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Abstract

Quantum computing promises to revolutionise many fields, including chemical

simulations and machine learning. At the present moment those promises have

not been realised, due to the large resource requirements of fault tolerant quantum

computers, not excepting the scientific and engineering challenges to building a fault

tolerant quantum computer. Instead, we currently have access to quantum devices

that are both limited in qubit number, and have noisy qubits.

This thesis deals with the challenges that these devices present, by investigating

applications in quantum simulation for molecules and solid state systems, quantum

machine learning, and by presenting a detailed simulation of a real ion trap device.

We firstly build on a previous algorithm for state discrimination using a quantum

machine learning model, and we show how to adapt the algorithm to work on a

noisy device. This algorithm outperforms the analytical best POVM if ran on a noisy

device. We then discuss how to build a quantum perceptron - the building block of a

quantum neural network.

We also present an algorithm for simulating the Dynamical Mean Field Theory

(DMFT) using a quantum device, for two sites. We also discuss some of the difficul-

ties found in scaling up that system, and present an algorithm for building the DMFT

ansatz using the quantum device. We also discuss modifications to the algorithm that

make it more ‘device-aware’.

Finally we present a pule-level simulation of the noise in an ion trap device,

designed to match the specifications of a device at the National Physical Laboratory

(NPL), which we can use to direct future experimental focus. Each of these sections

is preceded by a review of the relevant literature.



Impact Statement

Quantum computing has the potential to have a revolutionary impact in some fields,

via the exponential speedup of some quantum algorithms. Exponential speedups

are usually reserved only for algorithms ran on fault tolerant devices, with error

correction encoding and decoding. However, at the time of writing there is yet

to be a large enough demonstration of a fault-tolerant quantum computer that can

outperform classical computing.

The work in this thesis is concerned with the quantum devices that are available

now, or will be in the short-term. These devices are limited in scale, and are noisy.

This thesis works within both of these constraints to present methods for current

quantum devices in the fields of chemistry and quantum machine learning.

Current quantum devices are being developed within and without academia, and

this work could aid either group towards a demonstration of a quantum algorithm,

ran on a near term device, that can complete a problem better that current classical

computers. Within academia this would be a significant result, demonstrating the

use of noisy quantum devices, outside of the initial problem. In industry, demonstra-

tion of a near-term quantum advantage would spur a lot more interest in quantum

computing, especially in the current ‘valley of uncertainty’ we are in.

We expect the work presented here to be of interest to researchers in academia

and industry who are working towards a demonstration of quantum advantage on a

near-term device.
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Chapter 1

Introduction

Quantum computing has its roots in the algorithms developed in the 1990s and early

2000s, such as Shor’s algorithm for period finding [1], Grover’s search algorithm [2],

and the Deutcsh-Joza algorithm [3]. These algorithms set out the high promise

of quantum computing, that we can manipulate quantum states of matter to do

computations exponentially faster than classical computers. One of the earliest

discussions of the concept however is Feynman’s statement that nature is not classical,

and to model it we must use something not classical, e.g. a quantum computer [4] .

Since the early days of quantum information science, when exponential speedups

were found for many algorithms and it seemed that cryptography would soon be

under threat, the field has made so many developments, but we still seem to be far

from the world of exponential speedups and perfect simulations of nature that were

first envisaged. This is due mainly to how hard it is to both manipulate a quantum

state, and to keep it from interacting with its environment in such a way that the

information in the state is preserved. In this thesis we will call any process which

erases the information stored in a quantum state noise. Sources of noise can include

unwanted interactions with molecules adsorbed to the surface of a device [5]–[8],

electrical noise in the experimental apparatus [9], calibration drift [10]–[13] , actual

loss of the qubits [14] , and even interactions with cosmic rays [15], [16]. However,

we will for the time being treat all the noise universally, as decoherence.

It is noise in the computation, along with scaling challenges which prompted

John Preskill to name the current era of quantum computing Noisy Intermediate
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Scale Quantum (NISQ) [17]. In the NISQ era what we can achieve with quantum

devices is limited by the low numbers of qubits, and the noise in the qubits. The

noise in the qubits prohibits us from preforming Shor’s factoring algorithm [1] as it

requires the phase of qubits to interfere with high precision, such that noise destroys

useful interference in these algorithms. Current devices have a modest qubit count,

with IBM currently claiming to have 127 qubits in use, the highest count at time

of writing1 [18]. This qubit count limits the systems we can perform quantum

simulations of, meaning there is yet to be a demonstration of a quantum simulation

of a system that cannot be simulated approximately on a classical computer.

For reference, one of the ‘holy grail’ systems we wish to simulate is FeMoCo, a

naturally occurring catalyst that helps to synthesise ammonia from nitrogen [27]. We

wish to replicate the action of FeMoCo, as it can preform this task in the low energy

environment of plants, whereas synthetic ammonia production requires the Haber

process [28] involving temperatures around 500◦C and pressures 100X atmospheric

pressure. Currently nitrogen production requires around 3% of the world’s total

energy use [29] as it is required in fertilizer, simulation of the FeMoCo molecule

as a step to recreating its action is a noble goal for quantum simulation. However,

even ignoring the problem of noise, we would still require around 2024 qubits [30]

for this simulation. When we include noise, we introduce the need for fault-tolerant

algorithms and therefore error correction, we can estimate the total number of

physical qubits needed following the estimation made in [31], of 1568 physical

qubits per logical qubit, i.e. 1568×2024 = 3.17×106 physical qubits.

1Qubit counts checked on 06/07/2022. There are metrics other than qubit count proposed, e.g.
quantum volume [19], and algorithmic qubits [20] which also take into account the noise on the
device. One issue with these is due to Goodhart’s law, i.e. when a metric becomes a target, it ceases
to be a good metric. For example a 10 qubit system currently holds the highest quantum volume
record [21], which can easily be simulated by a classical device; whereas there are also devices
which it is claimed cannot be simulated classically available [22], [23]. However, tensor network
techniques [24] have improved the classical simulation 10,000 X, requiring approximately 14 more
qubits to overcome, but this illustrates that whilst a 10 qubit device may hold the quantum volume
record, there are existing devices which are much better in a different, also meaningful metric. Our
final point in this increasingly long footnote is that connectivity is taken into account in the Quantum
Volume metric, with the device in [21] claiming all-to-all qubit connectivity, due to the ability of the
device to shuttle all the ions on the device. However, this is a different concept from the all-to-all
connectivity of the IONQ ion trap device [25], as there is run-time required to perform the shuttling
operation, and it is a noisy operation [14], [26], but it is treat the same way by the Quantum Volume
metric.
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We are clearly far from achieving a simulation of FeMoCo. Currently, one of

the questions posed is if a current or near-term quantum device can demonstrate a

useful algorithm that a classical device cannot. Quantum supremacy [32]–[38] was

claimed to be achieved in 2019 [22], however new methods using tensor network

simulations [24] can simulate these circuits with a 10,000X speed-up over the original

simulation algorithm. A rough calculation, of ⌈log2(10000)⌉= 14, suggests that a

modest increase in the number of qubits of the Sycamore device could again claim

quantum supremacy. However, there is little practical use for quantum supremacy

experiments, outside of their own demonstration and as a verifiable source of random

numbers [39]; we wish to find an algorithm for NISQ devices that is both of practical

interest and out of reach of current classical computers. We will name this goal as

quantum advantage, to distinguish it from quantum supremacy.

In this thesis we do not achieve quantum advantage, although we do make

some progress towards this goal. We will see in Part II how NISQ devices can

be used in machine learning problems, with results in Chapter 6 showing that a

noisy quantum device can learn parameters which can overcome some of that noise.

We will also discuss proposals for a quantum version of the perceptron [40], and

how non-linearities can be introduced into Quantum Machine Learning (QML)

algorithms. In Part III we will discuss a promising route towards quantum advantage,

and Feynman’s stated goal, simulating chemical systems. We will demonstrate an

algorithm for simulating Dynamical Mean Field Theory (DMFT) in Chapter 11, and

in Chapter 12 we will extend the size of the simulation and build on one of the most

promising NISQ simulation algorithms, ADAPT [41], [42]. Finally in Part IV we

will discuss some of the techniques used to algorithmically mitigate the noise in

quantum devices, and we will implement a more in-depth simulation of a specific

quantum device (Chapter 14), including some of the sources of noise mentioned at

the beginning of this section. For the remainder of this introductory part, we will

introduce some of the quantum computing concepts required later.



Chapter 2

Quantum Computing Primer

2.1 Gate Model of Quantum Computation

In this thesis we will be discussing the circuit (gate) model of quantum computation.

A more in-depth introduction to the quantum computing topics here can be found

in Ref. [43] Other models, e.g. adiabatic computation [44], measurement based

computation [45], and analogue quantum simulation [46] are not discussed here.

A qubit is the name for a quantum mechanical two-level system. Qubits can take

many forms physically, e.g. states of an ion [47], direction of magnetic flux, or

charge in a superconductor [48], the polarization of light [49], or the Fock state of

photons [50]. We will describe all these types of qubits by a vector, representing the

two measurement outcomes in the computational, Z, basis,

|0⟩=

1

0

 , |1⟩=

0

1

 . (2.1)

Quantum mechanics is described by unitary operators, U†U = 1, and in the

circuit model, we apply these operators, called gates, sequentially to the qubits. Some

of the most common gates are named the Pauli gates, X ,Y,Z, or denoted σ x,σ y,σ z

which represent the flipping of the state vector around some axis on the Bloch sphere,

Figure 2.1.
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|0⟩

|1⟩

i |+⟩

i |−⟩|−⟩

|+⟩

Figure 2.1: The Bloch sphere, which represents a single qubit. The state of a qubit is
represented by a vector, and the poles represent the X ,Y,Z axes. Pure states
have the vector ending on the surface of the sphere, whereas mixed states the
vector is closer to the origin. The maximally mixed state is a vector of 0 length
centred at the origin.

2.2 Clifford Gates

In matrix form, the Pauli gates are

X =

0 1

1 0

 ,Y =

0 −i

i 0

 ,Z =

1 0

0 −1

 . (2.2)

We will also mention the identity operation here, denoted I or 1, which has no effect

on the state, and for the d = 2 system is:

12 = I =

1 0

0 1

 . (2.3)

Combining the Pauli gates with the CNOT operation,
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , (2.4)

and the Hadamard gate,

H =
1√
2

1 1

1 −1

 (2.5)

gives us the Clifford group [51]. This obeys group properties, i.e. closure, identity,
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associativity, inverse, when the operation is matrix multiplication. The Pauli matrices

themselves obey a cyclic commutativity,

σ
j
σ

k = δ jk1+ iε jklσl, (2.6)

where δ jk is the Kronecker delta function and ε jkl is the Levi-Cita symbol1.

We can represent these operations as gates in a circuit, with wires as qubits, and

a measurement at the end, e.g. Figure 2.2 which uses only the gates discussed so far.

Circuits containing only Clifford gates are not universal for quantum computation, in

|0⟩ H Y •

|0⟩ X Z

Figure 2.2: A simple quantum circuit to introduce the notation used here, so far only using
Clifford group operations.

fact, Clifford circuits can be simulated on a classical computer [52], a theorem known

as the Gottesman-Knill theorem. Arbitrary rotations around the axes of the Bloch

sphere are not Clifford operations, and are used mostly in NISQ algorithms, when

we move to fault tolerant computation, arbitrary rotations are estimated by T gates

(below), and Toffoli (CCNOT) gates are used between qubits. The introduction of

these gates makes the computation non-Clifford, and hard to simulate on a classical

device. We have introduced the Clifford group via the Pauli matrices as they will be

used later, however we note here that the generators of the Clifford group are the H,

CNOT and

S =
√

Z =

1 0

0 i

 (2.7)

gate. We can see this as SS† = Z and Z gate, HZH† = X , allowing us to create all

three Pauli gates. Also note that the gates of the Clifford group are easy to do in

a fault-tolerant setting [51] and it is the implementation of the non-Clifford gates

which is difficult in fault-tolerant quantum computation. The non-Clifford gate that

1ε jkl =+1 if j,k are in canonical order, e.g. j = x,k = y, l = z or j = z,k = x, l = y, ε jkl =−1 if
they are out of order, and ε jkl = 0 if j = k.
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is most used in fault-tolerant quantum computation is the

T =
√

S =

1 0

0 ei π

4

 (2.8)

gate. We can see by T XT † /∈ Clifford that the T gate is not a Clifford gate. Adding

the T gate to the Clifford group creates a set of gates which are universal for quantum

computation.

However, due to the nature of NISQ technology we are easily able to apply

parameterised Pauli rotation gates. In many of the implementations, notable ion traps

and superconducting devices, we apply an electromagnetic pulse to the qubit to enact

a gate. Applying the pulse for the total time t enacts the full Pauli gate, whereas

applying it for a fractional time allows us to apply the rotation gate RP(θ). The

parametrisation of this gate allows us to enact many of the variational algorithms we

will see later. Interestingly, applying these parameterised gates with high precision

is harder for fault-tolerant devices, as the gates in use are completely discretized,

meaning many applications of a partial rotation gate, such as the T gate may be

required for some rotations.

2.3 Measurement

Measurement in quantum mechanics stands apart from the everything we have dis-

cussed so far, as a measurement operation is non-unitary, unlike quantum evolution.

Given a measurement operator Mm and a measurement outcome m, and a general

quantum state |ψ⟩, the probability of measuring m is given by:

p(m) = ⟨ψ|M†
mMm |ψ⟩ , (2.9)

the state of the system immediately after measurement is

Mm |ψ⟩√
⟨ψ|M†

mMm |ψ⟩
, (2.10)
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and the measurement operators obey the completeness relation, i.e. the probabilities

sum to 1:

∑
m

M†
mMm = I. (2.11)

This formulation of measurement was first proposed by Max Born [53], and is

sometimes called the Born rule. We will discuss an implementation of this rule in a

quantum machine learning model in Chapter 5.

Measurements we will discuss here are projective, that is an observable M can

be described by a spectral decomposition,

M = ∑
m

mPm, (2.12)

where Pm is the projector onto the eigenspace of M with eigenvalue m. Projective

measurement operators satisfy the completeness relation, like general measurement

operators,

∑
m

P†
mPm = I. (2.13)

Additionally, projective measurements are Hermitian, P†
m = Pm, and orthogonal,

PmPm′ = δm,m′Mm.

A Positive Operator-Valued Measure (POVM) describes a general set of op-

erators, {Em} which are positive and satisfy ∑m Em = I. For a general POVM,

we can define a set of measurement operators describing the POVM, Mm =
√

Em

which satisfies the completeness relation, ∑m M†
mMm = I. We will use POVMs in

Chapter 6, but we can briefly see how they can be useful. Given one of two states,

|ψ1⟩= |0⟩ , |ψ2⟩= 1√
2
(|0⟩+ |1⟩), it is impossible to perfectly distinguish them, as

they are not orthogonal. However, we can design a POVM that can not make an
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error, but leave us with an indeterminate result. The POVM with elements

E1 =

√
2

2(1+
√

2)
(|0⟩− |1⟩)(⟨0|− ⟨1|) , (2.14)

E2 =

√
2

1+
√

2
|1⟩⟨1|, (2.15)

E3 = I−E1−E2. (2.16)

will never be incorrect with a measurement of E1 =⇒ |ψ1⟩ ,E2 =⇒ |ψ2⟩ and a

measurement of E3 is indeterminate. We have sacrificed some determinacy so that

we never make an error.

2.3.1 Amplitude

We can describe the general single qubit state as

|ψ⟩= α |0⟩+β |1⟩ , (2.17)

with
√

αα∗+
√

ββ ∗ = 1, the absolute values of α,β printed this way to make ex-

plicit that they are complex numbers. Given the measurement operator M0 = |0⟩⟨0|=1 0

0 0

, from Equation 2.9 that the probability of measuring |0⟩ is given by |α|2.

For this reason we describe α,β as probability amplitudes2, as the absolute values

sum to 1 (the state is normalised) and they describe the probability of measuring a

component of a state.

2.3.2 Phase

A complex number can, via Euler’s formula, be described by z = reiφ . For these

purposes, we are restricted to the numbers where max |z|2 = 1, allowing us to set

r = 1. We call φ the phase of z. Now consider the effect of eiφ |ψ⟩ on all measurement

operators Mm; as we have p(m) = ⟨ψ|e−iφ M†
mMmeiφ |ψ⟩= ⟨ψ|M†

mMm |ψ⟩, e.g. the

phase has no effect on the measurement operators. We name this global phase

invariance, meaning we can ignore any phases multiplied to the whole quantum

2Note that α,β themselves are not probabilities, as they can be negative or imaginary.
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state. Conversely, when the phase of the components of a phase differ we see some

effect. If we consider the states |ψ1⟩= 1√
2
(|0⟩+ |1⟩) , |ψ2⟩= 1√

2
(|0⟩− |1⟩), we may

at first say that the probability of measuring P(|0⟩) = P(|1⟩) = 1
2 , so there is still

no difference. However this misses that |ψ2⟩ interacts differently with quantum

operations. Now consider applying a Hadamard gate to |ψ1,2⟩ and measuring, i.e.

the circuit in Figure 2.3.

|ψ1,2⟩ H

Figure 2.3: The measurement of |+⟩ , |−⟩ is different after being passed through this circuit,
illustrating the importance of relative phase.

The result is |ψ1⟩ =⇒ |0⟩ , |ψ2⟩ =⇒ |1⟩, showing how the relative phase of a

state can affect the outcome.

2.4 Quantum Fourier Transform
As we have just discussed the difference between phase and amplitude in a quantum

state, we will take this opportunity to discuss in detail a quantum algorithm, the

Quantum Fourier Transform [1], [54] (QFT). Similar to the classical discrete Fourier

transform, the QFT takes a quantum state defined by |x⟩= ∑
N−1
j=0 x j | j⟩ and outputs

the state |y⟩= ∑
N−1
k=0 yk |k⟩ where yk is the discrete Fourier transform of x j. We can

describe the QFT by its action on the basis state:

| j⟩ → 1√
N

N−1

∑
k=0

e2πi jk/N |k⟩ . (2.18)

Representing a number j in binary, j = j12n−1+ j22n−2+ · · ·+ jn20, we can describe

the Fourier transform as:

| j1, . . . jn⟩=
1

2n/2

((
|0⟩+ e2πi0. jn |1⟩

)(
|0⟩+ e2πi0. jn−1 jn |1⟩

)
. . .
(
|0⟩+ e2πi0. j1 j2... jn |1⟩

))
, (2.19)

where we represent the n digits of a decimal number as 0. j1 j2 . . . jn. As QFT is

a unitary operation, it can be performed on quantum computers, and offers an
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exponential speedup, O(n2) gates, over the classical Fast Fourier Transform, O(n2n)

gates.

2.5 Computational Complexity
Apart from the scientific curiosity of using quantum states for computation, much

quantum computation research is an attempt to find a quantum speedup, i.e. a

problem that can be solved on a quantum computer quicker than a classical computer.

When we look for these problems, we want to classify the resource requirements of

the quantum algorithm and compare it with the requirements of the best classical

algorithm.

In the previous section, we discuss an exponential speedup, where the number

of gates used to calculate the quantum Fourier transform is on the order of O(n2),

and the classical algorithm requires O(n2n), where n is the number of qubits or bits

representing the number. We consider the requirements asymptotically, i.e. when

n→ ∞, and O(·) represents the upper bound of the scaling. For some function f (x)

we say that f (x) ∈ O(g(x)) if there exits some real number x0 and positive real

number M such that:

| f (x)| ≤Mg(x0) ∀x≥ x0. (2.20)

This notation also focusses upon the algorithm, ignoring the factors arising from the

implementation on a particular device such as SWAP gates required when qubits are

disconnected.

One of the first algorithms to theoretically prove quantum speedups is Shor’s

algorithm for factoring [1]. The algorithm gives an exponential speedup in finding

the prime factors of a prime number, a problem that one of the most widely used

cryptographic algorithms relies upon being hard to work. It is also a good example of

an NP problem, a complexity class of problems that are hard for classical computers,

a solution is hard to find, but easy to verify it is correct. For example, given a

large number x = ab, where a and b are prime it is hard to find a and b with no

knowledge, but very easy to verify that ab = x.. However, the factoring problem is

not NP-complete3, meaning other problems in NP cannot be represented as an imple-
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mentation of the factoring problem. footnotetextAssuming P ̸= NP. It is still hard

for classical computers, the number field sieve, i.e. one of the best classical attempts

to solve the factoring problem has complexity [55] O
(

exp
(
(lnn)

1
3 (lnlnn)

2
3

))
. It

is this proven speedup that gives impetus for us to find other problems that can be

solved more efficiently with a quantum computer.



Chapter 3

Noise Models

Noise in quantum circuits can be divided into two distinct categories: State Prepara-

tion And Measurement (SPAM) errors, and decoherence of the quantum state stored

in the qubit 1. There is much effort directed to reducing errors in experimental quan-

tum computing, but in this project we will only consider theoretical or algorithmic

error reduction / mitigation.

3.1 State Preparation and Measurement Errors
In many implementations SPAM errors are the most prevalent, e.g. in [22] they

report an error rate of 0.93 % for two qubit gates performed simultaneously on all

qubits averaged over a number of cycles (which includes state preparation errors),

and a readout error of 3.8 % when measured on all qubits. Similarly but in a different

technology, in an ion trap the SPAM error was three orders of magnitude higher than

the two qubit gate error [58]. SPAM errors are grouped together as it is harder to

distingush between the two, an incorrectly prepared state has the same effect as an

erroneous measurement.

Strategies for mitigating SPAM errors first require that the errors are charac-

terised, as the majority of implementations [59]–[63] first do some form of tomogra-

phy on the SPAM errors, to get the transition matrix, T (which describes the act of

SPAM errors on the identity circuit) and use that to reduce the effect of these errors

1There is also the phenomena of leakage in many qubit implementations, where the quantum state
‘leaks’ into a state that is not |0⟩ or |1⟩ (i.e. |2⟩ ) [56] , but this can be modelled as decoherence, so
will be treated as such here. It may be easy to treat it as decoherence in modelling, but becomes
harder to correct than decoherence in error correcting codes [57].
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on the final outcome, by applying T † . Characterising the errors is the most resource

intensive step, as full tomography of the errors requires 2n extra measurements [64] ,

this is why many of the efforts to reduce SPAM errors focus upon estimating T with

high fidelity.

SPAM errors categorised this way can be split into two distinct sets: intrinsic

and extrinsic. Intrinsic SPAM errors are those which are part of the state preparation

or measurement process, e.g. thermal populations in the |1⟩ state when preparing

|0⟩, and erroneous dark (light) counts when measuring |1⟩(|0⟩). Extrinsic SPAM

errors are those arising from the gates used to produce all the starting states required

for process tomography; i.e. the |01⟩ |10⟩ , |11⟩ states must be prepared for two-qubit

tomography, which is achieved with an X gate. Extrinsic SPAM errors arise from

the implementation of this gate. These errors present a problem for tomography, as

the are not part of the errors we want to address. In Section 13.1.2 we will discuss

Gate Set Tomography, which can overcome this limitation at the cost of increased

quantum and classical resources.

In [60] they used machine learning to classify the output from a single qubit,

getting an assignment fidelity of Fa = 0.9821, and more recently a group has im-

proved the fidelity of optical quantum measurements by 10% using a deep neural

network [65]. Other techniques for estimating T usually involve measuring transfer

matrices for smaller sub-sets of qubits and building the whole system T from that,

e.g. in Ref.s: [63], [66].

3.2 Experimental Metrics

When an experimentalist is discussing the quality of a qubit, two important metrics

are the T1 and T2 times. The T1 time refers to the relaxation time, and T2 time to the

dephasing time [67]. Assuming that |0⟩ is the ground state of the system, the T1 time

is the decay constant for the probability that the qubit remains in the |1⟩ state,

P(|1⟩) = et/T1. (3.1)



3.3. Decoherence Errors 40

The T2 time is the same constant, but for the time for a relative phase to change,

|+⟩ ↔ |−⟩,
P(|−⟩) = et/T2. (3.2)

Relaxation and dephasing can be combined into decoherence, i.e. the state vector in

the Bloch sphere is pushed towards the origin, or the maximally mixed state [43].

3.3 Decoherence Errors

Decoherence errors can be described as incorrect implementations of the quantum

circuit, either by a bad calibration, e.g. over (under) rotations, or by environmental

noise causing the qubit to decohere. Although there are many different sources of

this class of errors, the can all be modelled as a super operator, the operator-sum of

the Kraus operators, [43]:

E(ρ) = ∑
k

EkρE†
k , (3.3)

and to preserve the trace of the state, ρ , the must obey the relation

∑
k

E†
k Ek = 1. (3.4)

To describe the depolarising channel, which can model gate errors in a super-

conducting quantum device [67] , the Kraus operators, Ek are the single-qubit Pauli

operators:

Ek =

{
p
4

σ j,
3p
4
1

}
j ∈ x,y,z (3.5)

and p is the level of noise modelled.

The Generalised Amplitude Damping (GAD) channel describes energy relax-

ation, the tendency of the qubit to relax to the ground state via dissipation to the

environment, without any action on the qubit (as opposed to the depolarising channel
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above as the result of a gate). The Kraus operators for the GAD channel are [43] :

E0 =
√

p

1 0

0
√

1− γ

 , E1 =
√

p

0
√

γ

0 0

 ,
E2 =

√
1− p

√1− γ 0

0 1

 , E3 =
√

1− p

 0 0
√

γ 0

 .
(3.6)

In these operators, p is the overall level of noise, as above, and γ is a parameter that

describes how much of the damping occurs in the amplitude or the phase of the state.

In quantum mechanics, the system can also lose information without dissipating

any energy. Physically this can be caused by interaction with the environment such

as from a stray charge. We can model it as the phase damping channel, which again

can occur without any gate interaction.

E0 =
√

p

1 0

0 1

 , E1 =
√

1− p

1 0

0 −1

 . (3.7)

3.4 Systematic errors

Systematic errors occur during the application of a quantum gate and are due to an

error or drift in the calibration of the device. They can be modelled on the Bloch

sphere as an over or under rotation or an error in the axis of rotation. To model these

errors, we usually include a random distribution in the parameter we wish to model.

In real quantum devices however, we overcome these errors through randomisation,

which will be discussed.

3.5 Markovian and Non-Markovian Noise

Finally, we must also define Markovian and non-Markovian noise, which describe

some of the assumptions made in algorithms discussed in Chapter 13. Markovian

noise [68] can be explained as memoryless. Memoryless here refers to the fact

that the noise has no dependence on any previous states in the circuit, i.e. that the

noise towards the end of a quantum circuit is the same as the noise at the beginning.
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Non-Markovian noise therefore describes noise that has some dependence on the

previous gates or state of a circuit. Many noise mitigation algorithms may make

the assumption of Markovian noise, but this may not hold in reality [69], [70]. We

can easily see this if we consider calibration drift, where the qubits will become

uncalibrated over time.



Chapter 4

Error Correction

This body of work focusses upon NISQ devices, those which have low qubit numbers

and noisy gates and are unsuitable for running error correction schemes. However,

we will in this chapter discuss some of the features of Quantum Error Correction

(QEC) that will be relevant to Chapter 15, and will be useful for discussion of

the next steps needed to build a fault tolerant quantum computer. We will focus

our discussion on the surface code [71]–[73] as it is one of the most-studied and

promising techniques for preserving quantum states using error correction.

4.1 Error Correcting Codes
Isolating a quantum state from its environment is hard. A large amount of experi-

mental work done on real devices is effort to isolate the qubits from the environment

and other qubits during the computation [74]–[84], but this can only get so far,

and information stored in quantum states will eventually decohere. Quantum Error

Correcting codes, such as the surface code [85] store the quantum information in

a protected subspace of the whole Hilbert space, which is achieved via stabiliser

measurements.

4.1.1 Stabiliser Measurements

It is impossible to measure the eigenvalue of the X̂ operator and Ẑ operator of

a single qubit simultaneously, i.e. the Ẑ(X̂) measurement projects the qubit into

either the |0⟩/ |1⟩(|+⟩/ |−⟩) state. However, if we introduce a second qubit, we

are able to measure the two qubit ẐaẐb(X̂aX̂b) operators, as these commute. These
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measurements are knows as stabiliser measurements, as every measurement projects

the state into one of the four eigenstates, ‘stabilising’ it. An X̂ or Ẑ error on any of

these qubits will project the qubit state onto a different eigenstate than the no-error

eigenstate, allowing the existence of an error to be detected. However, for this simple

error detection code we are unable to specify which qubit an error occurred on, which

makes it impossible to correct the error 1. We increase the number of data qubits

involved in a measurement and introduce a measure-qubit to give the surface code

stabilisers: ẐaẐbẐcẐdand X̂aX̂bX̂cX̂d . Due to the even number of non-commuting

operators within these stabilisers it is easy to verify that these operators will commute,

similar to the previous operators. However, if we arrange these qubits onto a 2D

grid and include the measurement qubits, we see that an error on one of the data

qubits affects at least two of the stabiliser measurements ( Ẑa(X̂a) errors affect the

XabcdXae f g(ZabcdZae f g) measurements, and a Ŷ error is just a combination of ẐX̂

errors), which allows us to isolate an error to a single qubit. This arrangement is

depicted in Figure 4.1. The circuit to measure the Ẑabcd(X̂abcd) operators is shown in

Figure 4.2.

4.1.2 Measurement Errors

So far, all of the errors considered have been either gate errors or decoherence on the

data qubits. In current quantum devices the dominant source of error is measurement

error [22], so we must build error correction codes which are robust to measurement

noise also. This is done by repeating a single surface code cycle, of the stabiliser

measurements discussed above, for a number of repeated rounds. Absent of gate

errors, a measurement error will occur on a single measurement qubit, flipping the

sign of a single stabiliser which will return to the original value in the next round.

By including multiple rounds within a single logical step of the surface code, we

can isolate measurement errors and correct for them, i.e. if the probability of a

measurement error on a qubit in a single round is p, the probability of it persisting

1In the NISQ era, error detection without correction can still be implemented to achieve greater
fidelity, just by throwing away runs where an error occurred. This technique is knows as quantum
subspace expansion [86], but increasing qubit count and circuit length will increase the number of
errors, eventually leading to all circuits being thrown away.
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Figure 4.1: A small patch of the surface code showing the commuting measurement opera-
tors measured on the qubits at teh Mn locations. An error in either the Z or X
eigenstate on a single qubit will affect two stabilisers, allowing us to pinpoint
the error location. Figure reproduced from [87].

|0⟩ I(H) • • • • I(H)

a

b
c

d

Figure 4.2: Circuit used to measure the Ẑ(X̂) stabilisers, where the Hadamard gates are
applied if the X̂ stabiliser is measured.
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for all of an n-round step is pn, getting more unlikely the more rounds are in a logical

step.

4.1.3 Decoding

This brief discussion of the surface code has not yet discussed how to correct errors

that have been detected, even though it is an error correcting code. Due to the

stabiliser measurements we are able to detect Ẑ, X̂ ,Ŷ errors occurring on the data

qubits, and by measuring multiple rounds of the surface code, we are able to detect

a measurement error on the measurement qubits. If a measurement error occurs

isolated from any other measurements we can safely ignore it, and we are able

to correct errors on data qubits by applying a quantum gate ( as P2 = 1 for each

Pauli ). However, the correction we apply may itself be noisy, meaning we are

better off correcting these errors in our classical control software. We do this by

observing that the stabiliser measurements project the qubits into an eigenstate of

those measurements, but with the opposite sign of the correct measurement. For

example, a Ẑa will produce a sign flipped X̂abcdX̂ae f g measurement, which we can

correct by noting the sign flipped measurement and flipping the sign of those two

measurements each time they appear next (until another Ẑa measurement occurs,

correcting the original).

We can visualise the code in 3D space, with the x and y dimensions the plane of

the surface code, and the z dimension representing time, errors in the data qubits are

correlated spatially, and errors in the measurement are correlated in time. We need

to extend our decoding of errors to the case where multiple errors occur in the same

round, including measurement errors.

When an error occurs on a single physical qubit, it is flagged by a sign change in

two stabilisers. When multiple errors occur, the output will be a change of the sign of

the two stabilisers at the edges of a neighbouring qubit string. To decode these errors

it is not necessary to match the exact errors, we only need to match two end points

(so we can flip the signs of all the stabilisers in the chain), as the topological property

of the surface code (see below, Section 4.1.4), means that closing any non-trivial

loop ensures we correct the error. So the input to our decoder is a graph of nodes,
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and the output should be the shortest path connecting two nodes.

This problem is actually #P-complete in general [88], so we can be pleased

with minimum-weight perfect matching decoders [89], [90] which are able to give a

solution to the matching problem efficiently. This decoder is also useful on other

variants of quantum codes [91] , such as the colour code [92], the 3D surface code

[93], [94], and the XZZX code [95]; the latter is a more efficient code in the presence

of biased noise [96] , which is a feature of some quantum devices [97].

4.1.4 Logical Operators

The surface code was first investigated using the topological order of the torus [73]

where qubits were placed upon a torus. The surface code is the flattening of this torus

onto the 2D plane, which introduces the boundary conditions necessary for utilising

this code on a real (e.g. 2D planar superconducting) architecture. Consider a small

patch of the surface code, which has boundaries that terminate on the X-stabilisers

(smooth) and Z-stabilisers (rough). If we want to act with a logical operator on

this patch, we need an operator that commutes with the stabilisers over the patch

to ensure that the quantum state remains within the error-free subspace of the code.

Acting with two simultaneous X operations on two data qubits within the patch will

commute with the Ẑ stabiliser acting on each of those qubits, but this stabiliser will

then not commute with its neighbours. Therefore, to remain within the code space,

we need to act with X operators across the whole width of this surface code patch, the

same is true of acting with Z operators along the length. We now see the connection

to the torus: only topologically distinct loops are able to affect the logical encoded

state, i.e. the loop around the ‘hole’ of the torus, and the loop around the ‘ring’ of

the torus. A string of errors which matches one of these operators causes a logical

error that cannot be detected, so a larger surface code ‘patch’ produces less errors,

allowing us to increase the code distance (length / width of a patch) to achieve a

logical error rate, given an error rate of the physical qubits.
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Quantum Machine Learning



Chapter 5

Quantum Machine Learning

Quantum Machine Learning (QML) can refer to a number of different problems, e.g.

the processing of large amounts of classical data on a quantum device [98], or using

a quantum algorithm to learn using a quantum state generated in experiment [99], or

in the NISQ-era, learning the parameters of a quantum circuit that solve some task,

e.g. the Max-Cut problem [100]. There are two main reasons for the use of quantum

computers for machine learning, relating to the type of data to learn from. In the

first case where the data originates from some quantum source, such as a sensor or

experiment, we are able to probe the quantum correlations between states with much

more effectiveness when we allow for quantum processing of the data, as shown

in [99]. In the case where the data is classical in nature we must be more careful

about any potential advantage. The ability to represent 2n states in n qubits is where

the advantage of QML on classical data is hoped to originate, and was the source of

a claimed exponential speedup for matrix inversion problems [101]. However, more

recently the loading of classical data into the quantum device has been considered

in further detail, and when taking into account the circuit length for classical data

loading, or by giving similar data structure assumptions to the classical device many

QML algorithms have been shown to have only a polynomial speedup over classical

counterparts, something we now call ‘de-quantization’ [102]–[104]

In this chapter we will briefly review the current state of quantum machine

learning, in Chapter 6 we will present some work on quantum machine learning on a

noisy device to perform the task of state discrimination, and in Chapter 7 we present
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some work on the differing concepts of non-linearities within QML.

5.1 Classical Machine Learning
First, we will discuss some of the terminology from classical neural networks which

will be useful here.

Classical artificial neural networks (ANNs) consist of a set of artificial neurons,

also called nodes, connected via links [105], [106]. This is a conceptual description

of ANNs, as the nodes are not physical but describe the operation done to some data

as it reaches the node. The links connecting the nodes have an adjustable weight

associated to them, which determines the strength of the influence of the output of

one node on the node in the next layer. Within each node all the inputs with their

given weights are added up, and an activation function is performed on this sum,

which determines the output strength of the node. Typically the nodes are arranged

in layers, where the output of all nodes in one layer is passed via the links to the

inputs of all the nodes in the next layer.

The activation function is non-linear, e.g. a softmax, tanh, or ReLU function,

and as a multilayer neural network with only linear activations can be replaced by

a single layer, this non-linearity is believed to be a large source of the power of

ANNs. We will see in Chapter 7 how non-linearities have been implemented in

quantum neural networks. The power and flexibility of ANNs has been demonstrated

recently with great interest, in such disparate tasks as generating novel images given

a text prompt [107], generating novel text [108], and recognising objects within

images [109]1.

In Chapter 6 we will demonstrate mid circuit measurements used to emulate

dropout in ANNs. Dropout is a regularisation technique where nodes in the ANN

are deleted at random. Regularisation is the set of techniques which try to ensure

that a certain trained model does not overfit the training data, i.e. when a model fits

perfectly to the training data, but not to test data, it has more likely memorised the

function corresponding to the training data, than some underlying feature of the data.

1So fast is the pace of work in this field, this section is updated with new examples on every draft!
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5.2 Quantum Machine Learning with Big (classical)

Data
The success of classical machine learning with classical data spurred investigations

into quantum algorithms that could improve upon the classical algorithms either by

increasing accuracy or just decreasing the time taken to train a model. The Harrow

Hassidim Lloyd (HHL) algorithm [101] is an early example of a proposal to decrease

the time taken to train models. The HHL algorithm, and related work [110], [111]

solve linear systems of equations by inverting a large matrix on a quantum device.

One of the biggest applications of machine learning is in Principle Component

Analysis [112] which amounts to solving an eigenvector problem. In Quantum

Principle Component analysis [113] , we solve the eigenvector problem via matrix

inversion with the HHL algorithm. Unfortunately, for many of the speedups to hold

we require acces to the data in O(1) time. This required the data to be stored on a

Quantum Random Access Memory (QRAM) [114], which is yet to be realised, but

there has been some recent progress [115]. A QRAM is able to create a correlated

superposition of the data provided,

N

∑
j=1

a j | j⟩a |0⟩b→QRAM
N

∑
j=1

a j | j⟩a |D j⟩b . (5.1)

But one challenge of creating QRAM2is that to provide a speedup, many of the QML

algorithms (including the HHL algorithm) require queries to be made in time log(N),

but a QRAM requires O(N) resources to query a database of size N.

Another issue that quantum algorithms for classical data can come up against

in de-quantization. This is where a novel quantum algorithm is proposed that has

a speedup over the best classical algorithm, but the quantum algorithm inspires

techniques that can be used on the classical device which also include the speedup.

The most famous case of this is the de-quantization of a quantum algorithm for

recommendation systems [116] which was de-quantized by Ewin Tang [102]. In

2Apart from the challenge of maintaining the superposition over long times, which is a challenge
shared in quantum processing, see Chapter 4.
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brief, an assumption made about the form of the input data that allowed it to be

used in the QRAM efficiently is not used in the original algorithm; allowing the

classical algorithm the same assumption (and working to show that the memory can

be accessed efficiently) allowed Tang to show that the classical algorithm achieves

the same speedup.

There is some scepticism that an efficient QRAM will ever be possible, for this

reason, and that the topic of this thesis is noisy quantum devices, we will not discuss

QML for big classical data further.

5.3 Quantum Machine Learning for Quantum

Experiments
A more promising strategy for realising quantum advantage is to apply QML to the

quantum states that are the output of some experiment. The challenge in this approach

is realising practically a sensor which can store the quantum state and transfer it to

the quantum processor. In [99] they demonstrate that quantum advantage can be

achieved using quantum machine learning on the quantum states that are outputted

from experiment. One demonstrated advantage applies to a classical probability

distribution of states, showing that the quantum advantage from experiments is useful

when applied to data outputted by some sensor.

One of the techniques to learn from states in [99] demonstrates that an ex-

ponential decrease in the number of experiments required to learn about a set of

unentangled, but classically correlated states. The set of states is described by

ρ = 2−n (I +αP) with P an n-qubit Pauli operator. Without allowing quantum pro-

cessing on the states, the best we can do to learn α and P is to use classical shadow

tomography [117], which uses randomised Clifford measurements on each copy of ρ .

The classical post processing required for this technique is exponential in n, and the

randomised Clifford measurements require circuits that are too deep for today’s de-

vices, except for only small values of n. In contrast, if we allow quantum processing

of the states, and a classical neural network to process the output of this computation,

we require exponentially fewer experiments. In the quantum enhanced setting, we



5.4. Quantum Machine Learning with NISQ devices 53

store a copy of ρ in the quantum memory, and with the next copy of ρ generated we

perform an entangling Bell measurement. The bitstring output of this is fed into a

classical neural network, which has been trained on labelled states generated from

smaller noiseless simulations. In [99], they demonstrate with a current quantum

device, the Google Sycamore processor, that an exponential reduction in the number

of experiments can be achieved.

