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Abstract 

The primary tauopathies are a group of progressive neurodegenerative diseases within 

the frontotemporal lobar degeneration spectrum (FTLD) characterised by the 

accumulation of misfolded, hyperphosphorylated microtubule-associated tau protein 

(MAPT) within neurons and glial cells. They can be classified according to the 

underlying ratio of three-repeat (3R) to four-repeat (4R) tau and include Pick’s disease 

(PiD), which is the only 3R tauopathy, and the 4R tauopathies the most common of 

which are progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). 

There are no disease modifying therapies currently available, with research 

complicated by the wide variability in clinical presentations for each underlying 

pathology, with presentations often overlapping, as well as the frequent occurrence of 

atypical presentations that may mimic other non-FTLD pathologies. Although 

progress has been made in understanding the genetic contribution to disease risk in the 

more common 4R tauopathies (PSP and CBD), very little is known about the genetics 

of the 3R tauopathy PiD.  

There are two broad aims to this thesis; firstly, to use data-driven generative models 

of disease progression to try and more accurately stage and subtype patients presenting 

with PSP and corticobasal syndrome (CBS, the most common presentation of CBD), 

and secondly to identify genetic drivers of disease risk and progression in PiD. Given 

the rarity of these disorders, as part of this PhD I had to assemble two large cohorts 

through international collaboration, the 4R tau imaging cohort and the Pick’s disease 

International Consortium (PIC), to build large enough sample sizes to enable the 

required analyses. 

In Chapter 3 I use a probabilistic event-based modelling (EBM) approach applied to 

structural MRI data to determine the sequence of brain atrophy changes in clinically 

diagnosed PSP - Richardson syndrome (PSP-RS). The sequence of atrophy predicted 

by the model broadly mirrors the sequential spread of tau pathology in PSP post-

mortem staging studies, and has potential utility to stratify PSP patients on entry into 

clinical trials based on disease stage, as well as track disease progression. 

To better characterise the spatiotemporal heterogeneity of the 4R tauopathies, I go on 

to use Subtype and Stage Inference (SuStaIn), an unsupervised machine algorithm, to 

identify population subgroups with distinct patterns of atrophy in PSP (Chapter 4) 
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and CBS (Chapter 5). The SuStaIn model provides data-driven evidence for the 

existence of two spatiotemporal subtypes of atrophy in clinically diagnosed PSP, 

giving insights into the relationship between pathology and clinical syndrome. In CBS 

I identify two distinct imaging subtypes that are differentially associated with 

underlying pathology, and potentially a third subtype that if confirmed in a larger 

dataset may allow the differentiation of CBD from both PSP and AD pathology using 

a baseline MRI scan. 

In Chapter 6 I investigate the association between the MAPT  H1/H2 haplotype and 

PiD, showing for the first time that the H2 haplotype, known to be strongly protective 

against developing PSP or CBD, is associated with an increased risk of PiD. This is an 

important finding and has implications for the future development of MAPT isoform-

specific therapeutic strategies for the primary tauopathies.  

In Chapter 7 I perform the first genome wide association study (GWAS) in PiD, 

identifying five genomic loci that are nominally associated with risk of disease. The 

top two loci implicate perturbed GABAergic signalling (KCTD8) and dysregulation of 

the ubiquitin proteosome system (TRIM22) in the pathogenesis of PiD.  

In the final chapter (Chapter 8) I investigate the genetic determinants of survival in 

PiD, by carrying out a Cox proportional hazards genome wide survival study (GWSS). 

I identify a genome-wide significant association with survival on chromosome 3, 

within the NLGN1 gene. which encodes a synaptic scaffolding protein located at the 

neuronal pre-synaptic membrane. Loss of synaptic integrity with resulting 

dysregulation of synaptic transmission leading to increased pathological tau 

accumulation is a plausible mechanism though which NLGN1 dysfunction could 

impact on survival in PiD. 
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Impact Statement 

The primary tauopathies (FTLD-tau) are a devastating group of neurodegenerative 

disorders that take a terrible physical and emotional toll on both patients and their 

families. Given their midlife onset, these diseases cause a dramatic reduction in life 

expectancy, resulting in a significant economic impact both for affected families, and 

the wider economy in general. The loss of productivity for both patients and carers 

from being pulled out of the workforce, often at the height of their careers, has led to 

estimates of the economic costs associated with these diseases that are nearly two times 

higher than for Alzheimer’s disease. There are no curative treatments for the primary 

tauopathies at present, and there is an urgent need to develop new therapies, both from 

a symptomatic and a disease-modifying perspective.  

In the first part of this thesis, I investigate the spatiotemporal heterogeneity of the 4-

repeat tauopathies, PSP and CBD, using generative data-driven disease progression 

models, to try and better stratify these diseases based on both subtype and disease stage 

at baseline. In the second part of the thesis, I focus on the understudied 3-repeat 

tauopathy Pick’s disease, using both targeted and genome wide approaches to identify 

genetic determinants of disease risk and progression.  

The findings from this thesis are important with direct relevance for the academic 

community clinicians and for patients and their families. Firstly, I provide evidence 

that the 4R tauopathies can be accurately staged and subtyped using only baseline 

structural MRI scans. These findings have direct clinical utility as they are based on 

MRI data easily available to clinicians, and provide an objective measure of disease 

status with important implications for stratifying patients into homogenous groups for 

future clinical trials. Secondly, by building a large international collaboration (the 

PIC), I am able to show that the MAPT H2 haplotype is associated with the risk of 

Pick's disease, and go on to perform the first genome-wide association studies of both 

disease risk and survival, identifying novel loci that implicate genes directly involved 

in disease pathogenesis. These results will be important for the PiD academic 

community, as they provide directly testable hypotheses for future functional studies 

in animal and cell models, to probe affected biological pathways. In addition, the PIC, 

an international collaboration between nearly 40 leading research centres in this 

disease globally, provides a network to enable coordination of future sample 
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collection, development of consensus diagnostic criteria, and studies that may enable 

us to finally find a treatment to prevent this devastating disease.  

The results from this thesis have been, or will be, widely disseminated both nationally 

and internationally through conference presentations, and open-access publications in 

peer-reviewed journals. The 4R tauopathy disease progression modelling has led to 

active collaborations  between UCL, Manchester, Oxford, Cambridge and UCSF in 

the United States, with future plans to apply these models to autopsy confirmed Pick’s 

disease imaging in collaboration with UCSF, UPenn and Banner. In addition, I plan to 

build a staging model for autopsy confirmed CBD using subtype and stage inference 

modified to use ordinal pathological data, in collaboration with Queen Square Brain 

Bank. Collaboration through the PIC, with the Mayo Clinic in Florida is also currently 

ongoing, with future studies planned including the development of tau specific RT-

QuIC tracers, and long read sequencing of the MAPT locus to better understand the 

impact of tau isoform ratios in development of the different tauopathies. 

  



 11 

Publications 

1. Scotton WJ, Bocchetta M, Todd E, Cash DM, Oxtoby N, VandeVrede L, Heuer 

H; PROSPECT Consortium, 4RTNI Consortium; Alexander DC, Rowe JB, Morris 

HR, Boxer A, Rohrer JD, Wijeratne PA. A data-driven model of brain volume 

changes in progressive supranuclear palsy. Brain Commun. 2022 Apr 

14;4(3):fcac098.359 

UCL Research Paper Declaration Form  

referencing the doctoral candidate’s own published work(s)   

1. For a research manuscript that has already been published (if not yet 

published, please skip to section 2) 

a) What is the title of the manuscript?  

A data-driven model of brain volume changes in progressive supranuclear palsy 

b) Please include a link to or doi for the work 10.1093/braincomms/fcac098 

c) Where was the work published? Brain Communications 

d) Who published the work? OUP  

e) When was the work published? April 14th 2022 

f) List the manuscript’s authors in the order they appear on the 

publication 

W. J. Scotton, M. Bocchetta, E. Todd, D. M. Cash, N. Oxtoby, L. VandeVrede, 

H. Heuer, PROSPECT Consortium, 4RTNI Consortium, D. C. Alexander, J. B. 

Rowe, H. R. Morris, A. Boxer, J. D. Rohrer, and P. A. Wijeratne 

g) Was the work peer reviewed? Yes 

h) Have you retained the copyright? 

Open Access article distributed under the terms of the Creative Commons 

Attribution License (https://creativecommons.org/licenses/by/4.0/ 

i) Was an earlier form of the manuscript uploaded to a preprint server? 

(e.g. medRxiv). If ‘Yes’, please give a link or doi) 

No 



12 

If ‘No’, please seek permission from the relevant publisher and check the box next 

to the below statement: 

☒ 

I acknowledge permission of the publisher named under 1d to include in this thesis 

portions of the publication named as included in 1c. 

2. For a research manuscript prepared for publication but that has not yet

been published (if already published, please skip to section 3)

n/a

3. For multi-authored work, please give a statement of contribution covering

all authors (if single-author, please skip to section 4)

Conception and design: WJS, JR, PAW; Data Collection: WJS, MB, ET, DC,

NO, LV, HH, DCA, JBR, AB, HRM, JR, PAW, PROSPECT Consortium, 4RTNI

Consortium; Execution: WJS ; Analysis: WJS; Interpretation: WJS, HM, JR,

PAW; Writing Manuscript: WJS; Critical review of manuscript: WJS, MB,

ET, DC, NO, LV, HH, DCA, JBR, AB, HRM, JR, PAW

4. In which chapter(s) of your thesis can this material be found?

Chapter 3

5. e-Signatures confirming that the information above is accurate

Candidate 

William Scotton 

Date:   26/02/23 

Supervisor/ Senior Author (where appropriate) 

Peter Wijeratne 

Date    26/02/23 



13 

2. Scotton WJ, Shand C, Todd E, Bocchetta M, Cash DM, VandeVrede L, Heuer H;

PROSPECT Consortium, 4RTNI Consortium; Young AL, Oxtoby N, Alexander

DC, Rowe JB, Morris HR, Boxer AL, Rohrer JD, Wijeratne PA. Uncovering

spatiotemporal patterns of atrophy in progressive supranuclear palsy using

unsupervised machine learning. Brain Commun. 2023 Mar 2;5(2):fcad048.

UCL Research Paper Declaration Form  

referencing the doctoral candidate’s own published work(s) 

1. For a research manuscript that has already been published (if not yet

published, please skip to section 2)

n /a

2. For a research manuscript prepared for publication but that has not yet

been published (if already published, please skip to section 3)

a) What is the current title of the manuscript?

Uncovering spatiotemporal patterns of atrophy in progressive supranuclear palsy 

using unsupervised machine learning A data-driven model of brain volume 

changes in progressive supranuclear palsy 

b) Has the manuscript been uploaded to a preprint server? (e.g. medRxiv; if

‘Yes’, please give a link or doi)

No 

c) Where is the work intended to be published? (e.g. journal names)

Brain Communications 

d) List the manuscript’s authors in the intended authorship order

W.J. Scotton, C. Shand, E. Todd, M. Bocchetta, D. M. Cash, L. VandeVrede, H. 

Heuer, PROSPECT Consortium, 4RTNI Consortium, A.L. Young, N. Oxtoby, 

D.C. Alexander, J.B. Rowe, H.R. Morris, A.L. Boxer, J.D. Rohrer,1, P. A.

Wijeratne 

e) Stage of publication (e.g. in submission)

Accepted for publication – awaiting DOI and publication date 

3. For multi-authored work, please give a statement of contribution covering

all authors (if single-author, please skip to section 4)



14 

Conception and design: WJS, JR, PAW; Data Collection: WJS, MB, ET, DMC, 

NO, LV, HH , JBR, AB, HRM, JR, PROSPECT Consortium, 4RTNI Consortium; 

Execution: WJS; Analysis: WJS; Plotting figures: WJS, CS Interpretation: 

WJS, ALY, HM, JR, PAW; Writing Manuscript: WJS; Critical review of 

manuscript: WJS, CS, MB, ET, DMC, ALY, NO, LV, HH, DCA, JBR, AB, 

HRM, JR, PAW 

4. In which chapter(s) of your thesis can this material be found?

Chapter 4

5. e-Signatures confirming that the information above is accurate (this form

should be co-signed by the supervisor/ senior author unless this is not

appropriate, e.g. if the paper was a single-author work)

Candidate 

William Scotton 

Date: 

26/02/23 

Supervisor/ Senior Author (where appropriate) 

Peter Wijeratne 

Date 

26/02/23 



 15 

Acknowledgements 

I would like to start by thanking all of the patients and their families from countries 

around the world who gave their precious time to the studies that provided data for this 

PhD. I hope that some of the work included here, even if it is in a small way, 

contributes to future breakthroughs that are so badly needed to treat these devastating 

diseases. I also wanted to express my gratitude to my funders the Wellcome Trust, and 

the UCL Academic Clinical Office, for taking a chance on me and financially 

supporting this PhD. 

The best advice I was given before starting this PhD was from Dr. Mary O’Driscoll in 

the summer of 2019, who simply said “It can be very lonely; make sure you build a 

support network to get you through the difficult times”. The wisdom of this advice only 

really became apparent in mid-April 2020 when the Covid pandemic was in full flow. 

As the years have gone by this advice has only become more pertinent, and now I have 

reached the end and had time to reflect, I realise how lucky I have been to have the 

support and mentorship of some truly inspirational people.  

Firstly, I want to thank my primary supervisor Professor Sir John Hardy. It has been 

such a privilege to work with you these last few years, and to see your life’s work 

recognised during this period with a knighthood. You have only ever shown me 

kindness, respect and unwavering support. You have rekindled the passion I had as a 

younger man for pure scientific enquiry, where someone’s worth is not measured by 

their status or position, but purely by their ideas. As Montaigne once said, “A virtuous, 

ordinary life, striving for wisdom but never far from folly, is achievement enough”. 

Thank you, Professor Jonathan Rohrer, for welcoming me into your lab and giving me 

insight into cognitive neurology and clinical research. Your positive approach and sage 

advice have helped me get through some difficult times, and although things did not 

necessarily work out as expected, your support for me has never diminished.  

Thank you to Professor Huw Morris for teaching me about the genetic and clinical 

aspects of the atypical parkinsonian syndromes, and supporting me, through your lab, 

with the genetic analyses in this PhD. And thank you to Dr. Martina Bocchetta and Dr. 

Andre Altmann for agreeing to be on my thesis committee, guiding and advising me 

through the process. 



 16 

To Dr. Peter Wijeratne (“the Mighty PAW”); you are an inspirational person and have 

become a good friend. For the first six months I literally had no idea what you were 

talking about, but through the medium of Python I gradually started to glimpse the 

kernel of meaning. Thank you for the laughter, the words left unsaid (mainly in 

supervisor meetings) and for the friendship that helped me through the long months of 

the pandemic. The University of Sussex don’t know how lucky they are. I look forward 

to our future collaborations and in particular developing the HTTTM. 

Thank you to Dr. Maryam Shoai for your friendship and support. You have always 

been on hand to give advice whenever I have needed, and patiently walk me through 

all of the different genetic analyses used in this thesis. It has been inspiring to work 

with someone with your level of intellect and humanity; I understand why John keeps 

you so close. 

Thank you to Dr. Raquel Real for always being there to help, and provide code when 

I have needed it. You didn’t need to do this, but you did nonetheless despite your own 

busy schedule which reveals the type of person you truly are. I have been very lucky 

to work with you.  

Thank you to the people at the Institute of Neurology who helped me at various points 

during the PhD; Dr Kin Mok, Alejandro Martinez-Carrasco and Hannah Macpherson. 

Thank you to Professor Tammaryn Lashley for your supervision both as my research 

graduate tutor and also in mid-2020 when performing the immunohistochemistry; I 

enjoyed our varied conversations and also the company during a period when I rarely 

saw anyone in person apart from my own family. 

Thank you to the POND team at CMIC for taking me under your wing; in particular 

to Professor Danny Alexander, Dr Neil Oxtoby and Dr Cameron Shand for all the help 

and words of encouragement.  

Thank you to Dr Owen Ross, Dr Rebecca Valentino and the rest of the team at the 

MCJ, and Dr Adam Boxer and the team at UCSF for collaborating on various projects, 

and putting your trust in me.  

To Ann Pennington, thank you for inviting me into your home, and reminding me of 

the  power of good conversation. Our friendship has been a great comfort to me over 

the last three years and enabled me to maintain perspective on what it truly important.  



 17 

Thank you to my oldest friend Nick Amery, for taking me climbing on Wednesday 

evenings when I was in London, and always being the best company. 

To my mother, Sue, and father, John  - thank you for always being there for me. You 

have always given me the love and encouragement to follow what I believe is 

important in life, and instilled in me the importance of kindness, compassion and the 

hard work. Words cannot convey the debt I owe to you both, but I hope this work goes 

a small way to repaying your faith in me. 

And finally, to my wife, Sangeeta, and my children, Dylan and Eva. You are my world. 

Thank you for sharing the journey, and putting up with me over the last three years. 

Sangeeta, your constant encouragement, positivity, and reassurance has been the glue 

that has held me together, and none of this would have been possible without you. 

Dylan and Eva, I am so proud of you both and the people you are growing up to be; if 

there were any positives from the Covid pandemic it was having the chance to spend 

more time with you. As Ian Carr once so beautifully put it:  

“.. our children, like our possessions and our lives, are lent not given” 

  



 18 

  



 19 

Contributions statement 

I wanted to acknowledge the support and contributions from the many people that were 

involved in the work laid out in this thesis. I have personally performed the majority 

of the laboratory work and bioinformatic/data analysis, and written all chapters (and 

associated manuscripts) with support from my supervisors. However, given the nature 

of the cohorts I assembled, there are a large number of people that have been involved 

in data collection across the world who I fully reference in the Appendix A and B. In 

the sections below I will detail, by chapter, the individuals who supported me in the 

data collection and analysis where relevant. 

Chapter 3-5: Disease Progression Modelling in the 4R tauopathies 

Data analysed in these chapters were collected from eight different cohorts as detailed 

in Chapter 2, and I would like to thank all of those people involved in participant 

identification, recruitment and testing (Appendix A), as well as the patients and their 

families. I performed all the data analyses in these chapters with support from Dr. Peter 

Wijeratne. These chapters were written by me, with input on results interpretation and 

conclusions from Dr. Peter Wijeratne and Professor Jonathan Rohrer. I would also like 

to thank Cameron Shand  who updated and improved the plotting functions in SuStaIn, 

which greatly helped in making the figures included. Finally, I would like to recognise 

Dr. Alexandra Young who developed SuStaIn, and Dr. Neil Oxtoby (along with Dr. 

Nick Firth) who developed the KDE EBM; both provided trouble shooting support and 

additional code at various stages of the analyses. 

Chapter 6-8: Genetic analyses in Pick’s Disease 

Data analysed in these chapters were collected as part of the Pick’s Disease 

International Consortium (PIC). A large group of researchers and clinicians, as part of 

the PIC, contributed to data collection and curation and are detailed in the 

Acknowledgements section (Appendix B). All of the 3R/4R tau 

immunohistochemistry for the UCL samples was performed by myself under the 

supervision of Professor Tammaryn Lashley at Queen Square Brain Bank, while 

Professor Dennis Dickson and Dr Shanu Roemer performed the equivalent for the 

North American samples at the Mayo Clinic Jacksonville (MCJ). I am very grateful to 

Dr. Kin Mok who took the time to teach me the key steps required to call genotypes 



 20 

from the Neurobooster and Global Screening arrays in GenomeStudio. I plated all 

UCL samples with support from Dr Hannah Macpherson and Dr Raquel Real, and 

UCL Genomics carried out the genotyping, providing the raw IDAT data for further 

analyses. The North American samples were plated and genotyped at the MCJ, and 

raw IDAT data was shared with me at UCL for further analyses. 

Dr. Michael Heckmann performed the original MAPT haplotype analysis in Chapter 

6, and I am very grateful for him taking the time to explain to me the steps required to 

reproduce the analysis and providing the code to do so. I wrote the chapter in 

collaboration with Dr. Rebecca Valentino at the MCJ, under the overall supervision of 

Dr Owen Ross, Professor Sir John Hardy and Professor Jonathan Rohrer.  

I performed the data analyses for Chapter 7 and Chapter 8 under the supervision of 

Dr. Maryam Shoai, with input from Professor Sir John Hardy and Professor Jonathan 

Rohrer on results interpretation and conclusions. I am very grateful to Alejandro 

Martinez-Carrasco who helped with the fine-mapping and Coloc analysis of the lead 

loci in these chapters, and also to Dr. Raquel Real who shared code that I modified for 

some of the analyses. I would also like to acknowledge the GP2 teaching materials 

online (https://github.com/GP2-TNC-WG/GP2-Beginner-Bioinformatics-for-PD-

Genetics), that provided an invaluable resource for learning the key steps for genome 

wide association study (GWAS) analysis. In particular thankyou to Dr Sandra 

Bandres-Ciga at NIH who answered any questions I had (at any time of the day or 

night) regarding the pipelines included in this amazing resource. 

  



 21 

Table of Contents  

ABSTRACT ........................................................................................................................................... 7 

IMPACT STATEMENT ....................................................................................................................... 9 

ACKNOWLEDGEMENTS ................................................................................................................ 15 

CONTRIBUTIONS STATEMENT ................................................................................................... 19 

TABLE OF CONTENTS .................................................................................................................... 21 

LIST OF TABLES ............................................................................................................................... 25 

LIST OF FIGURES ............................................................................................................................. 23 

CHAPTER 1: INTRODUCTION ................................................................................................... 27 

1.1   OVERVIEW ................................................................................................................................ 27 

1.2   AN INTRODUCTION TO FTLD AND THE PRIMARY TAUOPATHIES ............................................... 28 

1.3   GENETICS .................................................................................................................................. 49 

1.4   MEASURING DISEASE PROGRESSION .......................................................................................... 57 

1.5   THESIS AIMS .............................................................................................................................. 67 

CHAPTER 2: COHORTS AND GENERAL METHODOLOGY .............................................. 69 

2.1   INTRODUCTION .......................................................................................................................... 69 

2.2   4R TAUOPATHY DISEASE PROGRESSION MODELLING................................................................. 69 

2.3   3R TAUOPATHY (PICK’S DISEASE) GENETIC STUDIES ................................................................ 91 

CHAPTER 3: A DATA-DRIVEN MODEL OF BRAIN VOLUME CHANGES IN 

PROGRESSIVE SUPRANUCLEAR PALSY RICHARDSON SYNDROME ............................ 113 

3.1   INTRODUCTION ........................................................................................................................ 113 

3.2   METHODS ................................................................................................................................ 115 

3.3   RESULTS .................................................................................................................................. 119 

3.4   DISCUSSION ............................................................................................................................. 130 

3.5   CONCLUSIONS AND FUTURE WORK.......................................................................................... 134 

CHAPTER 4:     UNCOVERING SPATIOTEMPORAL PATTERNS OF ATROPHY IN 

PROGRESSIVE SUPRANUCLEAR PALSY USING UNSUPERVISED MACHINE 

LEARNING........................................................................................................................................ 135 

4.1   INTRODUCTION ........................................................................................................................ 135 

4.2   METHODS ................................................................................................................................ 137 

4.3   RESULTS .................................................................................................................................. 149 

4.4   DISCUSSION ............................................................................................................................. 166 

4.5   CONCLUSION AND FUTURE WORK ........................................................................................... 171 

CHAPTER 5: DISTINCT SPATIOTEMPORAL ATROPHY PATTERNS IN 

CORTICOBASAL SYNDROME ARE ASSOCIATED WITH DIFFERENT UNDERLYING 

PATHOLOGIES................................................................................................................................ 172 

5.1   INTRODUCTION ........................................................................................................................ 172 

5.2   METHODS ................................................................................................................................ 174 



 22 

5.3   RESULTS .................................................................................................................................. 183 

5.4   DISCUSSION ............................................................................................................................. 202 

5.5   CONCLUSIONS AND FUTURE WORK.......................................................................................... 207 

CHAPTER 6: INVESTIGATING THE ASSOCIATION OF MAPT HAPLOTYPES WITH 

RISK OF PICK’S DISEASE ............................................................................................................ 208 

6.1   INTRODUCTION ........................................................................................................................ 208 

6.2   METHODS ................................................................................................................................ 209 

6.3   RESULTS .................................................................................................................................. 215 

6.4   DISCUSSION ............................................................................................................................. 221 

6.5   CONCLUSIONS AND FUTURE WORK.......................................................................................... 223 

CHAPTER 7: POTENTIAL GENETIC MODIFIERS OF DISEASE RISK IN AUTOPSY-

CONFIRMED PICK’S DISEASE: A GENOME-WIDE ASSOCIATION STUDY ................... 225 

7.1   INTRODUCTION ........................................................................................................................ 225 

7.2   METHODS ................................................................................................................................ 226 

7.3   RESULTS .................................................................................................................................. 236 

7.4   DISCUSSION ............................................................................................................................. 258 

7.5   CONCLUSIONS AND FUTURE WORK.......................................................................................... 262 

CHAPTER 8: GENETIC DETERMINANTS OF SURVIVAL IN PICK’S DISEASE: A 

GENOME-WIDE ASSOCIATION STUDY ................................................................................... 264 

8.1   INTRODUCTION ........................................................................................................................ 264 

8.2   METHODS ................................................................................................................................ 265 

8.3   RESULTS .................................................................................................................................. 270 

8.4   DISCUSSION ............................................................................................................................. 291 

8.5   CONCLUSIONS AND FUTURE WORK.......................................................................................... 294 

CHAPTER 9: GENERAL CONCLUSIONS AND FUTURE DIRECTIONS ......................... 296 

9.1   SUMMARY ............................................................................................................................... 296 

9.2   DISEASE PROGRESSION MODELLING IN THE 4R TAUOPATHIES ................................................ 297 

9.3   GENETICS ANALYSES IN THE 3R TAUOPATHY PID .................................................................. 302 

APPENDIX A - 4R TAU IMAGING COHORT ............................................................................ 308 

APPENDIX B - PICK’S DISEASE INTERNATIONAL CONSORTIUM (PIC) ....................... 311 

BIBLIOGRAPHY.............................................................................................................................. 319 

 

  



 23 

List of Figures 

Figure 1.1 - The clinico-pathological spectrum of frontotemporal lobar degeneration (FTLD). .......... 29 

Figure 1.2 - The MAPT gene, transcript isoforms and tau protein structure ......................................... 32 

Figure 1.3 - Structure-based classification of tauopathies. .................................................................... 34 

Figure 1.4 - Structure of tau filaments in PiD ....................................................................................... 35 

Figure 1.5 - Clinical syndromes in progressive supranuclear palsy ...................................................... 38 

Figure 1.6 - Contribution of clinical features to different PSP phenotypes .......................................... 40 

Figure 1.7 - Hypothetical model of disease courses in PSP syndromes ................................................ 41 

Figure 1.8 - Structure of tau filaments in CBD and PSP ....................................................................... 42 

Figure 1.9 - Sequential stages of tau pathology in PSP ......................................................................... 46 

Figure 1.10 - Sequential stages of tau pathology in PiD ....................................................................... 48 

Figure 1.11 - Disease causing MAPT mutations ................................................................................... 49 

Figure 1.12 - MAPT mutations and associated pathology .................................................................... 50 

Figure 1.13 - MAPT mutation location and association with sporadic FTLD-Tau pathology ............. 51 

Figure 1.14 - Structure of MAPT 17q21.21 locus ................................................................................. 53 

Figure 1.15 - Overview of current data-driven disease progression models. ........................................ 64 

Figure 1.16 - Conceptual overview of SuStaIn ..................................................................................... 66 

Figure 2.1 - Imaging processing pipeline .............................................................................................. 79 

Figure 2.2 - Schematic of how EBM works .......................................................................................... 80 

Figure 2.3 - Conceptual overview of SuStaIn ....................................................................................... 85 

Figure 2.4 - Flowchart of procedures for SuStaIn model fitting ........................................................... 89 

Figure 2.5 - Global map (A) and table (B) reporting countries and recruitment sites that have 

contributed Pick’s disease tissues to the Pick’s disease International Consortium (PIC) to date ......... 92 

Figure 2.6 - PIC pathological diagnostic criteria for PiD ...................................................................... 94 

Figure 2.7 - Pathological assessments of Pick’s disease brains ............................................................ 95 

Figure 2.8 - Identifying genetic variants by risk allele frequency and genetic effect size. ................. 101 

Figure 3.1 - Kernel Density Estimation (KDE) mixture models ......................................................... 122 

Figure 3.2 - Sequence of atrophy progression in PSP Richardson Syndrome .................................... 123 

Figure 3.3 - Sequence of PSP-RS atrophy progression after five-fold cross validation ..................... 123 

Figure 3.4 - Histogram of event-based model staging results for PSP-RS ......................................... 125 

Figure 3.5 - Longitudinal consistency of baseline EBM ..................................................................... 126 

Figure 3.6 - Association between predicted EBM stage, PSP Rating Scale score, and disease 

duration for all scans (baseline and follow-up) ................................................................................... 127 

Figure 3.7 - Association between predicted EBM stage, PSPRS and disease duration at baseline 

scan only .............................................................................................................................................. 128 

Figure 3.8 - Linear models to test association between age at scan and predicted EBM stage........... 129 

Figure 4.1 - Association of age at baseline scan with covariate adjusted regional volumes in cases . 151 

Figure 4.2 - Association of age at baseline scan with covariate adjusted regional volumes in 

controls ................................................................................................................................................ 152 



 24 

Figure 4.3 - Subtype progression patterns of PSP atrophy identified by Subtype and Stage Inference 

(SuStaIn). ............................................................................................................................................. 155 

Figure 4.4 - Selecting optimal SuStaIn subtype model given data...................................................... 156 

Figure 4.5 - Stage distribution and Subtype probability of two-subtype model ................................. 157 

Figure 4.6 - Average stage of PSP clinical syndromes assigned to the Subcortical SuStaIn subtype 160 

Figure 4.7 - Stage progression at follow-up visits by SuStaIn subtype............................................... 165 

Figure 5.1 - Selecting optimal SuStaIn subtype model given data...................................................... 187 

Figure 5.2 - Two-subtype model of atrophy progression in CBS identified by Subtype and Stage 

Inference (SuStaIn) .............................................................................................................................. 188 

Figure 5.3 - Three-subtype model of atrophy progression in CBS identified by Subtype and Stage 

Inference (SuStaIn) .............................................................................................................................. 190 

Figure 5.4 - Stage progression at follow-up visits by SuStaIn subtype............................................... 193 

Figure 6.1 - Global map (A) and table (B) of reporting countries and recruitment sites that have 

contributed Pick’s disease tissues to the Pick’s disease International Consortium (PIC) to date ....... 211 

Figure 7.1 - Genetic principal component plots .................................................................................. 231 

Figure 7.2 - Overview of sample quality control for PiD GWAS ....................................................... 237 

Figure 7.3 - Association plots for PiD ................................................................................................. 244 

Figure 7.4 - Regional association plots and recombination rates at suggestive genomic loci ............ 246 

Figure 7.5 - Conditional analyses adjusted for the lead SNP at each suggestive GWAS loci. ........... 247 

Figure 7.6 - Fine-mapping of the two lead loci ................................................................................... 250 

Figure 7.7 - Regional plots from PiD GWAS and MetaBrain cis-eQTLs for KCTD8 and YIPF7 

genes .................................................................................................................................................... 252 

Figure 7.8 - KCTD8 RNA and protein expression levels .................................................................... 255 

Figure 7.9 - TRIM22 RNA and protein expression levels ................................................................... 256 

Figure 7.10 - YIPF7 RNA and protein expression levels .................................................................... 257 

Figure 8.1 - Genetic principal component plots .................................................................................. 267 

Figure 8.2 - Overview of sample quality control for PiD GWSS ....................................................... 271 

Figure 8.3 - Distribution of disease duration across PiD cohort ......................................................... 272 

Figure 8.4 - Association plots for PiD survival GWAS ...................................................................... 276 

Figure 8.5 - Conditional analyses adjusted for the lead SNP at the top two GWSS loci .................... 278 

Figure 8.6 - Survival curves for genome-wide significant SNPs. Kaplan-Meier curves for PiD 

survival. ............................................................................................................................................... 280 

Figure 8.7 - Fine-mapping of the NLGN1 locus .................................................................................. 282 

Figure 8.8 - Transcription factor binding site mapping at the NLGN1 locus ...................................... 283 

Figure 8.9 - Cell-type specific regulatory element mapping at NLGN1 locus .................................... 284 

Figure 8.10 - Enhancer element mapping at NLGN1 locus ................................................................ 285 

Figure 8.11 - NLGN1 RNA and protein expression levels .................................................................. 288 

  

https://d.docs.live.net/fe3add5093bc0b29/DOCUME%5eF1-DESKTOP-4GK9CKQ-1937/Work_180508/Research/PhD/Rohrer_Hardy/Admin/Thesis%20committee/thesis%5e0viva/4.%20Thesis/4.2.%20THESIS/Scotton_THESIS_v20.docx#_Toc128231645
https://d.docs.live.net/fe3add5093bc0b29/DOCUME%5eF1-DESKTOP-4GK9CKQ-1937/Work_180508/Research/PhD/Rohrer_Hardy/Admin/Thesis%20committee/thesis%5e0viva/4.%20Thesis/4.2.%20THESIS/Scotton_THESIS_v20.docx#_Toc128231652


 25 

List of Tables 

Table 2.1 - 4R Tau imaging cohort summary ........................................................................................ 77 

Table 2.2 - Overview of PIC contributing sites. .................................................................................... 97 

Table 3.1 - Overview of PSP-RS cases by cohort included in study. ................................................. 116 

Table 3.2 - PSP-RS EBM baseline demographics. .............................................................................. 120 

Table 4.1 - PSP clinical phenotypes and baseline characteristics by contributing cohort. ................. 139 

Table 4.2 - List of GIF subregions included in each region used as SuStaIn input. ........................... 142 

Table 4.3 - Effect size by region of interest. ....................................................................................... 144 

Table 4.4 - SuStaIn algorithm settings for each biomarker. ................................................................ 146 

Table 4.5 - Clinical and baseline characteristics by clinical diagnosis. .............................................. 150 

Table 4.6 - Comparison of demographics, clinical diagnosis and test scores between SuStaIn 

subtypes. .............................................................................................................................................. 158 

Table 4.7 - Average stage by clinical syndrome by SuStaIn Subtype ................................................. 160 

Table 4.8 - Regional brain volumes by subtype in the 2-subtype model ............................................ 161 

Table 4.9 - Comparison of adjusted clinical scores between subtypes. .............................................. 163 

Table 4.10 - Longitudinal consistency of subtype assignments .......................................................... 164 

Table 5.1 - GIF subregions included in each cortical and cerebellar region used as SuStaIn input. .. 177 

Table 5.2 - Effect size (Cohen's 𝑑) by region of interest. .................................................................... 180 

Table 5.3 - SuStaIn algorithm settings for each biomarker ................................................................. 181 

Table 5.4 - Baseline clinical and demographic data (by pathology) ................................................... 185 

Table 5.5 - Longitudinal consistency of subtype assignments for two-subtype model. ...................... 192 

Table 5.6 - Longitudinal consistency of subtype assignments for three subtype model ..................... 192 

Table 5.7 - Comparison of demographics, pathological diagnosis and clinical test scores between 

subtypes (two-subtype model). ............................................................................................................ 195 

Table 5.8 - Regional brain volumes by subtype in the two-subtype model ........................................ 196 

Table 5.9 - Comparison of demographics, pathological diagnosis and clinical test scores between 

subtypes (three-subtype model) ........................................................................................................... 197 

Table 5.10 - Regional brain volumes by subtype in the three-subtype model .................................... 198 

Table 5.11 - Comparison of adjusted clinical scores between subtypes in the two-subtype model .... 200 

Table 5.12 - Comparison of adjusted clinical scores between subtypes in the three-subtype model .. 201 

Table 6.1 - Genotype counts and frequencies of six common MAPT SNPs in Pick’s disease cases 

and controls. ........................................................................................................................................ 213 

Table 6.2 - Clinical characteristics of samples included in MAPT haplotype analysis. ...................... 215 

Table 6.3 - Associations of individual MAPT variants with risk of Pick’s disease............................. 217 

Table 6.4 - Associations of individual MAPT variants with age of disease onset and disease 

duration in Pick’s disease subjects ...................................................................................................... 217 

Table 6.5 - Associations between MAPT haplotypes and risk of Pick’s disease. ............................... 219 

Table 6.6 - Associations of MAPT haplotype with age of disease onset and disease duration in 

Pick’s disease cases. ............................................................................................................................ 220 



 26 

Table 7.1 - Overview of total PiD samples included, broken down by contributing site.................... 228 

Table 7.2 - Clinical characteristics of samples included in GWAS. ................................................... 238 

Table 7.3 - Candidate variant analysis using GWAS data .................................................................. 240 

Table 7.4 - MAPT Haplotypes from GWAS ....................................................................................... 241 

Table 7.5 - Top independent SNPs at suggestive loci from PiD GWAS ............................................ 245 

Table 7.6 - Fine-mapping results of KCTD8 and TRIM22 loci ........................................................... 249 

Table 8.1 - Clinical characteristics of samples included in GWSS. .................................................... 272 

Table 8.2 - Candidate variant analysis using GWSS data ................................................................... 274 

Table 8.3 - Top independent genome wide significant SNPs from PiD GWSS ................................. 275 

Table 8.4 - Lead Genomic Loci from PiD GWSS (𝑝 < 5 x 10-6) ........................................................ 277 

Table 8.5 - Colocalisation analysis of MetaBrain / eQTLGen datasets for genomic loci 𝑝< 5x10-7 .. 286 

 



27 

Chapter 1:  Introduction   

1.1   Overview 

Neurodegenerative diseases are a major and growing cause of mortality worldwide1. 

Specific diseases caused by neurodegeneration include Alzheimer’s disease (AD), 

Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB) and Frontotemporal 

Lobar Degeneration (FTLD). Increasing life expectancy, in part due to more effective 

treatment of other age-related conditions such as cancer and ischaemic heart disease, 

combined with population growth, is driving an increase in the global burden of these 

disorders2. This threatens to further increase the pressure on already overstretched 

healthcare services3. Globally the number of people living with dementia, of which 

neurodegenerative disease is the commonest cause, doubled to 43.8 million between 

1990 and 20164. It is projected that by 2050 over 100 million people will be living 

with dementia5. The estimated societal economic cost in 2018 was over one trillion 

dollars and is forecast to double by 20306. A significant proportion of this financial 

cost, not to mention the emotional suffering, is borne by the affected individual and 

their family7. Apart from the recent promising data for the anti-amyloid monoclonal 

antibody Lecanemab in early onset AD8, for all other sporadic neurodegenerative 

diseases there are currently no disease modifying therapies available.  

In this thesis I focus on the primary tauopathies, a subgroup of FTLD, that share a 

common molecular mechanism of pathogenic accumulation of the altered 

microtubule-associated protein tau (MAPT); in particular Pick’s disease (PiD), 

progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). These 

diseases can present anytime within adulthood, with rapidly progressive cognitive, 

behavioural and/or motor symptoms. They account for approximately 40% of FTLD 

cases9. FTLD is the third most common neurodegenerative cause of dementia after AD 

and DLB10–12 and has a similar prevalence to AD in patients younger than 659,13,14.  

The overarching aims of my PhD are firstly to use data-driven generative models of 

disease progression to accurately stage and subtype patients with these diseases using 

structural MRI, and then to identify genetic risk factors for disease onset and 

progression. 
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1.2   An introduction to FTLD and the primary 

tauopathies 

1.2.1 Terminology and clinical syndromes 

Research into FTLD is plagued by confusing terminology, which is exacerbated by the 

heterogeneous and often overlapping clinical syndromes that the underlying 

pathologies can present with. In this thesis I use the current consensus nosology to 

describe the spectrum of FTLD and associated clinical syndromes. The term FTLD 

refers to the neuropathological diagnosis characterised by the pathological 

accumulation of a disease specific protein15. I will use the term “frontotemporal lobar 

degeneration syndromes” to refer to the range of clinical syndromes that individuals 

can present with. These include behavioural variant frontotemporal dementia 

(bvFTD)16, the semantic (svPPA) and non-fluent (nfvPPA) variants of the primary 

progressive aphasias (PPA)17, progressive supranuclear palsy (PSP) syndrome, and 

corticobasal syndrome (CBS)18. The logopenic variant of PPA (lvPPA) is not 

commonly incorporated into the clinical spectrum of the FTLD syndromes due to its 

more common association with AD19. 

1.2.2 Frontotemporal lobar degeneration 

FTLD encompasses a highly heterogeneous group of disorders both in terms of clinical 

presentations and neuropathology (Figure 1.1). FTLD patients are 

neuropathologically characterised by relatively localized degeneration of the frontal 

and temporal lobes12,20, though the pathology can also involve subcortical structures 

such as the amygdala, hippocampus, basal ganglia, thalamus and brainstem21,22. This 

results in a diverse range of clinical syndromes depending on the particular pattern of 

neurodegeneration. As the pathology progresses through the brain, individual patients 

can go on to develop overlap syndromes depending on the particular pattern of 

topographical spread. While some patients can present with progressive changes in 

behaviour (bvFTD), others can develop language dysfunction presenting as one of the 

PPAs; most commonly nfvPPA or svPPA. These syndromes often converge as the 

disease progresses23. A proportion of patients with FTLD can present with, or develop, 
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atypical parkinsonian syndromes such as PSP and CBS, or motor neuron disease / 

amyotrophic lateral sclerosis (MND/ALS)19.  

Microscopically, there is micro-vacuolation and neuronal loss with misfolded protein 

aggregation in neurons and/or glial cells12. The current molecular pathological 

classification splits FTLD into three major subtypes, based on the protein aggregates 

that are most characteristic: TDP-43 (FTLD-TDP43), tau (FTLD-tau), or FET (FTLD-

FET)15,24,25. FTLD-FET is characterized by pathologic inclusions of the FET proteins, 

including FUS (Fused in sarcoma), Ewing sarcoma, and TATA-binding protein-

associated factor 2N (TAF15).A fourth subtype, FTLD-UPS, was introduced for very 

rare forms of FTLD associated with inclusions only labelling for markers of the 

ubiquitin/proteasome system (UPS). So far these inclusions have only been seen in 

cases with mutations in CHMP2B.24.  

 

Figure 1.1 - The clinico-pathological spectrum of frontotemporal lobar degeneration (FTLD). The 

first row shows the clinical syndromes associated with FTLD, with colours showing the proportion of 

cases associated with each FTLD subtype. The next row shows the neuropathological subtypes of 

FTLD, and the final row shows the Mendelian mutations so far identified to cause the respective 

pathologies. Abbreviations – FTD: Frontotemporal dementia, PPA: Primary progressive aphasia 

bvFTD: behavioural variant FTD, nfvPPA: non-fluent variant PPA, svPPA: semantic variant PPA, 

CBS: corticobasal syndrome, lvPPA: logopenic variant PPA, PSP: Progressive supranuclear palsy, 

CBD: Corticobasal degeneration, AGD: Argyrophilic grain disease, GGT: Globular glial tauopathy, 

FTLD-U: FTLD-UPS (ubiquitin proteosome system), a-FTLD-U: atypical FTLD-U, BIBD: Basophilic 

inclusion body disease, NIFID: Neuronal intermediate filament inclusion disease. Reproduced with 

permission from Murley 202026.  
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FTLD-tau pathology accounts for approximately 40% of all cases of FTLD23, and the 

diseases within this subgroup are referred to as primary tauopathies. AD, in contrast, 

is classed as a secondary tauopathy as the tau pathology is thought to occur 

downstream mechanistically of amyloid deposition27.  

1.2.3 Tau biology in health and disease 

Tau is a microtubule associated protein that has an important role in microtubule 

assembly and stability, crucial for regulating axonal transport and maintaining 

neuronal stability28,29. Although predominantly expressed in neurons, it is also found 

in glial cells (astrocytes and oligodendrocytes), albeit at much lower concentrations30. 

Tau may also interact with the actin cytoskeleton, plasma membrane and cytoplasmic 

organelles31,32. The tau gene (MAPT) is located on chromosome 17q21, and six major 

isoforms, ranging from 352 to 441 amino acids in length, are expressed in the adult 

human brain (Figure 1.2). These isoforms are produced by alternative splicing of 

messenger RNA (mRNA) transcripts from MAPT, differing by the presence or absence 

of inserts of 29 and 58 amino acids in t   he N-terminal region (exons 2 and 3, 

with exon 3 only being transcribed together with exon 2), and in the C-terminal region 

the inclusion, or exclusion, of the 31 amino acid microtubule binding repeat, encoded 

by exon 1033.  Alternative splicing of exons 2 or 3 produces isoforms with either none, 

one or 2 amino terminal inserts, whereas alternative splicing of exon 10 produces 

isoforms with either three (3R) or four (4R) microtubule binding regions. 3R tau 

isoforms predominate in the developing human brain, whereas in healthy adult brain, 

there is an equal ratio of 3R and 4R tau34. Adult 4R tau isoforms bind more strongly 

to microtubules than 3R, promoting microtubule assembly, which is in keeping with 

the need for a more dynamic cytoskeleton during nerve cell development35.  

