maintains similar causality patterns

throughout its dynamic behaviour, it can be inferred that if these Point Clusters

accurately represent the dynamic behaviour there should capture these prominent

causality patterns. If this is the case, it can be hypothesised that taking the nearest

Point Cluster as a prediction for the causality pattern at the next time step (fol-

lowing the average process presented earlier) will produce similar results to that

of taking the current causality pattern (or the next node in a complex network, as

demonstrated in Chapter 4).

Here the hypothesis in the above paragraph is investigated, by taking a predic-

tion for APOCS of the closest Point Cluster for the next time step, and comparing

to the two alternative approaches. To run this experiment a parameter selection of

ζ = 3 is made, this is done to isolate the more stable Point Clusters within the sys-

tem while maintaining a level of granularity that is lost with a ζ above this level.

As stated at the start of this section the last 20 time steps of the data have been kept

for validation, hence here these will be used as the test data, with prior data used for

training. The continuous Granger measure results are shown in Fig. 5.5, the binary

Granger results are shown in Fig. 5.6, the statistics for these results are shown in

Table. 5.2, and significance tests between these methods are shown in Table. 5.3.

This experiment shows that there is no statistical difference (at a 1% significance

level) in prediction quality between the APOCS method and the two presented al-

ternatives in for this sample data, demonstrating that the hypothesis in the previous

paragraph is correct at this level, and hence that the Point Cluster found via APOCS

put presented Section 5.3 accurately represent the system.

5.7 Discussion

This chapter explored a hypothesis for the dynamic nature of the regimes/cluster and

transition behaviour discovered in Chapters 3 and 4 for the data discussed in Chap-

ter 2.4. The hypothesis investigated was, is the dynamic evolution of the sample

data from the international oil market governed by a series of of noisy perturbations
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Figure 5.5: Results following metric with a continuous Granger measure, comparing the
prediction results of the three presented methods.

Table 5.2: Mean and variance values over all test data for: Assisted Prediction of Causal
States (APOCS), Static Evolution (SE), and Network Based Transition (NBT).

Method Mean (3 dp) Variance (3 dp)
Metric 1: continuous comparison

APOCS 0.591 0.059
SE 0.400 0.057

Metric 2: binary comparison
APOCS 0.524 0.425
SE 0.624 0.410
NBT 0.745 0.395

around causality patterns that are connected in a repeated manner throughout time.

To investigate this first a configuration space is defined in which the dynamic

series of causality patterns can be encoded in a manner that preserves their structure

and time ordering. Next an archetypal definition of a hypothesised behaviour based

on the results from Chapter 3 and 4 is proposed within the configuration space. Fol-

lowing this an algorithm is proposed for the investigation and prediction of systems

following the presented archetypal behaviour, this algorithm is named Assisted Pre-
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Figure 5.6: Results following metric with a binary Granger measure, comparing the pre-
diction results of the three presented methods.

Table 5.3: Results of t-tests between prediction methods on test data for: Assisted Predic-
tion of Causal States (APOCS), Static Evolution (SE), and Network Based Tran-
sition (NBT). Note that a p−value≥ 0.001 indicates no statistical difference at
a 1% significance level.

Methods Statistic (3 dp) P-value (3 dp)
Metric 1: continuous comparison

APOCS/SE 2.433 0.020
Metric 2: binary comparison

APOCS/SE -0.477 0.636
APOCS/NBT -1.062 0.295

diction of Causal States (APOCS).

The presented methodology undergoes a synthetic test by constructing data

following the defined behaviour and applying a Monte Carlo approach to bench-

mark APOCS against two alternatives. For this experiment APOCS statistically

outperformed the alternatives in every set-up.