The authors of [99] also show that a similar advantage can be achieved for

quantum processes. In this demonstration, we are instead attempting to learn about

the quantum channel, E that prepares the measured states, ρ . In this case, the states

were generated by a random quantum circuit, which is either time symmetric or

not. The task is to separate the measured states into these categories. The output

of each setting was analysed by a classical neural network, which in this case was

unsupervised, i.e. there was no labelled training data. In this case, the authors again

find that the number of experiments required to separate the classes is exponentially

lower with access to quantum processing, and that in experiment with the Sycamore

chip, limited to 3000 experiments, the quantum enhanced networks could separate

the data, whilst the purely classical networks could not.

In Chapter 6 we demonstrate a quantum neural network for a similar task, of

state discrimination, and we show that a noisy circuit can discriminate the states

better than the known POVM when subject to noise.

5.4 Quantum Machine Learning with NISQ devices
Here we will discuss some more QML results that do not rely upon QRAM or fault-

tolerant devices. With NISQ devices in their infancy, many of the techniques here

will rely upon optimisation and measurements which we will discuss in Chapter 10,

therefore here we will restrict ourselves only to the QML specific parts of the

algorithms.

5.4.1 Quantum Approximate Optimisation Algorithm

One of the earliest claimed demonstrations of a quantum device is the quantum

annealer [118] , which uses novel hardware to do simulated annealing. Simulated
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annealing is a classical algorithm [119], [120] where a particle in a landscape

is slowly cooled to reach the global minimum. The quantum annealer adds the

ability for the particle to tunnel through the potential barrier. The popularity of

quantum annealing solutions to problems lead to the development of an analog of the

quantum annealer in gate-based quantum computing architectures. This method is the

Quantum Approximate Optimisation Algorithm [121] , or the Quantum Alternating

Operator Ansatz [122] (QAOA).

The second abbreviation goes some way to describing what the ansatz is: a

series of alternating parameterised operators that work analogously to simulated

annealing. We apply a cost operator and a mixing operator alternately to the state for

a number, p, of layers, giving the final state,

|ψ(β ,γ)⟩=
{

e−iβHBe−iγHp
}p
|ψ0⟩ . (5.2)

Here HB is the mixing Hamiltonian and Hp is the problem Hamiltonian, γ,β are free

parameters to be optimised and |ψ0⟩ is a suitable starting state. The analogy with

simulated annealing is that Hp imposes the problem of interest, like the simulated

annealing landscape, and HB mixes the state between potential solutions, with

the strength of β determining how much mixing is done, like the temperature in

simulated annealing. We can also think of the QAOA algorithm as a Trotterisation

of the continuous time quantum annealing Hamiltonian.

By applying the mixing Hamiltonian,

HB =
N

∑
i=1

σ
x
i , (5.3)

alternating with the constraint Hamiltonian, which depends on the problem imple-

mentation, to get the state |ψ⟩, we measure ⟨ψ|C |ψ⟩ and minimise. A large part of

the work in QAOA is done to design a Hamiltonian and cost function which well

matches the problem.
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5.4.2 Quantum Walk

In the classical random walk algorithm we have a discretized parameter space, e.g.

a two dimensional grid, and the algorithm chooses which direction to move in

randomly. In [123] the QAOA algorithm was augmented with a continuous time

quantum walk as the mixing operator, to produce the Quantum Walk Optimisation

Algorithm (QWOA).

Quantum interference and correlations are allowed in the quantum walk algo-

rithm, as opposed to a classical random walk [124], [125]. The problem of traversing

a decision tree tom determine if there is a node at the nth level is considered [124].

Classically, this can be solved if there is a high probability of reaching nodes at the

nth level. However, if it is hard to distingush between trees with and without nodes

at the nth level it is hard to solve classically.

With a quantum walk, the location of the ‘walker’ is encoded in a quantum

state, and it is evolved with a quantum operator that picks the direction to move. If

we use a Hadamard operation before evolving in the direction to travel, the state can

traverse the graph in superposition, meaning that the standard deviation of the final

state grows as T 2, where T is the time step, which only grows as T in the classical

case.

In [123], where the QWOA algorithm was introduced, they replace Equation 5.3

with a continuous time quantum walk operator,

UW (t) =U†
#F†

Meiλ tFMU#. (5.4)

Where U# is the indexing unitary, which maps the M binary strings associated with

valid combinations into the first M binary strings, which is undone by U†
# . F performs

the Quantum Fourier Transform, i.e. converting the data stored in the amplitudes

into the phase of the state, and λ is a diagonal matrix that describes the connectivity

of the objects.
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5.4.3 Quantum Monte Carlo

Monte Carlo techniques, named for the casino, is named so as it repeatedly samples

from a distribution, relying upon the law of large numbers to produce the expected

value, by taking the empirical mean, µ , of the samples. Using Monte-Carlo on a

classical computer has been very successful in many domains, including nuclear

physics [126], materials science [127], statistical physics [128], and the application

discussed here, finance [129]. This is despite Monte Carlo techniques requiring lots

of computer resources as models become more complex, or the events modelled

become rarer. We must also distinguish here between Quantum Monte Carlo, using

Monte Carlo simulations of quantum systems [130], from the quantum speedup of

Monte Carlo methods [131] which we will discuss.

In [131] they reduce the number of samples taken to estimate µ , to additive error

ε , with standard deviation σ using Õ
(

σ

ε

)
samples, whereas the classical algorithm

requires O
(

σ2

ε2

)
samples. This construction also allows for the sampled algorithm,

A to be a quantum algorithm, or for it to be samples from a quantum experiment,

as discussed in Section 5.3. The algorithm approximates the mean of non-uniform

distributions using amplitude estimation.

Quantum Monte Carlo can estimate µ if it lies between [0,1], which is used as

a subroutine in the amplitude estimation algorithm, estimating the distribution of

µl between
[
2l−1,2l] with l = {0,1, . . .k} for each l. This is done iteratively up to

the final bound k to output the estimation µ̃ = ∑
k
l=0 2l µ̃ l . This is finally modified to

produce the mean of functions which can also be negative.

The first algorithm that estimates µ ∈ [0,1] does all of the quantum heavy lifting,

it is this algorithm which allows for the initial speedup. Firstly, we assume that the

quantity we wish to measure can be encoded as a quantum algorithm, which we

will call A, and that it makes no mid-circuit measurements. The W operator that

conditionally rotates an ancilla qubit by the value φ(x), which if the outcome of A
given the input x. Here x = {0,1}k is the binary encoding of a real input, and the
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operator W can be written as

W |x⟩ |0⟩= |x⟩
(√

1−φ(x) |0⟩+
√

φ(x) |1⟩
)
. (5.5)

By iterating the amplitude estimation algorithm on the state,

|ψ⟩= (I⊗W )(A⊗ I) |0⟩⊗n+1 , (5.6)

we can estimate µ , as a controlled W operator gives a phase kick-back of ¯φ(x) = µ

on the control qubit.

Amplitude estimation [132] decreases the number of samples required to es-

timate a value with a generalisation of the Grover’s search algorithm [2]. The

algorithm works by applying the diffusion operator,

D =


2
N −1 2

N . . .

2
N

2
N −1 . . .

... . . .
2
N

2
N . . . 2

N −1

 , (5.7)

which inverts the amplitudes of a state about their mean, e.g. reflects the vector.

Combining this with the W operator which increases the amplitude of the output of

A, and iterating many times, means that measurement of |x⟩ will give us the value of

µ with high probability.

5.4.4 Quantum Boltzmann Machine

The Quantum Boltzmann Machine is another generalisation of an algorithm found in

classical machine learning. A Hamiltonian is defined for the network of connected

nodes, i.e. H = ∑i< j wi jsis j +∑i θisi, with si the state of node i, wi j the weight

between nodes i, j and θi the bias of node i 3. The Boltzmann Machine [133] is an

early generative model which is so-called as it utilises the Boltzmann distribution,

Pα =
e−Eα/kBT

∑
M
β=1 e−Eβ /kBT

, (5.8)
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to sample from the output nodes of the network, where Pα is the probability of state

α , which has energy Eα , given by H |α⟩; kB is the Boltzman constant, and T is the

"Temperature" of the system.

The quantum implementation of a Boltzmann machine [134] we consider each

site as a qubit, so the state of each site can be represented by a Pauli operator, which

we will choose to be σ x
i . The Hamiltonian is then given by

H =−∑
i< j

wi jσ
z
i σ

z
j −∑

i
θiσ

z
i +∑

i
Γiσ

x
i . (5.9)

We then train the Quantum Boltzmann Machine (QBM) until the measured probabil-

ity distribution of the measurement outcomes is close to the distribution of the input

data. With a small enough systems, these can be implemented classically, but similar

to the Ising model, larger systems may have to be sampled from using a quantum

device.

3Notation here has been chosen to maintain consistency with machine learning literature, but is
similar to the Ising model.



Chapter 6

Quantum State Discrimination with

Quantum Neural Networks

This chapter is mostly based on the work in [135] which this author contributed

to with the implementation and simulation of the whole system and the writing of

the manuscript. This is building upon work done by the other authors of [135] in

[136]. We present an extension to noisy devices of the approach for quantum state

discrimination outlined in [136], a quantum analogue of a neural network used for

state discrimination. In [136] simulations of shallow quantum circuits were trained

to find the optimal Positive Operator Valued Measure (POVM), or measurement, to

distinguish between two families of non-orthogonal quantum states. The families of

states will be described below. Given an input state chosen randomly from one of

the families, the output of the network should indicate which family the input was

chosen from. To do this the network is trained on a set of labelled data, performing

supervised learning [105]. The ideal POVM was learned via a classical optimiser

using a gradient descent algorithm on the quantum parameters, which correspond

to the rotation gates in the quantum circuit. This POVM is distinct from the error

minimising POVMs, as it also attempts to minimise the occurrence of inconclusive

results.

Quantum state discrimination is important in many emerging quantum tech-

nologies: quantum cryptography [137], entanglement concentration [138], quantum

cloning [139], and quantum metrology and sensing [140], [141]. Quantum circuits
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trained for classification could also be used in quantum machine learning problems

as a classifier of quantum data.They could classify the output of other quantum

circuits, e.g. the output of a quantum generative adversarial network (GAN) [142].

We represent the states as density matrices in the simulation, so that we can

model noise in the quantum device. We also simulate calculation of the parameter

gradients on the quantum device, which would also be subject to noise in a real

machine. We find that with these extensions including the effect of noise the previous

algorithm proposed for noiseless systems no longer performs optimally. To recover

performance we reduce the number of trainable parameters through consideration of

the circuit structure.

6.1 Defining States to be Discriminated

We wish to discriminate a two-qubit input state, |ψin⟩, which in general can be

represented as a normalised vector with 4 complex components. The state is chosen

randomly from two sets of states, labelled a and b, and elements defined by:

|ψin,a⟩= (
√

1−a2,0,a,0), (6.1)

|ψin,b⟩= (0,± 1√
2
,

1√
2
,0), (6.2)

Eqn.(6.1) defines the states in the first set, |ψin,a⟩, where by setting the continuous

real parameter a ∈ (0,1] the specific state is chosen. The number of states within this

first set is therefore infinite due to the fact that a can be varied continuously. Eqn.

(6.2) defines the second set, |ψin,b⟩, which has two elements, given by |ψin,b,+⟩=
(0,1/

√
2,1/
√

2,0) and |ψin,b,−⟩= (0,−1/
√

2,1/
√

2,0). The discrimination in our

manuscript is performed between these two sets of states: one with an infinitely

large continuous set of states, and one set with two states in it. State discrimination

between general sets of states is discussed in Ref. [143]. We set the probability that

a state from the a set appears as input state to pa = 1/3, the probability that a b state

with positive sign appears to pp+ = 1/3, and the probability that a b state with a

negative sign appears to pp− = 1/3. Note however that our results are expected to
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Figure 6.1: Distribution P(a) of the parameter a for the input states in the first set (Eq.6.1),
for an average value µa = 0.5 and a standard deviation σa = 0.15. These values
of µa and σa are used for the data in Figs. 6.4 - 6.8, and 6.11. Due to the rather
large value of σa the most probable values of a are not confined only in a thin
range around µa, but instead cover almost all the range between 0 and 1.

be applicable also to other sets of states, since the methods presented here are based

on variational algorithms, which can be formulated for any target state.

We now define the probability distribution, P(a), that describes how the param-

eter a of the first set of input states is statistically distributed in the range from 0 to

1. We use a normal distribution with an average value, µa, and a standard deviation

around this average value, σa. As illustrative example in Fig.1 we show P(a) for

µa = 0.5 and σa = 0.15. The set of states defined by this distribution has about 68%

of the states in the range a = 0.35 to a = 0.65, 25% of the states within the range

a = 0.1 to a = 0.35 and a = 0.65 to a = 0.9, and still a non-negligible probability

of about 5% of finding a state in the range between a = 0 to a = 0.1 and a = 0.9 to

a = 1.0.

Primarily our specific sets of states a and b are chosen to reproduce the work

in [136] and in [144], where the state discrimination was performed in a laboratory.

Secondly, these states are non-orthogonal and therefore cannot be distinguished

perfectly without some probability of erroneous or inconclusive outcomes, making

the problem harder for the algorithm. It is therefore an ideal case to verify the

method, since the level of non-orthogonality can be tuned by choosing µa and σa in

the distribution function of a in Eq.(6.1), with a value of a closer to 1 being more

difficult to discriminate.
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6.1.1 The Quantum Neural Network for State Discrimination

There are two non-orthogonal states to discriminate, so if we wish to have a network

that can be trained to not commit any errors, we must allow for it to produce an

inconclusive result [144]. This allows the network to give a ‘don’t know’ result

as opposed to an erroneous one. Therefore we have a minimum of three outputs,

necessitating two measurement qubits.

The output of the network is determined by the measurement outcome. As we

begin in a random configuration and are training the system, we can arbitrarily select

which label a measurement outcome corresponds to:

{|00⟩ : a, |01⟩ : b, |10⟩ : a, |11⟩ : inconclusive}. (6.3)

The choice of unbalanced labels may have an effect upon the outcome. For a random

measurement outcome the probability to guess the right state is 1/2 for a and 1/4

for b. We partly mitigate this bias setting the probability of a and b states to appear

as input to the values specified in the previous subsection, namely pa = 1/3 and

pb = pb++ pb− = 2/3.

This results in the probability of correctly guessing the input state for a fully

random measurement outcome to be 1/2pa +1/4pb = 1/3, and correspondingly the

probability for an incorrect guess is equal to 2/3. In general one might adapt the

assignment of measurement outcomes to labels according to the considered specific

task.

|0⟩

U

•

|0⟩
V1 V2|ψin⟩

|ψin⟩
Figure 6.2: The general form of the quantum circuits used in this work.The input state is

on the bottom two qubits, and measuring the first qubit introduces a non-linear
dropout layer. The sub-circuits U , V1,2 are shown in Figure 6.3.

The structure of the U and V1,2 circuit blocks is given in Figure 6.3, where

6.3a shows the same circuits used in [136] and 6.3b shows the reduced circuits
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introduced here, which we will discuss in more detail below. These circuits are

small and have low-depth, so that they can be ran on a quantum computer which

supports measurement as the circuit is running and classical feedback. This requires

fast measurement and fast classical processing which is not possible in many current

systems, but has been achieved in an ion-trap device [145], meaning this algorithm

could run on a current device.

U

Rx(θ1) Ry(θ2) Rz(θ3) • • •

= Rx(θ4) Ry(θ5) Rz(θ6)

Rx(θ7) Ry(θ8) Rz(θ9)

Rx(θ10) Ry(θ11) Rz(θ12) •

V1,2

Rx(θ13,22) Ry(θ14,23) Rz(θ15,24) • •

= Rx(θ16,25) Ry(θ17,26) Rz(θ18,27)

Rx(θ19,28) Ry(θ20,29) Rz(θ21,30) •
(a) The U and V circuit blocks originally used in [136].

U

Rx(θ1) Rz(θ2) Rx(θ3)

= Rx(θ4) Rz(θ5) Rx(θ6)

• •
• •

V1,2

Rx(θ7,10) Rz(θ8,11) Rx(θ9,12)

= •
•

(b) The form of the U and V blocks with a reduced number of parameters.

Figure 6.3: The circuits showing the trainable parameters, which are used in this
work.Comparison of results obtained for the circuits 6.3b and 6.3a is made
in Section 6.2.1.

The state discrimination task is then as follows: input states are drawn from

two sets of states, and the classical optimiser must optimise the rotation angles θ1..n

of the quantum circuit to maximise the likelihood of a correct determination of the

state.In our specific case it has to determine whether an input state from the a set of

states or the b set of states. Note that only these states are allowed as input states
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during both training and testing of the circuit. A correct determination is found when

the measurement output of the quantum circuit is equal to the corresponding input

state label as defined in Equation 6.3.

This task is the minimum error discrimination problem, which has been solved

classically using semidefinite programming methods [146]–[148]. Here we solve

the same problem using a noisy quantum circuit, and demonstrate the usefulness

of using quantum measurement as a form of dropout. Note that each step of the

semidefinite programming method requires O(m4) classical steps, where m is the

length of the input vector, which scales exponentially with the number of qubits

required to represent the states. The scaling of variational quantum circuits such as

the ones used in our approach is not known currently, especially as the number of

trainable parameters increases, and is a topic of ongoing research [149]–[152].

6.1.2 Optimisation

Since the input states are initially labelled, the task for the classical optimiser is a

supervised learning task [105]. The optimiser used in this experiment is Adam [153],

which has been found to work well in a number of quantum variational algorithms

[66], [136], [154]–[156]. It has also been shown classically that Adam deals well

with noisy gradients [157], which will be the output of our noisy quantum computer.

We will fully discuss the choice of optimisers for quantum variational algorithms in

Section 10.3. Other optimisers such as RotoSolve [158] have been proposed, and a

comparison of performance can be made in future work.

Noisy gradients are a feature of the work here: as gradient calculation must be

performed on the noisy quantum device, we expect that the output gradients will

be noisy. We also expect that there will be non-optimal local minima in our loss

landscape, as this is also a feature of the loss function in the noiseless case [136].

Finally we also expect that the loss landscape may feature ‘barren plateaus’, as these

have been shown to be a feature of quantum optimisation problems [159], which is

discussed in Section 10.4.
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We define the function to minimise, the cost function, as

C = αerrPerr +αincPinc, (6.4)

where the positive real numbers αerr,αinc are the cost parameters used to bias the

network towards minimising errors or inconclusive results (Perr,Pinc are defined

below). If for example we require the network to produce fewer errors, we can do

this at the cost of recording more inconclusive results by increasing the value of αerr

relative to the value of αinc. The gradient of the cost function is calculated via the

parameter-shift rule, Equation 10.30 discussed in Section 10.3.1. Such intermediate

optimisation strategies based on changing the cost parameters, thereby allowing for

a trade-off between minimum-error and unambiguous state discrimination, were

studied in Refs.[160]–[163]. Here we use a quantum algorithm to solve this problem,

and perform the analysis of how noise in a quantum device affects the results. We

discuss the effect of changing the cost parameters in Section 6.2.1.

While the input states are always pure states, as they are processed in our

quantum circuit the noise causes them to become mixed states. To simulate this

effect of the noise in the quantum circuit we use density operators, ρ , to represent

quantum states inside the quantum circuit. The measurement probabilities of a state,

ρ , for a generalised measurement, M = |φ⟩⟨φ |, are given by:

⟨ρ⟩= Tr(|φ⟩⟨φ |ρ), (6.5)

and the quantum state after measurement is given by

ρmeasured =
|φ⟩⟨φ |ρ|φ⟩⟨φ |
Tr(|φ⟩⟨φ |ρ) . (6.6)

Using this we can find the probability of an erroneous or inconclusive measurement

Perr = ∑
ρi∈b

(⟨ρi⟩00 + ⟨ρi⟩10)+ ∑
ρi∈a
⟨ρi⟩01, (6.7)
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Pinc = ∑
ρi∈a,b

⟨ρi⟩11, (6.8)

where ρi is the input state, and ⟨ρi⟩ jk refers to the probability of obtaining a measure-

ment of | jk⟩ from the circuit.

Discrimination of these states, without the use of a variational algorithm, has

been shown in the laboratory to reach the theoretical best success probability, Psuc

of 0.833 for µa = 0.25,σa = 0.01 [144]. This is a minimum loss, L = 1−Psuc =

Perr +Pinc, of 0.166. For the equal probability case, P(|00⟩) = P(|01⟩) = P(|10⟩) =
P(|11⟩) = 0.25, the success rate is 0.385, this translates into a loss of 0.635. This

gives us lower and upper expected bounds to compare our results for the loss to.

6.1.3 Reduced circuit

For the probability distribution of a determined by µa = 0.25 and σa = 0.01 the

maximum theoretical success rate (Psuc) is 0.8333 [144], which was obtained with the

long circuit in Ref.[136]. However, after optimisation of circuit parameters for our

larger circuit in Figure 6.3a we reach only 0.72, which is significantly smaller than

the theoretical limit. We attribute this discrepancy to the different implementations

of the optimisation procedure, and to the different calculation of the gradients. To

overcome this sub-optimal result we designed the shorter circuits in Fig.6.3b. The

choice of the reduced circuit is motivated by the consideration that for this task the

rotations on the state qubits have a smaller effect on the measurement outcomes than

rotations on the measurement qubits. This choice of structure is so that the input

states are entangled with both output qubits, and then the measurement qubits are

rotated. The choice of rotations about the x-axis, followed by the z-axis, and then

again the x-axis allows for the initial state to be transformed to any other state on the

surface of the Bloch sphere [43]. With this short circuit (Figure 6.3b) we obtain a

success rate of 0.826, close to optimal performance. This is the circuit used for the

results presented, except where we explicitly note that the longer circuit is used.

We note that as the shorter circuits do not explore the full Hilbert space of

all the qubits, they may not be necessarily optimal for all discrimination tasks.

Investigations into the capability of different variational quantum circuits have been



6.1. Defining States to be Discriminated 67

0.0 0.001 0.01 0.05
Noise Level

0.0

0.1

0.2

0.3

0.4

0.5

0.6
L

os
s

(a)

0.0 0.001 0.01 0.05
Noise Level

(b)

Probability of:

Error

Inconclusive

a b Inconclusive
Output

0.0

0.5

1.0

P
ro

b
ab

ili
ty

Input:
a states

b states

Figure 6.4: The distribution of Pinc and Perr from 25 repeats of (a) a network biased towards
reducing errors αerr = 60, αinc = 10.(b) One with a balanced cost function,
αerr = αinc = 40. Both with values µa = 0.5, and σa = 0.15. An example
undesirable output for a single minimising error run is in the inset, where no b
states are measured correctly, but the network still converges (the x-axis shows
the output label and the colour is the input state). The interquartile range is
contained within the box, and the 5th and 95th percentiles are marked by the
whiskers. Outliers of this range are marked by a diamond. The mean is marked
with a white square, and the median is the line across the box.

made in [164]. Here we present evidence that when used on a noisy device, the

smaller variational circuit converges to better results than the larger circuit. In general

a trade-off needs to be made between this better resilience to noise and the ability of

the circuit to distinguish very complex states.

6.1.4 Noise

As discussed in Section 3.3, we model the noise in the quantum computers with a

superoperator, E(ρ), which is a completely positive, trace-preserving map on the

state ρ [43]. For the single-qubit noise channel our operators are the single qubit

Pauli operators, modified by the noise probability, p, to give the depolarising channel,
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Equation 3.6, which we repeat here for ease of presentation:

E0 =

√
1− 3p

4

1 0

0 1

 , E1 =

√
p
4

0 1

1 0

 ,
E2 =

√
p
4

0 −i

i 0

 , E3 =

√
p
4

1 0

0 −1

 .
(6.9)

The probability of the single qubit noise channel is p1q =
4
5 p2q. This is the one-

qubit marginal probability of error for the two-qubit gates [165], i.e. the probability

of a single qubit error without condition of an error on the other qubit. This is a

commonly used assumption in the quantum error correction literature [166], which

assumes that the error process in single and two qubit gates is the same. In real

devices the process can be quite different, but we nevertheless choose this method as

it is an upper limit on the error probability of the single qubit gate. When quoting the

noise level in this paper, we will always refer to p2q. We set the highest noise level

in our simulations to p2q = 0.1, as this is an upper limit on two-qubit gate fidelities

reported on current quantum hardware [18], [167], [168].

Note that here we have not considered asymmetric noise or different quality

qubits. However, we believe that correcting for a systematic bias such as this is

possible for a variational algorithm, as seen in [169]. Furthermore, in actual devices

the single qubit noise probability reported is much lower than 4/5 of the two qubit

gate noise level. For example, the single qubit gate error rate reported in [168] is

1.4×10−3, whereas the two qubit gate fidelity is 9.3×10−3, and the ratio between

these is approximately 3/20, at least a factor of 5 lower. In our simulations the single

qubit noise is set to the higher limit of 4/5, so that we are more demanding of the

algorithm.

6.1.5 Simulation

Simulations of the quantum device were performed on a simulator built using the

Tensorflow machine learning package [170], and verified with the Cirq [171] quantum

simulation package. In our simulations we set the initial angles, which are our
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parameters to be optimised, at random values. The labelled quantum state is an input

to the circuit in Figure 6.2, that circuit is ran and the measurement probabilities

calculated and with them the cost. The gradient of the cost with respect to each

parameter is then calculated by the method described in section 10.3.1, and the

parameters are updated according to the Adam optimiser to minimise the cost. This

routine is repeated until the cost no longer significantly decreases.

During the training process of the optimal quantum circuit rotation angles, {θi},
at each iteration we evaluate the cost function in Eq.(6.4) with a number of randomly

chosen values of a within a given distribution P(a). This number is 20 for each

training step, of which there are typically 1000-3000 until convergence. Due to

this rather large number of samples used in the training optimisation it is ensured

that the whole distribution of a according to P(a) is covered. Hence the circuit is

trained to discriminate between the whole continuous set {|ψin,a⟩}, with a distributed

according to P(a), and the two states in set {|ψin,b⟩}. Once the circuit parameters

are trained, for the testing step we use 250 samples of a values, distributed again

following P(a). Therefore the QNN is trained not only for one specific given value

of a, but rather for the chosen distribution of a values.

Measurements here are calculated in the ‘infinite-shot’ regime, where the rep-

resentation of the quantum state at the end of the circuit is used to extract exact

measurement probabilities. The inclusion of statistical measurement noise can be

expected to result in slower rate of convergence than obtained here. We note that in

Ref. [155] it was demonstrated that convergence of variational algorithms is guaran-

teed even for single-shot measurements of the gradient. We indicate that convergence

can also be achieved using this method in presence of measurement noise, although

with a higher number of iterations.

6.2 Results

6.2.1 Effect of cost function choice and circuit depth

In Figure 6.4 we compare the obtained optimised Perr and Pinc for an error min-

imising cost function (αerr = 60,αinc = 10) and a balanced cost function (αerr =
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40,αinc = 40). The error minimising cost function often results in a practically

unusable network, because while it gives a low probability of error, the probability of

inconclusive results is too high, as seen for an extreme case in the inset of Figure 6.4.

In comparison to the error minimising setting, the results for the balanced

cost function are stable and generally give both small Perr and Pinc, with some Perr

comparable to the error minimising setting. For the remaining analysis we therefore

use the balanced cost function (αerr = αincon = 40). We note that as the noise level is

increased, Pinc and Perr progressively tend to larger values. The effect of noise will

be analysed in detail in the next section.

0.0 0.001 0.05 0.1
Noise Level

0.0

0.1

0.2

0.3

0.4

0.5

0.6

L
os

s

No. of
parameters:

More

Fewer

Figure 6.5: The distributions of loss (Perr +Pinc) at different noise levels for the two cir-
cuits shown in Figure 6.3. Both have other parameters fixed, µa = 0.5,σa =
0.15,αerr = αinc = 40. We observe that reducing the number of parameters is
advantageous at all noise levels.
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We next investigate the influence of the number of parameters in the quantum

circuit on the loss. In Figure 6.5 we compare the distributions of loss between

the circuit with more trainable parameters in Figure 6.3a to the circuit with fewer

parameters in Figure 6.3b. It can be seen that the reduced circuits consistently

perform better than the long circuits. It is more difficult to train circuits with a large
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Figure 6.6: Evolution of the normalised cost functions for larger and reduced circuits for
µa = 0.5 and σa = 0.15, with noise levels of 0.001 and 0.1. Shown here is the
number of steps taken to converge. Note that the time taken to complete a single
step of the longer circuit is much greater than for the reduced circuit.

number of parameters both without and with noise, as seen in Figure 6.6. We see

that the higher noise cases always converge to a higher loss, and that the reduced

circuits perform better in both cases. These results show that in practice increasing

the number of parameters used in a quantum circuit does not always have a beneficial

effect. Importantly, even in the noiseless case the circuit with less parameters leads

to better results. Furthermore the reduced number of parameters also significantly

lowers the required run-time.

Even with very low noise, the output is worse for larger circuits. This suggests

that with more parameters the algorithm struggles to optimise, when the gradient

calculations are performed on the quantum device. Good performance of the short

circuit in the presence of noise can be due to the noisy gradient regularising the

training, thereby optimising performance [105]. Moreover, the Adam optimiser
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has been designed to work well with noisy gradients [153]. The results seen here

are indicative that a noise-resilient optimiser using gradients provided by a noisy

quantum circuit can perform well.

6.2.2 Effect of noise: numerical analysis and model
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Figure 6.7: The distribution of loss for 25 repeats of training the network. The cost function
is balanced, αerr =αinc = 40, µa = 0.5, and σa = 0.15. At levels of noise present
in current devices, 0.01, the loss value is favourable, an average of 0.2.

In Figure 6.7 the noiseless case is compared to resulting optimised loss for

increasing noise levels (note that in this section we always use the reduced circuit). It

can be seen that using this algorithm with zero noise produces the lowest loss, as one

expects intuitively. With increasing noise the average loss increases continuously.
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Figure 6.8: Distribution of loss (Perr +Pinc) against training noise for different noise levels
in the validation circuit; (a) 0.0, (b) 0.001, (c) 0.01, (d) 0.05.

In presence of noise there are a few high-loss outliers, which we attribute to the

optimiser becoming stuck in local minima of the cost function. As the noise is

increased, performance deteriorates, but is no worse than the random output limit of

2/3≈ 0.67 (see Sec. 6.1.1).

Importantly, at noise levels comparable to current devices, p2q = 0.01, the

algorithm is still performing well, at an average loss of 0.2.

In general a high level of noise always leads to a higher loss. However, we find

that when noise is applied only during the training of the parameters, the optimised

parameters are rather resilient to this training noise. To show this in Figure 6.8 we
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Figure 6.9: The distribution of loss (Perr +Pinc) and the effect of different values of µa.
The cost function is balanced, αerr = αinc = 40, and σa = 0.15. The noise level
is (a) 0.0, (b) 0.001, (c) 0.01, (d) 0.05. We see that for lower values of µa,
corresponding to smaller overlap between the states to be discriminated, the
discrimination task is performed better. The red stars indicate the fidelity Fãb̃
between the two states after three applications of Kraus operators to each of the
data qubits, as given by Eq. (6.11d).

present the results when training the device at one noise level, and validating at

another. We see that even with high levels of training noise the optimiser converges

onto good parameters, as we find comparably low loss levels when validating those

parameters trained at a high noise level with low noise in the validation step. This

shows that for this task, the training steps are robust to a noisy training routine. Also

here we find that when validating at noise levels seen in current devices, p2q = 0.01,
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the average loss does not increase above 0.25, which would be acceptable to use for

state discrimination.

In order to provide an understanding of the numerically found changes of the

loss with noise, in what follows we present a simple model that can describe the

results. It is based on the notion that a larger overlap between the states to be

discriminated generally makes discrimination more difficult. As outlined in Sec. 6.1,

with our chosen set of states this overlap can be tuned by setting the value of a, and

is equal to a/
√

2. We can therefore systematically evaluate the effect of noise on the

discrimination for increasing overlap by increasing µa, and the results are shown

in Figure 6.9. The loss increases for larger µa for all levels of noise. At high noise

levels and high µa, some runs are performing even worse than the random output

limit (0.67), but on average the loss remains well below that value. In general we

conclude that the tolerable levels of noise depend on the overlap between the states,

where small overlap allows the states to be discriminated even for higher noise in the

quantum computer.

For large noise in the system the difference in loss between higher and lower

values of µa is significantly reduced when compared to the low noise case. This

seems to indicate that the noise on average reduces the difference between states as

these pass the circuit, and hence effectively increases the averaged overlap. This

effect can be illustrated for the ideal case of a = 0 and no noise, where discrimination

can in principle be perfect since the states are orthogonal. However, in presence of

noise there is a probability that a state is perturbed as the circuit is applied to it, and

hence orthogonality between states is lost. This results in a certain probability of

erroneous detection.

In order to estimate this effect on a semi-quantitative level for our used circuit,

shown in Figures 6.2 and 6.3b, we note that in absence of noise the role of the

data qubits is only to store the state |ψin⟩, which then controls the state of the

measurement qubits. In presence of noise the three noisy two-qubit gates applied to

each of the two data qubits will perturb |ψin⟩ during the processing of the circuit,

which in turn will affect the measurement qubits via the control operation and hence
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Figure 6.10: Fidelities as function of the number of applied noise channels, n, between
(a) the same states with noise applied to one state (Faã), (b) the two different
states with noise applied to one state (Fab̃ = Fbã), and (c) with noise applied
to both states (Fãb̃). Markers show the calculated numeric fidelities using Eq.
(6.10), lines show the low order expansions given by Eq. (6.11). The low order
expansion agrees well with the numerical results for all cases.
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the outcome of the state discrimination. We therefore approximately model the

effect of noise on the state discrimination by determining how much the repeated

application of noisy channels at each gate affects a given |ψin⟩, without considering

the presence of the measurement qubits.

In what follows we quantify how the application of noise channels affects each

state and its overlap with the state to be discriminated from. The quantum states with

noise applied are represented by density matrices, so that the overlap between two

states represented by the density matrices ρ and σ , respectively, is described by the

fidelity, F , given by [172]:

F = Tr
[√√

σρ
√

σ

]2

. (6.10)

Of particular interest here is the fidelity between a pure state |ψa⟩ entering the circuit

and its modified form due to the application of noise after three two-qubit gates. We

denote this as Faã, where the tilde on the second subscript indicates that the second

state is the one where noise was applied. We use an analogous notation the other

relevant quantities, which are Fbb̃, Fbã and Fb̃ã. We can compute these quantities

numerically, but given the rather cumbersome form of Eqn. (6.10) it is difficult to

relate the results to the fundamental parameters of the noisy discrimination process.

We therefore provide a lowest order expansion of these terms in p, which we expect

to be close to the exact results since we are only dealing with small p. We apply the

noise model in Eqs. (3.3-6.9), to the states a and b in Eqs. (6.1) and (6.2), and obtain

to first order in p.

Faã = 1−n p , (6.11a)

Fbb̃ = 1− 3n p
2

, (6.11b)

Fab̃ = Fbã =
µ2

a
2

+
n p
2
(
1−2µ

2
a
)
, (6.11c)

Fãb̃ =
µ2

a
2

+n p

(
1+

µa√
2
−2µ

2
a +

√
1− µ2

a
2

)
, (6.11d)

where n = 0 . . .3 is the number of noisy channel applications, µa is the mean value
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of a and p is the noise probability. Within this expansion order the fidelities are

linear in both p and n, and the expansion coefficients are simple functions of µa.

For the noiseless case (p = 0), Fab̃ = Fãb̃ = µ2
a/2, which corresponds to the

absolute value squared of the overlap between the a and b states.

The results for the fidelities for increasing n are shown in Figure 6.10. It can be

seen that the numerical results obtained directly with Eqn. (6.10) are captured rather

well with the the analytical low order expansion in Eqs. (6.11a-6.11d). The value of

Faã decreases with each application of a noisy channel, showing that the purity of

the state degrades as the noise channels act on the state. The value of Fab̃ increases

with n for lower values of µa, where the noise acts to increase the fidelity between

the states, while it decreases with n for higher values of µa, where the noise reduces

the orthogonal component in |ψa⟩. In Figure 6.10c the fidelity is plotted when the

noise channel is applied to both states (Fãb̃), and it always increases with n. Fãb̃ is

the relevant quantity the influence of noise on the loss: the application of the noisy

circuit on the originally pure input states causes them to degrade into mixed states.

The states to be discriminated are therefore not the input pure states any more, but

these noisy states, and for each application of the noise channel they become harder

to discriminate.

The minimal loss achievable in quantum state discrimination is generally a

function of the fidelity between the two input states [173], [174]. The exact relation

depends on the cost function that is minimised, and is only known analytically for a

few special cases, such as minimal error discrimination or unambiguous discrimina-

tion [173], [174]. In this section we consider the case where the rate of inconclusive

results and erroneous results is minimised simultaneously (αerr = αinc = 40).

Before estimating the effect of noise we therefore need to determine the func-

tional relation between the fidelity and the loss in the noiseless case for our circuit.

In the top left panel of Fig. 6.9 we show the results for Fãb̃(p = 0) = Fab as red stars

for each µa. One can see that the Fab is approximately equal to the loss for all µa,

so that to a good approximation for our circuit we can fit the relation as Loss = Fab.

In general the lower bound of the optimal theoretical loss is found in the minimum
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error discrimination setting, where there is no inconclusive measurement. In our

optimisation we include also the inconclusive measurement, the probability of which

is minimised in the unambiguous setting, which gives an upper bound on the loss.

Our minimised cost function is a combination of these settings, which simultaneously

minimises errors and inconclusive results, and our relation for the loss in fact lies in

between the optimum values in each of these boundary settings.

We can now verify the validity of our model for the effect of noise on the loss.

To this aim we calculate Fãb̃ from Eqn. (6.11d) for n = 3, which corresponds to the

number of entangling gates applied in our circuit to each data qubit. These results

are presented in Figure 6.9 for the panels with p ̸= 0.

One can see that Fãb̃ agrees rather well with the loss also in the presence of

noise. This validates our model that the effect of noise on the state discrimination is

mainly determined by the noise-induced increased overlap between the states as they

are processed in the circuit. In particular for the highest noise the model captures

well the fact that the effect of noise is large for small µa, while it is reduced for larger

µa. Eqn. (6.11d) therefore allows us to estimate the minimal loss achievable with

our circuit for a given p and µa.

Finally, we investigate the effect of the noise during training on the actual values

of the optimised parameters in the circuit. In Figure 6.11 we present the distribution

of θ10 for different values of noise. The values of θ are all taken modulo 2π , and at

zero validation noise to remove the effect of validation errors on the loss. We see

that the range of angles converged upon increases as the noise in the circuit increases.

Some values become stuck at high loss, and there can be different values for the

minimal loss parameters. The increase in noise seems to change not just the final

loss, but the parameters found that minimise loss. We cannot rule out the correlation

between different parameters as the noise level changes. Combined with what we

see in Figure 6.8, that good parameters are still found at higher noise levels, we may

conclude that noise in the circuit can push the optimiser out of local minima, so that

it can find some other local minima at lower loss.

From the results presented here we see that this algorithm performs well in
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Figure 6.11: The distribution of loss and θ10 obtained at different noise levels. Here we can
see the effect of noise on the values of θ10 that the optimiser converges to. We
only show a single representative parameter θ10, since we have a approximately
similar behaviour for all other parameters. This is shown at different noise
levels, (a) 0.0, (b) 0.001, (c) 0.01, (d) 0.05.

the presence of noise in the training and validation steps (Figure 6.7), and that

parameters found on a noisy device work well when validated on a device with low

noise (Figure 6.8). When calculating parameter gradients on a noisy quantum device,

reducing the number of parameters has a positive effect, as shown in Figure 6.5 and

Figure 6.6.
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6.3 Discussion
In showing that a QNN for the task of state discrimination can be trained on a

noisy device, we hope to add to the evidence that QML algorithms are best used on

quantum data, especially in the near term. The QNN here has the advantage over a

classical scheme, which requires measurement of the states, as corellation between

the states can be learned in the trained circuit [99]. However, the introduction of

noise does contradict some recent results in this field showing that noise leads to

worse training outcomes [175]. In completing this work , we removed gates and

parameters to beneficial effect (fewer gates mean fewer sources of infidelity); how-

ever, recent work in [176] demonstrates a critical overparameterisation is beneficial

to training and convergence of QNNs. The tension between the two directions, of

overparameterisation to improve training, and reducing gate count to overcome noise

may only be overcome by improvements in hardware, to make the additional noise

negligible.