Phosphorylation has been shown to dynamically regulate the physiological functions 

of tau36,37, and in the primary tauopathies there is excessive and abnormal intracellular 

accumulation of insoluble fibrils of hyperphosphorylated tau in both neurons and glia 

38,39. Other post-translational modifications (including acetylation, glycosylation and 

truncation) may also contribute to pathology40. The amount and site of 

phosphorylation, and the ratio of 3R:4R isoforms varies between tauopathy subtype 

and is likely to explain, at least in part, the variation in inclusion morphology and 

cellular specificity23. This is supported by recent cryo-electron microscopy studies that 
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confirm disease-specific molecular conformations of tau fibrils across the tauopathy 

spectrum41 (which I shall discuss in more detail in the next section). The primary 

tauopathies can be classified based on the distinct involvement of anatomical areas, 

the cell types in which abnormal tau accumulates42, and the ultrastructural features of 

the tau filaments41. These include PiD characterised by 3R tau immunoreactive 

neuronal inclusions; PSP, CBD, globular glial tauopathy (GGT), and argyrophilic 

grain disease (AGD) characterised by 4R tau in morphologically diverse neuronal and 

glial inclusions, and FTLD-tau due to MAPT mutations where the underlying 

pathology is heterogeneous and dependent on the specific mutation. 
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Figure 1.2 - The MAPT gene, transcript isoforms and tau protein structure. (A) The MAPT gene 

consists of 16 exons and six main transcripts resulting in six different protein isoforms in the human 

brain. Exons 1, 4, 5, 7, 9, 11, 12, and 13 are constitutive. whereas 2, 3, 6, and 10 are subject to alternative 

splicing. Exons 1 and 14 are in the untranslated regions of the gene. Alternative splicing of exons 2 or 

3 produces isoforms with either none, one or 2 amino terminal inserts, whereas alternative splicing of 

exon 10 produces isoforms with either three (3R) or four (4R) microtubule binding regions. (B) Tau 

protein structure. Tau has four domains with different biochemical properties: and acidic amino terminal 

domain (encoded by exons 1-5), a proline rich domain (encoded by exons 7 and 9), the microtubule-

binding region (MTBR) with 3-4 repeated sequences (3R tau [R2-R4] and 4R tau [R1-R4]), and a 

carboxy-terminal domain Reproduced with permission from Colin et al. 202040. 

 

1.2.4 A structural classification of the tauopathies 

Recently Shi et al. have proposed a structural based classification system for the 

tauopathies based on the unique filament fold derived from high-resolution cryo-

electron microscopy (cryo-EM)41. In this study they build on previous work showing 

unique tau folds in AD (with identical folds in primary age related tauopathy [PART]), 

chronic traumatic encephalopathy (CTE), PiD and CBD43–47, and determine cryo-EM 

structures for the remaining primary tauopathies (PSP, GGT, AGD, 4R predominant 
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MAPT mutations, familial Danish dementia [FDD], ageing-related tau astrogliopathy 

[ARTAG] and familial British dementia [FBD]). Overall , there are eight unique tau 

folds identifiable with cryo-EM across the 14 tauopathies suggesting an overarching 

hierarchical classification based on tau filament folds that complements the existing 

classification based on clinical features and post-mortem neuropathological 

examination (Figure 1.3).  

In support of the validity of this classification system, there was a direct correlation 

between structural tau strains and specific tauopathies; individuals with the same 

disease had the same tau strain, and the tau strains usually differed between disease48. 

This association suggests that therapeutic approaches as well as diagnostics should 

take into account fibril structure. The question as to whether the fibrils are a 

consequence of disease, correlated or the actual cause remains to be determined. 

However, given the misfolding of tau into reproducible fibrils across the range of 

tauopathies investigated in a total of eight different ways, it seems the most likely 

explanation is that the variation in fibril type is, at least in part, a component of the 

main disease causing mechanism. Given the different fibrils have differing exposed 

surfaces with varying stabilities and flexibilities, it is possible that each fibril type 

causes cell-specific intracellular damage in a unique way48. An alternative explanation 

for the data is that under physiological conditions normal tau folds into a range of 

different fibrils, with particular fibrils strains selected for in specific tauopathies in 

certain cell types. This type of selection as been previously shown in prion diseases, 

where the infectious prion pool consists of several fibril polymorphisms49. Either way 

this study is a milestone in our understanding of the tauopathies providing a framework 

for both the development of more specific and sensitive tau biomarkers, and increasing 

our understanding of the underlying disease pathogenesis. It provides support for the 

hypothesis of the aggregation of tau (with perhaps different folds determining disease 

specific cell type vulnerability) in a small number of brain cells, followed by a prion-

like spreading of pathological tau through the brain50 in a specific spatiotemporal 

pattern51,52. 
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Figure 1.3 - Structure-based classification of tauopathies. The dendrogram shows the proposed 

classification of tauopathies, with the corresponding folds displayed with the first β-strand in R3 

oriented horizontally, except for the GGT and GPT folds, which are aligned to the PSP fold. Residues 

in R1–R4 and in the C-terminal domain are coloured purple, blue, green, gold and orange, respectively. 

Internal, non-proteinaceous densities are shown in black. AD, Alzheimer’s disease; PiD, Pick’s disease. 

Reproduced with permission from Shi et al. 202141. 

Given the focus of this thesis is on PiD, PSP and CBD I will review these specific 

diseases in more detail below. For more detail on GGT, AGD, PART, ARTAG and 

CTE see the following excellent reviews of the primary tauopathies27,30,53. Ghetti et 

al.54 also gives a comprehensive overview of the pathology related to autosomal 

dominant MAPT mutations. 
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1.2.5 3R tauopathies: Pick’s disease 

PiD is a 3R predominant tauopathy characterised by severe atrophy of the frontal, 

temporal and to a lesser extent the parietal lobes55. It is morphologically and 

biochemically distinct from all of the other FTLD-tau subtypes, with the presence of 

neuronal spherical Pick’s bodies containing 3R tau, ramified astrocytes and less 

frequently oligodendroglial globular inclusions56 throughout the frontotemporal 

neocortex, white matter and to a lesser extent the basal ganglia and brainstem nuclei53. 

Granular neurons of the dentate fascia and hippocampal neurons are particularly 

susceptible to Pick’s bodies12. The tau filaments are characterised by 22-24 nm 

diameter twisted filaments57 with 15-19 nm diameter straight tubules, and have a novel 

fold shown on cryo-electron microscopy unique to PiD47 (Figure 1.4).  

 

Figure 1.4 - Structure of tau filaments in PiD. Models based on resolved cryo-EM tau protofilaments 

structure in PiD. (A) Schematic of the secondary structure elements in the Pick folds depicted as a single 

rung. The positions of Cys322 (yellow ‘C’) and Asp348 (red ‘D’) are highlighted (B) Rendered view of 

the secondary structure elements in the Pick fold, depicted as three successive rungs. Figure modified 

from Falcon et al.47 with permission.   
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Historically PiD referred to a clinical syndrome of progressive behavioural and 

language decline first described by Arnold Pick in 189255, and became synonymous 

with the spectrum of FTLD syndromes. It was a further nineteen years before Alois 

Alzheimer reported the classic pathology of Pick’s bodies and ballooned cells58. It has 

only been in more recent years, as the lack of clinico-pathological correlation became 

clearer, that the label of Pick’s Disease has been updated to refer only to those patients 

at post-mortem that have the classic 3R pathological findings detailed above25. 

Although PiD is rare, more recent studies suggest it accounts for up to 30% of FTLD-

tau cases at autopsy59, and 10% of all cases of FTLD overall. Given the difficulty of 

diagnosing PiD in life, the prevalence is unknown, though it has been estimated that it 

is at least ten times less frequent than AD60.  

PiD usually develops in those over the age of 55 years, with average survival 

approximately ten years from symptom onset61–64. These studies suggest there is a 

significant variation in survival with some individuals surviving for more than 20 

years61. PiD can present across the spectrum of FTLD clinical syndromes, though 

bvFTD is the most common (up to 84% of cases), followed by svPPA, nvPPA and 

CBS65. In a recent study, 24% of individuals with PiD (5/21) had a clinical diagnosis 

of CBS, suggesting that CBS may not be as rare presentation of PiD as previously 

thought66. As the disease progresses the clinical syndromes may converge65,67. 

Imaging studies show PiD is an asymmetrical disease that has a predilection for either 

the right or left hemisphere initially with this asymmetry increasing as the disease 

progresses65. In particular it appears to affect a network of cortical regions including 

the frontal insula, anterior temporal lobe, anterior cingulate and with lesser 

involvement of the basal ganglia, posterior temporal and anterior parietal areas62,67. 

The presenting clinical syndrome is likely to relate to the specific region of this 

network affected first: bvFTD occurs most commonly when there is anterior right 

hemisphere atrophy, svPPA with left anterior temporal atrophy, nfvPPA with left 

frontal-insula atrophy, and CBS if posterior frontal and parietal regions are affected 

first65. The overlap of clinical syndromes as the disease progresses is likely to due to 

sequential atrophy of similar hubs in the network. 
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1.2.6 4R tauopathies 

1.2.6.1 Progressive supranuclear palsy 

PSP is a 4R tauopathy characterised by neurodegeneration and tau accumulation 

predominantly in the subthalamic nucleus, globus pallidus, striatum, cerebellum with 

dentate nucleus, frontal lobes and to a lesser extent in the occipital cortices51. The 

neuropathological diagnosis is based on the presence of a combination of 

neurofibrillary tangles and tufted astrocytes in subcortical nuclei68,69, in addition to 

oligodendroglial coiled bodies and diffuse cytoplasmic immunoreactivity in 

neurons30,70.  

The most common so called “classical” clinical phenotype of PSP, Richardson 

syndrome (PSP-RS), was first described by Steele, Richardson and Olszewski in 

196371. It is characterised by a levodopa unresponsive akinetic-rigid syndrome with a 

vertical supranuclear gaze palsy, early falls and dementia. Diagnosis of PSP-RS was 

operationalised in the NINDS–Society for Progressive Supranuclear Palsy criteria of 

199672. PSP-RS is associated with PSP pathology in approximately 90% of cases73. 

Epidemiological studies of PSP have been largely based on this classical clinical 

phenotype, suggesting an annual incidence increasing with age from 1.7 cases per 

100,000 at ages 50 to 59 years to 14.7 per 100,000 at 80 to 89 years74. Overall 

prevalence has been estimated between 4-7 per 100,00014,75,76. This makes PSP-RS the 

most common of the FTLD-tau diseases. 

In recent years it has become clear from pathological studies that there is significant 

pathological heterogeneity resulting in a spectrum of clinical presentations; indeed 

PSP-RS may only account for approximately half of autopsy-confirmed PSP cases77–

79 with the remainder presenting with variant PSP (vPSP) clinical syndromes. These 

include parkinsonism resembling idiopathic Parkinson’s disease (PSP-P)78–80, 

progressive gait freezing (PSP-PGF)81–83, postural instability (PSP-PI)77,84, 

predominant ocular motor dysfunction (PSP-OM)72,77, a fronto-behavioural 

presentation (PSP-F) including bvFTD85–87, and a speech / language disorder (PSP-

SL) including progressive apraxia of speech (AOS) and nfvPPA88–92, corticobasal 

syndrome (PSP-CBS)93,94 and primary lateral sclerosis (PSP-PLS)95,96. It is important 

to note that although PSP-RS has a high clinico-pathological correlation with 

underlying PSP pathology73, a wider range of pathologies can underlie the vPSP 
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syndromes (Figure 1.5). However, where the PSP syndrome is caused by underlying 

PSP pathology, the PSP tau filament fold is identical between typical and variant PSP 

syndrome41 (Figure 1.3), suggesting that the initiating sites of tau pathology are 

similar in the clinical subtypes with differing subsequent propagation patterns. The 

PSP tau fold structure is most similar to the GGT fold, with it adopting a markedly 

different confirmation to the fold seen in CBD. 

 

 

Figure 1.5 - Clinical syndromes in progressive supranuclear palsy. Relative proportions of each 

syndrome (represented by bar length)  are speculative. PSP with mixed pathology means meeting the 

neuropathological criteria for PSP in addition to other neurodegenerative disorders. Other pathology 

means at post-mortem pathology is demonstrated to not be PSP but rather another pathology such as 

AD or Parkinson’s Disease. Figure reproduced with permission from Boxer at al. 201797 

This clinical heterogeneity has been operationalised in the 2017 Movement Disorder 

Society (MDS) PSP clinical diagnostic criteria98, to try and improve the clinical 

detection (sensitivity) of underlying PSP pathology, while achieving high specificity 

versus alternative diagnoses. These new criteria expand the core functional domains 

of postural instability and ocular motor dysfunction by adding in two further domains 

(cognitive dysfunction and akinesia), and also specify in each domain three 

characteristic core clinical features stratified by presumed levels of certainty (1 

[highest], 2 [mid], and 3 [lowest]). Specific combinations of the core clinical features 

indicate the degree of diagnostic certainty and map to specific PSP syndrome 

diagnoses (16 in total) (Figure 1.6). The “probable” diagnoses have a high specificity 

for underlying PSP pathology but low sensitivity early in the disease course, while the 
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“possible” category have a high sensitivity but lower specificity. The introduction of 

the new category “suggestive of” recognises that early in the disease course key 

diagnostic features may not be present and so the individual may not meet formal 

diagnostic criteria. However, this category allows the early identification of 

individuals with PSP pathology99 (with the acknowledgement there may a different 

underlying pathology driving the presentation in some cases), that may be suitable for 

biomarker development or inclusion in clinical trials of disease-modifying therapie100. 

It also allows for a change in the diagnostic label between vPSP and typical (PSP-RS) 

PSP over time. To overcome the issue of individuals being assigned to multiple 

diagnoses, Grimm et al.99 proposed the four MAX (multiple allocation extinction)-

rules which decrease the average number of diagnoses per individual from 5.4 to 1.1. 

The first two rules state that diagnostic certainty (probable > possible > suggestive of) 

and temporal order (1st > 2nd > 3rd diagnosis) should be applied based on the rational 

that this reflects increasing specificity of there being underlying PSP pathology. Rule 

three states that those phenotypes with a higher specificity for PSP pathology should 

take precedence (PSP-RS > PSP-OM/PSP-PI > others), while rule four states that 

where more than one of the above rules apply the rule hierarchy is Rule 1 > Rule 2 > 

Rule 3. Studies support the 2017 criteria  having a higher sensitivity for PSP pathology 

than the previous NINDS criteria (87.9% vs 45.5%)101,102, and the “suggestive of PSP” 

clinical category significantly increases the sensitivity for early identification of 

patients with PSP pathology99. 

Natural history studies have shown for typical PSP (i.e. PSP-RS) that the mean age of 

disease onset is 63 to 67 years with a mean disease duration of 6 to 7 years14,103,104 The 

subcortical PSP variants, PSP-P and PSP-PGF, have a similar age of disease onset to 

PSP-RS, but have a significantly longer disease duration (PSP-RS 6-7 years, PSP-P 9 

years, PSP-PGF 13 years), and slower rates of disease progression81,103–109. This is 

supported by a recent pathology study showing that disease duration is significantly 

longer in PSP subcortical phenotypes compared to PSP-RS and PSP cortical 

variants107. Even when controlling for disease severity at baseline, PSP-RS progresses 

significantly faster that PSP-P105. The molecular pathogenic basis for this clinical 

variation is still poorly understood, though a recent study by Kovacs et al. 51 shows 

that significant differences in tau burden and different tau cytopathlogies may 

distinguish clinical subtypes.  
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Figure 1.6 - Contribution of clinical features to different PSP phenotypes. Sankey plot with core 

clinic features displayed on then left of the plot and the phenotypic diagnoses according to the MDS 

2017 PSP diagnostic criteria (Hoglinger 2017) on the right. The phenotypic diagnoses are coloured 

according to diagnostic certainty: high (‘Probable’- green), medium (‘Possible’- yellow) and low 

(‘Suggestive of’ – red). O = Ocular motor dysfunction, P = Postural instability, A = Akinesia, C = 

Cognitive dysfunction. Reproduced with permission from Street 2022110. 

Given the rare sporadic nature of PSP, and the absence of in-vivo biomarkers, little is 

known about the pre-diagnostic stages of the disease. There is strong evidence in more 

common sporadic neurodegenerative disorders such as AD and PD that there is a pre-

symptomatic phase in which neuropathological changes accumulate before the 

threshold for manifestation of clinical symptoms is reached97. In genetic forms of AD 

and FTD biomarker changes occur between 10-25 years prior to clinical symptom 

onset111–114. Reports of mild asymptomatic PSP pathology in clinically healthy older 

people115–117, suggest that a similar sequence of events occurs in PSP. A recent study 

of UK Biobank data suggests that clinical diagnostic features of PSP (motor slowing, 

cognitive dysfunction and postural instability) are present at least three years before 

diagnosis suggesting that in addition to a presymptomatic phase there is also a long 

prediagnostic phase in PSP with subtle changes in motor and cognitive function118. A 

hypothetical model for PSP incorporating the MDS 2017 diagnostic criteria has been 
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proposed by Boxer et al.100 (Figure 1.7). However, given the lack of symptoms in the 

pre-symptomatic period and the lack of clear mendelian genetics, combined with the 

low specificity of early symptoms in the pre-diagnostic phase of PSP has made 

research in these early stages very difficult. 

 

Figure 1.7 - Hypothetical model of disease courses in PSP syndromes. Hypothetical model of the 

clinical trajectories of progressive supranuclear palsy Progressive supranuclear palsy is considered as a 

pathological continuum from a presymptomatic phase, through a suggestive phase, to a fully 

symptomatic phase that, in many cases, would meet research criteria for possible or probable PSP-

Richardson’s syndrome by the Movement Disorder Society criteria,10 or a variant PSP syndrome. Not 

all cases of presymptomatic or suggestive PSP will progress to a PSP phenotype. PSP=progressive 

supranuclear palsy. Reproduced with permission from Boxer et al.100 

1.2.6.2 Corticobasal degeneration 

CBD is characterised by the accumulation of hyper-phosphorylated 4R tau in both 

neurons and glia of the cortical and subcortical regions, and to a lesser extent the 

brainstem119,120. The hallmark glial lesion that distinguishes it from the other primary 

tauopathies is the large and diffuse astrocytic plaque found in the limbic and 

subcortical structures68,121, though one also finds tau-positive “coiled bodies” and tau 

inclusions in the white matter. Macroscopically, there is atrophy in the medial surface 

of the superior frontal gyrus, subcortical white matter atrophy, thinning of the corpus 

callosum, discoloration of the globus pallidus and invariably depigmentation of the 

substantia nigra with gliosis and neuronal loss66. The subthalamic nucleus may have 

atrophy, but is usually less affected than in PSP. Although classically CBD is thought 

to be characterised by asymmetrical atrophy, there is a growing recognition that lack 

of marked asymmetry does not rule out CBD pathology66.  
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The histopathogical features of CBD can overlap with PSP23,120, and there has been 

ongoing debate about the utility of considering these disease as separate clinic-

pathological entities122,123. However, recent evidence from cryo-EM studies 

demonstrated a unique tau filament ultrastructure in CBD that is distinct from PSP as 

well as the other tauopathies41,46   Although the ordered core of the CBS tau fold 

is essentially the same as that in the PSP tau filaments, it adopts a markedly different 

confirmation. This supports, at least from a pathological perspective, that CBD is a 

distinct disease. 

 

Figure 1.8 - Structure of tau filaments in CBD and PSP. Schematic model based on resolved cryo-

EM tau protofilament structure in (A) CBD and (B) PSP. Internal, nonproteinacious densities are shown 

in seen in black. Adapted from Zhang et al. 202046 and Shi et al41  
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CBD was originally described by Rebeiz at al.124 in the 1960s to describe CBD 

pathology presenting with a classical CBS; what was thought at the time to be a distinct 

clinic-pathological entity. Findings from large autopsy studies demonstrated that less 

than 50% of CBS patients had underlying CBD pathology with alternative underlying 

pathologies including most commonly AD and PSP53. Other pathologies found at post-

mortem include FTLD-TDP-43125, Lewy body disease (LBD)126, primary lateral 

sclerosis127, FTLD-FUS128, Creutzfeldt Jacob disease (CJD)129, cerebrovascular 

disease130 and atypical MSA131.  

Conversely CBD pathology, in addition to presenting with CBS (37% of cases) 132,133, 

can present with PSP-RS (23%)133,134, bvFTD (14%)134–137, nfvPPA (5%)138,139, or an 

AD amnestic syndrome (8%)140. The heterogeneity of clinical syndromes in CBD is 

related to the diversity of focal cortical atrophy, with the specific clinical syndrome 

related to the location of the highest burden of tau pathology141. Pathogically, CBD 

can be divided based on the distribution and severity of pathology into three main 

subtypes which correspond to the main clinical phenotypes: typical CBD, “basal 

ganglia predominant” CBD and “PSP-like” CBD66. Both “basal ganglia predominant” 

and “PSP-like CBD” are associated with a PSP like syndrome, while typical CBD is 

associated with a frontal behavioural-spatial (bvFTD like) syndrome. Tau burden in 

CBD-CBS is greater in the frontal (in particular motor) and parietal cortices, whereas 

in CBD-PSP it is greater in the cerebellum and medulla. The contribution of co-

pathologies is an area of active research, with the suggestion that this may modify 

clinical phenotypes: TDP-43 pathology, affecting in particular the midbrain 

tegmentum, is more common in CBD-RS than CBD-CBS142. 

In the absence of a molecular biomarkers for CBD or co- pathology this has made the 

definition of sensitive and specific clinical diagnostic criteria for CBD extremely 

challenging. The most recent diagnostic criteria for CBD are the Armstrong criteria140, 

which define four clinical syndromes of CBD pathology: CBS, PSP syndrome (PSPS), 

frontal behavioural-spatial syndrome and nfvPPA. CBS is further classified as 

probable or possible. Based on the combination of clinical phenotypes and associated 

features individuals can be defined as either probable or possible CBD. The probable 

CBD label aims to identify individuals with a high probability of CBD pathology, 

while those with possible CBD are more likely to have mixed pathology. Although the 

Armstrong criteria are an advance on previous criteria due to including clinical 
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phenotypes other that CBS, they have been shown to have low sensitivity and 

specificity143. The 2017 MDS diagnostic criteria for PSP include CBS as one of the 

eight possible clinical phenotypes (possible PSP with CBS [PSP-CBS])98. This 

phenotype is included within the probable 4R tauopathy classification, to allow for 

join ante-mortem recognition of clinical syndromes that predict with high specificity 

the presence of underlying PSP or CBD pathology99. These criteria include AD 

biomarkers to exclude AD pathology, the most common non-CBD pathology 

underlying CBS. With development of tau isoform specific biomarkers alongside AD 

biomarkers, it will be necessary to incorporate these into updated diagnostic criteria to 

improve sensitivity and specificity. 

1.2.7 Pathological staging systems  

There is growing evidence that disease progression in tauopathies is characterised by 

the accumulation of pathological tau in vulnerable neuronal populations (primary 

vulnerable cells) and then spread (propagation) to an increasing number of brain 

regions (secondary vulnerable cells) in a hierarchical and stereotypical pattern144. A 

number of studies suggest that propagation of pathology occurs in a prion-like manner, 

where conformational ‘seeds’ of the pathological protein are transmitted from cell-to-

cell34,145–147. Although the so-called “pathogenic spread” model can account for the 

stereotypical spatial distribution of protein aggregates seen in neuro-pathological 

staging, equally the older concept of selective neuronal vulnerability could also explain 

this observation. The proponents of this hypothesis argue that certain neurons are more 

vulnerable to the accumulation of a pathological protein than others148, perhaps due to 

differences in gene expression profiles, leading to them degenerating earlier than 

others. Of course, these competing hypotheses are not necessarily mutually exclusive, 

as it is also possible that “selective vulnerability” to particular tau species/conformers 

could explain the variation in initiation site of pathology, with subsequent spread then 

determined by “pathogenic spread” down either anatomical or functional connections, 

or indeed both. It may also be the case that the relative contribution of these two 

mechanisms varies between the specific disease.  

The recognition of sequential involvement of brain regions in neuropathology studies, 

has led to the development of staging systems based on the spatial distribution of 

protein deposits. A recent study in PSP by Kovacs et al.51 consolidates and builds upon 
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previous work showing that the dominant tau pathology in incipient cases is astrocytic 

115, and the severity and distribution of 4R tau pathology differs between clinical 

phenotypes78,79,94,149. In PSP-RS they demonstrated that there are six sequential stages 

of brain region involvement starting with the subthalamic nucleus, with tau pathology 

spreading out caudally to the cortex and rostrally to the cerebellum. There appeared to 

be a common early vulnerability pattern across all PSP subtypes centred on the pallido-

nigro-luysian axis, that then diverges both spatially and in relation to the predominant 

cytopathology (neuronal vs glial) between different subtypes (Figure 1.9)51. Although 

neuronal tau pathology is important, in the earliest stage they found that both astrocytic 

and oligodendroglial tau pathology can proceed neuronal pathology in some regions. 

This finding is difficult to explain directly by anatomical connections within the 

“pathogenic spread” model, and evidence at the transcriptomic level showing that 

neurofibrillary tangles are enriched for synaptic and PSP risk genes, whilst tufted 

astrocytes are enriched for the microglial immune network, suggests that cell-

autonomous vulnerability certainly plays a role150. The early involvement of astrocytes 

is also seen in CBD119, while there have also been reports of cases of PiD where there 

is astrocytic tau in the absence of neuronal tau62,151. 
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Figure 1.9 - Sequential stages of tau pathology in PSP. (A) Heatmap showing development of tau 

pathology in pooled cases of different PSP clinical subtypes. Based on conditional probability matrix 

of total tau pathology across pooled cases. Dark red indicates early and yellow-white later involvement. 

Grey indicates region not included in analysis. (B) Data from conditional probability matrix stratified 

for accumulation of neuronal, astroglial and oligodendroglial pathologies.  Numbers in brackets indicate 

the order (1 = earliest vs. 6 = latest) specified region becomes abnormal in sequence. Adapted from 

Kovacs et al.51. 
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Similar to PSP, sequential distribution patterns of tau deposition have been recognised 

in PiD, with four stages of pathology proposed62 (Figure 1.10). Phase 1 shows tau 

deposition in frontotemporal limbic cortices (limbic: anterior cingulate, insula, 

amygdala) and neocortical regions (cortical: middle frontal, orbitofrontal cortex, 

angular gyrus, temporal cortex), Phase 2 spreading into basal ganglia, Phase 3 motor 

cortex and Phase 4 involves the visual cortex and cerebellum. This pattern suggests 

the pathology spreads from the frontotemporal lobes to the basal ganglia, then to the 

motor cortex and the cerebellum potentially via the thalamus, prior to more widespread 

dispersion via thalamic relays152. Of note the majority of the cases in this study had 

bvFTD, though a more recent imaging study showed that early volume loss in the 

insula, cingulate, and orbitofrontal cortex was common to both PiD presenting with 

bvFTD and nfvPPA67. It will be important to in future work to build on this proposed 

staging system by including PiD cases presenting with other clinical syndromes, 

including nfvPPA, svPPA and CBS.  

In CBD, pathological staging with hierarchical regional involvement has yet to be 

carried out in a large case series, possibly due to the heterogeneity of clinical 

phenotypes and the consequent difficulty in identifying a unique sequence of regional 

involvement152. There is evidence from both incidental asymptomatic CBD cases153,154 

and end stage CBS cases, of astrocytic plaque pathology as the most prominent 

pathology in anterior frontal and parietal regions. Interestingly, there is widespread tau 

pathology before the onset of clinical symptoms, in a similar pattern to end stage CBD, 

though less severe. This suggests a threshold of pathological burden in the appropriate 

anatomical regions needs to be reached before the onset of clinical symptoms119. The 

authors have proposed four stages based on tau lesion load and cell type involved, with 

the anterior frontal cortex, striatum and subthalamic nucleus affected early. 
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Figure 1.10 - Sequential stages of tau pathology in PiD. Phases are defined by the extent of regional 

involvement of tau pathology across cases beginning with Phase I, where disease is restricted to limbic 

and neocortical frontotemporal regions and angular gyrus. Phase II has additional pathology in 

associated white matter tracts, subcortical structures, and serotonergic/noradrenergic brainstem nuclei. 

Phase III tau neuropathology is characterized by additional pathology in primary motor cortex and 

precerebellar nuclei in the medulla. Finally, phase IV cases with the most severe tau pathology burden 

include additional tau deposits in the visual cortex and variably in the cerebellar granular layer and 

brainstem white matter. Numbering index: 1 = midfrontal cortex; 2 = orbitofrontal cortex; 3 = motor 

cortex; 4 = superior mid-temporal cortex; 5 = sensory cortex; 6 = angular gyrus; 7 = visual cortex; 8 = 

cerebellar granule layer; 9 = pons; 10 = medullary reticular formation; 11 = cervical spinal cord; 12 = 

anterior cingulate gyrus; 13 = corpus callosum; 14 = midbrain red nucleus; 15 = cerebellar dentate 

gyrus; 16 = cerebellar white matter; 17 = midfrontal cortical white matter; 18 = superior midtemporal 

cortical white matter; 19 = striatum; 20 = internal capsule; 21 = globus pallidus; 22 = insular cortex; 23 

= amygdala; 24 = midbrain substantia nigra; 25 = midbrain crus cerebri; 26 = dorsal motor nucleus 

vagus; 27 = hypoglossal nucleus; 28 = inferior olive; 29 = medullary pyramids; 30 = arcuate 

nucleus/pontobulbar body; 31 = locus coeruleus; 32 = raphe nuclei; 33 = motor cortical white matter; 

34 = sensory cortical white matter; 35 = thalamus; 36 = hippocampal dentate gyrus; 37 = hippocampal 

cornu ammonis; 38 = hippocampal entorhinal cortex. Figure reproduced with permission from Irwin et 

al62.  
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1.3   Genetics 

1.3.1 Familial FTLD-tau due to autosomal dominant 

MAPT mutations 

The discovery of autosomal dominant pathogenic mutations in the MAPT gene 

encoding tau in 1998155–157 proved that tau dysfunction itself was sufficient to cause 

neuronal toxicity and cell death in the tauopathies.  

To date 72 pathogenic autosomal dominant MAPT mutations have been reported 

(https://www.ftdtalk.org/what-is-ftd/genetics/mapt-mutations/) (Figure 1.11) 

accounting for approximately 20% of all familial FTLD cases with a strong family 

history 59,152,158. N279K, P301L and intron 10+16 are the most common mutations. In 

cases of FTLD-tau there is a positive family history of parkinsonism, ALS, dementia 

or FTD in up to 40%, of which one third having a strong autosomal dominant pattern 

of inheritance30,159. 

 

Figure 1.11 - Disease causing MAPT mutations. This figure shows forty-seven coding region 

mutations and ten intronic mutations flanking exon 10 (yellow) in MAPT. As of 2023 there are 72 known 

MAPT mutations, 15 of which are not shown here. Reproduced with permission from Goedert 201833. 

Historically, tauopathies due to MAPT mutations were considered a separate 

pathological entity named frontotemporal dementia with parkinsonism associated with 

https://www.ftdtalk.org/what-is-ftd/genetics/mapt-mutations/
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chromosome 17 (FTDP-17). More recently there has been a move towards classifying 

them as familial forms of the sporadic FTLD-tau subtypes160.  

There are two broad categories of mutations depending on whether the mutations 

influence alternative splicing of pre-messenger RNA or has a primary affect at the 

protein level161. No correlation has been shown between known mutations and post-

translational modifications of tau. The specific location and type of the MAPT 

mutation determines the ratio of 3R and 4R tau isoforms deposited (Figure 1.12), with 

the tau pathology is predominantly confined to neurons, or both neurons and glia54.  

 

Figure 1.12 - MAPT mutations and associated pathology. Mutations are grouped by colour according 

to the predominant pattern of tau isoforms present in inclusions. Grey / Blue = all six isoforms are 

present, and filaments are paired helical and straight similar to AD. Peach = predominantly 3R tau 

isoforms. Pick bodies and axonal inclusions predominate, but some glial inclusion present. Green = 

predominantly 4R tau. Filaments are twisted ribbons and inclusions present in both neurons and glial 

cells. P301L mutations 3R also present in lower amounts. Table is reproduced with permission from 

Ghetti et al.54 

PiD 3R tau inclusions are most commonly seen in exon 9 missense mutations (K257T, 

L226V and G272V) where a reduction in tau binding to microtubules enhances 3R 

over 4R tau assembly, or in exon 12 (P364S, Q336R, Q336H, K369I, G342V). 

Mutations in introns 9 (IVS9-15) and 10 (IVS10 + 4), exon 10 (∆K280), 11 (L315R, 

S320F, P332S), and 13 (G389R, R406W) have also been reported to cause Pick’s 

pathology54. These mutations lead to deposits of predominantly 3R tau in neurons. 

PSP pathology is more rarely associated with MAPT mutations (<10%) compared to 

greater than 20% in CBD30. PSP pathology is mainly associated with MAPT mutations 

in exon 10 (N297K, S285R, S303S, S305S), though also occasionally in intron 10 



51 

(IVS10 + 16) and exon 1 (R5L). CBD pathology is associated with mutations in exon 

10 (S3035S), intron 10 (IVS10 + 16) and exon 13 (N410H) 54,160 (Figure 1.13). 

Mutations in exons 1 and 10, as well as the surrounding introns, are associated with 

mixed neuronal and glial pathology. The glial pathology manifests as tufted astrocytes, 

astrocytic plaques and oligodendroglial coiled bodies, similar to that seen in PSP and 

CBD. 

 

Figure 1.13 - MAPT mutation location and association with sporadic FTLD-Tau pathology. 3R 

PiD pathology is associated with point mutations in exon 9, intron 9 and a deletion in exon 10. Point 

mutations in exon 13 are associated with CBD. Point mutations in exon 10 and intron 10 give rise to 

increased 4R-tau pathology including CBD, PSP and GGT pathology. Reproduced with permission from 

Forrest et al.160 

Interestingly both the age of onset162 and the neuropathology associated with specific 

MAPT mutation can vary30,54,163 suggesting that there are additional modifying factors 

that are currently unknown.  

Recently a post-mortem study of individuals with microduplications of the 17q21.31 

chromosomal region encompassing the MAPT gene164, has shown that MAPT 

duplication can also cause a primary tauopathy with diverse clinical and 

neuropathological features. These cases all developed a progressive disorder with 

severe memory impairment with or without behavioural changes, mimicking AD, and 
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neuropathological examination demonstrated tau aggregates with a range of 3R and 

4R tau isoforms.  

1.3.2 Genetic contributions to sporadic FTLD-tau  

In genetic studies of familial neurodegenerative disease, the underlying proteinopathy 

is usually known and related to a specific clinical syndrome (for example familial AD 

due to PSEN1, PSEN2 or APP). As previously discussed, there is significant 

heterogeneity in the FTLD primary tauopathies both in terms of the underlying 

pathology and the clinical presentation, complicating genetic studies in these disorders 

165. One approach is to assemble homogenous, pathogically diagnosed cohorts of 

patients to identify genetic loci that may inform on the underlying molecular 

pathogenesis166–169. This approach greatly increases the power to detect association for 

a given pathology, though is obviously offset by the rarity of pathogically confirmed 

cases. Another approach is to identify genetic variation associated with a clinical 

diagnosis, though this will provide insight on the selective vulnerability of particular 

brain networks that are affected in a particular syndrome, rather than the underlying 

pathology170. In the following sections I will focus on the genetic studies that have 

been performed in pathologically confirmed cohorts.  

1.3.2.1 MAPT Haplotype 

The MAPT gene at the 17q21.13 locus sits within a 1.5Mb inversion region which is 

one of the most dynamic and complex regions of the human genome. In addition to 

MAPT, other genes associated with neural function and development are located within 

the inversion (LRRC37A, LRRC37A2, NSF, ARL17A, ARL17B, KANSL1, SPPL2C, 

and CRHR1). Two haplotypes exist at this locus, one in a direct (H1) and the second 

in an inverted (H2) orientation (Figure 1.14), with consistent differences in cortical 

gene expression demonstrated between the two171. These haplotypes were initially 

defined by Baker et al.172, with it later being shown that H1 could be an inversion 

polymorphism of the ancestral H2 haplotype173, with a second more recent inversion 

leading to the H2 haplotype seen in modern humans174. The absence of recombination 

between the inverted and non-inverted chromosomes has resulted in two haplotypes in 

complete LD174. H1 is the most common haplotype in Europeans with a frequency of 

0.8, while H2 , which is appears to be under positive selection in the Finnish population 
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(frequency 0.2)173, is absent or at a lower frequency in East and South Asian 

populations (frequency 0-0.009)175. Whereas H1 is characterised by a higher frequency 

of polymorphisms (more than 20 common subhaplotypes)176, sequence diversity and 

variability are limited in the H2 haplotype177.  

 

Figure 1.14 - Structure of MAPT 17q21.21 locus. Two distinct haplotypes, H1 and H2 (inverted with 

respect to H1), are defined at the locus. The direction of gene orientation in each haplotype are indicated 

by arrows. Each gene is labelled with a distinct colour and connected with a crossed rectangle between 

H1 and H2. Reproduced with permission from Bowles et al.175. 

The H1 haplotype is associated with increased risk for a range of neurodegenerative 

diseases including APOE 𝜀4-negative AD178, CBD169, PSP167,179, and PD180–182. 

Although it has been assumed that the signal at this locus is driven by the MAPT gene, 

there is growing evidence, at least in PD, that variation in genes within the inversion 

other than MAPT may be important (KANSL1183,184, LRRC37A/2175). Although 

intuitively the role of MAPT seems more secure in the primary tauopathies, PSP and 

CBD, the findings in PD suggest that the role of other genes at the 17q21.21 locus 

should also be investigated. In contrast the evidence that the H2 haplotype is associated 

with neurodegenerative disease is inconclusive185,186. One study reported an 

association between H2 and familial FTD though this has not been replicated187 while 

a second (again not replicated) suggested an association between H2 and clinically 

diagnosed FTD188. Given the high sequence homology in the H2 haplotype, it is 

predisposed to microdeletions through non-allelic homologous recombination 

between directly orientated duplications189, resulting in developmental delay and 

learning difficulties. The resulting 17q21.31 microdeletion syndrome (Koolen-de 

Vries syndrome) is caused by haploinsuffiency of KANSL1, a gene that encodes a 

chromatin modifier that influences gene expression190,191.  
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1.3.2.2 PSP and CBD 

The first genetic risk factor identified in FTLD-tau disorders was the H1 MAPT 

haplotype in PSP172, which was subsequently found to also confer increased risk of 

CBD169,192,193.  There have been two large-scale case-control genome-wide association 

studies (GWAS) to identify common risk variants in PSP. The first identified 

significant risk variants for PSP at MAPT (H1 haplotype and H1c sub-haplotype), 

MOBP, STX6 and EIF2AK3, implicating genes involved in microtubule function, 

vesicle-membrane fusion, the unfolded protein response and myelin structure167. The 

odds ratio (OR) for PSP in those carrying the H1/H1 haplotype in this study was 5.5, 

which is higher than the OR for the ApoE 𝜀3/4 genotype in AD (~3.3)97. The second 

GWAS, which added an additional 600 neuropathologically diagnosed cases to the 

original 2011 GWAS cases, replicated the signals in MAPT, STX6 and MOBP, as well 

as identifying new risk variants at SLCO1A2 and RUNX2194, implicating genes 

involved in osteoblastic differentiation and solute trafficking via transporters at the 

blood brain barrier. A GWAS comparing PSP-RS with PSP-non-RS groups has shown 

that common variation at the TRIM11 locus modifies PSP phenotype195. TRIM 11 has 

a critical role in the clearance of misfolded proteins via the ubiquitin proteasome 

system (UPS)196, and it has been shown in mouse tauopathy models that tau 

accumulation is associated with decreased activity of the UPS197. More recently the 

same group have shown that variation close to the LRRK2 locus is associated with 

decreased survival in PSP198, which is of particular interest given the development of 

LRRK2 inhibitors for treatment of  PD.  

A case-control GWAS in pathogically confirmed cases of CBD showed genome wide 

associations at MAPT (H1 haplotype and H1c sub-haplotypes), as well as support for 

the MOBP locus increasing risk of disease169. The overlap in genetic risk between 

CBD, PSP and other FTLD syndromes has been further supported by a GWAS 

metanalysis199. SNPs tagging the MAPT haplotype overlapped between the three 

disorders, whilst, in addition, SNPs in or near MOBP, CXCR4, EGFR, and GLDC 

showed significant genetic overlap between CBD and PSP. More detailed analysis of 

MAPT sub-haplotypes in both CBD200 and PSP201, suggests that the H1c and H1d 

subhaplotypes are associated with increased risk of both diseases, while the H2 

haplotype is strongly protective. The increased 4R tauopathy disease risk associated 

with the H1c haplotype may be driven by increased MAPT gene expression and 4R tau 



55 

isoform ratios171,181. The protective association of the H2 haplotype is unknown but 

may at least in part be due to the increased inclusion of the N-terminal exon 3202; it has 

been shown that inclusion of exon 2 and 10 increase tau aggregation while inclusion 

of exon 3 decreases it203. 

1.3.2.3 PiD 

Due to the overlap in clinical presentation with other pathologies within the FTLD 

spectrum, and the lack of in vivo biomarkers to diagnose PiD in life, genetic 

association studies have been limited. The largest study to date in pathologically 

confirmed PiD (34 cases, 215 controls), failed to show an association between H1/H2 

haplotypes and disease186. This finding was in keeping with an earlier study by Russ 

et. al. which also failed to show an association185.  There is indirect evidence, however, 

that there may be as yet unidentified variation at the MAPT locus that could contribute 

to the risk of developing PiD. First is the genetic overlap between PSP, CBD and 

FTLD syndrome at the MAPT locus in the GWAS metanalysis by Yokoyama et al.199. 

Secondly the largest GWAS to date in FTLD syndromes to date showed an association 

of the MAPT SNP rs8070723 (H2 haplotype protective) with bvFTD and progressive 

non-fluent aphasia subtypes 204, the two most common clinical presentations of 

PiD62,65,67. Finally (as discussed in Familial FTLD-tau due to autosomal dominant 

MAPT mutations) there are a number of autosomal dominant MAPT mutations, most 

commonly in exons 9, 10, 11, 13, that are associated with Pick bodies at post-mortem.  

1.3.3 3R Tau predominant pathology in other diseases 

There are two other diseases of interest in relation to 3R tau pathology. The first is 

myotonic dystrophy, an autosomal dominant disease of which there are two forms, 

myotonic dystrophy type 1 (DM1) and type 2 (DM2). The DM1 mutation consists of 

a trinucleotide CTG expansion in the 3’ untranslated region of the DMPK gene and 

the DM2 mutation is a tetranucleotide CCTG expansion in the first intron of a gene 

encoding a nuclear protein (ZNF9)205. Although tau pathology has been reported in a 

case of DM2206, the link is more established in DM1 where although the brain 

distribution is heterogenous, the tau pathology has a 3R tau isoform predominance 

with alternative splicing and reduced inclusion of exon 2, 3 and 10207–209. Given the 

predominance of 0N3R tau in the foetal brain, this suggests that foetal isoforms of tau 
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are inappropriately expressed in the adult DM1 brain, possibly due to dysregulation of 

RNA splicing proteins resulting in pathological mis-splicing of tau in the brain209. In 

support of this hypothesis, an in-vitro study using either ectopic expression or siRNA 

of MBLN1, CUGBP1 and CELF1 (RNA splicing factors sequestered to pathological 

RNA foci containing mutant DMPK1 transcripts), implicates toxic gain of function in 

CUGBP1 and CELF1 as the main driver of tau mis-splicing in DM1208. 

More recently a novel tauopathy has been described in individuals with tuberous 

sclerosis complex (TSC), an autosomal dominant disorder characterised by 

developmental delay, epilepsy and neurobehavioural dysfunction210. TSC can present 

with a neurodegenerative syndrome characterised by predominant right anterior 

temporal lobe atrophy that meets the clinical criteria for bvFTD211. “TSC” tauopathy 

is characterised by neurofibrillary tangles in the cerebral cortex, limbic system, 

subcortical and brainstem regions, with predominant tau acetylation and 3R tau 

isoform predominant inclusions. TSC is caused by pathogenic variants in either TSC1 

(coding for harmtin) located on chromosome 9q34 or TSC2 (coding for tuberin) 

located on chromosome 16p13212. Both of these proteins form a poly-protein complex 

that inhibits the mammalian target of rapamycin complex 1 (mTORC1), the key 

regulator in the mTOR pathway that controls protein translation, autophagy and cell 

growth213.  
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1.4   Measuring disease progression 

1.4.1 Failures of clinical trials 

To date the only randomised clinical trials of disease-modifying treatments for the 

FTLD-tauopathies have been in PSP. Unfortunately, so far, no treatment has been 

shown to modify the disease course. Early, small (n<100), placebo-controlled trials of 

coenzyme Q10214,215 showed no effect on disease progression. The first large 

international multicentre randomised controlled trial (RCT) testing Riluzole also failed 

to demonstrate benefit in terms of disease progression or functional outcome216. In 

recent years the focus of disease modifying treatments has shifted towards dysfunction 

of tau and its pathogenic spread. After it was shown that inhibition of glycogen 

synthase (GSK)-3 reduced tau phosphorylation in vitro and in vivo217, RCTs in lithium 

(Clinicaltrials.gov NCT00703677), sodium valproate218 and Tideglusib219 were 

carried out, though none showed significant improvement in the primary outcome. 