Finally the hypothesised behaviour for the data of the international oil mar-

ket was investigated using the presented methodology. The results for a number of
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ζ values demonstrate that the majority of the clustering in this data either has no

stability or very little stability, with the number of detected Point Clusters rapidly

decreasing as the ζ value increased. The behaviour of the Trajectory Clusters cor-

responded with this, decreasing with an increase of ζ , this being driven by the

removal of Point Clusters to which the Trajectory Cluster is connected. There was

also a notable difference in the number of Trajectory Clusters compared to Point

Clusters at all ζ values, with the number of Trajectory Clusters being significantly

lower. From this a conclusion on this data of the international oil markets dynamic

behaviour can be drawn, being that the transitions between Point Clusters does not

primarily follow a repeated path through the configuration space. Implying the ex-

istence of non-repetitive transition behaviour or transitions that move between Point

Clusters in a single time step. To validate that the Point Cluster detected (specif-

ically those at a ζ = 3 were chosen) accurately represent the systems dynamics a

comparison with a complex network (demonstrated as informative in Chapter 3)

representation and a static representation (demonstrated as informative over at least

one times step in Chapter 4) was made, with validation being considered if these

give similar high level information. This was achieved via a prediction comparison

of the three, with APOCS being used to predict the closest Point Cluster, a complex

network predicting the most common transition, and a static approach predicting

the same causality pattern. This comparison was tested and the results shown to be

statically the same at a 1% significance level, confirming that the Point Clusters rep-

resent an important aspect of the systems behaviour. This demonstrates that through

the use of a configuration space a richer low level description of the dynamic be-

haviour of the multivariate data of the international oil market can be found. With

the Point Clusters in the configuration space inherently giving a more informative

description of the system then the nodes in a complex network (with the nodes rep-

resenting causality patterns). Thus this chapter presents a methodology that reveals

new information from the data on the international oil market.



Chapter 6

Conclusions and Future Work

In this final chapter, the main contributions of the research are summarised prior to

proposals being given as to how the work can be extended in the context of dynamic

time-varying multivariate systems.

6.1 Discussion and summary of contributions
The main objective of this research was to investigate whether the behaviour of the

underlying causality links within a system could be harnessed to gain information

relevant to the analysis and prediction of the evolution of a systems causality pattern,

specifically in the case of the international oil market. Therefore the contribution

to science put forth in this thesis is to construct methodologies, algorithms, and

experiments, in order to address this scientific challenge. As well as, the expansion

of knowledge on the dynamics of the international oil market.

The beginning of this thesis discusses how the analyses of time-varying com-

plex systems is becoming a major area of interest, following on from the mature

field focussed on time-varying univariate systems. In particular work relating to the

international oil market is referenced, and the importance of this archetypal system

is highlighted. An overview of the methods employed in current investigations of

dynamic systems is given, discovering that much of the current approaches focus

on “high level” behaviour of the evolution and ignore “low level” behaviour within

the specific changes of the causality pattern (where the “low level” behaviour is

the complex network of the interactions between the variables of the system, the
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“high level” behaviour is hence the movement between these structures). From this

it is concluded that there is a need to investigate useful aspects of this low level

behaviour, and design methodologies to incorporate these into analysis approaches.

To achieve this, this thesis has investigated the nature of this low level be-

haviour within sample data of the international oil market, approaching this inves-

tigation from a number of directions to give a more holistic understanding of the

systems dynamics. The work here has provided a number of different methodolo-

gies, that have been demonstrate to be successful in uncovering information on the

dynamic behaviour of time-varying complex systems. Such methods and findings

would be of interest to practitioners in areas where an understanding of these com-

plex time-varying dynamics is required, such as traders in the financial markets.

The work presented in this thesis achieved its objectives, which in overview

were: 1) can time-varying behaviour of a system be more fully explored via the

inclusion of information on the transition properties between causality patterns; 2)

can a meaningful one-dimensional time series representation of a time-varying sys-

tem be constructed based upon that system’s overall transition behaviour; 3) Can a

configuration space be utilised to test a hypothesis of specific system’s dynamic be-

haviour, described at both low- and high-level. The work undertaken in these areas

is discussed more thoroughly below.