Chapter 7

Non-Linearities in Quantum Neural

Networks

7.1 Introduction: A QNN Primitive
Etymology of the term neural network reveals where the field initially took its largest

inspiration from. The first proposals for algorithms that could learn were based on

initial investigations of the human brain, e.g. the perceptron [40]. There was limited

success with the very first neural network algorithms, and it seems that the later

success of machine learning required the huge increase in scale of the amount of

computation and data that could be used, including the invention of a novel type

of hardware, the Graphical Processing Unit (GPU). In the sub-field of quantum

computation that is Quantum Machine Learning and Quantum Neural Networks, we

are yet to see a universal primitive, or building block, for these algorithms. The field

is yet to settle upon an agreed quantum perceptron.

In this chapter we will discuss some of the proposals for quantum perceptrons,

and we will see how researchers have tried to incorporate non-linearity into quan-

tum neural networks. We have developed a package for simulating these circuit

ansatze1 [177] which we will use to compare the ability of these circuits to learn a

simple non-linear function. But first we must begin with an admission of a mistake,

a mea culpa for something this author stated in a previous paper.

1https://github.com/DuckTigger/non-linearities
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7.2 A mea culpa

The work in this chapter was instigated thanks to a discussion [178] regarding a

claim the author made in [135], that introduction of a mid-circuit measurement

introduces a non-linearity into the quantum circuit. This claim is not true, and this

can be verified by noting that a controlled gate commutes with measurement of the

control qubit [43, p.188], therefore the controlled gate can be commuted through the

measurement, and the circuit must implement a linear operation.

Classical neural networks have been used to solve some extremely difficult

problems, such as image recognition [109], processing and generating natural lan-

guage such as human speech [108], and generating novel images [107]. All of the

classical neural networks mentioned previously use deep networks, including many

layers of nodes in their structure. Non-linearities are essential to deep networks, as

they are used in the activation function of a neuron and any extremely deep network

without non-linear activation functions can be replaced by a single layer [106].

Quantum Mechanics is linear, operations in quantum mechanics are described

by unitary transformations of quantum states, themselves described by vectors.

If quantum mechanics admitted non-linear operations it would lose time-reversal

symmetry, strong evidence that we cannot have a quantum mechanical non-linear

operation. However, as we observe non-linear effects in the classical world it must be

possible to simulate non-linear effects by embedding into some larger Hilbert space,

which some of the techniques discussed in this chapter will do. It is the connection

between the power of deep classical neural networks and non-linearities that has lead

to investigation into introducing non-linearities into quantum neural networks. To

this end, there have been many proposals for introducing non-linearities in quantum

neural networks, some which do not, some that are only a trivial non-linearity, and

some which can produce a non-linear function at the cost of more quantum resources.

The work in this chapter will investigate some of these proposals, differentiate

between them, and provide some numerics demonstrating the ability for the circuit

proposals to ‘learn’ a linear and a non-linear function. The numerics for this work

was completed by a module in Python which has been open-sourced [177], with the
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ability to easily add new proposals for non-linearities.

7.3 What is a non-linearity?

Before continuing it is probably best to define what we mean by a non-linearity. A

linear transformation maps between two vector spaces preserving vector addition

and scalar multiplication. That is, for vector spaces V,W over the field K the function

f : V →W is a linear map if for any two vectors u,v and scalar c ∈ K [179] :

f (u+v) = f (u)+ f (v), (7.1)

and

f (cu) = c f (u). (7.2)

A non-linear transformation is one which does not preserve vector addition or scalar

multiplication, for example, f (x) = x2 is a non-linear transformation as f ((a+b)) =

a2 +b2 +2ab for a,b ∈ R.

When we discuss non-linearities in quantum neural networks there is an addi-

tional distinction to be made, between non-linear transformations on the input data

and non-linear transformations on the quantum state amplitudes.

7.3.1 Non-Linear Transformations on Input Data

A non-linear transformation on the input data to a Quantum Neural Network (QNN)

is the same transformation that a classical neural network employs. For ease of

exposition, we will restrict ourselves to integer numbers, although the extension

to floating point numbers is the same as in a classical computer. If we encode the

binary value of an integer in a set of qubits, including the sign qubit, we have a

quantum state which represents the integer. To represent the integer -4, where the

most significant qubit is the sign qubit, we prepare the state |1100⟩.

The non-linear transformation we consider here is the Rectified Linear Unit
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(ReLU) function, which performs the function:

ReLU(x) =

0, if x < 0

X , otherwise.
(7.3)

This can also be seen in Figure 7.1
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x

0

2

4

6

8

10

R
eL

U
(x

)

Figure 7.1: The ReLU non-linear activation function.

In some cases, we would like the quantum device to implement a non-linear

function on the input data, encoded into qubits. For example, to implement the ReLU

function on integers encoded in binary a function should output the state vectors as

given in Table 7.1.

Table 7.1: ReLU function on encoded integers

x |x⟩ ReLU(x) ReLU (|x⟩)
-2 |110⟩ 0 |000⟩
-1 |101⟩ 0 |000⟩
0 |000⟩ 0 |000⟩
1 |001⟩ 1 |001⟩
2 |010⟩ 2 |010⟩

It is simple to encode this function in a quantum circuit: a Toffoli gate, modified
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to be controlled on 0 on the sign bit will produce exactly this output; given in

Figure 7.2. Implementing the circuit to perform the non-linearity as an oracle is

SIGN
x / •

/ RELU(x)

Figure 7.2: The single gate to implement the ReLU function on integers encoded in binary
on qubits.

how the authors of [180] perform non-linear operations on the input to a QNN,

which they extend by demonstrating an oracle can perform the transformation on

amplitude-encoded data.

Given enough qubits and a deep enough circuit a quantum device can perform

any transformation on encoded input data as a classical computer can, with poly-

nomial overhead [43, p. 29]. We can show this in principle as the Toffoli gate is

universal for reversible classical computation [181], i.e. classical computation with

some garbage bits, and we can implement a Toffoli gate in a quantum computer.

7.4 Non-Linear Transformations on Quantum State

Amplitudes
As discussed, evolution in quantum mechanics is done by unitary operations, so

transformations on the state vector amplitudes must be linear. Nonetheless, in this

section we will discuss two proposals [182], [183] for implementing non-linear

transformations on the amplitudes of a quantum state. Neither of these proposals

‘break’ quantum mechanics or propose unphysical operations, instead they utilise a

larger Hilbert space (by introducing ancilla qubits) and post-selection to implement

what seems like a non-linear transformation, when the ancilla qubits and non-selected

results are thrown away.

7.4.1 Quantum Singular Value Transform

The Quantum Singular Value Transform (QSVT) [183] is the first of the non-linear

transformations on state amplitudes we will discuss here. In the QSVT we assume

access to a state preparation oracle U and U† , and the controlled versions of both
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operations:

U |0⟩ →
N

∑
i=1

ck |k⟩. (7.4)

Here k is the index of the value ck stored at that amplitude. This is in general a

Quantum Random Access Memory (QRAM) operator, but it is possible to work in

situations where U is efficient to prepare [184].

The task of a performing non-linearity on quantum amplitudes is: given two

non-linear operations P,Q, where linearity is as defined in Equations 7.1 and 7.2, and

the input as prepared in Equation 7.4, a circuit successfully implementing non-linear

operations on quantum amplitudes is able to prepare

1√
c

N

∑
k=1

(P(xk)+Q(yk)) |k⟩ . (7.5)

Here xk,yk are the real and complex components of ck, and c is a normalisation

factor.

The QSVT method is actually only part of this algorithm, introduced in [185]

and is able to perform non-linear transformations on the singular values of a matrix.

In [183] they combine this with a block-encoding strategy which encodes the real

(complex) parts of the quantum state as the singular values of a matrix.

It is argued in [185] that the QSVT underlies many of the qauntum computing

primitives, including Grover’s search [2] and the Harrow, Hassidim, and Lloyd [101];

but not the quantum Fourier Transform (e.g. Shor’s algorithm [1]).

A block encoding unitary is one which can prepare a matrix A, which may not

be Hermitian, in a smaller sub-space of the Hilbert space:

A =
(
⟨0|⊗a⊗ I

)
U
(
|0⟩⊗a⊗ I

)
, (7.6)

U =

A .

. .

 . (7.7)

meaning that if we act with U , measure the ancilla register a and post-select for the

|0⟩⊗a outcome, we will have a state ∝ A |ψ⟩ in the other register.
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In [183] they develop a method to block-encode the amplitudes of a quantum

state, allowing for the QSVT deveoloped in [185] to apply the non-linear transfor-

mation to the amplitudes. Similar to Eqn. 7.6, we prepare matrices G̃,
(
G̃′
)

with

eigenvalues encoding the real (imaginary) part of the state amplitude:

(⟨0|⊗ I2n+1) G̃(|0⟩⊗ I2n+1) =
N

∑
k=1

xk|φk⟩⟨φk|+ . . . , (7.8)

(⟨0|⊗ I2n+1) G̃′ (|0⟩⊗ I2n+1) =
N

∑
k=1

yk|φk⟩⟨φk|+ . . . . (7.9)

With the amplitudes encoded as eigenvalues, we can use the QSVT to perform a

non-linear operation on them.

The non-linear transformations P and Q are assumed to be approximated by

polynomial functions which obey:

∀x ∈ [−1,1] : |PR(x)| ≤
1
4
, (7.10)

meaning we can use the QSVT [185] to compute a block encoding of P(A/α), where

α is a multiplicative error. We use a classical computer to compute the description

of the circuit in time O
(
poly

(
d, log

( 1
δ

)))
, where d is the degree of the polynomial,

and δ is the approximation error of the polynomial. This scaling comes from the

requirement of finding the roots of the degree-d polynomial in the classical algorithm

to compute the circuit.

The algorithm to build this circuit used ideas from quantum signal processing

[186], where we want to know what unitaries can be built from the gate sequence

eiφ0σzW (x)eiφ1σzW (x) . . . , (7.11)

with

W (x) = eiarccos(x)σx =

 x i
√

1− x2

i
√

1− x2 x

 . (7.12)
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Theorem 3 of [186] shows that there exist rotation angles φ j such that

eiφ0σz
k

∏
j=1

(
W (x)eiφ0σz

)
=

 P(x) iQ(x)
√

1− x2

iQ∗(x)
√

1− x2 P∗(x)

 (7.13)

if the polynomials P,Q obey

1. deg(P)≤ k,deg(Q)≤ k−1

2. Parity of P is kmod2, parity of Q is k−1mod2

3. ∀x ∈ [−1,1] : |P(x)|2 +
(
1− x2) |Q(x)|2 = 1.

The following two theorems in [185] show how to find the values of φ in

O
(
poly

(
d, log

( 1
δ

)))
.

The circuit W is shown in Figure 7.3, where U is the state preparation oracle

in Eqn. 7.4. The application of the non-linearity is performed by the circuit shown

address /n

W

/ •

data /n = / U U†

B H • • I(S) H

Figure 7.3: The W operator used to implement block encoding of the state amplitudes. After
the Toffoli operation, the S gate is applied if we are operating on the imaginary
part. On the real part, no operation is performed.

in Figure 7.4, with the P,Q unitaries fond via the algorithm given in [185]. This

H X • X • X • X • X • X • H

block encoding /4

P Qaddress /n H

W W ′ W † W ′†data /n

B

Figure 7.4: The full circuit to perform the non-linearity on state amplitudes, with a post-
selected measurement on the ancilla and block-encoding qubits.

circuit produces the state

1
8γ
√

N

N

∑
k=1

(
P′(xk)+Q′(yk)

)
|0⟩⊗5 |k⟩adrs |0⟩data, B + . . . , (7.14)
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which will produce the non-linear operation on the address qubits given a post-

selected measurement of |0⟩ on the first five qubits, which occurs with probability
1

64γ2N ∑k

∣∣P′(xk)
2 +Q′(yk)

2
∣∣ .

7.4.2 Weighted States

A different framework for implementing non-linear operations on quantum devices

is the weighted states framework [182]. Whilst it does not use block-encoding or

the QSVT, it still relies upon expanding the Hilbert space via ancilla qubits and

post-selection of measurement outcomes. This method relies upon the fact that we

do not have access to the amplitudes of a quantum state, only the measurement

outcomes. Therefore, for a target (non-linear operation applied) output state τ we

wish to calculate ⟨O⟩τ = Tr [τO] for any measurement operator O, this does not mean

we need to construct τ on a single quantum device. In this framework we introduce

the ancilla state σ and measurement operator M which are dependent on the function

to be implemented. We define the input register I, the ancilla register A, and the

input state ρ in
I , we then evolve the input state and ancilla by a unitary operation, U ,

giving:

ρout =U
(

σA⊗ρ
in
I

)
U†. (7.15)

This output state is then re-grouped into three registers: system, S, environment,

E, and garbage, G. We then design a measurement operator, M, acting on the

environment register such that the desired output Tr [τ̃O] onto the state ρout:

Tr [τ̃O] = TrSEG
[
ρ

out (O⊗ME ⊗ IG)
]
∀O. (7.16)

We can delay measurement of O, leaving τ̃ = Tr [ρout (IS⊗ME ⊗ IG)] to be used as

the input to another algorithm.

It is the design of σA, U , ME that implements the non-linear transformation, in

Figure 7.5 depicts the circuit for performing the Quantum State Polynomial (QSP).

Before measurement, this circuit prepares the state
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σ • × /n
τS

ρ(0) × × M E

ρ(1) × /n I G

Figure 7.5: The circuit used to implement the quantum state polynomial in the weighted
states framework. The second SWAP is inserted to maintain consistency with
notation, but can easily be implemented in post-processing.

ρ
out
= ∑

ii′ j j′
σ00ρ

(0)
i j ρ

(1)
i′ j′ |i0 j⟩⟨i′0 j′|+σ01ρ

(0)
i j ρ

(1)
i′ j′ |i0 j⟩⟨ j′1i′| (7.17)

+σ10ρ
(0)
i j ρ

(1)
i′ j′ | j1i⟩⟨i′0 j′|+σ11ρ

(0)
i j ρ

(1)
i′ j′ | j1i⟩⟨ j′1i′|, (7.18)

which when measured with the measurement operator M, produces the weighted

state

τ̃ =σ00M00Tr
[
ρ
(1)
]

ρ
(0)+σ11M11Tr

[
ρ
(0)
]

ρ
(1) (7.19)

+σ01M01ρ
(0)

ρ
(1)+σ10M10ρ

(1)
ρ
(0). (7.20)

Through choice of σ and M we can produce states of the form α00ρ(0)+α11ρ(1)+

α01ρ(0)ρ(1)+α10ρ(1)ρ(0), which can clearly not be produced on a ‘vanilla’ quantum

circuit.

7.5 Trainability of non-linear circuit proposals
We can investigate the Quantum Neural Network primitive circuit proposals here,

with the simple test of replicating the ReLU function on integers encoded in the

qubits. This test is proposed as it is simple, yet can be revealing for the effectiveness

of the ansatz in training to a non-linear function which is possible in a quantum

circuit, see Figure 7.2, yet non-trivial, as we shall see. We encode the integers in

a binary representation, with a sign qubit, as in classical computing. To compare

the usefulness of the ansatze given above, we have trained all circuits to replicate

the ReLU function, in Figure 7.1. If we wish to use one of these circuits as a QNN

primitive, it should be simple enough that duplicating the circuit many times does

not require an onerous amount of training time, qubit number, or long coherence

times. We also desire a circuit element that, when combined with other similar units,



7.5. Trainability of non-linear circuit proposals 92

is expressive enough to learn the required function. To test for these properties, we

have attempted to train all of the ansatze given above to replicate the ReLU function,

encoding the integer in the amplitude of the qubits, in a similar manner to integers

encoded in classical bits, with a sign bit, as given in Table 7.1.

In the remainder of this section we will present the results of training the above

QNN primitives to the ReLU function, with some commentary on the ease of training

and the suitability of the proposed ansatz. We first attempt to train the ansatz to the

linear function (i.e. replicate the identity operator) as a ‘sanity check’ to see if the

ansatz is trainable at all. The python program to simulate these results is available

at [177].

7.5.1 Toffoli Oracle

There is no training in this example, we present the Toffoli oracle in Figure 7.6 to

demonstrate that a quantum circuit is able to represent the ReLU function. However,

as there are no parameters to train we cannot reproduce the linear function. We can

place any classical function as an oracle to the quantum device, but this will be costly,

and may not bring about any advantages.

7.5.2 Dropout (mid-circuit measurements) Ansatz

Here we see the results for training an ansatz with mid-circuit measurements, also

known as a dropout ansatz from the analogy with dropout in classical neural networks.

This is the ansatz we used in Chapter 6. We see in Figure 7.7 that we can learn the

linear function quite well, but that reproducing the ReLU cannot be achieved.

7.5.3 Hypothetical Measurements

We expect that the hypothetical measurements will perform much the same as the

dropout ansatz, due to the similarity between them. We observe this in Figure 7.8,

the circuit fails to learn the ReLU function, but it does appear to be less noisy than

the dropout ansatz.
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Figure 7.6: Using a Toffoli gate as an oracle, e.g. the circuit in Figure 7.2 can reproduce the
non-linear ReLU function, but it cannot be trained to output the linear function.
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Figure 7.7: The dropout ansatz being trained on a linear and non linear model. The model
can capture the linear model, but fails with the non-linearity. In both models
the loss function has converged quickly, which is good for the linear model, but
suggests that this ansatz is not expressive enough to learn the non-linear model.
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Figure 7.8: The hypothetical measurements ansatz being trained on a linear and non linear
model. The model can capture the linear model, but fails with the non-linearity.
It learns the linear model well, with a smoothly decrealing loss function, but the
loss function of the ReLU model is not well behaved.
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7.5.4 Non-Linear Parameters

The proposal of adding the non-linearity at the parameters it studied here. In this

proposal we apply a non-linear function to the gate parameter, after the gradient

update has been given by the optimiser. In Figure 7.9 we see that the circuit can

learn the linear model well, similar to a simple Pauli rotations model, but still fails to

learn the ReLU function. In essence, this is because the unitary operations on the

state are no different to those in the Pauli model.

7.5.5 Interleaved Ansatz

The interleaved ansatz, as proposed in [187] interleaves rotation gates encoding

the input and rotation gates as parameters. This ansatz therefore encodes the input

differently to the others considered in this chapter. An example in a single qubit is

given in Figure 7.11.

|0⟩ Ry(x0) Ry(θ0) Ry(x1) Ry(θ1) . . .

Figure 7.10: The circuit used in the interleaved ansatz, from [187], where xi are elements of
the input data and θi are the parameters. This can be extended to more qubits.

Considering the 0,0 element of the final state, we see that the action of this

ansatz is to apply a sinusoidal function to the input data,

ρ00 = cos(x0)sin(θ0)− sin(x0)cos(θ0), (7.21)

by chaining enough parameter gates and inputs together, we can apply sine functions

of arbitrary frequency to the inputs. With enough gates, this ansatz is universal for

quantum computing [187], but here we will restrict to a small circuit close in size to

the other proposals investigated here.

Figure 7.11 shows the results for training the interleaved ansatz. Training a short

interleaved ansatz reveals the sinusoidal feature of the operation, yet with the shorter

circuits we are restricted to we cannot replicate either of the functions specified.
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Figure 7.9: The non-linear parameters ansatz being trained on a linear and non linear model.
The model can capture the linear model, but fails with the non-linearity. We note
that the loss function for the non-linear model has not fully converged, but we
are limiting the available resources as we wish to investigate QNN primitives.
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Figure 7.11: The interleaved circuits ansatz being trained on a linear and non linear model.
With a short circuit, we are unable to easily reproduce either the non-linear
or linear functions. The convergence of the loss function for the linear model
suggests that we can do no better at this circuit length, but we may be able to
train the linear model more.
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7.5.6 Weighted States

The weighted states framework is takes a long time to train, due to the need to

postselect on the measurement outcome. In Figure 7.12 we have approximated the

linear function, but there are still issues with learning the ReLU function. This

appears to show that the introduction of non-linearities on hte quantum state are not

enough to learn an encoded non-linear function.
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Figure 7.12: The weighted states ansatz training to the linear and the ReLU function. Note
that here we are using one fewer qubit than the other ansätze. This is due to
the long training time required for this ansatz, which is a result of the post
selection requirement of the ansatz. We see that a linear model can be trained,
but the loss function of the ReLU model is not well behaved, suggesting that
we can not train more for better results.
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7.6 Discussion
In Figures 7.6- 7.12 we see that many of the QNN primitives struggle to learn a

non-linear function with modest resources. This latter point is important as we

propose to use these as building blocks for much larger algorithms, like how the

signature of the perceptron can be seen in the individual nodes and weights of today’s

deep learning algorithms. All of the trainable primitives do manage to approximate

the linear function though, with a decreasing loss function showing that there is some

learning present. For this reason it may be salient to ask if ensuring that our QNN

primitive implements a non-linear function, either in the state amplitudes or in the

encoded data is the right direction to head in? The primitives reviewed here have all

been presented in papers containing some numerical demonstration of their use in

a QNN algorithm, apart from the only primitive to truly introduce a non-linearity

to the quantum state, the weighted states [182], but this has demonstrated use in

non-learning algorithms. It is for this reason that we suggest the holy grail of a

QNN primitive that implements a non-linearity on a quantum state is overkill for the

learning tasks we will require. We encourage readers to use the repository [177] to

find their own QNN primitives.



Part III

Quantum Chemistry



Chapter 8

Classical Methods for Quantum

Chemistry

Quantum chemistry is recognised as one of the potential applications of a quantum

computer, a problem that classical computers struggle to solve, and one that quantum

computers have an advantage. As we will see though, it may not be the case that this

advantage will come in the NISQ era, due to the increasing resources required to run

the Variational Quantum Eigensolver (VQE) at system sizes approaching quantum

advantage. In this section we will review some classical computational techniques

that are usually used as the starting point for quantum algorithms, followed by

the workhorse of NISQ-era quantum computational chemistry, VQE, and we will

conclude by reviewing one of the algorithms that will be used in the fault tolerant

regime: quantum phase estimation, and a related algorithm, α−VQE which attempts

to interpolate between the regimes.

8.1 Classical Computational Quantum Chemistry

The goal of computational chemistry is to create a tractable model of some quantum

system, e.g. a molecule or solid state system, which we can learn useful properties

from. In this section we will discuss only molecules, as we will leave the sold state

system covered in this thesis to Chapter 11. To get useful results, we usually focus

our calculations on two aspects of the system: simulating time evolution via the
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Shrödinger equation:
d
dt
|ψ⟩=−iH |ψ⟩ , (8.1)

or finding the ground state, the lowest energy eigenvector of the Hamiltonian, H .

Simulating time evolution is not covered in this thesis, but for a good review including

time evolution, see Ref. [188]. Therefore in this section, we will begin with the

general molecular Hamiltonian, and review the approximations and quantizations

made until we get the second quantized Hamiltonian which can be approximated on

a quantum device.

8.1.1 Molecular Hamiltonian

In later chapters we will present work on quantum algorithms for solving the ground

states of molecular Hamiltonians, so we will review the formation of such Hamilto-

nians here, this review follows the treatment in [189]–[192].

To describe the Hamiltonian of a molecule we combine the kinetic terms for the

nuclei and electrons, with the Coulomb repulsion between the electrons and nuclei,

the nuclei and other nuclei and the electrons and other electrons. We do not take into

account any relativistic effects here, and denote the number of electrons N and the

number of nuclei K, the Hamiltonian is:

H =−∑
i

h̄2

2me
∇

2
i −∑

I

h̄2

2MI
∇

2
I −∑

i,I

e2

4πε0

ZI

|ri−RI|
(8.2)

+
1
2 ∑

i ̸= j

e2

4πε0

1∣∣ri− r j
∣∣ + 1

2 ∑
I ̸=J

e2

4πε0

ZIZJ

|RI−RJ|
. (8.3)

Here, h̄ is Planck’s constant, e,me is the electron charge and mass, and ε0 is the

vacuum permittivity. Capital letters relate to the nuclei, and MI,ZI,RI is the mass,

charge, and position of the Ith nuclei, and ri is the position of the ith electron. ∇

is the Laplace operator, or the three dimensional partial derivative. The first two

terms are the kinetic terms, and the final three are Coulomb terms. We can move to

atomic units for ease, using the energy unit of a 1 Hartree = e2/4πε0a0, h̄ = 1a.u.,

and me = 1a.u.. As our focus is quantum chemistry, e.g. the interactions of electrons

in molecules, we can approximate the nuclei as point charges. This is the Born-
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Oppenheimer approximation, which means we only need to solve the electronic

Hamiltonian:

He =−∑
i

∇2
i

2
−∑

i,I

ZI

|ri−RI|
+

1
2 ∑

i ̸= j

1∣∣ri− r j
∣∣ . (8.4)

8.1.2 First Quantization

The first quantization we make is to approximate the true orbitals of electrons in the

system with a set of basis wavefunction,
{

φp(ri,σi)
}

, where ri represents the spatial

co-ordinates, and σi the spin of the ith electron. The spatial and spin indices are

combined into a single index, xi = (ri,σi). Two commonly used functions are Slater

orbitals, which are exponential functions or Gaussian functions [193]. Gaussian

functions are more tractable when calculating the integrals forming constants in the

Hamiltonian, but Slater type orbitals better fit the form of the electron orbitals at

greater distances. The trade-off usually made is to approximate the Slater orbitals

with a linear combination of Gaussian orbitals.

One of the goals of making this discretisation is to enforce the antisymmetry of

electrons, i.e. when an electron is swapped, the sign of the wavefunction is changed.

Antisymmetry is also a product of the determinant of a matrix, so we can enforce

this by writing the electron wavefunction as the determinant of a matrix formed from

the M basis functions, known as a Slater determinant [194]:∣∣∣∣∣∣∣∣∣∣∣∣

φ0(x0) φ1(x0) . . . φM−1(x0)

φ0(x1) φ1(x1) . . . φM−1(x1)

. . . . . .

φ0(xN−1) φ1(xN−1) . . . φM−1(xN−1)

∣∣∣∣∣∣∣∣∣∣∣∣
. (8.5)

The number of orbitals considered, M is larger than the number of electrons, but

those electrons can only occupy N orbitals at a time. Algorithms for quantum devices

using first quantised methods have been demonstrated [195]–[197], however in this

thesis we focus upon the second quantized method.
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8.1.3 Second Quantization

Similar to the first quantization, we write the Hamiltonian as M basis wavefunctions,

and encode them in a vector indicating if an orbital is occupied or not:

ψ (x0 . . .xN−1) = | fM−1, . . . , fp, . . . , f0⟩ , (8.6)

where fp = 1 if φp is occupied, and 0 otherwise. This is the occupation number

vector, and all of these vectors form the Fock space. The ordering of the orbitals is

significant, as we must respect the antisymmetry:

|. . .φp, . . . ,φq, . . .⟩=−|. . . ,φq, . . . ,φp, . . .⟩ . (8.7)

In the second quantization method, we enforce the antisymmetry not by the determi-

nant of a matrix, but through the actions of the operators.

Begin by defining the creation operator, a†
i , its action on an arbitrary Slater

determinant |φp . . . ,φq⟩ is:

a†
i |φi,φp, . . . ,φq⟩ , (8.8)

that is, it creates an electron in the spin-orbital φi. From the antisymmetric property

of the wavefunction we have for an arbitrary occupation number vector, | f ⟩,

a†
i a†

j | f ⟩= |φi,φ j, f ⟩ , (8.9)

a†
ja

†
i | f ⟩= |φ j,φi, f ⟩ , (8.10)

|φi,φ j, f ⟩=−|φ j,φi, f ⟩ , (8.11)(
a†

i a†
j +a†

ja
†
i

)
| f ⟩= 0, (8.12)

and we have derived the first commutation relation of fermionic operators:

{
a†

i ,a
†
j

}
= 0. (8.13)
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From this, we see that changing the order of the operators changes the sign,

a†
i a†

j =−a†
ja

†
i , (8.14)

and if i = j, we have

a†
i a†

i =−a†
i a†

i = 0, (8.15)

meaning we cannot create an electron in a n orbital that already exists, i.e. the Pauli

exclusion principle:

a†
i a†

i | f ⟩= 0. (8.16)

We define the annihilation operator, ai as the adjoint of the creation operator,

which annihilates an electron in spin-orbital i:

ai |φi, f ⟩= | f ⟩ . (8.17)

If the orbital i is not at the left hand side of the occupation number vector, | f ,φi⟩
it must be switched with the orbital at the left hand side, which introduces a sign

change:

ai |φ jφkφi⟩=−ai |φiφkφ j⟩=−|φkφ j⟩= |φ jφk⟩ . (8.18)

The annihilation operators also obey the same commutation relation:

{
ai,a j

}
= 0 (8.19)

aiai | f ⟩= 0, (8.20)

i.e. an electron cannot be annihilated twice.

The final commutation relation concerns both the annihilation and creation

operators, firstly for i ̸= j which we know is zero if φ j does not appear in | f ⟩ and φi

does:

(
aia

†
j +a†

jai

)
|φi f ⟩=−ai |φiφ j f ⟩−a†

j | f ⟩= |φ j f ⟩− |φ j f ⟩= 0. (8.21)
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Therefore, {
ai,a

†
j

}
= 0, i ̸= j. (8.22)

In the case where i = j, we create and destroy an electron in an unoccupied orbital,

or destroy and create an electron in an occupied orbital (both +0), giving

{
ai,a

†
i

}
= 1, (8.23)

so our final commutation relation is:

{
ai,a

†
j

}
= δi j. (8.24)

In the first quantized representation, the operators conserve the number of

electrons, a property we must retain; therefore, creation and annihilation operators

are used in pairs. We require a term to represent single electron operators, which can

only involve one pair of spin-orbital operators: a†
paq, with the order required so that

acting with this on the vacuum state produces zero. We also take into account two

electron effects, such as electronic repulsion or the spin-orbit coupling. These are

nonzero only if the Slater determinants contain at least two electrons, and differ in

the occupation of two pairs of orbitals: a†
pa†

r asaq, which are again ordered to give

zero when acting on the vacuum or a single electron state. We can now build the

second quantized representation of the electronic structure Hamiltonian:

H = ∑
p,q

hpqa†
paq +

1
2 ∑

p,q,r,s
hpqrsa†

pa†
qaras, (8.25)

where the amplitudes hpq,hpqrs represent the probability of the single or double

excitation between the spin-orbitals pq, pqrs, and are calculated by taking the average

(integrating) over the spin-orbitals involved:

hpq =
∫

φ
∗
p (x)

(
−∇2

2
−∑

I

ZI

|r−RI|

)
φq (x)dx (8.26)

hpqrs =
∫ ∫

φ∗p (x1)φ∗q (x2)φr (x2)φs (x1)

|r1− r2|
dx1dx2. (8.27)
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The first, single electron term accounts for the kinetic energy of the electron, and

their interaction with the nuclei, whilst the second accounts for the electron-electron

Coulomb repulsion.

To fully solve this model we need to find all the eigenstates of the Hamiltonian.

As eigenstates and eigenvalues describe all of the possible values of a physical

operator, e.g. all of the observable properties of the system. To find all of the

eigenstates we can form a complete basis from the Slater determinants, as seen in

Equation 8.5, and the eigenstates can be expressed as a linear combination of Slater

determinants

|ψ⟩= ∑
f

α f | f ⟩ . (8.28)

These are exact solutions, known as the Full Configuration Interaction (FCI), but

only if all
(M

N

)
determinants are included, where N is the number of electrons, and

M is the number of possible orbitals they can occupy, which can grow to be a huge

number, meaning this does not scale well with the number of electrons. Therefore

we usually make approximations to solve these systems on classical and on quantum

devices. We will next review the classical methods Hartree-Fock and Coupled cluster,

as these are relevant to the quantum algorithms we use.

8.2 Classical Approximations

8.2.1 Hartree-Fock

The Hartree-Fock approximation is one of the simplest approximations we make,

assuming that the wavefunction as described above (taking into account the approx-

imations already made) can be approximated by a single Slater determinant. In

the Hartree-Fock approximation, we are not considering any correlation between

electrons. We remove the Coulomb repulsion form the Hamiltonian, instead ap-

proximating it as the average charge distribution of all electrons. The Hartree-Fock

method is an iterative procedure, by calculating the positions of each electron we

can update the potential, which allows us to update the positions of the electrons; we

iterate this procedure until the occupied orbitals converge.
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The Hamiltonian we minimise in this approximation is the Fock operator:

f̂ = ∑
pq

fpqa†
paq, (8.29)

where the scalar f is a combination of the single electron part, hpq, from Equa-

tion 8.25 and a modified form of the two electron part:

fpq = hpq +Vpq, (8.30)

Vpq = ∑
I∈occupied

(
hpqII−hpIIq

)
(8.31)

where the index I is over all occupied spin-orbitals, p,q are over all unoccupied

and occupied orbitals. In Vpq the first term represents the Coulomb interaction of

an electron with the charge distributions of occupied orbitals, the second term is

the exchange function and arises due to the antisymmetry of the wavefunction. The

terms fpq form the Fock matrix, which is diagonalised to give eigenvectors which

are canonical spin orbitals, and eigenvalues which are orbital energies; but as the

Fock matrix is defined in terms of its own eigenvectors, it must be reconstructed and

re-diagonalised to solve. This is how we carry out the procedure discussed in the

previous paragraph. As we are iterating to make the electric field consistent with

itself, this procedure is knows as the self-consistent field (SCF) method [191].

Dynamic correlation can be added to the Hartree-Fock model to correct for the

Coulomb repulsion between electrons, and the Hartree-Fock model is still a good

approximation. However, there are systems where more than one Slater determinant

is dominant in the wavefunction, and the Hartree-Fock method fails to be a good

approximation. This is static correlation and needs to be modelled for systems

such as transition metals and excited states, but we will usually begin with the

Hartree-Fock state as a starting point.
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8.2.2 Coupled Cluster

The coupled cluster method introduces corrections to the Hartree-Fock state via

exponentiating excitation operators Ti:

|ψCC⟩= e∑i Ti |ψHF⟩ , (8.32)

with

T1 = ∑
i∈virtual,α∈occupied

tiαa†
i aα (8.33)

T2 = ∑
i, j∈virt,α,β∈occ

ti jαβ a†
i a†

jaαaβ , (8.34)

an so on. The Ti operators can include all excitation operators, but this does not

scale well with system size, so we usually restrict to optimising over T1,T2, which is

known as Coupled Cluster Singles and Doubles (CCSD). However, one drawback of

the coupled cluster method is that it cannot be minimised via the variational principle,

as the derivatives of the state become intractable functions.

8.2.3 Unitary Coupled Cluster

We will now introduce the Unitary Coupled Cluster (UCC) method, which has the

advantage of minimisation via variation, and is better for treating static correlations.

Unfortunately implementing UCC on a classical computer is very costly, but it can

be implemented on a quantum device. The Unitary Coupled Cluster method is a

simple extension of the original coupled cluster method, which uses the adjoint of

the Ti operators to form a unitary operator:

|ψUCC⟩= e∑i Ti−T †
i . (8.35)

We still usually truncate the ansatz at a certain excitation - the Unitary Coupled

Cluster Singles and Doubles (UCCSD) is a common ansatz in quantum computing

problems, which utilises T1 and T2. In quantum computing UCC is used as an ansatz

for VQE, and we will review ansatze in Section 10.1.



Chapter 9

Quantum Methods for Quantum

Chemistry

9.1 Mapping Fermionic Operators to Qubits

The operators a†
i a j introduced in Section 8.1.3 are not operators which we can

naturally implement or measure on a quantum device. We will here discuss some of

the proposed mappings between fermionic operators and qubit operators.

9.1.1 Jordan-Wigner Transformation

The Jordan-Wigner transformation [198] transforms between fermionic orbitals and

Pauli matrices. It was proposed as a method for simulating fermions on quantum

computers in 2002 [199]. Taking the canonical form of the fermionic excitation

operators in the Z basis, and single site j:

a†
j =

0 0

1 0

 ,a j =

0 1

0 0

 . (9.1)

we can verify that a linear combination of σx and σy can reproduce these operators:

1
2

(
σ

x
j + iσ y

j

)
= a†

0 (9.2)

1
2

(
σ

x
j − iσ y

j

)
= a0. (9.3)
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However, this does not apply when we consider more than one site, k with j ̸= k, as

the operators do not obey the commutation relations of Equation 8.22. To fix this, we

introduce a string of σ
z
0... j operators which take into account the occupied orbitals

from the beginning of the chain and site j.

â j→
(

j−1

∏
l=1
−σ

z
l

)(
σ

x
j − iσ y

j

)
, (9.4)

â†
j →

(
j−1

∏
l=1
−σ

z
l

)(
σ

x
j + iσ y

j

)
. (9.5)

If we wish to enact a two - orbital operator, e.g. a†
jak, due to the Pauli relation

(σ z
n)

2 = I, we only need to use σ z terms on the orbitals between j and k, not from

0 . . . j−1.

This string of σz operators can be a drawback of Jordan-Wigner, consider a four

qubit system, and let us write out the unitary cluster operator between orbitals 1 and

4, eT 1,4
1 −T 1,4†

1 :

T 14
1 = t1

4 â†
1â4 (9.6)

→ t1
4 σ

1
+σ

1
z σ

2
z σ

3
z σ

4
− (9.7)

T 14
1 −T 14†

1 =−2it1
4
(
σ

1
x σ

2
z σ

3
z σ

4
y
)
, (9.8)

In the Jordan-Wigner transformation an operation that involves only the 1st and 4th

orbitals must involve all of the qubits. This is shown in circuit form in Figure 9.1, to

demonstrate that we now require two-qubit gates between all pairs of qubits.

H • • H

• •
• •

RX(
π

2 ) RZ(t1
4) RX(

π

2 )

Figure 9.1: The Jordan-Wigner encoded circuit of the operator in Equation 9.8. Due to the
Jordan-Wigner transformation, we now require two-qubit gates between all pairs
of qubits.
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It is for this reason that alternative fermionic encodings are proposed, which we

will review here.

9.1.2 Parity Encoding

One solution to the problem of updating the parity of all the qubits between j and

k is to store the parity information on qubit j. This encoding is the parity basis

encoding [200], and encodes p j = ∑
j
s=0 fs on qubit j where fs is the parity of qubit

s. However, if we wish to operate with a creation or annihilation operator on orbital

j, the correct operator depends on the state of qubit j−1, plus we must update the

parity off all the qubits following j, e.g act with a string of σ x
j+1...N . We now see that

using the parity basis offers no advantages over the Jordan-Wigner basis.

However, there is an encoding which interpolates between the Jordan-Wigner

and the parity encoding, offering advantages of each: the Bravyi-Kitaev encoding.

9.1.3 Bravyi-Kitaev Encoding

In the Jordan-Wigner encoding, we store information about the occupation of orbitals

locally, and the parity information non-locally, whereas in the parity basis we store

information about the parity locally, and occupation non-locally. In the Bravyi-

Kitaev encoding [201] we balance the locality of the two sets of information. Each

qubit stores information on the parity and occupation of orbitals, when j is even,

qubit j stores the occupation of orbital j, when j is odd it also stores the occupation

of a set of orbitals ≤ j. The set of orbitals that a qubit stores is determined by a

binary tree structure, which a review can be found in [200], [202]. A drawback of

the Bravyi-Kitaev encoding in the NISQ era is that noise in the quantum circuit

simulating the chemical system can lead to states which are unphysical. Therefore

in the rest of this thesis we will work in the Jordan-Wigner transformation when

applicable.

9.1.4 The Compact Fermion to Qubit Mapping

An encoding [203], [204] which maps fermions to qubits is unique due to its recency,

can be applied directly to NISQ devices. Instead of a single qubit for each fermionic

mode (or Slater orbital) , ancilla qubits are used to enforce the parity conditions,
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and only certain operators are allowed on the edges of the interaction graph. This

encoding is best suited to solid state systems, as the fermions lie on a grid, but other

lattice geometries are possible [204]. Again this encoding will not be used in this

work so the reader is referred to [203] for more information.

9.2 Simulating Time Evolution

One of the reasons to do quantum chemistry on a quantum device is so that we can

simulate the time dynamics of a system. Given a Hamiltonian H we can simulate the

effect of e−iHt |ψ⟩ if we have a quantum computer prepared in the state |ψ⟩ and an

algorithm for enacting H as quantum gates. We can use the Jordan-Wigner encoding

to translate excitation operators in H into quantum gates, but we still need a method

of turning a sum of terms in the Hamiltonian into a set of gates we can enact, which

we use the Suzuki-Trotter formula for.