Davunetide, a compound that stabilises microtubules, also failed to demonstrate 

efficacy220. Most recently two RCTs of humanised monoclonal antibodies specific for 

the N-terminus of tau, tilavonemab221 and gosuranemab222 were stopped due to 

meeting futility criteria in phase 2. A trial involving an anti-sense oligonucleotide 

directly targeting MAPT expression (Ionis-MAPTRx, ClinicalTrials.gov: 

NCT03186989) is currently underway in AD, with a trial potentially occurring after 

this in MAPT mutation carriers. Alternative approaches expected to be trialled in the 

near future include targeting post translational modifications in tau, as well as tau 

vaccines223.  

The failures of all disease modifying therapy trials so far in PSP leads to the question 

of what the reasons for this might be. For N-terminal anti-tau monoclonal antibodies 

it may be that either they do not target the specific tau species that drives 

neurodegeneration and the spread of pathology, or that not enough of the antibody 

enters the CSF224. This possibility is supported by a study in a transgenic mouse tau 

seeding model225; only antibodies targeting the mid-domain epitope of tau suppressed 

aggregation, whereas N-terminal antibodies did not. A monoclonal antibody UCB0107 

(bepranemab), specific to the mid-domain is currently in phase 2 trials (UCB0107, 

ClinicalTrials.gov Identifier: NCT04658199). 
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Another issue is the difficulty of early detection of PSP in the absence of reliable 

biomarkers; early detection of the disease to allow entry into trials is essential to 

maximise the likelihood that the tau pathology (and consequent neurodegeneration) is 

mild enough that an intervention would be of adequate benefit226. The broadening of 

the MDS diagnostic criteria for clinical PSP has been a step in the right direction but 

introduces the complication of differences in rates of progression between different 

clinical subtypes105,107,227 which could introduce bias and reduce statistical power.  

A related concern is the accuracy of current clinical biomarker endpoints used in trial 

design. Clinical disease progression is still the gold standard for the primary outcome 

measure and is usually based on the PSP rating scale in combination with cognitive 

scales such as the Montreal Cognitive Assessment (MoCA) and functional scales such 

as the Schwab and England Activities of Daily living (SEADL). Although the PSP 

rating scale has been shown to be a good independent predictor of survival228, clinical 

biomarkers such as these are affected by intra- and inter-rater variability, as well as 

fluctuation in patient’s clinical state. In addition, the PSP rating scale is designed for 

the classical presentation of PSP-RS, and the rate of change in score may well be 

different between different clinical subtypes229. Reliable, objective, disease 

progression markers are therefore required to complement these clinical ratings scales.  

1.4.2 Methods to measure disease progression in vivo 

Accurate measurement of disease progression in the primary tauopathies (and 

neurodegenerative diseases in general) is essential to be able to assess the efficacy of 

therapeutic interventions, and better understand the underlying molecular 

pathogenesis. As discussed in the previous section, in the absence of reliable objective 

biomarkers, clinical scales are currently the gold standard to measure disease 

progression, though come with limitations. There is therefore an urgent need for 

individualised disease progression models based on clinical and objective biomarkers 

at baseline to better stratify homogenous populations for future clinical trials230. As 

defined by a recent working group such biomarkers need to “correlate with or even 

anticipate clinical progression” and show “superiority over clinical measurements in 

terms of practicability, precision, effect size, or any combination of these”229.  

Biomarkers of disease progression can be divided into three main categories: 

neuroimaging, biological and neurophysiological. Given biological and 
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neurophysiological biomarkers are outside of the scope of this thesis, see the following 

reviews for more a more detailed summary of these97,230,231.   

1.4.2.1 Neuroimaging biomarkers 

1.4.2.1.1 Diagnostic 

A growing number of neuroimaging studies have been carried out in autopsy 

confirmed FTLD-tau subtypes PiD62,65,67,232, CBD137,233–236 and PSP90,234,236,237. PiD 

usually has the most cortical atrophy, and greatest hemispheric asymmetry, with 

significant “knife-edge” bifrontal and anterior temporal lobe atrophy when presenting 

as bvFTD. When presenting as nfvPPA, the second most common presentation, the 

atrophy involves the left inferior frontal gyrus, insula and orbitofrontal cortex. Over 

time the patterns of atrophy tend to merge65,238. In CBD there is typically asymmetrical 

focal atrophy greatest in the medial frontal and parietal lobes, with relative sparing of 

the anterior temporal lobes, and variable involvement of the subcortical 

structures137,233,235. However, there is a growing recognition that CBD pathology can 

be quite symmetrical, and the lack of asymmetry on imaging does not necessarily 

exclude the diagnosis66. Notably, the rates of global atrophy in CBD are significantly 

higher than in other tauopathies239. Typical PSP (PSP-RS) is characterised by 

significant atrophy in the brainstem and subcortical structures with additional 

involvement of the medial frontal regions240. 

Given that PSP is the most common of the FTLD-tau pathologies, combined with the 

fact that PSP-RS has a highest clinico-pathological correlation with underlying PSP 

pathology73, the majority of neuroimaging studies have focused on this disorder. 

Within these studies the majority have focused on the clinical utility of structural MRI 

imaging as a diagnostic biomarker. While atrophy of the midbrain and superior 

cerebellar peduncles is a useful biomarker for differentiating PSP-RS from other 

parkinsonian syndromes241–243, it is not able to differentiate PSP-RS due to underlying 

PSP pathology from CBD pathology244,245, or PSP-RS from variant PSP 

syndromes246,247. The MRI-Parkinsonism Index (MRPI) has been shown to be a 

reliable biomarker for PSP-RS157,164, and shows good diagnostic accuracy for 

differentiating both PSP and 4R tau pathology (PSP and CBD) from other 

pathologies234. However, it still has the same limitations not allowing discrimination 

between CBD and PSP pathology, as well as showing poor sensitivity for the vPSP 
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syndromes. It is worth noting that the majority of the structural MRI imaging 

biomarker data in PSP has been obtained from patients late in the disease course 

presenting with PSP-RS240. There have only been two imaging studies so far of the 

vPSP syndromes249,250 with only the study by Grivalja at al. assessing the accuracy of 

the MRPI in differentiating between the different syndromes. Further work will be 

required to assess how useful these markers are earlier on in the disease course in the 

different clinical subtypes. 

Tau-PET imaging is a promising new tool and offers the opportunity for in vivo 

topographical mapping and quantification of tau pathology, as demonstrated in AD251. 

However, in contrast to in AD, the first generation of tau-radioligands are only thought 

to bind to 4R tau with low affinity252, and exhibit off target binding in the basal 

ganglia253. Newer tau ligands are now in development that aim to reduce off target 

binding254. Recently Tagai et. al. have developed a new tau-radioligand, 18F-PM-

PBB3, that appears to bind both 3R and 4R tau, enabling identification of tauopathies 

in vivo in a range of FTLD syndromes255. Although further validation work will be 

required, this may open up an exciting new chapter in the diagnosis of disease specific 

tau pathology in vivo. 

In the absence of a reliable tau-PET ligand ready for use in clinical practice, the use of 

structural imaging as an indirect measure of underlying tau pathology is supported by 

both animal and human studies. A pathology imaging study in PSP and CBD showed 

that in vivo structural imaging, compared to connectivity measures, better reflected the 

independent contribution from tau burden and neurodegeneration at autopsy237. In an 

18F-AV1451 PET AD study structural atrophy patterns were highly correlated with 

tau-PET differences at the group level256, while it has been shown in PSP that structural 

imaging outperforms 18F-AV1451 as a longitudinal biomarker of disease 

progression257. Finally, in a mouse model of AD-like progressive tauopathy it has been 

demonstrated that propagation of tau pathology from the entorhinal cortex to the 

hippocampus is associated with tensor-based morphometry related atrophy258.  

1.4.2.1.2 Longitudinal 

Structural MRI has also shown utility as a biomarker of disease progression in the 4R 

tauopathies227,259–264. There are increased rates of midbrain, frontal and third ventricle 

atrophy in PSP-RS compared to controls, and given these changes can be picked up in 
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a one year period they offer a potential objective biomarker readout for clinical 

trials265. More recently a longitudinal study of PSP-RS and vPSP cases showed that 

there were significant differences both at one-year follow-up and in rates of change of 

PSPRS and gait-midline score between different clinical syndromes227. PSP-

subcortical (PSP-parkinsonism, PSP-gait freezing, PSP-postural and PSP-

corticospinal) showed the least impairment and slowest progression, which is in 

keeping with survival studies in neuropathogically confirmed PSP cases which have 

also demonstrated a longer disease duration in PSP-subcortical cases107 and slower 

progression105. A recent study in PSP comparing the rate of midbrain atrophy with the 

change in the tau-PET ligand 18F-AV-1451 SUVR, showed that rate of midbrain 

atrophy correlated better with change in PSPRS score over a period of 12 months257. 

They concluded that rate of midbrain atrophy would be a more useful longitudinal 

biomarker for clinical treatment trials in PSP compared to this particular tau-PET 

tracer. 

There have been fewer longitudinal imaging studies in either CBD or in PiD due to a 

combination of poor clinicopathological correlation, and the absence of in vivo 

biomarkers to enable accurate diagnosis of the underlying pathology in life. A 

longitudinal structural imaging study of PSP-RS and CBS, showed that there is greater 

baseline atrophy with greater longitudinal atrophy rates in the cortical and basal 

ganglia regions in CBS compared to PSP-RS240. In small longitudinal imaging study 

in pathologically confirmed PiD, rates of frontotemporal atrophy were faster in 

bvFTD-PiD than nfvPPA-PiD67. 

1.4.2.2 Data-driven disease progression modelling 

A major challenge in current tauopathy research is to construct models of disease 

progression using real-world data that are able determine, in vivo, the particular 

sequence and evolution of biomarker abnormality across the disease course. The 

ability to use this information to stage and stratify individual patients would help 

reduce heterogeneity in clinical trials, and more accurately monitor the effect of 

treatments on disease progression. The FTLD-tauopathies are particularly problematic 

both due to the heterogeneity of clinical phenotypes (subtype heterogeneity) each with 

differing rates of progression (temporal heterogeneity), as well the fact that pathology 
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and neurodegeneration is no-longer in the early stages by the time they are diagnosed 

clinically, and are enrolled into clinical trials240. 

In the original hypothetical models of biomarker evolution in AD266 the order of 

biomarker transition from normal to abnormal is decided a priori based on aggregated 

evidence from the literature267, rather than being learned directly from the data. 

Traditionally, longitudinal models attempt to delineate temporal heterogeneity by 

regressing a biomarker against a prespecified clinical measure; in PSP this can either 

involve use of the PSPRS or stages based on this score (PSP staging score)228. This 

approach assumes that all individuals have a homogenous phenotype, which as 

previously discussed is not always the case in the primary tauopathies. Subtype 

heterogeneity is often modelled using approaches such as clustering238,268–272 to 

identify distinct groups, or grouping individuals a priori based on post-mortem 

pathology65,273–275. Either the assumption made is that all individuals are at a similar 

stage of the disease, or this needs to be imposed by selection based on a priori 

biomarker cut-offs.  

These challenges, combined with increasing availability of large datasets and intense 

theoretical debate in the neuroscience community regarding hypothetical biomarker 

models266,276,277, has driven the development of data-driven disease progression 

modelling (DDDPM). DDPMs are defined by two key features; firstly, they 

simultaneously reconstruct the disease timeline and estimate the quantitative disease 

signature along this timeline and secondly, they are directly informed by the observed 

biomarker data278. For further detail on the history and development of DDDPMs 

please refer to the review by Oxtoby and Alexander279. These new models are opening 

up exciting avenues to investigate neurodegenerative disorders in vivo with non-

invasive biomarkers such as MRI, and to infer both temporal progression and disease 

subtype without a priori explicit biomarker cut points279,280.  

1.4.2.2.1 The current landscape of DDPMs 

An important step common to all model implementation is data pre-processing which 

entails firstly controlling for confounding variables (covariates) and secondly handling 

missing data. Missing data includes missing biomarker (input features) data due to one 

or more measurements not being performed, or irregularly sampled visits across 

individuals in the cohort. This step is important as otherwise one risks introducing bias 
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through the model learning non-disease related patterns that could be due to 

confounding. Some of the models can include covariates, whereas in others this is not 

possible. In this situation the covariates of concern can be regressed out, by training 

regression models on control data, and then adjusting the disease data using the 

residuals from the control regression. With regard to missing data, two main strategies 

can be deployed. The easiest approach is to remove those participants that have any 

missing biomarker or covariate data, though this can be sub-optimal due to it reducing 

the sample size available for analysis and potentially introducing sampling bias. The 

other approach can be to impute the missing data, either explicitly (e.g. using group 

mean values) or implicitly. Bayesian models are able to implicitly impute data by 

mapping data to probabilities and then dealing with the missing data 

probabilistically278; an example of this is in the event-based model (EBM), where a 

missing measurement (𝑥) is set to 𝑃(𝑒𝑣𝑒𝑛𝑡) | 𝑥) = 0.5 which represents maximal 

uncertainty. 

Figure 1.15 summarises key DDPMs currently in use, categorising them by both 

model capability and model data requirements. In terms of model capability, they can 

either estimate a single timeline (top left quadrant) or multiple subtype timelines 

(bottom left quadrant), whilst for data requirements they can accept either cross-

sectional data (pseudo-timeline) or longitudinal data (time-shift). Time-shifting 

describes deforming the individual data and “stitching together” them together into a 

quantitative template of disease progression. 
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Figure 1.15 - Overview of current data-driven disease progression models. All models estimate a 

disease timeline with some capable of simultaneously estimating multiple disease subtype timelines 

(bottom row of quadrant), using either cross-sectional data (creating a pseudo-timeline) or longitudinal 

data (time-shift). Abbreviations: EBM = event-based model, DEBM – discriminative EBM; KDE-EBM 

– kernel density estimation EBM, DPS = disease progression score, LTJMM = Latent Time Joint Mixed 

Model, GPPM = Gaussian Process Progression Model, SuStaIn = Subtype and Stage Inference, SubLign 

= Subtyping Alignment. TEBM = Temporal Event-Based Model. Figure adapted from Oxtoby 2022278.  

In this PhD I was interested in trying to build a model that would have clinical utility 

for stratifying individuals at time of clinical trial entry. Given these individuals are 

likely to have only a baseline biomarker measurement at time of selection, I decided 

to focus on those DDDPMs that can use cross-sectional data only as input. Therefore, 

in the following sections I will discuss in more detail these types of DDPMs (the EBM 

and SuStaIn). For more detail on the other types of DDDPM highlighted in Figure 

1.15 please refer to the comprehensive review by Oxtoby 2022278. 

1.4.2.2.2 Event Based Modelling 

One approach to modelling disease progression is the event-based model (EBM)281, a 

probabilistic data-driven generative model, that can infer the order in which 

biomarkers become abnormal directly from cross-sectional data by combining 

information across biomarkers and individuals without reference to a given 

individual’s clinical status267. The EBM is able to extract longitudinal information 

about disease progression, by assuming 1) that in a patient cohort containing a 

spectrum of disease stages, more individuals will show abnormality in a biomarker 
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that changes early in the disease course, 2) that there is monotonic progression of an 

individual biomarker from normal to abnormal and 3) homogenous disease 

progression with all individuals having a broadly similar disease progression pattern. 

The EBM is suited to analysis of data from research studies that have strict inclusion 

and exclusion criteria to enable enrichment for one disease of interest, and provides a 

powerful, directly interpretable model that can be applied to stage individuals with 

only a baseline biomarker measure. This approach has been successfully applied to 

Huntington’s disease267, sporadic and familial AD280,282,283, the posterior cortical 

atrophy variant of AD284, multiple sclerosis (MS)285, PD286 and to ALS287, providing a 

simple and validated method to investigate temporal disease patterns and estimate 

individuals’ disease stage. Recent work has demonstrated the clinical utility of the 

EBM for screening patients on entry into clinical trials, to improve cohort homogeneity 

and increase the power to detect a treatment effect288.  

In Chapter 2 (The Event Based Model (EBM)) I will discuss the technical aspects of 

the EBM in more detail, and summarise the main steps required to fit the model, stage 

individual patients and for cross validation.  

1.4.2.2.3 Subtype and Stage Inference 

A limitation of the EBM is that similar to traditional longitudinal models, the 

assumption is that all individuals follow a similar disease trajectory i.e. are the same 

phenotype. To this end the EBM has recently been extended to create new 

unsupervised machine learning algorithm called Subtype and Stage Inference 

(SuStain) (Young 2018)289, that is able to disentangle temporal and phenotypic 

heterogeneity to identify population subgroups with distinct patterns of disease 

progression (Figure 1.16). SuStaIn has proven to be a powerful and versatile technique 

providing insights into subtypes with distinct patterns of biomarker evolution across a 

range of different diseases including AD290–292 genetic FTD290,293, MS294, and chronic 

lung disease295. A recent study applied SuStaIn to tau-PET imaging in AD, identifying 

four distinct spatiotemporal trajectories of tau progression, with important 

implications for the notion of “typical AD” and tau pathological staging296. The 

heterogeneity of both the clinical phenotype, as well as underlying tau pathology, in 

the FTLD-tau disorders, make these disorders ideally suited to investigation with these 

advanced modelling techniques. 
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Figure 1.16 - Conceptual overview of SuStaIn. (A) shows the underlying model consisting of a patient 

cohort with two hypothetical disease subtypes. (B) Cross-sectional input data from the cohort contains 

snapshots of biomarker measurements (in this cases imaging data) from each individual who has an 

unknown subtype and stage. (C) SuStaIn recovers the underlying set of disease subtypes and their 

temporal progression patterns via simultaneous clustering and 𝑧-score disease progression modelling. 

(D) The SuStaIn model fitted on the cross-sectional baseline data (C), can then be used to estimate the 

probability that an unseen biomarker measurement belongs to each stage and subtype. The colour of 

each region represents the amount of pathology in that region ranging from white (no pathology) to red 

to magenta to blue (maximum pathology). Figure reproduced with permission from Young et al290. 

In their seminal SuStaIn paper, Young et al.290 also introduce the linear 𝑧-score model, 

which reformulates the EBM by replacing the instantaneous normal to abnormal 

events with events that represent the linear transitions between a biomarker’s 𝑧-scores. 

This obviates the need for mixture modelling, and allows finer grained inference to be 

performed across the range of biomarker abnormality. 

In Chapter 2 (Subtype and Stage Inference (SuStaIn)) I will discuss the technical 

aspects of SuStaIn in more detail, and summarise the main steps required to fit the 

model and subtype and stage individual patients.  
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1.5   Thesis aims 

As covered in this chapter, the FTLD-tauopathies represent a clinically and 

pathologically heterogenous group of disorders. Despite ongoing efforts there are 

currently no disease modifying therapies for these devastating diseases. With the 

advent of experimental therapies directly targeting pathological tau, there is an urgent 

need to develop individualised disease progression models to more accurately stratify 

patients selected for clinical trials, and monitor disease progression. Probabilistic data-

driven disease progression models, validated in more common neurodegenerative 

diseases such as AD, provide a robust and unbiased method to better understand this 

heterogeneity. Although in recent years genetic studies in the 4R tauopathies (PSP and 

CBS) have increased our understanding of the biological determinants of phenotypic 

variation and disease progression, very little progress has been made in PiD mainly 

due to its rarity and non-specific clinical presentations. Identification of genetic 

susceptibility loci for PiD pathology and progression may provide novel mechanistic 

targets for therapeutic intervention, as well as guide biomarker development to be able 

to diagnose PiD pathology in life. 

Broadly speaking this thesis is split into two parts; the first part is focused on disease 

progression modelling in the 4R tauopathies (PSP and CBS), and the second part is 

focused on genetic analysis of the 3R tauopathy, PiD. Within this framework, the main 

aims of the thesis are: 

A. Disease progression modelling in the 4R tauopathies: 

1. To develop an image-based model of brain volume biomarker changes in PSP-

RS to enable in vivo staging of disease (Chapter 3) 

2. To investigate the spatiotemporal heterogeneity of atrophy in the 4R tauopathy 

syndromes and identify population subgroups with distinct patterns of disease 

progression:  

a. PSP (Chapter 4) 

b. CBS (Chapter 5) 
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B. Genetics analyses in the 3R tauopathy PiD: 

To use genetic studies to understand the biological determinants of disease and 

progression in PiD; specifically:  

1. Investigate the association of MAPT haplotypes with risk of PiD (Chapter 6). 

2. Perform a genome wide association study to identify genetic risk factors for 

developing PiD (Chapter 7) 

3. Perform a genome wide survival study to identify genetic risk factors for 

decreased survival in PiD (Chapter 8)
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Chapter 2:  Cohorts and General Methodology  

2.1    Introduction  

As discussed in the previous chapter this thesis is broadly split into two main parts: 

disease progression modelling of the 4R tauopathies (PSP and CBS), and genetic 

analyses of the 3R tauopathy PiD. As part of the PhD, I had to build two separate 

cohorts to generate large enough sample sizes to facilitate the analyses required: the 

4R tauopathy imaging cohort, and the Pick’s disease international consortium (PIC),  

Chapters 3, 4 and 5 of this thesis use data from the 4R tauopathy imaging cohort, whilst 

chapters 6, 7 and 8 use data from the PIC. I have therefore split this chapter into two 

sections, each of which contains the details of the relevant cohort, and general analysis 

methods used on that dataset. 

2.2   4R tauopathy disease progression modelling 

2.2.1 4R tauopathy imaging cohort  

Individuals with a clinical diagnosis of either “possible” or “probable” PSP (including 

PSP-RS and vPSP syndromes) or CBS were collected from seven main studies and 

included in the cohort: the 4R Tauopathy Imaging Initiative Cycle 1 (4RTNI 1; 

ClinicalTrials.gov: NCT01804452)259,263, the 4R Tauopathy Imaging Initiative Cycle 

2 (4RTNI 2; ClinicalTrials.gov: NCT02966145), the davunetide randomized control 

trial (DAV; ClinicalTrials.gov: NCT01056965)220, the salsalate clinical trial (SAL; 

ClinicalTrials.gov: NCT02422485)297, the young plasma clinical trial (YP; 

ClinicalTrials.gov: NCT02460731)297, the PROgressive Supranuclear Palsy CorTico-

Basal Syndrome Multiple System Atrophy Longitudinal Study (PROSPECT; 

ClinicalTrials.gov: NCT02778607)298, and the University College London Dementia 

Research Centre (UCL DRC) FTD cohort. Controls were collected from three cohorts 

with equivalent available data; PROSPECT, the UCL DRC FTD cohort and the 

Frontotemporal Lobar Degeneration Neuroimaging Initiative dataset (FTLDNI; 

http://4rtni-ftldni.ini.usc.edu/). Controls were defined as no known diagnosis of a 

neurological or neurodegenerative condition and no known history of memory 
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complaints. Appropriate ethics was applied for and approved via the relevant trial 

ethics committees. 

To be included in my cohort, all participants needed to have, as a minimum, a clinical 

diagnosis of either PSP (PSP-RS or vPSP) or CBS, a baseline T1 volumetric MRI on 

a 1.5 or 3 Tesla scanner, basic demographic data (gender and age at time of scan). Age 

at symptom onset, age at death, clinical rating scale scores (PSP rating scale, Unified 

Parkinson Disease Rating Scale [UPDRS], Schwab and England Activities of Daily 

Living scale [SEADL], and Montreal Cognitive Assessment [MoCA] or Mini-mental 

State Examination [MMSE] at baseline and follow-up), pathology at autopsy, CSF AD 

biomarker positivity [Aβ1–42, tau, and ptau], amyloid PET positivity (with 

florbetaben, florbetapir, or Pittsburgh Compound-B), and follow-up scans were also 

included if available. Amyloid PET scans were collected at participating 4RTNI 

centres with demonstrated experience in FDA-approved amyloid imaging agents, and 

positivity was defined by expert visual read by certified staff.  

2.2.2 Participants, inclusion criteria, clinical and MRI 

data 

2.2.2.1 4RTNI1 / FTLDNI trials 

Participants were recruited as part of two longitudinal observational neuroimaging 

studies; 4RTNI1 which enrolled PSP and CBS patients and FTLDNI which recruited 

healthy controls. Both trials were managed by the University of California (UCSF) 

with patients also recruited at University of California of San Diego (UCSD), 

University of Toronto (UToronto) and Massachusetts General Hospital (MGH). A 

common study design and protocol was run at all sites. Patients with PSP met the 

NINDS-SPSP criteria72, while CBS patients met the Armstrong criteria for possible or 

probable CBS-CBD subtype140: all participants had to be aged between 45-90yrs to be 

considered for inclusion. Participants were evaluated at baseline, 6 and 12 months with 

an MRI scan, and a clinical assessment that included a PSPRS score, SEADL, UPDRS, 

MOCA and MMSE. 

Three scanner types (all 3T) were used. At UCSF and MGH a Siemens Trio Tim 

system (Siemens, Iselin, NJ) with a 12-channel receiver head coil was used; whole 

brain images were acquired with a volumetric magnetization prepared rapid gradient-
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echo sequence (MPRAGE; repetition time (TR)/echo time (TE)/inversion time (TI) = 

2300/2.98/900 ms, α = 9°, 1 x 1 mm in-plane resolution, 1 mm slice thickness). Scans 

at UCSD were acquired on a GE Discovery MR750 system (GE, Milwaukee, WI) 

equipped with 32-channel head coil, and scans at UToronto were acquired on a GE 

Signa HDx system equipped with an 8-channel receiver head coil. Whole brain images 

at both UToronto and UCSD were acquired sagittally with a 3D inversion-recovery 

prepared spoiled gradient echo imaging pulse sequence (UCSD IR-SPGR; TR/TE/TI 

= 7.1/3.00/400 ms, α = 11°, 1 x 1 mm in-plane resolution, 1.2 mm slice thickness; 

UToronto IR-SPGR; TR/TE/TI = 7.0/2.80/400 ms, α = 11°, 1 x 1 mm in-plane 

resolution, 1.2 mm slice thickness)259. For each patient, baseline and follow-up MRI 

were acquired on the same scanner using the same sequence parameters. 

A total of 111 patients (62 PSP-RS and 49 CBS) met criteria for inclusion in my cohort. 

Of these 92 (83%) had a 6-month follow-up scan, and 68 (61%) has a 12-month follow-

up scan. 143 age and gender matched controls with a baseline scan were identified 

from FTLDNI and included in our cohort. 

2.2.2.2 4RTNI2 trial 

Participants were recruited from eight sites across North America, as part of a 

longitudinal observational study of Corticobasal Syndrome (CBS), Progressive 

Supranuclear Palsy (PSP) or Oligo- or Variant- Progressive Supranuclear Palsy 

(o/vPSP). The study was managed by the University of California San Francisco 

(UCSF) with patients also recruited from the University of California of San Diego 

(UCSD), John Hopkins University, Harvard University Massachusetts General 

Hospital, the Mayo Clinic Rochester, Columbia University, University of 

Pennsylvania, and the University of Toronto. A common study design and protocol 

was run at all sites, and patients were diagnosed with a clinically probable or possible 

PSP syndrome according to the Movement Disorder Society 2017 PSP diagnostic 

criteria98. All participants had to be aged between 45-80yrs to be considered for 

inclusion, and were evaluated at baseline, 6, 12 and 24 months with a volumetric MRI 

brain scan, a clinical assessment that included a PSPRS score, UPDRS, and MOCA, 

Tau and Amyloid PET scans, eye movement function and retinal imaging.  

Four scanner types (all 3T) were used in the 4RTNI2 study. A GE Discovery MR750 

system (GE, Milwaukee, WI) equipped with 8-channel head coil; whole brain images 
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were acquired with a 3D volumetric inversion recovery fast spoiled gradient-echo 

recalled sequence (IR-FSPGR; repetition time (TR)/echo time (TE)/inversion time 

(TI) = 2300/2.98/400 ms, α = 11°, 1.2 mm slice thickness). A GE Signa Premier 

System (GE, Milwaukee, WI) equipped with 48-channel head coil, whole brain images 

were acquired with a 3D volumetric inversion recovery fast spoiled gradient-echo 

recalled sequence (IR-FSPGR; repetition time (TR)/echo time (TE)/inversion time 

(TI) = 2300/2.98/900 ms, α = 8°, 1.2 mm slice thickness). A Philips Achieva system 

(Andover, Massachusetts, United States) equipped with 32-chanel head coil, whole 

brain images were acquired with a volumetric magnetization prepared rapid gradient-

echo sequence (MPRAGE; repetition time (TR)/echo time (TE)/inversion time (TI) = 

2300/2.98/900 ms, α = 9°, 1 mm slice thickness). A Siemens Magnetom Prism Fit 

system with a 32-channel receiver head coil was used; whole brain images were 

acquired with a volumetric magnetization prepared rapid gradient-echo sequence 

(MPRAGE; repetition time (TR)/echo time (TE)/inversion time (TI) = 2300/2.91/900 

ms, α = 9°, 1.2 mm slice thickness). For each patient, baseline and follow-up MRI 

were acquired on the same scanner using the same sequence parameters. 

A total of 167 individuals me the criteria for inclusion in the study; 104 PSP cases (60 

PSP-RS and 44 PSP-cortical) and 63 CBS cases (19 CBS-AD and 44 CBS-IDT cases). 

There were a total of 113 follow-up scans at varying timepoints (61 PSP and 52 CBS) 

between 1-3 years post baseline scan. 

2.2.2.3 DAV trial 

Patients were recruited from 48 centres in Australia, Canada, France, Germany, the 

UK, and the USA, between September 2010 and November 2012220. For inclusion 

participants had to be aged between 41-85 at disease onset and meet modified PSP 

criteria from the national Neuroprotection and Natural History in Parkinson Plus 

Syndromes (NNIPPS) study for the most common clinical presentation PSP-RS216. 

Specifically, they had to have at least a 12-month history of postural instability or falls 

during the first three years from disease onset, supranuclear ophthalmoplegia or 

reduced downward saccade velocity, and prominent axial rigidity. In addition, at time 

of screening participants were required to have a MMSE score of at least 15, be able 

to ambulate independently (or walk five steps with minimal assistance), live outside a 

dementia care facility, have PSP symptoms for either less than five years, or more than 
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five years with a PSPRS score of no more than 40. More detailed inclusion 

and exclusion criteria are included in the original study manuscript220.  

Primary endpoints were the change in PSPRS and SEADL between baseline and 

twelve-month visit, with secondary outcomes including Clinical Global Impression of 

Change (CGIC), and MRI measured ventricular volume. MRI data was collected on 

fourteen different 1.5T or 3T scanners with varying scanner types but consistent 

sequences based on standards set by the Mayo Clinic’s Aging and Dementia Imaging 

Research laboratory (Rochester, MN, USA). All T1 images in the trial were acquired 

were one of MPRAGE, Coronal IR-SPGR, or Sagittal IR-SPGR. For each patient, 

baseline and follow-up MRI were acquired on the same scanner using the same 

sequence parameters. Details of scanners and acquisition protocols are included in the 

following references220,259. 

I had access to data from 226 patients from this trial, of which 187 PSP cases met the 

criteria for inclusion into the 4R tauopathy imaging cohort with at least a baseline MRI 

scan and a baseline PSPRS score. Of the 187 included, 177 (98%) had a 12 month 

follow-up scan.  

2.2.2.4 SAL / YP trials 

The SAL trial recruited from the University of California San Francisco (UCSF; San 

Francisco, CA) Memory and Aging Center and the Oregon Health and Science 

University (Portland, OR) Parkinson Center & Movement Disorder Program between 

June 2015 to February 2018. For the YP trial, patients were recruited from UCSF, and 

the trial ran from June 2015 to August 2017. Individuals included in both studies had 

PSP-RS as defined by the 2017 International Parkinson and Movement Disorder 

Society criteria for PSP-RS98, were aged 50 to 85 years; had a MMSE score of 14-30, 

an MRI consistent with PSP, and were on stable medications at least 1 month before 

screening, except for approved AD and PD medications. For more detail on inclusion 

and exclusion criteria please refer to original study manuscript297.  

Given these were phase one open label trials, the primary outcome measure was safety 

and tolerability. In addition, PSPRS (among other clinical scales) and an MRI were 

collected at baseline, three and six months follow-up (after drug treatment). Structural 

MRIs were acquired on a 3T Siemens Trio Trim or a 3T Siemens Prisma-Fit scanner 

(Siemens Healthineers AG, Erlangen, Germany). On the Trio Tim the following 
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acquisition protocol was used; T1 MPRAGE sequence with slice thickness 1mm, with 

TR of 2.3s, TE of 2.98 ms, and T1 of 900ms. The Prisma Fit acquisition protocol was 

identical to that on the Trio Tim. For each patient, baseline and follow-up MRI were 

acquired on the same scanner using the same sequence parameters. 

In total eight PSP patients from the SAL trial and six from the YP trial had at least a 

baseline MRI with baseline PSPRS score and were included in our cohort. All 

participants (100%) had a two follow-up MRIs at three and 6 months with  and PSPRS 

recorded at all visits. 

2.2.2.5 PROSPECT trial 

The PROSPECT observational study recruits patients from seven main UK study sites; 

University College London (UCL), Cambridge, Oxford, Newcastle, Manchester, 

Brighton and Newport. Recruitment started in September 2015 and is ongoing. 

Inclusion into the study was originally defined for PSP according to the NINDS-SPSP 

criteria72. At the end of baseline recruitment all cases were reclassified according to 

the 2017 MDS clinical PSP diagnostic criteria98. All PSP cases met the criteria for at 

least “possible” PSP, and were stratified into PSP-RS, PSP cortical (PSP-CBS, PSP-

SL, PSP-F) and PSP subcortical (PSP-P, PSP-PGF, PSP-oculomotor); stratifying in 

this way is an established approach in the PSP research setting107,195,198,299. CBS was 

diagnosed according to the Armstrong criteria140. CBS cases with autopsy confirmed 

with CSF biomarkers consistent with AD were classed as CBS-AD, CBS-CBD or 

CBS-PSP based on neuropathology at post-mortem, or CBS-indeterminate (IDT) if 

CSF status / autopsy diagnosis was unknown. Recruited control participants included 

a spouse or a friend of the case or came through the Join Dementia Research volunteer 

registry298. 

Study assessments including a PSPRS score228, a modified MDS Unified Parkinson’s 

Disease Rating Scale (UPDRS)300, SEADL301, and cognitive tests including the 

Montreal Cognitive Assessment (MoCA)302 and Addenbrooke’s Cognitive 

Examination3 (ACE-III)303 were performed at baseline and follow-up visits (6, 12, and 

24 months). Participants had volumetric weighted MRI on Siemens 3T scanners; either 

a Magnetom Skyra, Magnetom Prisma, or Tim Trio. Scan protocols were designed at 

the outset of the study to closely match across centres, based on the international 

Genetic Frontotemporal Dementia Initiative protocols (MPRAGE, TR 2s, TE 2.93ms, 
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Flip angle 8 degrees, 1.1mm isotropic)113. For each patient, baseline and follow-up 

MRI were acquired on the same scanner using the same sequence parameters. 

82 PSP cases with baseline MRI scans met criteria to be included in the cohort from 

PROSPECT; 57 PSP cases (35 PSP-RS, 9 PSP-cortical, 14 PSP-subcortical), and 25 

CBS cases (1 CBS-CBD, 11 CBS-AD and 13 CBS-4RT). 31 participants had a follow-

up MRI at either 1 or 2 years. 36 age and gender matched controls with baseline scans 

from PROSPECT were included in the control cohort. 

2.2.2.6 UCL DRC FTD Cohort 

I reviewed the UCL DRC FTD cohort MRI database to identify patients with a clinical 

diagnosis of either PSP or CBS, and a good quality T1-weighted MRI scan. Patients 

were diagnosed as PSP-RS according to the NINDS-SPSP criteria72 if diagnosis had 

been before 2017, or as a PSP syndrome (PSP-RS or vPSP) according to the MDS 

2017 PSP clinical diagnostic criteria98 if diagnosed from 2017 onwards. CBS patients 

were diagnosed according to the Armstrong Criteria140 as and all met the criteria for 

“probable or “possible” CBS. All patients included were between the age of 42 and 85 

years. All patients had initially undergone a standard clinical assessment at the 

National Hospital for Neurology and Neurosurgery in a specialist cognitive disorders 

or movement disorder clinic, depending on their initial clinical presentation. Age and 

gender matched controls were also identified from this database and included in the 

control cohort. 

 T1-weighted MRIs were acquired between 1992 to 2014 on three different scanners: 

a 1.5T Signa scanner (GE Medical systems, Milwaukee, WI, TR = 12 ms, TI = 650 

ms, TE = 5 ms, acquisition matrix = 256 × 256, spatial resolution = 1.5 mm), a 3T Trio 

Tim (Siemens, Erlangen, Germany, TR = 2200 ms, TI = 900 ms, TE = 2.9 ms, 

acquisition matrix = 256 × 256, spatial resolution = 1.1 mm), and a 3T Prisma scanner 

(Siemens, Erlangen, Germany, TR = 2,000 ms, TI = 850 ms, TE = 2.93 ms, acquisition 

matrix = 256 × 256, spatial resolution = 1.1 mm, acquisition plane=sagittal). A total 

of 43 patients (25 PSP-RS, 3 PSP-P, 1 PSP-PGF, and 14 CBS), and 141 controls with 

baseline scans met the criteria for inclusion. 20 of the 43 individuals (47%) had a 

follow-up scan at varying timepoints between 1-3 years post baseline scan. 
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2.2.2.7 Summary of 4R tauopathy imaging cohort 

Table 2.1 gives a summary of the total number of baseline and follow-up scans 

included in the 4R tauopathy imaging cohort, broken down by contributing study. I 

detail in the top row the total number that met the inclusion criteria, and in the second 

row the number that passed quality control (QC) (I detail the QC process in Image 

processing pipeline below) and were therefore available for analyses. The rest of the 

rows in this table breakdown the number of scans by clinical diagnosis (PSP vs. CBS). 

In total there were 561 baseline scans that passed QC; 426 of these had a diagnosis of 

PSP, and 135 CBS. PSP-RS was the most common PSP clinical syndrome, with 52 

cases PSP-Cortical (PSP-C) and 17 cases PSP-Subcortical (PSP-SC); 135 had a 

diagnosis of CBS with 12 having a pathological diagnosis of CBS-CBD, 6 of CBS-

PSP, 34 of CBS-AD and the remaining 83 defined as indeterminate (CBS-IDT). Of 

those PSP cases that came to post-mortem (31/426) 94% were pathologically 

confirmed PSP, one had GGT and the other had CBD pathology.  
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Table 2.1 - 4R Tau imaging cohort summary 

 Controlsa All 4RTNI1 4RTNI2 DAV YP/SAL PROSPECT UCL 

Inclusion, n (fu visits) 320 604 (522) 111 (142) 167 (113) 187 (177) 14 (28) 82 (34) 43 (28) 

Post QC, n (fu visits) 290 561 (480) 103 (137) 160 (109) 173 (157) 13 (24) 74 (31) 38 (22) 

PSP, n (fu visits) - 426 (367) 59 (83) 100 (58) 173 (157) 13 (24) 52 (25) 29 (20) 

- PSP-RS - 357 (329) 59 (83) 59 (34) 173 (157) 13 (24) 30 (17) 23 (14) 

- PSP-C - 52 (25) - 41 (24) - - 9 (0) 2 (1) 

- PSP-SC - 17 (13) - - - - 13 (8) 4 (5) 

- PSP pathology, n (%) - 31 (94%) 7 (88%)b - - - 6 (100%) 18 (95%)c 

CBS, n (fu visits) - 135 (113) 44 (54) 60 (51) - - 22 (6) 9 (2) 

-  CBS-CBDd - 12 (13) 8 (12) - - - 1 (1) 3 (0) 

-  CBS-PSPd - 6 (5) 4 (5) - - - - 2 (0) 

-  CBS-ADe - 34 (26) 6 (6) 17 (18) - - 10 (2) 1 (0) 

-  CBS-IDT - 83 (69) 26 (31) 43 (33) - - 11 (3) 3 (2) 

Values are Baseline n (n follow-up visits), Pathology n (% PSP).a controls included from FTLDNI (143), PROSPECT (36) and UCL DRC FTD (141). b one case Globular Glial Tauopathy 

pathology, c one case CBD pathology, d autopsy confirmed, eAD pathology defined as either autopsy confirmed, positive AD CSF biomarkers (Aβ1–42, tau, and ptau) or positive Amyloid PET. 

Abbreviations: 4RTNI1 = 4-repeat tauopathy neuroimaging initiative (Phase 1), 4RTNI2 = 4-repeat tauopathy neuroimaging initiative (Phase 2), DAV = Davunetide trial, , YP = Young plasma 

trial, SAL = Salsalate trial, PROSPECT = PROgressive Supranuclear Palsy CorTico-Basal Syndrome Multiple System Atrophy Longitudinal Study, UCL = University College London Dementia 

Research Centre Frontotemporal Dementia cohort. 
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2.2.3 Image processing pipeline 

I processed all raw volumetric T1-weighted MR images according to the same pipeline 

(Figure 2.1). In the first quality control (QC) step I visually inspected all raw images 

to ensure correct acquisition and the absence of artefacts (including head coverage, 

radiofrequency noise, signal inhomogeneity, susceptibility and motion artifacts). Next, 

I bias field corrected the raw images that passed QC to correct for magnetic field 

inhomogeneity, then parcellated the whole brain (cortical and subcortical structures) 

using the geodesic information flow (GIF) algorithm304. This algorithm automatically 

extracts regions based on the Neuromorphometrics atlas, using an atlas propagation 

and label fusion strategy. I then extracted subregions of the cerebellum with a version 

of GIF that uses the Diedrichsen cerebellar atlas305: the cerebellar lobules (I-IV, V, VI, 

VIIa-Crus I, VIIa-Crus II, VIIb, VIIIa, VIIIb, IX and X), the vermis and the deep nuclei 

(dentate, interposed and fastigial). The volumes of the whole brainstem, medulla, pons, 

superior cerebellar peduncles (SCP) and midbrain were subsequently segmented using 

a customised version of the module available in FreeSurfer to accept the GIF 

parcellation as input for Freesurfer306. Total intracranial volume (TIV) was calculated 

using SPM12 v6225 (Statistical Parametric Mapping, Wellcome Trust Centre for 

Neuroimaging, London, UK) running under MATLAB R2012b (Math Works, Natick, 

MA, USA). In the final QC step, I visually inspected all GIF and SPM segmentations 

to ensure accurate segmentation. QC’d regional volumes selected for inclusion in 

subsequent disease progression models were controlled for the following covariates: 

age at scan, sex, scanner type and strength and total intracranial volume (TIV). 

I processed a total of 1,446 T1 volumetric MRI scans through this pipeline (1,126 

baseline and follow-up scans from cases, and 320 control scans), of which 1,331 

passed the QC steps (1,041 case and 290 control scans) and were included in in further 

analyses. 
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Figure 2.1 - Imaging processing pipeline. Cortical/subcortical, cerebellar and brainstem regional volumes were extracted with three different version of GIF from T1 weighted 

MRI scans. TIV was calculated using SPMv12 software. Covariate adjusted regional volumes were generated by regressing out TIV, age, gender and scanner type/strength and 

these were used as input data for downstream disease progression modelling using either the EBM or SuStaIn. GIF = geodesic information flow304, SPM12 = statistical parametric 

mapping version 12, GM = grey matter, WM = white matter, CSF – cerebrospinal fluid, TIV = total intracranial volume. 
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2.2.4 Disease progression modelling 

2.2.4.1 The Event Based Model (EBM) 

The EBM (as briefly discussed in Chapter 1)281, is designed to infer a data-driven, 

probabilistic sequence in which biomarkers become abnormal from cross-sectional 

data (Figure 2.2). The strengths of the EBM are firstly that it requires no a priori 

biomarker cut-offs (thresholds) to define abnormality; secondly it requires no a priori 

staging; and finally it can be completely specified using only moderately sized cross-

sectional data. Its ability to generate stages from purely cross-sectional data has shown 

potential for targeted stratification of patients into clinical trials278. Its reliability with 

moderately sized datasets makes it ideally suited for analysing biomarkers in rare 

diseases such as the primary tauopathies. 