Chapter 3 focused on incorporating knowledge on the change in the causality

pattern over a transition, through directly expanding on the current state of the art.

Further, based on this proposing a number of relevant properties and metrics for the

systems evolution. To capture information regarding the transition between causal-

ity patterns two metrics were proposed: α the total difference in causality, and β

the net directional change in causality. To harness the information stored within

these metrics a new complex network methodology for capturing the dynamic na-

ture of a time-varying complex system is constructed, which is referred to as the

Underlying Structural Information Consideration Network (USIC-Network). This

network encodes the evolutionary transitions between the causality patterns, as well

as their; frequency, total difference in causality, and net directional change in causal-
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ity. With this network construction a number of properties and metrics associated

with a system represented by USIC-Network are defined and motivated. These are

as follows: pattern stability, measuring the likelihood of a pattern not transition on

the next time step; directional change in causality, measuring if the system is likely

to gain or lose causality in the next time step; noise clusters, a clustering property

that defines groupings of similar patterns by structure; regimes of total causality

level, a clustering property that defines groupings of patterns whose total causality

is equivalent; net causality change pathways, a property defining pathway structures

where the total causality is either consistently decreasing or increasing. Employing

this methodology, and comparing to synthetic results, the following behaviour of

the sample data of the international oil market is discovered: the evolution appears

to be dependent on small net changes in the causality pattern leading to eight noise

clusters and nearly no regimes of total causality level or net causality change path-

ways. Implying that the system moves between a number of regimes in which it

maintains a similar causality pattern.

Building on the work of Chapter 3, Chapter 4 uses knowledge of the low level

behaviour to investigated two specific types of movement within the causality pat-

tern structure, allowing for a more in-depth level of analysis. These movements are

defined as paradigms under which a dynamic systems behaviour may evolve. These

two paradigms cover the following behaviour: a evolution that is driven by changes

a net change in causality; and a evolution that is driven by a change in the causal-

ity structure, but not a net change in the causality. For each of these paradigms a

one-dimensional metric is proposed; that may be used as a proxy to represent the

current state of the system, and allows for a informative separation between states,

as based on the paradigm behaviour. These metrics are: Sum of Causality (SoC) for

the first metric, this is the total causality of the causality patter; and Sum Difference

from Mean (SDM) for the second metric, this is the difference (α) between the cur-

rent causality pattern and a mean/reference causality pattern. Using these metrics

a system evolving under one of the paradigms can have its evolution reconstructed

in terms of a metric, allowing for a time series that is amenable to information dis-
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covery. A methodology for analysis of a system to determine which paradigm it is

best described by is then presented. Using this methodology a series of experiments

were conducted on the sample data of the international oil market. These deter-

mined that the this data belongs to the first paradigm and hence can be represented

the using SoC metric. Further investigation of the data under this representation,

found that it exhibited a a time-varying nature best explored when expressed with-

out the binary nature of classic Granger causality. To allow for this investigation a

continuous measure of the Granger causality test based on the p-value is presented.

The evolution under this measure exhibited a smooth behaviour, with investigation

determining that this behaviour contained autocorrelation under a short lag (under

25 time steps). Based on these findings a prediction method is presented for this

data, designed to construct linear predictions for a short lag, this is referred to as

Rolling Linear Fit (RLF) prediction. Using this an experiment is run on the data of

the international oil market, demonstrating that RLF prediction statistically outper-

forms three apparent alternatives for predicting the causality pattern of the series.

Specifically this demonstrates that RLF is able to predict up to ten time steps into

the future with out lose of accuracy and that this increases the predictive power over

what is achievable with a complex network representation.

Chapter 5 presents work expanding on the results from the previous two chap-

ters, to further investigate the regime behaviour discovered in Chapter 3 and hypoth-

esising based on Chapter 4 that these regimes can be more precisely explored under

a continuous causal measure and that a repeated transition between them may exist.