9.2.1 Suzuki-Trotter Formula

The Suzuki-Trotter formula [205]–[209] allows us to simulate the time evolution of

a Hamiltonian with small error. The formula approximates the exponential of the

sum of some matrices with their product:

eA+B = lim
n→∞

(
eA/neB/n

)n
, (9.9)

We can express the Hamiltonian in this way allowing us to simulate it as a number

of quantum gates applied to the starting state:

e−itH = Π
m
j=0e−itH j (9.10)

if the time step t is too large we can also break this up in the Suzuki-Trotter formula:

e−itH =

(
m

∏
j=0

e−it/rH j

)r

. (9.11)
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9.3 Phase Estimation
Here we will briefly discuss the quantum simulation algorithm that is used in fully

fault-tolerant devices, with long coherence times and error correction, discussed in

Chapter 4. For a more in-depth treatment, see [43, chap. 5]. In the general phase

estimation algorithm the goal is to estimate the phase of the eigenvalue, λ , of some

unitary, U . As the eigenvalue is between 0 and 1, it can be written as ei2πφ , where

φ is the phase. To measure this phase, we can imprint it onto an ancilla qubit, so

we require an operation that affects an ancilla state without becoming affected (so

that we can increase precision by using more ancilla). To ensure that the state is not

affected, we must first be in an eigenstate. We can see such an effect in the CNOT

gate, with the |+⟩ state as the control, transforming into in the |0⟩ , |1⟩ basis, with

|−⟩ as the eigenstate of X , in Figure 9.2.

|0⟩ H • H

|1⟩ H

Figure 9.2: CNOT with the |+⟩ state as control imprints a phase onto the control qubit.

The outcome of this circuit is

H0CNOT [|+⟩ , |+⟩]→ H0

[
1√
4
(|00⟩+ |11⟩− |01⟩− |10⟩)

]
= H0

[
1√
2
(|0⟩ |−⟩− |1⟩ |−⟩)

]
→ |1⟩ |−⟩ (9.12)

where we see that measuring the first qubit gives us the |1⟩ measurement, which is

the −1 eigenvalue of Z, giving us the correct value of −1 as the eigenvalue of the

eigenstate |−⟩ of X .

As the eigenstate was exactly represented by a qubit, we did not need to estimate

the phase, by adding additional qubits. In the true phase estimation algorithm we

may require more qubits to measure the phase, and if it requires more qubits to be

written, the algorithm produces an estimation. To measure more bits of precision

we will use a binary representation of the phase, given by 0.φ0φ1, . . .φn, where each
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φi is the measurement result of a qubit. We apply the target operation, U2i
for each

bit of precision, i, and use the inverse Quantum Fourier Transform (QFT) [54] to

transform the data held in the phases into the measurement basis (the same act as the

final Hadamard gate in Figure 9.2). Briefly, the inverse QFT, QFT† transforms

QFT†
[

1
2n/2

(
|0⟩+ ei2π0.φ0 |1⟩⊗ |0⟩+ ei2π0.φ0φ1 |1⟩ . . .

)]
→ |φ0⟩ |φ1⟩ , (9.13)

which allows us to write the circuit for the phase estimation algorithm in Figure 9.3.

|0⟩ H •

QFT†

|0⟩ H •
...
|0⟩ H •

|ψ⟩ U20
U21 U2n

Figure 9.3: The general circuit for the phase estimation algorithm. Notice that we still
require an eigenstate, |ψ⟩ of U in the final register.

The action of this circuit is,

|0⟩⊗n→ |+⟩⊗n

→ 1
2n/2

(
|0⟩+ ei2π0.φ0 |1⟩⊗ |0⟩+ ei2π0.φ0φ1 |1⟩ · · ·⊗ |0⟩+ ei2π0.φ0φ1...φn |1⟩

)
→ |φ0φ1 . . .φn⟩ . (9.14)

which allows us to measure the phase in the output register.

We note that so far we have assumed that the eigenstate |ψ⟩ can be prepared in

the second register. If we do not know how to prepare the eigenstate, we can still find

the phase with high probability. As the eigenstates of U , |ψ⟩ form a basis, we can

expand whatever state prepared in that basis, |ρ⟩= ∑ψ cψ |ψ⟩. The phase estimation

algorithm will therefore prepare ∑ψ cψ |φ̃ψ⟩ancilla |ψ⟩data, and we will measure the

phase corresponding to |ψ⟩ with probability
∣∣cψ

∣∣2. This is the basis for the quantum

principle component analysis (QPCA) discussed in Chapter 5. There has been some

experimental progress towards phase estimation on near-term devices [210], but the
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levels of noise, and low coherence times mean that it isstill slightly out of reach.

9.3.1 α-VQE

This algorithm [211] is discussed here as it interpolates between the VQE algorithm,

to be discussed in Chapter 10 and phase estimation, it can be tuned to the coherence

time of a noisy device, to get the most coherence possible. This reduces the stringent

requirements of measurement samples O
(
ε−2) in vanilla VQE. In α-VQE we

prepare the eigenstate, |ψ⟩ using VQE. The phase estimation algorithm presented

above was first improved in [212] taking into account the ability of some quantum

devices to measure and reset qubits [14] so that all the ancilla qubits are replaced

by a single qubit which is reset. It also introduces a gate Rz(−Mθ) to the first qubit,

where M is the number of repetitions of U and θ is used to compare the phase to a

known value. Next, Rejection Filtering Phase Estimation (RFPE) is introduced [213],

[214] which essentially uses a Bayesian update model to change the values of M,θ

to learn the phase. Finally, the innovation in [211] is to constrain M,θ to a parameter

α which accounts for the length of coherence time available in the device.As the

number of applications, M determines how long the circuit must run for, the Bayesian

model in [213] can quickly require longer circuits than are possible. If we set the

required precision ε , and set the maximum coherence time, Dmax =
1

εα , then α-VQE

requires a minimum number of shots, Nmin that scales as

Nmin =


2

1−(log(Dmax)/log( 1
ε
))

(
1

ε2D2
max
−1
)

if Dmax <
1
ε

4log(1
ε
) if Dmax ≥ 1

ε
.

(9.15)

This shows that even if Dmax <
1
ε

we are able to reduce the number of iterations

required. α-VQE chooses (M,θ) =
( 1

σα ,µ−σ
)

where µ,σ are the mean and

standard deviation of the posterior distribution calculated from the previous Bayesian

update.



Chapter 10

The Variational Quantum Eigensolver

In this chapter we will present a review of the Variational Quantum Eigensolver,

touching on many aspects of the algorithm, including encoding, optimisation, train-

ability, and the barren plateaus phenomena. This is an introduction which can be

used in considering the work in Chapters 11 and 12. We will cover the specific topic

of noise in VQE when we discuss noise in Chapter 13.

The Variational Quantum Eigensolver (VQE) [50], [169] is a method for find-

ing the ground state of a Hamiltonian on NISQ quantum devices, whereas phase

estimation is used when we have access to long coherence times and noiseless gates,

covered in Section 9.3. The VQE makes use of the variational principle [190], i.e.

that the energy calculated by the Hamiltonian cannot be lower than the ground state

energy:

⟨ψ(θ)|H |ψ(θ)⟩ ≥ ⟨GS|H |GS⟩∀ψ(θ). (10.1)

We therefore prepare a parameterised state, with parameters θ , and vary θ until

the energy ⟨ψ(θ)|H |ψ(θ)⟩ converges. It is hoped that the energy the algorithm

converges to is the ground state energy, which will happen if the ansatz is expressive

enough, and if the algorithm does not encounter a barren plateau.

The ansatz that a VQE algorithm uses is an approximation to the ground state

of a Hamiltonian, and can be compared to similar classical approximations, e.g. the

Unitary Coupled Cluster ansatz is closely related to the Coupled Cluster calculation

in quantum chemistry using classical computers. A quantum device can represent n

electron orbitals in n qubits, whereas the same number of orbitals would take 2n bits
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to represent classically. So it is from the ability to represent larger systems that it

is hoped, but yet to be shown, that VQE will demonstrate advantage over classical

algorithms.

10.1 Ansatz Design
To prepare the state |ψ(θ)⟩ we use a parameterised quantum circuit, called an ansatz.

Designing an ansatz is one of the more important problems in a VQE experiment,

where the ansatz must be expressive enough to contain the ground state, yet with too

many parameters it will take a long time to train, and there is a connection between

the expressibility of the ansatz and the incidence of barren plateaus [215], which we

will discuss in Section 10.4.

10.1.1 Chemically Inspired Ansatz

In the chemically inspired ansatz we base the circuit upon some set of operators found

in the problem. For example, as discussed in Section 8.2.3 we can approximate the

ground state of the Hamiltonian with a set of operators such as the Unitary Coupled

Cluster Singles and Doubles (UCCSD). A chemically inspired ansatz can be built

from the encoded (e.g. Jordan-Wigner) form of these operators and parameterised

by their multiplicative constant, which is introduced into the quantum circuit as a

rotation gate, seen in Figure 9.1. The ansatz circuit can therefore be described by:

|ψ(θ)⟩= Π
0
j=NU j(θ j), (10.2)

where U j are the UCCSD operators. Order of the operators is important, and

choosing an ordering with double excitations before single excitations was found to

be beneficial in [216].

10.1.2 Hardware Efficient Ansatz

By inspecting the form of a single encoded operator in Figure 9.1 we see that it

requires many entangling gates. In the NISQ era it is common that these are the

noisiest gates in the device [22]. The Hardware Efficient Ansatz (HEA) [217] is an

attempt to reduce the overall number of gates in a circuit, and the incidence of the
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noisiest types of gates. Instead of a parameterised block, U(θ), being some operator

built from multiple gates, the HEA is built from gates which are native to the device.

The ansatz was found to reduce the number of parameters required for a simple

circuit, and reduce Trotterisation errors. The disadvantage of using the HEA is that

we are no longer guaranteed to stay in some physical state when optimising, and we

do not know if the ansatz chosen will encompass the ground state.

10.2 Measurement Grouping in VQE

A factor which greatly influences the run time of VQE experiments has not yet been

discussed: shot noise. For simplicity, if we wish to measure a qubit prepared in

|+⟩= 1√
2
(|0⟩+ |1⟩)in the Z basis we can only obtain a single measurement at a time,

a single measurement will give us 0(1) which does not give us the right impression

of the answer. If we were to repeat this measurement 5 times we could get a sequence

such as 00101, which is more accurate, but the proportions are not correct. This is

why we must repeat the measurement many times, e.g. if we were to repeat this

measurement 100 times we would more likely get the correct distribution. However,

if we replace the state above with 1
10 |0⟩+

√
99

10 |1⟩ it is clear that a strategy which

repeats 100 times is very unlikely to capture the true distribution.

10.2.1 Variance of Measurement Operators

Following [169], we can formalise this description. We wish to measure the ex-

pectation value of ⟨ψ(θ)|H |ψ(θ)⟩ which we will relabel as ⟨H⟩ for convenience.

The precision, ε to which we measure ⟨H⟩ is defined by measurements of ⟨H⟩ are

normally distributed with a standard deviation of ε

2 . When repeating single shots of

a quantum device we are measuring the estimator, ˆ⟨H⟩, and to achieve a precision of

ε we require a variance of ε2 in ˆ⟨H⟩. Due to the linearity of the Hamiltonian, this cn

be rewritten in terms of the Hamiltonian components α jH j:

ˆ⟨H⟩= ∑
j

ˆ⟨α jH j⟩. (10.3)
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In the naïeve strategy, where we do no operator grouping, the covariance between

individual measurements is 0,

Cov
[

ˆ⟨HA⟩, ˆ⟨HB⟩
]
= 0∀A ̸= B, (10.4)

and the total variance is simply the sum of individual variances:

Var
[

ˆ⟨H⟩
]
= ∑

j
Var
[
α jH j

]
. (10.5)

We can therefore estimate the total number of shots required in this experiment to be

nE = M∑
j

Var
[

ˆ⟨α jH j⟩
]

ε2 , (10.6)

where M is the number of sites that can be occupied.

However, we do not have a priori access to Var
[

ˆ⟨α jH j⟩
]
, so we must estimate

it as the experiment progresses. To estimate the variance as we are conducting the

experiment, we can use a Bayesian method. We begin by defining the likelihood of

measuring some sequence of measurements X , with only two possible outcomes (e.g.

{|0⟩ , |1⟩} ):

P(X |p) =
(

N
r

)
pr (1− p)N−r , (10.7)

where the total number of measurements is N, and r is the number of specific

measurements, say |1⟩. X completely depends upon p, which is the probability of

measuring |1⟩. We will use the Beta distribution [218] which is defined by two

variables, α and β , and we will update these variables in our Bayesian update.

P(p;α,β ) = Beta(α,β ) =
Γ(α +β )

Γ(α)Γ(β )
pα−1 (1− p)β−1 , (10.8)

where Γ(z) is the gamma function:

Γ(z) =
∫

∞

0
xz−1e−x dx. (10.9)
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The likelihood of sequence X of length N, containing r instances of |1⟩ is

therefore determined by the Beta function:

P(p|X) = Beta(α + r,β +N− r) = Beta
(
α
′,β ′
)
. (10.10)

We can use these updated α ′,β ′ to get the expectation and variance of p(|1⟩):

⟨p⟩= α ′

α ′+β ′
, (10.11)

Var(p) =
αβ

(α +β )2 (α +β +1)
. (10.12)

One of the largest improvements that can be made in compute time of a VQE

experiment is a result of grouping measurements better. In the naïeve case if the

Hamiltonian is a sum of m terms, we must make m repeats of the circuit. To be

explicit, if the Hamiltonian is H = HA+HB, to evaluate ⟨H⟩ we cannot in general do

this in a single step, as we must measure ⟨HA⟩ followed by ⟨HB⟩. This is the strategy

that was followed in the paper which first proposed and tested a VQE experiment

[50]. This problem becomes much worse as the system size increases, for example,

even a modest system such as H2O requires 1086 terms. The number of terms for an

n qubit system generally scales as n4 [192], [219].

Fortunately, the number of distinct measurements required can be greatly re-

duced by measurement grouping strategies. The simplest of these is to measure

operators that occur on separate qubits simultaneously, for example if HA only had

support on qubits 0 and 1, and HB on qubits 2 and 3.

10.2.2 Grouping of Commuting Terms

In the next level of sophistication we can group the terms into commuting sets. If

[HA,HB] = 0, the measurement of HA does not affect the measurement of HB, so these

can be measured in sequence1. It would seem therefore that grouping measurements

into a few commuting sets as possible will yield the quickest runtime, but this is not

necessarily the case., in [169] they demonstrate a state and collection of commuting

Paulis where a set of four operators requires fewer shots for a given precision than a
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set of three.

When we group commuting operators to be measured in the same state prepara-

tion, Equation 10.6 no longer holds. The variance is defined as:

Var [H] = ⟨H2⟩+ ⟨H⟩2, (10.13)

when we measure terms in the same preparation we no longer have that

∑i ̸= j⟨αiα jHiH j⟩ − ⟨αiHi⟩⟨α jH j⟩ = 0. This is because we are no longer mea-

suring the estimators sampled in separate state preparations as in Equation 10.4.

Covariance between the operators is defined as:

Cov [⟨HA⟩,⟨HB⟩] = ⟨HAHB⟩−⟨HA⟩⟨HB⟩. (10.14)

This property can increase the variance of a group of commuting operators so that

the most efficient grouping is not necessarily the smallest.

10.2.3 Distributing Measurement Shots

However, this is not the whole picture, as in what has come previously we have

assumed that the total number of shots is distributed evenly over all of the operator

groups. In [219] the theory of grouping measurement operators is improved to allow

for a variable number of shots used on each operator grouping. If we redefine our

Hamiltonian as a sum of groups, indexed by i of commuting operators, indexed by j,

H =
N

∑
i=1

Hi =
N

∑
i=1

mi

∑
j=1

αi jPi j, (10.15)

where Pi j is Pauli operator j in group i, we can discuss the ratio between the

minimum number of measurements needed for a given grouping of operators, Mg

1It may be possible in theory to measure qubits in the same state preparation, but in NISQ devices
measurement usually disturbs the device to such a degree that subsequent measurements would be too
noisy or not possible at all [14], [49], [220]–[222]. As the commuting operators can be diagonalised
by a single matrix, we can construct a rotation to allow for simultaneous measurement, as discussed
in [219].
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and the ungrouped set, Mu:

R =
Mu

Mg
=

∑
N
i=1 ∑

mi
j=1

∣∣αi j
∣∣√Var

[
Pi j
]

∑
N
i=1

√
Var [Hi]

2

. (10.16)

By comparing different grouping strategies we can maximise the value of R to obtain

the most measurement savings for a particular grouping, Mg. The only drawback

of the ratio R is that it cannot be evaluated without knowledge of the quantum state

we wish to measure. Therefore in [219] they replace the variance with the expected

value over the spherical distribution.

In the uniform spherical distribution the variance and covariance of Paulis

become easier to treat, that is the expected variance is independent of Pi :

E [Var [Pi]] = 1−E
[
⟨Pi⟩2

]
(10.17)

= 1−
∫
⟨ψ|Pi |ψ⟩2 dψ (10.18)

= 1− 1
2n +1

, (10.19)

and the expected covariance is zero. Following [223], if we split the eigenspace

of Pi,Pj into (−1,−1),(−1,+1),(+1,−1),(+1,+1) we can write |ψ⟩ as a general

sum over these subspaces: |ψ⟩= a |ψ−1,−1⟩+b |ψ−1,1⟩+ c |ψ1,−1⟩+d |ψ1,1⟩.

Cov
[
Pi,Pj

]
|ψ⟩ =

(
|a|2−|b|2−|c|2 + |a|2

)
(10.20)

−
(
|a|2−|b|2 + |c|2 + |d|2

)(
−|a|2 + |b|2−|c|2 + |d|2

)
, (10.21)

if we consider the matching state |ψ ′⟩= b |ψ−1,−1⟩+a |ψ−1,1⟩+d |ψ1,−1⟩+c |ψ1,1⟩,
we can substitute to see that Cov

[
Pi,Pj

]
|ψ⟩ =−Cov

[
Pi,Pj

]
|ψ ′⟩. So each |ψ⟩is can-

celled by |ψ ′⟩, which means that over the uniform spherical distribution,

E
[
Cov

[
Pi,Pj

]]
= 0. (10.22)

Using E [Var [Pi]] = const. and E
[
Cov

[
Pi,Pj

]]
= 0, we can replace the terms in
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Equation 10.16 with the constants in H:

R̂ =

 ∑
N
i=1 ∑

Ni
j=1

∣∣αi j
∣∣

∑
N
i=1

√
∑

Ni
j=1 α2

i j

 . (10.23)

This is a ratio we can calculate without needing access to the measurement outcomes

as in [169], so we can formulate our measurement strategy before we run the

experiment. If we were to brute force this calculation, we would have to consider

all combinations of commuting operators different values of R̂ which implies a high

cost, given the total number of operators scales asO(N4). In [224] a graph colouring

algorithm is demonstrated, which requires the full commutation graph to be generated.

Instead, the authors of [219] present an algorithm named SORTEDINSERTION which

does not require generating the full commutation graph on average, only in the

worst case. In summary, SORTEDINSERTION sorts the set of Pauli operators, Pj

by the absolute value of their coefficients α j. This is due to the dependence of the

denominator of R̂ on
∣∣∣a2

j

∣∣∣. In that order, each Pj is checked with existing commuting

collections of Pauli operators, if Pj commutes with all Paulis in that collection

it is added to it; and we move on to Pj+1. As SORTEDINSERTION is a heuristic

algorithm it does not require us to generate the full commuting graph, which has

complexity Θ(nt2), where t is the total number of terms; only in the worst case does

SORTEDINSERTION require O(nt2).

10.2.4 Measuring Commuting Operators Simultaneously

Finally, we must describe a way to actually do commuting measurements with a

single state preparation. As noted in the footnotes to Section 10.2.2 it is not possible

to measure a qubit in one basis followed by another with current hardware, instead,

as all of the commuting Paulis in a group can be diagonalised by a single unitary [43,

p.77] matrix, we must find a method of enacting this matrix in the circuit.

In [219], [223] this circuit is constructed via the stabiliser formalism [225],

[226], which has its origins in error correction, see Chapter 4, where stabilisers are

measurements which fix, or stabilise, the logical quantum state. To illustrate this,

we will begin with the simplest possible example, the group {XX ,YY,ZZ}, which
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we can easily verify mutually commutes. The simultaneous eigenvectors (the basis

which is orthonormal for all Paulis) is:

|Φ±⟩= |00⟩± |11⟩√
2

, (10.24)

|Ψ±⟩= |01⟩± |10⟩√
2

. (10.25)

A Bell basis measurement can be prepared by the circuit in Figure 10.1. The operators

|ψ0⟩ • H

|ψ1⟩

Figure 10.1: The Bell basis measurement, which measures in the basis formed by the
vectors in Equation 10.24. The measurement outcome of qubit 0 corresponds
to XX , and outcome on qubit 1 corresponds to ZZ. YY can be calculated from
−XX ZZ.

we wish to measure are XX ,ZZ, and those we can measure are ZI, IZ, and this circuit

achieves the rotation that takes XX → ZI,ZZ→ IZ simultaneously. If we break this

down in to transformations on the measurements, UMU†:

H0CNOT0,1XXCNOT†H†
0 → H0XIH†

0 → ZI, (10.26)

H0CNOT0,1ZZCNOT†H†
0 → H0IZH†

0 → IZ. (10.27)

This may be illuminating for a small example, but it is not a prescription for creating

the measurement circuits.

We will use the stabiliser formalisation to proceed, where a group of m Pauli

strings is represented by a m× 2n matrix, the first n rows contain a 1 if there is

an Z on qubit j in the string, the second set of rows are the same for X , and Y is

represented by a 1 in both sets. In some descriptions the matrices are transposed to

be 2n×n, and a line can be drawn to separate the two sets of rows (columns). We

can now do binary manipulations on the matrices to manipulate the Pauli strings.

In the algorithms proposed in [219], [223] these manipulations represent quantum

gates, with the end goal being a matrix representing ZII . . . , IZI . . . , IIZ . . . , . . . . For
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the three qubit case with three Pauli operators, the desired matrix is:



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0


. (10.28)

We can describe single and two-qubit gates as operations on the rows of the

matrix, S, we have dropped the column index as it is the same for all gate operations:

• CNOTi, j:

– Si→ Si +S j

– S j+n→ S j+n +Si+n

• CZi, j:

– Si→ Si + s j+n

– S j→ S j +Sin

• Hi:

– Si↔ Si+n

• Si:2

– Si→ Si +Si+n

2The S gate is called the phase, P gate in [219] and some other sources. It is also equal to Rz(π/4).
To be explicit, the matrix representation is: (

1 0
0 i

)
. (10.29)
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We are also allowed to do classical post processing, e.g. computing YY =

−XX ZZ, and relabelling qubits i, j in software3. We are also allowed to add a new

column, i.e. a different stabiliser. In [219] they detail an algorithm for manipulating

the matrix into the desired goal, e.g. Equation 10.28, which appends a maximum of

O (mn/logm) two qubit gates, where m is the number of Pauli strings.

10.3 Optimisation
Thanks to the variational principle, we are able to alter the parameters in our ansatz

and save those with a lower energy, with the final energy we hope is the ground state.

The scheme for altering the parameters is discussed in this section. In abstract, the

VQE is no different from a classical parameterised objective function, which we are

able to compute the gradients of, so we can utilise the wealth of research made into

classical optimisers to minimise our VQE function. There is also a strong case to

be made for using some unique properties of quantum computing to improve our

optimisation, or to take into account the situation a quantum computer is ran under,

such as the cloud model, considered in [227].

Many of the optimisers that we consider are gradient based, meaning they

require us to calculate the gradient of the cost function (Hamiltonian) with respect to

the gate parameters. In the following section we will discuss methods for calculating

this gradient.

10.3.1 Gradient Calculations

In classical optimisation, we either have the analytical form of the function, so we

can calculate the gradient, or we are able to use the finite differences method [136].

In NISQ quantum circuits, we are not able to use either of these methods; we do not

have access to the wavefunction so cannot calculate the gradient analytically, and

noise in the measurements is too large to make finite differences feasible. Fortunately

we are able to exploit the form of the rotation gates to calculate the gradient.

As gradient-based optimisers are widely found in VQE experiments, calculation

3This can also be accomplished via the SWAP gate in the circuit, but in the NISQ era we want to
move as much computation away from the quantum circuit as possible.
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of the gradient has received much attention [155], [228]–[230]. The method we

will review requires two circuit evaluations per parameter, multiplied by the number

of shots required, although this can be reduced following [155]. In summary, the

gradient is given by a shift of each parameter by π

2 around its current value:

∂O(θ)

∂θ
= O

(
θ +

π

2
−O

(
θ − π

2

)
)
)
. (10.30)

Here we will follow the treatment in [229], but any of [228]–[230] ar a good

guide to this topic. We will begin by considering a gate G(θ) = e−iθG generated by

a Hermitian operator G, e.g. the Pauli rotation gates. This gate is part of a longer

circuit, with the expectation value given by:

⟨H⟩= ⟨0|U†(θ)HU |θ⟩ , (10.31)

where θ denotes the vector of all parameters in the circuit, and we can re-write this as

⟨ψ|G†QG |ψ⟩, where have used U(θ) =VG(θ)W , and absorbed W into |ψ⟩=W |0⟩
and V into Q =V †HV . The partial derivative is then:

∂θ ⟨ψ|G†QG |ψ⟩= ⟨ψ|G†Q(∂θG) |ψ⟩+ ⟨ψ|(∂θ )
†G†QG |ψ⟩ , (10.32)

when the operators are Hermitian, this is

1
2

(
⟨ψ|(G+∂θG)† Q(G+∂θG) |ψ⟩−⟨ψ|(G−∂θG)† Q(G−∂θG) |ψ⟩

)
. (10.33)

Returning to the gate G(θ) = e−iθG, the derivative is

∂θG =−iGe−iθG, (10.34)

which we can substitute into Equation 10.33:

∂θ ⟨H⟩= ⟨ψ ′|Q(−iG) |ψ ′⟩+h.c., (10.35)



10.3. Optimisation 131

and we have again absorbed G |ψ⟩= |ψ ′⟩. If the gate G has two distinct eigenvalues,

as is the case with the Pauli gates, we can shift the eigenvalues to the (unimportant)

global phase, and parametrise the equation with r, which transforms Equation 10.33

to:

∂θ ⟨H⟩=
r
2

(
⟨ψ ′|

(
1− ir−1G

)†
Q
(
1− ir−1G

)
|ψ ′⟩ (10.36)

+ ⟨ψ ′|
(
1+ ir−1G

)†
Q
(
1+ ir−1G

)
|ψ ′⟩

)
. (10.37)

If we can find a value θ such that G(θ) = 1√
2

(
1± ir−1G

)
, we can calculate the

gradient with two circuit evaluations.

When the gates we consider have eigenvalues ±r, we can infer that G2 = r2
1,

and by Taylor expanding G(θ) = e−iθG, we get

e−iθG =
∞

∑
k=0

(−iθ)kGk

k!
(10.38)

=
∞

∑
k=0

(−iθ)2kG2k

(2k)!
+

∞

∑
k=0

(−iθ)2k+1G2k+1

(2k+1)!
(10.39)

= 1

∞

∑
k=0

(−1)k(rθ)2k

(2k)!
− ir−1G

∞

∑
k=0

(−1)k(rθ)2k+1

(2k+1)!
(10.40)

= 1cos(rθ)− ir−1Gsin(rθ). (10.41)

This is solved when θ = π

4r . This completes the proof that we can calculate the

analytocal gradient of the Hamiltonian (or cost function) via the parameter shift rule.

Note that this is qualitatively similar to the finite differences method, but that here

the difference between the two parameters, so it is not washed out by noise.

10.3.2 Gradient Based Optimisers

With a method for calculating the gradient of a parameter in a quantum circuit we

can consider classical optimisers which require a gradient calculation. We will begin

with the simplest scheme, Stochastic Gradient Descent (SGD).
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10.3.2.1 Stochastic Gradient Descent

In all gradient descent optimisations we can imagine the problem as a multi di-

mensional landscape, and our optimum (or ground state) as the lowest point on

the landscape. We change the parameters by a small amount in the direction and

magnitude of the measured gradient. We additionally multiply the gradient by the

learning rate, which is usually a number < 1 to minimise the effect of any large

gradients encountered. SGD is the simplest form of gradient descent and applies

parameter updates as the gradient multiplied by the learning rate, µ :

θ
t
j = θ

t−1
j −µ∂θ

t−1
j , (10.42)

where t indexes the step of the optimisation.

10.3.2.2 Momentum

The momentum optimiser does what it says on the tin: it adds momentum to the

picture of a ball rolling down a hill we developed above. Momentum was developed

in a classical optimisation perspective to allow the optimiser to ‘roll’ over flatter

parts of the landscape that may exist4. The momentum optimiser adds a second

update parameter, called the momentum, m j which is stored between rounds, and

is a modifier to the learning rate. There is another hyperparameter, here called β0,

which is usually set to 0.9 and is applied to the momentum update:

mt
j = β0 ∗mt−1

j +µ ∗∂ (θ t−1
j ), (10.43)

θ
t
j = θ

t−1
j +mt

j. (10.44)

10.3.2.3 AdaGrad

We can increase the specificity of these optimisers for each parameter, which the

Adaptive Gradient algorithm (Adagrad) [231] does by storing a learning rate for each

parameter. This is useful when a gradient vector is sparse, we would conclude that

the update is very small, which is not useful for the weights that are in the sparse
4This does not help us to deal with barren plateaus, which is more unique to quantum optimisation

settings, which we will discuss in Section 10.4.
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vector. We also decrease this learning rate when a parameter receives more updates

to prevent one parameter update dominating training. Introducing the decay vector,

v which stores the squared gradient, the AdaGrad update rule is:

vt = vt−1 +
(
∇θ

t)2
, (10.45)

θ
t+1 = θ

t− ν√
vt + ε

∇θ
t , (10.46)

where we have introduced a small non-zero constant ε to prevent division by zero.

Here we see that parameters with smaller gradient updates have a smaller value for

v, which in turn increases the individual learning rate of that parameter.

10.3.2.4 AdaDelta

The Adadelta optimiser [232] is similar to the Adagrad optimiser, but instead of

storing all of the previous gradients for each parameter in memory, something that

can become very costly in deep learning scenarios, the rolling average of gradients is

stored. This continues to update parameters after they receive many updates, which

can decay towards the end of optimisations under AdaGrad.

10.3.2.5 Adam

The Adaptive moment estimation (Adam) optimiser [153] is most widely used in

this thesis, it combines the ideas of individual parameter updates and momentum

from the previous optimisers. One of the reasons for this is that it works well with

noisy gradients. In the ball analogy the Adam optimiser is like a heavy ball with

friction. Like AdaDelta, Adam stores a rolling average of past squared gradients for

each parameter. Adam also stores the rolling average of past gradients:

mt
j = β1mt−1

j +(1−β1)∂θ
t−1
j , (10.47)

vt
j = β2vt−1

j +(1−β2)
(

∂θ
t−1
j

)
. (10.48)



10.3. Optimisation 134

The authors of [153] found that as v,m were initialised as zero vectors they were too

heavily biased towards zero in initial steps. They correct for the bias by calculating

m̂t
j =

mt

1− (β1)t , (10.49)

v̂t
j =

vt
j

1− (β2)t . (10.50)

Here the parameters β1,β2 are the decay rates, and are hyperparameters that can be

varied, but they are usually set to 0.9 and 0.999 respectively. The Adam update rule

is then:

θ
t+1
j = θ

t
j−

ν√
v̂t + ε

m̂t
j. (10.51)

10.3.2.6 Model Gradient Descent

Model Gradient Descent (MGD) [227] is an optimisation algorithm developed for

the most widely-used setting of quantum devices, that of a device in a remote lab

accessed over the internet. In this setting the latency between receiving gradient

values from the device, and calculating and sending parameter updates over the

internet is significant, and can lead to a slow-down of overall computation. This

becomes a larger problem when a user has paid for a block of time on a device, but

spends a proportion of that time with the device idle whilst data is sent over the

internet. Creating a model of the objective function, as MGD does, also allows us to

utilise less shots in measurement of each point.

In MGD, we take the point we wish to evaluate and draw a radius around it of

size δ , we then sample uniformly from this radius on the quantum device. As this

does not require live updates to any parameters, we can send these circuits to the

device as a single batch, reducing the idle time of the device. We save the results of

this uniform sampling, so that we can use any points sampled that appear in the next

radius. With the uniform sample of points, we use the classical device to create a

least-squares fit model of the objective function within the radius δ , which we can

calculate a gradient from. We then apply gradient descent to the parameters, giving

us the new origin point to draw δ around. MGD also introduces a hyperparameter
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which shrinks δ as the algorithm progresses, so that closer to the optimum we make

a more precise estimation of the gradient. In [227], they show results of MGD

preforming better in terms of a shorter wall clock time than other algorithms in the

batched circuit setting, where we are only allowed to send a batch of circuits to the

device at a time.

10.3.2.7 Rotosolve and Rotoselect

The Rotosolve and Rotoselect [158] algorithms are directly relevant to quantum

problems. RotoSelect, and similar ideas published around the same time [233], [234]

use the sinusoidal feature of the loss function for a single parameter (when all others

are kept fixed) to find the minimum for that parameter without using gradient descent.

This is given by:

θ
∗
d = φ − π

2
− arctan2

(
2⟨M⟩φ −⟨M⟩φ+ π

2
,⟨M⟩φ+ π

2
−⟨M⟩φ− π

2

)
+2πk, (10.52)

where k is any integer and can be chosen to ensure θ ∗d ∈ (−π,π], and φ is real.

Once all angles in the ansatz have been minimised this is repeated until some

given convergence criteria are met. The RotoSelect algorithm improves on this by

calculating θ ∗d (P) for each possible Pauli gate, P and changing the gate to that which

minimises the energy; it then also repeats this for the whole circuit until convergence.

10.3.3 Hyperparameter Searches

If using the Adam optimiser, we now have at least three hyperparameters to choose5,

the learning rate and β1,β2. We can even consider our choice of optimiser as a

hyperparameter. If we include ansatz specific choices, for example as we will see in

Chapter 12 such as the choice of entangling gate or how many parameters to ‘freeze’

in an especially long circuit, we see that the number of different combinations of

hyperparameters to try is growing rapidly. When optimising an ansatz that is not

converging well it is difficult to know where to begin in choosing good parameters,

especially as this is a young field with few examples of hyperparameters published.

Therefore in the work leading to Chapter 12 we conducted a hyperparameter search,

5The parameter ε to prevent division by 0 is hardly ever changed from a default value of 10−8.
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where the space of all hyperparameters was reduced by searching for combinations

that produced good convergence rates.

As it would be impossible to brute-force search all combinations of hyperpa-

rameters, a combination of randomised values is created. This has been shown

independently to perform better than an ordered search [235]. In Chapter 12 we will

present a combination of hyperparameters, differing from the default values, which

may be of use in other VQE experiments.

10.4 Barren Plateaus
The barren plateaus problem was first presented in a Quantum Machine Learning

context [159] yet it is also relevant to some VQE problems, and is suited to being

presented here, within the section on optimisation. We are also reviewing barren

plateaus here as it is relevant to the work presented in Chapter 12.

A barren plateau is a portion of the training landscape (the loss function in

QML, or the problem Hamiltonian in VQE) where the gradient of the function

vanishes for all relevant parameters. This clearly presents a problem for training as

any gradient based optimiser is unable to minimise in a good direction. Non-gradient

based optimisers, such as Nelder-Mead [236] also suffer, as a barren plateau exhibits

little to no changes in the objective function, causing the optimiser to terminate early

away from the global optimum.

Barren plateaus have been shown to occur in problems using the Hardware-

Efficient ansatz6, where the circuit can be thought of as a random, parameterised

quantum circuit:

U(θ) = Π
L
l=1Ul(θl)Wl, (10.53)

where Ul(θl) is the Hermitian operator generated by the parameterised gate Vl:

Ul(θl) = e−iθlVl , and Wl is the unitary part of the circuit that has no dependence on

θl , e.g. entangling gates. The gradient of a single parameter, θk, is defined in a

similar manner to Equation 10.32, where we make the substitution G =V to maintain

6As there is no chemistry to inspire a chemically-inspired ansatz in QML problems the barren
plateaus problem is larger in QML. However, we still see the problem of vanishing gradients when
using chemically-inspired ansatz, as we will see in Chapter 12.
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consistency with the exposition in [159]:

∂kE = i⟨0|U†
−
[
Vk,U

†
+HU+

]
U− |0⟩ , (10.54)

where U− runs from l = 0 . . .k−1, and U+ runs from l = k . . .L, i.e. the circuit before

the parameterised gate k and the circuit including and after it. We then assume that

the hardware efficient circuits making up U−,U+ are independent and that one or both

match the Haar measure to the second moment. This is a reasonable assumption to

make for most hardware efficient ansatze, and we will see how methods to overcome

barren plateaus usually involve breaking these assumptions.

The Haar measure is a measure defined on the unitary group U(N) for an

N dimensional system and to sample from the Haar measure samples perfectly

randomly from this group [43]. To say that a circuit samples from the Haar measure

to the n-th moment means that the unitaries match the Haar measure up to the n-th

statistical moment, i.e. for the second moment we mean that the unitaries sampled by

U± match the Haar measure in their average and variance. This is the topic covered

by unitary t-designs, which tries to find circuits that match the Haar measure up to

the t-th moment [237]–[239].

With the assumption that U± are unitary 2-designs, we can use the properties of

the Haar measure, dµHaar(U) = dµ(U) on the unitary group, U(N):

∫ dµ(U) f (U)

U(N)
=
∫ dµ(U) f (VU)

U(N)
=
∫ dµ(U) f (UV )

U(N)
. (10.55)

We follow [159] in defining the average gradient, as this changes for each circuit

implementation, so we define it using the probability distribution function of U ,

p(U),

⟨∂E⟩=
∫

dU p(U)∂k ⟨0|U†(θ)HU(θ) |0⟩ . (10.56)

By assuming the independence of U± we can write p(U) as

p(U) =
∫

dU+p(U+)
∫

dU−p(U−)δ (U+U−−U) . (10.57)
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The Dirac delta function allows us to take the trace of the second part, and taking

the trace allows us to re-order the terms in ⟨0|U†
−
[
Vk,U

†
+HU+

]
|0⟩ and substitute

ρ− =U−|0⟩⟨0|U†
−. This gives the definition of ⟨∂kE⟩,

⟨∂kE⟩= i
∫

dU−p(U−)Tr
[

ρ−
∫

dU+p(U+)
[
V,U†

+HU+

]]
. (10.58)

We can use the property of unitary 1-designs over the Haar measure:

∫
dµ(U)UOU† =

Tr[O]

N
I. (10.59)

Focusing firstly on the case where U− is at least a 1-design, we substitute

O = |0⟩⟨0|, which has trace of 1 to reduce the above to:

⟨∂kE⟩= i
N

Tr
[[

V,
∫

dU+p(U+)U
†
+HU+

]]
(10.60)

= 0. (10.61)

The final equality is obtained from the trace of a commutator of trace class opera-

tors7is zero.

Secondly, when U+ is a 1-design, we utilise the property in Equation 10.59

within the Trace function:

⟨∂kE⟩= i
∫

dU−p(U−)Tr
[

ρ−
∫

dµ(U+)
[
V,U†

+HU+

]]
(10.62)

=
iTr [H]

N

∫
dU−p(U−)Tr [ρ− [V, I]] , (10.63)

= 0, (10.64)

as the commutator of any operator and the identity is zero.

Whilst we have shown that ⟨∂kE⟩= 0 when U+,U− are independent and one

is at least a 1-design, this does not demonstrate barren plateaus; i.e. the average

gradient of a sine function as defined this way is zero. We must therefore show that

7A trace class operator is one for which a trace can be defined, and it is finite and independent of
basis choice [43], which is true for our operator.



10.4. Barren Plateaus 139

the variance of the gradient vanishes. Recall the variance in Equation 10.13, which

in this case is Var [∂kE] = ⟨(∂kE)2⟩+ ⟨∂kE⟩2, but we have just shown that ⟨∂kE⟩= 0

so we need only to calculate

Var [∂kE] = ⟨(∂kE)2⟩. (10.65)

The second moment of the Haar measure is given by the Weingarten functions

[240], which for the second moment is:

∫
dµ(U)Ui1 j1Ui2 j2U

∗
i′1 j′1

U∗i′2 j′2
=

δi1i′1
δi2i′2

δ j1 j′1
δ j2 j′2

+δi1i′2
δi2i′1

δ j1 j′2
δ j2 j′1

N2−1
(10.66)

−
δi1i′1

δi2i′2
δ j1 j′2

δ j2 j′1
+δi1i′2

δi2i′1
δ j1 j′1

δ j2 j′2
N(N2−1)

. (10.67)

we can use diagrammatic notation to simplify this problem, which we will show in

Appendix B.