 

Figure 2.2 - Schematic of how EBM works. The EBM is a statistical method for quantifying a sequence of 

observable abnormalities in a set of disease-relevant biomarkers. It works by assessing at the group level 

combinations of simultaneously normal and abnormal measurements in multiple biomarkers across individuals at 

varying stages along the disease course. The top panel shows a hypothetical model of disease progression (left to 

right on x-axis), with abnormality in biomarkers represented on the y-axis by a probability ranging from 0 (no 

abnormality) to 1 (maximum abnormality). In this example the biomarkers become abnormal in the sequence A to 

B to C to D. The bottom panel shows a cross-sectional sample of individuals (lines on the x axis) at different stages 

in the disease, with corresponding observed combinations of normal (white) and degrees of abnormality (shades of 

colour) across the four biomarkers. The vertical rectangle highlights an individual near the middle of the disease 

course with their associated biomarker abnormalities across the four biomarkers shown in the top panel, with higher 

abnormalities in the early biomarkers (A and B), than in the later biomarkers (C and D). When an individual has a 

higher abnormality in e.g. biomarker A, than e.g. biomarker B, this provides additional evidence that A changes 

before B. Reproduced from Oxtoby et al 2021286. 
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2.2.4.1.1 Model Fitting 

The EBM is based on the assumptions of homogenous disease progression and 

monotonicity: that is all patients have a broadly similar disease progression pattern 

with a unimodal distribution of orderings, and biomarker change is unidirectional from 

normal to abnormal i.e. no remission. It also requires that the patient cohort contains a 

spectrum of disease stages distributed across the whole disease course. A biomarker 

that changes early in the disease will be abnormal in more individuals, than a 

biomarker that changes later. An ‘event’ is considered to have occurred when a 

biomarker (in this study an MRI derived regional volume), has an abnormal value 

(‘atrophy’) in comparison with the expected values measured in healthy controls. The 

model then estimates the sequence 𝑆 = 𝑆(1), 𝑠(2), … 𝑆(𝑙) in which the biomarkers 

become abnormal where 𝑆(1) is the first biomarker, and 𝑆(𝑙)  is the last.  Conceptually 

if biomarker A is usually abnormal when biomarker B is abnormal, but B is often 

abnormal without A, we infer that B occurs before A in the sequence. 

The estimation procedure first fits a two-component univariate mixture model (see 

Models of event distribution) to control and patient data for each biomarker to generate 

likelihoods 𝑃(𝑥𝑖𝑗|𝐸𝑖) (“post-event”) and 𝑃(𝑥𝑖𝑗|¬𝐸𝑖) (“pre-event”) of observing the 

value,  𝑥𝑖𝑗, of biomarker 𝑖 for subject 𝑗, given that biomarker 𝑖 has or has not become 

abnormal, respectively. The EBM combines these likelihoods to then calculate the 

likelihood of the full dataset 𝑋 = 𝑥𝑖𝑗: 𝑖 = 1, … , 𝑍; 𝑗 = 1, … , 𝑁 for a given sequence, 𝑆. 

Assuming independent observations and biomarkers, the likelihood of an ordered 

sequence 𝑆 is:  

 

𝑃(𝑿|𝑺) = ∏ [∑ (𝑃(𝑘) ∏ 𝑃(𝑥𝑖𝑗|𝐸𝑖) ∏ 𝑃(𝑥𝑖𝑗|¬𝐸𝑖)

𝑍

𝑖=𝑘+1

𝑘

𝑖=1

)

𝑍

𝑘=0

]

𝑁

𝑗=1

 

(1) 

𝑗 iterates over the number of subjects 𝑁, and 𝑖 iterates over the number of events 𝑍. 

𝑃(𝑘) refers to the prior likelihood of being at stage 𝑘 and in the absence of prior 

information is treated as uniform to impose as little information as possible on 

estimated orderings. The estimation procedure then searches for the characteristic 

ordering, �̅�, which is the sequence that maximises the likelihood of 𝑃(𝑿|𝑺) in equation 
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(1)267. This is found through a combination of a multiply initialized greedy ascent and 

Markov Chain Monte Carlo (MCMC) sampling, which samples from the posterior 

distribution on 𝑆, to find �̅�, which is simply the sequence with the highest (maximum) 

likelihood. The set of samples from the MCMC sampling also provides information 

on the uncertainty of the maximum likelihood sequence, which can be visualised on a 

positional variance diagram267,281. 

2.2.4.1.2 Models of event distribution  

The evaluation of equation (1) requires likelihood models for  𝑃(𝑥𝑖𝑗|𝐸𝑖) (“post-event”) 

and 𝑃(𝑥𝑖𝑗|¬𝐸𝑖) (“pre-event”); these can be obtained by fitting mixture models to the 

observed distributions of control and patient regional volumes. A variety of 

approaches have been used for mixture modelling depending on the specific disease 

under investigation. In familial AD281 and Huntington’s disease (HD)267 with a well-

defined control population (no mutation) 𝑃(𝑥𝑖𝑗|¬𝐸𝑖) was directly estimated; a 

Gaussian distribution was first fitted to the control population, followed by fitting a 

mixture of two Gaussian distributions to the set of volumes from the patients, with one 

component fixed to the healthy control model’s parameters (statistical mean and 

standard deviation). The parameters of the second component then provide the model 

for 𝑃(𝑥𝑖𝑗|𝐸𝑖). In sporadic diseases, such as AD, where healthy controls may go on to 

develop the disease, the control and patient groups are not uniquely defined280 and so 

𝑃(𝑥𝑖𝑗|¬𝐸𝑖) cannot be directly estimated. If the biomarkers are normally distributed, 

one approach is to fit a mixture of two normal distributions using two component 

Gaussian mixture modelling. The fitting of the model is achieved using a Sequential 

Least SQuares Programming optimizer (SLSQP). To ensure a robust fit, especially if 

there is significant overlap between the control and case distributions, one can 

constrain the standard deviations of 𝑃(𝑥𝑖𝑗|𝐸𝑖) and 𝑃(𝑥𝑖𝑗|¬𝐸𝑖) to be less or equal to 

that of the disease and control group respectively280. More recently Firth et al. 

proposed a non-parametric mixture modelling approach for when biomarker 

distributions are skewed, that uses kernel density estimate (KDE) distributions in the 

place of Gaussian distributions284. They show that this approach performs at a similar 

level to the classic EBM (that incorporates Gaussian mixture modelling) with 

parametric input data, while demonstrating superiority when the data are skewed. It is 



 

 83 

particularly useful when biomarker data includes cognitive test scores that are subject 

to “floor” and “ceiling” effects.  

2.2.4.1.3 Patient staging 

Once the characteristic sequence, �̅�, has been obtained via the EBM, an individual 

sample 𝑋𝑗 (a vector of all measurements across biomarkers 𝑖 for a patient 𝑗), can be 

staged by evaluating the stage 𝑘 that maximises the likelihood in equation (2) below 

(Young 2014): 

𝑎𝑟𝑔𝑚𝑎𝑥𝑘  𝑃(𝑋𝑗|�̅�, 𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 𝑃(𝑘) ∏ 𝑃(𝑥𝑖𝑗|𝐸𝑖) ∏ 𝑃(𝑥𝑖𝑗|¬𝐸𝑖)

𝑍

𝑖=𝑘+1

𝑘

𝑖=1

 

(2) 

As before 𝑃(𝑘), the prior likelihood of being at stage 𝑘, is treated as uniform i.e., no a 

priori information on a particular stage. The EBM stage, between 1 and the number of 

biomarkers, 𝑙, of subject 𝑗, is therefore given by the stage 𝑘 that maximises equation 

(2). The assignment of stage 𝑘 to a particular patient does not necessarily mean they 

fit the model exactly, but rather this it is the stage most compatible with their 

measurements. 
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2.2.4.2 Subtype and Stage Inference (SuStaIn) 

SuStaIn290 is a generalisation of the EBM concept that augments underlying disease 

progression modelling with a hierarchical machine learning clustering algorithm. 

Rather than an EBM, the underlying disease progression model is reformulated as a 

linear 𝑧-score model, with instantaneous normal to abnormal events (as in the EBM) 

replaced with events that represent the linear transitions between a biomarker’s z-

scores. Figure 2.3 demonstrates the concept behind SuStaIn; namely disentangling 

temporal and phenotypic heterogeneity to identify population subgroups (“subtypes”) 

with common patterns of disease progression (“stages”). The model fitting iterates 

through increasing numbers of subtypes 𝐶, estimating the proportion of subjects 𝑓 that 

belong to each subtype, and the order 𝑆𝑐  in which a biomarker reaches each 𝑧-score 

for each subtype 𝑐 = 1 … 𝐶. The optimal number of subtypes 𝐶 for the data is 

determined through ten-fold cross validation. A detailed formulation of the SuStaIn 

algorithm is provided in Young et al.’s seminal paper published in Nature Comms in 

2018290. I will summarise the key components of SuStaIn in the following section, 

based on this paper. 
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Figure 2.3 - Conceptual overview of SuStaIn (A) shows the underlying model consisting of a patient cohort with two hypothetical disease subtypes. (B) Cross-sectional input 

data from the cohort contains snapshots of biomarker measurements (in this cases imaging data) from each individual who has an unknown subtype and stage. (C) SuStaIn 

recovers the underlying set of disease subtypes and their temporal progression patterns via simultaneous clustering and 𝑧-score disease progression modelling. (D) The SuStaIn 

model fitted on the cross-sectional baseline data (C), can then be used to estimate the probability that an unseen biomarker measurement belongs to each stage and subtype. The 

colour of each region represents the amount of pathology in that region ranging from white (no pathology) to red to magenta to blue (maximum pathology). Figure reproduced 

with permission from Young et al290. 
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The following four sections are taken with permission from Young et al. 2018290. 

2.2.4.2.1 Mathematical model 

The linear 𝑧-score model underlying SuStaIn is a continuous generalisation of the 

original EBM281, the mathematical formulation of which is given in equation (1) in the 

previous section. The linear 𝑧-score model consists of a set of 𝑁 𝑧-score events 𝐸𝑖𝑧, 

corresponding to a linear increase of biomarker 𝑖 = 1 … 𝑍 to a 𝑧-score 𝑍𝑖𝑟 =

 𝑍𝑖1 … 𝑍𝑖𝑅𝑖
 ; each biomarker is associated with its own set of 𝑧-scores resulting in 𝑁 =

 ∑ 𝑅𝑖. In addition, each biomarker has an associated maximum 𝑧-score, 𝑍𝑚𝑎𝑥, which 

it reaches by the end of stage 𝑁. Young at al. define a continuous time axis, 𝑡, with 

arbitrary scaling going from 𝑡 = 0 to 𝑡 = 1. The disease stage, 𝑘, goes from 𝑡 =  
𝑘

𝑁+1
 

to 𝑡 =  
𝑘+1

𝑁+1
, with a 𝑧-score event 𝐸𝑖𝑧 occurring at each stage. As time 𝑡 progresses the 

biomarkers evolve according to a piecewise linear function 𝑔𝑖(𝑡): 

  

(3) 

Therefore, the times 𝑡𝐸𝑖𝑧
 are determined by the position of the 𝑧-score event 𝐸𝑖𝑧 in the 

sequence 𝑆, so if event 𝐸𝑖𝑧 occurs in the position 𝑘 in the sequence, then 𝑡𝐸𝑖𝑧
=  

𝑘+1

𝑁+1
.  
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The model likelihood for the linear 𝑧-score model is formulated by replacing equation 

(1) in the previous section with: 

      (4) 

where, 

𝑃(𝑥𝑖𝑗|𝑡) =  NormPDF(𝑥𝑖𝑗 , gi(𝑡), 𝜎𝑖) 

NormPDF(𝑥𝑖𝑗 , 𝜇, 𝜎𝑖) is the normal probability distribution function, with mean 𝜇 and 

standard deviation 𝜎, evaluated at 𝑥. Similar to the original EBM the prior on disease 

prior time is treated as uniform. The final SuStaIn model is a mixture of linear 𝑧-score 

models, which leads to the final formulation of the overall model: 

𝑃(𝑿|𝑴) =  ∑ 𝑓𝑐𝑃(𝑿|𝑺𝒄

𝐶

𝑐=1

) 

(5) 

Where 𝐶 is the number of clusters (“subtypes”), 𝑓 is the proportion of subjects 

assigned to the particular cluster (“subtype”), 𝑺𝒄 is the order in which biomarkers reach 

each 𝑧-score  for each cluster, and M is the overall SuStaIn model. For the next section 

I will use the term subtype and cluster interchangeably. 

2.2.4.2.2 Model Fitting 

Fitting the SuStaIn model requires simultaneously optimising subtype membership, 

subtype trajectory and the posterior distributions of both; Figure 2.4 summarises the 

main procedures involved in SuStaIn fitting. The model is fitted hierarchically, with 

the number of clusters estimated by model selection criteria obtained from cross-

validation (black box in Figure 2.4). The clustering problem is solved sequentially 

from 𝐶 = 1 … 𝐶𝑚𝑎𝑥, by initialising the fitting of each 𝐶 cluster from the previous 𝐶-1 

cluster model. For the first cluster (𝐶 = 1), the single-cluster expectation 

maximisation (E-M) sub-procedure is used (green box in Figure 2.4). Subsequent 

clusters (𝐶 > 1) are fit hierarchically by generating 𝐶-1 candidate 𝐶-cluster models 
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using the split-cluster E-M sub-procedure (blue box in Figure 2.4); the model with the 

highest likelihood from these candidate models is then chosen. 

The blue box in Figure 2.4 summarises the split-cluster E-M sub-procedure that is 

used to generate each of the 𝐶-1 candidate 𝐶 cluster models. For each of the 𝐶-1 

clusters the procedure first finds the optimal split of cluster 𝑐 into two clusters. To 

achieve this the data points belonging to cluster 𝑐 are randomly split into two separate 

clusters, and the optimal model parameters for these two clusters are found using the 

single-cluster E-M procedure (green box in Figure 2.4). These parameters are used to 

initialise the fitting of the two-cluster model to the data subset belonging to cluster 𝑐 

using E-M. This two-cluster solution is then used together with the other 𝐶-2 clusters 

to initialise the fitting of the 𝐶 cluster model. E-M is then used to optimise the 𝐶 cluster 

model, alternating between updating the sequences 𝑆𝑐  and the fractions 𝑓 for each 

cluster. To maximise the chances of finding a global minimum, this procedure is 

repeated from 25 different start points (i.e. random cluster assignments) to find the 

maximum likelihood solution.  

The single-cluster E-M procedure (green box in Figure 2.4) is used find optimal model 

parameters (that is the sequence 𝑆 in which the biomarkers reach each 𝑧-score) for a 

single cluster. In this sub-procedure the sequence 𝑆 is initialised randomly and 

optimised using E-M by going through each 𝑧-score event 𝐸 in turn to find its optimal 

position in the sequence relative to the other events. As per the split-cluster E-M sub-

procedure, the single-cluster sequence 𝑆 is optimised from 25 different random starting 

sequences to find the maximum likelihood solution. 
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Figure 2.4 - Flowchart of procedures for SuStaIn model fitting. The overall procedure for SuStaIn 

model fitting is shown in the black box, with the sub-procedures , single cluster E-M and split-cluster 

E-M, shown in the green and blue boxes respectively. 𝑀𝐶  denotes a SuStaIn model with 𝐶 clusters, that 

contains a set of sequences 𝑺1, … , 𝑺𝐶  and subtype fractions 𝑓1, … , 𝑓𝐶 . Figure reproduced from Young et 

al. 2018290. 

2.2.4.2.3 Uncertainty estimation 

In addition to estimating the most probable sequence, 𝑺𝑪, for each subtype, the 

probability of each possible sequence can be evaluated enabling the relative likelihood 

of all sequences to be computed. This gives an estimate of the uncertainty in the 

ordering of 𝑺𝑪, which can be plotted in a positional variance diagram (similar to the 

EBM), where different colours indicate the cumulative probability that each region has 

reached a particular 𝑧-score. Given evaluating all the possible sequences involves a 

search among 𝑆𝑛! possible sequences which rapidly becomes computationally 

intractable once n exceeds ~ 10, Markov Chain Monte Carlo (MCMC) sampling of the 

posterior distribution is used to provide an approximation of this uncertainty.   
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2.2.4.2.4 Cross-validation 

𝑘-fold cross-validation307 is used to both evaluate the optimal number of subtypes, and 

to evaluate the consistency of the subtype progression patterns. In the original SuStaIn 

paper290, Young et al. evaluate the optimal number of subtypes using the Cross-

Validation Information Criterion (CVIC) based on ten-fold cross-validation308. The 

CVIC is defined as the CVIC = −2 𝑥 log (𝑃(𝑿|𝑴)), where 𝑃(𝑿|𝑴) is the probability 

of the data for a particular SuStaIn model, 𝑴. This evaluates the likelihood of each 𝑐-

subtype model from 𝑐 = 1 … 𝐶 on the test data for each of the ten folds, subsequently 

selecting the model with the highest out-of-sample likelihood 𝑃(𝑿|𝑴), or equivalently 

the lowest CVIC across all folds. The CVIC is evaluated for a range of different 

SuStaIn models (with increasing subtypes), and where the evidence based on the CVIC 

is not strong, the less complex (less number of subtypes) model is selected. Although 

the thresholds for this decision on strength of model evidence compared to the N-1 

subtype model is subjective, in the original SuStaIn paper they define it as “a 

difference of less than 6 between the CVIC and the minimum CVIC across models, or 

equivalently a difference of less than 3 between the out-of-sample log-likelihood and 

the minimum out-of-sample log-likelihood across models”290. 

To evaluate the consistency of the subtype progression patterns, 𝑘-fold cross validation 

can also be used. The data is divided into 𝑘-folds and the model re-fitted to each subset 

of data, with one fold held out for testing each time. The similarity between the 

progression patterns for the model fitted to each fold and the model fitted to the whole 

data set can then be quantified using the Bhattacharyya coefficient309, which measures 

the similarity of the distribution of the position of biomarker events in the subtype 

sequences(0 = maximum dissimilarity, 1 = maximum similarity). The coefficient is 

evaluated between the position of each biomarker event in the two-subtype progression 

patterns, and then averaged across the biomarker events and MCMC samples.  
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2.3   3R tauopathy (Pick’s disease) genetic studies 

2.3.1 Pick’s disease International Consortium (PIC) 

Due to the rare and understudied nature of PiD, in collaboration with researchers (Dr 

Owen Ross, Professor Rosa Rademakers and Professor Dennis Dickson) at Mayo 

Clinic Brain Bank in Jacksonville, FL, USA (MCJ) I led efforts to establish the world’s 

first international consortium for Pick’s disease; the Pick’s disease International 

Consortium (PIC) (Figure 2.5). At UCL I was responsible for collecting PiD cases 

from European and Australasian territories, while the MCJ led the effort to identify 

and source PiD cases from the North American regions. Inclusion criteria were a 

neuropathologic diagnosis of PiD with Pick bodies, no evidence of an underlying 

MAPT mutation, and available frozen brain tissue. Exclusion criteria were 

frontotemporal dementia due to etiology other than a 3R predominant tauopathy or 

lack of frozen specimens. IRB approval was obtained for the studies at both collection 

sites (MCJ and UCL) and each individual brain bank had institutional IRB approval 

for collection and sharing of specimens. 



 

 

9
2
 

 

 

Figure 2.5 - Global map (A) and table (B) reporting countries and recruitment sites that have contributed Pick’s disease tissues to the Pick’s disease International Consortium 

(PIC) to date (01/02/2023). Samples identified refers to samples with an archival neuropathological diagnosis of PiD whereas PiD pathology confirmed refers to samples 

confirmed to have a 3R tauopathy consistent with PiD using the PiD neuropathological diagnostic algorithm. Red = countries that have collected and donated Pick’s disease 

tissues. 
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2.3.1.1 Neuropathological diagnosis of Pick’s disease 

Currently, there are no established diagnostic consensus criteria for the 

neuropathologic diagnosis of PiD. In many diagnostic centres a neuropathological 

diagnosis of PiD relies on the presence of argyrophilic, spherical neuronal inclusions 

using traditional silver staining methods, such as Bielschowsky’s or Gallyas-Braak 

silver staining methods. Both silver staining methods stain Alzheimer’s disease (AD) 

neurofibrillary tangles, yet spherical inclusions in PiD are negative on Gallyas-Braak 

silver staining141. Given that AD and PiD pathology can co-exist in the same patient, 

the ability to differentiate between the two pathologies using silver staining methods 

is helpful, especially for centres that do not use immunohistochemistry (IHC) against 

phosphorylated tau (p-tau) or have isotype specific tau antibodies incorporated into 

their diagnostic work-up. IHC against epitope-specific tau antibodies further helps to 

distinguish between AD and PiD features. Despite both spherical inclusions and 

neurofibrillary tangles staining positive with antibodies against phosphorylated tau (p-

tau), antibodies against 3R tau highlight selective 3R tau spherical inclusions in PiD, 

which is further validated by these inclusions not staining with 4R tau antibodies. This 

distinction is most pronounced in the granule cell neurons of the hippocampal dentate 

fascia, which may be used solely to diagnose PiD. 

2.3.1.2 PIC diagnostic algorithm  

It became clear during the early stages of my PhD that since a harmonized 

neuropathologic diagnostic scheme did not exist for PiD it was essential to establish a 

defined set of operational diagnostic criteria that would ensure that submitted PiD 

cases reflect a 3R-predominant tauopathy. These diagnostic criteria were developed 

during 2020 through collaboration between myself and Professor Tammaryn Lashley 

at UCL, and Professor Dickson and Dr Shanu Roemer at the MCJ. All potential PiD 

cases identified by the PIC had as a minimum an archival neuropathologic diagnosis 

of PiD (i.e. the presence of argyrophilic or p-tau positive spherical inclusions) through 

neuropathological assessments at their respective brain banks. Each participating 

centre was requested to submit and report respective 3R and 4R tau staining results for 

each individual PiD case to the PIC. To fulfil PIC criteria all cases had to have Pick 

bodies with 3R tau positive and 4R tau negative inclusions on IHC (Figure 2.6). The 

additional presence of ballooned neurons and negative Gallyas staining of inclusions 
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was preferred to confirm diagnosis. If 3R/4R tau IHC had not been performed at their 

respective brain banks, centres submitted routinely cut sections (up to seven 

microns)/slides of unstained, formalin fixed paraffin embedded (FFPE) tissue from 

hippocampal, frontal or temporal lobe regions for 3R and 4R tau IHC assessments. At 

MCJ all cases were stained using hematoxylin and eosin (H&E), thioflavin-S, a 

modified Bielschowsky or Gallyas silver staining method. IHC was performed using 

antibodies against phosphorylated tau (CP13 at MCJ and AT8 at UCL), 3R and 4R tau 

(see next section) and phosphorylated TDP-43 (Cosmo) (Figure 2.7). Select cases 

were stained for amyloid-β (aβ), α-synuclein (NACP), sequestome (p62), fused in 

sarcoma (FUS), and ubiquitin. Cases submitted to UCL were examined by myself and 

Professor Tammaryn Lashley at Queen Square Brain Bank, and those submitted to the 

Mayo Clinic Brain Bank by Professor Dennis Dickson and Dr. Shanu Roemer, all 

using the PIC diagnostic algorithm.  

 

Figure 2.6 - PIC pathological diagnostic criteria for PiD. These criteria were developed in 
collaboration with Professor Dennis Dickson and Dr Shanu Roemer at the Mayo Clinic Jacksonville. 

Abbreviations: LBD = Lewy body dementia, PSP = progressive supranuclear palsy, CBD = corticobasal 

degeneration, GGT = globular glial tauopathy, AGD = argyrophilic grain disease, AD = Alzheimer’s 

disease, PDC = Parkinsonism Dementia Complex, LATE = limbic predominant age-related TDP-43 

pathology, HpScl = hippocampal sclerosis. 
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2.3.1.3 Neuropathologic methods for 3R/4R tau IHC 

Sections were deparaffinized in xylene and rehydrated using graded alcohols. IHC for 

all antibodies required pressure cooker pre-treatment for 10 minutes in citrate buffer 

pH 6.0. Endogenous peroxidase activity was blocked in 0.3% H2O2 in methanol for 

10 minutes and non-specific binding blocked with 10% dried milk solution. Tissue 

sections were first incubated with primary antibodies; either AT8 (p-tau, 1:600; 

Thermo); RD3 (3R p-tau, 1:800; Millipore) or RD4 (4R p-tau, 1:4000, Millipore). AT8 

and RD4 were added to sections and incubated at room temperature for 1 hour, while 

RD3 was added to sections and incubated for 48 hours at 4℃. Of note, before applying 

the RD3 antibody, the tissue was treated with potassium permanganate 0.25% for 15 

minutes, followed by oxalic acid for 3 minutes. Following this the tissue sections were 

treated with the secondary antibody; biotinylated anti-goat IgG Antibody (1:200; 

VectorLabs) for 30 minutes followed by Avidin-Biotin complex (30 minutes; 

Dako)310.Colour was developed with di-aminobenzidine/H202. 

 

Figure 2.7 - Pathological assessments of Pick’s disease brains (1) At the MCJ (A) The superior and 

dorsolateral surfaces of the frontal cortex and temporal lobe often show severe circumscribed ‘knife-

edge’ edge atrophy. (B) Coronal sections of the brain show markedly dilated ventricles, cortical atrophy, 

and hippocampal affection. (C) Enlarged, amorphous ballooned neurons. (D) In regions with severe 

astrogliosis and neuronal loss, staining against αβ-crystallin may highlight ballooned neurons. (E) 

Phosphorylated tau antibodies highlight spherical cytoplasmic neuronal inclusions and may also show 

marked neuropil staining, especially in cases with concomitant Alzheimer’s type pathology. (F) Gallyas 

silver stains may stain isolated glial lesions or neurofibrillary tangles; however, Pick bodies do not show 

any significant degree of silver staining. (G) 3R tau staining of the dentate fascia of the hippocampus 

show strong immunoreactivity of spherical inclusions. (H) 4R tau staining of the dentate fascia show 

negative spherical inclusion, although isolated neurofibrillary tangles may stain positive. Images are 

from Pick cases submitted to MCJ. (2) Tau IHC performed at UCL (same procedure followed at the 

MCJ). The top row shows a Pick’s disease case that was positive for AT8 and 3R-tau immunoreactive 

Pick bodies. The bottom row shows a non-Pick’s disease case (that was originally pathologically 

diagnosed with Pick’s disease) that was positive for AT8 and 4R-tau but negative for 3R tau 

immunoreactive Pick bodies. Images are from Pick cases submitted to UCL. 
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2.3.1.4 Total cases collected by the PIC 

Frozen brain tissue from cerebellum or prefrontal cortex were obtained from each case. 

Baseline demographic information was collected for all subjects (age at symptom 

onset (AAO) and age at death (AAD) for PiD patients, age at blood collection for 

controls, and sex). In addition to basic demographic information, the PIC also collected 

information related to family histories, clinical outcomes (e.g. behavioural and 

language impairments, presence/absence of parkinsonism, upper and lower motor 

neurone deficits, Mini-Mental State Examination and Clinical Dementia Rating), and 

pathological information (e.g. Thal phase, Braak stage, and brain weight,) for each 

individual case, as well as noting whether other tissues and brain imaging data were 

available. 

As of the 1st February 2023 the total number of cases identified with an archival 

neuropathologic diagnosis of PiD (i.e. the presence of argyrophilic or p-tau positive 

spherical inclusions) was 449 (178 in the UCL cohort and 271 in the MCJ cohort). Of 

these 365 (156 at UCL and 209 at the MCJ) cases met the PIC neuropathogical 

diagnostic criteria for PiD (Figure 2.6). The breakdown of samples by recruitment site 

is detailed in Table 2.2. Not all of these samples were available at the time of analysis 

for the MAPT haplotype analysis (Chapter 6) or the case-control (Chapter 7) and 

survival (Chapter 8) GWASs. I will detail the samples, broken down by contributing 

site, used in each of these studies in the respective chapters. 

2.3.1.5 Controls 

For the MAPT haplotype analysis in Chapter 6 1,312 controls were collected from the 

Mayo clinic, FL (N=881) or Rochester, MN (N=431). Control subjects were deemed 

neurologically healthy by neurologists at Mayo Clinic.  

For GWAS analysis controls were collected from two sources: 989 from the Global 

Parkinson’s Genetics Program (GP2)311, and 457 from the Invasive Fungal Infection 

and GENetics (IFIGEN) cohort312.  
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Table 2.2 - Overview of PIC contributing sites. 

  Number of samples* 

Contributing Site Country 
Samples 

identified 

PiD Pathology 

confirmed 

UCL Institute of Neurology cohort (Europe / Australia)  178 156 

    
Netherlands Brainbank, Amsterdam Netherlands 36 33 

UCL Queen Square Brain Bank, London UK 18 18 

Neurological Tissue Bank, Biobanc-Hospital Clínic-IDIBAPS, 
Barcelona 

Spain 14 14 

Manchester Brain Bank, Manchester UK 11 11 

Cambridge Brain Bank, Cambridge UK 25 11 

London Neurodegenerative Diseases Brain Bank, London UK 8 8 

South West Dementia Brain Bank, University of Bristol UK 12 8 

Sydney Brain Bank, Sydney Australia 8 8 

Neurobiobank München, Munich Germany 7 7 

Oxford Brain Bank, Oxford UK 7 7 

Newcastle Brain Tissue Resource, Newcastle-upon-Tyne UK 7 7 

IBB NeuroBioBank, University of Antwerp, Antwerp Belgium 5 5 

Neuro-CEB Biobank France, Paris France 5 5 

Victorian Brain Bank, Florey Institute, Parkville, VIC Australia 5 5 

Douglas-Bell Canada Brain Bank, Montreal, QC Canada 4 3 

The Brain Bank at Karolinska Institutet, Stockholm Sweden 3 3 

Fondazione IRCCS Instituto Neurologico Carlo, Milan Italy 2 2 

DZNE e.V. Standort Tübingen Germany 1 1 

Mayo Clinic, Jacksonville cohort (North America)  271 209 

    

Mayo Clinic, Jacksonville, FL/Rochester, MN USA 63 59 

University of California, San Francisco, CA USA 32 21 

University of Pennsylvania, Philadelphia, PA USA 18 18 

Massachusetts General Hospital, Boston, MA USA 22 15 

Northwestern University, Chicago, IL USA 15 14 

John Hopkins University, Baltimore, MD USA 13 13 

Indiana University, Bloomington, IN USA 12 12 

Banner Sun Health Research, Sun City, AZ USA 10 9 

Sunnybrook Health Research, Toronto, ON Canada 11 9 

Columbia University, New York City, NY USA 9 9 

Emory University, Atlanta, GA USA 8 7 

UT Southwestern Medical Center, Dallas, TX USA 10 7 

University of British Columbia Hospital, Vancouver. BC Canada 5 5 

Houston Methodist Hospital, Houston. TX USA 4 4 

Bryan Brain Bank and Biorepository, Duke University, Durham, 
NC 

USA 9 3 

Krembil Research Institute, University of Toronto, Toronto, ON Canada 2 2 

UCLA - Sepulveda, Los Angeles, CA USA 7 1 

Parkwood Institute, University of Toronto, Toronto, ON Canada 1 1 

Oregon Health & Science University, Portland, OR USE 20 Not stained 

Total PIC samples  449 365 

* Total samples identified and pathologically confirmed as of 1st February 2023 
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2.3.2 Genetic Analysis 

2.3.2.1 DNA preparation 

For the majority of cases, DNA was extracted at their respective collection site (MCJ 

or UCL). At UCL genomic DNA was extracted from either frozen brain tissue or 

whole blood lymphocytes using the Kleargene XL Nucleic Acid Purification kit (LGC, 

Germany). At MCJ genomic DNA was extracted from frozen brain tissue from PiD 

cases and from peripheral blood lymphocytes from control subjects using an 

automated or manual method. Automated DNA extractions were carried out using 

Autogen Tissue Kit reagents according to manufacturer protocols and were processed 

on the Autogen FlexSTAR+ (both Autogen, Holliston, MA, USA). Manual extractions 

were completed using QIAamp DNA Mini Kits (Qiagen, MD, USA). DNA quality for 

all samples was assessed with a NanoDrop 8000 spectrophotometer (ThermoFisher 

Scientific, USA) and absorbance ratios for 260/280 and 260/230 were between 1.7-2.2 

and 2.0-2.2, respectively. Sydney Brain Bank extracted DNA from peripheral blood 

using a Qiagen DNA extraction kit, UPenn and UCSF extracted DNA from their cases 

using QIAamp DNA mini kits. 

2.3.2.2 Genotyping 

For the MAPT haplotype analysis (Chapter 6) we performed targeted genotyping of 

the six MAPT haplotype tagging variants in 2020 / early 2021 using PCR. For the 

GWAS analysis (Chapter 7 and Chapter 8) we performed genome-wide genotyping 

using microarrays from mid 2021 to mid 2022. I was responsible for the genotyping 

of all UCL samples, and Dr Rebecca Valentino in Owen Ross’s laboratory at the MCJ 

was responsible for genotyping of all the MCJ samples. I will therefore discuss each 

of the genotyping methods in detail below. 

2.3.2.2.1 Targeted genotyping 

The MAPT H2 haplotype-tagging variant rs8070723, in addition to the five common 

MAPT variants (rs1467967, rs242557 [the H1C haplotype-tagging variant], 

rs3785883, rs2471738, and rs7521) were genotyped. These six variants together define 

the H1-subhaplotypes allowing analysis of MAPT subhaplotype structure176,202. 

European and Australasian cases in the UCL cohort were genotyped using KASPTM 



 

 99 

SNP genotyping assays on the Hydrocyler2 system (LGC Genomics, Hoddesdon, 

Herts, UK) according to manufacturer instructions, and were read on a PHERAStar 

FSX plate reader (BMG Labtech, Cary, NC, USA). Genotypes were called using 

Kraken KlusterKallerTM software (LGC Genomics, Hoddesdon, Herts, UK). North 

American cases and all controls were genotyped using TaqMan SNP genotyping 

assays on an ABI 7900HT Fast Real-Time PCR system (Applied Bio-systems, Foster 

City, CA, USA). MAPT variants were genotyped according to manufacturer 

instructions (primer sequences available upon request). Genotypes were called using 

TaqMan Genotyper Software v1.3 (Applied Bio-systems, Foster City, CA, USA). 

2.3.2.2.2 Whole-genome microarray genotyping 

All samples from MCJ (North American samples), Sydney (Australasia samples) and 

IFIGEN controls were genotyped by the local teams on the Illumina (Illumina, San 

Diego, CA, USA) Global Screening Array version 3 (GSA) 

(https://www.illumina.com/products/by-type/microarray-kits/infinium-global-

screening.html), which covers c.654,000 variants. All UCL samples (European 

samples) were genotyped at UCL Genomics on the Illumina NeuroBooster Array 

(NBA); I carried out the DNA sample quality control and preparation for genotyping 

including the NanoDrop and Qubit fluorometry and plated all samples which were then 

delivered to UCL Genomics for genotyping. The NBA consists of an Illumina Global 

Diversity Array v1 (https://www.illumina.com/products/by-type/microarray-

kits/infinium-global-diversity.html) backbone (c.1.8 million variants), with bespoke 

SNP coverage of known variants associated with neurodegenerative disease (95,000 

variants) (https://github.com/GP2code/Neuro_Booster_Array). This array has been 

designed with three aims in mind: 1) to improve imputation quality across populations 

of diverse continental ancestries to facilitate risk loci discovery; 2) to improve 

imputation of known GWAS loci for neurodegenerative disease; 3) to identify coding 

and low frequency variants. GP2 controls were also genotyped on the Illumina 

NeuroBooster Array (NBA) by the local teams within the GP2 network.  

2.3.2.3 Genome-wide genotype calling  

Raw IDAT files were shared with me at UCL, and for each of the genotyping platforms 

(NBA and GSA) I performed genotype calling separately using GenomeStudio version 

2.0 (Illumina), based on the protocol published by Guo et al.313  after training by Dr 

https://www.illumina.com/products/by-type/microarray-kits/infinium-global-screening.html
https://www.illumina.com/products/by-type/microarray-kits/infinium-global-screening.html
https://www.illumina.com/products/by-type/microarray-kits/infinium-global-diversity.html
https://www.illumina.com/products/by-type/microarray-kits/infinium-global-diversity.html
https://github.com/GP2code/Neuro_Booster_Array
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Kin Mok. I manually re-clustered common variants (MAF > 1%) on the autosomal 

chromosomes with a GenTrain score between 0.4 – 0.7  (inclusive). I did not manually 

re-cluster variants on the sex chromosomes or rare variants (MAF <1%), as I later 

excluded these in PLINK. All variants tagging MAPT mutations on the NBA array 

were checked individually and re-clustered if necessary. For the NBA I used the in-

house NIH cluster file (based on 2000 GP2 samples), and for the GSA I used the 

Illumina cluster file provided online 

(https://support.illumina.com/downloads/infinium-global-screening-array-v3-0-

product-files.html). Raw data from different genotyping batches were combined to 

improve accuracy of clustering of the intensity data. All UCL cases and GP2 controls 

were screened for known MAPT mutations covered by the NBA and were excluded 

from downstream analysis if a MAPT mutation was identified. All MCJ cases were 

screened for known MAPT mutations before genotyping and only included if negative. 

2.3.2.4 Genome-wide association studies  

In this section I will first give an overview of genome wide association studies 

(GWAS) with the key steps required for a successful study, and then provide more 

detail on some of the key statistical methods used in this thesis. For details on the 

application of these techniques in the PiD case-control and survival GWASs, and the 

methods specific to each study, please refer to Chapter 7 and Chapter 8 respectively.  

2.3.2.4.1 GWAS - an overview 

GWASs are now a well-established technique to identify genetic variability underlying 

the risk for disease and have been facilitated by advanced in single nucleotide 

polymorphism (SNP) arrays that capture a significant proportion of common variation 

in the genome314 . The concept was first proposed by Neil Risch and Kathleen 

Merikangas as technique to identify common disease-associated variants in complex 

disorders315. In recent years several GWASs have been successfully carried out in 

neurodegenerative disease, leading to the identification of many susceptibility loci 

associated with disease (see Chapter 1). 

The International HapMap consortium (HapMap) founded in 2002, was crucial to the 

development of GWA studies. By determining common patterns of DNA sequence 

variation in the human genome across populations of differing ancestry and developing 

https://support.illumina.com/downloads/infinium-global-screening-array-v3-0-product-files.html
https://support.illumina.com/downloads/infinium-global-screening-array-v3-0-product-files.html
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of technology to make SNP genotyping more reliable, faster and cheaper, the 

possibility of GWA SNP testing became a reality316. The HapMap project produced a 

minimal set of informative SNPs to tag genetic variation across the human genome 317.  

The underlying rationale for GWA studies is the ‘common disease, common variant’  

(CDCV) hypothesis that hypothesises that allelic variants present in 1-5% of the 

population account for, at least in part, the risk associated with common disorders318,319 

(Figure 2.8). A number of consequences follow necessarily from this hypothesis. 

Firstly, if common genetic variants influence probability of disease, then the 

penetrance (or effect size) of an individual variant must be small compared to rare 

variants (mutations) causing rare disorders. This means that population prevalence of 

a disease and allele frequency are correlated, and common variants by definition will 

not have a high penetrance320. Following from this, if common alleles have low 

penetrance, but common disorders show heritability, then many common variants are 

likely to influence disease susceptibility. The frequency of an allele in the population 

combined with the individual effect size for that allele are important factors to consider 

when planning a GWAS. 

 

Figure 2.8 - Identifying genetic variants by risk allele frequency and genetic effect size. Variants 

identified by GWAS tend to lie in the middle to bottom right of the graph. Image from Manolio et al. 

2009314. 



 

 102 

In contrast to the CDCV hypothesis, the multiple rare variant (MRV) hypothesis posits 

that the genetic risk component of common complex diseases is due to MRVs)321. In 

neurodegenerative disease it is likely that both the CDCV and the MRV hypothesis 

can be true at the same locus, with both common and rare risk alleles driving genetic 

risk at the same loci322. 

Unlike traditional linkage studies which analyse family members, a GWAS is 

conducted in unrelated individuals. GWASs usually focus on common variants, also 

known as single nucleotide polymorphisms (SNPs),with a minor allele frequency of 

greater that 1%. The main steps in performing a GWAS are 1) Study design 2) Data 

pre-processing and QC 3) Association analysis and 4) Post-analytic visualisation. For 

a more detailed reviews, I refer the reader Bush et al.320 for an overview of GWASs 

and to Reed at al.323 for a practical guide to performing the analysis.  

1) Study Design 

The phenotype of interest in a GWA study can be either categorical (usually case vs 

control), or quantitative. Quantitative traits, from a statistical perspective, are often 

preferred as they increase the power to detect a genetic effect. In the tauopathies, early 

studies have focused on a case/control categorical outcome variable167,169,194 as it is 

rare to have endophenotypes that have well established quantitative measures. This 

has been changing in recent years with studies analysing genetic determinants of 

clinical progression and survival198,324,325. For case/control studies a major component 

of success is the definition of rigorous phenotype criteria: where cases are defined 

according to pathology (as in the case for this study), standardised rule-based 

pathology criteria are essential to ensure homogeneity of those included in the cohort.  

2) Data pre-processing and QC 

Once genotypes from the array have been called the next step is both sample level and 

variant level quality control. Sample level QC involves identifying call rate and 

heterozygosity outliers (high or low heterozygosity may indicate poor sample quality), 

and biologic sex mismatches. Optional steps at this stage can then include filtering 

based on relatedness and removing ancestry outliers. Variant level QC steps include 

assessing variant missingness (high missingness suggests failure of that particular 

genotype probe), missingness by case vs. control as well as by haplotype to ensure that 

these are not unbalanced between groups (can lead to false positive associations). 
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Additional steps can include filtering based on minor allele frequency (MAF) prior to 

imputation (as rare variants can be difficult to call reliably with imputation), and 

filtering of controls based on violation of Hardy Weinberg Equilibrium (HWE) 

assumptions (can be an indication of inbreeding, population substructure or 

genotyping error). Filtering is usually limited to controls in the case of HWE, because 

in in cases its violation may be due to true disease association326.  

Population stratification can occur when there is an admixture of two or more different 

ancestral populations in a study, where each subpopulation differs both in terms of 

phenotype prevalence and allele frequencies. This phenomenon is well documented to 

cause spurious associations between the phenotype of interest and non-causal SNPs 326 

and needs to be controlled for in any GWA analysis. A common, fast and effective 

way to adjust for population substructure is principal component analysis (PCA) (see 

Principal component analysis)327 which generates principle component values that can 

be thought of as an “ethnicity” score. These can then be used as covariates in the 

subsequent association analyses to adjust for ancestry effects (population 

stratification) in the data.  

4) Imputation  

Modern chip arrays capture upwards of one million SNPs which vary in at least 1% of 

the general population, though this is only a fraction of the total number of SNPs that 

are present in the average human genome (more than 84 million) 328. The association 

signal may therefore be missed if the causal variant has not been genotyped. Genotype 

imputation is a technique that allows missing SNPs to be inferred based on the 

observed genotypes at neighbouring SNPs, greatly increasing the number that can be 

tested for association, so increasing the power of a given study. Taking advantage of 

the linkage disequilibrium (LD) patterns and haplotype frequencies from whole 

genome sequenced (WGS) reference panels (such as from HapMap,1000 genomes or 

the Haplotype Reference Consortium [HRC]), genotypes not directly genotyped on an 

array can be probabilistically estimated329.  

The first step in imputation is to pre-phase the genotypes (haplotype estimation) using 

available genotypes. The second step then involves the actual imputation of the 

missing genotypes. One needs to check study data with the imputation reference SNP 

list to ensure that there is overlap before imputing. Popular algorithms for imputation 
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include IMPUTE2, MaCH/minimac, BEAGLE and fastPHASE330. Web-based 

imputation servers such as the Michigan Imputation Server331 or the Sanger imputation 

server332 can be used if one wants to use the HRC reference panel.  

Once imputation has been performed, it is important to assess imputation quality, 

filtering out imputed genotypes with high degrees of uncertainty. The most common 

measure used for this filtering is 𝑅2, which is the value associated with the linear model 

regressing each imputed SNP on regional typed SNPs. Generally, these genotype calls 

are made by specifying a genotype probability threshold of > 0.8 (a so called “hard 

call”). Although these estimated genotypes can be used as true genotypes in the 

subsequent analyses this can lead to false association results, particularly for rare 

variants that are often purely imputed and can be called common allele homozygotes. 

Best practice now is to use the genotype probabilities to account for the uncertainty in 

genotype state in the association analysis. 

5) Association analysis 

Quantitative phenotypes (traits) are usually analysed using generalised linear models 

(GLM): either Analysis of Variance (ANOVA) or multiple linear regression. ANOVA 

tests the null hypothesis that there is no difference between the trait means of any of 

the genotype groups, while linear regression generates regresses each SNP separately 

on a given phenotype, with covariate adjustment for patient-level clinical and 

demographic factors, as well as the principal components to account for population 

stratification. Both methods assume that the trait is normally distributed, with common 

variance (groups of homoscedastic), and that the groups are independent. If the 

assumption of normality is not met, then a transformation (such as a log 

transformation) of the original trait values may be required326. 