To explore this hypothesis this chapter first presents a configuration space, within

which the trajectory of the evolution can be mapped, in a information dense manner.

With the introduction of this configuration space a formal definition of the hypoth-

esis is able to be presented, in the form of a archetypal regime transition behaviour.

Based on this an algorithmic approach to analysing data in the configuration space

for the presented behaviour is presented, with a discovery of the behaviour allow-

ing for predictions to be made. This methodology is presented on synthetic data,

demonstrating that for a system under going this behaviour predictions can be made
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against two apparent alternatives that statistically out perform them, while also hav-

ing a larger prediction range. This investigation also demonstrates that an analysis in

continuous Granger measure produces better results then that of a binary measure.

Using this methodology an investigation of the sample data of the international oil

market was undertaken, determining the following results: this data contains clus-

tering around specific causality patterns that can be seen as noise/deviation, that is

demonstrated to accurately encapsulates the data’s evolution, the evolution between

these clusters does not demonstrate a repeated path through the configuration space

implying a more complex/random behaviour.

Throughout this thesis a number of methodologies are presented, algorithms,

properties, and metrics, these can be taken together as a body of work. This body of

work can be seen as a set of tools to aid in the investigation of dynamic behaviour

of time-varying systems of interacting variables. Specifically allowing for a deeper

understanding of the systems evolution through a understanding of its behaviour in

terms of the causality patterns underlying it. Allowing for a low level analysis to

supplement and expand on the high level analysis that already exist.

Using the presented methodologies a number of experiments and analyses on

the sample data of the international oil market have been conducted, furthering the

research on this market. As a whole the findings can be summarised as follows:

the data does not exhibit; movement maintaining its total causality, repeated path-

ways changing the net causality, or repeated pathways through the configuration

space. The data’s evolution appears to be restricted to clusters of similar causality

structures, seen as noise/deviations around a central causality pattern in the con-

figuration space, with transitions predominately changing a single causality link.

The evolution displays autoregressive behaviour over short lag times, allowing for

predictions, however, over long lag times the systems evolution is does not contain

correlation. Therefore the sample data of the international oil market can be said to

move in a unrepeated manner between a number of causality patterns that it deviates

around.
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6.2 Future work

This research pursued its objectives within the pre-defined scope successfully. The

work presented here also inspires future research directions. A number subsequent

topics that may be worth investigation are as follows: First, future work may expand

upon the properties and metrics constructed for the USIC-Network model, with the

ones presented in this thesis being only a selection of possible approaches. Second,

the construction of new paradigms to describe dynamic behaviour of the underlying

structure may be undertaken by future work. The paradigms presented in this thesis

are appropriate to the data and cover two conceptual important behaviours, but leave

room for a broad number of other behaviours. Third, a descriptions of transition

behaviours between regimes (clusters of causality patterns that are “similar”) may

be undertaken by future work. This thesis investigates one transition behaviour,

that being the repetitive smooth movement through configuration space, however

due to the lack of evidence for the existence of this type of transition there exists

space for other (potentially more complex) transition behaviours to be defined and

tested for in future work. Finally, future work can be inspired more broadly by this

thesis to create new methodologies and approaches for the analysis of time-varying

multivariate systems where the underlying structurally changes are considered when

constructing the description of the overall dynamic behaviour.

6.3 Concluding remarks

The analysis of complex dynamic behaviour within time-varying multivariate sys-

tems is, and will remain, an important aspect of research in many disciplines, partly

due to the ever increasing interconnectedness between systems of interest. Though

much work is done with univariate data, no-one would doubt the importance of

considering confounding variables and the impact they may have on a systems

evolution. This field has seen much interest in recent years, however this work

has primarily been focused on high level behaviour. Thus the consideration of the

structural change of the systems causality pattern opens up new approaches to the

analysis of the dynamic behaviour of systems. The hope of this work is that it will
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prompt further use of this underlying structure for the understanding of systems

dynamic behaviour.
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