Following the diagrammatic notation in the appendix, we are left with three

equations for the variance, where U+ is a 2-design, where U− is a 2-design and

where both are. We also here define Hu = u†Hu,ρu = uρu† and ⟨ f (u)⟩x which is the

average over u sampled from p(Ux). When U− is a two design:

Var [∂kE] =
2Tr
[
ρ2]

N2 Tr
[
⟨H2

uV 2− (HuV )2⟩U+

]
(10.68)

=−Tr
[
ρ2]

22n Tr
[
⟨[V,Hu]

2⟩U+

]
. (10.69)

When only U+ is a 2-design:

Var [∂kE] =
2Tr
[
H2]

N2 Tr
[
⟨ρ2

uV 2− (ρuV )2⟩U−
]

(10.70)

=−Tr
[
H2]

22n Tr
[
⟨[V,ρu]

2⟩U−
]
. (10.71)

Finally, in the case where both U−,U+ are 2-designs:

Var [∂kE] = 2Tr
[
H2]Tr

[
ρ

2](Tr
[
V 2]

23n − Tr [V ]2

24n

)
. (10.72)
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Each of these cases is preceded by a factor of at least 2−2n, showing that the gradient

vanishes exponentially in the number of qubits.

10.4.1 Noise Induced Barren Plateaus

Building upon [159] noise induced barren plateaus [175] introduce noise in the

quantum device to the discussion of barren plateaus. In [175] they study the mag-

nitude of the gradient derivative |∂kE| with respect to the number of qubits, n, the

number of layers in an ansatz, L and the noise in the circuit, parameterised by a

single parameter, q = max{|qX | , |qY | , |qZ|}. Here, qσ is the strength of the noise

model, N j on each qubit, j for each Pauli operator, the same noise model as we

presented in Section 6.1.4

N j(σ) = qσ σ . (10.73)

They demonstrate that

|∂kE| ≤
√

8ln2NO ||Hk||∞ ||ω||∞ n1/2qL+1, (10.74)

where ||.||
∞

is the infinity norm, NO is the number of non-zero elements in the

operator O, and ω is a vector of coefficients in the cost Hamiltonian Hk.

We can express any Hermitian operator Λ as

Λ = λ01
⊗n +λσ̇n, (10.75)

with λ the vector of coefficients for the Pauli strings, represented in σn (excluding 1 ).

The noise model N maps λi→ λ ′i = qnx,i
X qny,i

Y qnz,i
Z , where nσ ,i denotes the number of

Pauli operators σ in the string i. With these definitions, we can show that |λ ′| ≤ q |λ |
holds, as nX ,i +nY,i +nZ,1 ≥ 1. With a noise model of this form, which implements

a set of noisy gates on each qubit after each layer of the circuit, i.e.

W =NULN . . .U0. (10.76)

With this form of circuit,
∣∣∣∣W†(H)

∣∣∣∣
∞
≤ qLNO ||||∞. This gives us the outline for the
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proof in [175], in which they use this form of circuit and noise model, the strong

data processing inequality, that symmetric depolarising noise pushes a quantum state

closer to the maximally mixed state [241] to get the bound in Equation 10.74.

This shows us that the trainability of a variational quantum circuit, as well as

the final accuracy can be affected by noise in the quantum device.

We will now review some methods for combatting the barren plateaus phenom-

ena.

10.4.2 Local Cost Functions

In the work on local cost functions [242] we are considering the same problem as

above, but we now look closer at the cost function, which generates E. So far, as we

have mostly been discussing chemical ansatze we assume that the cost function is

the Hamiltonian, H, and E = ⟨ψ(θ)|H |ψ(θ)⟩. When discussing quantum machine

learning problems, we have more freedom to choose the cost function, and we can

define a general cost function as the expectation value of any operator

C = Tr
[
OV (θ)ρV †(θ)

]
, (10.77)

where the operator has the form

O = c01+
N

∑
i=1

ciÔi1⊗ Ôi2⊗·· ·⊗ Ôiξ . (10.78)

We can therefore discuss two instances of the cost function: (i): where N = 1 and

each Ô1k is a non-trivial projector with rank rk acting on subsystem Sk. One example

of case (i) is the trace distance between the trained state |ψ ′⟩ = V (θ) |0⟩, and a

reference |ψ0⟩. The cost function in this case is CG = Tr
[
OGV (θ)|ψ0⟩⟨ψ0|V †(θ)

]
,

with OG = 1− |0⟩⟨0|. In the second case, (ii): we have arbitrary N and Ôik is

traceless, e.g. Tr
[
Ôik
]
= 0 and Tr

[
Ô2

ik

]
≤ 2m. A physical Hamiltonian is a good

example of this class of cost function, as we can have Ôik =
⊗m

j=1 σ
µ

j with σ µ the

Pauli operators. We can think of m as defining the locality of the operators, which

will be relevant in what follows.
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Following [242], they re-formulate the result in [159], Equation 10.72 in terms

of the cost function as defined above. In case (i) they find

Var [∂C]≤O
(

2−(1−1/mlog23)n
)
, (10.79)

and in case (ii):

Var [∂C]≤O
(

1
2(1−1/m)n

)
, (10.80)

both of which imply that the variance of the gradient vanishes when m≥ 2.

In [242] there is also a small example that demonstrates the usefulness of a local

cost function when available: If we wish to do the Trace distance of some variational

circuit, V (θ) =
⊗n

j=1 e−iθ jσ
j

x /2, with the same target and starting state, |0⟩, we can

either employ a global cost function,

CG = Tr
[
OGV (θ)|ψ0⟩⟨ψ0|V †(θ)

]
, (10.81)

OG = 1−|0⟩⟨0|. (10.82)

With such a simple circuit (just Rx rotations), we can analytically calculate the cost

function as

CG = 1−Π
n
j=1cos2

(
θ j

2

)
, (10.83)

with the variance of the gradient is Var
[

∂CG
∂θ j

]
= 1

8

(3
8

)n−1
.

If we now consider a local cost function,

CL = Tr
[
OLV (θ)|ψ0⟩⟨ψ0|V †(θ)

]
, (10.84)

OL = 1− 1
n

n

∑
j=1
|0⟩⟨0| j⊗1 j̄, (10.85)

with 1 j̄ the identity on all qubits except j. This cost function evaluates to

CL = 1− 1
n

n

∑
j=1

cos2
(

θ j

2

)
, (10.86)



10.4. Barren Plateaus 143

giving Var
[

∂CG
∂θ j

]
= 1

8n2 . We see that the global cost function vanishes exponentially

with n, whilst the local cost function vanishes polynomially in n.

Ref. [242] also finds a lower bound on the variance in terms of circuit depth L,

for m-local cost functions. For shallow circuits, L ∈ O (log(n)),

Ω

(
1

poly(n)

)
≤ Var [∂C] , (10.87)

and for deeper circuits, L ∈ O (poly(log(n))) they find the gradient vanishes faster

than polynomially, but slower than exponentially, i.e.

Ω

(
1

2poly(log(n))

)
≤ Var [∂C] . (10.88)

We therefore have a guide to designing training schemes and cost functions in

variational quantum algorithms. Unfortunately in the case of VQE on a molecular

system, we are unable to choose our cost function with such freedom, as it is derived

from the molecule. However, we will take into account the second part of this

research in Chapter 12, as we will upper bound L by freezing the total number of

trainable parameters.

A similar strategy for general variational algorithms (e.g. quantum machine

learning) is proposed in [243]; which proposes an ansatz, splits it up into layers and

appends and trains each layer in turn. This is similar to the ADAPT algorithm [41] ,

which we will build upon in Chapter 12, except that there is no strategy proposed for

choosing the layers in the ansatz.

10.4.3 Initialisation Strategies

Instead of targeting the cost function to reduce the incidence of barren plateaus, in

[244] the authors attack the assumptions the unitary 2-design property of the ansatz

circuit. They propose an ansatz made of shallow blocks, which is parameterised by

θ j, each block has the form

Um(θm) = Π
1
l=LUl(θ

m
l,1)Π

L
l=1Ul(θ

m
l,2), (10.89)
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where θ m
l,2 is chosen such that Ul(θ

m
l,2) = Ul(θ

m
l,1)

† and each block, and therefore

the whole circuit evaluates to the identity. We therefore increase the chances of a

non-zero gradient for each parameter in the first optimisation step, with no guarantees

on subsequent steps. In numerical trials presented in [244] they do show that the

variance of the gradient remains higher in subsequent steps with this optimisation

strategy, compared with a randomised optimisation strategy.

Again, we will use this result in Chapter 12, where we show that optimisation

close to the identity for each new operator produces a better training optimisation.

10.4.4 Parameter Correlation

In [245] they consider the case of correlating parameters to address the barren

plateaus phenomena. Similarly to [244] above, this method attempts to sever the link

between the ansatz and the unitary 2-design. By reducing the total parameter search

space, correlating parameters can make the optimisation easier in general; with the

caveat that the global minimum may not be within the smaller parameter space, this

is explored in Section 10.4.5 and [215].

The correlation of parameters can be made over space (all qubits in a certain

layer have the same parameter), or time (a qubit has the same parameter over multiple

gates in the circuit), or a mixture of both. This approach is also closely related to

the QAOA ansatz [121], where the entangling layers all share a parameter, and the

single qubit gates share a different parameter.

Considering the tractable problem described in Section 10.4.2 of quantum

compiling the identity transformation, with a global cost function as Equation 10.81,

the ansatz proposed is correlated over space; that is, the circuit on each qubit is the

same, with the same parameters. The correlated ansatz can be written

M(θ) =
(

Π
L
i=1e−iθi/2σy

)⊗n
. (10.90)

For pure input states, considering again θk we have

⟨(∂kC)2⟩= n2
∫

dµ(θ)cos2(2n−1)

(
1
2

L

∑
i=1

θi

)
sin2

(
1
2

L

∑
i=1

θi

)
, (10.91)
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with dµ(θ) = 1
(2π)L ΠL

i=1dθi. We can make the substitution vL = ∑
L
i=1 θimod 2π:

⟨(∂kC)2⟩= n2
∫ dvL

2π
cos2(2n−1)

(vL

2

)
sin2

(vl

2

)
(10.92)

=
2n2

4n−1

∫
π/2

−π/2

du
2π

cos4n(u) (10.93)

=
n2

24n(4n−1)

((
4n
2n

))
(10.94)

≈ n1/2

4
√

2π
, (10.95)

with the second substitution u = vL
2 and the approximation (true in the asymptotic

limit)
((2l

l

))
≈ 22l√

πl
. We see that this is polynomial in n, as opposed to the expo-

nential in Equation 10.79 (as here m = n≥ 2 ). This toy example is only one of the

examples explored in [245], where they elaborate on more general examples, and

provide numerical evidence.

10.4.5 Barren Plateaus and Expressibility

In [215] they make an explicit connection between the trainability of an ansatz and

the expressibility of an ansatz. This result is hinted at by the conclusions we draw

from [245], that restricting the total space available to the parameters increases the

magnitude and variance of the cost function gradient. As we can no longer say

that ansatze with these restrictions represent 2-designs, the work in [215] relates

the distance of an ansatz from a good 2-design to the variance of the gradient. The

conclusions drawn are that a less expressive ansatz will have lager gradient variance

and be easier to train; the challenge for the quantum scientist is therefore to find

some ansatz which has reduced expressibility but nevertheless contains the solution

to the problem in its parameter space.

We will review the proof given in [215]. We begin with the general form of the

cost function (with no assumptions made on its locality) written again here to aid

exposition:

Cρ,H(θ) = Tr
[
HU(θ)ρU(θ)†

]
, (10.96)

which suffices for a VQE cost function, although in quantum machine learning
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approaches we may be using multiple measurements or input states,

C = ∑
i

Tr
[
HiU(θ)ρiU(θ)†

]
. (10.97)

which we will will extend the results to.

The ensemble of unitaries expressed by our ansatz is denoted U, this is the set

of unitaries generated by the set of parameters
{

θ (1),θ (2), . . . ,θ (y)
}

, where each

vector of parameters θ (y) is different. We introduce a superoperator to quantify the

expressibility of an ansatz, given a measurement operator, which is expressed in

terms of distance from the Haar measure to the t-th moment.

AU(t)(·) := (10.98)∫
U(d)

dµ(V )V⊗t(·)V †⊗t−
∫
U

dUU⊗t(·)U†⊗t , (10.99)

with dµ(V ) the volume element of the Haar measure, U(d) the Haar distribution,

and dU is the volume element of the uniform distribution over U. If U forms a

2-design then A(2)
U (X) = 0∀X , which is the situation covered in the original barren

plateaus paper, [159]. We will herein consider only 2-designs, so t = 2 and can be

omitted from notation.

Three measures of the expressibility are proposed, the first two dependent on

ρ,H and therefore problem specific, and the third uses the diamond norm so can

compare ansatze over different problems,

ε
ρ

U =
∣∣∣∣AU

(
ρ
⊗2)∣∣∣∣

2 (10.100)

ε
H
U =

∣∣∣∣AU
(
H⊗2)∣∣∣∣

2 (10.101)

ε
⋄ = ||AU||⋄ . (10.102)

The diamond norm is computationally expensive, as it is the 1-norm of AU(ρ)

maximised over all ρ .

We will begin by showing the separate cases for either the left, L or right, R

of parameter k are close to a 2-design, and then move onto the case where both are
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close to a 2-design.

For legibility, we will make the substitutions
∫
UR

dUR :=
∫

R,
∫
UL

dUL :=
∫

L,

and for the Haar measure,
∫
U(d) dµ(V ) =

∫
U . The superoperator A is related to the

variance when the left or right is a 2-design, VarL [∂kC] ,VarR [∂kC] :

A(ρ⊗2) =
∫
U

V⊗2
ρ
⊗2V †⊗2−

∫
R

U⊗2
R ρ

⊗2U†⊗2
R (10.103)

= VarR [∂kC]−
∫

R
U⊗2

R ρ
⊗2U†⊗2

R (10.104)

A(H⊗2) =
∫
U

V⊗2H⊗2V †⊗2−
∫

L
U⊗2

L H⊗2U†⊗2
L (10.105)

= VarL [∂kC]−
∫

L
U⊗2

L H⊗2U†⊗2
L . (10.106)

Recalling the partial derivative of the cost function:

∂kC = iTr
[
URρU†

R

[
Vk,U

†
L HUL

]]
, (10.107)

where the parameterised gate in question is generated by Vk, and a relation for the

trace of operators in the same Hilbert space:

Tr [A]Tr [B] = Tr [A⊗B] , (10.108)

we can write the variance of the gradient as:

Var [∂kC] =−
∫

L

∫
R

Tr
[
U⊗2

R ρ
⊗2U†⊗2

R

[
Vk,U

†⊗2
L H⊗2U⊗2

L

]]
(10.109)

=−
∫

L

∫
R

Tr
[
ρ
⊗2
R
[
Vk,H⊗2

L
]]
, (10.110)

here making the substitutions ρR :=URρU†
R,HL :=U†

L HUL. We will now show the

derivation for the left and right parts of the circuit concurrently, and using the cyclic

permutation of the trace for the right hand side, we begin by making a substitution.
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XL,k = [Vk,HL]

Using the definitions of A above:

Var [∂kC] = VarR [∂kC]+
∫

L
Tr
[
AR(ρ

⊗2)X⊗2
L,k

]
|Var [∂kC] − VarR [∂kC]|

≤
∣∣∣∣∫L

Tr
[
AR(ρ

⊗2)X⊗2
L,k

]∣∣∣∣
Using the Triangle inequality:

≤
∫

L

∣∣∣Tr
[
AR(ρ

⊗2)X⊗2
L,k

]∣∣∣

YR,k = [ρR,Vk]

Var [∂kC] = VarL [∂kC]+
∫

R
Tr
[
AL(H⊗2)Y⊗2

R,k

]
|Var [∂kC] − VarL [∂kC]|

≤
∣∣∣∣∫R

Tr
[
AL(H⊗2)Y⊗2

R,k

]∣∣∣∣
≤
∫

R

∣∣∣Tr
[
AL(H⊗2)Y⊗2

R,k

]∣∣∣ .

We will combine the two derivations, writing

A=

AR
(
ρ⊗2) LH column

AL
(
H⊗2) RH column.

χ =

XR,k LH column

YL,k RH column
(10.111)

∣∣Var−VarR(L)
∣∣≤ ∫

UR(L)

∣∣∣∣χ⊗2∣∣∣∣
2 ||A||2 , (10.112)

∣∣∣∣χ⊗2∣∣∣∣
2 =
√

Tr [χ⊗2χ⊗2] =
√

Tr [χ2⊗χ2] =
∣∣Tr
[
χ

2]∣∣= ∣∣∣Tr
[
[A,B]2

]∣∣∣ . (10.113)

Consistent with out substitutions,

A =

Vk LH column

ρR RH column,
B =

HL LH column

Vk RH column
(10.114)

∣∣∣Tr
[
[A,B]2

]∣∣∣= Tr
[
2ABAB−2A2B2] (10.115)

= 2
∣∣Tr [ABAB]−Tr

[
A2B2]∣∣ (10.116)

≤ 2
(
|Tr [ABAB]|+

∣∣Tr
[
A2B2]∣∣) (10.117)

using first the cyclic permutation of the trace and then the triangle inequality. We

must now return to split derivations as
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A2 = 1∣∣Tr
[
Z2]∣∣= 2

(
|Tr [ABAB]|+

∣∣Tr
[
B2]∣∣)

Using the Cauchy-Schwarz inequality:

≤ 2
(√

Tr [ABA]2 Tr [B2]+
∣∣Tr
[
B2]∣∣)

cyclic permutation of the trace:

= 2
(√

Tr [AABBAAB]Tr [B2]+
∣∣Tr
[
B2]∣∣)

= 2
(√

Tr [B2]Tr [B2]+
∣∣Tr
[
B2]∣∣)

= 4 ||H||22 .

B2 = 1∣∣Tr
[
Z2]∣∣= 2

(
|Tr [ABAB]|+

∣∣Tr
[
A2]∣∣)

≤ 2
(√

Tr [BAB]2 Tr [A2]+
∣∣Tr
[
A2]∣∣)

= 2
(√

Tr [BBABBA]Tr [A2]+
∣∣Tr
[
A2]∣∣)

= 2
(√

Tr [A2]Tr [A2]+
∣∣Tr
[
A2]∣∣)

= 4 ||ρ||22 .

This gives us our result, that the gradient variance is bounded by:

Var [∂kC]≤ VarR [∂kC]+4 ||AR (ρ)||22 Var [∂kC]≤ VarL [∂kC]+4 ||AL (H)||22

The final relation we derive will find a bound on the variance when both L,R are

close to 2-designs. We begin with Equation 10.107 and use the cyclic permutation of

the trace to write

Var [∂kC] =−
∫

L

∫
R
(Tr [ρR [Vk,HL]])

2 (10.118)

=
∫

L

∫
R

Tr
[
ρ
⊗2
R (VkHLVkHL +HLVkHLVk−2VkHLHLVk)

]
(10.119)

=
∫

L

∫
R

Tr
[
ρ
⊗2
R
(
V⊗2

k H⊗2
L +H⊗2

L V⊗2
k −2(Vk⊗1)H⊗2

L (1⊗Vk)
)]
,

(10.120)

=
∫
U

∫
U

Tr
[

(VarR−AR(ρR))
(
V⊗2

k (VarL−AL(H))

+(VarL−AL(H))V⊗2
k

− 2(Vk⊗1)(VarL−AL(H))(1⊗Vk))
]
. (10.121)

In the final line we have substituted from Equations 10.103 - 10.105, the definition

of A in terms of the variance given by a Haar random circuit. We can now collect



10.4. Barren Plateaus 150

relevant terms into two integrals:

Var [∂kC] = VarL,R [∂kC]

−Tr
[
AR(ρ)

(
V⊗2

k AL(H)+AL(H)V⊗2
k −2(Vk⊗1)AL(H)(1⊗Vk)

)]
+
∫
U

Tr
[(

V⊗2
k AL(H)+AL(H)V⊗2

k −2(Vk⊗1)AL(H)(1⊗Vk)
)

ρ̃
⊗2]

+
∫
U

Tr
[
AR(ρ)

(
V⊗2

k H̃⊗2 + H̃⊗2V⊗2
k −2(Vk⊗1) H̃⊗2 (1⊗Vk)

)]
,

(10.122)

with ρ̃ =UρU†, H̃ =U†HU , recalling that
∫
U :=

∫
U(d) dµ(U).

For ease of notation, we can define

Zxk :=
(
V⊗2

k Ax(ωx)+Ax(ωx)V⊗2
k −2(Vk⊗1)Ax(ωx)(1⊗Vk)

)
, (10.123)

with x = L(R),ωL(R) = ρ(H). As the integrals in Equation 10.122 are over the Haar

measure, we can use the Weingarten formula [240], Equation 10.66 to solve them.

We have two integrals to solve,

I1 =
∫
U

dµ(U)Tr
[
ZLkU⊗2

R ρ
⊗2U†⊗2

R

]
, (10.124)

I2 =
∫
U

dµ(U)Tr
[
AR(ρ)

(
V⊗2

k H̃⊗2 + H̃⊗2V⊗2
k −2(Vk⊗1) H̃⊗2 (1⊗Vk)

)]
.

(10.125)

We can use the linearity of the Trace, and cyclic permutations to rearrange Equa-

tion 10.125,

Tr
[
AR(ρ)

(
V⊗2

k H̃⊗2 + H̃⊗2V⊗2
k −2(Vk⊗1) H̃⊗2 (1⊗Vk)

)]
.

=Tr
[
AR(ρ)V⊗2

K U†⊗2
L H⊗2U⊗2

L

]
+Tr

[
AR(ρ)U

†⊗2
L H⊗2U⊗2

L V⊗2
K

]
(10.126)

−2Tr
[
AR(ρ)(Vk⊗1)U†⊗2

L H⊗2U⊗2
L (1⊗Vk)

]
,

=Tr
[
H⊗2U⊗2

L AR(ρ)V⊗2
K U†⊗2

L

]
+Tr

[
H⊗2U⊗2

L V⊗2
K AR(ρ)U

†⊗2
L

]
−2Tr

[
H⊗2U⊗2

L (1⊗Vk)AR(ρ)(Vk⊗1)U†⊗2
L

]
, (10.127)
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we can here use Tr [(1⊗Vk)AR(ρ)(Vk⊗1)] = Tr [(1⊗Vk)AR(ρ)(Vk⊗1)] to sim-

plify the final line to

Tr
[
H⊗2U⊗2

L
(
AR(ρ)V⊗2

K +V⊗2
K AR(ρ)−2(1⊗Vk)AR(ρ)(Vk⊗1)

)
U†⊗2

L

]
,

= Tr
[
H⊗2U⊗2

L ZRkU
†⊗2
L

]
. (10.128)

In Appendix C we derive a relation relevant here using diagrammatic notation,

and we will state the result, Equation C.2 here:

∫
U(d)

dµ(U)Tr
[
AU⊗2BU†⊗2

]
=

1
d2−1

(Tr [A]Tr [B]+Tr [AW ]Tr [BW ])

− 1
d (d2−1)

(Tr [AW ]Tr [B]+Tr [A]Tr [BW ]) .

(10.129)

We can easily substitute the rearranged I1, I2 here to give

I1 =
1

d2−1
(
Tr [ZLk]Tr

[
ρ
⊗2]+Tr [ZLkW ]Tr

[
ρ
⊗2W

])
− 1

d (d2−1)
(
Tr [ZLkW ]Tr

[
ρ
⊗2]+Tr [ZLk]Tr

[
ρ
⊗2W

])
, (10.130)

=
1

d2−1
Tr [ZLkW ]Tr

[
ρ

2]− 1
d (d2−1)

Tr [ZLkW ]Tr, (10.131)

I2 =
1

d2−1
(
Tr
[
H⊗2]Tr [ZRk]+Tr

[
H⊗2W

]
Tr [ZRkW ]

)
− 1

d (d2−1)
(
Tr
[
H⊗2W

]
Tr [ZRk]+Tr

[
H⊗2]Tr [ZRkW ]

)
, (10.132)

=
1

d2−1

(
Tr
[
H2]Tr [ZRkW ]− 1

d (d2−1)
Tr [H]2 Tr [ZRkW ]

)
. (10.133)



10.4. Barren Plateaus 152

Where the second parts of the substitution use

Tr
[
ρ
⊗2W

]
= Tr

[
ρ

2] , (10.134)

Tr
[
H⊗2W

]
= Tr

[
H2] , (10.135)

Tr [ZLk] = Tr [ZRk] = 0, (10.136)

Tr
[
A⊗2]= Tr [A]2 , (10.137)

Tr [ρ] = 1. (10.138)

Putting this back together with Equation 10.122 and rearranging using the

triangle inequality, we get,

| Var [∂kC−VarL,R [∂kC]]| ≤

1
d2−1

(
|Tr [ZLkW ]|

(
Tr
[
ρ

2]− 1
d

)
+ |Tr [ZRkW ]|

(
Tr
[
H2]− 1

d
Tr [H]2

))
+
∣∣Tr
[
AR(ρ

⊗2)
]∣∣ , (10.139)

≤

d
(d2−1)

(
||ZLk||2

(
||ρ||22−

1
d

)
+ ||ZRk||22

(
||H||22−Tr [H]2

))
+
∣∣∣∣AR(ρ

⊗2)
∣∣∣∣

2 ||ZLk||2 , (10.140)

using the Cauchy-Schwarz inequality and ||W ||2 = d in the second line.

We can expand ||Zxk||2 with the triangle inequality:

||Zxk||2 ≤
∣∣∣∣V⊗2

k

∣∣∣∣
2 ||Ax||2 + ||Ax||2

∣∣∣∣V⊗2
k

∣∣∣∣
2 +2

∣∣∣∣(Vk⊗1)Ax (1⊗Vk)V⊗2
k

∣∣∣∣
2

(10.141)

≤ 4 ||Ax||2 . (10.142)

This allows us to make the final substitution, relating the variance of the gradient
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when the circuit to the left and right of the parameter is close to a 2-design:

| Var [∂kC − VarL,R [∂kC]]| ≤

4
∣∣∣∣AR(ρ

⊗2)
∣∣∣∣

2

∣∣∣∣AL(H⊗2)
∣∣∣∣

2

+
4d

d2−1

(∣∣∣∣AR(ρ
⊗2)
∣∣∣∣

2

(
||H||22−

1
d

Tr [H]2
)
+
∣∣∣∣AL(H⊗2)

∣∣∣∣
2

(
||ρ||22−

1
d

))
.

(10.143)

We now have three bounds, Equations 10.4.5, and 10.143, which bound the

total variance in the gradient of the cost function by the expressibility of the ansatz.

Each of the equations are valid at all points in the circuit, so the variance is always

bounded by whichever is lowest, i.e. if towards the end of the circuit VarL [∂kC]

will be lowest, as UL is closer to a 2-design, so the overall variance is bounded by

Equation 10.4.5.

One important note is that the bounds on the variance formulated here only

provide an upper bound, with no lower bound being possible; the conclusion being

that a more expressive ansatz will result in a flatter cost landscape, but there is no

guarantee that reducing the expressibility of an ansatz results in steeper gradients.

In Chapter 12 we will develop some numerics to support this argument, and to

investigate the variance in the environment of a changing ansatz.

Many of the algorithms discussed in this chapter deal with one aspect of NISQ

computing, that of small qubit numbers and coherence times that do not allow us to

use fault tolerant techniques, but we have not really discussed the other aspect, noise

in the device. In Part IV and Section 13 we will discuss algorithmic techniques for

reducing the impact of noise on a quantum computation, techniques that can usually

be applied to both quantum chemistry and quantum machine learning problems, due

to the similarities of training a parameterised circuit to minimise some objective

function.



Chapter 11

Dynamical Mean Field Theory

In the previous chapters of this section, most of the quantum chemistry discussed

involves finding the ground states of molecules. Here we will introduce a new system

that NISQ computers can study, those modelled by Dynamical Mean Field Theory

(DMFT). We will then show how a small DMFT instance was solved using an ion

trap quantum device. Parts of this chapter are based upon work in [246], where this

author contributed to the constructiuon of the Hamiltonian in sillico and simulation

of VQE on quantum circuits. In Chapter 12 we will show how the ADAPT algorithm

was used to solve bigger instances of DMFT systems.

11.1 Preliminaries and Algorithm Outline
We will present some history linking the Fermi-Hubbard model, an important model

in solid state physics [247]–[252] and the Single-Impurity Anderson Model (SIAM).

We will then show the outline of an algorithm for DMFT, but in this section we will

only show the classical parts of this algorithm.

11.1.1 Fermi-Hubbard Model

The Fermi-Hubbard model [253] (also independently [254] by Ref.s [255], [256]

) describes the interactions of fermions (hence the Fermi- prefix, hereafter we will

only consider electrons) on a lattice, and is known as a tight binding model, as it

assumes the electrons are distributed close to atomic cores. It was originally used

to study the electrons in solid state systems transitioning between conducting and

insulating systems, since then it is possible that high-temperature superconductivity
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can be observed in the Hubbard model, [257], [258], but this is not considered by all

[259], [260] and still an area of active research.

The Hubbard model describes the electrons on a lattice with two terms in a

Hamiltonian, the hopping term describing how electrons hop between sites, and the

on-site term which describes their repulsion whilst on the same site,

H =−∑
i, j

∑
σ∈{↑,↓}

ti ja
†
iσ a jσ +U ∑

i
a†

i↑a
†
i↓ai↓ai↑. (11.1)

We will restrict ourselves to considering a regular 2-dimensional lattice of sites,

where only nearest-neighbour interactions are allowed ti j = t∗ji = tδ|i− j|,1 . Despite

being a simple model to write and describe, the Hubbard model is hard to solve, and

can be used to describe a huge amount of different many-body systems.

The Fermi-Hubbard model has been considered as a candidate for quantum

computer solutions, both in the NISQ era [249], [251], [261], and in fault-tolerant

algorithms [262], [263], but in this thesis we will calculate using DMFT, which

requires us to introduce the Single Impurity Anderson Model (SIAM).

11.1.2 Single Impurity Anderson Model

The Hubbard model in infinite dimensions can be mapped onto the single-impurity

Anderson model [264], [265], so whilst the Anderson model is not a direct extension

of the Hubbard model, we will now begin to discuss the Anderson model. The

Anderson impurity model [266] was first formulated to describe magnetic impurities

embedded in metals. In experiment [267] a resistivity minimum can be observed,

where lowering temperatures no longer decreases resistivity but causes it to increase,

this was known as the Kondo effect [268] and was not captured in the theoretical

models in the first half of the 20th century. It can be shown that the Anderson model

replicates the features of Kondo’s model, which in the simplest form utilises only a

single impurity, the SIAM. In the SIAM we have a single impurity which is coupled

to a bath of sites that can exchange electrons with the impurity, and we write the
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Hamiltonian as a sum of three parts: the bath, the impurity and their interaction,

H = Hbath +Himp +Hmix. (11.2)

We will write the orbitals associated with the impurity with Greek subscripts, and

the bath with Latin, we will also enumerate each spin orbital, as opposed to referring

to the spin individually, i.e. (1,↑)→ α = 1,(1,↓)→ α = 2, until (Nimp,↓)→ α =

2Nimp. The parts of Equation 11.2 are given by

Himp = (εα −µ)a†
αaα + ∑

αβγδ

Uαβγδ a†
αa†

β
aγaδ , (11.3)

Hmix = ∑
αi

(
Vαia†

αai +V ∗αia
†
i aα

)
, (11.4)

Hbath = ∑
i

εia
†
i ai, (11.5)

where εα(i) is the on-site energy of the impurity (bath), µ is the chemical potential,

Uαβγδ are the electron interaction energies, and Vαi are the hopping matrix elements

between the impurity and bath.

In what follows, we want to calculate the values for εi and Vαi, as we know

εα ,µ,Uαβγδ from the underlying material.

11.1.3 Green’s Function

The Green’s function was developed in the 19th century by George Green in a

study of electricity and magnetism [269]. It is a proposed solution to the ordinary

differential equation, L(x)G(s,x) = δ (s− x) where δ (x) is the Dirac delta. If we

know the solution to this equation at one point, and L(x) is linear, we can superpose

the solutions to find the general solution u(x) =
∫

f (y)G(x,y)dy for the general form

L(x)u(x) = f (x).

In the context of the SIAM we define Green’s functions for ω , the energy

expressed as imaginary, or Matsubara [270] , frequencies [271] . We assume that

the Green’s function is a matrix, and we have a constant density of states. We also

assume the band width is larger than the other energy scales in the problem, so that
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the main physics is as a result of the interaction between U and the hybridisation

function, ∆α(ω), which is given by

∆α(ω) = ∑
i

|Vαi|2
ω + iδ − εi

, (11.6)

with δ here an infinitesimally small positive number.

11.1.4 DMFT loop

So in DMFT the algorithm is to achieve self-consistency between the retarded

Green’s functions for the original lattice model Glat(ω) and the problem with a

non-interacting impurity, G0,α(ω). We begin with an initial guess for the Hamilto-

nian parameters, calculate the difference
∣∣∣G−1

lat (ω)−G−1
0,α(ω)

∣∣∣2 and minimise it by

updating εα ,εi,Vαi. The minimisation can only be zero if an infinite number of bath

sites is used, so we are content to just minimise the function [246].

Firstly, we present the Green’s function for an interacting impurity at zero

temperature,

Gα(ω) = (ω + iδ − εα +µ−∆α(ω)−Σα(ω))−1 , (11.7)

where we have introduced the many-body self-energy, Σα(ω) which accounts for all

of the modifications to the non-interacting Green’s function, G0,α(ω) ,

Σα(ω) = G−1
0,α(ω)−G−1

α (ω), (11.8)

i.e. G0,α = (ω + iδ − εα +µ−∆α(ω))−1. The many-body self-energy includes the

corrections induced by ∑αβγδ
Uαβγδ a†

αa†
β

aγaδ , in Hmix. The final quantity to name

is the non-interacting Green’s function on the lattice,

G0,lat(ω) = (ω + iδ +µ + εi−∆lat(ω))−1 . (11.9)

However, we do not yet have an independent function for Gα(ω), so we are not

yet ready to minimise. As the Green’s function is a correlation function [272] we
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can use its Lehman representation [273], [274],

Gα(ω) =
∫

∞

−∞

dx
ρ0(x)

ω + iδ −ωn
(11.10)

To simplify, we can assume that off-diagonal terms in Gα(ω) can be neglected1,

Gα(ω) =

MN0−1

∑
n=1

λh,α,n

ω + iδ −ωh,n
+

MN0+1

∑
n=1

λp,α,n

ω + iδ −ωp,n
. (11.11)

The first sum runs over all states with one electron removed, the hole states; and the

second sum is over all states with an electron added, the particle states. λp(h),α,n are

between zero and one, and satisfy

Σn
(
λp,α,n +λh,α,n

)
= 1. (11.12)

The particle and hole frequencies are given by

ωp,n = EN0+1,n−EN0,n (11.13)

ωh,n = EN0,0−EN0−1,n (11.14)

and the matrix elements λ are calculated by

λp,α,n =
∣∣⟨ψN0+1,n|σ−α |ψN0,0⟩

∣∣2 , (11.15)

λh,α,n =
∣∣⟨ψN0−1,n|σ+

α |ψN0,0⟩
∣∣2 . (11.16)

Here N gives the number of electrons in the state, and n = {0 . . .MN} indexes the

eigenstates with N electrons. |ψN,0⟩ gives the ground state for N electrons, |ψN,1⟩
the first excited state, etc. N0 gives the number of electrons in the overall ground

state, so |N0,0⟩= |ψ0⟩ is the overall ground state. The energies of states, EN,n are

labelled similarly.

1We can still write the Green’s functions as dense matrices, but we do not here for ease of
exposition.
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11.2 Quantum Algorithm

Up to this point, everything discussed can (and has [272]) be calculated on a classical

computer. In this section we introduce the part of the algorithm that could benefit

from calculations on a quantum device.

There are other proposals for calculating the Green’s function using a quantum

device, some which perform a Fourier transform on the real Green’s function [275],

[276]. As this requires very small time steps at large interaction strengths, the noise

in NISQ devices it too high for accurate computation with this method. Another

method which uses effectively averaged integrated quantities was proposed in [277].

Also note that at a similar time to the publication of [246] a method which also

utilises VQE was demonstrated [278]. We propose a method utilising VQE as it is

suitable for smaller NISQ devices, and has shown to be more noise-resilient [50],

[279]–[281].

11.2.1 Quantities Calculated on the Quantum Device

As discussed above, we must calculate ωp(h),n and λp(h),α,n to compute the impurity

Green’s function. We use the Jordan-Wigner transformation [198], Section 9.1.1 to

represent the fermionic operators on the quantum device, with the impurity electrons

appearing first in the index. For the impurity and bath ladder operators, we write

σ
±
α =

(
α−1

∏
β=1

σ
z
β

)
1
2
(
σ

x
α ± iσ y

α

)
, (11.17)

σ
±
i =

(
Π

Nimp
β=1σ

z
β

)(
Π

i−1
j=1

) 1
2
(
σ

x
i ± iσ y

i
)
. (11.18)

With the Jordan-Wigner representation, for λp(h),α,nwe begin with Equa-

tion 11.15, but as σ
−(+)
α creates (destroys) an electron in α we have

|ψN′,m⟩σ+
α ⟨ψN,n|= δN′,N−1 |ψN′,m⟩σ+

α ⟨ψN,n| (11.19)

|ψN′,m⟩σ−α ⟨ψN,n|= δN′,N+1 |ψN′,m⟩σ−α ⟨ψN,n| (11.20)
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Rewriting the Jordan-Wigner transform gives us

(
Π

α−1
β=1σ

z
β

)
σ

x
α = σ

+
α +σ

−
α . (11.21)

We can substitute this into Equation 11.19 to get

δN′,N−1 ⟨ψN−1,m|σ+
α |ψN,m⟩=−δN′,N+1 ⟨ψN+1,m|σ−α |ψN,m⟩

+ ⟨ψN′,m|
(

Π
α−1
β=1σ

z
β

)
σ

x
α |ψN,n⟩ (11.22)

⟨ψN−1,m|σ+
α |ψN,m⟩= ⟨ψN−1,m|

(
Π

α−1
β=1σ

z
β

)
σ

x
α |ψN,n⟩ , (11.23)

⟨ψN+1,m|σ−α |ψN,m⟩= ⟨ψN+1,m|
(

Π
α−1
β=1σ

z
β

)
σ

x
α |ψN,n⟩ . (11.24)

This means that under the Jordan-Wigner transformation we do not have to increase

the number of separate terms calculated, and the matrix terms λp(h),α,n can be written

λp,α,n =
∣∣∣⟨ψN0+1,n|

(
Π

α−1
β=1σ

z
β

)
σ

x
α |ψ0⟩

∣∣∣2 , (11.25)

λh,α,n =
∣∣∣⟨ψN0−1,n|

(
Π

α−1
β=1σ

z
β

)
σ

x
α |ψ0⟩

∣∣∣2 . (11.26)

11.2.2 Calculating the Ground State, excited states, and N0±1

states

In what follows we will use UN,n to represent the unitary operator found by VQE

that prepares |ψN,n⟩ from the all |0⟩ state; |ψN,n⟩=UN,n |0⟩. The simplest operator

to find is U0, which prepares the ground state, and can be found the same as any

other VQE ground state, discussed in Chapter 10. The next operator to find is that

the one where N = N0±1. For this we modify the original Hamiltonian to include a

penalty term to enforce the target electron number, Ntarg,

H̃ = H +β
(
N̂−Ntarg

)2
, (11.27)

where N̂ = ∑α n̂α +∑i n̂i is the total number operator, and β is a large fixed num-

ber [282, ch.17]. The penalty term approach was introduced in [283], and is used
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here due to its simplicity and robustness to noise. Here we follow the subspace

expansion method [284] for calculating the excited states, but there are other possible

methods [285], [286].

In the subspace expansion method, we rely upon the fact that the ground and

excited states are mutually orthogonal, and are gapped at lower levels. To find

the k− th eigenstate we minimise the VQE problem, imposing an orthogonality

condition between all of the ground and excited sates up to k− 1 . The subspace

expansion method is:

1. Choose a set of input states
{
|ψ j⟩

}k
j=0 that are orthogonal, ⟨ψi| |ψ j⟩ = δi j.

This imposes the orthogonality condition.

2. Construct the first, general ansatz circuit, U(θ).

3. Minimise the first loss function, L1(θ) = ∑
k
j=0 ⟨ψ j|U†(θ)HU((θ)) |ψ j⟩ . The

optimal parameters found are denoted θ ∗.