For case / control studies where the outcome is a binary categorical variable, logistic 

regression can be used. In logistic regression the outcome is transformed using a 

logistic function (logit) that predicts the probability of being in the case group for a 

given genotype320. Both linear and logistic regression allow adjustment for covariates 

that are known to influence the trait, and so reduce false positive associations. Perhaps 

the most important covariate to adjust is population stratification (as discussed 

previously), which can be done at this stage by inserting the principal components 

generated from a PCA. 
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For both quantitative and categorical trait analysis there are a number of ways that the 

genotype data can be encoded for the association tests. Allelic association tests assess 

the association between one allele of the SNP and the trait, whilst genotypic tests 

assess the association between genotypes and the trait. For genotypic tests the 

genotypes for an individual SNP can be grouped into classes (models) such as 

multiplicative, additive, dominant or recessive333 each of which make different 

assumptions about the genetic effect. The underlying genetic model of association for 

each SNP used in the analysis will impact of the results. For GWAS, where there are 

a large number of SNPs with generally uncharacterised relationships to the outcome, 

it is common practice to assume that the disease risk from individual SNPs is roughly 

additive i.e. that heterozygote risk is intermediate between the two homozygote risks 

(the minor allele dosage us coded as 0, 1, or 2)326. Although counting alleles rather 

than genotypes in the additive model will increase power, it is not usually 

recommended as it requires the assumption of HWE in cases and controls334. 

Given in a GWAS millions of statistical tests are perform (one for each SNP), and each 

test has its own false positive probability, the cumulative probability of finding a false 

positive with modern genotyping arrays is therefore much higher. The most common 

approach to correct for this multiple testing is the use the Bonferroni correction, which 

adjusts the significance level (alpha) from 0.05 to 0.05/𝑘, where 𝑘 is the total number 

of statistical tests conducted. For a GWAS using 1 million SNPs this would set the 

significance level at 5 𝑥 10−8 (the so called genome wide significant threshold), a 

conservative estimate as the assumption is that each association test is independent. 

Statistical power in a GWAS is affected by the allele frequency, sample size, loci effect 

size, and the standard deviation (SD) of the trait. 

6) Post-analytic visualisation 

After SNPs with significant association are identified, it is common practice to report 

the chromosome and base pair location based on the relevant genome build that has 

been used. Specifically, the following are reported; SNP name, chromosome number, 

base pair location (with details of specific genome build), the 𝛽 coefficient estimate 

(or odds ratio) from the regression model, the corresponding standard error and the 

associated 𝑝 value323.  
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There are several plots commonly used to both visualise GWAS results and perform 

quality control. A Q-Q plot is a probability plot that is used to visualise the extent to 

which the observed distribution of the SNP-level test statistics follows the expected 

null distribution.  The expected −log (𝑝) (a normal distribution) is drawn as a line, 

and the lambda (𝜆) statistic (otherwise known as the genomic inflation factor), gives 

a formal measure of deviation from the null line (indication of bias within the data). 𝜆 

scales with sample size, so it is important to report the 𝜆1000 (the inflation factor of a 

study of 1000 cases and 1000 controls). A value of <1 suggests the study is 

underpowered, a value of close to 1 suggests there is little bias in the data observes, 

while a value of >1.5 is usually the threshold used to indicate there is systemic bias, 

such as population stratification, that has not been controlled for. A Manhattan plot is 

a common way to visualise the 𝑝 values of all SNPs in the GWAS by chromosome 

location. Each point corresponds to an individual SNP where the x-axis value 

represents the gene coordinate, with the y-axis giving the −log (𝑝) value (the larger 

the value the smaller the 𝑝 value). A solid line is then overlain on the plot to represent 

the Bonferroni corrected significance threshold. Visual inspection of the plot allows 

for identification of SNPs with small 𝑝 values, where the surrounding SNPs have low 

values, which can indicate a false positive result. If PCA has been performed to control 

for population stratification, a Scree plot can be a useful method to visualise how much 

of the variance in the data is accounted for by each principal component. Usually, the 

majority of the variance should be captured by the first few principal components; if 

you do not see this it indicates an issue with either the data itself, or up-stream 

processing of the data. 
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2.3.2.4.2 Statistical Methods 

2.3.2.4.2.1 Principal component analysis 

PCA is a method of data reduction that reduces the complexity in high-dimensional 

data while retaining trends and patterns. Similar to clustering335, it is an unsupervised 

learning technique, that is able to find patterns without prior knowledge about the 

groups that the samples come from. PCA reduces data by geometrically projecting 

them onto lower dimensions called principal components (PCs), with the aim of trying 

to encode the maximum variance of the underlying data with the minimal number of 

PCs336. A principal component consists of an eigenvector representing directionality, 

with a corresponding eigenvalue representing the variance in the data in that direction. 

The first PC contains the most variance, with each subsequent PC geometrically 

orthogonal (linearly independent and uncorrelated) and with less variance. The PC 

selection process involved maximising the correlation (𝑟2) between the data and their 

lower dimensional projection, and is mathematically equivalent to performing linear 

regression337,338. The total number of eigenvectors and eigenvalues (PCs) represents 

the number of dimensions (input variables) in the underlying data.  

2.3.2.4.2.2 Logistic (and linear) regression  

Logistic regression is a mathematical modelling approach that can be used to describe 

the relationship between several predictors and a binary or categorical dependent 

variable. In addition to predicting the value of a categorical variable (for example 

patient survival), this method can also predict the associated probability. 

To understand how logistic regression works it is first necessary to understand linear 

regression, where the dependent variable is continuous. For linear regression a line of 

best fit for the data is derived using least squares, a method that minimises the sum of 

squared distances from each data point to the line (also called residuals). The method 

is formalised in the following equation: 

𝒀 =  𝑩𝟎 + 𝑩𝟏. 𝑿 

Where the beta coefficient of the slope (𝑩𝟏) indicates the increase in the dependent 

variable (𝒀) associated with each unit increase the in the independent variable (𝑿). The 

intercept (𝑩𝟎) indicates the mean of the dependent variable when the value of the 

independent variable is zero. 
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Linear regression does not however work well for when the independent variable is a 

binary/categorical. One approach to predict a categorical variable is logistic 

regression, which takes its name from the type of curve it uses to fit the data; rather 

than fitting a straight line (as in linear regression), a smooth sigmoid curve is fit to the 

data. Logistic regression models the log odds ratio 𝑙𝑛(𝑝/(1 − 𝑝), where 𝑝 is the 

probability of event occurring, as a linear combination of the independent variable(s). 

The equation representing this modifies the above linear regression equation by 

replacing 𝒀 on the right side of the equation with the odds ratio: 

𝒍𝒏(𝒑/(𝟏 − 𝒑) =  𝑩𝟎 +  𝑩𝟏. 𝑿 

Modelling the log odds ratio allows estimation of the probability of class membership 

(the values of the categorical variable e.g. if survival, alive or dead) using a linear 

relationship, similar to linear regression339. We can transform the log odds back to a 

probability as 𝑝(𝑡) = 1/(1 + exp(−𝑡))), where 𝑡 = 𝐵0 + 𝐵1𝑋. This function 

produces a S-shaped sigmoid curve, with a steepness controlled by 𝐵1 that maps the 

linear function back to probabilities between zero to one. 

In linear regression models, the fit can be assessed by using 𝑅2, which estimates the 

proportion of variability explained by the regression model. It is calculated as one 

minus the sum of squared errors in the proposed model divided by the sum of squared 

errors in null model . When the model has multiple independent variables the adjusted  

𝑅2 is more useful; it is adjusted for the number of covariates in the model, and will 

only increase if each additional variable reduces the overall error of the predictions. 

For logistic regression models, pseudo 𝑅2 methods that approximate the 𝑅2 from linear 

regression models are used to estimate goodness of model fit. A popular  method  is 

Nagelkerke 𝑅2 which estimates the improvement of the fitted model over the null 

model340. 

2.3.2.4.2.3 Survival (time to event) analysis 

With time to event data (TTE) the outcome of interest is not only whether the event 

has occurred, but also when that event occurred. Logistic and linear regression are not 

able to include both the event and time components in the outcome of the model, and 

are also not able to handle censoring; a unique type of missing data where subjects do 

not experience the event of interest during the follow-up time of the data collection 

period341. 
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The survival function, which computes the probability of meeting the outcome of 

interest beyond the timepoint 𝑡, can be estimated by a Kaplan Meier curve.  Each step 

on the KM curve represents the proportion of individuals that have met the outcome 

at that time point, while the bars represent that individuals who have been censored 

(observation period has ended before the individual met the outcome). The KM curve 

estimates the probability of surviving to the end of the observed time period, 

conditioned on surviving up to the beginning of the time period341. The most 

commonly used method for comparing the survival curves between the survival curves 

of two groups is the log-rank test. Although the KM estimator is the most common 

approach for describing overall survival distributions and comparing them across 

groups, it is not able to account for covariates, and so if one’s goal is to assess the 

effect of different risk factors on survival, multivariate statistical modelling is required. 

These models can be broadly divided into two categories: proportional hazard (PH) 

approaches and accelerated failure time (AFT) models. In this thesis I use the Cox PH 

(CPH) model, a semi-parametric proportional hazards approach (Chapter 8). For a 

more detailed review of the other PH hazard approaches, such as the Exponential, 

Weibull or Gompertz models, and AFT models I refer the reader to an excellent 

summary by Bradburn et al342. Given the CPH model is a form of multivariate 

regression it provides a way to estimate survival, while at the same time allowing 

analysis of the effect of covariates on outcome. The fact that is semi-parametric, means 

that it has less strict assumptions about the underlying TTE data distribution than the 

parametric PH models. In essence the CPH model describes the relationship between 

the event incidence, as expressed by the hazard function, and the covariates342. The 

hazard is defined as the instantaneous event probability at a given time i.e. the 

probability that an individual under observation experiences the event at a timepoint 

𝑡. This is in contrast to the odds ratio and relative risk which only refer to cumulative 

probabilities and the total number of events for a single defined timepoint over an 

entire.  
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The CPH model is expressed mathematically as: 

𝒉(𝒕) =  𝒉𝒐(𝒕)  ×  𝐞𝐱𝐩 {𝒃𝟏𝒙𝟏 + 𝒃𝟐𝒙𝟐 + ⋯ + 𝒃𝒑𝒙𝒑} 

Where the hazard function 𝒉(𝒕) is dependent on a set of 𝒑 covariates (𝒙𝟏,  𝒙𝟏 … 𝒙𝒑), 

whose relative impact is related to the size of the respective beta coefficients 

(𝒃𝟏,  𝒃𝟏 … 𝒃𝒑). 𝒉𝒐 refers to the baseline hazard, and is value of the hazard when the 

dependent variable(s) 𝒙 is equal to zero. The beta coefficients from the CPH model or 

on a log scale, and the exponents of the coefficients give the hazard ratio (HR). The 

HR refers to the ratio of the two hazard functions (the hazard functions for the two 

possible outcomes encoded in the dependent variable of interested). An important 

assumption in the CPH model is that of proportional hazards; that is that the hazard 

ratios for the independent variable are constant over time. It is important to verify that 

this assumption for all independent variables included in a CPH model.  

As with logistic regression, pseudo-𝑅2 methods340 have to be used to calculate 

goodness of fit in CPH models. As previously discussed, these calculate the 𝑅2 based 

on the improvement in likelihood between the fitted model and the model without 

dependent (predictor) variables (the null model).   

2.3.2.5 Post-GWAS analysis 

2.3.2.5.1.1 Functional Mapping and Annotation of GWAS (FUMA) 

To annotate the GWAS summary statistics in Chapter 7 and Chapter 8 I used the 

online platform Functional Mapping and Annotation (FUMA) of Genome- Wide 

Association Studies (https://fuma.ctglab.nl/) (version 1.3.6)343. FUMA utilises 

information from multiple biological resources to enable functional annotation of 

GWAS results, gene prioritisation and interactive visualisation. The SNP2GENE 

function in FUMA identifies independent SNPs and risk loci based on user defined 

thresholds, annotates these SNPs with available functional data and then maps them to 

genes, facilitating insight into the directional biological implications of significant 

genetic associations.   

Using the provided GWAS summary statistics, FUMA identifies independent SNPs 

and their surrounding genomic loci based on the linkage disequilibrium (LD) structure. 

Independent significant SNPs (and SNPs in LD) are then annotated for functional 

consequences on gene functions (based on Ensembl genes (build 85) using 
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ANNOVAR344), deleteriousness score (CADD score345), potential regulatory 

functions (RegulomeDB score346) and 15-core chromatin state predicted by 

ChromHMM347 for 127 tissue/cell types348,349, effects on gene expression using eQTLs 

of various tissue types and 3D structure of chromatin interactions with Hi-C data343. 

These SNPs are also cross-checked with the GWAS Catlog350, to identify whether they 

have previously been reported in association with other phenotypes.  

Annotated SNPs are then mapped to genes based on positional, expression quantitative 

trait loci (eQTLs), and chromatin interaction information. For positional mapping, 

SNPs are mapped to genes based on physical proximity (up to 10 kb away). eQTL 

mapping is based on cis-eQTLs for genes within 1Mb of the locus, utilising 

information from four main data repositories: Genotype-Tissue Expression v8 

database (GTEXv8)351, Blood eQTL browser352, BIOS QTL browser353 and 

BRAINEAC354. Chromatin interaction mapping maps SNPs to genes when there is a 

significant chromatin interaction between genes and GWAS significant loci, using Hi-

C data from 14 tissue types355. 

2.3.2.5.1.2 Colocalisation analysis 

In the GWAS/GWSS analyses (Chapter 7 and Chapter 8) I carried out colocalisation 

analysis using the coloc R package for all genes within ± 1Mb of the lead genomic loci 

SNP (version 5.1.0; https://cran.r-project.org/web/packages/colocr/index.html)356. 

This method assesses whether two association signals are consistent with a shared 

causal variant. By integrating GWAS and expression quantitative trait loci (eQTL) 

summary statistics, one can use this method to assess which gene at a given GWAS 

locus is potentially mediating the disease signal. 

Coloc uses a Bayesian inference approach to estimate the posterior probability 

corresponding to one of five hypotheses (H0, H1, H2, H3, H4), related, in this thesis, 

to the expression of the tested gene (cis-eQTL, trait 1) and tested PiD outcome (disease 

risk or survival event, trait 2): 

• H0: No association with either trait. 

• H1: Association with expression of the gene, but not the PiD trait. 

• H2: Association with the PiD trait, but not expression of the gene. 

• H3: Association with the PiD trait and expression of the gene, with distinct 

causal variants 
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• H4: Association with the PiD disease trait and expression of the gene, with a 

shared causal variant. 

A high H4 probability ( > 0.85) is considered as significant support for colocalization 

between the GWAS and the cis-eQTL traits i.e. signal colocalisation. Coloc calculates 

Bayes factors under the assumption that there is a single casual variant at a locus; it is 

therefore important to perform a conditional analysis at the lead genomic loci to ensure 

that there are no additional independent signals present. In this thesis I use GCTA-

COJO software (version 1.93.0 beta for Linux; 

https://yanglab.westlake.edu.cn/software/gcta/#Overview) to perform association 

analyses conditioned on SNPs of interest. Further details on this method can be found 

in the original paper357. 
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Chapter 3:  A data-driven model of brain 

volume changes in Progressive Supranuclear 

Palsy Richardson Syndrome 

The work in this chapter was published in Brain Communications in April 2022: 

Scotton WJ, Bocchetta M, Todd E, Cash DM, Oxtoby N, VandeVrede L, Heuer H; PROSPECT 

Consortium, 4RTNI Consortium; Alexander DC, Rowe JB, Morris HR, Boxer A, Rohrer JD, Wijeratne 

PA. A data-driven model of brain volume changes in progressive supranuclear palsy. Brain Commun. 

2022 Apr 14;4(3):fcac098.358 

Scientific commentary is provided in the same journal edition by Franzmeier et al: 

Franzmeier N, Hoglinger GU. Inferring the sequence of brain volume changes in progressive 

supranuclear palsy using MRI. Brain Commun. 2022 May 12;4(3):fcac113.359  

3.1    Introduction 

No effective disease modifying treatment has yet been proven for PSP, despite recent 

successful clinical trials221,224. Clinical trials in PSP can be complicated by variable 

disease stage at trial entry, highlighting the importance of stratifying patients into 

homogenous cohorts based on disease stage with similar rates of disease progression. 

Although the PSP Rating Scale has been shown to be a good independent predictor of 

survival228, and is used as the primary endpoint in clinical trials, such clinical 

biomarkers are only indirect measures of the biological stage of disease, and are 

affected by intra- and inter-rater variability, as well as fluctuation in patients’ clinical 

state. Reliable and individualised disease progression markers are therefore required 

to complement clinical ratings scales229.  

Structural MRI reveals significant atrophy in the brainstem and subcortical structures 

in PSP-RS, with additional involvement of the cortical structures240. Increased rates of 

atrophy in these regions can be detected over a 12-month period259,265, offering a 

potential biomarker readout for clinical trials. While there are new tau PET tracers 

emerging that show potential in the 4R tauopathies, these are not yet validated for use 

in the clinic setting255,360 and in the absence of a validated tau PET tracer for PSP, 

structural MRI offers an indirect measure of underlying tau pathology in vivo. Indeed, 

a previous study in PSP showed that in vivo structural imaging reflected the 

independent contributions from tau burden and neurodegeneration at autopsy237, while 
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the link in Alzheimer’s Disease is well established256,361. The recent pathology staging 

system for PSP defines six sequential stages of tau pathology progression, starting with 

the subthalamic nucleus, spreading out caudally to the cortex and rostrally to the 

cerebellum51. This has been validated in an independent cohort with increasing 

pathological stage correlating with clinical severity362.  However, the order in which 

brain regions show evidence of increased atrophy in vivo is currently unknown.  

One approach to estimating the sequence of atrophy progression is event-based 

modelling (EBM)281, using a probabilistic data-driven generative model to infer the 

order in which biomarkers become abnormal. The EBM can be built from cross-

sectional data by combining severity information across biomarkers and individuals 

without reference to a given individual’s clinical status. The EBM allows inference of 

longitudinal information about disease progression by assuming there is a monotonic 

progression of an individual biomarker from normal to abnormal (even if this 

progression is non-linear), so that in a patient cohort containing a spectrum of disease 

stages, more individuals will necessarily show abnormality in a biomarker that 

changes early in the disease course. This approach has been successfully applied to 

Huntington’s disease267, sporadic and familial Alzheimer’s disease280,282,283, 

Parkinson’s disease286, multiple sclerosis285, the posterior cortical atrophy variant of 

Alzheimer’s disease284, and to amyotrophic lateral sclerosis287, providing a simple and 

validated method to investigate temporal disease patterns and estimate individuals’ 

disease stage. Recent work has demonstrated the clinical utility of the EBM for 

screening patients on entry into clinical trials, to improve cohort homogeneity and 

increase the power to detect a treatment effect288.  

The aim of this chapter was to define the progression of brain atrophy in clinically 

diagnosed PSP-RS by developing an EBM that takes cross-sectional structural MR 

imaging as input. I hypothesised that there is a consistent sequence in which brain 

regions become atrophic in PSP-RS in vivo, in keeping with the sequential stages of 

PSP pathology proposed by Kovacs et al.51 in their post-mortem staging study. I 

predicted that the image-based EBM stage would be correlated with clinical disease 

severity as measured by the PSP Rating Scale. 
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3.2   Methods 

3.2.1 Participants and clinical data collected 

Data from individuals with a clinical diagnosis of possible or probable PSP-

Richardson Syndrome were collected from the 4R tau imaging cohort. The details of 

this cohort that I built as part of this PhD are covered in more detail in Chapter 2.There 

were seven main sources for PSP cases included in this cohort: the 4R Tauopathy 

Imaging Initiative Cycle 1 (4RTNI 1; ClinicalTrials.gov: NCT01804452)259,263, the 4R 

Tauopathy Imaging Initiative Cycle 2 (4RTNI 2; ClinicalTrials.gov: NCT02966145), 

the davunetide randomized control trial (DAV; ClinicalTrials.gov: NCT01056965)220, 

the salsalate clinical trial (SAL; ClinicalTrials.gov: NCT02422485)297, the young 

plasma clinical trial (YP; ClinicalTrials.gov: NCT02460731)297, the PROgressive 

Supranuclear Palsy CorTico-Basal Syndrome Multiple System Atrophy Longitudinal 

Study (PROSPECT; ClinicalTrials.gov: NCT02778607), and the University College 

London Dementia Research Centre (UCL DRC) FTD cohort. Control data were 

collected from three sources: the Frontotemporal Lobar Degeneration Neuroimaging 

Initiative dataset (FTLDNI; http://4rtni-ftldni.ini.usc.edu/), PROSPECT, and the UCL 

DRC FTD Cohort. Controls were defined as no known diagnosis of a neurological or 

neurodegenerative condition, and no known history of memory complaints.   

Further details on these individual cohorts are included in Chapter 2, and a summary 

of the demographics of the PSP-RS cases within each cohort is included in Table 

3.1. Appropriate ethics was applied for and approved via the relevant trial and 

research ethics committees. For inclusion in this study all patients had to have, as a 

minimum, a baseline T1-weighted volumetric MRI on a 1.5T or 3T scanner, 

with basic demographic data (age at time of scan, gender), and disease duration at 

time of the scan (time from symptom onset to MRI scan) if available. 12-month 

follow-up scans, if available, were also included in the study, as were PSP Rating 

scale scores. Given original trial analyses failed to show any treatment effect 

(including no change in volumetric MRI measurements) in the davunetide220, 

salsalate and young plasma trials297, I combined data from each study’s 

treatment and placebo groups. Longitudinal data (both 12-month follow-up MRI 

and PSP Rating Scale) were used for validation of the staging system produced by 

the baseline EBM. 

http://4rtni-ftldni.ini.usc.edu/


 

 

1
1
6
 

 

 

 

 

 

 

Table 3.1 - Overview of PSP-RS cases by cohort included in study. 

Baseline Demographics Total 4RTNI1 4RTNI2 DAV SAL/YP PROSPECT UCL Controls 

Inclusion, n (12 mths) 365 (275) 62 (50) 43 (33)a 187 (177) 14 (0) 36 (12) 23 (3) 289b 

Post-QC, n (12 mths) 341 (255) 59 (50) 43 (33) 173 (157) 13 (0) 30 (12) 23 (3) 260 

Gender, % female  48% 54% 47% 51% 48% 43% 30% 57% 

Age at first scan, yrs 67.9 (6.8) 70.5 (7.4) 69.2 (7.2) 67.4 (6.6) 69.4 (4.0) 67.2 (8.5) 66.1 (4.9) 62.6 (9.8) 

Disease durationc, yrs 4.1 (3.1) 5.4 (3.9) 4.6 (3.6) 15% > 5 yearsd - 2.9 (1.9) 3.5 (1.9) - 

Values are Baseline n (n 12 month follow-up visits) or mean (SD) unless otherwise stated. a  at time of analysis only 43 of the total 59 PSP-RS cases from 4RTNI2 had been received and processed. 

b control cohort consists of healthy controls from FTLDNI, PROSPECT and UCL with no evidence of neurological disease and otherwise fit and healthy. At time of analysis only 289 of 320 

controls finally included in the 4R tau imaging cohort had been received and processed. c time from first symptom to first scan d for cases included in Davunetide trial disease, duration was only 

recorded as greater or less than 5 years since disease onset. 
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3.2.2 MRI acquisition and image processing 

Detail of the MRI image processing pipeline is discussed in more detail in Image 

processing pipeline. In brief, raw volumetric T1 MRI images were all processed by 

the same pipeline. Scans first underwent visual quality control (QC) to ensure correct 

acquisition and the absence of major artefacts. Next, raw images that passed QC were 

bias field corrected for magnetic field inhomogeneity, and the whole brain (cortical 

and subcortical structures) parcellated using the geodesic information flow (GIF) 

algorithm304. This automatically extracts regions based on the Neuromorphometrics 

atlas (Neuromorphometrics, Inc.), using an atlas propagation and label fusion 

strategy363,364. Subregions of the cerebellum were then automatically extracted with  

GIF based on the Diedrichsen cerebellar atlas: the cerebellar lobules (I-IV, V, VI, 

VIIa-Crus I, VIIa-Crus II, VIIb, VIIIa, VIIIb, IX and X), the vermis and the deep nuclei 

(dentate, interposed and fastigial)304,305. The whole brainstem, medulla, pons, superior 

cerebellar peduncles (SCP) and midbrain were subsequently segmented using a 

customised version of the module available in FreeSurfer to accept the GIF 

parcellation as input for Freesurfer306. Total intracranial volume (TIV)365 was 

calculated using SPM12 v6225 (Statistical Parametric Mapping, Wellcome Trust 

Centre for Neuroimaging, London, UK) running under MATLAB R2012b (Math 

Works, Natick, MA, USA). All segmentations were visually inspected to ensure 

accurate segmentation.  

3.2.3 Biomarker selection 

In this study I use the term biomarker to refer to image-based regional brain volumes 

that show a significant difference between cases and healthy controls (two-tailed t-test 

of mean difference in covariate adjusted volumes). Given the focus of this study was 

to test the hypothesis that the sequence of atrophy in PSP-RS is in keeping with the 

sequence of tau pathology at post-mortem as shown by Kovacs et al.51, I chose 

nineteen regions of interest (ROI) for inclusion that most closely matched those used 

in their study; four brainstem (medulla, pons, superior cerebellar peduncle [SCP], and 

midbrain), three cerebellar (cerebellar cortex, deep nuclei and vermis), seven 

subcortical (thalamus, globus pallidus [GP], striatum [caudate and putamen], ventral 

diencephalon [DC], thalamus, hippocampus and amygdala) and five cortical (frontal, 

insula, temporal, parietal and occipital). Regions that had a right and left label were 
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combined. All ROIs were controlled for the following covariates using linear 

regression on the control cohort: age at scan, sex, scanner type and TIV. Linear 

regressions of age against predicted EBM stage were also performed (after EBM 

model fitting) for cases and controls separately to confirm that there was no residual 

correlation after adjustment. All regions selected for inclusion showed a significant 

difference in covariate adjusted volumes between cases and controls (Bonferroni 

corrected threshold of 𝑝 < 3 × 10−3) under a two-tailed t-test. 

3.2.4 The Event Based Model 

Given the utility of the EBM method to model a disease process as a sequence of 

events at which individual biomarkers become abnormal, I fitted an EBM to the 

selected ROIs from all baseline scans to calculate the maximum likelihood sequence 

of event orderings. Details of the EBM, including the mathematical formulation of 

estimating the event distributions and model fitting are provided in Chapter 2. To 

obtain the likelihood models for the event distributions (𝑃(𝑥𝑖𝑗|𝐸𝑖) “post-event” and 

𝑃(𝑥𝑖𝑗|¬𝐸𝑖) “pre-event”), I used the KDE method described by Firth et al.284. Due to 

the absence of prior information, a uniform prior likelihood (𝑃(𝑘)) was used to impose 

as little information as possible on estimated orderings. I then staged all individuals 

based on their baseline scan, using the method laid out in Patient staging. 

3.2.5 Cross validation of event sequence 

Although the MCMC sampling (as detailed in Model Fitting section below) of the 

posterior distribution gives some information on the uncertainty of the event ordering 

predicted by the EBM, previous work shows it tends to underestimate this 

uncertainty280. Bootstrapping is an additional method that tends to give a more liberal 

estimate of the uncertainty in the ordering366. I first performed cross-validation of the 

maximum likelihood sequence generated by the EBM, by re-estimating the model on 

100 bootstrap samples of the original data (sampling with replacement). I then 

performed repeated stratified five-fold cross-validation307 as an additional check on 

the robustness of the model. This involved refitting the model on 80% of the cohort 

data and testing accuracy on the held out 20% for each of ten five-fold random 

partitions, giving a total of 50 cross-validation folds/models, which are averaged to 

find the final model sequence.  
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3.2.6 Longitudinal validation 

I investigated the longitudinal consistency of the staging produced by the EBM, based 

on the predictions that, firstly, given PSP is a progressive disease, the EBM stage 

should increase over time, and secondly that increasing EBM stage should be 

associated with both increasing PSP Rating Scale score (the main clinical measure of 

disease severity) and also disease duration, especially during later model stages where 

there is more widespread atrophy. I first staged patients using the baseline EBM based 

on their 12-month follow-up scan (255 cases) and compared this with predicted stage 

based on their baseline scan. The follow-up data was processed using the same pipeline 

as the baseline scans to produce the same ROI biomarkers at 12-months. To test for 

the relationship of PSP Rating Scale score with baseline EBM stage, a linear mixed 

effects model was fit to the data using the lme4 package367 in R Studio (version 

1.4.1106), with EBM defined stage as the independent variable and PSP rating scale 

score as the dependent variable. 241 baseline and 232 12-month follow-up scans (473 

total) had a corresponding PSP rating scale score. Subject Id was modelled as a random 

effect (random intercept) due to some subjects having two MRI scans at different time 

points. Significance was calculated using the lmerTest package368 which applies 

Satterthwaite’s method to estimate degrees of freedom and generate p-values for 

mixed models. In addition, I analysed disease duration (time from first symptom to 

MRI scan) as a function of predicted EBM stage (87 baseline and 43 twelve-month 

follow-up scans had disease duration recorded) using the same method. To confirm 

that baseline EBM stage was also correlated with both PSPRS score and disease 

duration I fitted a linear model for each as a function of EBM stage.  

3.3   Results 

3.3.1 Subject characteristics 

Table 3.2 summarises the key demographic data for the cohort included in the study. 

929 MRI images were processed from a total of 654 subjects: 365 with a clinical 

diagnosis of PSP-RS (of which 275 had 12-month follow-up scans) and 289 controls. 

Of the PSP-RS cases 26 (8%) had a pathological diagnosis after coming to post-

mortem: 24 (92%) showed tau pathology consistent with PSP, while 2 cases had non-

PSP tau pathology (one CBD and one GGT) and were therefore excluded from the 
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analysis. After stringent quality control with visual inspection of all images for the 

remaining 363 cases (pre- and post- processing), 341 PSP-RS cases (of which 255 had 

12-month follow-up scans) and 260 control scans were included for the analysis.

Reasons for scans failing quality control included poor quality of the raw T1 image 

(usually due to movement artefacts) or inaccurate segmentations with the GIF or / and 

SPM algorithms. 70% (241/341) of the cases included had a PSP rating scale score at 

baseline and follow-up, as well as recorded age, gender, scanner type and TIV. At 

baseline the PSP-RS cohort had an older average age (67.9 years, standard deviation 

[SD] ± 6.8) compared to healthy controls (62.8 years, 𝑆𝐷 ± 9.4, 𝑡 = −7.4, 𝑝 < 0.01). 

Disease duration data (time from diagnosis to baseline visit [average years, ± SD]) was 

available for 87/341 cases and showed an average length of 4.1 years (SD ± 3.1). There 

was a higher proportion of females in the control group compared to the PSP-RS group 

(male / female, 112/148 vs 176/165 respectively, 𝜒2 = 4.3, 𝑝 = 0.04).

Table 3.2 - PSP-RS EBM baseline demographics. 

Baseline Demographics PSP-RS Controls 𝒑 value 

Baseline, n (12 mths) 341 (255) 260 - 

Gender, M/F (% female) 176/165 (48%) 112/148 (57%) 0.04a

Age at first scan, yrs 67.9 (6.8) 62.8 (9.4) <0.001b 

Disease duration, yearsc 4.1 (3.1) - - 

Pathology (% PSP) 24 (92%)d - - 

PSP Rating Scale 38.9 (12.9)e - - 

UPDRS 30.6 (15.1) - - 

MOCA 20.7 (5.1) - - 

Values are Baseline n (n 12 month follow-up visits) or mean (SD) unless otherwise stated. a 𝜒 square. b unpaired 

two-tailed 𝑡-test. c  time from first symptom to first scan. d % of all cases pre-QC. Two cases (GGT and CBD 

removed from subsequent analysis). e 70% (241/341) of baseline cases included had a PSP rating scale score. 

Abbreviations: EBM = Event based model,  PSP-RS = Progressive Supranuclear Palsy Richardson Syndrome 
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3.3.2 Sequence of atrophy progression 

Figure 3.1 shows histograms of the healthy control (HC) and covariate adjusted PSP-

RS ROI biomarker distributions, with KDE mixture model fits and line showing 

probability of an event. These fits provide the parameters for the normal and abnormal 

likelihoods, 𝑃(𝑥𝑖𝑗|𝐸𝑖) and 𝑃(𝑥𝑖𝑗|¬𝐸𝑖), respectively, that are then used to calculate the 

maximum likelihood sequence of the full dataset. At baseline all nineteen ROI selected 

for inclusion in the model showed a significantly smaller covariate adjusted volume in 

PSP-RS compared to controls.  

The positional variance diagram in Figure 3.2A shows the most likely sequence in 

which these regions become atrophic, as estimated by the EBM, as well as the 

uncertainty in this sequence (based on MCMC sampling of the posterior distributions). 

The maximum likelihood sequence was estimated using PSP-RS cases only, based on 

the rationale that PSP is a rare disease, and it is very unlikely for my cohort of controls 

to have asymptomatic PSP. Indeed, it is more likely the controls would have a common 

disorder such as AD rather than PSP, and I did not want this to confound the sequence 

estimation hence the exclusion. The EBM estimated that the earliest atrophy occurs in 

the brainstem and subcortical regions followed by progression caudally into the 

superior cerebellar peduncle and deep cerebellar nuclei, and rostrally to the cortex. 

The sequence of cortical atrophy progresses in an anterior to posterior direction, 

beginning in the insula and then frontal lobe before spreading to the temporal, parietal 

and finally the occipital lobe (Figure 3.2C) The high colour intensity of each square 

and their presence predominantly on the diagonal of the positional variance diagram 

indicates that the model has a high degree of certainty regarding their positions in the 

overall sequence.  

3.3.3 Cross validation of event sequence 

Figure 3.2B shows positional variance of the maximum likelihood sequence re-

estimated by bootstrapping of the data (random resampling with replacement 100 

times) and refitting the model. The positional variance diagram for the bootstrapped 

results represents the proportion of bootstrap samples in which the event 𝑖 (y axis) 

appears at position 𝑘 (x axis) of the maximum likelihood sequence. The sequence 

ordering is generally preserved, though as one would expect with this more 
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conservative estimate of uncertainty, there is increased uncertainty in the relative 

positions early in the sequence from stage two (midbrain) to stage 4 (ventral 

diencephalon), and in the middle from stage nine (striatum) to stage thirteen (pons). 

Using repeated stratified 5-fold cross-validation (Figure 3.3) as an alternative method 

to assess model robustness (both in terms of the sequence and uncertainty in the 

sequence), the maximum likelihood sequence is preserved with similar uncertainty in 

relative positions when visually compared to the bootstrapping method (Figure 3.2B) 

Figure 3.1 - Kernel Density Estimation (KDE) mixture models. Healthy controls (blue) and PSP-RS 

(orange) volume biomarker distributions, and corresponding KDE mixture model fits. The purple line 

represents the probability that an event has occurred P(x_ij |E_i ). Note that the volumes are covariate 

corrected. 
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Figure 3.2 - Sequence of atrophy progression in PSP Richardson Syndrome. (A) Regional volume 

biomarker positional variance diagram showing the sequence of atrophy progression in PSP-RS. (B) 

Re-estimation of positional variance after cross-validation of the maximum likelihood event sequence 

by bootstrap resampling (100 bootstraps). For figures (A) and (B) the vertical ordering on the y-axis 

(from top to bottom) shows the maximum likelihood sequence estimated by the EBM (earliest to latest 

event). The bottom x-axis shows EBM stage while the top x-axis represents the percentage of regions 

atrophic (abnormal) at each stage. Colour intensity of the squares represents the posterior confidence in 

each biomarker’s position in the sequence, from either (A) MCMC samples of the posterior or (B) 

bootstrapping. SCP = superior cerebellar peduncle, Ventral DC = ventral diencephalon.  Note that 

because these volumes are covariate adjusted the control distribution will be centred at zero. (C) Graphic 

representation of the event sequence with relevant region transitioning from healthy (grey) to unhealthy 

(coloured). Dark red = first regions to atrophy, Light yellow = last regions to atrophy. Created with 

BioRender.com. 

 

Figure 3.3 - Sequence of PSP-RS atrophy progression after five-fold cross validation. Re-

estimation of positional variance after cross-validation of the maximum likelihood event sequence 

across 50-folds (10 repeats and 5-folds). The vertical ordering on the y-axis (from top to bottom) shows 

the maximum likelihood sequence estimated by the EBM (earliest to latest event). The bottom x-axis 

shows EBM stage while the top x-axis represents the percentage of regions atrophic (abnormal) at each 

stage. Colour intensity of the squares represents the posterior confidence in each biomarker’s position 

in the sequence after cross-validation. SCP = superior cerebellar peduncle, Ventral DC = ventral 

diencephalon.  Note that because these volumes are covariate adjusted the control distribution will be 

centred at zero. 
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3.3.4 Patient staging 

Figure 3.4 shows the proportion of subjects at each EBM defined stage (PSP-RS and 

HC). Patient staging results were evaluated using the maximum likelihood sequence 

(Figure 3.2A) of regional atrophy for PSP-RS subjects as described in the Methods 

section. As one would expect the HC cohort is clustered at the early stages with greater 

than 80% at Stage 0 (i.e., no event occurred), while the PSP-RS cases are distributed 

more evenly across stages with the highest proportion in the middle to late stages. This 

suggests that the cohort of PSP cases gathered from multiple different studies were 

temporally heterogenous which supports the importance of accurately staging patients 

using objective biomarkers.  

Using a threshold of Stage 2 (medulla and midbrain atrophic) the model was able to 

correctly classify subjects as PSP-RS versus healthy control with an overall accuracy 

of 90% (with a sensitivity and specificity of 91% and 90% respectively). Although not 

the focus of this model the high classification accuracy provided by the EBM further 

demonstrates its clinical validity.  

Outliers were present in both the HC and PSP-RS groups: specifically, 10 (4%) of 

PSP-RS cases were at Stage 0, while 14 controls were at Stage 10 or greater (5%). 

Visual inspection of these HCs suggested that the segmentations were accurate, but 

that there were non-specific covariate adjusted decreased volumes in regions including 

the hippocampus with relative sparing of the brainstem and subcortical structures, 

suggesting that these could potentially represent people with preclinical Alzheimer’s 

disease. 
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Figure 3.4 - Histogram of event-based model staging results for PSP-RS. Healthy controls in blue 

and PSP-RS cases in orange. Each bar represents the proportion of patients in each category at each 

EBM stage. Each EBM stage on x-axis represents the occurrence of a new biomarker transition event. 

Stage 0 corresponds to no events having occurred and Stage 19 corresponds to all events having 

occurred. Events are ordered by the maximum likelihood sequence for the whole PSP-RS population as 

shown in Figure 3.2A. 

3.3.5 Longitudinal consistency 

To test the validity of the EBM I first tested the hypothesis that a valid model will 

produce non-decreasing disease stages for individuals from baseline to follow-up, 

within the bounds of model uncertainty. Figure 3.5 compares each PSP-RS subject’s 

EBM stage at baseline with their stage at 12-month follow-up (255 cases had both a 

baseline and 12-month follow-up scan). Overall, on this metric the EBM shows good 

longitudinal consistency with each subjects EBM stage generally increasing or 

remaining stable at 12-months follow-up: 245/255 cases (96%) either stayed at the 

same stage or progressed. For these cases the average stage progression over 12 

months was 1 stage. Of the ten PSP cases that reverted in stage, nine only dropped one 

stage while one dropped two stages.  
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Figure 3.5 - Longitudinal consistency of baseline EBM. Scatter plot showing predicted stage at 

baseline (x-axis) versus predicted stage at 12 months (y-axis) for those PSP-RS subjects with a follow-

up scan (n = 255). The area of a circle is weighted by the number of subjects at each point. 

To further validate the EBM, I first modelled PSP rating scale as a function of 

predicted EBM stage using a linear mixed model (Figure 3.6A). EBM stage was 

modelled as a fixed effect while Subject Id was modelled as random effect due to some 

subjects having two MRI scans at different time points. I found a significant fixed 

effect of EBM stage on predicted PSP rating scale (β=1.46, 95% CI 1.2-1.8, 𝑝<0.001) 

and a conditional R2 of 0.56. I then modelled disease duration (years) as a function of 

predicted EBM stage, which showed a significant fixed effect (β=0.29, 95% CI 0.24-

0.34, 𝑝 <0.001) and a conditional R2 of 0.68 (Figure 3.6B). When fitting linear models 

for PSPRS score and disease duration versus predicted EBM stage on baseline scans 

only (Figure 3.7A and Figure 3.7B respectively), there was also a significant 

association albeit with a lower adjusted R2 (PSPRS vs EBM stage at baseline: β=1.14, 

95% CI 0.84-1.44, 𝑝<0.001), adjusted R2 0.18, disease duration vs EBM stage at 

baseline: (β=0.25, 95% CI 0.20-0.30, 𝑝<0.001, adjusted R2 0.39). To check that I had 

adequately adjusted for age I also ran linear models of age as a function of predicted 

EBM stage for cases (Figure 3.8A) and controls separately (Figure 3.8B). There was 

no association between EBM stage and age in either the case (β=0.19, 95% CI=0.13-

0.25, p=0.12, adjusted R2=0.017) or control group (β=-0.27, 95% CI=-0.66-0.12, 

p=0.18, adjusted R2=0.003).
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Figure 3.6 - Association between predicted EBM stage, PSP Rating Scale score, and disease duration for all scans (baseline and follow-up). (A) PSP Rating Scale score 

versus EBM stage* (β=1.46, 95% CI 1.2-1.8, 𝑝<0.001, conditional R2 0.56 (marginal 0.22) (B) Disease duration (years) versus EBM stage** (β=0.29, 95% CI 0.24-0.34, 

𝑝<0.001 and a conditional R2 of 0.68 (marginal 0.41). For both (A) and (B) the line represents the linear fixed effect model fit to all subjects, and 95% confidence intervals. 

Subject Id was modelled as a random effect (random intercept) due to some subjects having two MRI scans at different time points. Significance was calculated using 

Satterthwaite’s method to estimate degrees of freedom and generate p-values. *473 scans (241 baseline and 232 twelve-month follow-up) with PSPRS score 

** 130 scans (87 baseline and 43 twelve-month follow-up) with disease duration.
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Figure 3.7 - Association between predicted EBM stage, PSPRS and disease duration at baseline scan only. (A) PSP Rating Scale score versus EBM stage* (β=1.14, 95% CI 

0.84-1.44, 𝑝<0.001, adjusted R2 0.18). (B) Disease duration (years) vs EBM stage** (β=0.25, 95% CI 0.20-0.30, 𝑝<0.001, adjusted R2 0.39). For both (A) and (B) the line 

represents the linear model fit with 95% confidence intervals.* 241 baseline scans with PSPRS score ** 87 baseline scans with disease duration. 
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Figure 3.8 - Linear models to test association between age at scan and predicted EBM stage. (A) for cases (β=0.19, 95% CI=0.13-0.25, p=0.12, adjusted R2=0.017) (B) for 

controls (β=-0.27, 95% CI=-0.66-0.12, 𝑝 =0.18, adjusted R2=0.003). For (A) and (B) the line represents the linear model fit with 95% confidence intervals.   
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3.4   Discussion  

The principal result of this study is that a probabilistic data-driven method reveals, in 

vivo, the sequence in which brain regions become atrophic in PSP-RS. I established 

this sequence from cross-sectional data and went on to demonstrate the validity of this 

model longitudinally. Ninety-six percent remained in the same stage or progressed to 

a later stage over twelve-months. The model derived staging correlated with both 

clinical severity and disease duration. 

3.4.1 Ordering of biomarkers 

The order of regional atrophy revealed by the EBM (Figure 3.2) broadly mirrors the 

sequential spread of tau pathology in PSP proposed by Kovacs et al.51. The earliest 

atrophy in my model occurs in the brainstem and subcortical regions followed by 

progression caudally into the superior cerebellar peduncle and deep cerebellar nuclei, 

and rostrally to the cortex. The sequence of cortical atrophy progresses in an anterior 

to posterior direction, beginning in the frontal lobe before then spreading to the 

temporal, parietal and finally the occipital lobe. In the absence of external data on 

which to validate the model, I explored the generalisability and robustness of the 

model using two different validation methods: bootstrap cross validation and repeated 

stratified five-fold cross-validation. These demonstrate that even with a more 

conservative estimate of uncertainty, the sequence of atrophy is largely conserved 

(Figure 3.2B and Figure 3.3). There remains uncertainty early on between the relative 

positions of the midbrain, thalamus, ventral DC and SCP, in the middle between the 

striatum, frontal, parietal, and cingulate lobes, and the pons, and at the end of the 

sequence between the temporal lobe, amygdala, and hippocampus. This heterogeneity 

is of interest, and a motivation for future work. 