4. Construct a second ansatz circuit, V ((φ)) that only acts on the space spanned

by
{
|ψ j⟩

}k
j=0 .

5. Choose any index s ∈ j and maximise the second cost function, L2(φ) =

⟨ψs|V †(φ)U†(θ ∗)HU(θ)V (φ) |ψs⟩ .

In the subspace expansion method, the first minimization, over U(θ), finds the

unitary which maps us from the space spanned by
{
|ψ j⟩

}k
j=0 to the one spanned by

k eigenvectors of the Hamiltonian,
{
|E j⟩

}k
j=0. We note that the input states

{
ψ j
}k

j=0

can easily be the computational basis states, as they are easy to prepare. Once U(θ)

circuit has moved us into the subspace spanned by
{

E j
}k

j=0, we use the restricted

ansatz V (φ) to search the subspace. By maximising over φ we find the k−th excited

state.

As a toy example, take a VQE problem over 4 qubits, which is the same as the

later DMFT problem. For the U(θ) circuit we can propose any ansatz, for example

a hardware efficient ansatz, which easily permits the computational basis states as

orthogonal states. If we wish to find the second excited state, we can choose the first
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three computational basis states as our input,
{
|ψ⟩ j

}
= {|0000⟩ , |0001⟩ , |0010⟩}.

We can do the VQE minimisation over all three states simultaneously to get U(θ ∗).

Now, we must propose an ansatz V (φ) that spans over these three states only, this

is where we have to do more careful ansatz design. A general Hardware Efficient

Ansatz will not do, e.g. Ry(φ) gates on each qubit allows for the |0011⟩ state. Instead

for an odd number of basis states, we must find some way to restrict the output, e.g

the circuit in Figure 11.1.

|0⟩ Ry(φ0) • . . .

|0⟩ Ry(φ1) −Ry(φ1) . . .

|0⟩ . . .
|0⟩ . . .

Figure 11.1: A circuit parameterised by φ that only explores the |0000⟩ , |0001⟩ , |0010⟩
subspace.

Also presented in [284] are methods of finding excited states which require only

a single optimisation procedure, but a more complicated cost function, and perhaps

longer overall time. To find the k−th excited state, we again choose
{
|ψ⟩ j

}k

j=0
orthogonal basis states, but we now minimise the cost function,

Lw(θ) = w⟨ψk|U†(θ)HU(θ) |ψk⟩+
k−1

∑
j=0
⟨ψ j|U†(θ)HU(θ) |ψ j⟩ . (11.28)

The final quantity to calculate is λp(h),α,n, which we do by using the definition

of UN,n. For the particle case we have

λp,α,n =
∣∣∣⟨0|U†

N0+1,n

(
Π

α−1
β=1σ

z
β

)
σ

x
αUN0,0 |0⟩

∣∣∣2 , (11.29)

which can be similarly derived for the hole case. We already need to find the circuits

for U†
N0+1,n and UN0,0 in the calculation of energy, so we only now need to evaluate

U†
N0+1,n

(
Π

α−1
β=1σ

z
β

)
σ x

αUN0,0 and calculate the probability of measuring the all 0

state.
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11.2.3 Regularisation

With everything covered so far, it is possible for us to perform the DMFT self-

consistency loop. However, as we are discussing performing the calculations on a

noisy device, there will be deviations from the exact values. In Σ(ω) these deviations

lead to unphysical poles, as Σα(ω) = G−1
0,α(ω)−G−1

α (ω), which cancels out the

divergences around Gα(ω) = 0. When the divergences do not cancel , we are left

with a DMFT loop that does not converge. Gα,0(ω) = 0 when there is a pole in

∆α(ω) = ∑i
|Vαi|2

ω+iδ−εi
, i.e. ω is in the set {εi}. Cancellation of divergences therefore

requires

Gα(εi) = 0 and
dGα(ω)

dω
=

dG0,α(ω)

dω

∣∣∣∣
ω=εi

. (11.30)

Combining this with Equation 11.11 gives us the rules

MN0−1

∑
n=0

λh,α,n

εi−ωh,n
+

MN0+1

∑
n=0

λp,α,n

εi−ωp,n
= 0, (11.31)

MN0−1

∑
n=0

λh,α,n(
εi−ωh,n

)2 +

MN0+1

∑
n=0

λp,α,n(
εi−ωp,n

)2 =
1

V 2
i
. (11.32)

We therefore perform a constrained optimisation procedure, where we calculate

λp(h),α,n,ωp(h),n on the device and then change λp(h),α,n as little as possible to satisfy

the sum rules above. We only vary λp(h),α,n, keeping ωp(h),n fixed as the constrained

minimisation procedure can be costly as the system size increases, depending on

O(ω2), but only linearly on λ ; we also expect that there is a lower error in ωp(h),n as

it is calculated with a shorter circuit.

11.3 Two Site Example
So far the DMFT algorithm laid out can be applied to a general DMFT system of any

size. We will now discuss the concrete example of a two-site DMFT system, with

a single impurity and a single bath site. This example is used as it has been solved

analytically [272], [275], which gives us good results to benchmark the quantum

algorithm, and it is a number of qubits that could be used with an acceptable amount

of noise on the hardware available at the time.
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The Jordan-Wigner transformed Hamiltonian for the two-site DMFT problem is

Ĥ =
U
4

σ
1
z σ

3
z +

(
µ

2
+

U
4

)(
σ

1
z +σ

3
z
)
− ε

2
(
σ

2
z +σ

4
z
)

+
V
2
(
σ

1
x σ

2
x +σ

1
y σ

2
y +σ

4
x σ

3
x +σ

3
y σ

4
y
)
, (11.33)

where we have re-mapped the indices to reduce the number of leading σ z operators

from the Jordan-Wigner transformation, we now order the orbitals based on spin

first,

1↑→ q1

2↑→ q2

1↓→ q3

2↓→ q4

This allows us to define Sz, the total z component of the spin,

Ŝz = n̂1 + n̂2− n̂3− n̂4, (11.34)

Sz = ⟨Ŝz⟩. (11.35)

The derivations in [272] allow us to define self-consistency relations for the two site

DMFT problem,

nimp = nlat (11.36)

V 2
12 = z. (11.37)

This is partly due to H being spin-independent, so G3 = G1,Σ3 = Σ1, leading to only

two bath parameters to minimise, V12 =V and ε2. The occupation of the impurity,

nimp is

nimp =
∫ 0

−∞

DOSimp(ω)dω, (11.38)
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with a similar quantity for the occupation of the bath site

nlat =
∫ 0

−∞

DOSlat(ω)dω. (11.39)

The density of states for the lattice and bath sites are given by

DOSimp(ω) =− 2
π

Im [G(ω + iδ )] (11.40)

DOSlat(ω) = 2ρ0 [ω +µ−Σ(ω)] , (11.41)

ρ0(x) =
1

2π

√
4− x2. (11.42)

In the second consistency equation, z is the quasi-particle weight, or wavefunction re

normalisation factor,

z =
(

1− dRe [Σ(ω)]

dω

∣∣∣∣
ω=0

)−1

=

(
1− Im [Σ(iδ )]

δ

)−1

. (11.43)

11.3.1 Particle Hole Symmetry

We first consider the case where we have particle hole symmetry, i.e. ωp,n =−ωh,n

and λp,α,n = λh,α,n, leaving us free to consider only the particle contributions. We

will here use the knowledge that at the ground state N0 = 2 and Sz = 0, which requires

experiments to deduce, but we require it to present which terms to calculate.

More reductions we can make due to particle hole symmetry are that, by

definition, E3,n = E1,n; leaving us free to consider E3,n. We also have spin symmetry

in the Hamiltonian, Equation 11.33, giving

E3,0 = E3,1, Sz =−1 (1 for N = 1 ) (11.44)

E3,2 = E3,3, Sz = 1 (-1 for N = 1 ) (11.45)

(11.46)

Considering now the λp,α,n terms, we wish to calculate ⟨ψ3,n|σ−α |ψ2,0⟩. Firstly,
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we see that only for values of α = 1 will we get a non-zero matrix element, as only

then do the number of electrons match. Secondly, we can set forbidden transitions

(between different spin numbers) to zero:

λp,1,1 = ⟨ψ3,1| |ψ3,2⟩ →↑↓= 0 (11.47)

λp,1,3 = ⟨ψ3,3| |ψ3,2⟩ →↑↓= 0 (11.48)

λp,1,3 = ⟨ψ3,3| |ψ3,2⟩ →↓↓̸= 0 (11.49)

λp,1,2 = ⟨ψ3,2| |ψ3,2⟩ →↓↓̸= 0. (11.50)

Finally, again using particle hole symmetry, and the constraint on λp(h),α,n in Equa-

tion 11.12, ∑n
(
λp,α,n +λh,α,n

)
= 1, we have the constraint

λp,1,2 =
1
2
−λp,1,0, (11.51)

which leaves us with a single independent parameter, λp,1,0 = λ . Therefore, for the

two-site DMFT at particle hole symmetry we have to calculate:

E0

E3,0

E3,2

λp,1,0.

In the full DMFT loop we must also apply the regularisation of λ as given by

Equation 11.32, which removes λ as a free parameter, simplifying to

λ =
ω2

p,0
(
V 2−ωp,2

)
2V 2

(
ω2

p,0−ω2
p,2

) . (11.52)

The advantage of choosing two-site DMFT at particle hole symmetry, along

with a great reduction in the number of terms to calculate, is there is an analytic
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solution available [272]. The solution is

V =
√

z =


√

1−
(U

6

)2 for U < 6

0 for U ≥ 6.
(11.53)

We will evaluate the quantum part of the algorithm at U = 4 which gives the analytic

value for V = 0.745356.

11.3.1.1 Penalty Term

The first approach we describe is the penalty term approach, where we calculate

E0,EN0+1,n and λp,α,n via the methods described in Section 11.2, using a hardware

efficient ansatz, given in Figure 11.2.

Ry(θ0) • Ry(θ5)

Ry(θ1) • Ry(θ6)

Ry(θ2) Ry(θ4) • Ry(θ7)

Ry(θ3) Ry(θ8)

Figure 11.2: The four qubit hardware efficient ansatz used in the penalty term approach to
the two-site DMFT problem. All gates are σy rotations as the final output is
known to be real. When assuming particle hole symmetry we can set θ4 = 0.

11.3.1.2 Circuit Reduction

To reduce the resource requirements even further, we can design a separate Hamilto-

nian and circuit for each N and Sz, relying upon projections of the overall Hamiltonian

onto a reduced, 2-qubit Hamiltonian. This projection is detailed in Appendix D.

For N = 1,N = 3 (which has identical eigenvalues, as noted) we have the

Hamiltonians

H =
U
4

σ
z
2 +V σ

x
2 (11.54)

H =−U
4

σ
z
2 +V σ

x
2 , (11.55)

the first qubit does not appear in these Hamiltonians, as the eigenstates are degenerate,
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with Sz = 1, and Sz =−1. The degenerate state is reached by applying a Ry(π) gate

to the first qubit. The ansatz for these Hamiltonians is given by Figure 11.3a.

For the case with N = 2 we have five configurations, one each of Sz =±2 and

four cases where Sz = 0. This is projected to the Hamiltonian

H =
U
4

σ
z
1σ

z
2 +V (σ x

1 +σ
x
2) , (11.56)

with the ansatz for this Hamiltonian given in Figure 11.3b.

|0⟩

|0⟩ Ry(θ0)

(a) The two-qubit circuit reduced ansatz for the
N = 1,3 cases, applied to the Hamiltonians
in Equation 11.54.

|0⟩ Ry(θ0) •

|0⟩ Ry(θ1) Ry(θ2)

(b) The two-qubit circuit reduced ansatz for the
N = 2 case, applied to the Hamiltonian in
Equation 11.56.

Figure 11.3: The ansatze used in the circuit reduction DMFT loop, where the original 4
qubit Hamiltonian has been projected onto 2 qubits.

11.4 VQE Results
VQE experiments were performed in simulation and on two quantum computing

architectures, superconducting qubits via the IBM cloud, and the ion trap device at

the University of Maryland. This author calculated the simulated results, using the

cirq [171] python package, simulating the effect of statistical sampling using 5000

shots, and removing this component by accessing the relevant parts of the calculated

wavefunction (which is impossible on a real quantum device). These results are

presented in Table 11.1.

11.4.0.1 Error Mitigation

Noise on the real quantum devices can cause large deviations from the ideal values,

leading to incorrect DMFT results. This is possible to see when as we are using a

small proof of principle system, but will be impossible at larger system sizes. Error

mitigation developed on the smaller system will be useful at larger system sizes.

Firstly, as VQE is a variational algorithm it can account for some calibration

and systematic errors in gates (over and under rotations). It is possible (at this system
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Table 11.1: Results for the required quantities in the simulated DMFT loop, compared to
the exact results. ∞ shots removes statistical sampling error by accessing the
components of the wavefunction directly, whilst 5000 shots simulates the effects
of sampling noise.

Four Qubit Two Qubit
Exact ∞ shots 5000 shots ∞ shots 5000 shots

E0 -1.795 -1.795 -1.804 -1.795 -1.811
E3,0 -1.247 -1.232 -1.247 -1.247 -1.279
E3,2 1.247 1.260 1.247 1.247 1.244
λ 0.262 0.262 0.288 0.262 0.273

size) to determine the optimal circuit parameters in simulation and input these into

the quantum circuit, however it was found on the IBM device that this produced

a more erroneous result than running the whole VQE experiment on the device,

this is shown in Table 11.2. This suggests that there is some mis-calibration in the

implemented rotation gates, which is overcome when running the whole experiment

on the device.

Table 11.2: Results for the required quantities in the DMFT loop, as performed on the IBM
superconducting device compared to the exact results. In the Optimal θ column
the values are for the parameters found in simulation. The VQE column is where
the final VQE experiment is performed on the quantum device, and the DMFT +
VQE column is that where the whole DMFT loop has been ran in conjunction
with the quantum device.

Four Qubit Two Qubit
Exact Optimal θ Optimal θ VQE DMFT + VQE

E0 -1.795 -1.500 -1.700 -1.823 -1.809
E3,0 -1.247 -1.111 -1.259 -1.248 -1.245
E3,2 1.247 1.025 1.253 1.248 1.244
λ 0.262 0.113 0.210 0.275 0.271

11.4.0.2 Density of States Calculated Using Quantum Computer

One of the advantages of DMFT over DFT (non-interacting electrons) is major

features of the density of states (DOS) cannot be captured in DFT. This can be

seen in Figure 11.5b, the DOS in momentum space of the lattice site, where the

non-interacting calculation shows a single peak, but taking into account electron

interactions results in three distinct peaks in the DOS. The same is true of Figure 11.5

and the DOS on the impurity site, where the values of peaks are shifted, and there are
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Figure 11.4: Comparison of the simulated VQE experiment with the results obtained from
the IBM device with and without regularisation, and the exact results. This
demonstrates the power of the regularisation sub-routine to mitigate errors in
the noisy device.

more peaks. We also see that results of an experiment on the IBM hardware (using

the two qubit circuit in Figure 11.3) agree with the exact results well. The value of

V = 0.755 calculated in a DMFT loop on the quantum computer agrees well with

the exact calculation, V = 0.745356.

11.4.1 Comparison with Literature

As discussed, a similar paper [278] was released around the same time as the work

here was in preparation. The work there uses similar methods to also generate the

density of states and obtain a good fit for the Kondo peaks. In [278] they describe a

method to calculate the finite temperature Green’s function. In the work presented

here, we were able to reduce the Hamiltonian to a 2-qubit problem, which allowed

us to make calculations on the small quantum devices available whilst this work was
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Figure 11.5: Density of States calculated for the (a) impurity site and (b) the lattice site for
U = 4. Shown is the calculation as computed on the IBM superconducting
device, which agrees well with the exact result (dashed). Also shown is the
calculation made without interacting electrons (DFT), which does not replicate
the features of DOS well.

in preparation, whereas [278] is restricted to numerical simulations only.



Chapter 12

Adaptive Variational Algorithm for

Molecular Simulation

As discussed in Chapter 9 finding the ground state of physical systems is a promising

area where near term quantum devices will be useful. To achieve quantum advantage

the calculations performed on these devices must be of a reasonable size, e.g. on

the order of 100 qubits [287]. At these numbers of qubits, and as calculations

scale larger, designing the ansatz for a VQE circuit becomes hard. The Ansatz

design challenge can be mitigated by the ADAPT [41], and its variant Qubit-ADAPT

[42]. Due to the nature of the operators which each uses, we will denote the original

ADAPT algorithm ‘Fermionic ADAPT’, and the variant employing hardware efficient

operators ‘Qubit ADAPT’. In this chapter we will review each of the ADAPT

algorithms, and present the original work here, applying the ADAPT algorithm to

the DMFT system discussed in Chapter 11, and our modification to ADAPT which

can take into account properties of the device the algorithm is ran on.

12.1 ADAPT-VQE
In the VQE algorithm the experimenter must choose a parameterised ansatz for

the quantum device to minimise, with two overall strategies to choose from: a

chemically inspired ansatz, or a hardware-efficient ansatz. In the chemically inspired

ansatz the circuit ran on the device represents a sub-set of operators that could occur

in the system of interest. One choice of operators is the Unitary Coupled Cluster
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Singles and Doubles (UCCSD), which have been reviewed in Chapter 10. In UCCSD

the operators are the exponentiated, unitary
(

eT−T †
)

form of the fermionic single

(excitation) and double (swap) operators. We can use this scheme to provide a pool of

operators to design the ansatz with, but this will not give us an appropriate ordering,

which has a non-trivial effect of the performance of the ansatz [41]. The ADAPT

algorithm provides a method of designing the ansatz ‘on-the-fly’, where the ansatz is

built up one operator at a time, and the next best operator to use is determined by

a calculation on the quantum device. This has the advantage of reducing the total

number of operators used over vanilla VQE, as the algorithm will stop when the

energy has converged.

In outline, the ADAPT algorithm begins with a pool of operators to choose

from, an initial state (e.g. the Hartree-Fock state) and measures the commutator of

each operator with the current trial state. The operator with the largest commutator

is chosen to be appended to the ansatz, unless all values are below some stopping

condition, causing the algorithm to exit. With the new ansatz, a new round of

VQE is performed to re-optimise the parameters. This algorithm is formalised in

Algorithm 1.

12.1.1 Operator Pools

As has been alluded to, there are two distinct ‘flavours’ of ADAPT algorithm:

Fermionic ADAPT and Qubit-ADAPT. The main difference in these arises from the

choice of operators in the operator pool, P in Algorithm 1. In Fermionic ADAPT

they are constructed from the single and double operators acting on the system,

transformed into qubit operators via a chosen fermionic to qubit mapping (e.g.

Jordan-Wigner).

Many of the fermionic to qubit mappings used incur a large overhead in two-

qubit gates for a single operator, due to the requirement that parity is preserved.

For example, an operator which acts on the first and last spins requires pairwise

entangling operations between all qubits in the calculation. The Qubit-ADAPT

algorithm takes inspiration from the hardware efficient ansatz [217], where the

ansatz is instead designed from entangling gates native to the hardware device.
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Algorithm 1 The original ADAPT algorithm for building the ansatz, A form the pool
of operators, O. The difference between the Fermionic and Qubit ADAPT protocols
is the form of the operators, in Fermionic they are chemically inspired operators, e.g.
UCCSD. In Qubit, they are built from gates native to the device.
Require: H, the Hamiltonian, O1,O2, . . .Om, the operators, |ψHF⟩, the Hartree-

Fock state, n, the number of qubits on the device, VQE: VQE algorithm as a
sub-routine.
E: Energy
|ψ⟩ ← |0⟩⊗n ▷ state of quantum device
A← 1: The current ansatz

4: H← Hqubit ▷ Transform the Hamiltonian into a qubit representation (using
Jordan-Wigner, Brayvi-Kitaev etc.)
P ← {O1,O2, . . .Om}
if Fermionic ADAPT then
|ψ⟩ ← |ψHF⟩ ▷ Initialise the device into the Hartree-Fock State

8: end if
while E is not converged do

G← 0
N: New operator

12: for each O ∈ P do
g← |⟨ψ| [O,H] |ψ⟩|
if g≥ G then

G← g
16: N← O

end if
end for
A← AN ▷ Append the new operator to the ansatz

20: E← VQE (⟨ψ|AH |ψ⟩)
end while

As in both the molecular and the DMFT case the Hamiltonians are real, we can

first restrict the pool to those with an odd number of Y gates (or even ×i) in each

operator, and any number of Z gates. We can also show that a set of 2n−1 operators

is complete for the system, meaning we can rotate any real state to any other real

state1.

Following [42] we begin with an arbitrary three qubit state, and prove we can

move to n qubits from there. The arbitrary three qubit state |ψ⟩ can be decomposed

1Of course, when the set of states may include imaginary states, the size of the operator pool must
grow. This is the case in some quantum machine learning applications, such as in [288].



12.1. ADAPT-VQE 175

into

|ψ⟩= |0⟩3 |ψ0⟩21 + |1⟩3 |ψ1⟩21 . (12.1)

In general , the norm ⟨ψ0⟩ψ0 ̸= ⟨ψ1⟩ψ1, but we can always use an arbitrary rotation

on the third qubit, eiθY3 to transform into

|ψ ′⟩= eiθY3 |ψ⟩ |0⟩3 |ψ ′0⟩21 + |1⟩3 |ψ ′1⟩21 , (12.2)

with |ψ ′0⟩ = cosθ |ψ0⟩+ sin |ψ1⟩ and |ψ ′1⟩ = cosθ |ψ1⟩− sinθ |ψ0⟩ . We can make

the norms of these sates equal by choosing a θ such that

tan2θ =
⟨ψ1⟩ψ1−⟨ψ0⟩ψ0

2⟨ψ0⟩ψ1
. (12.3)

We can now show that with a state such as Equation 12.2 with ⟨ψ ′1⟩ψ ′1 = ⟨ψ ′0⟩ψ ′0 = 1
2

can be transformed via single and two-qubit gates into a state with the third qubit

factored out,

|ψ ′⟩ → (|0⟩+ |1⟩)3 |χ⟩21 . (12.4)

First, expand |ψ ′⟩, collecting the possible terms on the first two qubits:

|ψ ′⟩= |00⟩ |ψ ′0a⟩+ |01⟩ |ψ ′0b⟩+ |10⟩ |ψ ′1a⟩+ |11⟩ |ψ ′1b⟩ . (12.5)

Similarly to Equation 12.2, we can apply a Y rotation to each state with |ψ⟩3 =

0(1) using the conditional rotations eiθ0
1
2 (1+Z3)Y2,eiθ1

1
2 (1−Z3)Y2 to give ⟨ψ ′0a⟩ψ ′0a =

⟨ψ ′0a⟩ψ ′0a = ⟨ψ ′0b⟩ψ ′0b + ⟨ψ ′1a⟩ψ ′1a = ⟨ψ ′1b⟩ψ ′1b =
1
4 .

As we are working with real states, we can think of |ψ ′0a⟩ , |ψ ′0b⟩ as 2D vectors

in the same plane. The rotation eiφ1Z3Z2Y1 rotates these vectors in opposite directions

in the plane, until they coincide at |χ0⟩. This allows us to factor out |χ0⟩:

eiφ1Z3Z2Y1 |ψ ′⟩= (|00⟩+ |01⟩) |χ0⟩+ |10⟩ |ψ ′′1a + |11⟩ |ψ ′′1b⟩⟩ . (12.6)
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We now apply a conditional rotation on the second qubit to bring it to the state |0⟩:

eiφ2
1
2 (1+Z3)Y2eiφ1Z3Z2Y1 |ψ ′⟩=

√
2 |00⟩ |χ0⟩+ |10⟩ |ψ ′′1a⟩+ |11⟩ |ψ ′′1b⟩ . (12.7)

By a similar argument the gate eiφ3Z3Z2Z1 can rotate |ψ ′′1a⟩ and |ψ ′′1b⟩ into each other,

which does have an effect of |χ0⟩ → |χ ′0⟩. Again, we use the conditional rotation

eiφ4
1
2 (1−Z3)Y1 to move the terms in qubit 2 into the |0⟩ state,

eiφ4
1
2 (1−Z3)Y1eiφ3Z3Z2Z1eiφ2

1
2 (1+Z3)Y2eiφ1Z3Z2Y1 |ψ ′⟩=

√
2
(
|00⟩ |χ ′0⟩+ |10⟩ |χ1⟩

)
.

(12.8)

Again we see that a rotation, eiφ5Z3Z2Y1 on qubit 1 will rotate the |χ ′0⟩ , |χ1⟩ vectors

into the same state, |χ⟩, giving
√

2(|0⟩+ |1⟩)3 |0χ⟩. This has all been done with

gates from the set {iZ3Z2Y1, iZ3Y2, iY2}. We call this set
{

V red}
3, the reduced gate

set. Finally, we introduce the single rotation on the third qubit, Y3 and the conditional

operation on qubit 1, eiφ6Z3Z2Y1 , giving us the result we desire on three qubits,

eiφ6Z3Z2Y1ei π

4 Y3eiφ5Z3Z2Y1eiφ4
1
2 (1−Z3)Y1eiφ3Z3Z2Z1eiφ2

1
2 (1+Z3)Y2eiφ1Z3Z2Y1 |ψ ′⟩= |000⟩ .

(12.9)

Therefore, we can map any real three qubit state to any other real three-qubit

state, using the gates {iZ3Z2Y1, iZ3Y2, iY2, iY3}, which we will denote {V}3

Considering the n-qubit case, if we say now that 3 was the n + 1 case,

we can replace the conditional gates Z3Z2Y1 with the reduced set multiplied by

Zn+1, Zn+1
{

V red}
n; and we replace the rotation 1

2 (1+Z3)Y2 with 1
2 (1+Zn+1)Yn.

Doing these substitutions, we can make the same argument as above, but with

|ψ0a⟩ , |ψ1a⟩ , |ψ0b⟩ , |ψ1b⟩ , |χ0⟩ , |χ1⟩ now n−1 qubit states. We only need to replace

the last two operations with

ei π

4
1
2 (1−Zn+1)YneiφZn+1ZnYn−1ei π

4
1
2 (1−Zn+1)Yn, (12.10)

which rotates us into the state where the n and n+ 1 qubits have the same parity,

performs φZn+1ZnYn−1 and rotates back out.
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Following this argument, the set {V}n can transform any real n qubit state into

any other real n qubit state. This set is of size 2n−1 scaling linearly with the number

of qubits, meaning that the calculation of energy gradients in qubit ADAPT does not

blow up with the number of qubits2.

12.2 Device Aware ADAPT
In this work we present a further modification to the ADAPT scheme which takes

into account the properties of the device the algorithm is being ran on, which we call

Device-Aware ADAPT. As will be clear by now, in the NISQ era we are working

with devices which have limited numbers of qubits, noisy qubits, and in some cases

limited qubit connectivity 3. If we take the 27 qubit IBM device shown in Figure 12.1

an operation between qubits 0 and 9 requires many SWAP operations to complete.

Even in cases where we have all-to-all connectivity it may be the case that some

pairs of qubits are badly linked, i.e. the fidelity of two qubit gates between those is

significantly lower than the average.

We may want to sacrifice some ansatz expressibility to avoid gates requiring

many SWAPS or badly linked qubits on the actual hardware, which is what we do

when introducing the device-aware ADAPT algorithm.

Device-Aware ADAPT is a simple modification to the ADAPT algorithm,

where we take some characterisation of the device that the algorithm is running

on, including connectivity and noisy linkages, and apply a penalty to each operator

in the pool according to how disconnected the qubits are, or if there are any bad

links between them. This penalty term is applied to the gradient calculation in line

13 of Algorithm 1, with the goal being that another operator has a smaller initial

commutator but fewer bad connections in, it will be used instead.

One question to ask is if we are so concerned with bad linkages, why not remove

2A naïeve implementation may place all combinations of even numbered Y Pauli strings on all
qubits as the gate set, which increases massively with qubit number.

3Limited connectivity is true for superconducting devices [18], [22], and whilst some ion trap
devices have true all to all connectivity [289], some devices implement all-to-all connectivity via
physical swapping of ions [290]. This may be a higher fidelity operation than the SWAP gate
implemented in superconducting technologies, but it does not aid in total execution time, and does
not scale well with the number of qubits.
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all operators from the pool which contain them? The reason we apply this strategy is

that we can avoid bad links where possible, but we are still allowing the algorithm to

choose these operators if they have a large enough commutator. The next reasonable

concern is, with the availability and power of modern quantum compilers [291]–

[293], will they not be able to mitigate these effects? This is not a question we can

answer easily analytically, due to the adaptive nature of the algorithm, but we will

present numerical results concerning this in Section 12.3.

As discussed in Section 10.4.5 and [215] , the expressibility of an ansatz is

linked to the trainability of that ansatz, if it is likely to encounter barren plateaus in

training. By introducing a device aware modification to the ADAPT algorithm we

are reducing the expressibility of the ansatz by making some operators less likely to

appear, so it is natural to ask if this modification has an effect upon the trainability

of the ansatz. Barren plateaus in parameterised loss function, Lρ,H are defined as the

average of the partial derivative of all parameters vanishing:

⟨∂kL⟩ := ⟨∂Lρ,H (θ)

∂θk
⟩ → 0∀k. (12.11)

However, if this average contains large fluctuations away from zero then the ansatz

may still be trainable, so we use the Chebyshev inequality,

Pr(|∂kL| ≥ δ )≤ Var [∂kL]
δ 2 , (12.12)

to bound the value of the partial derivative with respect to the variance. In the results,

we calculate the variance,

Var [∂kL] = ⟨(∂kL)2⟩−⟨∂kL⟩2 (12.13)

over all parameters. In the ADAPT scheme, we also have the additional complication

that the ansatz changes over time, or with each additional operator. Therefore, we

calculate the variance of parameters in an operator at each epoch and show how this

changes with the additional of more operators. Here an epoch is defined as beginning
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with the addition of a new operator, or when the algorithm returns to line 19. Clearly

the parameters in the first operator will have a variance defined for all epochs, but

parameters added in later epochs will not have a variance defined at earlier epochs.

12.3 ADAPT Results
The results here are divided into two sections, where the algorithm was performed

on molecular systems to allow for comparison of device aware ADAPT with the

original ADAPT protocol, and where we have used both the original and device

aware algorithms on the DMFT system presented in Chapter 11, due to issues found

in scaling up the system to larger qubit numbers.

12.3.1 Molecular Systems

The two systems considered here are the H4 hydrogen chain and LiH. Molecular data

and UCCSD operators were generated using the Openfermion [294] python package.

Here we show the device aware and non-device aware versions of ADAPT using

the Fermionic, e.g. UCCSD, pool of operators. To compare the device aware and

non-device aware strategies, each final circuit was compiled using the t |ket⟩ [295]

compiler. The compiler is allowed to move qubits around to choose the strategy

with the fewest entangling gates, but must compile any SWAPS into three CNOT

gates; this is the same for each version of the circuit. As a first demonstration of the

device aware strategy, we do not provide any additional information than the qubit

connectivities, applying a penalty of between 0.9−0.999 to each entangling gate

between disconnected qubits. The device we model is a sub-section of the IBM [18]

27 qubit system, we are allowed at most 12 qubits from the device. A schematic of

these qubits and connections is given in Figure 12.1.

12.3.1.1 Hydrogen Chain

In Figure 12.2 we see the outcomes of both the device aware and non-device aware

algorithms in simulating the ground state of the H4 hydrogen chain for different

bond distances. Unfortunately this does not give us a good idea of how the device

aware and non device aware algorithms compare, so in Figure 12.3 we compare the

average error for each algorithm. As we can see, there is a small accuracy penalty
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Figure 12.1: The restricted set of qubits that the device aware algorithm targets, and the
qubits the t |ket⟩ compiler compiles to.

for the device aware algorithm. In Table 12.1 we see the gains that we can make in

choosing the device aware strategy, with a reduction in the average number of two

qubit gates (in the compiled circuit).

We also give the values of hyperparameters for the results displayed Table 12.1,

The parameters relating to the VQE subroutine are:

1. Optimiser: Which optimisation algorithm is used, see Section 10.3.

2. Learning Rate: The learning rate of the optimiser.

3. For optimisers with additional hyperparameters, such as Adam, the default

values are used unless explicitly stated.

The ADAPT specific parameters are:

1. Operator Precision: The value which, if the gradient of all new operators is

below this, the algorithm stops.

2. No. Parameters Optimised: In longer circuits, we freeze the first M−m

parameters at values found in previous VQE routines, M being the total number

of parameters and m this value. This means that the time taken to optimise

does not need to increase with circuit length.
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Parameter Value
Op. Precision 5×10−5

Learning Rate 0.01
Optimiser Adam

No. Parameters Optimised 10
Init Close To I True

Reinitialise False
DA Weight 0.9
Original
ADAPT

Device Aware
ADAPT

Total Runs 18 21
Avg. Error 1.53×10−4 2.51×10−4

Avg. Circuit Length 148 141
Avg. Overall 2 qubit gates 165 177

Table 12.1: The average accuracy, overall circuit length, and number of compiled two qubit
gates comparing the original and device aware ADAPT algorithms, for the
hydrogen chain system.

3. Initialise close to identity: If True, when a new operator is added to the circuit

we initialise it with a very small parameter. When True, we take advantage of

the previous optimisations, when False we have a longer time to optimise, but

less chance of becoming stuck in a local minima.

4. Reinitialise: Similar to the previous hyperparameter, where if True we start

all unfrozen parameters from some random initial value and perform VQE, if

False all parameters retain the values found in the previous epoch. Combining

Reinitialise = True, Initialise Close to I = True doesn’t make sense as a

hyperparameter choice though.

5. DA weight: In Device Aware, each operator gradient is multiplied by this value

for each entangling gate between two disconnected qubits in the hardware.

There is a method for passing a more detailed noise map into the algorithm,

with custom weights for each qubit pair.

12.3.1.2 Lithium Hydride

We now present the results of the same experiments ran on the larger LiH molecule.

In Figure 12.4 and in Figure 12.5 we see that the accuracy of the algorithm has
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Figure 12.2: The full configuration interaction ground state energy of the H4 chain and
the energy found by the a) Original ADAPT algorithm, b) the Device Aware
ADAPT algorithm.
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Figure 12.3: The average error from the full configuration interaction energy of the H4
chain calculated using the device aware and original versions of the ADAPT
algorithm.

decreased with the system size, although we note that the operator gradient precision

remains the same, and we are returned shorter circuits than in the H4 case. This

suggests that the operator gradient absolute values decrease with the number of

qubits along with the parameter gradient absolute values, as we saw in Section 10.4.

Again we present the average number of two qubit gates in the final compiled circuits

in Table 12.2, and we see that there is a reduction in the overall number of two qubit

gates.

12.3.2 ADAPT for DMFT

We will now discuss applying the ADAPT algorithm to a new system, the quantum

sub-routine of the DMFT algorithm presented in Chapter 11. This system was the

motivation for investigating the ADAPT algorithm in this project, as attempts to

investigate larger systems than the single impurity, single bath site model had faltered.

To increase the accuracy of the SIAM model, we usually add more bath sites. In

the quantum algorithm this means increasing the number of qubits by 2 (to store

each orbital of the new site). In the work presented in Appendix D we reduced the
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Figure 12.4: The full configuration interaction ground state energy of the LiH molecule
and the energy found by the a) Original ADAPT algorithm, b) Device Aware
ADAPT algorithm.
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Figure 12.5: The average error from the full configuration interaction energy for the LiH
system calculated using the device aware and original versions of the ADAPT
algorithm.

Parameter Value
Op. Precision 5×10−5

Learning Rate 0.01
Optimiser Adam

No. Parameters Optimised 10
Init Close To I True

Reinitialise False
DA Weight 0.9
Original
ADAPT

Device Aware
ADAPT

Total Runs 61 55
Avg. Error 5.87×10−3 7.48×10−3

Avg. Circuit Length 65 71
Avg. Overall 2 qubit gates 85 77

Table 12.2: The average accuracy, overall circuit length, and number of compiled two qubit
gates comparing the original and device aware ADAPT algorithms, for Lithium
Hydride.
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number of qubits by projecting the Hamiltonian onto a subspace and using separate

Hamiltonians in which we used the assumption of particle-hole symmetry. This is

clearly a significant amount of work which becomes unfeasible at larger system sizes

and away from particle-hole symmetry. When running VQE on larger system sizes

we found that the ansatz we chose became stuck in local minima, this motivated our

search for an algorithm that builds its ansatz programmatically. Here we present

the results of running the ADAPT algorithm on the DMFT system. As we have

discussed the outer DMFT loop in Chapter 11, we will here only concern ourselves

with reaching the ground state of the DMFT system, using values for εiVαi from the

converged point, where accuracy is most important. The results presented below are

for ADAPT running with hardware native operators, Qubit-ADAPT [42].

We will here repeat the Jordan-Wigner transformed Hamiltonian for many sites,

H = ∑
α

Uα −σ
z
ασ

z
α+k

(
µ

2
−U

4

)
σ

z
α +σ

z
α+k +∑

i

εi

2
(
σ

z
i +σ

z
i+N
)

+∑
α,i

∑
χ∈{x,y}

(
σ

χ

α

i−1

∏
j=α+1

σ
z
j σ

χ

i +σ
χ

α+k

i+N−1

∏
j=α+k+1

σ
z
j σi+N

)
, (12.14)

where α is the index over the impurity, i is the index over the bath sites, N represents

the number of sites and we recall that we have re-ordered the orbitals from the

canonical setting such that 1→ 1 ↑,2→ 2 ↑ . . .N→ N ↑,N +1→ 1 ↓ . . .2N→ N ↓
to reduce the number of σ z gates required. The values for constants used at the

Green’s function self consistency point can be found online in the repository [296].

12.3.2.1 Issues in using ADAPT in the DMFT system

We will briefly discuss here some of the issues encountered in applying the ADAPT

algorithm to the DMFT system, removed from issues in using ADAPT for molecular

systems, as in the original proposal. Firstly, we have not observed guaranteed conver-

gence with the ADAPT algorithm, unlike in the molecular case. We have observed the

algorithm not reaching the gradient stop parameter and continuing to add gates, this

causes the energy to diverge and become noisy. Due to this, we introduce a second

stopping condition, early stopping [297] where we terminate the algorithm if a VQE
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Proportion Converged
Original ADAPT Device Aware ADAPT

{V}n 0 0
{G}n 0.81 0.75

{V}n +{G}n 1.0 0.9

Table 12.3: Proportion converged of the device aware and original ADAPT algorithms on
the 6 qubit DMFT system for different operator pools.

subroutine does not return a lower energy than the previous epoch five times in a row.

Secondly, in the Qubit-ADAPT paper [42] , and above in Section 12.1.1 we show that

the pool built recursively from {V}n =
{

Zn {V}n−1 , iYn, iYn−1
}

can map all real states

to all other real states, so is a good candidate for an operator pool. In Ref. [42] they

also propose the operator pool {G}n = {iZ0Y1, iZ1Y2 . . . iZn−1Yn, iY0 . . . iYn} which

they show can construct {V}n through commutators of {G}n, which contains fewer

entangling gates in each operation, so should be better implemented in real hardware.

Unfortunately, we find that using {G}n as an operator pool for the DMFT system

never converges close to the true minimum, and gets stuck in local minima4. We

have tested other optimisation algorithms, but we find vanilla Stochastic Gradient

Descent (SGD) is more reliable, this is probably due to the learning rate decay in

Adam getting stuck in local minima. Thankfully, we are able to more reliably

reach the global minimum using the {V}n operator pool, and we have even better

performance combining both pools. The proportion of experiments that converge,

i.e. do not become stuck in a local minima is given in Table 12.3 This gives us a

total pool size of 4n−4, which increases the amount of time measuring the operator

gradient at each step, but allows us to achieve convergence in all the original ADAPT

experiments.

Finally, we also find that initialising the system in the Hartree-Fock state also

leads to the optimiser becoming stuck in a local minima, and we instead initialise

the circuit with a set of parameterised Ry rotations (in DMFT there will always be an

even number of qubits, so we are not concerned with the factor of i ).

4This negative result appears no matter the different hyperparameter we search over, there have
been many trials of this operator pool on the DMFT system.
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Parameter Value
Op. Precision 1×10−6

Learning Rate 0.01
Optimiser SGD

No. Parameters Optimised 20
Init Close To I True

Reinitialise False
DA Weight 0.75 - 0.9
Original
ADAPT

Device Aware
ADAPT

Total Runs 40 80
Avg. Error 1.58×10−7 3.25×10−7

Avg. Circuit Length 43 31
Avg. Overall 2 qubit gates 22 22

Table 12.4: The average accuracy, overall circuit length, and number of compiled two qubit
gates comparing the original and device aware ADAPT algorithms, for the 6
qubit DMFT system.