It is difficult, however, to make a direct comparison between my in vivo findings and 

post-mortem tau histopathology staging for two reasons: firstly, in this study I am 

measuring atrophy rather than tau pathology directly, and although there is evidence 

that atrophy on structural imaging is associated with tau pathology237,369 it is unlikely 

to directly correlate with histopathological scores of tau accumulation across neuronal 

and glial cell populations. Secondly, two of the regions identified to have the earliest 

tau pathology in Kovacs’ study are the subthalamic nucleus (STN) and the substantia 
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nigra (SN), regions that are not individually segmented by the GIF algorithm used in 

this study. These are subsumed within the ventral diencephalon (ventral DC) 

segmentation in the Neuromorphometrics atlas, along with the hypothalamus. 

Although not specific for the STN and SN, reassuringly this region does occur early 

in the sequence (Figure 3.2A), and after cross validation one can see (Figure 3.2B 

and Figure 3.3) that after the medulla there is uncertainty as to the exact ordering of 

the midbrain, thalamus, and ventral DC.  

The majority of cross-sectional imaging studies in PSP-RS, have focused on the 

clinical utility of structural MR imaging as a diagnostic biomarker to differentiate PSP 

from both PD and other atypical parkinsonian disorders229. These studies usually only 

give a group level overview of regional atrophy at baseline, as opposed to the sequence 

of atrophy changes that I have demonstrated in this study. Even so midbrain atrophy 

is commonly seen in PSP-RS at baseline, with relative sparing of the pons370–372, and 

the pons to midbrain ratio has high specificity and sensitivity for the diagnosis of 

pathogically confirmed PSP373. SCP atrophy is also evident early in the disease 

course374 and has led to the development of the MR Parkinsonism Index (MRPI) for 

differentiation PSP-RS from other causes of parkinsonism375. Atrophy of subcortical 

structures including the striatum, globus pallidus and thalamus has also been observed 

in group-level studies90,244,262,376–378, as well as involvement of frontal lobe379–381. 

Together these findings are consistent with the sequence of atrophy that the EBM 

produces, but this study is the first in PSP-RS, to the best of our knowledge, that orders 

these regions relative to each other.  

The placement of the medulla first in the sequence is interesting as the medulla is not 

widely mentioned in the PSP imaging literature. It is however clear that tau pathology 

is consistently seen in the medulla at post-mortem69,149, with Kovacs51 placing it at 

Stage 2 in their pathological staging system. More recently, perhaps due to the advent 

of automated segmentation techniques for the brainstem, its involvement has been 

shown in PSP-RS using MRI298,371,372,382. The early involvement of the thalamus in our 

EBM sequence is also supported both by pathological studies51 where tau pathology 

been shown to occur in all cases, and structural MRI studies that demonstrate atrophy: 

in particular the pulvinar, dorsomedial, and anterior nuclei371,383. In future work it will 

be interesting to investigate differential involvement of the thalamic nuclei in the 
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different PSP subtypes, and their position in the event ordering relative to downstream 

atrophy events. 

3.4.2 Patient staging 

This EBM demonstrates that there is significant variability in terms of the stage of 

PSP-RS patients at baseline (Figure 3.3) and provides an intrinsic staging mechanism 

by which to stratify patients more accurately in terms of their temporal position in the 

disease course. This is supported by the association between EBM stage and disease 

duration (both at all timepoints and only at baseline) in those subjects for which disease 

duration was recorded (Figure 3.6B and Figure 3.7B). 

Uncertainty in the model assigned stage is dependent on the degree of overlap between 

the HC and PSP-RS biomarker distributions, as well as the accuracy of a given 

person’s biomarker measurement267. Imaging biomarkers are known to be associated 

with a high degree of variance, some of which can be explained by different scanners 

used, the age and gender, and variation in individual TIV. I tried to control for this by 

regressing these out as covariates. Linear modelling of age against predicted EBM 

stage for cases and controls (Figure 3.8A and Figure 3.8B) showed no association, 

supporting the validity of this approach. 

Although the purpose of this study was to identify the sequence of regional atrophy in 

PSP-RS from cross-sectional data, rather than classify subjects as cases versus 

controls, using a threshold of stage 2 (medulla and midbrain atrophic) the model was 

able to correctly classify subjects as PSP-RS versus healthy control with an overall 

categorisation accuracy of 90%. This accuracy is similar to that seen in other MRI 

studies using simple group wise comparisons of midbrain volume between cases and 

controls382 and gives confidence that the EBM sequence is a valid representation of 

disease progression. This is further supported by the fact that ninety-six percent of 

cases either stayed at the same stage or progressed to a higher stage over a twelve-

month period. In addition, predicted subject EBM stage is significantly correlated 

(𝑝<0.01) with a validated measure of clinical disease severity (PSP Rating Scale), as 

well as disease duration (𝑝<0.01), demonstrating the clinical relevance of our MRI-

based fine-grained staging system. However, unlike a clinical rating score, the EBM 

also provides insights into the underlying progression of brain volume changes, and 

given it is probabilistic, a natural way to incorporate uncertainty into the staging.  
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3.4.3 Limitations 

There are several assumptions made when building an EBM, which must be 

considered when interpreting these results. The EBM assumes that all patients have a 

broadly similar disease progression pattern with a unimodal distribution of orderings. 

I restricted analysis to those patients with a diagnosis of PSP-RS, to try and exclude 

some of the heterogeneity in clinical phenotype associated with PSP pathology98. 

Those cases included from the 4RTNI1, Davunetide and SAL / YP cohorts were 

diagnosed with probable PSP-RS according to the NINDS criteria, though it is possible 

that at least some of these cases may meet the 2017 diagnostic criteria for non-RS 

clinical phenotypes. In the PROSPECT study 10% of PSP cases diagnosed under the 

NINDS criteria were relabelled as a non-RS phenotype when the 2017 MDS criteria 

were applied298. Given the sensitivity of the EBM to sample heterogeneity, and the 

variation in pathology staging by phenotype51,362, investigation of PSP phenotype 

heterogeneity using subtype and stage inference (SuStaIn)290 may provide finer 

grained patient stratification and is worth pursuing. 

The EBM staging has no explicit timescale267, although it can predict what stage the 

patient is within the sequence of biomarker abnormalities, it is unable in itself to 

extract information on the time taken to transition between states. When given 

longitudinal data the model currently treats repeated measures as if they are 

independent i.e. from separate individuals, thus losing information on temporal 

covariance that could further inform on the ordering of events. Recently, a new 

generative model called the Temporal Event-Based Model (TEBM) has been 

developed384 to accommodate longitudinal data, which is able to learn both individual-

level trajectories within the sequence of biomarker abnormalities as well as the time 

to transition between each event. Applied to my dataset the TEBM may provide 

insights into the transition times between each stage defined by this study. 

Although PSP-RS has been shown to be highly correlated with underlying PSP 

pathology73, in rare cases other pathologies such as CBD can present with PSP-RS and 

imaging is unable to differentiate the underlying pathology385. Of the 365 PSP-RS 

cases selected for image processing, 24/26 (92%) of cases that came to post-mortem 

had PSP pathology, while one had GGT and the other CBD pathology (these were 

excluded from the analysis). Although a small sample size this correlation between 
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PSP-RS and underlying PSP pathology is in keeping with previous studies73. In the 

absence of a sensitive and specific tau-PET ligand, or indeed any other biomarker, for 

PSP pathology, there is not an easy way around this clinic-pathological disconnect, 

and until such time the inclusion of patients in clinical trials based on a clinical 

diagnosis of PSP-RS is likely to continue.  

Another limitation, though not unique to this study, is that the MRIs of different 

patients were acquired across a range of centres and on different scanners. It is well 

known that scanners can differ from each other in relation to imaging quality, signal 

homogeneity and image contrast which can lead to bias265. Stringent visual quality 

controls were applied to both the raw images and post segmentation scans, the GIF 

algorithm bias corrects for field inhomogeneity, and I also controlled for scanner type 

by introducing it as a covariate in the linear regression. In addition, previous analyses 

on the davunetide dataset (which had the highest number of different scanners) scanner 

type showed no significant effect on atrophy rates386. Furthermore, the use of different 

scanners at multiple sites is a realistic scenario for clinical trials in rare diseases such 

as PSP, and so scanner heterogeneity combined with the large sample size in this study 

supports stronger generalisability of the findings. 

3.5   Conclusions and future work 

In this chapter I have uncovered the in vivo sequence of brain atrophy in a large series 

of individuals with PSP-RS using a probabilistic data-driven model of brain volume 

changes, that mirrors the recent post-mortem brain histopathology staging proposed 

by Kovacs et al51. It provides an objective, in vivo staging system that is longitudinally 

consistent and correlates with clinical measures of disease severity and disease 

duration. This approach has potential utility to stratify PSP patients on entry into 

clinical trials based on disease stage, and complement existing clinical outcome 

measures to track disease progression. Future work should focus firstly on validating 

this model in an independent cohort of PSP-RS patients, and secondly on applying 

more advanced models such as Subtype and Stage Inference (SuStaIn) to better 

understand the clinical heterogeneity of the variant PSP subtypes and whether jointly 

modelling temporal and phenotypic heterogeneity will provide finer grained patient 

stratification.



 

 135 

Chapter 4:  Uncovering spatiotemporal 

patterns of atrophy in progressive supranuclear 

palsy using unsupervised machine learning 

The work in this chapter has been published in Brain Communications in March 2023: 

Scotton WJ, Shand C, Todd E, Bocchetta M, Cash DM, VandeVrede L, Heuer H, PROSPECT 

Consortium, 4RTNI Consortium, Young AL, Oxtoby N, Alexander DC, Rowe JB, Morris HR, Boxer A, 

Rohrer JD, Wijeratne PA. Uncovering spatiotemporal patterns of atrophy in progressive supranuclear 

palsy using unsupervised machine learning  Brain Commun. 2023 March 02: fcad048. 

4.1   Introduction 

Many neurodegenerative diseases are complicated by poor clinico-pathological 

correlation, with the underlying pathology often manifesting as a range of different, 

and often overlapping, clinical syndromes. Defining disease phenotypes based on 

common underlying biological mechanisms, as opposed to clinical phenotype, is an 

important step towards enriching clinical trials with patients that are most likely to 

benefit from the medicine being investigated, especially as therapeutics increasingly 

target these biological mechanisms. Recent advances in machine learning have 

enabled analysis of multidimensional data to classify and stage groups with similar 

data-driven features (such as spatiotemporal atrophy patterns on MRI)290 rather than 

just on common clinical features, providing new tools to tackle the problem of clinical 

heterogeneity. 

Progressive supranuclear palsy (PSP), a neurodegenerative disease defined 

pathologically by the aggregation and spread of 4-repeat tau protein in neurons, 

astrocytes, and oligodendrocytes387, shows significant differences in severity and 

neuroanatomical distribution of pathology51, resulting in a range of clinical phenotypes 

involving language, behaviour and movement abnormalities77. No effective disease-

modifying treatment has yet been proven for PSP, despite increasingly available 

clinical trials221,224. Clinical progression appears to be dependent on progressive 

spreading of the 4-repeat (4R) tau pathology within the brain, with a recent pathology 

staging system51 defining six sequential stages of progression for the most common 

clinical phenotype PSP-Richardson syndrome (PSP-RS), starting in the pallido-nigro-

luysian system and spreading rostrally via striatum and amygdala to the cerebral cortex 
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(frontal > temporo-parietal > occipital), and caudally to the medulla oblongata, pons 

and cerebellum359. Although the molecular pathogenic basis for clinical variation is 

still poorly understood, this study suggests that differences in tau burden and different 

tau cytopathologies may distinguish clinical subtypes. 

The Movement Disorder Society (MDS) 2017 PSP diagnostic criteria98 were 

introduced to try and account for variant PSP clinical phenotypes (vPSP) and increase 

the sensitivity and specificity for diagnosis of early PSP pathology. The criteria 

categorise symptomatology into four clinical domains (ocular motor dysfunction, 

postural instability, akinesia and cognitive dysfunction), with differing combinations 

of these symptoms defining a range of clinical PSP syndromes. Although the most 

common clinical presentation of PSP is Richardson syndrome (PSP-RS), variant 

clinical syndromes (vPSP) may account for up to 50% of individuals with PSP 

pathology77–79. The vPSP syndromes include subcortical variants (including PSP-

parkinsonism [PSP-P] and PSP-primary gait freezing [PSP-PGF]) and cortical variants 

(PSP- frontal [PSP-F], PSP-corticobasal syndrome [PSP-CBS], and PSP-speech / 

language syndrome [PSP-SL]). These new criteria have higher sensitivity than the 

previous NINDS criteria (87.9% vs 45.5%)102,388, and the “suggestive of PSP” clinical 

category significantly increases the sensitivity for early identification of patients with 

PSP pathology99. One potential issue with the MDS diagnostic criteria as first defined 

was that patients can be assigned multiple phenotypes according to clinical 

symptomatology389. The introduction of the MAX (multiple allocation extinction)-

rules99 helps to allocate patients to one phenotype, though its application to clinically 

diagnosed PSP patients appears to lead to an over representation of PSP-RS versus 

vPSP syndromes such as PSP-P and PSP-PGF105,390. This has important implications 

for clinical trials given that the subcortical variants (PSP-P and PSP-PGF) have better 

survival with longer disease durations (PSP-P 9 years, PSP-PGF 13 years vs PSP-RS 

6-7 years) and slower rates of disease progression78,103–109. Improved quantification of 

the progression of pathological brain changes across the PSP phenotypic spectrum in 

living patients will be essential to the success of future therapeutic trials230,359. 

In Chapter 3 I use a probabilistic data-driven modelling approach (event-based 

modelling [EBM]) to characterise the in vivo sequence of brain atrophy in PSP-RS358, 

and show that the order of regional atrophy broadly mirrors the sequential spread of 

tau pathology proposed by Kovacs et al.51. However, the EBM assumes sample 
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homogeneity, making it unsuitable to investigate the full spectrum of PSP phenotype 

heterogeneity. Subtype and Stage Inference (SuStaIn), an unsupervised machine 

learning algorithm290, has been developed to identify data-driven disease subtypes 

with distinct temporal progression patterns, and can do so using only cross-sectional 

data. The trained model can then be used to subtype and stage new individuals. This 

ability to disentangle both phenotypic and temporal heterogeneity from cross-sectional 

biomarkers, distinguishes SuStaIn from traditional approaches that focus on either one 

or the other. The SuStaIn subtypes account for temporal heterogeneity, enabling more 

accurate subtype assignment than traditional clustering algorithms. This algorithm has 

been successfully applied to Alzheimer’s disease (AD)290,291, Multiple Sclerosis 

(MS)294, as well as in genetic frontotemporal dementia290,293, providing important 

insights into distinct data-driven subtypes of disease progression. This type of disease 

progression modelling approach is ideally suited to disentangling the clinical and 

pathological heterogeneity of PSP. 

In this chapter I apply the SuStaIn algorithm to cross-sectional MRI data from a large 

international cohort of clinically diagnosed PSP patients (including PSP-RS and vPSP 

syndromes), to identify imaging subtypes across the PSP clinical spectrum with 

distinct sequences of atrophy progression. I validate the observed subtypes and stages 

using a subset of longitudinal imaging data and then characterise the clinical features 

of each subtype to gain insight into the relationship between PSP pathology, atrophy 

patterns and clinical presentation.  

Of note, in this chapter I use the term syndrome when referring to PSP clinical 

syndrome/phenotype (as defined in the MDS 2017 diagnostic criteria)98, and subtype 

when referring to MRI-based subtypes identified by SuStaIn. 

4.2   Methods  

4.2.1 Participants and clinical data collected 

Data from individuals with a clinical diagnosis of “possible” or “probable PSP” 

(including PSP-RS and vPSP syndromes), as per the MDS 2017 PSP diagnostic 

criteria98, were identified from the 4R Tau imaging cohort. The details of this cohort, 

that I built as part of this PhD, are covered in more detail in Chapter 2 (4R tauopathy 

imaging cohort). In brief, this cohort consisted of PSP cases collected from seven 
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main sources; the 4R Tauopathy Imaging Initiative Cycle 1 (4RTNI 1; 

ClinicalTrials.gov: NCT01804452)259,263, the 4R Tauopathy Imaging Initiative Cycle 

2 (4RTNI 2; ClinicalTrials.gov: NCT02966145), the davunetide randomized control 

trial (DAV; ClinicalTrials.gov: NCT01056965)220, the salsalate clinical trial (SAL; 

ClinicalTrials.gov: NCT02422485)297, the young plasma clinical trial (YP; 

ClinicalTrials.gov: NCT02460731)297, the PROgressive Supranuclear Palsy CorTico-

Basal Syndrome Multiple System Atrophy Longitudinal Study (PROSPECT; 

ClinicalTrials.gov: NCT02778607)298, and the University College London Dementia 

Research Centre (UCL DRC) FTD cohort. Control data were collected from three 

sources: the Frontotemporal Lobar Degeneration Neuroimaging Initiative dataset 

(FTLDNI; http://4rtni-ftldni.ini.usc.edu/), PROSPECT, and the UCL DRC FTD 

Cohort. Controls were defined as no known diagnosis of a neurological or 

neurodegenerative condition and no known history of memory complaints. Further 

details on the individual cohorts, including recruitment and diagnostic criteria 

and MRI acquisition protocols are included in Chapter 2. Table 4.1 

summarises the demographics and clinical data for all PSP cases included in this 

study, broken-down by individual contributing cohort. 

http://4rtni-ftldni.ini.usc.edu/
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Table 4.1 - PSP clinical phenotypes and baseline characteristics by contributing cohort. 

 Controls All 4RTNI1 4RTNI2 DAV YP/SAL PROSPECT UCL 

Baseline, n (fu visits) 290 426 (367) 59 (83) 100 (58) 173 (157) 13 (24) 52 (25) 29 (20) 

- PSP-RS - 357 (329) 59 (83) 59 (34) 173 (157) 13 (24) 30 (17) 23 (14) 

- PSP-C - 52 (25) - 41 (24) - - 9 (0) 2 (1) 

- PSP-SC - 17 (13) - - - - 13 (8) 4 (5) 

Gender, % female 56% 48% 54% 48% 51% 48% 42% 31% 

Age at first scan, y 62.5 (9.4) 68.4 (6.8) 70.2 (7.2) 68.3 (7.0) 67.6 (6.4) 70.0 (3.8) 70.0 (8.1) 67.3 (5.2) 

Age at first symptom, ya - 64.1 (7.5) 64.7 (7.6) 63.2 (7.5) - - 66.3 (8.0) 62.6 (5.1) 

Disease duration, ya, b - 4.5 (3.1) 5.4 (3.9) 4.8 (3.3) - - 3.8 (2.4) 4.3 (2.6) 

Pathology, n (% PSP) - 31 (94%) 7 (88%)c - - - 6 (100%) 18 (95%)d 

This table summarises all cases post-QC. Values are mean (SD) apart from Gender % female, Baseline n (n follow-up visits), Pathology n (% PSP). a note incomplete data for disease duration / 

age at first symptom. b time from first symptom to first scan. c one case Globular Glial Tauopathy pathology. d one case CBD pathology. Abbreviations: Abbreviations: 4RTNI1 = 4-repeat tauopathy 

neuroimaging initiative (Phase 1), 4RTN2 = 4-repeat tauopathy neuroimaging initiative (Phase 2), DAV = Davunetide trial, , YP = Young plasma trial, SAL = Salsalate trial, PROSPECT = 

PROgressive Supranuclear Palsy CorTico-Basal Syndrome Multiple System Atrophy Longitudinal Study, UCL = University College London Dementia Research Centre frontotemporal dementia  

cohort 
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Appropriate ethical committee approval was applied for and approved via each of the 

individual trial and research ethics committees. To be included all participants needed 

to have, as a minimum, a clinical diagnosis of PSP (PSP-RS or vPSP), a baseline T1 

volumetric MRI on a 1.5 or 3 tesla scanner, basic demographic data (gender and age 

at time of scan). Clinical rating scale scores (PSP rating scale, Unified Parkinson 

Disease Rating Scale [UPDRS], Schwab and England Activities of Daily Living scale 

[SEADL], and Montreal Cognitive Assessment [MoCA] or Mini-mental State 

Examination [MMSE]   at baseline and follow-up), pathology at autopsy, and follow-

up scans were also included if available. As detailed in previous work358, original trial 

analyses failed to show any treatment effect (including no change in volumetric MRI 

measurements) in the SAL, YP and DAV trials, so data were combined from each 

study’s treatment and placebo arms. Longitudinal data were used to validate the 

consistency of SuStaIn’s subtype and stage assignments at follow-up. 

Given the PROSPECT and 4RTNI2 trials only assessed cognitive function using the 

MOCA (as opposed to the MMSE for the other trials), raw MOCA scores were 

converted to MMSE scores using the validated method used by Lawton et al391. For 

missing data in clinical scales, I used an adjusted mean score if at least 80% of the 

assessment was complete, as per Jabbari et al298. 

4.2.2 MRI acquisition and image processing 

The MRI acquisition and image processing procedures are described in detail in 

Chapter 2 (Image processing pipeline). Briefly, cortical and subcortical structures 

were parcellated using the geodesic information flow algorithm (GIF)304, which 

automatically extracts regions based on the Neuromorphometrics atlas 

(Neuromorphometrics, Inc.), using an atlas propagation and label fusion strategy363,364. 

Subregions of the cerebellum were extracted using GIF based on the Diedrichsen 

atlas305. I subsequently segmented the medulla, pons, superior cerebellar peduncles 

(SCPs) and midbrain using a customised version of a module available in FreeSurfer 

to accept the GIF parcellation of the whole brainstem as input306. Volumes for 24 grey-

matter regions were calculated; four brainstem (medulla, pons, superior cerebellar 

peduncle [SCP] and midbrain), three cerebellar (cerebellar cortex, dentate nucleus and 

vermis), nine subcortical (thalamus, globus pallidus (GP), caudate, putamen, ventral 

diencephalon (DC), thalamus, hippocampus, amygdala and nucleus accumbens [NA]) 
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and eight cortical (basal forebrain, cingulate, frontal anterior, frontal posterior, insula, 

temporal, parietal and occipital) regions. Regions that had a right and left label were 

combined.  A list of the GIF subregions included in each cortical region are included 

in Table 4.2. I calculated total intracranial volume (TIV) using SPM12 v6225 

(Statistical Parametric Mapping, Wellcome Trust Centre for Neuroimaging, London, 

UK) running under MATLAB R2012b (Math Works, Natick, MA, USA)365. I visually 

inspected all images to ensure accurate segmentation.
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Table 4.2 - List of GIF subregions included in each region used as SuStaIn input. 

Regions included in SuStaIn GIF Subregions 

Frontal Anterior Frontal operculum, central operculum, frontal pole, gyrus rectus, 

middle frontal cortex, subcallosal area, superior frontal gyrus 

medial segment, superior frontal gyrus, middle frontal gyrus, 

opercular part of the inferior frontal gyrus, orbital part of the 

inferior frontal gyrus, triangular part of the inferior frontal gyrus, 

anterior orbital gyrus, medial orbital gyrus, lateral orbital gyrus, 

posterior orbital gyrus 

Frontal Posterior Precentral gyrus, precentral gyrus medial segment, supplementary 

motor cortex 

Temporal Entorhinal area, fusiform gyrus, parahippocampal gyrus, inferior 

temporal gyrus, middle temporal gyrus, superior temporal gyrus, 

temporal pole, planum polare, planum temporale, transverse 

temporal gyrus 

Parietal Precuenus, parietal operculum, supramarginal gyrus, superior 

parietal lobule, angular gyrus, postcentral gyrus, postcentral gyrus 

medial segment 

Occipital Cuneus, calcarine cortex, lingual gyrus, occipital fusiform gyrus, 

superior occipital gyrus, inferior occipital gyrus, middle occipital 

gyrus, occipital pole 

Insula Anterior insula, posterior insula 

Amygdala Amygdala 

Cingulate Anterior cingulate gyrus, middle cingulate gyrus, posterior 

cingulate gyrus 

Medulla Medulla 

Pons Pons 

Superior Cerebellar Peduncles Superior cerebellar peduncles 

Midbrain Midbrain 

Ventral Diencephalon Ventral Diencephalon (GIF segmentation includes subthalamic 

nucleus, substantia nigra and hypothalamus) 

Thalamus Thalamus 

Nucleus Accumbens Nucleus accumbens 

Globus Pallidus Globus Pallidus 

Putamen Putamen 

Caudate Caudate 

Cerebellar Cortex Lobules I/IV, V, VI, VIIA-Crus I, VIIA-Crus II, VIIB, VIIIA, 

VIIB, IX, X 

Dentate Dentate nucleus 
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All volumes were corrected for TIV, scanner field strength (1.5T or 3T), scanner 

manufacturer, age at baseline scan and sex, using linear regression on the control 

population and then propagating this model to the PSP population, to generate 

covariate-adjusted regional volumes. To confirm that age effects on regional brain 

volumes had been successfully regressed out, linear models were fit to assess for any 

residual association between individual covariate adjusted regional volumes and age 

at scan. 

I defined a biomarker in this study as an image-based regional volume extracted using 

GIF. To reduce dimensionality, I carried out pairwise comparisons between healthy 

volunteers and patients at baseline visit, and selected MRI regions whose differences 

between groups were associated with a moderate to large effect size (Cohen’s 𝑑 effect 

size of ≥ 0.6 for standardized mean differences between the cases and controls). 

Applying this threshold to the regional volumes segmented by GIF (see Chapter 2 

Image processing pipeline) resulted in selection of 20 regions of interest (ROI) that 

were then included for downstream analysis (Table 4.3). Adjusted regional volumes 

for the ROI were converted into z scores relative to the control group by subtracting 

the mean of the control group from each patient’s ROI volume and dividing by the 

standard deviation of the control group. Given regional brain volumes decrease with 

disease progression, the z scores become negative as the disease progresses; z scores 

were therefore multiplied by -1, to give positive z scores that increase with disease 

progression. I then used the z scored data as input to SuStaIn. 
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Table 4.3 - Effect size by region of interest. 

Region of Interest Cohen’s 𝒅 

Midbrain 2.56 

Ventral diencephalon 1.97 

SCP 1.73 

Pons 1.72 

Thalamus 1.67 

GP 1.58 

Dentate 1.53 

Putamen 1.51 

Medulla 1.50 

Insula 1.27 

Frontal Posterior 1.21 

Frontal Anterior 1.10 

NA 0.87 

Parietal 0.85 

Cerebellar cortex 0.79 

Caudate 0.78 

Amygdala 0.74 

Cingulate 0.73 

Occipital 0.62 

Temporal 0.60 

Corpus callosum 0.57a 

Vermis 0.53a 

Basal forebrain 0.41a 

Hippocampus 0.36 a 

Cohen’s 𝑑 calculated as the standardised mean difference between adjusted the regional volume of that that region 

of interest (ROI) in cases vs controls. a a Cohen’s 𝑑 threshold of greater than or equal to 0.6 was used to select ROI 

as input for SuStaIn algorithm resulting in 20 biomarkers being included in model.
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4.2.3 Subtype and Stage Inference 

SuStaIn is a probabilistic machine learning algorithm that simultaneously clusters 

individuals into groups (subtypes) and infers a trajectory of change associated with 

each group; that trajectory defines the disease stage (degree of disease progression 

within a subtype) of each individual within the corresponding group. SuStaIn requires 

only cross-sectional data as input, although can exploit longitudinal data for training 

if available. I have summarised the main details of the algorithm in Chapter 2 (Subtype 

and Stage Inference (SuStaIn)). In summary, each subtypes’ progression pattern is 

described using a piecewise linear 𝑧 score model, expressing a trajectory with a series 

of stages, that each correspond to a single biomarker (regional brain volume in this 

case) reaching a new 𝑧 score. Importantly, the number of SuStaIn stages is determined 

by the number of biomarkers (the product of the number of ROIs and number of 𝑧 

score thresholds per ROI) provided as input. SuStaIn optimises both the subtype 

membership and the ordering in which different biomarkers reach different z-scores in 

each subtype (for example one, two or three standard deviations away from the control 

mean for that ROI) using a data likelihood function. SuStaIn has been applied to a 

range of different neurodegenerative diseases290–294, providing fine-grained patient 

stratification along both temporal and phenotypic axes, as well as informing on the 

underlying heterogeneity of disease progression in these different disorders. 

Only PSP cases (clinically diagnosed) were used to fit SuStaIn. Table 4.4 provides a 

summary of the Z-score settings, MCMC iterations and number of random starting 

sequences used for the SuStaIn algorithm. I estimated model uncertainty using 

100,000 Markov Chain Monte Carlo (MCMC) iterations, and in the single-cluster 

expectation maximisation procedure I optimised the single-cluster sequence from 24 

different random starting sequences to find the maximum likelihood solution. I 

determined the optimal number of subtypes using information criteria calculated 

through ten-fold cross-validation (cross-validation information criteria; CVIC), to 

balance internal model accuracy with model complexity290. Where there was no strong 

evidence for an additional subtype in the model using the CVIC, I assessed the average 

log-likelihood across folds for the additional subtype and if there was no improvement 

selected the most parsimonious model i.e. the model with fewer subtypes.  
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Finally, I used the fitted SuStaIn model to calculate the probability that each individual 

falls at each stage of each subtype, and assigned individuals to their maximum 

likelihood stage and subtype based on their baseline scan (as described in Young et 

al.290). I visualised the subtype progression patterns identified by SuStaIn using 

BrainPainter software392, which I modified to include the brainstem segmentations. 

Table 4.4 - SuStaIn algorithm settings for each biomarker. 

Biomarker R    𝒁𝒎𝒂𝒙 

Frontal Anterior 1 4 

Frontal Posterior 2 4 

Temporal 1 4 

Parietal 2 5 

Occipital 1 4 

Insula 2 4 

Amygdala 1 4 

Cingulate 1 3 

Medulla 3 5 

Pons 3 5 

Scp 3 5 

Midbrain 3 6 

Ventral DC 3 6 

Thalamus 3 6 

NA 2 4 

GP 3 5 

Putamen 3 4 

Caudate 1 4 

Cerebellar cortex 1 4 

Dentate 3 5 

R is the number of z-scores included for biomarker 𝑖, and  𝐙 𝒎𝒂𝒙 is the max. 𝑧-score modelled for biomarker 𝑖. 
Total number of biomarkers (𝑖) for model = 42. Cmax (the maximum number of subtypes fitted) = 4. Model 

uncertainty was estimated using 100,000 Markov Chain Monte Carlo (MCMC) iterations. In the single-cluster 

expectation maximisation procedure the single-cluster sequence was optimised from 24 different random starting 

sequences to find the maximum likelihood solution. 

4.2.4 Assigning individuals to subtypes and stages  

I computed individuals’ stage based on their average stage, weighted by the probability 

of belonging to each stage of each subtype. Individuals that were assigned to either 

SuStaIn stage 0 (i.e. no atrophy on imaging compared to controls) or stage 41 (end 

stage i.e. all ROI maximum atrophy) were labelled “no subtype”. All other individuals 

were labelled as “subtypable” and were then assigned to their most probable subtype.  
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4.2.5 Statistical Analyses 

For all analyses I stratified PSP cases into PSP-RS, PSP-Subcortical, and PSP-Cortical 

groups based on their baseline clinical diagnosis. The PSP-Subcortical group includes 

individuals with PSP-P, and PSP-PGF; the PSP-Cortical group includes cases with 

PSP-SL, PSP-F and PSP-CBS. 

4.2.5.1 Clinical phenotype and baseline characteristics 

Pairwise comparisons of baseline characteristics were performed between all PSP 

cases and controls, PSP syndrome (PSP-RS, PSP-Cortical and PSP-Subcortical) vs all 

PSP cases, and each PSP syndrome against each other, using 𝑡-tests for continuous 

variables and χ2 tests for categorical variables. Statistical significance was reported at 

a level of 𝑝 < 0.05, and at the Bonferroni corrected level of 𝑝 < 0.001 to correct for 

multiple comparisons (44 items). 

4.2.5.2 Association between Subtype assignment and covariates 

To assess for any residual association between covariates (TIV, scanner field strength, 

scanner manufacturer, age at baseline scan, sex, cohort and SuStaIn stage) and SuStaIn 

subtype, I fitted a logistic regression model to the data using the lm() function from 

the stats package (version 3.6.2). 

4.2.5.3 Subtype characterisation 

Overall differences between subtypes were first assessed independently of stage, with 

individuals classified as “no subtype” (i.e stage 0 or 41) excluded from analysis. To 

compare whether there were any differences between subtypes, I performed 𝑡-tests for 

continuous variables and 𝜒2 tests for categorical variables (and post-hoc pairwise 

comparisons for clinical syndrome vs SuStaIn subtype using the chisq.multicomp() 

function from the RVAideMemoire R package version 0.9-81-2).  

To test for associations between clinical scores (PSP rating scale, UPDRS, SEADL 

and MMSE) and subtype, I accounted for SuStaIn stage, age, and sex by fitting a linear 

model (clinical test score ~ subtype + stage + age + sex) for each clinical test score. 

Statistical significance was reported uncorrected at a level of 𝑝 < 0.05, and at the 

Bonferroni corrected level of 𝑝 < 0.005 for demographic variables (11 items) and for 

clinical scores (10 items), to account for multiple comparisons. 
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To assess average stage by clinical syndrome by SuStaIn subtype, I performed a one-

way ANOVA (Mean stage ~ PSP syndrome + Sustain baseline subtype) with the aov() 

function the stats package (version 3.6.2). Tukey post-hoc significant differences were 

than calculated to identify the level of significance.  

Finally, I tested for differences in all baseline regional volumes of interest between the 

different SuStaIn subtypes using two-tailed unpaired 𝑡-tests, with statistical 

significance reported at a level of p < 0.05, both uncorrected for and corrected for 

multiple comparisons (Bonferroni correction). 

All statistical analyses were performed either in R (version 4.0.5) or Python (version 

3.7.6).  

4.2.6 Longitudinal validation  

I used the SuStaIn model fitted on the cross-sectional baseline data to assign maximum 

likelihood stage and subtype to all follow-up scans (at all time points). These scans 

were used to validate the stability of subtypes, and to assess stage progression, based 

on the hypothesis that individuals should remain in the same subtype but should 

advance to higher stages over time (or at least remain at the same stage). I defined 

Subtype stability as the proportion of individuals assigned to the same subtype at 

follow-up(s) or progressed from Stage 0 into a subtype, compared to the total number 

of individuals. I assessed stage progression by comparing SuStaIn stage at baseline 

and follow-up(s) for all individuals. Specifically, I calculated the proportion of 

individuals that advanced or stayed at the same stage at follow-up scan. 
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4.3   Results 

4.3.1 Participants 

Table 4.5 summarises the key baseline clinical features for individuals included in 

the study. For a breakdown of this data by each contributing cohort please refer to 

Table 4.1. I collected a large imaging cohort of PSP cases; 1083 MRI images were 

included from a total of 716 individuals: 426 with a clinical diagnosis of PSP (with 

367 follow-up scans) and 290 controls. Of the PSP cases, 357 (84%) were diagnosed 

with PSP-RS, 52 (12%) with a PSP-Cortical syndrome (PSP-SL, PSP-F or PSP-

CBS), and 17 (4%) with a PSP-Subcortical syndrome (PSP-P or PSP-PGF). 31 (7%) 

of the PSP cases had a pathological diagnosis after coming to post-mortem, of which 

29 (94%) showed 4R tau pathology consistent with PSP, whereas two cases that 

presented with PSP-RS had non-PSP tau pathology (one corticobasal degeneration 

[CBD] and one globular glial tauopathy [GGT]). Given the focus of this study was 

understanding the clinical heterogeneity of clinically diagnosed PSP, both cases were 

included in the analysis. Overall, the PSP cases at baseline had an older average age 

compared to controls (68.5 years [SD ± 6.8] vs 62.5 years [SD ± 62.5], 𝑝 < 0.001), 

though were matched for gender. I confirmed that despite the difference in age 

between cases and controls, age effects had been effectively regressed out of the 

regional covariate adjusted volumes for both cases (Figure 4.1) and controls (Figure 

4.2). There were significant differences in baseline clinical scores between the 

different clinical PSP phenotypes. The highest PSP rating scale score (measure of 

motor predominant disease burden) was seen in PSP-RS (37.2 ± 13.2), followed by 

PSP subcortical syndromes (26.3 ± 10.7), with PSP cortical syndromes the least 

impaired (20.6 ± 20). There was, however, a large variation in this score for the 

cortical syndromes (PSP-SL 11.9 ± 10.8, PSP-F 19.5  ± 13.2, and PSP-CBS 56.4 ± 

11.9). In keeping with the increased motor predominant disease burden (higher PSP 

rating scale score) in the PSP-RS and PSP-Subcortical cases, the UPDRS was 

significantly higher in these cases vs PSP-Cortical cases (PSP-Subcortical 36.2 ± 

12.9, PSP-RS 29.3 ± 14, PSP-Cortical 18.8 ± 17.6, 𝑝 < 0.05 for each comparison). 

The PSP-Subcortical cases had a better MMSE score on average compared to the 

PSP-RS and PSP-Cortical syndromes (22.4 ± 1.2 vs 25.7 ± 3.7 and 24.7 ± 4.6, 𝑝 < 

0.001 for each comparison). There was no significant difference in MMSE between 

the latter two syndromes. 
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Table 4.5 - Clinical and baseline characteristics by clinical diagnosis 

 Study Group           

  PSP by Subgroup          

     PSP-Cortical    PSP-Subcortical  

 Controls All PSP-RS  PSP-SL PSP-F PSP-CBS All Cortical  PSP-P PSP-PGF All Subcortical 

Baseline, n (fu visits) 290 426 (367) 357 (329)  35 (23) 10 (2) 7 (0) 52 (25)  7 (8) 10 (5) 17 (13) 

Sex, % female 57% 49% 49%  46% 40% 71% 48%  14% 60% 41% 

Age first scan, y 62.5 (9.4) 68.5 (6.8)d 68.1 (6.6)  68.6 (7.7) 68.8 (8.6) 77.6 (2.7) 69.9 (7.9)  71.5 (7.7) 71.6 (7.1) 71.5 (7.1) 

Age at first symptom, ya - 64.1 (7.5) 63.5 (7.2)  64.1 (8.1) 64.6 (7.7) 72.7 (3.8) 65.4 (8.0)  64.5 (10.3) 66.6 (5.4) 65.7 (7.6) 

Disease duration, ya, b - 4.7 (3.2) 4.6 (3.3)  4.5 (2.8) 4.19 (3.0) 4.9 (2.0) 4.5 (2.7)  6.9 (3.5) 5.1 (2.9) 5.8 (3.2) 

Pathology, % PSP - 31 (94%)c 26 (92%)  - 1 (100%) 1 (100%) 2 (100%)  4 (100%) 1 (100%) 5 (100%) 

PSP rating scale score - 34.9 (15.0) 37.2 (13.2)e,h,i  11.9 (10.8) 19.5 (13.2) 56.4 (11.9) 20.6 (20.0)f, h  33.8 (7.89) 23 (10.4) 26.3 (10.7)e,i 

- History - 7.8 (3.9) 8.3 (3.6)h,i  3.4 (3.3) 5 (2.8) 10.7 (3.4) 4.8 (4.2)f, h  8.5 (3.9) 4.4 (3.1) 5.7 (3.7)i 

- Mentation - 3.4 (2.6) 3.5 (2.3)i  1.8 (1.7) 5.2 (4.2) 4.8 (2.6) 2.8 (2.2)  4 (2.6) 1.0 (0.9) 1.9 (1.3)e,i 

- Bulbar - 2.5 (1.8) 2.7 (1.8)h  1.8 (1.7) 1.2 (1.4) 2.3 (1.9) 1.8 (1.7)e,h  2.7 (2.5) 1.6 (1.1) 1.9 (1.7) 

- Ocular motor - 7.6 (4.0) 8.4 (3.5)e,h,j,l  1.3 (0.6) 2.4 (1.9) 10.4 (2.4) 2.9 (2.2)f,h,j,l  5.8 (3.3) 4.6 (3.5) 4.9 (3.4)e,h,j,l 

- Limb motor - 4.3 (2.9) 4.5 (2.7)i  2.4 (2.2) 1.2 (1.0) 10.9 (2.9) 3.5 (3.2)  3.5 (1.3) 2.9 (1.4) 3.1 (1.3)e,i 

- Gait and midline - 9.2 (5.2) 9.9 (4.7)h  2.2 (2.1) 3.6 (3.2) 17.3 (3.0) 4.8 (3.5)f,h,k  9.5 (2.1) 8.6 (3.5) 8.9 (3.1)k 

SEADL - 54.8 (24.8) 53.8 (24.0)i  66.2 (33.1) 51.4 (13.5) 26.6 (13.5) 58.5 (30.2)  57.5 (20.6) 68.9 (14.5) 65.4 (16.6)e,i 

UPDRS - 27.3 (18.0) 29.3 (14.7)g  9.3 (8.9) 11.5 (10.9) 65.6 (12.2) 18.8 (17.6)g,k  35.5 (9.3) 36.4 (14.7) 36.2 (12.9)e,k 

MMSE - 25.5 (3.8) 25.7 (3.7)j  27 (2.6) 21.9 (5.3) 19.4 (4.0) 24.7 (4.6)l  22 (0.8) 22.6 (1.3) 22.4 (1.2)f,j,l 

Values are mean (SD), apart from Gender % female, Baseline n (n follow-up visits), Pathology n (% PSP). Pairwise comparisons between groups were performed using 𝑡 tests for continuous 

variables and 𝜒2 tests for categorical variables. a  note incomplete data for disease duration / age at first symptom. b time from first symptom to first scan. c 2 cases not PSP pathology (1 CBD, 1 

GGT). d PSP all vs Controls. Statistically significant at 𝑝 < 0.05, corrected for multiple comparisons (44 comparison, 𝑝 < 0.00114). e PSP [subgroup] vs PSP All. Statistically significant at 𝑝 < 

0.05, uncorrected for multiple comparisons. f PSP [subgroup] vs PSP All. Statistically significant at 𝑝 < 0.05, corrected for multiple comparisons (44 comparison, 𝑝 < 0.00114). g PSP-RS vs 

PSP-C. Statistically significant at 𝑝 < 0.05, uncorrected for multiple comparisons. h PSP-RS vs PSP-C. Statistically significant at 𝑝 < 0.05, corrected for multiple comparisons (44 comparison, 𝑝 

< 0.00114). i PSP-RS vs PSP-SC. Statistically significant at 𝑝 < 0.05, uncorrected for multiple comparisons. j PSP-RS vs PSP-SC. Statistically significant at 𝑝 < 0.05, corrected for multiple 

comparisons (44 comparison, 𝑝 < 0.00114). k PSP-C vs PSP-SC. Statistically significant at 𝑝 < 0.05, uncorrected for multiple comparisons. l PSP-C vs PSP-SC. Statistically significant at 𝑝 < 

0.05, corrected for multiple comparisons (44 comparison, 𝑝 < 0.00114). Abbreviations: CBD = cortico-basal degeneration, GGT = Globular Glial Tauopathy, MMSE = Mini–Mental State 

Examination, PSP-C = PSP-cortical (includes PSP-frontal, PSP-speech/language disorder and PSP-corticobasal syndrome), PSP-RS = PSP Richardson syndrome, PSP-SC = PSP subcortical 

(includes PSP parkinsonism and PSP-progressive gait freezing), SEADL = Schwab and England Activities of Daily Living, UPDRS = Unified Parkinson’s Disease Rating Scale
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Figure 4.1 - Association of age at baseline scan with covariate adjusted regional volumes in cases. (A) Each scatter plot (20 regions in total) shows every PSP case (n=426) 

plotted as a function of age at baseline scan (x axis) and covariate adjusted regional volume (y axis). (B) Table summarising results of fitting linear models for each region of 

interest covariate adjusted volume by age at scan (linear model = cov. adj. regional vol. ~ age at baseline scan). The R2 represents the proportion of the variation in the covariate 

adjusted regional volume that is explained by age at baseline scan.1 𝑝 values were Bonferroni corrected for multiple comparisons. 
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Figure 4.2 - Association of age at baseline scan with covariate adjusted regional volumes in controls. Each scatter plot (20 regions in total) shows every PSP case (n=426) 

plotted as a function of age at baseline scan (x axis) and covariate adjusted regional volume (y axis). (B) Table summarising results of fitting linear models for each region of 

interest covariate adjusted volume by age at scan (linear model = cov. adj. regional vol. ~ age at baseline scan). The R2 represents the proportion of the variation in the covariate 

adjusted regional volume that is explained by age at baseline scan.1𝑝 values were Bonferroni corrected for multiple comparisons 
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4.3.2 Spatiotemporal subtypes of PSP 

I fitted SuStaIn using PSP cases only, based on the rationale that PSP is a rare disease, 

and it is very unlikely for our cohort of controls to have asymptomatic PSP. Indeed, it 

is more likely the controls would have a more common neurodegenerative disorder 

such as Alzheimer’s disease rather than PSP, and I did not want this to confound the 

subtype and stage inference estimation hence the exclusion. 

SuStaIn identified two imaging subtypes with distinct patterns of regional atrophy 

evolution (Figure 4.3A and Figure 4.3B for positional variance diagrams [PVDs]). 