12.3.2.2 Two Site DMFT

For completeness, we first replicate the results given in Chapter 11, for the DMFT

system on four qubits, given in Table 12.4. We find good agreement with the ground

state found previously.

12.3.2.3 Three Site DMFT

In three site DMFT we have a single impurity and two bath sites, which is mapped

onto a six qubit Hamiltonian, Equation 12.14.

In Figure 12.6 we have aggregated the histories of many runs, combined with

the operator gradient at that point. The operator gradient found descends smoothly in

the results that converge, but on those that we must early stop, the value can increase.

Table 12.5 compares the average error and compiled two qubit gate counts for the

device aware and non-device aware versions of the algorithm.

12.3.2.4 Four Site DMFT

In four site DMFT we have a single impurity and three bath sites. In Figure 12.7

we have aggregated the histories of many runs, combined with the operator gradient

at that point. The operator gradient found descends smoothly in the results that

converge, but on those that we must early stop, the value can increase. Table 12.6
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Figure 12.6: The energy history and operator gradient for the ADAPT algorithm on the six
qubit DMFT system. a): Original algorithm, b): Device aware algorithm.

Parameter Value
Op. Precision 1×10−6

Learning Rate 0.01
Optimiser SGD

No. Parameters Optimised 20
Init Close To I True

Reinitialise False
DA Weight 0.75 - 0.9
Original
ADAPT

Device Aware
ADAPT

Total Runs 14 25
Avg. Error 0.13 0.19

Avg. Circuit Length 25 29
Avg. Overall 2 qubit gates 12 10

Table 12.5: The average accuracy, overall circuit length, and number of compiled two qubit
gates comparing the original and device aware ADAPT algorithms, for the 6
qubit DMFT system.

compares the average error and compiled two qubit gate counts for the device aware

and non-device aware versions of the algorithm.

12.3.3 Barren Plateaus and Parameter Derivatives

In Section 10.4 we discussed the results from [215], and the link between the

expressibility of an ansatz and the incidence of barren plateaus, that a more expressive

ansatz has a lower upper bound on the average variance of the gradient for each

parameter. We note that this is not necessarily a two-way relationship, that reducing

expressibility does not always equate to removing barren plateaus. However, with the

introduction of the device aware version of ADAPT we have a natural comparison
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Figure 12.7: The energy history and operator gradient for the ADAPT algorithm on the
eight qubit DMFT system. a): Original algorithm, b): Device aware algorithm.

Parameter Value
Op. Precision 1×10−6

Learning Rate 0.01
Optimiser SGD

No. Parameters Optimised 20
Init Close To I True

Reinitialise False
DA Weight 0.75 - 0.9
Original
ADAPT

Device Aware
ADAPT

Total Runs 16 29
Avg. Error 0.13 0.14

Avg. Circuit Length 101 93
Avg. Overall 2 qubit gates 46 44

Table 12.6: The average accuracy, overall circuit length, and number of compiled two qubit
gates comparing the original and device aware ADAPT algorithms, for the 8
qubit DMFT system.

between a more expressive ansatz given by the original algorithm, and the restricted

expressibility given by device aware ADAPT. By de-weighting certain operators in

the pool we make it less likely that they show up, we can imagine an adversarial

scenario where an operator is never chosen due to the weight of the entangling gates

it involves, this makes the final ansatz less expressive by not choosing this operator.

Measuring the variance of a parameter in an ADAPT algorithm presents us with

a choice of where to aggregate the data; we could present an overall average for the

two algorithms, but we need to make the choice of whether this is in the final circuit,

or as the ADAPT outer loop proceeds. We can also aggregate on a parameter by
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parameter basis, to learn more about the variance as the algorithm progresses, but

we are left with the difficulty of accounting for parameters that only occur in later

layers.

The method we have chosen is to record the variance for the parameters in each

layer of the circuit, averaged over all the circuits ran. This means that parameters in

later layers of the circuits do not have a value for all epochs (where an epoch begins

with the addition of a new operator). The results given in this section record the

epoch on the x-axis, and the average variance on the y-axis, with a new graph given

for each parameter. The scale of the y-axis for each system is shared between the

original and device aware versions of the algorithm. Therefore, the graph for the 3rd

layer parameters will not contain a value at epochs 0,1,2, but will show the variance

in all subsequent layers. We will here give a representative sample of the graphs,

choosing more interesting results, and we will give the graphs for all parameters in

Appendix E.

12.3.3.1 Hydrogen Chain

In Figure 12.8 we present the variance results for the first, fourth and final layers,

where we see that the variance of the cost function is quite low for most parameters,

but increases in the middle of the circuit5. We also see that there is a marked

decrease in the variance of parameters in the device aware algorithm, showing that

this reduction in expressibility is not accompanied by a decrease in the incidence of

barren plateaus.

12.3.3.2 Lithium Hydride

In Figure 12.9 we see similar phenomena as in the Hydrogen chain, although the

peak in the layer variance comes toward the end, in the penultimate layer, 7. We also

observe that the absolute value of the variance is lower here.

12.3.3.3 Three Site DMFT

Observing the variance of the DMFT systems results, we see that the circuits found

in the DMFT system are much longer. Again we show the first, last, and peak of
5This average is not affected by the freezing of parameters, once a parameter is frozen we no

longer count its contributions to the variance.
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Figure 12.8: H4 chain: Comparison between the average variance of the gradient of the
parameters in layers 0, 4, 15 of the: a, b, c)original and d, e, f) device aware
ADAPT algorithms.
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Figure 12.9: LiH: Comparison between the average variance of the gradient of the parame-
ters in layers 0, 4, 15 of the: a, b, c)original and d, e, f) device aware ADAPT
algorithms.
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Figure 12.10: 3 site DMFT: Comparison between the average variance of the gradient of
the parameters in layers 0, 7, and the final layer of the: a, b, c)original and d,
e, f) device aware ADAPT algorithms.

variance. We see the same effect in the DMFT system, that there is a decrease in the

variance in the device aware algorithm.

12.3.3.4 Four Site DMFT

In the eight qubit DMFT system, we again observe a decrease in the average parame-

ter gradient, and no increase from restricting the expressibility. In Appendix E we

give the variance graphs for all layers of each system, for completeness.

12.4 Discussion
Results presented in Tables 12.1- 12.6 seem to suggest that adding the device aware

portion of the algorithm brings modest benefits in the reduction of two qubit gate

counts for a reduction in overall accuracy. We also see in Figures 12.8- 12.11 that

we do not get an increase in trainability by arbitrarily reducing expressibility. On

this point we are sanguine, as it was not expected that we would get an increase in

trainability and a reduction in the circuit noise6. We are more optimistic about the

device aware algorithm regarding the first point, as it seems that the reduction in

two-qubit gate count improves with the size of the system, and we are allowing the t

6No such thing as a free lunch.
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Figure 12.11: 4 site DMFT: Comparison between the average variance of the gradient of
the parameters in layers 0, 7, and the final layer of the: a, b, c)original and d,
e, f) device aware ADAPT algorithms.

|ket⟩ compiler to move sites at will - if we consider a noise model that includes a bad

qubit, we could avoid this qubit algorithmically if do not allow the compiler to move

qubits. We do not believe that t|ket⟩ allows for the ‘avoidance’ of bad qubits yet.

We believe the significance of the result here is a demonstration of the hypothesis

proposed in [215], that a reduction in expressibility is not an easy route to restoring

trainability to an ansatz.

We were also able to demonstrate an instance of the ADAPT algorithm on the

DMFT system for the first time, and we have noted some of the issues encountered.

We note that whilst the sparse operator pool {G}n proposed in [42] works well to

find the ground state of molecular systems, it fails with this system. Future work

could be done to improve the operator pool available for the algorithms based on the

Fermi-Hubbard model such as DMFT. Another proposal which we do not have time

to implement is a form of the Adam optimiser tailored to the ADAPT algorithm, e.g.

one which does not reset at each epoch but instead adjusts its per-parameter learning

rate dependent on the late VQE iteration in ADAPT.



Part IV

Noisy Quantum Devices



Chapter 13

Techniques for Mitigating Noise in

Quantum Devices

In Chapter 10 we discussed algorithms for simulating chemical systems on small

quantum devices, and in Chapter 11 we saw how using knowledge of the underlying

system allowed us to decrease the width of the circuit and vastly improve results. We

also saw in Chapter 6 that a variational algorithm for a quantum machine learning

task can, with some circuit reductions still perform well in the presence of noise,

optimising in some cases better than the analytical best POVM in a noisy circuit.

However, none of these discussions has engaged in techniques to reduce the noise

in the final calculation. In this chapter we will discuss some of the algorithmic

techniques for reducing the effect of noise in quantum calculations, and in the

following chapter we present a pulse level simulation of noise in a specific quantum

device, with the aim that the ability to model and understand the noise better allows

us to target experimental techniques on certain noise sources.

There are some techniques for noise mitigation, such as the Haah spin-echo

[298] and dynamical decoupling [299] which are implemented at the hardware

level. Each uses non-circuit gate pulses that rotate the qubit state, bringing a state

undergoing decoherence back into coherence. These techniques can increase the

coherence times of a single qubit by almost 40 times [298] but as they are usually

implemented at the device level, we will not discuss them further in this thesis.

In Chapter 3 we saw of the forms that noise in quantum devices can take, and
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equations to modelling noise as a quantum channel. In this thesis, all noise simulated

will be of the form presented in Chapter 3, except in Chapter 14 where we investigate

a noise model with more grounding in experimental reality.

13.1 Randomised Techniques
Randomisation is a powerful tool in noise mitigation, and has been used in several

different algorithms to measure and reduce the overall noise [300]–[306]. The power

of randomisation is that by randomising systematic sources of noise they can be

turned into stochastic noise sources. Stochastic sources of noise can be mitigated

easier, either through algorithmic techniques or in fully error corrected quantum

devices.

Using randomisation in noise measurement and mitigation relies upon two

features of quantum circuits. In measuring the noise of a quantum circuit, randomised

benchmarking relies upon the fact that the Clifford group, {X ,Z,H,CNOT} can be

simulated classically, [52] and has a group structure.

The power of randomisation in mitigating noise is related to the group structure

of the Pauli gates, e.g.

σ jσk = δ jk1+ ε jklσl, (13.1)

where ε jkl is the Levi-Cita symbol. Essentially, as we can express a Pauli gate as a

combination of two other Paulis we can randomise the actual gates performed in a

circuit for each repetition of that circuit.

In this section we will first discuss how randomisation is used to measure the

noise in a device, and then we will show how it has also been used to reduce the

noise in quantum computations.

13.1.1 Randomised Benchmarking

As the Clifford group is classically simulable, we can propose a very long Clifford

circuit and use a classical computer to output a shallow operation which can undo

the circuit (exploiting the group structure). Randomised benchmarking [300]–[303]

uses these properties to provide a single number that can measure the typical noise

in a device when running a complex and deep quantum circuit.
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The steps in randomised benchmarking are as follows:

1. For each m in the sequence {1,2, . . . ,m . . .M}:

2. Generate a random sequence of m gates from the Clifford group on the n qubits

in the device.

3. Use the classical device to generate the final Clifford operation such that the

overall effect of the circuit is the identity. The sequence of gates is denoted im

and we write the operator of circuit performed with noise as Sim

4. For each sequence use the quantum device to measure Tr
[
EψSim(ρψ)

]
, where

ρψ and Eψ are the initial state and POVM measurement taking into account

any errors.

5. Average over many randomisations for the sequence length m, the averaged

sequence fidelity is given by

Fseq(m,ψ) = Tr
[
EψSm

(
ρψ

)]
, (13.2)

with

Sm =
1
|{im}|

im

∑
|{im}|
Sim (13.3)

the average over all Sim .

6. Fit these results to the model

F(1)
seq (m,ψ) = A1 pm +B1 +C1 (m−1)

(
q− p2) pm−2, (13.4)

where A1,B1,C1 account for the state preparation and measurement errors,

and the error from the final operation. p parametrises the noise for the circuit,

which determines r in the next step, and q = ∑
m
j=2

q j
(m−1) is the depolarising

parameter of the gates, meaning (q− p2) is a measure of the gate dependence

of the errors.
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7. The average error rate, r, for this instance of m is given by

r = 1− p− 1
d
(1− p) . (13.5)

with d = 2n, the dimension of this circuit.

8. Do this for the next m up to M to find how the error per Clifford (EPC) changes

with circuit length.

First we consider the simpler case where there is no gate or time dependence

to the errors. This is not a realistic model, as gate dependence is a feature of many

implementations [307], [308]1, and errors usually increase over time with calibration

drift [22], [309], but it we will use it as a starting point. We denote the ideal operation

as Ci j and the noise associated with it as Λi j, j giving the operation implemented, SIm

as:

Sim =
m+1

∏
j=1

(
Λi j, jCi j

)
. (13.6)

In the gate and time independent simplification Λi j, j = Λ.

Implementing the identity operation Ci jC
†
i j

creates the overall operation

Sim = ΛΠ
m
j=1

(
Π

i1
i j
C†

i j
ΛΠ

i1
i j
Ci j

)
(13.7)

averaging over this circuit gives the average sequence fidelity

Fseq (m,ψ) = Tr
[
EψΛΛ

m
twirl(ρψ)

]
, (13.8)

where Λtwirl = ∑i j

Π
ii
i j
C†

i j
ΛCi j

K ., with K the size of the Clifford group on n qubits. We

can here define Di j = Π1
jCi j and Λ̃ =D†

i j
ΛDi j This reduces to the gate independent

fidelity model

F0
seq (m,ψ) = A0 pm +B0, (13.9)

with A0 = Tr
[
EψΛ

(
ρψ − 1

d1
)]

, and B0 = Tr
[
Eψλ

1

d

]
. However, this is not realistic,

1This can be an advantage, as error correcting codes can have better performance under biased
noise. [310], [311].
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and Λ depends upon the gate and the time2Λ→ Λi j, j so we will make a peterbative

expansion of Λi j, j around the mean value of Λi j, j → Λ̄ over all i j, j. We can also

define the deviation from the mean for each Λi j, j as δΛi j,i = Λi j, j− Λ̄. Considering

only the first order expansion of the perturbation, S(1)im , there are three different cases,

firstly the edge cases, where the expansion acts upon the first and the last gates,

S(1a)
im +S(1c)

im , and secondly the cases in the bulk of the circuit, S(1b)
i j, j . This expansion

gives

S(1a)
im = Λ̄Π

2
j=mΛ̃i j

(
D†

i1δΛi1,1Di1

)
(13.10)

S(1b)
im = Λ̄Λ̃im . . .

(
D†

i1δΛi j, jDi j

)
. . . Λ̃i1 (13.11)

S(1c)
im = δΛim+1,m+1Λ̃im . . . Λ̃i1. (13.12)

Averaging these three terms over each im gives

S(1a)
m = ΛΛ

m−1
dep

(
Q1−Λdep

)
, (13.13)

S(1b)
m =

m

∑
j=2

Λ

((
Q jΛ

)
dep−Λdep2

)
Λ

m−2
dep , (13.14)

S(1c)
im =

(
Rm+1−ΛΛdep

)
Λ

m−1
dep . (13.15)

where we have defined Q j =
1
K ∑i j

D†
i j

Λi j, jDi j , Rm+1 =
1
K ∑im Λi′m,m+1

(
C†

imΛCim

)
.

Finally we get expressions for the constants in Equation 13.4:

A1 = Tr
[

EψΛ

(Q1(ρψ)

p
−ρψ +

(p−1)1
pd

)]
+Tr

[
EψRm+1

(
ρψ

p
− 1

pd
1

)]
,

(13.16)

B1 = Tr
[

EψRm+1

(
1
d
1

)]
, (13.17)

C1 = Tr
[

EψΛ

(
ρψ1

1
d
1

)]
. (13.18)

In Chapter 14 we will use the randomised benchmarking algorithm provided in

2The assumption here is that the timescale for this is significantly shorter than the timescale of the
gate operation.
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Qiskit [292] to investigate a simulated model of an ion trap.

13.1.2 Pauli Frame Randomisation and Gate Set Tomography

Gate Set Tomography (GST) [312]–[315] addresses a similar problem to randomised

benchmarking - the need to characterise the noise in a device, but here we do not wish

to include any State Preparation And Measurement (SPAM) errors. The disadvantage

of Gate Set Tomography is that there is an increase in the number of circuits we need

to run, and an increase in the complexity of the classical post-processing. The post-

processing requires solving a non-linear optimisation problem, given in Eqn. 13.21

for which a semi-definite programming problem can be used.

The GST protocol is:

1. Write the set of experimental gates as:

G(exp) =
{
RE1 ,R1,RE2,R2, . . .REN ,RN

}
, (13.19)

the faulty version of the ideal gate set.

2. Perform a series of N3 experiments of the form:

mi jk = ⟨⟨M0|REkRkRE jR jREiRi |ρ0⟩⟩. (13.20)

3. This contains the tomography data necessary to reconstruct each element of

G(exp)

4. If we assume that the errors, REn are physical and small, ||En|| ≪ 1, we can

describe the problem as a least-squares estimation:

minR̃E1 ...
∑
i jk

∣∣∣mi jk

+ ⟨|M0⟩2RkR jRi−R̃EkRkR jRi−RkR̃E jR jRi−RkR jR̃EiRi |ρ0⟩⟩
∣∣∣2,

(13.21)

where the ·̃ represent the free parameters of the estimation.
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5. Solving the least-squares estimation problem can be classically costly, but

produces a good estimation of the error maps, R̃Ei of the gate set.

In [305], they use GST to show that randomised compiling, discussed below,

turns coherent and systematic errors into a Pauli error channel.

13.1.3 Randomised Compiling

The features of Clifford gates which make the above randomised benchmarking

scheme scalable can also be used in a standard quantum computation. Randomised

compiling [304] tailors the noise inherent in the device, which could have arbitrary

coherence or spatial correlations (systematic noise) into stochastic Pauli noise. One

motivation for converting the noise this way is that the error thresholds for error

correcting codes are much higher for stochastic Pauli noise ( 10−3 [316] ), where

the noise channel can be described by a weighted sequence of Pauli operators, than

for generic noise ( 10−6 [317] ), where the noise must be treated by a full Lindblad

master equation. We can define the average error rate r(E) for a noise map E as the

gate fidelity over all input states,

r(E) = 1−
∫

dψ ⟨ψ|E (|ψ⟩⟨ψ|) |ψ⟩ , (13.22)

and the worst case error-rate, ε as the diamond norm of the distance from identity,

the diamond norm, discussed in Section 10.4.5, is the 1-norm maximised over all

states,

ε(E) = 1
2
||E −1||⋄ . (13.23)

Stochastic Pauli noise also has a lower worst-case error rate than coherent errors,

given the same average error rate.

The randomised compiling protocol splits the available hardware gates into a

set of ‘easy’ and ‘hard’ gates, which are determined by the hardware and the error

rates on each gate. Generally speaking, the hard gates consist of the two qubit gates

(CNOT or CZ), and the harder single qubit gates (H and T = |0⟩⟨0|+ e
iπ
8 |1⟩⟨1|). The

easy gates are the single qubit Pauli gates and the phase gate ( T2 ).

The circuits can now be separated into clock cycles which consist of a round of
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easy gates followed by a round of hard gates. To perform randomised compiling, we

replace each easy gate with a ‘dressed’ easy gate:

Ck→ C̃k = TkCkT c
k−1, (13.24)

where the gates Tk are randomly chosen from the subset of easy gates (the twirling

set) and T c
k is the correction gate: T c

k = GkT †
k G†

k , i.e. it undoes the randomisation on

the previous step, with the previous hard gate, Gk taken into account. The compiler

now recompiles the three twirled easy gates into a single easy gate, ensuring the final

circuit contains the same number of gates and is logically identical to the original

circuit. Ideally, this randomisation is repeated for each single-shot repeat of the

circuit, meaning that a single shot of the circuit will not have the noise tailored to the

Pauli channel, but over the whole experiment the noise can be described as:

E(ρ) = ∑
P∈P⊗n

cPPρP†, (13.25)

where P⊗n is the set of Pauli operators. This is the stochastic Pauli noise channel,

which has the good properties for error correcting codes described above.



Chapter 14

Simulating A Noisy Ion Trap at the

Pulse Level

Work in this chapter was undertaken in collaboration with the Ion microtrap team at

NPL, and discussions of the ion trap device will mostly match their device.

In previous chapters, when noise in a device has been considered it has been a

simple noise model, e.g. symmetric depolarising noise in Chapter 6. As a general

noise model, and one which is most stringent on any simulated algorithms, this

is a good model to use in numerical simulations, it also matches well the noise

seen in some real devices such as the Google Bristlecone chip1. However, when

working with a single device, and targeting specific sources of noise we require a

more detailed noise model.

In this chapter we will explore the process of building such a noise model

for an ion trap device in use at the National Physical Laboratory (NPL) [77], [79],

[84]. The noise model relies upon pulse level simulations of quantum operations

on the ions, and includes an Application Programming Interface (API) to integrate

the simulator with Qiskit [292], to take advantage of the randomised benchmarking

module. Simulated randomised benchmarking experiments were then ran for real

and simulated levels of noise sources, which can aid in prioritising work on reducing

certain sources of noise.

1Private communication, Ryan Babbush, 2019
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14.1 Modelling Ion Traps
We will begin by following the treatment of trapped ion devices in [318], introducing

the Hamiltonians used to model trapped ion quantum systems. We shall then continue

by introducing the Lindblad operators used to model the noise in the device at NPL.

This noise is parameterised, which means that the simulation of the device can be

modified to simulate similar devices, with enough knowledge of local conditions.

We describe the ion as a two-level quantum system, driven by a classical force

corresponding to the trapping potential. The Hamiltonian of the two-level system is

given by:

Hsys =
1
2
h̄ω0σz, (14.1)

where ω0 is the energy difference between the two states, σz is the Pauli-z operator,

andh̄ is Planck’s constant. We consider only the motion of the ion along the axis of the

trapping field, and describe this with the standard harmonic oscillator Hamiltonian:

Htrap =
p̂2

2m
+

1
2

ω
2
z ẑ2 (14.2)

where ẑ is the position along the trap axis, ωz is the trapping field potential, and

p̂ =−ih̄ ∂

∂ z , the momentum operator. We can introduce the standard ladder operators:

â =

√
mωz

2h̄
(ẑ+

i
mωz

p̂), (14.3)

â† =

√
mωz

2h̄
(ẑ− i

mωz
p̂), (14.4)

to rewrite the trapping Hamiltonian as:

Htrap =h̄ωz(
1
2
+ â†â). (14.5)

Finally, we must consider the interaction of the ion and the laser light driving

gates, in this we will not consider the readout light field or cooling field as they do

not materially affect the operation of quantum gates. We will first consider a single

ion interacting with a light field given by an effective frequency ω , effective phase,
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φ , and effective wavevector k = |k|cosθ , where k is the effective wavevector of

the light and θ is the angle between the laser and the trapping z-axis. The effective

frequency and wavevector is the difference of those quantities of the two light

fields illuminating the ion. These are associated with a certain on-resonance Rabi

frequency, Ω for the transition described. This interaction is then described by the

Hamiltonian:

Hint =
h̄
2

Ω(σ̂++ σ̂−)(ei(kẑ−ωt+φ)+ ei(kẑ−ωt+φ)). (14.6)

We then combine these Hamiltonians to get a full description of the system,

given by:

H = Hfree +Hint (14.7)

Where Hfree is the free Hamiltonian given by:

Hfree = Hsys +Htrap =h̄(ω0σz +ωz(
1
2
+ â†â)). (14.8)

By splitting the Hamiltonian this way, we are easily able to see how to move

to the interaction picture [318], with the interaction operator, V̂ = Hint and the
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transformation operator Û0 = exp[−(i/h̄)Hfreet]

HI = Û†
0 HintÛ0 (14.9)

=
h̄
2

Ωexp
[

i
2

ω0σzt
]
(σ̂++ σ̂−)exp

[−i
2

ω0σzt
]

× exp
[
(iωz(

1
2
+ â†â)t

]
(ei(kẑ−ωt+φ)+ ei(kẑ−ωt+φ))exp

[
(−iωz(

1
2
+ â†â)t

]
(14.10)

=
h̄
2

Ω(σ̂+eiω0t + e−iω0t
σ̂−)

× exp
[
(iωz(

1
2
+ â†â)t

]
(ei(η(âu∗(t)+â†u(t))−ωt+φ)+ ei(η(âu∗(t)+â†u(t))−ωt+φ))

× exp
[
(−iωz(

1
2
+ â†â)t

]
(14.11)

=
h̄
2

Ω(σ̂+eiω0t + e−iω0t
σ̂−)

× exp
[
(iωz(

1
2
+ â†â)t

]
(ei(η(âu∗(t)+â†u(t))−ωt+φ)+ ei(η(âu∗(t)+â†u(t))−ωt+φ))

× exp
[
(−iωz(

1
2
+ â†â)t

]
(14.12)

The first substitution in the second line is covered in Appendix F, and the second

substitution can be made by reversing the identities in equations 14.3 & 14.4, consid-

ering we have moved into the Heisenberg picture, and have picked up factors of u(t)

and u∗(t), this derivation is covered in [318].

ẑ(t) =

√
2mωz

h̄
(âu∗(t)+ â†u(t)), (14.13)

making the substitution η = kz0, with z0 =
√

2mωz
h̄ and η is the Lamb-Dicke param-

eter.

In the second half of the equation, dealing with the motional states, the Hamil-

tonian Htrap will be cancelled, so we can expand the whole Hamiltonian as:

HI =
h̄
2

Ω

(
σ+ei(ω0−ω)t+η(âu∗(t)+â†u(t))+φ +σ−e−i(ω0−ω)t+η(âu∗(t)+â†u(t))+φ

σ−ei(ω0+ω)t−η(âu∗(t)+â†u(t))−φ +σ+e−i(ω0+ω)t−η(âu∗(t)−â†u(t))−φ

)
. (14.14)
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The terms on the second line oscillate with frequency ω0 +ω , as this is a fast

oscillation which has little effect on the evolution, these terms are neglected; this

is called the Rotating Wave Approximation (RWA). We also make the substitution

δ = ω0−ω . Finally, we will consider the expression âu∗(t)+ â†u(t), where the u(t)

is only slowly varying when the detuning of the laser δ is equal to an integer multiple

of the trapping frequency, ωz, called the motional sidebands, and u(t) simplifies to

eiωzt . Here we substitute ωz ≈ ν to maintain consistent notation with the literature, a

full derivation for this can again be found in [318]. The final form of the Hamiltonian

is then:

H =
h̄
2

Ωσ+ exp
{

iη(âe−iνt + â†eiνt)
}

e−i(δ t+φ)+H.c. (14.15)

14.2 Two-Qubit Gate

From equation 14.15 we see that the vibrational mode of the ion can be entangled

with the internal state of the ion. The Mølmer-Sørensen gate [319] uses this principle

to enact an entangling gate on a string of ions. Here we will only consider the two-

qubit gate for simplicity. The ions are illuminated with light tuned to two different

frequencies, to the red and blue motional sidebands; i.e. ω± = ω0± (ωz +∆), where

∆ is a small detuning that can be optimised. Adding the interactions from the two

light fields for two ions gives a Mølmer-Sørensen gate Hamiltonian:

HMS =
h̄
2

Ω(σ+,1 +σ+,2)exp
{

i(η(âe−iνt + â†eiνt))
}

e−i(δ t+φ)+H.c., (14.16)

where the σ+,i is the operator acting on ion i. Here, we can make the Lamb-

Dicke approximation, which is to assume that η << 1, and so we can expand

exp
{

i(η(âe−iνt + â†eiνt))
}

to first order, and disregard terms of O(η2) and above.

This leaves us with the Hamiltonian,

HMS =
h̄
2

Ωηe−iφ (σ+,1 +σ+,2)((âe−iεt + â†eiεt))+H.c., (14.17)

where we have made the substitution ε = ν−δ .
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14.3 Sources of Noise

To numerically model the Ion Trap, we will use QuTip [320], which numerically

simulates the ion trap using the Lindblad master equation:

ρ̇ =− i
h̄
[H,ρ]+∑

i
Γi

(
LiρL†

i −
1
2

{
L†

i Li,ρ
})

. (14.18)

All evolution in quantum mechanics is unitary, so to model noisy dynamics, i.e.

non-unitary evolution, Lindblad operators, Li are introduced. These are constrained

to ∑iL†
i Li = 1 to ensure that the overall evolution is completely positive and trace-

preserving [43].

In this section, we will list the noise sources modelled in this project, the

derivation of their Lindblad operators and the associated rates, Γi. We will begin with

the derivation of the noise master equation for single qubit gates to aid explanation,

and then we will focus upon the Mølmer-Sørensen gate.

14.3.1 Driving Field Amplitude Noise

14.3.1.1 Single Qubit Noise

To model noise on the single qubit gates in the system, we will use the Hamiltonian

for Rabi flopping, making adjustments to the driving Hamiltonian for the appropriate

noise source. Noise on the amplitude of the driving laser directly changes the Rabi

frequency of the transition:

H =h̄δσz +
1
2
h̄(Ω0 +∆Ω(t))σx, (14.19)

where ∆Ω(t) is the time dependent noise in the Rabi frequency, and δ is the beam

detuning from ω0. As the Rabi frequency is proportional to the amplitude of the

driving beam, we can assume the same for the noisy term, Ω(t) ∝ V (t). Utilising

the relation between autocorrelation and Power Spectral Density (PSD) as given

in Appendix G, we can find a relation between this noise term and the PSD of the
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amplitude white noise:

G(τ) = ⟨V (t1)V (t1 + τ)⟩ , (14.20)

= lim
T→0

1
T

∫ T

0
V (t + τ)V (t)dt. (14.21)

the final relation is only true in the limit of white noise, N0( f ) is the amplitude noise

PSD and P0 is the power in the beam.

In Appendix H we derive the form of the master equation:

ih̄
d⟨ρ⟩

dt
= [H1,⟨ρ⟩]−

i
2h̄

Γ[H2, [H2,⟨ρ⟩]], (14.22)

in what follows we will drop the expectation value of ρ , as it will always be assumed

this is the case. This master equation can be converted into the Lindblad form,

Eqn. 14.18

By substituting H1 =
1
2 (δσz +Ω0σx), H2 = σx, Γ=Ω0

√
N0
8P0

, we get the master

equation including terms for white noise on the driving field amplitude:

dρ

dt
=

1
2

iδ [σz,ρ]−
1
2

iΩ0[σx,ρ]−
N0

8P0
Ω

2
0[σx, [σx,ρ]]. (14.23)

Converted into the Lindbald form, the Lindblad operator is L=
√

Γσx.

14.3.1.2 Two-qubit gates

Considering the same noise term when applied to the Mølmer-Sørensen gate, we can

write the Hamiltonian as:

H = (Ω+∆Ω(t))HMS, (14.24)

where:

HMS =
h̄
2

ηe−iφ (σ+,1 +σ+,2)
((

âe−iεt + â†eiεt
))

+H.c.. (14.25)
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Applying an analogous derivation as in the single-qubit noise term, we see that in

this case, H1 = H2 = HMS, and the same derivation for Γ can be followed as in 14.20,

so Γ = Ω0

√
N0
8P0

.

14.3.2 Driving Field Frequency Noise

14.3.2.1 Single Qubit Noise

Noise on the frequency of the driving laser produces a phase shift on the raising and

lowering components of the driving Hamiltonian:

h̄Ω

2
(e−i(δ t+φ(t))

σ++ ei(δ t+φ(t))
σ−). (14.26)

To analyse the effect of this, we must make another interaction picture substitution,

with the transformation operator: U = e−iφ(t)σ+σ− , so we have:

ρ̃ :=U†
ρUH̃ :=U†HU =

h̄Ω

2
(e−iδ t

σ++ eiδ t
σ−). (14.27)

to find the differential dρ̃ , we use the chain rule, noting that
(
dU†)= iσ+σ−U†dφ :

dρ̃ = iσ+σ−U†
ρUdφ − iU†

ρUσ+σ−dφ − i
h̄

U† [H,ρ]Udt (14.28)

=− i
h̄

[
H̃, ρ̃

]
dt + i [σ+σ−, ρ̃]dφ (14.29)

=− i
h̄

[
H̃, ρ̃

]
dt + iδ f (t) [σ+σ−, ρ̃]dt, (14.30)

where the final substitution is for δ f (t) = φ̇(t), which represents the fluctuations in

frequency, which we can take in the white noise limit:

⟨δ f (t + τ) f (t)⟩= Γδ (t). (14.31)

Here, Γ is related to the frequency white noise PSD by:

Γ =
N0( f0)

P0
f 2
0 m (14.32)
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which has a 1
f 2 spectrum, so that [321] :

N0( f ) = N0( f0)

(
f0

f

)2

. (14.33)

We can now use 14.28 and 14.22 to get the master equation:

ρ̇ =−1
2

iΩ
[
e−iδ t

σ++ eiδ t
σ−,ρ

]
− 1

2
Γ [σ+σ−, [σ+σ−,ρ]] . (14.34)

14.3.2.2 Two Qubit Noise

For noise in the Mølmer-Sørensen gate, we first assume that the frequency fluctua-

tions will affect each ion the same, to simplify the treatment, and we will proceed in

an analogous way to the single qubit treatment. Again, the frequency fluctuations

will add a random phase to the raising and lowering operators of the qubit states:

H =
h̄
2

ηe−iφ+δφ(t) (σ+,1 +σ+,2)
((

âe−iεt + â†eiεt
))

+H.c.. (14.35)

Now, we move to an interaction picture with the transformation

U = e−iφ(t)σ+,1σ+,2σ−,1σ−,2. (14.36)

So, applying to the state and the Hamiltonian:

ρ̃ :=U†
ρU (14.37)

H̃ :=U†HU =
h̄
2

ηe−iφ (σ+,1 +σ+,2)
((

âe−iεt + â†eiεt
))

+H.c.. (14.38)

and similarly to Equation 14.28 we arrive at:

dρ̃ =− i
h̄

[
H̃, ρ̃

]
dt + iδ f (t) [σ+,1σ+,2σ−,1σ−,2, ρ̃]dt, (14.39)

where Γ has the same form as in Equation 14.32.
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14.3.2.3 Frequency noise at resonance

When considering frequency noise for the single qubit gate, we are operating on

resonance with the qubit transition frequency. However, a Mølmer-Sørensen gate

is operated at the red and blue sidebands - the qubit transition frequency ± a single

vibrational mode frequency. In this case, we will have some residual laser frequency

noise resonant with the qubit transition frequency, which has some probability of

causing a Rabi flop (or σx gate). To model this contribution to the error in our device,

we will assume that the noise at the carrier frequency takes the form of a Dirac

delta function, and that it only contributes to adding some probability of a σx; that

is that it contributes the Lindblad operator: L =
√

Γσx, where Γ is as defined in

Equation 14.32, for the frequency f0 = ω .

14.3.3 Driving Field Phase Noise

The final contribution to the noise from the qubit laser is phase noise. Phase noise can

arise from the quality of the laser phase-locking and from master clock instability,

but both amount to the same effect [75]. In all experiments, the experimental frame

is chosen to be one that is co-rotating with the Lamour frequency (ω0), the master

clock ensures that the experimental apparatus is rotating with the same frequency. If

there is phase noise in the laser or instability in the master clock, the overall effect

add some error to the driving frequency. This has the effect of adding a σz term to

the Hamiltonian.

14.3.3.1 Single Qubit Noise

For the single qubit Rabi flopping, the Hamiltonian is:

H =
1
2
(
δω0(t)−δ φ̇N(t)

)
σz +

h̄Ω

2
(e−i(δ t)

σ++ ei(δ t)
σ−). (14.40)

where φ̇N accounts for the phase fluctuations of the local oscillator or phase noise of

the driving laser, and δω0(t) accounts for the change in transition frequency of the

qubit to due external factors, such as noise in the applied magnetic field.

We can use the same technique as detailed in Appendix H with this Hamiltonian
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to arrive at the same master equation with the Lindblad operators:

L=

√
Γ

h̄
σz (14.41)

where here Γ is the white noise PSD of phase fluctuations in the considered term (i.e.

master clock fluctuations, driving field fluctuations, or noise fluctuations changing

the qubit transition frequency.).

14.3.3.2 Two Qubit Noise

We will assume that the phase noise / transition frequency noise affects each qubit

the same for simplicity of treatment, although it is easy to add individual terms. As

the noise in this case acts in a similar manner as in the single qubit case, we have the

same Lindblad operators as in Equation 14.41.

14.3.4 Noise in the Motional Modes

The discussion of noise in this section and the following relates only to the motion of

the ion in the trap. As the Mølmer-Sørensen gate entangles the motional modes of the

ions with the internal degrees of freedom, noise in the vibration of the ion will affect

this gate, it will not affect the single qubit gates significantly. The ion will vibrate

within the trapping field with some frequency, ωz, as described in Section 14.1.

14.3.4.1 Motional Frequency Fluctuations

First, we will discuss some white noise fluctuations in the oscillation frequency,

ωz of the ion, such that the overall frequency is given by: ω(t) = ωz +δωz(t), the

Hamiltonian for the motion can then be given by the hamiltonian of a quantum

harmonic oscillator:

H =h̄ωz

(
â†â+

1
2

)
+h̄δωz(t)

(
â†â+

1
2

)
. (14.42)

If we move into the interaction picture with the operator U = eiωot the remaining

Hamiltonian is only the noise component:

HI =h̄δωz(t)
(

â†â+
1
2

)
. (14.43)
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If we now assume that the frequency fluctuations are white, i.e.:

⟨δωz(t + τ)δω(t)⟩= Γδ (τ) (14.44)

we can follow the treatment in Appendix H to arrive at the master equation:

ρ̇ =−1
2

Γ

[
â†â,

[
â†â,ρ

]]
, (14.45)

where we can clearly see that the Lindblad operator in this case is:

L=

√
Γ

2
â†â. (14.46)

Following the derivation in [321], we find the rate for this noise to be:

Γ = ω
2
z

NAM
0
Pc

. (14.47)

14.3.4.2 Noisy Electric Field

As the ion is a charged particle, stray electric fields from the device can couple to the

motion of the ion. In this case we can describe the systems as a quantum harmonic

oscillator driven by some fluctuating classical force, F(t):

H =h̄ωz

(
â†â+

1
2

)
−q0F(t)

(
â+ â†

)
, (14.48)

where q0 is the charge of the ion.

Moving again into the interaction picture, we find:

H =−q0F(t)
(

âe−iωt + â†eiωt
)
, (14.49)



14.4. Pulse Simulations of Gates 216

which gives us the master equation:

ρ̇ =− Γ

4h̄mωz

[
âe−iωt + â†eiωt ,

[
âe−iωt + â†eiωt ,ρ

]]
(14.50)

=− Γ

4h̄mωz

[
e−2iωt (â2

ρ−2âρ â+ρ â2)+ e2iωt
(

â†2
ρ−2â†

ρ â† +ρ â†2
)

(14.51)

+ ââ†
ρ + â†âρ−2â†

ρ â−2âρ â† +ρ â†â+ρ ââ†
]
, (14.52)

and dropping the terms which are rotating faster and slower (those prefaced by

e±2iωt):

ρ̇ =− Γ

4h̄mωz

[
ââ†

ρ + â†âρ−2â†
ρ â−2âρ â† +ρ â†â+ρ ââ†

]
. (14.53)

To calculate the rate Γ, note that the force is a product of the charge on the ion and

fluctuating electric fields:

F(t) = qE(t), (14.54)

we then assume the E field fluctuations are white, and define the PSD of the fluctua-

tions by:

⟨E(t + τ)E(t)⟩= 1
2

SEδ (τ) (14.55)

We see that this is equivalent to the Lindblad operators:

L=

√
q2SE

8h̄mωz
. (14.56)

14.4 Pulse Simulations of Gates
Armed with the master equation and Lindblad operators describing our noise sources,

we can use the master equation solver in QuTip [320] to simulate the application

of gates on the quantum device by stepping through time with gate Hamiltonians

turned on. By defining Hamiltonians and times which correspond to certain gates

we can build an API that allows us to control the pulse level simulations of gates

on the ion trap device via the Qiskit [292] set of tools. As we have defined X ,Z

and a two qubit gate, we have a simulator of a universal quantum device, which the
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qiskit compiler can compile any circuit to. Although in this work we will use the

randomised benchmarking module of qiskit to evaluate the noise in our simulated

device.

Randomised benchmarking, as discussed in Chapter 13 has been chosen as it

mimics the quantum circuits ran on NISQ devices, and is widely used to evaluate

other devices, allowing for easier comparison. We can control individual sources of

noise in our simulation, and will asses which source has the largest relative effect on

the randomised benchmarking score.