Figure 4.4 shows the log likelihoods after 10-fold cross validation with the associated 

CVIC demonstrating that the two-subtype model was the most parsimonious. Based 

on the earliest MRI abnormalities seen in the SuStaIn defined trajectories, I labelled 

the first the “Subcortical” subtype and the second the “Cortical” subtype. The 

Subcortical subtype (75% of the cases) has atrophy in the midbrain followed by the 

other brainstem structures (medulla, pons, and superior cerebellar peduncles [SCP]), 

and the ventral diencephalon (ventral DC) at early SuStaIn stages. The atrophy then 

progresses caudally to the dentate nucleus of the cerebellum, and rostrally to the 

thalamus and lentiform nucleus (globus pallidus [GP] and putamen) before spreading 

to the cortex (after Stage 13). Cortical atrophy progresses in an anterior to posterior 

direction, beginning in the insula and posterior frontal lobe, before spreading to the 

temporal, parietal and finally the occipital lobe. The Cortical subtype (25% of cases) 

has more generalised atrophy in the early SuStaIn stages, with the midbrain and insula 

affected first, then the frontal lobes (posterior > anterior), thalamus, ventral DC and 

the basal ganglia all affected at a similar time (before stage 13). Interestingly the end 

stage atrophy pattern is similar for both subtypes. 

Overall, 20 of the 426 scans (5%) were not subtypable at baseline, and so were 

excluded from subtype post-hoc analyses. Three of these individuals had a clinical 

diagnosis of PSP-RS and were at Stage 41, and 17 were at Stage 0 (9 PSP-RS and 8 

PSP-Cortical [all PSP-SL]).  

I fitted a logistic regression model to assess for any residual association between 

SuStaIn subtype, regressed covariates, and SuStaIn stage (SuStaIn subtype ~ SuStaIn 

stage + TIV + age at first scan + sex + scanner + scanner field strength + scanner 

manufacturer). This demonstrated a remaining association between SuStaIn subtype 
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and age at first scan (𝑧 = 2.8, 𝑝 = 6 x 10-3), General Electric 3T scanner (𝑧 = -3.0, 𝑝 = 

3 x 10-3), Phillips 3T scanner (𝑧 = -2.5, 𝑝 = 0.01), and the 4RTNI2 cohort (𝑧 = 3.6, 𝑝 

= 3 x 10-4). There was no dependency of subtype on stage (𝑧 = -0.1, 𝑝 = 0.91) with a 

similar distribution of stages across each subtype (Figure 4.5). 
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Figure 4.3 - Subtype progression patterns of PSP atrophy identified by Subtype and Stage Inference (SuStaIn). (A) Spatial distribution and severity of atrophy at each SuStaIn stage 

by Subtype. Each row (Subcortical top, Cortical bottom) represents a subtype progression pattern identified by SuStaIn consisting of a set of stages at which brain volumes in PSP cases reach different z-scores relative to 

controls. (B) Assignment of PSP clinical syndromes to each SuStaIn subtype. Size of bar (x-axis) represents percentage of cases labelled with that PSP syndrome assigned to that SuStaIn subtype (y-axis). A Pearson Chi 

Square test was performed with post-hoc pairwise comparisons for clinical syndrome vs SuStaIn subtype using the chisq.multicomp() function from the RVAideMemoire R package version 0.9-81-2 ( 𝜒2 (2, N = 406) = 

81.8, 𝑝 = 2.2 x 10-16). (C) Positional variance diagrams for SuStaIn subtypes. These represent the uncertainty in the subtype progression patterns for each region. Each region (y-axis) is shaded based on the probability a 

particular z score is reached at a particular SuStaIn stage (x-axis). Z scores range from zero (white), one (red), two (pink) to three (blue). Abbreviations: Frontal_Ant = anterior frontal lobe, Frontal_Post = posterior frontal 

lobe (supplementary motor cortex and pre-central gyrus), SCP = superior cerebellar peduncle, NA = nucleus accumbens, GP = globus pallidus.*Statistically significant at 𝑝 < 0.05, uncorrected for multiple comparisons. 

**Statistically significant at p < 0.05, corrected for multiple comparisons. Visualisations in (A) were generated using the BrainPainter software392, modified to include the brainstem segmentations.
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Figure 4.4 - Selecting optimal SuStaIn subtype model given data. Top row shows the cross-validation information criterion (CVIC) plots for (A) the 2-subtype model and 

(B) the 3-subtype model. The bottom row shows the log-likelihood across 10 CV folds for each model. The CVIC for the 3-subtype model for the 3-subtype model is very 

similar to the 2-subtype model and so for parsimony I selected the 2-subtype model as the best description of the data.
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Figure 4.5 - Stage distribution and Subtype probability of two-subtype model (A) Stage distribution by Subtype for subtypable baseline scans (B) Subtype assignment 

probability by stage for subtypable baseline scans. Dots = median probability, vertical-coloured lines = 95% confidence intervals. The horizontal dotted line represents 50% 

assignment probability. If any stage had less than 50% probability of assignment to subtype would raise concern that a different underlying disease sequence had been appended 

to another to make one sequence by SuStaIn. 
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4.3.3 Association between PSP clinical syndromes and 

subtype 

I compared the subtype assignments (Subcortical vs Cortical) for clinical PSP 

syndromes (PSP-RS vs PSP-Cortical and PSP-Subcortical). Figure 4.3 (and  Table 

4.6) show the percentage of each of these clinical syndromes assigned to each 

subtype. The Subcortical SuStaIn subtype was significantly enriched for PSP-RS and 

PSP-Subcortical syndromes; 81% of PSP-RS cases (𝑝 = 2 x 10-6) and 82% of PSP-

Subcortical cases (𝑝 = 0.007) were assigned to the SuStaIn Subcortical subtype 

respectively. The Cortical SuStaIn subtype was enriched for the PSP-Cortical 

syndromes; 81% of PSP Cortical syndromes (𝑝 = 2 x 10-5) were assigned to the SuStaIn 

Cortical subtype. 

 Table 4.6 - Comparison of demographics, clinical diagnosis and test scores between SuStaIn 

subtypes.  

Subcortical subtype Cortical subtype 𝒑 value 

All scans, n 321 (75.4) 105 (24.6) - 

Subtypable scans, n 302 (74.4) 104 (25.6) 0.07a

Average subtype probabilityb 0.94 (0.1) 0.85 (0.2) <0.005c 

Sex, % female 49% 48% 0.82 

Age first scan, y 68.1 (6.3) 70.0 (8.1) 0.02 

Age at first symptom, yd 63.8 (6.9) 65.5 (8.3) 0.14 

Disease duration, yd,e 4.4 (3.1) 5.0 (3.2) 0.26 

PSP syndrome, n <0.005c 

- PSP-RS 280 (81%) 65 (19%) - 

- PSP-C 8 (18%) 36 (82%) - 

- PSP-SC 14 (82%) 3 (18%) <0.005c 

PSP rating scale 37.0 (13.6) 30.3 (16.9) <0.005c 

SEADL 53.7 (23.8) 56.3 (26.6) 0.39 

UPDRS 30.0 (16.2) 22.8 (21.0) <0.005c 

MMSE 25.5 (3.6) 24.9 (4.2) 0.20 

Values are mean (SD) or n (%), apart from Sex = % female. Pairwise comparisons between groups were performed 

using 𝑡-tests for continuous variables and 𝜒2 tests for categorical variables. a All scans vs. subtypable scans. b

Subtype probability = the probability of assignment for an individual case to given subtype. c Statistically significant 

at 𝑝 < 0.05, corrected for multiple comparisons (11 comparisons, 𝑝 value < 0.005). d note incomplete data for 

disease duration / age at first symptom. e time from first symptom to first scan. Abbreviations: PSP-RS = PSP 

Richardson syndrome, PSP-SC = PSP-subcortical (includes PSP-parkinsonism and PSP-progressive gait freezing),  

PSP-C = PSP-cortical (includes PSP-frontal, PSP-predominant speech/language disorder and PSP-predominant 

corticobasal syndrome), SEADL = Schwab and England Activities of Daily Living, UPDRS = Unified Parkinson’s 

Disease Rating Scale, MMSE = Mini-Mental State Examination 
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4.3.4 Subtype demographics and clinical characteristics 

Table 4.6 gives an overview of demographics, clinical diagnosis, and test scores by 

subtype. 74% of the subtypable scans were assigned to the Subcortical subtype, with 

an average subtype probability assignment of 0.94 compared to 0.85 for the Cortical 

subtype (𝑡 = -6.5, 𝑝 < 0.005). Those in the Subcortical subtype were both slightly 

younger at symptom onset (63.8 [SD ± 6.9] years vs 65.5. [SD ± 8.3]), and at time of 

baseline scan (68.1 [SD ± 6.3] years vs 70.0 [SD ± 8.1]), though this did not reach 

statistical significance in either case. Pairwise comparisons of clinical scores, 

demonstrated that PSP rating scale score (37.0 [SD ± 13.6] vs 30.3 [SD ± 16.9], 𝑡 = -

3.7, 𝑝 < 0.005) and UPDRS (30.0 [SD ± 16.2] vs 22.8 [SD ± 21.0]) were higher (i.e. 

more severe motor predominant disease burden) in the Subcortical subtype. Average 

MMSE was similar between subtypes (Subcortical subtype 25.5 [SD ± 3.6] vs 

Cortical subtype 24.9 [SD ± 4.2], 𝑡 = -1.3, 𝑝 < 0.20). 

The average stage for subtypable individuals within each subtype was similar (19.0 

[SD ± 10.5] for Subcortical vs 18.3 [SD ± 9.1] for Cortical, 𝛽 = 8 x 10-6, 𝑝 = 0.85) 

(Table 4.7). However, PSP-Subcortical cases (82%) assigned to the Subcortical 

SuStaIn subtype were on average at a lower stage (7.4 [SD ± 5.8]) compared to PSP-

RS cases assigned to either the Subcortical (19.9 [SD ± 10.2], 𝑝 < 0.003) (Figure 4.6) 

or the Cortical subtype (18.9 [SD ± 8.7], 𝑝 < 0.003). I then tested whether the PSP-

Subcortical and PSP-RS cases assigned to the Subcortical subtype showed differences 

in rate of progression (defined as change in subtype per year). PSP-Subcortical cases 

in the Subcortical subtype progressed on average 0.66 stages per year, compared to 

1.86 stages per year for the PSP-RS cases (𝑡 = 2.49, 95% CI 0.1 – 2.4, 𝑝 = 0.046). One 

PSP-Subcortical case progressed from stage 12 (no cortical involvement) to stage 14 

(insula and posterior frontal lobe abnormal), while two cases had more extensive 

cortical involvement at baseline (stage 16 and stage 26 respectively at baseline, and 

stage 16 and stage 27 at follow-up). 
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Table 4.7- Average stage by clinical syndrome by SuStaIn Subtype 

 Subcortical subtype Cortical subtype P valuea 

All 19.0 (10.5) 18.3 (9.1) 0.85 

PSP-RS 19.9 (10.2) 18.9 (8.7)b 0.98 

PSP-Subcortical 7.4 (5.8)a, b, c 12.0 (11.3) 0.98 

PSP-Cortical 11.3 (8.9) 17.9 (9.6) 0.54 

Mean stage (SD) at baseline. One way ANOVA (Mean stage ~ PSP syndrome + Sustain baseline subtype). PSP 

syndrome p = 8.1 x 10-6, Sustain baseline subtype p = 0.98. a Tukey HSD was used for post-hoc multiple 

comparisons. b statistically significant at p < 0.05, corrected for multiple comparisons. c one case PSP-Subcortical 

assigned to the Subcortical subtype case progressed from stage 12 (confined to subcortical regions to 14 at follow-

up (insula and posterior frontal lobe abnormal). Two PSP-Subcortical cases assigned to the Subcortical subtype 

had more extensive cortical involvement at baseline (stage 16 and stage 26 respectively at baseline, and stage 16 

and stage 27 at follow-up). Abbreviations: PSP-RS = PSP Richardson syndrome, PSP subcortical includes PSP-

parkinsonism and PSP-progressive gait freezing, PSP-cortical includes PSP-frontal, PSP-speech/language disorder 

and PSP-corticobasal syndrome. 

 

Figure 4.6 - Average stage of PSP clinical syndromes assigned to the Subcortical SuStaIn subtype. 

Mean SuStaIn stage for PSP syndrome, with associated standard error (SE) bars. ANOVA: PSP 

syndrome F = 12.1,  p = 8 x 10 -6;, SuStaIn subtype; F = 1x10-4 , p = 0.97). Tukey post-hoc honest 

significance test: in Subcortical SuStaIn subtype PSP-RS vs PSP-SC; estimate = -12.4, p = 8.4 x 10 -5. 

No other post-hoc comparisons significant. Abbreviations: PSP-RS = PSP Richardson syndrome, PSP-

SC = PSP Subcortical (includes PSP-parkinsonism and PSP-progressive gait freezing), PSP-C = PSP-

cortical (includes PSP-frontal, PSP-speech/language disorder and PSP-corticobasal syndrome). 
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I went on to compare the regional unadjusted baseline volumes in the two-subtype 

model to check whether there were appreciable differences present at baseline scan 

(Table 4.8). This demonstrated that those assigned to the Subcortical subtype had 

significantly lower mean volumes at baseline in the medulla, pons, midbrain, ventral 

diencephalon and the dentate nucleus. In contrast the Cortical subtype had lower mean 

volumes in the frontal, temporal, parietal, occipital, insula, amygdala, NA, and 

cingulate at baseline scan. Interestingly, there was no difference in volumes between 

the two subtypes in the cerebellar vermis and dentate, caudate, hippocampus, 

amygdala and nucleus accumbens, suggesting that these regions form an early atrophy 

signature common to both subtypes. 

Table 4.8 - Regional brain volumes by subtype in the 2-subtype model 

Region Subcortical Cortical 𝒑 valuea 

Frontal Anterior 128935 (13578) 126452 (16259) 2.50 x 10-8 

Frontal Posterior 34150 (4371) 32601 (4930) 4.21 x 10-9 

Temporal 117607 (10436) 109989 (13026) 4.18 x 10-8 

Parietal 85183 (9049) 76286 (10901) 4.56 x 10-11 

Occipital 68530 (7469) 63927 (8536) 5.02 x 10-7 

Cingulate 26734 (2915) 26268 (3409) 1.09 x 10-4 

Insula 9525 (1255) 9193 (1316) 2.06 x 10-3 

Corpus callosum 18084 (2796) 17992 (2673) 1.49 x 10-5 

Medulla 4597 (646) 4809 (590) 1.93 x 10-2 

Pons 12703 (1634) 13984 (1600) 4.72 x 10-8 

SCP 196 (45) 230 (47) 5.67 x 10-12 

Midbrain 5172 (759) 5778 (703) 4.35 x 10-13 

Cerebellar cortex 86575 (8384) 88222 (8993) 1.37x 10-7 

Vermis 4359 (532) 4418 (491) 0.11 

Dentate 2699 (376) 3023 (399) 0.01 

Hippocampus 7361 (768) 7187 (662) 1.00 

Amygdala 3301 (339) 3114 (372) 0.20 

NA 1051 (111) 1042 (126) 1.00 

Caudate 6248 (821) 6177 (901) 1.00 

GP 3367 (349) 3383 (373) 1.73 x 10-6 

Putamen 7759 (726) 7557 (811) 2.50 x 10-8 

Thalamus 9727 (1002) 10110 (926) 4.21 x 10-9 

Basal forebrain 982 (98) 975 (106) 4.18 x 10-8 

Ventral DC 7837 (857) 8438 (973) 4.56 x 10-11 

Values are mean volume (mm3) for that brain region (SD). Two-tailed, unpaired 𝑡-tests performed. a statistically 

significant at p < 0.05, corrected for multiple comparisons (Bonferroni). Abbreviations: SCP = superior cerebellar 

peduncles, DC = diencephalon, GP = globus pallidus, NA = nucleus accumbens 
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4.3.5 Association between stage, subtype, and disease 

severity 

Table 4.9 shows the relationship between clinical test scores and SuStaIn subtype 

and stage across all subtypable cases, accounting for age at first scan and sex. 

Performance on the total PSP rating scale score (and History, Bulbar, Ocular motor, 

and Gait midline subscores) was worse in the Subcortical subtype and related to 

stage, suggesting that these scores decline with disease progression in both subtypes, 

but the overall scores are worse in the Subcortical subtype. UPDRS score was 

worse in the Subcortical subtype but unrelated to SuStaIn stage, suggesting that 

test performance shows a stronger decline with disease progression in the 

Subcortical subtype. Worsening SEADL, PSP rating scale Limb motor and 

Mentation subscores were associated with increasing SuStaIn stage, suggesting these 

scores decline with disease progression in both subtypes. All these associations 

survived Bonferroni correction for multiple comparisons. MMSE showed no 

difference between subtypes and was not associated with SuStaIn stage.  
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Table 4.9 - Comparison of adjusted clinical scores between subtypes. 

SuStaIn subtype SuStaIn stage 

t value p value t value p value Subtype with worse score Change with Sustain Stage 

PSP rating scale score 

- Total -4.12 5 x 10-5b 5.21 3 x 10-7b Subcortical subtype Worsens 

- History -3.98 8 x 10-5b 4.21 3 x 10-5b Subcortical subtype Worsens 

- Mentation -0.86 0.39 3.74 2 x 10-4b Worsens 

- Bulbar -2.17 0.03a 3.42 7 x 10-4b Subcortical subtype Worsens 

- Ocular motor -4.56 7 x 10-6b 3.90 1 x 10-4b Subcortical subtype Worsens 

- Limb motor -0.40 0.69 3.25 8 x 10-6b Worsens 

- Gait and midline -4.02 7 x 10-5b 3.12 0.002b Subcortical subtype Worsens 

SEADL 1.03 0.30 -5.57 5 x 10-8b Worsens 

UPDRS -2.67 0.009 b 1.70 0.08 Subcortical subtype 

MMSE -1.03 0.31 -1.42 0.16 

Linear model of clinical score ~ subtype + stage + age + sex. a. Statistically significant at 𝑝 < 0.05, uncorrected for multiple comparisons. a statistically significant at 𝑝 < 0.05, uncorrected for 

multiple comparisons. bstatistically significant at 𝑝 < 0.05, corrected for multiple comparisons (10 items, 𝑝 < 0.0125). Abbreviations: SEADL = Schwab and England Activities of Daily Living, 

UPDRS = Unified Parkinson’s Disease Rating Scale, MMSE = Mini–Mental State Examination. 
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4.3.6 Longitudinal consistency of subtypes 

Given I used cross-sectional MRI data to infer distinct longitudinal trajectories, 

evaluating how well longitudinal data fits the SuStaIn model is a key aspect of 

validation. I tested this in two ways; firstly, by assessing whether subtype assignments 

were longitudinally stable, and secondly by testing whether individuals progressed to 

later stages at follow-up. A total of 355 follow-up scans (355/367) were subtypable at 

follow-up from 289 PSP cases (224 had one follow-up scan, 64 had two and one 

individual had three). Mean follow-up time was 0.91 years with a SD of 0.38 years.  

Overall, the SuStaIn subtype assignments showed good stability at follow-up (Table 

4.10), with 95% (347 out of 367 visits) either remaining in the same subtype 

or progressing from the normal appearing (not subtypable) group to the Subcortical 

or Cortical subtypes. 97% (265/273) of PSP scans assigned to the Subcortical 

subtype at previous scan remained in that subtype at follow-up; 2% (five scans) 

switched to the Cortical subtype at follow-up scan, while 1% (three scans) reverted 

to Normal (not subtypable). Of those scans assigned to the Cortical subtype, 96% 

(78/81) showed stable subtype assignment, while 4% (three scans) switched to the 

Subcortical subtype.  

Table 4.10 - Longitudinal consistency of subtype assignments 

Classification at follow-up visit 

Classification at previous visit Normal appearinga Subcortical subtype Cortical subtype 

Normal appearinga 9 (69%)a 3 (23%)b 1 (8%)b 

Subcortical subtype 3 (1%) 265 (97%)b 5 (2%) 

Cortical subtype 0 (0%) 3 (4%) 78 (96%)b 

a Normal appearing = not subtypable. Note that this only includes 13 individuals that were not subtypable at baseline 

and had a follow-up scan. An observation is longitudinally consistent (b) if individuals remain in the same group or 

progress from the normal-appearing group to Subcortical or Cortical subtype at follow-up visit. Entries indicate the 

number of visits n, with the % of the total individuals in classification at previous visit in classification at follow-

up in brackets. Longitudinally consistent observations highlighted in bold. 

I next tested how SuStaIn stage progressed over time (Figure 4.7) by comparing 

assigned stage at follow-up to baseline stage. As expected, the majority of individuals 

(90%) either progressed in stage (75%, 318/355), or stayed at the same stage (15%, 

53/355) i.e. are on or above the line 𝑦 = 𝑥. For those individuals assigned to the 

Subcortical subtype, 92% stayed at same stage or progressed (17% and 75% 

respectively); for those diagnosed with PSP-RS 92% stayed at same stage or 

progressed, for PSP-Cortical 100%, and for PSP-Subcortical 100%. In the Cortical 
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subtype 83% stayed at the same stage or progressed (9% and 74% respectively) in the 

Cortical subtype; the breakdown for clinical phenotypes assigned to this Subtype, was 

83.9% for PSP-RS, PSP-Subcortical 100% and PSP-Cortical 77%. 

 

Figure 4.7 - Stage progression at follow-up visits by SuStaIn subtype. Scatter plots of (A) 

Subcortical subtype (B) Cortical subtype showing predicted stage at baseline (x-axis) versus predicted 

stage at follow-up scan (y-axis) for those PSP cases with a follow-up scan (n = 355). The area of the 

circle is weighted by the number of scans at each point, and the colour of the circle represents the time 

(years) between visits. 
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4.4   Discussion 

The clinical heterogeneity of PSP is increasingly recognized98,359 and although post-

mortem studies51,78,79 suggest that this heterogeneity is related to differences in the 

severity and neuroanatomical distribution of pathology, there is an urgent need to 

better delineate this variability in vivo. To this end I applied SuStaIn to a large PSP 

MRI data set, encompassing the spectrum of PSP clinical syndromes, and empirically 

identified two subtypes characterised by distinct temporal patterns of atrophy. I 

referred to these two subtypes as Subcortical and Cortical based on the earliest regions 

to show abnormality. Clinical scores of disease severity worsened with increasing 

stage and the Subcortical subtype was associated with more severe disease compared 

to the Cortical subtype, as measured by PSP Rating Scale. It is worth noting, however, 

that the PSP rating scale was originally designed to assess disease severity in PSP-RS, 

and as such is heavily weighted towards measuring motor predominant disease burden. 

It is therefore unlikely to be a good measure of overall disease burden in the cortical 

PSP syndromes393, and the scores in these cases relative to the PSP-RS / PSP-

Subcortical variants need to be interpreted with caution. As expected, the Cortical 

subtype was enriched for patients clinically diagnosed with PSP-Cortical variants 

(PSP-CBS, PSP-F, PSP-SL). The Subcortical subtype was enriched for patients 

clinically diagnosed with both PSP-RS and PSP-Subcortical variants (PSP-P, PSP-

PGF), though on average the PSP-Subcortical variants were at a lower subtype stage 

with a slower rate of progression compared to the PSP-RS cases. The distinct patterns 

of MRI atrophy in these subtypes provides unique insights into disease mechanisms 

across the disease course and supports the stratification of patients by subtype in 

clinical trials. The differences in atrophy patterns between the two subtypes are evident 

in the raw baseline regional volume scores (Table 4.7), further supporting that these 

differences can be picked up at the time of baseline scan.  

The Subcortical and Cortical SuStaIn subtypes share some common early features 

(Figure 4.3), though are distinguished by much earlier cortical involvement in 

the latter. Both subtypes demonstrate early involvement of the midbrain and 

ventral diencephalon (which includes the subthalamic nucleus and substantia 

nigra), in keeping with previous post-mortem studies51,78, and several 

neuropathological studies of incidental or early-stage PSP cases64,116,117,394,395). In 

contrast to the Subcortical subtype, the Cortical subtype has concomitant atrophy 

in the insula, frontal lobes, 
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thalamus and basal ganglia in these early stages. The subsequent cortical atrophy in 

the Cortical subtype then progresses to the parietal, occipital and cingulate, and finally 

the temporal lobe. At equivalent stages the subcortical atrophy progresses to the 

medulla, SCP, dentate and GP, followed by the amygdala, and finally the caudate and 

cerebellar cortex. In contrast in the Subcortical subtype atrophy has already progressed 

through the whole brainstem, SCP and dentate nucleus, before it reaches the insula and 

posterior frontal lobe (supplementary motor cortex). Once it reaches the cortex the 

sequence of cortical atrophy is broadly similar to the Cortical subtype.  

The sequence of atrophy in the Subcortical subtype broadly mirrors the sequential 

spread of tau pathology proposed by Kovacs et al.51 in their post-mortem PSP-RS 

staging system and is consistent with in vivo disease progression models of PSP-

RS358,396. In keeping with this, in this study 81% of PSP-RS cases were assigned to 

this SuStaIn subtype. In Chapter 3 I used an event-based modelling approach with 

PSP-RS cases to identify this sequence, while Saito et al.396 applied SuStaIn to a small 

cohort of PSP-RS and CBS cases. They found that the optimal model consisted of two 

subtypes, with one subtype associated with CBS and the other with PSP-RS. Given the 

small sample size of the Saito study, and the absence of any vPSP cases in the sample, 

they were unable to extract finer grained information on PSP heterogeneity.  

An important difference in our study was that in addition to the majority of PSP-RS 

cases (81%) being assigned to the Subcortical subtype, the same was also true for the 

PSP-Subcortical (PSP-P and PSP-PGF) cases (82%). This implication of this is that 

atrophy in PSP-Subcortical variants progress along the same trajectory as PSP-RS 

cases. Previous work shows that PSP-P and PSP-PGF cases develop similar clinical 

phenomenology to PSP-RS cases in the later stages of the disease course397–399, albeit 

at a slower rate105,227,399 resulting in longer survival times107. Post-hoc analysis of the 

Subcortical SuStaIn subtype supports this, with the PSP-SC cases at an earlier stage 

in the sequence than PSP-RS cases (Figure 4.6) (7.4 vs 19.9, 𝑡 = 12.4, 𝑝 = 8.4 x 10-5), 

with a slower stage progression per year (0.66 vs 1.86, 𝑡 = 2.49, 95% CI 0.1 – 2.4, 𝑝 

= 0.046). 

Traditional cross-sectional imaging studies show that the PSP-Subcortical variants 

usually have less severe atrophy in the midbrain, medulla, and SCP relative to PSP-

RS cases298,387,400–402. Although this may seem at odds with SuStaIn assigning PSP-RS 

and PSP-Subcortical to the same trajectory, it can be reconciled by the finding that at 
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the average stage for PSP-Subcortical variants (7.4) the z-score has only reached 2 

sigma (2 standard deviations from controls) for the midbrain, and 1 sigma for the 

medulla and SCP, versus 3, 2 and 2 sigma respectively by stage 20 (the average stage 

for the PSP-RS cases). This suggests that on average PSP-SC cases have less atrophy 

in those regions at the time of baseline scan compared to PSP-RS cases, which would 

be consistent with the cross-sectional imaging findings that do not account for disease 

stage heterogeneity. It is currently unclear as to why the PSP-Subcortical variants show 

a less aggressive disease, though it may be at least partly due to protective genetic 

variants195.  

There was also a strong assignment of PSP-Cortical cases (PSP-F, PSP-SL and PSP-

CBS) to the Cortical subtype, which drove a lower average PSP rating scale and 

UPDRS score compared to the Subcortical subtype. As previously discussed, the 

Cortical subtype had early cortical atrophy predominantly affecting the insula, and 

frontal lobes alongside subcortical involvement, which is in keeping with cross-

sectional MRI studies of PSP-Cortical variants298,400,403,404. Although there are few 

longitudinal imaging studies of these variants due to their rarity, a recent retrospective 

cohort of PSP-SL demonstrated that the majority of these cases developed symptoms 

typical of PSP-RS as their disease progressed404. My data supports this finding given 

the end stage atrophy pattern of the Cortical SuStaIn subtype is very similar to the 

Subcortical atrophy pattern. Further work is required to better understand what is 

driving the difference between the Subcortical and Cortical subtype atrophy patterns, 

especially early in the disease trajectory. The early cortical involvement in the Cortical 

subtype may, at least in part, be due to higher astroglial or oligodendroglial pathology 

relative to neuronal tau pathology early in the disease course51, though this is an area 

of ongoing research. 

4.4.1 Limitations 

This study has a number of limitations which highlight opportunities for future work.  

Although I built, to the best of my knowledge, the largest international cohort to date 

of PSP cases with baseline and follow-up imaging, the sample size for vPSP cases was 

still small (52 PSP-Cortical and 17 PSP-Subcortical variants). Whilst the SuStaIn 

algorithm uses a cross-validation framework, ideally one should have a separate 

training and test set to validate results. Given the low numbers for the vPSP syndromes 



169 

specifically, I opted not to do this with this dataset so as not to further underpower to 

model to find patterns associated with these syndromes. Future work will be required 

to confirm the validity of the two-subtype model on external PSP datasets. We may 

find that there are further distinct subtypes as vPSP numbers increase, though for this 

dataset the two-subtype model was optimal. Related to this, I decided to group the 

PSP-Cortical (PSP-F, PSP-S/L and PSP-CBS) and PSP-Subcortical (PSP-P and PSP-

PGF) syndromes together in the post hoc analyses. This is an established approach in 

the PSP research setting107,195,198,298, though it will be interesting to look at finer 

grained SuStaIn subtype:clinical syndrome associations when I have larger sample 

sizes for the vPSP syndromes. 

I collected MRI scans from a range of international centres across a number of different 

scanners. It is well known that using data from different scanners can introduce bias 

into downstream analyses, through variations in imaging quality, signal homogeneity 

and image contrast98. In addition to stringent visual QC of raw images and post-

segmentation scans, I also regressed out both scanner manufacturer and field strength 

when generating adjusted regional volumes to try and account for this. In multi-centre 

clinical trials of a rare disease such as PSP, the use of multiple scanner types is the rule 

rather than the exception. I believe that this study’s inclusion of cases across multiple 

scanner types (albeit adjusted for in the analysis) supports stronger generalisability of 

the findings to the wider clinical setting. 

Another limitation was the use of the Lawton et al391 method to convert MoCA scores 

to MMSE. This method has only been validated in Parkinson’s disease, though has 

been used previously in a PSP study360. Given that the MMSE is likely to be less 

sensitive that the MoCA in PSP405, the cognitive impairment estimated in this study is 

likely to be on the conservative side. 

SuStaIn fits data based on the assumption that there are a distinct set of trajectories, 

though it is possible that there is a spectrum of disease progression patterns within the 

data290. In this situation the identified SuStaIn subtype trajectory could have been 

created by appending unrelated disease trajectories into one subtype291. When 

assessing the two-subtype model I checked the average subtype probability by stage 

by subtype (Figure 4.5B), based on the hypothesis that if a separate sequence is 

appended to another, I would expect the average probability assignment to drop below 

50% at some point in the sequence. This was not the case in our model supporting that 
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these are indeed two distinct trajectories. In addition, I found that the majority of 

individuals remained in the same subtype and progressed to later stages in that subtype 

which supports the model validity. The high association between PSP-Subcortical 

syndromes and the Subcortical subtype at baseline could also be due to this caveat i.e. 

they do not necessarily progress through the stages of the subtype to cortical 

involvement. However, when assessing stage at follow-up, one of the PSP-SC cases 

progressed from a baseline stage where there is only subcortical involvement (< stage 

13) to a follow-up stage where the cortex started to be involved (> stage 13). Two other 

cases already had cortical involvement at baseline, progressing to more extensive 

cortical involvement at follow-up (Table 4.7). Taken together these findings give 

confidence that in my model appending of different disease trajectories into one is 

unlikely to be the case.  

Another consideration is that SuStaIn has no explicit timescale and is only able to 

extract information on the relative position the individual is in the sequence within a 

given subtype.  A recently developed generative model called the temporal event-

based model (TEBM), addresses this issue, by using longitudinal information to 

extract transition times between events384. Work to integrate this framework into the 

SuStaIn algorithm is ongoing. It will be interesting in future work to see whether a 

temporal SuStaIn model identifies a third subtype, given the finding in this study that 

the majority of PSP-SC cases follow the same trajectory as PSP-RS cases though with 

a slower stage progression rate.  
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4.5   Conclusion and future work 

The SuStaIn model provides data-driven evidence for the existence of two 

spatiotemporal subtypes of atrophy in clinically diagnosed PSP, giving insights into 

the relationship between PSP pathology and clinical syndrome. These image-based 

subtypes are differentially enriched for PSP clinical syndromes and show different 

clinical characteristics. The results suggest that the PSP-RS and PSP-Subcortical 

syndromes share a similar trajectory of atrophy, though the latter tend to be at an early 

stage at diagnosis and progress at a slower rate. Being able to accurately subtype and 

stage PSP patients at baseline has important implications for screening patients on 

entry into clinical trials, as well as for tracking disease progression. Future work should 

focus on validating these results in larger datasets with a higher number of vPSP 

syndromes that ideally have autopsy-confirmed PSP pathology, extracting information 

on time to transition between subtype stages and assessing the clinical relevance of 

these imaging subtypes in real-world setting
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Chapter 5:  Distinct spatiotemporal atrophy 

patterns in corticobasal syndrome are 

associated with different underlying pathologies 

The contents of this chapter form part of a manuscript which is currently in preparation 

for submission. 

5.1    Introduction 

Corticobasal syndrome (CBS) is characterised by a progressive levodopa resistant 

asymmetric akinetic-rigid syndrome, and cortical features including apraxia, cortical 

sensory loss, cognitive dysfunction, and alien-limb phenomenon406. Oculomotor 

dysfunction and postural instability often co-exist in individuals with CBS140. 

Dysphagia, dysarthria and aphasia are also common407. Mean survival is 5-8 years387 

and there are currently no disease modifying treatments. 

Although CBS was first described in individuals with corticobasal degeneration 

(CBD) pathology at post-mortem124, the Armstrong diagnostic criteria140 have limited 

predictive value for identifying CBD pathology143 in life. Autopsy studies demonstrate 

considerable underlying pathological heterogeneity in those who present clinically 

with CBS408. CBD pathology only accounts for 50% of all clinically diagnosed CBS 

patients409, with the others having Alzheimer’s disease (AD), progressive supranuclear 

palsy (PSP), Pick’s disease (PiD), globular glial tauopathy (GGT), transactive 

response DNA binding protein 43 (TDP-43) proteinopathy, dementia with Lewy 

bodies (DLB) and Creutzfeldt-Jakob disease at post-mortem123,137,138,408,410,411.  

The emergence of amyloid and tau PET tracers, alongside CSF and now plasma 

biomarkers for AD412,413 enables identification of CBS secondary to underlying AD 

pathology. Biomarkers for 4R tau (CBD, PSP, GGT), 3R tau (PiD), 𝛼-synuclein 

(DLB), and TDP-43 are less well developed in comparison. Structural MRI studies of 

CBS cases with post-mortem pathology show that at the group level there are 

differences in the cross-sectional pattern of atrophy between some pathologies (CBD, 

AD, PSP and TDP-43). It is unclear, however, to what extent these differences are 

driven by differences in disease stage at time of MRI versus pathology specific 
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differences, given that the studies either do not correct for underlying disease 

stage137,233, or use MMSE as a proxy for stage235. Grouping individuals based on a 

similar atrophy pattern from cross-sectional MRI without fully accounting for disease 

stage is sub-optimal, as those belonging to the same subgroup are likely to have 

different spatial patterns of atrophy as the disease progresses and so would appear 

different (and vice-versa)294. Predicting the pathology underlying CBS is therefore 

difficult due to the lack of both clinico-pathological correlation, and specific 

biomarkers. Developing individualised disease progression models of pathological 

brain changes in CBS that predict this underlying heterogeneity will be critical to the 

success of clinical trials for emerging disease modifying therapies100,387,414,415. 

In recent years, advances in machine-learning have provided tools to disentangle this 

phenotypic (clinical subtype) and temporal (pathological stage) heterogeneity. One 

such algorithm, Subtype and Stage Inference (SuStaIn)290, combines disease 

progression modelling with hierarchical clustering to identify probabilistic data-driven 

disease subtypes with distinct temporal progression patterns, using only cross-

sectional data. The fitted disease model can be applied to unseen patient data, to infer 

what subtype and stage that individual belongs to. SuStaIn was originally applied to 

structural MRIs in Alzheimer’s disease (AD) uncovering unique patterns of atrophy 

that showed an improved prediction of dementia conversion compared to stage or 

subtype only models. More recent work includes identifying four distinct patterns of 

tau accumulation in AD291, three subtypes of amyloid accumulation292, and redefining 

multiple sclerosis based on MRI-subtypes that predict disability progression and 

response to treatment294. The clinical and pathological heterogeneity of CBS makes it 

ideally suited to modelling using SuStaIn. 

The aim of this study was to uncover imaging subtypes of CBS based solely on a data-

driven assessment of atrophy patterns, to test the hypothesis that modelling disease 

subtype and stage jointly would provide information on the underlying pathology. To 

this end I used the SuStaIn algorithm with cross-sectional structural MRI data from a 

large international cohort of clinically diagnosed CBS patients. I further compared the 

clinical phenotypes and associated pathology in each SuStaIn subtype to gain insight 

into the relationship between atrophy, underlying pathology and clinical features. 
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5.2   Methods 

5.2.1 Study cohorts and clinical data 

MRI and clinical data from individuals with a clinical diagnosis of “possible” or 

“probable” CBS as per the Armstrong 2013 criteria140 were collected from seven main 

cohorts; the 4R Tauopathy Imaging Initiative Cycle 1 (4RTNI 1; ClinicalTrials.gov: 

NCT01804452),259,263 the 4R Tauopathy Imaging Initiative Cycle 2 (4RTNI 2; 

ClinicalTrials.gov: NCT02966145), the davunetide randomized control trial (DAV; 

ClinicalTrials.gov: NCT01056965),220 the salsalate clinical trial (SAL; 

ClinicalTrials.gov: NCT02422485),297 the young plasma clinical trial (YP; 

ClinicalTrials.gov: NCT02460731),297 the PROgressive Supranuclear Palsy CorTico-

Basal Syndrome Multiple System Atrophy Longitudinal Study (PROSPECT; 

ClinicalTrials.gov: NCT02778607),298 and the University College London Dementia 

Research Centre (UCL DRC) FTD cohort. Controls were collected from three cohorts 

with equivalent available data; PROSPECT, the UCL DRC FTD cohort and the 

Frontotemporal Lobar Degeneration Neuroimaging Initiative dataset (FTLDNI; 

http://4rtni-ftldni.ini.usc.edu/). For further information regarding to the recruitment, 

diagnostic criteria and MRI scanner acquisition protocols please see Chapter 2 

(Participants, inclusion criteria, clinical and MRI data). Appropriate ethical 

approval was acquired through application to each of the individual trial and research 

ethics committees.  

For study inclusion all participants needed to have, as a minimum, a clinical diagnosis 

of “possible” or “probable” CBS according to the 2013 Armstrong criteria, a baseline 

T1 volumetric MRI on a 1.5 or 3 Tesla scanner, and basic demographic data (gender 

and age at time of scan). Clinical rating scale scores (PSP rating scale, Unified 

Parkinson Disease Rating Scale [UPDRS], Schwab and England Activities of Daily 

Living scale [SEADL], and Montreal Cognitive Assessment [MoCA] or Mini-mental 

State Examination [MMSE] at baseline and follow-up), pathology at autopsy, CSF AD 

biomarker positivity [Aβ1–42, tau, and ptau], amyloid PET positivity (with 

florbetaben, florbetapir, or Pittsburgh Compound-B), and follow-up scans were also 

included if available. Amyloid PET scans were collected at participating 4RTNI 

centers with demonstrated experience in FDA-approved amyloid imaging agents, and 

positivity was defined by expert visual read by certified staff. 

http://4rtni-ftldni.ini.usc.edu/
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As detailed in previous work358, original trial analyses failed to show any treatment 

effect (including no change in volumetric MRI measurements) in the SAL, YP and 

DAV trials, so data were combined from each study’s treatment and placebo 

arms. Longitudinal data were used to validate the consistency of SuStaIn’s subtype 

and stage assignments at follow-up. 

For missing clinical scale data, an adjusted mean score was used if at least 80% of the 

assessment was complete298. Given the PROSPECT and 4RTNI2 trials only assessed 

cognitive function using the MOCA (as opposed to the MMSE for the other trials), 

raw MOCA scores were converted to MMSE scores using the validated method used 

by Lawton et al391. 

5.2.2 MRI acquisition and image processing 

The MRI acquisition protocols, and image processing pipeline have been described in 

detail previously in Chapter 2 (Image processing pipeline). To summarise, cortical 

and subcortical structures were automatically parcellated using geodesic information 

flows algorithm (GIF)304, a multi-atlas segmentation propagation approach based on 

the on the Neuromorphometrics atlas (Neuromorphometrics, Inc.)  Subregions of the 

cerebellum were parcellated using GIF based on the Diedrichsen atlas305, and the 

brainstem structures were subsequently segmented using a version of the brainstem 

module available in FreeSurfer, customised to accept the GIF parcellation of the whole 

brainstem as input306. Volumes for 24 grey-matter regions were calculated; four 

brainstem (medulla, pons, superior cerebellar peduncle [SCP] and midbrain), three 

cerebellar (cerebellar cortex, dentate nucleus and vermis), nine subcortical (thalamus, 

globus pallidus (GP), caudate, putamen, ventral diencephalon (DC), thalamus, 

hippocampus, amygdala and nucleus accumbens [NA]) and eight cortical (basal 

forebrain, cingulate, frontal anterior, frontal posterior, insula, temporal, parietal and 

occipital) regions. A list of GIF subregions included in each cortical region is 

detailed in Table 5.1. I calculated total intracranial volume (TIV) using 

SPM12 v6225 (Statistical Parametric Mapping, Wellcome Trust Centre for 

Neuroimaging, London, UK) running in MATLAB R2012b (Math Works, 

Natick, MA, USA)365. I then visually inspected all segmentations were to ensure 

accurate segmentation. Regional volumes were corrected for scanner field strength 

(1.5T or 3T), scanner manufacturer, sex, age at baseline scan and TIV, by 

performing a linear regression on the control 
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population and then propagating this model to the CBS population, to generate 

covariate-adjusted regional volumes. 
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Table 5.1 - GIF subregions included in each cortical and cerebellar region used as SuStaIn input. 

Regions included in SuStaIn GIF Subregions 

Frontal Anterior 

Frontal operculum, central operculum, frontal 

pole, gyrus rectus, middle frontal cortex, 

subcallosal area, superior frontal gyrus medial 

segment, superior frontal gyrus, middle frontal 

gyrus, opercular part of the inferior frontal gyrus, 

orbital part of the inferior frontal gyrus, 

triangular part of the inferior frontal gyrus, 

anterior orbital gyrus, medial orbital gyrus, 

lateral orbital gyrus, posterior orbital gyrus 

Frontal Posterior 
Precentral gyrus, precentral gyrus medial 

segment, supplementary motor cortex 

Temporal 

Entorhinal area, fusiform gyrus, 

parahippocampal gyrus, inferior temporal gyrus, 

middle temporal gyrus, superior temporal gyrus,  

temporal pole, planum polare, planum temporale, 

transverse temporal gyrus 

Parietal 

Precuenus, parietal operculum, supramarginal 

gyrus, superior parietal lobule, angular gyrus, 

postcentral gyrus, postcentral gyrus medial 

segment 

Occipital 

Cuneus, calcarine cortex, lingual gyrus, occipital 

fusiform gyrus, superior occipital gyrus, inferior 

occipital gyrus, middle occipital gyrus, occipital 

pole 

Insula Anterior insula, posterior insula 

Amygdala Amygdala 

Corpus Callosum Corpus Callosum 

Medulla Medulla 

Pons Pons 

Superior Cerebellar Peduncles Superior cerebellar peduncles 

Midbrain Midbrain 

Ventral Diencephalon 

Ventral Diencephalon (GIF segmentation 

includes subthalamic nucleus, substantia nigra 

and hypothalamus) 

Thalamus Thalamus 

Caudate Caudate 

Globus Pallidus Globus Pallidus 

Putamen Putamen 

Cerebellar Cortex 
Lobules I/IV, V, VI, VIIA-Crus I, VIIA-Crus II, 

VIIB, VIIIA, VIIB, IX, X 

Dentate Dentate nucleus 
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5.2.3 Biomarker selection and Z-scoring of data 

I defined a biomarker in this study as an image-based regional volume (24 regions as 

described in previous section). I carried out pairwise comparisons between healthy 

controls and cases at baseline visit, and selected covariate adjusted regional volumes 

where the difference between the two groups was associated with a moderate to large 

effect size (Cohen’s 𝑑 effect size of 0.6 for standardized mean differences between the 

cases and controls). This resulted in the selection of 19 regions of interest (ROI) that 

I then included in downstream analysis (Table 5.2); four brainstem (medulla, pons, 

SCP and midbrain), two cerebellar (cerebellar cortex and dentate nucleus), seven 

subcortical (thalamus, globus pallidus (GP), caudate, putamen, ventral diencephalon 

(DC), thalamus, and amygdala) and six cortical (frontal anterior, frontal posterior, 

insula, temporal, parietal and occipital) regions. Regions that had a right and left label 

were combined. I converted covariate adjusted regional volumes for these 19 ROIs 

into 𝑧 scores relative to the control group by subtracting the mean of the control group 

from each patient’s ROI volume and dividing by the standard deviation of the control 

group. Given regional brain volumes decrease with disease progression, the 𝑧 scores 

become negative as the disease progresses; I therefore multiplied the 𝑧 scores by -1, to 

give positive 𝑧 scores that increase with disease progression. I used this 𝑧 scored data 

as input to SuStaIn. 