14.5 Simulated Randomised Benchmarking Results

These simulations were made in order to determine which sources of noise have the

largest effect on a quantum computation, and so which systems should be prioritised

in error reduction work. In each of the results shown here all noise sources apart

from the one studied are reduced to 0, whilst the source of interest is sweeped over a

range of plausible values. The Error Per Clifford (EPC) is calculated at each of the

noise rates, which is plotted to show how focus upon this source can improve the

quantum computation.

14.5.1 Heating Rate

The heating rate of the ion is induced by the coupling of the ion to a noisy electric

trapping field, and is related to the noise in the electric field by [322]:

˙̄n =
q2SE

4h̄mω
(14.57)

A typical randomised benchmarking experiment, for ˙̄n is given in Figure 14.1.

14.5.2 Impact of Noise levels on computation

Here we plot the average Error per Clifford (EPC), taken from randomised bench-

marking experiments, against the noise level.
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Figure 14.1: The randomised benchmarking results for the two extremes of the range simu-
lated.
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14.5.2.1 White Noise

In Figure 14.2 we plot the EPC against the Power Spectral Density (PSD) of noise in

the Rabi beam. This noise feeds into noise on both the amplitude and phase of the

Rabi beam, which increases the average EPC in a linear fashion. Figure 14.3 shows
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Figure 14.2: The noise PSD of the Rabi beam, and the linearly increasing average EPC this
causes.

the EPC for a noisy electric field, which is the same as the individual experiments

shown in Figure 14.1. Figure 14.4 shows a related phenomenon: the performance of

the trap related to the average number of quanta in the trap at the beginning of the

experiment, n̄.

14.5.2.2 Jitter

Jitter is a separate class of error to the white noise errors studied previously. The

term refers to the instability in the central value of a certain set parameter. In these

simulations, jitter is simulated by a random perturbation from the central value at

every timestep. The level of jitter describes how large the random perturbation can

be.

Figure 14.5 shows how even a small amount of jitter in the setting of the

sideband frequency can adversely effect the EPC, whereas Figure 14.6 shows that
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Figure 14.3: The average EPC for an increase in the noise PSD of an electric field, which
affect the heating rate of the qubits as in Equation 14.57.
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Figure 14.4: The average EPC against the average number of phonon quanta in the trap at
the beginning of the experiment, n̄



14.5. Simulated Randomised Benchmarking Results 221

jitter on the value of the Rabi frequency has a less pronounced and more random

effect.
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Figure 14.5: Adding a random jitter to the frequency of the sideband lasers can have a large
negative effect on performance.
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Figure 14.6: Whereas jitter on the set Rabi frequency (controlled via the amplitude of the
Rabi beam) has less pronounced, and more random effect.
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14.5.2.3 Carrier Frequency Resonance

As described in Section 14.3.2.3, we model a Dirac delta peak resonant with the

qubit transition frequency during a Mølmer-Sørensen gate. The level of this noise is

described as the height of the on-resonant peak, superimposed on the white noise

of the driving laser field. Figure 14.7 shows how the height of this peak affects the

average EPC.
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Figure 14.7: Increasing the spectral density of the laser resonant with the qubit transition
increases the EPC of a set of randomised benchmarking experiments.

14.6 Discussion
Through theoretical modelling of the individual sources of noise in the ion trap

at NPL, described in Section 14.1, we are able to numerically simulate the trap.

Unfortunatley, the experimental device was unavailable at the time of writing, so we

were unable to comapre to the target device. This builds upon work in [318], [321],

[322] by incorporating Hamiltonians for ion trap devices into a single simulation,

which was not available to NPL experimentalists before, and allows us to test how

the reduction of common noise sources affects the overall computation.

One advantage of this numerical simulation is our ability to now identify the



14.6. Discussion 223

sources of noise that have the largest effect on the metric that we actually care about,

the error per Clifford given by a randomised benchmarking experiment. We only

care about this as we will use some of the randomisation techniques described in

Chapter 13 to ensure systematic errors are averaged into decoherence. We see from

the scales of each of the simulations presented in Figures 14.2 - 14.7 that reducing

sideband jitter, n̄ will have the best effect on overall noise.



Chapter 15

Conclusions

At the conclusion of this thesis, we can reflect upon the state of quantum computing,

and its prospects for the future. In the five years since this author enrolled in the UCL

Quantum Technologies CDT we have seen quantum devices break out of universities

and into private companies, the quantum supremacy result has been announced [22],

and soon disputed [24], the NISQ-era has been defined [17] and we have developed

our understanding of some of the problems with NISQ computation [159]. We have

also seen developments in fault-tolerant quantum computation [94], [323] such that

the surface code is no longer the default assumption. There have been so many

developments that we cannot list them all here. That said, we still have not had

a convincing demonstration of quantum advantage, we are yet to see a quantum

computer outperform a classical computer in some relevant task.

This thesis has been split into parts to reflect three different focuses here. Firstly,

in Part II we reviewed the state of quantum machine learning on NISQ devices,

including demonstrations from financial applications. In Chapter 6 we introduced

an algorithm for quantum state discrimination, and showed what modifications are

needed when considering a noisy device. We simulated that noisy device, and showed

that the learning algorithm can, in some cases, do better than calculating the ideal

POVM and using a noisy device. In Chapter 7 we discuss proposals for the building

block of quantum neural networks, a quantum version of the perceptron. We also try

to clarify some of the discussion around non-linearities in QNNs, distinguishing be-

tween non-linearities that act on data encoded in a quantum state, and non-linearities
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on the amplitude of a state. We then implement some of these algorithms numerically,

showing that a non-linearity on the state amplitude requires a lot of resource for little

training benefit. This implementation has been open-sourced [177] so that others

can test proposals in the same framework.

Secondly, in Part III we discuss quantum algorithms for quantum chemistry. In

Chapter 11 we demonstrate a quantum algorithm for the DMFT system, which has

received much less attention than molecular systems, whilst still being an important

algorithm for solid state physics, with implications for battery technology, and

implementing the algorithm on real devices. In Chapter 12 we investigate increased

system sizes for the DMFT algorithm, and how ansatze for these systems can be

built with the ADAPT algorithm [41], [42]. We add a device aware component to

the ADAPT algorithm which may have implications for systems larger than those

studied here, but also gives evidence that a naive reduction in expressibility will not

reduce the incidence of barren plateaus.

Finally, in Part IV we discuss in more detail how noise affects current quantum

devices. In Chapter 13 we review some of the algorithmic techniques that are used to

reduce noise in NISQ algorithms, and note that many techniques use randomisation

to turn biased noise into depolarisation. In Chapter 14 we investigate in more detail

some of the sources of noise in an ion-trap device, describing how the processes

affect the qubits and gates in the device. We then use this to build a simulation

of the device, allowing us to isolate the noise sources, suggesting directions for

experimental optimisation.

Throughout this thesis we have seen how current quantum devices are limited by

their scale, and the amount of noise in the device. There is still more work to do if we

wish to achieve quantum advantage with a non-fault tolerant quantum computer, with

one of the largest bottlenecks being the number of repetitions required to measure a

Hamiltonian. If we consider a molecular Hamiltonian, the number of terms in the

Hamiltonian scales as O(n4), requiring a circuit repeat to measure each term, or a

small group of terms. Techniques to reduce the number of terms, such as [219] can

be implemented, and we can augment our quantum device with a classical neural
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network [324] to reduce the number of measurements. Measuring all the terms in the

Hamiltonian once is also not enough and this process must be repeated many times

O
(
104) times due to statistical uncertainty, and even more repeats are required to

account for the noise in the device. Leaving aside hardware improvements to be

made, it seems like attacking these problems is where the most gains can be made for

NISQ-era computers. As hardware improves, we must ensure that we are making the

most of the hardware, e.g. the α-VQE algorithm that uses as much of the coherence

time as possible to reduce the number of circuit repetitions. With all that said, we

can approach the problem from the other direction, by improving the noise threshold,

qubit count, and T -gate count of error corrected algorithms. This may take us longer

to demonstrate quantum advantage, but the techniques developed will be used on

ever larger quantum devices.

Quantum computing has developed so much since the 1990s, when only single

qubits were developed experimentally. There is much further to go, but the benefits

that we may reap, such as faster drug discovery, quantum-enhanced learning from

experiments are so great that we must continue to build.



Appendices

We begin the appendices with Appendix A, which defines some of the mathematical

concepts used throughout. Appendices B and C use diagrammatic notation to prove

relations used in the section covering barren plateaus, Section 10.4. Appendix D

shows how to project the two site, four qubit DMFT Hamiltonian onto only two

qubits. Appendices F, G, H are used to derive relations used in simulating the noise

in Ion Traps, Chapter 14.



Appendix A

Mathematical Definitions

In this appendix we will present some definitions which are used in derivations.

A.1 Norms
The p-norm of a vector x is given by:

||x||p :=

(
n

∑
i=1
|xi|p

) 1
p

(A.1)

The 2-norm is the Eucledian norm, most commonly used, and is assumed to be the

norm if not otherwise stated.

The infinity norm is the p-norm as p→ ∞, and is the maximum of the absolute

value of all elements of x.

||x||
∞

:= max
i
|xi| (A.2)

We can define a similar class of norms for quantum operators, the Schatten

p-norms. The Schatten p-norms applies the p-norm to the singular values of a

matrix.

||A||p =
(

min{m,n}
∑
i=1

σ
p
i (A)

) 1
p

, (A.3)

where σi(A) are the singular values of the matrix A. The singular values of a matrix

are given by the diagonal entries of the diagonalisation of A:

A =UΣV T (A.4)
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where the diagonal entries σi = Σi,i of Σ are the singular values. The p = 1 Shcatten

norm is also known as the trace norm, the p = 2 norm can be called the Frobenius

norm, and the p = ∞ is known as the spectral norm. The Frobenius norm can also be

calculated by

||A||F =
√

Tr [AT ·A] =
√

n

∑
i, j=1
|ai j|2, (A.5)

and this is assumed to be the norm of any operators or matrices, unless otherwise

stated. The Frobenius norm satisfies some properties, for a unitary operator, U ,

||A||F = ||AU ||F = ||UA||F , (A.6)

and

||A∗A||F = ||AA∗||F ≤ (||A||F)2 (A.7)

and

||A+B||2F = ||A||2F + ||B||2F +2⟨A,B⟩F , (A.8)

which are inequalities we will review next.

The trace norm can also be given by

||A||1 = Tr
[√

A∗A
]
. (A.9)

The diamond norm is the trace norm for an operator, maximised over all possible

inputs which have trace norm ≤ 1.

||φ ||⋄ := max
X ;||X ||1≤1

||(φ ⊗1n)X ||1 (A.10)

The diamond norm is used in the definition of the diamond distance, which

quantifies how close two completely positive, trace non-increasing maps, given by

E ,F are:

d⋄ (E ,F) := ||E −F||⋄−max
ρ
||(E ⊗1n)ρ− (F ⊗1n)ρ||1 (A.11)
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and is taken over all density matrices of dimension n2.

The max norm of an operator is the maximum absolute value of all elements:

||A||max = max
i j

∣∣ai, j
∣∣ . (A.12)

A.2 Inequalities

The triangle inequality, which we can use when proving lower bounds, states that

the norm of the sum of two vectors is less than or equal to the sum of their norms:

||x+y|| ≤ ||x||+ ||y|| . (A.13)

The Triangle inequality can be seen as a consequence of geometry (i.e. a

triangle), but it is in fact a consequence of the more general Cauchy-Schwarz

inequality. The Cauchy-Schwarz inequality, which is true for all vectors, u,v in an

inner product space,

|⟨u,v⟩|2 ≤ ⟨u,u⟩ · ⟨v,v⟩. (A.14)

Here ⟨·, ·⟩ is the inner product. In quantum mechanics, we usually replace this

definition of the inner product by bra-ket notation, ⟨ψ,φ⟩ → ⟨ψ⟩φ . Every inner

product defines a norm,

||ψ||=
√
⟨ψ⟩ψ, (A.15)

and if the vector space, H on which this is defined is complete with respect to

this norm we call it a Hilbert space. A Cauchy sequence is a sequence, of e.g.

vectors, where the elements of the sequence become closer together as the sequence

progresses. The vector space is complete if the Cauchy sequence of vectors converges

to a limit within the vector space.

Finally, an inequality related probability rather than geometry is Chebyshev’s

inequality. Chebyshev’s inequality, defined for many probability distributions, guar-

antees that a portion of the total values lie within a distance, defined by the standard
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deviation, close to the mean,

P(|X−µ| ≥ kσ)≤ 1
k2 . (A.16)

Here, X is the random variable we are measuring, it has an expected value, µ , and

non-zero variance, σ2. Defining k > 0, a real number, we can choose this to describe

our distribution, e.g. k =
√

2 guarantees the probability that a value lies outside the

range
(

µ−
√

2,µ +
√

2
)

is no more than 1
2 .
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Diagrammatic notation for linear

algebra

In Section 10.4 regarding barren plateaus, we are presented with the Weingarten

function [240] for integrating over the second moment of the Haar distribution:

∫
dµ(U)Ui1 j1Ui2 j2U

∗
i′1 j′1

U∗i′2 j′2
=

δi1i′1
δi2i′2

δ j1 j′1
δ j2 j′2

+δi1i′2
δi2i′1

δ j1 j′2
δ j2 j′1

N2−1

−
δi1i′1

δi2i′2
δ j1 j′2

δ j2 j′1
+δi1i′2

δi2i′1
δ j1 j′1

δ j2 j′2
N(N2−1)

. (B.1)

Here we will use diagrammatic notation to show how this reduces to Equation 10.72.

Diagrammatic notation [325]–[327] is a method of representing matrix manip-

ulations as diagrams, in a way that can be much easier to parse, it is also closely

related to the representation of tensor networks [325]. In diagrammatic notation the

indices of a matrix are represented as the edges of a graph, and the matrices as nodes.

The delta functions in Equation B.1 tell us to remove the nodes for U,U∗ and which

indices to connect. The equation for the variance, averaged over the Haar measure,
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is given by:

⟨(∂E)⟩=
∫

dU p(U)∂k

(
⟨0|U†(θ)HU(θ) |0⟩

)2
, (B.2)

=
∫

dU p(U)U†HUV MV †U†H†U +
∫

dU p(U)VU†HUMU†H†UV

−
∫

dU p(U)VU†HUMA†U†H†U−
∫

dU p(U)U†HUV MU†H†UV †,

(B.3)

with M = |0⟩⟨0|. We can represent the first term in this equation as a diagram:

U∗1 H U1 V M V † U†
2 H† U2

The delta functions in Equation B.1 translate to removing the U1,U∗1 ,U2,U∗2

nodes and connecting:

Table B.1: What each combination of delta function means in diagrammatic notation.

δi1i′1
δi2i′2

δ j1 j′1
δ j2 j′2

Connect L↔ L and R↔ R of (U1,U∗1 ),(U2,U∗2 )
δi1i′2

δi2i′1
δ j1 j′2

δ j2 j′1
Connect L↔ L and R↔ R of (U1,U∗2 ),(U2,U∗1 )

δi1i′1
δi2i′2

δ j1 j′2
δ j2 j′1

Connect L ↔ L of (U1,U∗1 ),(U2,U∗2 ) and R ↔ R of
(U1,U∗2 )(U2,U∗1 )

δi1i′2
δi2i′1

δ j1 j′1
δ j2 j′2

Connect R ↔ R of (U1,U∗1 )(U2,U∗2 ) and L ↔ L of
(U1,U∗2 ),(U2,U∗1 )

In our example this results in:

H H† V M V †

+

H H† V M V †



234

for the first term (multiplied by 1
d2−1 ), and

H H† V M V †

+

H H† V M V †

for the second term (multiplied by 1
N(N2−1)

). We can now re-write these in the

matrix form to get:

∫
dU p(U)U†HUV MV †U†H†U = (B.4)

=
1

N2−1

(
Tr
[
HH†

]
Tr
[
V MV †

]
+ |Tr [H]|2V MV †

)
(B.5)

− 1
N (N2−1)

(
|Tr [H]|2 Tr

[
V MV †

]
+Tr

[
HH†

]
V MV †

)
. (B.6)

repeating this procedure for the other terms in Equation B.2 gives us the form of the

variance we require:

Var [∂kE] =
1

N2−1
⟨
(

VV †−|Tr [V ]|2
)(

Tr
[
HH†

]
− 1

d
|Tr [H]|2

)
⟩U± (B.7)

taking into account the expectation of U± over the Haar measure, we get the result

in Equations 10.70 and 10.68.



Appendix C

Diagrammatic Notation for

Expressibility

A problem in Section 10.4.5 can simirary be solved by diagrammatic notation, which

we will do here. This is again related to integrating over the Haar measure, so the

Weingarten function, Equation B.1 is again relevant, and the diagrammatic notation

can be solved using the method outlined in Table B.1. As this is done for two terms

with the same structure, we will solve in the general case, using matrices A and B of

dimension d2 and U which is the Haar volume element, and of dimension d.

First we will show how a tensor product is done in diagrammatic notation:

X

Y

= X⊗Y

We can now turn to the equation to solve,

∫
U

dµ(U)Tr
[
AU⊗2BU†⊗2

]
, (C.1)

writing in diagrammatic notation we have
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A

U1

U2

B

U∗1

U∗2

we now apply the contraction rules in Table B.1,

1
(d2−1)

×(L-L, R-R of (U1,U∗1 ), (U2,U∗2 )

+L-L, R-R of (U1,U∗2 ),(U2,U∗1 ) ) :

A B + A B

1
d (d2−1)

(L-L of (U1,U∗1 ),(U2,U∗2 ), R-R of (U1,U∗2 ),(U2,U∗1 )

+R-R of (U1,U∗1 ),(U2,U∗2 ) L-L of (U1,U∗2 ),(U2,U∗1 ) )
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A B + A B

To write the tensors where the indices have been swapped in matrix form, we

introduce the swap operator, W that acts as W |i⟩ | j⟩ = | j⟩ |i⟩, and has the Hilbert-

Schmidt norm ||W ||2 = d. We can now re-write these tensors in equation form, as

used in Section 10.4.5,

∫
U(d)

dµ(U)Tr
[
AU⊗2BU†⊗2

]
=

1
d2−1

(Tr [A]Tr [B]+Tr [AW ]Tr [BW ])

− 1
d (d2−1)

(Tr [AW ]Tr [B]+Tr [A]Tr [BW ]) .

(C.2)
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DMFT Circuit Reduction

In Chapter 11 we are considering the DMFT system with two sites and four qubits.

Additionally, we restrict to the particle hole symmetric case, which allows us to

make reductions in the number of quantities to be calculated. In this Appendix we

will see how we can project the full four qubit Hamiltonian onto only two qubits,

with separate Hamiltonians for each value of N.

The number operator is given by

N̂ = n̂1 + n̂2 + n̂3 + n̂4, (D.1)

and the total z spin component,

Ŝz = n̂1 + n̂1− n̂3− n̂4, (D.2)

with n̂α = σ̂α
− σ̂α

+ , we can restrict the final wavefunction to a fixed number of elec-

trons, and total z spin component. We can rewrite

n̂α = σ̂
α
− σ̂

α
+ =

1
2
(1− σ̂

α
z ), (D.3)

substituting into N̂ and Ŝz:

N̂ = 2− 1
2
(
σ̂

1
z + σ̂

2
z + σ̂

3
z + σ̂

4
z
)
, (D.4)

Ŝz =
1
2
(
−σ̂

1
z − σ̂

2
z + σ̂

3
z + σ̂

4
z
)
. (D.5)
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We can verify that the Hamiltonian in Equation 11.33 commutes with N̂ and Ŝz,[
Ĥ, N̂

]
=
[
Ĥ, Ŝz

]
= 0. Therefore we can evaluate the quantities needed separately

for given values of N and Sz, and use degeneracies to reduce the number of qubits

required.

Starting with N = 0 we will obtain new operators which can fully characterise

the system for each particle number (maximum for two sites is N = 4 ). The

expectation value of an operator will be denoted by the removal of the hat, σα
z = ⟨σ̂α

z ⟩
and we will use these values to form a basis: |σ1

z σ2
z ,σ

3
z ,σ

4
z ⟩.

When N = 0, from Eqn. D.4, σ1
z +σ2

z +σ3
z +σ4

z = 4, implying σ1
z = σ2

z =

σ3
z = σ4

z = 1, and Sz = 0. Therefore there is only one possible state, |1,1,1,1⟩ with

the energy

EN=0,Sz=0 = ⟨1,1,1,1| Ĥ |1,1,1,1⟩= µ−U
4
− ε2. (D.6)

Similarly, when N = 4 we have σ1
z +σ2

z +σ3
z +σ4

z =−4, implying σ1
z = σ2

z =

σ3
z = σ4

z =−1, and Sz = 0. The energy in this case is

EN=4,Sz=0 = ⟨−1,−1,−1,−1| Ĥ |−1,−1,−1,−1⟩=−µ +
3U
4

+ ε2. (D.7)

For N = 1 we obtain σ3
z +σ4

z = 2−σ1
z −σ2

z , and Sz = 1−σ1
z −σ2

z . As
∣∣σα

z
∣∣= 1,

we have that σ3
z +σz ≤ 2 and 0 ≤ σ1

z +σ2
z ≤ 2, giving only two possible values

for Sz ∈ {−1,1}. So Ŝz determines the spin imbalance of the system, and can by

determined with the operator ˆ̃σ1
z =−Ŝz,

ˆ̃σ1
z =

1
2
(σ̂1

z + σ̂
2
z − σ̂

3
z − σ̂

4
z ). (D.8)

Imbalance of the electron number over the two sites is

ˆ̃σ2
z =

1
2
(σ̂1

z − σ̂
2
z + σ̂

3
z − σ̂

4
z ). (D.9)

The ladder raising operator of these can be thought of as a spin preserving hop be-

tween sites (swapping orbitals 3→ 1,4→ 2 ) for 1̃, and a spin flip on-site (swapping
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orbitals 2→ 1,4→ 3 ) for the 2̃. These are the ladder operators

ˆ̃σ1
+ = σ̂

3
−σ̂

1
++ σ̂

4
−σ̂

2
+, (D.10)

ˆ̃σ2
+ = σ̂

2
−σ̂

1
++ σ̂

4
−σ̂

3
+, (D.11)

this can be solved for the ˆ̃σx,y operators, with the expansion of

ˆ̃σ2
x =

1
2
(
σ

1
x σ

2
x +σ

1
y σ

2
y +σ

4
x σ

3
x +σ

3
y σ

4
y
)

(D.12)

matching the coefficient of V in the Hamiltonian, Equation 11.33. These operators

obey the canonical commutation relations when N = 1. Thinking of a system

with N = 1 and a single electron on site 1 with spin up σ̂1
z = −1, we have that

Sz = 1 =− ˆ̃σ1
z and ˆ̃σ2

z =−1, giving the inverse projection

σ̂
1
z =−1

2
(1− ˆ̃σ1

z )(1− ˆ̃σ2
z )+1, (D.13)

which can be done for the other operators:

σ̂
2
z =−1

2
(1− ˆ̃σ1

z )(1+ ˆ̃σ2
z )+1, (D.14)

σ̂
3
z =−1

2
(1+ ˆ̃σ1

z )(1− ˆ̃σ2
z )+1, (D.15)

σ̂
4
z =−1

2
(1+ ˆ̃σ1

z )(1+ ˆ̃σ2
z )+1. (D.16)

These can be substituted into Equation 11.33 to obtain an expression which requires

only two qubits

Ĥ =
(

µ

2
+

ε2

2

)
ˆ̃σ2

z +Vˆ̃σ2
x +

(
µ

2
−U

4
− ε2

2

)
. (D.17)

N = 3 When N = 3, we can follow a similar mapping to the ˆ̃σ operators, as Sz can

again only take the values {−1,1}. However, for the inverse mapping we must

re-think the conditions. When N = 3, with no electron on site 1 with spin up (

σ̂1
z = 1 ) we have Sz =−1 =− ˆ̃σ1

z , and ˆ̃σ2
z = 1 allowing us to construct the inverse
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projection

σ̂
1
z =

1
2
(1+ ˆ̃σ1

z )(1+ ˆ̃σ2
z )−1, (D.18)

σ̂
2
z =

1
2
(1+ ˆ̃σ1

z )(1− ˆ̃σ2
z )−1, (D.19)

σ̂
3
z =−1

2
(1− ˆ̃σ1

z )(1+ ˆ̃σ2
z )−1, (D.20)

σ̂
4
z =−1

2
(1− ˆ̃σ1

z )(1− ˆ̃σ2
z )−1. (D.21)

This can be substituted into Eqn. 11.33 for the two-qubit Hamiltonian

Ĥ =

(
µ

2
+

ε2

2
−U

2

)
ˆ̃σ2

z +Vˆ̃σ2
x −
(

µ

2
−U

4
− ε2

2

)
. (D.22)

Finally, for N = 2, from Eqn. D.1 we require σ3
z +σ4

z = −σ1
z −σ2

z , and that

Sz =−σ1
z −σ2

z , giving Sz ∈ {−2,0,2}. For Sz =−2 there is only one possible state,

σ1
z = σ2

z = −1, with EN=2,Sz=2 = −U
4 . Similarly, for Sz = 2, σ1

z = σ2
z = 1 and

EN=2,Sz=−2 =−U
4 .

When Sz = 0, we have σ2
z = σ1

z , which implies σ4
z =−σ3

z . This restriction in

the degrees of freedom allows us to represent this system with two qubits also. We

set the z components of the new qubits 1 and 2 to that of the original qubits 1 and

3, and the negation of this is the z component of the original qubits 2 and 4. The x

operators of the new qubits need to ensure that flipping the values of qubits 1 and 3
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simultaneously flips the values of qubits 2 and 4. The new operators are:

ˆ̃σ1
z = σ̂

1
z , (D.23)

ˆ̃σ2
z = σ̂

3
z , (D.24)

ˆ̃σ3
z =−σ̂

2
z , (D.25)

ˆ̃σ4
z =−σ̂

4
z , (D.26)

ˆ̃σ1
x = σ̂

1
x σ̂

2
x , (D.27)

ˆ̃σ2
x = σ̂

3
x σ̂

4
x , (D.28)

ˆ̃σ1
y = σ̂

1
y σ̂

2
x , (D.29)

ˆ̃σ2
y = σ̂

3
y σ̂

4
x . (D.30)

Substituting these operators into Eqn. 11.33 gives us the Hamiltonian

Ĥ =
U
4

σ̂
1
z σ̂

2
z +

(
µ

2
−U

4
+

ε2

2

)
(σ̂1

z + σ̂
2
z )+V (σ̂1

x + σ̂
2
x ). (D.31)

We must complete a similar procedure for the values of λp(h),α,n, which for 2

site DMFT α = 1. In the full, four qubit case

λh,1,n =
∣∣∣⟨0|Û†

2,0σ̂
1
−Û1,n |0⟩

∣∣∣2 . (D.32)

Using the substitutions derived above, we have for the one electron case, applying

ˆ̃σ− gives us the two electron case with Sz = 0. This can be evaluated on a two qubit

quantum circuit with:

λh,1,n =
∣∣∣⟨0̃| ˆ̃U†

2,0
ˆ̃σ1
−

ˆ̃U1,n |0̃⟩
∣∣∣2 , (D.33)

where the tilde indicates a two-qubit operator. As we have Sz = 0, for non-zero λh,1,n

we require Sz for the single electron case. This implies σ̃1
z = 1, and that for Û1,n |0⟩

with σ̃1
z =−1, λh,1,n = 0. This means we can safely ignore the ˆ̃σ1

y component of ˆ̃σ1
−,

so that

λh,1,n =
∣∣∣⟨0̃| ˆ̃U†

2,0
ˆ̃σ1

x
ˆ̃U1,n |0̃⟩

∣∣∣2 , (D.34)



243

For the particle elements can also be obtained this way, given by

λp,1,n =
∣∣∣⟨0̃| ˆ̃U†

2,0
ˆ̃σ1
+

ˆ̃U1,n |0̃⟩
∣∣∣2 , (D.35)

When removing an electron from the three electron state, we go to the two electron

ground sate with Sz = 0, for non-zero matrix elements we require Sz = 1 in the three

electron state. This implies σ̃1
z = −1 in the three electron state. Therefore, states

Û3,n |0̃⟩ where σ̃1
z = 1 have λp,1,n = 0, and we can again ignore the ˆ̃σ1

y component,

giving

λp,1,n =
∣∣∣⟨0̃| ˆ̃U†

2,0
ˆ̃σ1

x
ˆ̃U3,n |0̃⟩

∣∣∣2 . (D.36)

Using the projections here, we are able to calculate the two-site DMFT system

on only two qubits, using the ansatze given in Figure 11.3.



Appendix E

Additional Variance results for DMFT

In Chapter 11 we discussed some selected results from measuring the variance of the

parameter gradients as the ADAPT algorithm proceeded. The systems and figures

are:

System Original ADAPT Device Aware ADAPT

H4 chain Figure E.2 Figure E.1

LiH Figure E.4 Figure E.3

3-site DMFT Figure E.6 Figure E.5

4-site DMFT Figures E.9, E.10 Figures E.7, E.8
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Figure E.1: H4 system, device aware ADAPT. Average over all runs of the variance of
the gradient of the cost function for each parameter. As the y axis is shared
between this and the other variant of the algorithm, we see that this variant of
the algorithm did not contain the largest variance. In contrast to the results
of [215] we find that the larges variances appear in the middle of the circuit.
This could be due to the fermionic nature of the operators, meaning the circuits
are no longer 2-designs.
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Figure E.2: H4 system, original ADAPT. Average over all runs of the variance of the gradient
of the cost function for each parameter. This version of the algorithm has the
highest variances by far, and is consistently high in the midddle of the circuit,
contrasting [215]. This could be due to the fermionic nature of the operators,
meaning the circuits are no longer 2-designs.
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Figure E.3: LiH system, device aware ADAPT. Average over all runs of the variance of the
gradient of the cost function for each parameter. This version of the algorithm
has the highest variances consistently, including the middle of the circuits,
contrasting [215]. This could be due to the fermionic nature of the operators,
meaning the circuits are no longer 2-designs.
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Figure E.4: LiH system, original ADAPT. Average over all runs of the variance of the
gradient of the cost function for each parameter. This version of the algorithm
has the highest variance at the beginning of the circuit, but is usually lower
than the device aware version. Unlike the other molecular systems here, we see
that the lowest variances are in the middle of the circuit, consistent with the
predictions in [215].
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Figure E.5: Three site DMFT system, device aware ADAPT. Average over all runs of the
variance of the gradient of the cost function for each parameter. We see by
the white bar that the largest variance between this and the original ADAPT
algorithm came in the device aware variant. We also see that the variance is
much lower in the middle of the circuit, which is consistent with the findings
in [215].
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Figure E.6: Three site DMFT system, original ADAPT. Average over all runs of the variance
of the gradient of the cost function for each parameter. As the y-axis is shared
between this and the device aware algorithm, we see that in this version we do
not record as high variance for the parameters. We also see that the variance is
much lower in the middle of the circuit, which is consistent with the findings
in [215].
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Figure E.7: Four site DMFT system, device aware ADAPT. Average over all runs of the
variance of the gradient of the cost function for each parameter, first page of
graphs.
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Figure E.8: Four site DMFT system, device aware ADAPT. Average over all runs of the
variance of the gradient of the cost function for each parameter. As the y-axis is
shared between this and the device aware algorithm, we see that in this version
we do not record as high variance for the parameters. We also see that the
variance is much lower in the middle of the circuit, which is consistent with the
findings in [215].
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Figure E.9: Four site DMFT system, original ADAPT. Average over all runs of the variance
of the gradient of the cost function for each parameter, first page of graphs.
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Figure E.10: Four site DMFT system, original ADAPT. Average over all runs of the variance
of the gradient of the cost function for each parameter. The tall white bar
shows us that the highest variance came in this variant of the algorithm, at the
very end. We also see that the variance is much lower in the middle of the
circuit, which is consistent with the findings in [215].



Appendix F

Expanding Exponentiated

Hamiltonians

To derive the first relation, we must use trigonometric identities and make some

substitutions for ease. Let ω0t/2 := θ , and we are dealing only with the operators

acting on the internal states of the ion:

exp[iθσz](σ++σ−)exp[−iθσz] (F.1)

First, recall the expansion of the Matrix exponential when using Pauli operators:

exp[iθσz] = 1+ iθσz−
θ 21
2!
− i

θ 3σz

3!
. . .

= 1cosθ + iσz sinθ (F.2)

exp[−iθσz] = 1cosθ − iσz sinθ (F.3)

And so expand the interaction operation:

exp[iθσz]σ± exp[iθσz] = (1cosθ − iσz sinθ)σ±(1cosθ + iσz sinθ) (F.4)

= σ± cos2
θ +σzσ±σz sin2

θ + isin(2θ)
1
2
(σ±σz−σzσ±)

(F.5)
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Finding expressions for the Pauli matrices:

σzσ±σz =
1
2
(−σx∓ iσy) =−σ±

= σ±σz−σzσ± =
1
2
(−iσy∓σx− iσy∓σx) = (−iσy∓σx) (F.6)

And using the trigonometric identities sin2
θ = 1

2(1− cos(2θ)) and cos2 θ = 1
2(1+

cos(2θ))

σ± cos2
θ −σ± sin2

θ = σ± cos(2θ) (F.7)

So we arrive at:

exp[iθσz]σ± exp[iθσz] = σ± cos(2θ)∓ iσ± sin(2θ) (F.8)

Which when split into the case for each σ± gives:

exp[iθσz]σ+ exp[iθσz] = σ+ cos(2θ)− iσ+ sin(2θ) (F.9)

= e2iθ
σ+ exp[iθσz]σ− exp[iθσz] (F.10)

= σ− cos(2θ)+ iσ+ sin(2θ) (F.11)

= e−2iθ
σ− (F.12)



Appendix G

Signal Processing and Noise

We will use concepts from signal processing [328] to describe the noise in the driving

field - as the desired electromagnetic laser field can be thought of as a perfect signal.

The autocorrelation of a signal defines how much information we infer about a signal

at time t2, given the value at time t1:

G(t1, t2) = ⟨V (t1)V (t2)⟩ (G.1)

which we can also define in terms of the difference between times t1 and t2, τ:

G(τ) = ⟨V (t1)V (t1 + τ)⟩ , (G.2)

= lim
T→0

1
T

∫ T

0
V (t + τ)V (t)dt. (G.3)

A Markov signal is defined as a stochastic signal with zero mean, where the autocor-

relation reduces exponentially:

G(t1, t2) =
e−|t1−t2|τ ′

τ ′
(G.4)

where the signals are only correlated for short times, τ ′; when τ ′ approaches 0, we

have white noise, and the autocorrelation function is described by a Dirac delta

function:

G(t1, t2) = σ
2
δ (t1− t2), (G.5)
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where σ is the variance of the signal, and δ is the Dirac delta.

The Wiener-Khinchin theorem states that the autocorrelation and power spectral

density are a Fourier Transform pair:

FT(G(τ)) = FT
(∫

∞

−∞

V (τ)V (τ− t)dτ

)
(G.6)

=
∫

∞

−∞

(∫
∞

−∞

V (τ)V (τ− t)dτ

)
e−iωtdt (G.7)

=
∫

∞

−∞

∫
∞

−∞

V (τ)V (T )e−iωτ−T dT dτ (G.8)

=
∫

∞

−∞

V (T )eiωT
∫

∞

−∞

V (τ)e−iωτdτ (G.9)

= S∗(ω)S(ω) = |S(ω)|2 (G.10)

Where S(ω) is the Power Spectral Density (PSD). When we are considering white

noise, we can again reduce this to the Dirac delta function:

G(τ) = S0δ (τ) (G.11)

Where S0 is the PSD of the white noise.



Appendix H

White Noise in the Liouville

von-Neumann Equation

Consider a generic Hamiltonian, where one process is subject to a noise term, ξ :

H(t) = H1(t)+ξ (t)H2(t) (H.1)

As ξ describes some noise term, it is real-valued with zero mean. We can describe

the evolution of the system using the Liouville von-Neumann equation:

dρ = [H1,ρ]dt +ξ (t)[H2,ρ]dt, (H.2)

H.1 White Noise

If there are no time correlations in the noise process it is described as white noise,

i.e. a flat spectrum with a very wide bandwidth. It is completely characterised by its

autocorrelation function:

G(τ) = ⟨ξ (τ)ξ (0)⟩= 0(τ ̸= 0) (H.3)∫
∞

−∞

⟨ξ (τ)ξ (0)⟩dτ = Γ. (H.4)

We can characterise ξ (t)dt as the increment of a Wiener process [321], so that

ξ (τ)dt →
√

ΓdW (t), giving us the Stratonovich Stochastic Differential Equation
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(SDE) [329]:

ih̄dρ = [H1,ρ]dt +
√

Γ[H2,ρ]◦dW. (H.5)

In this form, ρ(t) and dW (t) are not statistically independent, so we cannot safely

average over them to get a mean evolution. To do so, we must convert this into the

Ito form.

First, we recall the Stratonovich integral:

S
∫ t

t0
G
[
ρ(t ′), t ′

]
dW (t ′) = lim

n→∞

n

∑
i=1

G
{

ρ(ti)+ρ(ti−1)

2
, ti−1

}
[W (ti)−W (ti−1)] .

(H.6)

Where the limit here is the mean-square limit, and S denotes the Stratonovich

integral1. . We can use this integral in the definition of a Stratonovich Stochastic

Differential Equation (SDE):

ρ(t) = ρ(t0)+
∫ t

t0
dt ′α[ρ(t ′), t ′]+S

∫ t

t0
dW (t ′)β [ρ(t ′), t ′]. (H.7)

We assume that the ρ(t) here solves an Ito SDE, which has the form:

dρ(t) = A[ρ(t), t]dt +B[ρ(t), t]dW (t), (H.8)

and use Eqn. H.7, substituting β for G. Writing ρ(ti) = ρ(ti−1)+ dρ(ti−1), and

substituting into the Ito SDE (Eqn H.8) we get:

dρ(ti) = A[ρ(ti−1), ti−1](ti− ti−1)+B[ρ(ti−1), ti−1][W (ti)−W (ti−1)]. (H.9)

1The difference between Stratonovich and Ito stochastic integrals is related to where the interme-
diate points dt are taken [329].
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We then apply Ito’s formula [329] to the β function:

β

[
ρ(ti)+ρ(ti−1)

2

]
= β

[
ρ(ti−1)+

1
2

dρ(ti−1), ti−1

]
(H.10)

= β (ti−1)+

(
A(ti−1)∂ρβ (ti−1 +

1
4

B2(ti−1)

)(
1
2

ti− ti−1

)
+

1
2

B(ti−1)∂ρβ (ti−1)[W (ti)−W (ti−1)] (H.11)

we then make the substitutions:

dt2 = dtdW (t) = 0, (H.12)

dW 2(t) = dt, (H.13)

and substitute this into Eqn. H.8:

S
∫ t

t0
β [ρ(t ′), t ′]dW (t ′) =

∫ t

t0
β [ρ(t ′), t ′]dW (t ′)+

1
2

∫ t

t0
B[ρ(t ′), t ′]∂ρβ [ρ(t ′), t ′]dt ′.

(H.14)

So, in our implementation of the problem we have: ih̄β [ρ(t), t] =
√

Γ[H2,ρ],

so:

ih̄β [ρ+
1
2

dρ, t] =
√

Γ[H2,ρ+v
1
2

dρ] =
√

Γ

(
[H2,ρ]+

1
2
([H2,A]dt +[H2,B]dW )

)
,

(H.15)

which gives us:

√
Γ[H2,ρ]◦dW =

√
Γ

(
[H2,ρ]dW +

1
2
[H2,B]dt

)
. (H.16)

Substituting this into the Stratonovich SDE, eqn. H.5:

ih̄dρ(t) = [H1,ρ]dt− i
2h̄

Γ[H2, [H2,ρ]]dt +
√

Γ[H2,ρ]dW. (H.17)

We can now average over many instances of the system, ρ to get the master equation:

ih̄
d⟨ρ⟩

dt
= [H1,⟨ρ⟩]−

i
2h̄

Γ[H2, [H2,⟨ρ⟩]]. (H.18)
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In what follows, we will drop the expectation value brackets around rho, as we will

always be discussing the ensemble average. The master equation can also be written

in the Lindblad form:

dρ

dt
=− i

h̄
[H1,ρ]+LρL†− 1

2

{
L†Lρ +ρL†L

}
, (H.19)

where L =
√

Γ

h̄ H2. We will use the relationships derived here to move from a

description ow white noise on various system parameters to the Lindblad master

equation, which can be simulated numerically.
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