5.2.4 Subtype and Stage Inference 

SuStaIn is a probabilistic machine learning algorithm that simultaneously clusters 

individuals into groups (subtypes) and infers a trajectory of change associated with 

each group; that trajectory defines the disease stage (degree of disease progression 

within a subtype) of each individual within the corresponding group290. It only requires 

cross-sectional data as input, though is able to exploit longitudinal data for training if 

available. More details on this algorithm are provided in Chapter 2 (Subtype and 

Stage Inference (SuStaIn)). In summary, each subtypes’ progression pattern is 

described using a piecewise linear 𝑧 score model, expressing a trajectory with a series 

of stages, that each correspond to a single biomarker (regional brain volume in this 

case) reaching a new 𝑧 score. The number of SuStaIn stages is determined by the 

number of biomarkers (the product of the number of ROIs and number of 𝑧 score 

thresholds per ROI) provided as input. SuStaIn optimises both the subtype 
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membership and the ordering in which different biomarkers reach different z-scores in 

each subtype (for example one, two or three standard deviations away from the control 

mean for that ROI) using a data likelihood function. 

I fitted the SuStaIn model on the baseline imaging data for CBS cases; model 

uncertainty was estimated using 100,000 Markov Chain Monte Carlo (MCMC) 

iterations and in the single-cluster expectation maximisation procedure (Figure 2.4) 

the single-cluster sequence was optimised from 24 different random starting sequences 

to find the maximum likelihood solution. Table 5.3 provides a summary of the Z-

score settings, MCMC iterations and number of random starting sequences used 

for the SuStaIn algorithm The optimal number of subtypes was determined using 

information criteria calculated through ten-fold cross-validation (cross-validation 

information criteria; CVIC), to balance internal model accuracy with model 

complexity. In cases where the evidence for a more complex model (more subtypes) 

was not strong (defined as per Young et al.290 as a difference of less than 6 between 

CVIC and the minimum CVIC across models, or equivalently a difference of less 

than 3 between the out-of-sample log-likelihood and the minimum out-of-sample 

log-likelihood across models), I selected the less complex model (fewer subtypes) to 

avoid overfitting416. 

I then used the fitted model to calculate the probability that each individual falls at 

each stage of each subtype, and individuals were assigned to their maximum 

likelihood subtype and stage (as per Young et al.290). Subtype progression patterns 

identified by SuStaIn were visualized using BrainPainter392, that I modified to 

include brainstem segmentations. 
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Table 5.2 - Effect size (Cohen's 𝒅) by region of interest. 

Region of Interest Cohen’s 𝒅 

Putamen 1.62 

Frontal Posterior 1.49 

Midbrain 1.44 

Thalamus 1.43 

Parietal 1.37 

Insula 1.36 

Globus pallidus 1.22 

Pons 1.13 

Amygdala 1.07 

Ventral DC 1.06 

SCP 1.05 

Temporal 0.90 

Occipital 0.89 

Frontal Anterior 0.88 

Caudate 0.85 

Dentate 0.78 

Corpus callosum 0.73 

Medulla 0.72 

Cerebellar cortex 0.66 

NA 0.59a

Basal forebrain 0.59a 

Cingulate 0.50a 

Vermis 0.49a 

Hippocampus 0.45a 

Cohen’s 𝑑 calculated as the standardised mean difference between adjusted the regional volume of that that region 

of interest (ROI) in cases vs controls. a a threshold of greater than or equal to 0.6 was used to select ROI as input 

for SuStaIn algorithm resulting in 19 biomarkers being included in model. Abbreviations: DC = diencephalon, SCP 

= superior cerebellar peduncles, NA = nucleus accumbens 

5.2.5 Statistical analysis 

Individuals assigned to either SuStaIn stage 0 (i.e. no atrophy on imaging compared to 

controls) or Stage 40 (end stage i.e. all ROI maximum atrophy) were labelled “no 

subtype”. All other individuals were labelled as “subtypable” and I assigned these to 

their most probable subtype and stage. In addition, I stratified all CBS cases by 

underlying pathology (or absence of); CBS-PSP, CBS-CBD, CBS-AD or CBS-

Indeterminate (CBS-IDT). While CBS-PSP and CBS-PSP could only be diagnosed by 

post-mortem pathology, cases were assigned to CBS-AD category either by post-

mortem pathology, or if they had a positive AD biomarker in life (CSF Tau/A-Beta 1-
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42 or Amyloid PET). All other cases without a post-mortem diagnosis or a positive 

AD biomarker were assigned CBS-IDT. 

Table 5.3 - SuStaIn algorithm settings for each biomarker 

Biomarker R 𝒁𝒎𝒂𝒙

Frontal Anterior 2 5 

Frontal Posterior 3 5 

Temporal 2 5 

Parietal 3 6 

Occipital 2 5 

Insula 2 5 

Amygdala 2 4 

Corpus Callosum 1 3 

Medulla 2 4 

Pons 2 4 

SCP 2 4 

Midbrain 3 6 

Ventral DC 3 5 

Thalamus 2 5 

Caudate 1 4 

GP 2 4 

Putamen 3 5 

Cerebellar cortex 1 3 

Dentate 2 4 

R is the number of z-scores included for biomarker 𝑖, and 𝑍𝑚𝑎𝑥 is maximum z-score modelled for biomarker 𝑖. 
Total number of biomarkers (𝑖) for model = 40. Cmax (the maximum number of subtypes fitted) = 3. Model 

uncertainty was estimated using 100,000 Markov Chain Monte Carlo (MCMC) iterations. In the single-cluster 

expectation maximisation procedure the single-cluster sequence was optimised from 24 different random starting 

sequences to find the maximum likelihood solution. 
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5.2.5.1 Baseline characteristics 

I performed pairwise comparisons of baseline characteristics between all CBS cases 

and controls, CBS pathological diagnosis (CBS-CBD, CBS-PSP, CBS-AD and CBS-

IDT) vs all CBS cases, and each CBS pathology grouping against each other, using 

two-tailed unpaired 𝑡-tests for continuous variables and 𝜒2 tests for categorical 

variables. Statistical significance was reported at a level of 𝑝 < 0.05, both uncorrected 

for and corrected for multiple comparisons (Bonferroni correction).  

5.2.5.2 Association between Subtype assignment and covariates 

I tested for any residual association between covariates (scanner field strength, scanner 

manufacturer, sex, age at baseline scan and TIV) and SuStaIn subtype, by fitting a 

logistic regression model to the data using the lm() function from the R stats package 

(version 3.6.2). 

5.2.5.3 Subtype characterisation 

First, I assessed the overall differences between subtypes independently of stage, 

excluding individuals classified as “no subtype” (Stage 0 or Stage 40). Two-tailed 

unpaired 𝑡-tests were performed for continuous variables and 𝜒2 tests for categorical 

variables followed by post-hoc pairwise comparisons for CBS pathology vs SuStaIn 

subtype using the chisq.multicomp() function from the RVAideMemoire R package 

version 0.9-81-2). 

To test for associations between clinical scores (PSP rating scale, UPDRS, SEADL 

and MMSE) and SuStaIn predicted subtype, a linear mixed effects model was fit to 

the data using the lme4 package367 in R Studio (version 1.4.1106). Subject Id was 

modelled as a random effect (random intercept) due to some subjects having two MRI 

scans at different time points. I accounted for SuStaIn subtype and stage, age, and sex 

by fitting a linear mixed effects model (Clinical score ~ subtype + stage + (1 | ID) + 

AAS + gender) for each clinical test score. Significance was calculated using the 

lmerTest package368 which applies Satterthwaite’s method to estimate degrees of 

freedom and generate p-values for mixed models. Statistical significance was reported 

at a level of p < 0.05, and at the Bonferroni corrected level of p < 0.005 for 

demographic variables (11 items), and p < 0.0125 for clinical scores (10 variables), to 

account for multiple comparisons. 
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To assess average stage by clinical syndrome by SuStaIn subtype, I performed a one-

way ANOVA (Mean stage ~ CBS pathology + Sustain baseline subtype) with the aov() 

function the stats package (version 3.6.2). Tukey post-hoc significant differences were 

than calculated to identify the level of significance.  

Finally, I tested for differences in all baseline regional volumes of interest between the 

different SuStaIn subtypes using two-tailed unpaired 𝑡 tests, with statistical 

significance reported at a level of p < 0.05, both uncorrected for and corrected for 

multiple comparisons (Bonferroni correction).  

All statistical analyses were performed either in R (version 4.0.5) or Python (version 

3.7.6).  

5.2.6 Longitudinal validation 

I used the longitudinal imaging data to validate the stability of subtypes, and to assess 

stage progression, based on the hypothesis that individuals should remain assigned to 

the same subtype but advance to higher stages over time (or at least remain at the same 

stage). Subtype stability was defined as the proportion of individuals that were 

assigned to the same subtype at follow-up(s) or progressed from Stage 0 (not 

subtypable) to a higher stage and subtype (i.e. became subtypable). To assess stage 

progression, I compared SuStaIn stage at baseline and follow-up(s) for all individuals 

and calculated the proportion of individuals that either advanced to a higher stage or 

stayed at the same stage at follow-up. 

5.3   Results 

5.3.1 Minimal difference in demographic and clinical 

characteristics between CBS pathologies at baseline 

Table 5.4 summarises the key baseline demographic and clinical features for 

CBS cases and controls included in this study. In total this study included 504 MRI 

images from a total of 387 individuals; 135 had a clinical diagnosis of CBS (with 113 

follow-up scans) and 252 controls. Of those diagnosed with CBS, 52 (39%) 

received a pathological diagnosis; 12 were CBS-CBD, 6 were CBS-PSP, 34 were 

CBS-AD and 
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83 were CBS-IDT. There were no data available on co-pathologies in those that 

received a pathological diagnosis.  

Overall, the CBS cases had an older average age at time of first scan compared to 

controls (66.4 years, SD ± 7.7 vs 62.3 years, SD ± 9.2, 𝑝 < 0.05, corrected for multiple 

comparisons), though were matched for gender. Disease duration at time of first scan 

was lower in the CBS-CBD group compared to CBS-AD and CBS-IDT (3.4 years, SD 

± 1.6 vs 4.9 years, SD ± 3.2 vs 5.2 years, SD ± 2.9, 𝑝 < 0.05 for all uncorrected for 

multiple comparisons) though this did not survive Bonferroni correction. 

Regarding clinical scores, the only statistically significant difference between 

pathology groups was in the Bulbar sub-score of the PSP rating scale which was lower 

in the CBS-CBD group compared to CBS-IDT (3.4 years, SD ± 1.6 vs 5.2 years, SD 

± 2.9, 𝑝 < 0.05 uncorrected for multiple comparisons). There was a trend towards 

increased motor predominant disease burden (PSP rating scale score and UPDRS) in 

the CBS-PSP group compared to the other groups but this did not reach statistical 

significance. There was also no difference between the SEADL and MMSE scores 

between pathological groups. 
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Table 5.4 – Baseline clinical and demographic data (by pathology) 

 Controls All CBS CBS-CBD CBS-PSP CBS-AD CBS-IDT 

Baseline, n (fu visits) 252 135 (113) 12 (13) 6 (5) 34 (26) 83 (69) 

Sex, % female 57% 51% 50% 83% 38% 54% 

Age first scan, y 62.3 (9.2)c 66.4 (7.7)c 64.8 (6.2) 70.4 (5.7) 66.5 (7.7) 66.3 (8.0) 

Age at first symptom, ya - 61.5 (8.7) 65.2 (7.0) 60 (2.83) 61.5 (8.0) 61.2 (9.4) 

Disease duration, ya, b - 4.9 (2.9) 3.4 (1.6)d,e,f 4.3 (1.6) 4.9 (3.2)e 5.2 (2.9)f 

PSP rating scale score - 26.3 (13.9) 26.7 (15.0) 33.8 (8.7) 24.9 (12.8) 26.5 (14.6) 

History - 5.6 (3.2) 6.7 (3.9) 6.8 (4.5) 5.0 (2.6) 5.7 (3.3) 

Mentation - 3.1 (2.8) 2 (1.5) 3.8 (1.3) 3.7 (3.4) 3.0 (2.4) 

Bulbar - 1.7 (2.1) 0.9 (1.2)f 1.0 (0.8) 1.4 (2.3) 2.0 (2.1) f 

Ocular motor - 2.3 (3.5) 2.9 (3.8) 3.8 (2.2) 1.7 (2.2) 2.4 (4.0) 

Limb motor - 7.7 (3.7) 7.7 (3.7) 9.2 (2.1) 7.3 (3.7) 7.7 (3.9) 

Gait and midline - 5.9 (5.0) 6.6 (5.1) 9.3 (7.2) 5.7 (5.2) 5.7 (4.9) 

SEADL - 57.8 (25.5) 55.7 (20.7) 42.5 (54.4) 53.2 (27.6) 61.0 (24.7) 

UPDRS - 32.0 (17.2) 34.3 (13.0) 47.2 (26.4) 31.2 (20.2) 31.0 (15.7) 

MMSE - 23.8 (5.9) 23.3 (7.5) 19.2 (8.6) 22.0 (7.4) 25.0 (4.3) 

Values are mean (SD), apart from Gender % female, Baseline n (n follow-up visits), Pathology n (% PSP). Pairwise comparisons between groups were performed using t tests for continuous 

variables and χ2 tests for categorical variables. a note incomplete data for disease duration / age at first symptom. b time from first symptom to first scan. c CBS all vs Controls. Statistically significant 

at p < 0.05, corrected for multiple comparisons. d CBS [pathology group] vs All CBS. Statistically significant at p < 0.05, corrected for multiple comparisons. e CBS-CBD vs CBS-AD. Statistically 

significant at p < 0.05, uncorrected for multiple comparisons. f CBS-CBD vs CBS-IDT. Statistically significant at p < 0.05, uncorrected for multiple comparisons. Abbreviations: PSP = progressive 

supranuclear palsy, CBD = corticobasal degeneration, AD = Alzheimer’s disease, IDT – indeterminate pathology, SEADL = Schwab and England Activities of Daily Living, UPDRS = Unified 

Parkinson’s Disease Rating Scale, MMSE = Mini–Mental State Examination 
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5.3.2 Spatiotemporal subtypes of CBS 

Given CBS is such a rare disease (3 / 100,000 estimated prevalence417) I fitted SuStaIn using 

CBS cases only, based on the rationale that it is very unlikely any of our controls had 

asymptomatic CBS. Indeed, it is more likely that the controls would have a more common 

neurodegenerative disorder such as AD, which may confound subtype and stage inference, 

further supporting the exclusion. 

5.3.2.1 Selection of optimum number of subtypes 

I started with the hypothesis that there would be three distinct subtypes of atrophy in the CBS 

cohort. Comparing the out-of-sample log likelihoods and CVIC for the three-subtype model 

and the two-subtype model demonstrated that the two-subtype model (Figure 5.1A) best fitted 

the data, as the CVIC difference for the three-subtype versus the two-subtype model 

(Figure 5.2B) was greater than six (and the difference in log-likelihoods was greater than 

three). Given that the study was likely to be underpowered with only 135 cases, I decided to 

investigate both models to compare the disease progression patterns and clinical phenotypes.  

5.3.2.2 Two-subtype model 

The two-subtype model was the most parsimonious, with the lowest CVIC after 10-fold cross 

validation (Figure 5.1). Based on the earliest MRI abnormalities seen in the SuStaIn defined 

trajectories, I named the first the Subcortical subtype and the second the Fronto-parieto-

occipital subtype (Figure 5.2A. and Figure 5.2B for positional variance diagrams [PVD]). 

The Subcortical subtype (46% of cases) starts with atrophy in the SCP of the cerebellum 

and the midbrain, followed by the pons, medulla, ventral diencephalon, dentate nucleus and 

thalamus. The atrophy then progresses to the posterior frontal lobe and the insula, 

posteriorly to the parietal and occipital lobes and anteriorly to the anterior frontal lobes, 

before finally affecting the temporal lobes. In contrast, in the Fronto-parieto-occipital 

subtype (54% of cases) the earliest atrophy starts in the parietal lobe and posterior frontal 

lobe, followed by the insula, occipital and then temporal lobe.  Atrophy in the basal ganglia 

(putamen and GP) also occurs earlier on in this subtype than the Subcortical subtype, 

while the brainstem, thalamus and ventral diencephalon become atrophic later in sequence.  
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Figure 5.1 - Selecting optimal SuStaIn subtype model given data. The plots on the left of the figure show the 

test set log-likelihood across ten cross validation folds for (A) the two-subtype model and (B) the three-subtype 

model. The plots on the right show the cross-validation information criterion (CVIC) for each of the models as 

detailed above. The fact that the test set log-likelihoods drop and the CVIC increased with the addition of a third 

subtype (B) suggests that the two-subtype model is the most parsimonious and best for the data.
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Figure 5.2 - Two-subtype model of atrophy progression in CBS identified by Subtype and Stage Inference 

(SuStaIn). (A) Spatial distribution and severity of atrophy at each SuStaIn stage by Subtype. Each row 

(Subcortical top, Fronto-parieto-occipital bottom) represents a subtype progression pattern identified by SuStain 

consisting of a set of stages at which brain volumes in CBS cases reach different z-scores relative to controls. (B) 

Positional variance diagrams for each SuStaIn subtype. These represent the uncertainty in the subtype progression 

patterns for each region. Each region (y-axis) is shaded based on the probability a particular z score is reached at 

a particular SuStaIn stage (x-axis). Z scores range from zero (white), one (red), two (pink) to three (blue). (C) 

Assignment of CBS pathology to each SuStaIn subtype. Size of bar (x-axis) represents percentage of cases labelled 

with that PSP syndrome assigned to that SuStaIn subtype (y-axis). PSP = PSP pathology at post-mortem, CBD = 

at post-mortem, AD = AD pathology at post-mortem or a positive AD biomarker (CSF or Amyloid PET) during 

life. (D) SuStaIn stage distribution by Subtype at baseline scan.  
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Overall, 12 of the 135 individuals (9%) were not subtypable by the two-subtype model, and so 

were excluded from subtype post-hoc analysis. Three of these individuals had a pathological 

diagnosis of AD (CBS-AD) and nine were CBS-IDT. Interestingly of the nine CBS-IDT, six 

had negative AD biomarkers and were therefore a pathology other than AD.  

I fitted a logistic regression model to assess for any residual association between SuStaIn 

subtype, SuStaIn stage, regressed covariates and cohort (SuStaIn subtype ~ SuStaIn stage + 

TIV + age at first scan + sex + scanner field strength + scanner manufacturer + cohort). Apart 

from age at first scan (younger in Fronto-parietal-occipital subtype [𝑧 = 2.2, 𝑝 = 0.03]) there 

was no dependency of subtype on any of the other covariates including SuStaIn stage which 

showed a similar distribution of stages across each subtype (Figure 5.2C). 

5.3.2.3 Three-subtype model 

In the three-subtype model (Figure 5.3A and Figure 5.3B for the PVDs) the Subcortical 

subtype (32% of cases) was also present with a very similar trajectory of atrophy to the 

Subcortical subtype in the two-subtype model. The second subtype I named the Fronto-parietal 

subtype (46% of cases) which had earliest atrophy in the posterior frontal and basal ganglia 

regions, followed closely by the insula and parietal regions. The midbrain and thalamus were 

affected next followed by the temporal and occipital lobes. The third, Parieto-occipital (19%) 

subtype, showed the most posterior atrophy with the parietal and occipital lobes affected first 

followed by the posterior frontal lobe and putamen, then the insula amygdala and temporal lobe. 

13 of the cases (9.6% of all cases) were not subtypable at baseline; three of these had a 

pathological diagnosis of CBS-AD, and the other ten were CBS-IDT. Six of the ten CBS-IDT 

cases were negative for AD biomarkers. There was similar distribution of stages across each 

subtype (Figure 5.3B). 
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Figure 5.3 - Three-subtype model of atrophy progression in CBS identified by Subtype and Stage Inference 

(SuStaIn). (A) Spatial distribution and severity of atrophy at each SuStaIn stage by Subtype. Each row 

(Subcortical top, Fronto-parietal middle and Parieto-occipital bottom) represents a subtype progression pattern 

identified by SuStaIn consisting of a set of stages at which brain volumes in CBS cases reach different z-scores 

relative to controls. (B) Positional variance diagrams for each SuStaIn subtype. These represent the uncertainty in 

the subtype progression patterns for each region. Each region (y-axis) is shaded based on the probability a 

particular z score is reached at a particular SuStaIn stage (x-axis). Z scores range from zero (white), one (red), two 

(pink) to three (blue). (C) Assignment of CBS pathology to each SuStaIn subtype. Size of bar (x-axis) represents 

percentage of cases labelled with that PSP syndrome assigned to that SuStaIn subtype (y-axis). PSP = PSP 

pathology at post-mortem, CBD = at post-mortem, AD = AD pathology at post-mortem or a positive AD biomarker 

(CSF or Amyloid PET) during life. (D) SuStaIn stage distribution by Subtype at baseline scan.
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5.3.3 Longitudinal consistency of models 

To validate the models’ inference of subtype longitudinal trajectories from the baseline 

MRI data, I used the fitted SuStaIn models to subtype and stage the follow-up MRI 

data. A total of 103 follow-up (103/113) scans were subtypable for both the two- and 

three-subtype models from a total of 63 CBS cases (47% of all CBS cases in cohort; 

23 cases had one follow-up scan, 37 had two follow-up scans and two had three follow-

up scans). The ten scans not subtypable at follow-up were also not subtypable at 

baseline scan. Mean follow-up time was 0.87 years with a SD of 0.45 years. I first 

assessed whether individual subtype assignments were stable at follow-up scan, and 

then tested whether individuals within their subtype progressed to later stages at 

follow-up. 

5.3.3.1 SuStaIn subtype assignments were stable at follow-up 

Overall, the two-subtype model showed the highest subtype assignment stability with 

98% of those with subtypable follow-up scans (101/103) remaining in the same 

subtype at follow-up or progressing to a subtype from being non-subtypable at 

baseline (one case) (Table 5.5). Two cases assigned to the Fronto-parieto-

occipital subtype switched to the Subcortical subtype at follow-up (both CBS-

AD). The average probability with which SuStaIn assigned individuals to the 

subtypes at baseline was high; 0.92 (SD ± 0.1) for the Subcortical subtype and 0.94 

(SD ± 0.1) for the Fronto-parieto-occipital subtype. 

For the three-subtype model, 93% (96/103) of cases showed subtype 

assignment stability (Table 5.6); five cases switched from the Subcortical subtype to 

the Fronto-parietal subtype (all CBS-IDT and negative for AD biomarkers) at 

follow-up, and two switched from the Fronto-parietal to the Parieto-occipital 

subtype (one was CBS-AD, and the other CBS-IDT). The average probability of 

subtype assignment at baseline was slightly lower than the two-subtype model; 

0.87 (SD ± 0.2) for the Subcortical subtype, 0.81 (SD ± 0.1) for the Fronto-parietal 

subtype and 0.79 (SD ± 0.2) for the Parieto-occipital subtype. 
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Table 5.5 - Longitudinal consistency of subtype assignments for two-subtype model. 

 Classification follow-up visit 

Classification previous visit Normal appearinga Subcortical subtype Fronto-parieto-occipital subtype 

Normal appearinga 10 (91%) 0 (0%) 1 (9%)b 

Subcortical subtype 0 (0%) 36 (100%)b 0 (0%) 

Fronto-parieto-occipital subtype 0 (0%) 2 (3%) 64 (97%)b 

a Normal appearing = not subtypable. Note that this only includes 11 individuals that were not subtypable at baseline and had a follow-up scan. An observation is longitudinally consistent (b) if 

individuals remain in the same group or progress from the normal-appearing group to a SuStaIn subtype at follow-up visit. Entries indicate the number of visits n, with the % of the total individuals 

in classification at previous visit in classification at follow-up in brackets. Longitudinally consistent observations highlighted in bold. 

 

 

Table 5.6 - Longitudinal consistency of subtype assignments for three subtype model 

 Classification follow-up visit 

Classification previous visit Normal appearinga Subcortical subtype Fronto-parietal subtype Parieto-occipital subtype 

Normal appearinga 10 (91%) 0 (0%) 0 (0%) 1 (9%)b 

Subcortical subtype 0 (0%) 21 (80%)b 5 (20%) 0 (0%) 

Fronto-parietal subtype 0 (0%) 0 (0%) 53 (96%)b 2 (4%) 

Parieto-occipital subtype 0 (0%) 0 (0%) 0 (0%) 21 (100%)b 

a Normal appearing = not subtypable. Note that this only includes 11 individuals that were not subtypable at baseline and had a follow-up scan. An observation is longitudinally consistent (b) if 

individuals remain in the same group or progress from the normal-appearing group toa SuStaIn subtype at follow-up. Entries indicate the number of visits n, with the % of the total individuals in 

classification at previous visit in classification at follow-up in brackets. Longitudinally consistent observations highlighted in bold. 
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5.3.3.2 Individuals consistently progressed to higher stages at 

follow-up 

In the two-subtype model a 100% of subtypable individuals either stayed at the same 

stage (15%, 15/103) or progressed to a higher stage (85%, 88/103) (Figure 5.4A). The 

Fronto-parieto-occipital subtype had a slightly higher percentage progressing to a 

higher stage at follow-up (88%, 59/67) compared to the Subcortical subtype (81%, 

29/36). 

In the three-subtype model 98% stayed at the same stage or progressed (11%, 11/103 

and 87%, 90/103 respectively) (Figure 5.4B). 2 individuals (2%) (both CBS-CBD, 

one assigned to the Fronto-parietal and one assigned to the Subcortical subtype) 

dropped one stage at follow-up.  

 

Figure 5.4 - Stage progression at follow-up visits by SuStaIn subtype. Scatter plots of each subtype 

for (A) the two-subtype model (B) the three-subtype model showing predicted stage at baseline (x-axis) 

versus predicted stage at follow-up scan (y-axis) for those subtypable CBS cases with a follow-up scan 

(n = 103). The area of the circle is weighted by the number of scans at each point, and the colour of the 

circle represents the time (years) between visits. 
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5.3.4 Subtypes were differentially enriched for underlying 

CBS pathologies though there was minimal difference in 

clinical characteristics between subtypes 

I then compared the subtype assignments for the different pathological groupings to 

assess whether SuStaIn imaging subtypes provided information on underlying 

pathology. The subtypes in both the two- and three- subtype models were differentially 

enriched for CBS pathology groupings.  

In the two-subtype model the Subcortical subtype appears to be associated with four-

repeat Tau (4RT) pathology and the Fronto-parieto-occipital subtype with 

AD pathology (Figure 5.2C). 83.4% of CBS-PSP cases (5/6) and 75% of the CBS-

CBD cases (9/12) were assigned to the Subcortical subtype, whereas 80.6% of 

CBS-AD cases (25/35) were assigned to the Fronto-parieto-occipital subtype (Table 

5.7). CBS cases with no information on underlying pathology (CBS-IDT) were 

relatively evenly split between the two subtypes (49% assigned to Subcortical vs. 

52% to Fronto-parieto-occipital subtype). There was little difference in baseline 

demographic and clinical scores between the two subtypes. When looking at 

regional unadjusted baseline volumes in the two-subtype model (Table 5.8) the 

Fronto-parieto-occipital subtype had significantly lower mean volumes in the 

temporal, parietal, occipital lobes compared to the Subcortical subtype. In 

contrast the Subcortical subtype had significantly lower volumes in the 

midbrain, pons, SCP, dentate and the ventral diencephalon. 

In the three-subtype model, the addition of a third subtype appears to start to separate 

CBS-CBD from CBS-PSP pathology with CBS-AD pathology predominantly 

assigned to the third subtype (Figure 5.3C). In those with CBS-CBD, 82% (10/12) 

were assigned to the Fronto-parietal subtype with the remainder assigned to the 

Subcortical subtype, whilst in CBS-PSP 83% are assigned to the Subcortical subtype 

and 17% to the Fronto-parietal subtype. Neither of the CBS-4RT pathologies (PSP 

and CBD) were assigned to the Parieto-occipital subtype. In contrast the majority of 

the CBS-AD cases were assigned to the Parieto-occipital subtype (68%, 21/31) with 

22% (7/31) assigned to the Fronto-parietal subtype and 10% (3/31) assigned to the 

Subcortical subtype (Table 5.9). Comparing regional unadjusted baseline volumes in 

the three-subtype model (Table 5.10) the Subcortical subtype has the lowest volumes 



 

195 

of the three subtypes in the midbrain, SCP, pons, dentate and the ventral diencephalon, 

whilst the Parieto-occipital subtype had the lowest volumes in the temporal, parietal, 

occipital lobes and the hippocampus. The Fronto-parietal subtype showed a similar 

pattern to the Subcortical subtype relative to the Parieto-occipital subtype (i.e. lower 

volumes in the midbrain, SCP, pons, dentate and ventral diencephalon / higher 

volumes in the temporal, parietal, occipital and hippocampal regions) though less 

severe. The Fronto-parietal subtype had the lowest volumes in the caudate, basal 

ganglia and putamen of the 3 subtypes though this did not reach statistical significance. 

Table 5.7 - Comparison of demographics, pathological diagnosis and clinical test scores between 

subtypes (two-subtype model). 

 Subcortical 
Fronto-parieto-

occipital  

P value 

All scans, n 62 (45.9) 73 (54.8) - 

Subtypable scans, n 56 (45.5) 67 (54.5) 0.77a 

Average subtype 

probabilityb 0.92 (0.1) 0.94 (0.1) 0.33 

Sex, % female 50% 55% 0.56 

Age first scan, y 68.3 (7.9) 65.4 (7.2) 0.03c 

Age at first symptom, yd 64.0 (9.3) 60.3 (7.7) 0.06 

Disease duration, yd, e 4.4 (2.7) 5.1 (2.8) 0.18 

CBS pathology, n   - 

- CBS-CBD 9 (75%) 3 (25%) - 

- CBS-PSP 5 (83%) 1 (17%) - 

- CBS-AD 6 (19%) 25 (81%) - 

- CBS-IDT 36 (49%) 38 (51%) <0.001f 

PSP rating scale 27.8 (13.6) 24.8 (14.6) 0.31 

SEADL 58.5 (22.7) 55.9 (28.5) 0.62 

UPDRS 33.2 (17.7) 31.1 (17.5) 0.55 

MMSE 23.8 (4.9) 23.5 (7.0) 0.82 

Values are mean (SD) or n (%), apart from Sex = % female. Pairwise comparisons between groups were performed 

using t tests for continuous variables and χ2 tests for categorical variables. a all scans vs. subtypable scans .b subtype 

probability = the probability of assignment for an individual case to given subtype. c statistically significant at p < 

0.05, uncorrected for multiple comparisons. d note incomplete data for disease duration / age at first symptom. e 

time from first symptom to first scan. f statistically significant at p < 0.05, corrected for multiple comparisons. 

Abbreviations: CBS = corticobasal syndrome, CBD = corticobasal degeneration, PSP = progressive supranuclear 

palsy, AD = Alzheimer’s disease, IDT = pathology indeterminate, SEADL = Schwab and England Activities of 

Daily Living, UPDRS = Unified Parkinson’s Disease Rating Scale, MMSE = Mini-Mental State Examination 
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Table 5.8 - Regional brain volumes by subtype in the two-subtype model 

Region Subcortical Fronto-parieto-occipital 𝒑 value 

Frontal Anterior 128935 (13578) 126452 (16259) 0.36 

Frontal Posterior 34150 (4371) 32601 (4930) 0.07 

Temporal 117607 (10436) 109989 (13026) 4.6 x 10-4a 

Parietal 85183 (9049) 76286 (10901) 2.5 x 10-6a 

Occipital 68530 (7469) 63927 (8536) 0.02 

Cingulate 26734 (2915) 26268 (3409) 0.41 

Insula 9525 (1255) 9193 (1316) 0.16 

Amygdala 3301 (339) 3114 (372) 4.3 x 10-3a 

Corpus callosum 18084 (2796) 17992 (2673) 0.85 

Medulla 4597 (646) 4809 (590) 0.06 

Pons 12703 (1634) 13984 (1600) 2.7 x 10-5a 

SCP 196 (45) 230 (47) 5.4 x 10-5a 

Midbrain 5172 (759) 5778 (703) 1.3 x 10-5a 

Ventral DC 7837 (857) 8438 (973) 3.9 x 10-4a 

Thalamus 9727 (1002) 10110 (926) 0.03 

Caudate 6248 (821) 6177 (901) 0.65 

GP 3367 (349) 3383 (373) 0.81 

Putamen 7759 (726) 7557 (811) 0.15 

Cerebellar_cortex 86575 (8384) 88222 (8993) 0.30 

Dentate 2699 (376) 3023 (399) 9.4 x 10-6a 

Hippocampus 7361 (768) 7187 (662) 0.19 

Vermis 4359 (532) 4418 (491) 0.52 

NA 1051 (111) 1042 (126) 0.68 

Basal forebrain 982 (98) 975 (106) 0.73 

Values are mean volume (mm3) for that brain region (SD). Two-tailed, unpaired 𝑡 tests performed. a statistically 

significant at p < 0.05, corrected for multiple comparisons (Bonferroni). Abbreviations: SCP = superior cerebellar 

peduncles, DC = diencephalon, GP = globus pallidus, NA = nucleus accumbens
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Table 5.9 - Comparison of demographics, pathological diagnosis and clinical test scores between 

subtypes (three-subtype model) 

 Subcortical Fronto-parietal Parieto-occipital  𝒑 value 

All scans, n 43 (32%) 62 (46%) 30 (22%) - 

Subtypable scans, n 38 (31%) 56 (46%) 28 (23%) 0.77a 

Average subtype 

probabilityb 0.87 (0.2) 0.81 (0.1) 0.79 (0.2) 0.07 

Sex, % female 58% 48% 47% 0.36 

Age first scan, y 68.5 (6.6) 66.3 (8.4) 64.9 (7.2) 0.15 

Age at first symptom, yd 63.3 (7.2) 62.8 (10.1) 58.6 (7.2) 0.15 

Disease duration, yd, e 5.0 (3.1) 4.5 (2.7) 4.9 (2.5) 0.71 

CBS pathology, n    - 

- CBS-CBD 2 (17%) 10 (83%) 0 (0%) - 

- CBS-PSP 5 (83%) 1 (17%) 0 (0%) - 

- CBS-AD 3 (10%) 7 (22%) 21 (68%) - 

- CBS-IDT 28 (38%) 38 (52%) 7 (10%) <0.05f 

PSP rating scale 28.5 (13.7) 26.0 15.3) 24.3 (12.6) 0.55 

SEADL 57.8 (22.2) 59.8 (25.7) 51.2 (31.1) 0.43 

UPDRS 35.0 (18.5) 30.6 (15.8) 31.5 (20.1) 0.58 

MMSE 23.9 (4.6) 25.3 (4.5) 20.1 (8.8) <0.05f 

Values are mean (SD) or n (%), apart from Sex = % female. Group comparisons were performed using a linear 

model for continuous variables (continuous variable ~ SuStaIn subtype) and χ2 tests for categorical variables. a all 

scans vs. subtypable scans. b subtype probability = the probability of assignment for an individual case to given 

subtype. c statistically significant at p < 0.05, uncorrected for multiple comparisons. d note incomplete data for 

disease duration / age at first symptom. e time from first symptom to first scan. f statistically significant at p < 0.05, 

corrected for multiple comparisons. Abbreviations: CBS = corticobasal syndrome, CBD = corticobasal 

degeneration, PSP = progressive supranuclear palsy, AD = Alzheimer’s disease, IDT = pathology indeterminate, 

SEADL = Schwab and England Activities of Daily Living, UPDRS = Unified Parkinson’s Disease Rating Scale, 

MMSE = Mini-Mental State Examination 
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Table 5.10 - Regional brain volumes by subtype in the three-subtype model 

Region Subcortical Fronto-parietal Parieto-occipital 𝒑 value 

Frontal Anterior 131521 (11495) 124941 (14110) 127361 (20123) 0.12 

Frontal Posterior 34650 (4185) 32087 (3831) 33841 (6407) 0.03 

Temporal 119008 (9222) 112067 (10712) 108583 (16717) 1.6 x 10-3a 

Parietal 87136 (7631) 79395 (8404) 72733 (13935) 1.4 x 10-7a 

Occipital 69087 (7654) 66254 (7431) 61235 (9222) 5.8 x 10-4a 

Cingulate 27080 (2484) 26101 (3154) 26437 (4053) 0.35 

Insula 9807 (1109) 9129 (1192) 9136 (1594) 0.03 

Amygdala 3358 (272) 3112 (337) 3156 (474) 4.4 x 10-3a 

Corpus callosum 18127 (2414) 17642 (2575) 18774 (3287) 0.20 

Medulla 4507 (644) 4794 (616) 4820 (570) 0.051 

Pons 12513 (1471) 13700 (1834) 13985 (1435) 4.3 x 10-4a 

SCP 182 (40) 225 (47) 237 (43) 1.2 x 10-6a 

Midbrain 5074 (756) 5596 (720) 5894 (722) 1.4 x 10-5a 

Ventral DC 7738 (845) 8116 (852) 8843 (1010) 1.1 x 10-5a 

Thalamus 9686 (932) 9900 (979) 10342 (950) 0.02 

Caudate 6244 (740) 6123 (862) 6337 (1031) 0.56 

GP 3414 (323) 3292 (352) 3491 (403) 0.043 

Putamen 7893 (681) 7449 (722) 7723 (926) 0.020 

Cerebellar 

cortex 

86043 (7531) 86829 (9419) 90988 (8156) 0.05 

Dentate 2652 (416) 2893 (355) 3142 (397) 6.8 x 10-6a 

Vermis 4378 (500) 4330 (543) 4540 (439) 0.20 

Hippocampus 7579 (686) 7186 (728) 7003 (597) 2.3 x 10-3a 

NA 1068 (99) 1016 (116) 1076 (141) 0.04 

Basal forebrain 981 (93) 978 (93) 979 (132) 0.99 

Values are mean volume (mm3) for that brain region (SD).Group comparisons were performed using a linear model 

for continuous variables (continuous variable ~ SuStaIn subtype) and χ2 tests for categorical variables. a 

statistically significant at p < 0.05, corrected for multiple comparisons (Bonferroni). Abbreviations: SCP = superior 

cerebellar peduncles, DC = diencephalon, GP = globus pallidus, NA = nucleus accumbens
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5.3.5 Association between stage, subtype, and clinical 

disease severity  

I went on to assess the association between stage, subtype, and clinical disease severity 

in the both the two- and three- subtype model, controlling for age and gender.  

In the two-subtype model (Table 5.11) only the Gait and Midline PSP rating scale 

subscore was different between the Subcortical and Fronto-parieto-occipital subtype 

(worse in the Subcortical subtype: 𝑡 = -2.04, 𝑝 = 0.04). Worsening Total PSP rating 

scale score (and History, Bulbar and Oculomotor subscores), and MMSE score were 

associated with increasing SuStaIn stage, suggesting these scores decline with disease 

progression in both subtypes. 

In the three-subtype model (Table 5.12) the main difference to the two-subtype 

model was that there was no-longer a significant difference in Limb motor subscores 

between the subtypes, while significant differences between performance on the 

MMSE became apparent in the Parieto-occipital subtype (𝑡 = -3.11, 𝑝 = 2.4 x 10-3).  
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Table 5.11 – Comparison of adjusted clinical scores between subtypes in the two-subtype model 

 SuStaIn subtype  SuStaIn stage    

 t value p value  t value p value  Subtype with worse score Change with Sustain Stage 

PSP rating scale score         

- Total -0.63 0.27  2.32 0.02a   Worsens 

- History -1.11 0.78  1.99 0.04a   Worsens 

- Mentation 0.61 0.55  1.38 0.17    

- Bulbar -0.35 0.72  4.00 1 x 10-4b   Worsens 

- Ocular motor -0.62 0.54  2.46 0.02a   Worsens 

- Limb motor 0.13 0.89  -0.25 0.80    

- Gait and midline -2.04 0.04a  0.34 0.73  Subcortical subtype  

SEADL -0.31 0.75  -0.94 0.34    

UPDRS -0.01 0.99  0.88 0.38    

MMSE -0.19 0.85  -4.20 5 x 10-5b   Worsens 

Linear mixed model of Clinical score ~ subtype + stage + (1 | ID) + AAS + gender. Significance was calculated using Satterthwaite’s method to estimate degrees of freedom and generate p-values. 

Includes 226 scans (123 baseline and 103 follow-up scans and varying timepoints). a. statistically significant at p < 0.05, uncorrected for multiple comparisons (10 items, p < 0.0125). b. statistically 

significant at p < 0.05, corrected for multiple comparisons (10 items, p < 0.0125). Abbreviations: FPO = fronto-parieto-occipital, SEADL = Schwab and England Activities of Daily Living, UPDRS 

= Unified Parkinson’s Disease Rating Scale, MMSE = Mini–Mental State Examination. 
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Table 5.12 – Comparison of adjusted clinical scores between subtypes in the three-subtype model 

 
SuStaIn subtype 

(Fronto-Parietal*) 
 

SuStaIn subtype 

(Parieto-Occipital*) 

 
SuStaIn stage 

   

 t value p value 
 

t value p value 
 

t value p value 
 Subtype with worse 

score 

Change with 

Sustain Stage 

PSP rating scale score            

- Total -1.24 0.22  -0.83 0.41  2.46 0.01a   Worsens 

- History -0.97 0.34  -0.91 0.37  2.02 0.05b   Worsens 

- Mentation -0.57 0.57  1.42 0.16  1.44 0.15    

- Bulbar -0.05 0.96  -1.14 0.25  3.68 3.7 x 10-4a   Worsens 

- Ocular motor -1.39 0.17  -1.58 0.12  2.72 7.6 x 10-3a   Worsens 

- Limb motor -0.03 0.98  -0.51 0.61  0.22 0.83    

- Gait and midline -1.58 0.11  -1.07 0.29  1.72 0.09    

SEADL 0.44 0.66  -1.16 0.25  -1.13 0.26    

UPDRS -0.75 0.46  -0.24 0.81  1.05 0.30    

MMSE 1.35 0.18  -3.11 2.4 x 10-3a  -3.79 2.4 x 10-4a  Parieto-occipital Worsens 

Linear mixed model of Clinical score ~ subtype + stage + (1 | ID) + AAS + gender. Significance was calculated using Satterthwaite’s method to estimate degrees of freedom and generate p-values. 

Includes 226 scans (123 baseline and 103 follow-up scans at varying timepoints). *Named SuStaIn subtype compared to Subcortical subtype. a. Statistically significant at p < 0.05, corrected for 

multiple comparisons (10 items, p < 0.0125). b. Statistically significant at p < 0.05, uncorrected for multiple comparisons (10 items, p < 0.0125). Abbreviations: SEADL = Schwab and England 

Activities of Daily Living, UPDRS = Unified Parkinson’s Disease Rating Scale, MMSE = Mini–Mental State Examination 
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5.4   Discussion 

Clinical-pathological studies have emphasised the pathological heterogeneity of CBS 

with diverse diseases such as CBD, AD, PSP and TDP-43 proteinopathy presenting 

clinically as CBS418. Accurately identifying the underlying pathology in CBS in life, 

as well as accurately measuring individuals’ disease progression to assess the 

effectiveness of therapeutic interventions, is increasingly important as we enter the era 

of protein-specific therapies for neurodegenerative diseases. Although a range of 

validated CSF, PET and blood-based biomarkers are now available for identifying AD 

pathology419, there are still no such biomarkers available for 4RT or TDP-43 

pathology. To be able to both subtype and stage patients with CBS using only a 

structural MRI scan would have significant implications for clinical trial stratification 

and disease progression monitoring.  

To address this, I applied an unsupervised machine learning algorithm (SuStaIn) to a 

relatively large cohort of clinically diagnosed CBS cases, uncovering imaging 

subtypes based solely on a data-driven assessment of cross-sectional atrophy patterns. 

I then used the fitted model to subtype and stage individuals both at baseline and 

follow-up, demonstrating an association between clinical measures of disease 

progression and increasing data-driven model stage. I also showed that subtype 

assignment was stable at follow-up scan, and individuals consistently progressed to 

higher stages, supporting the model’s longitudinal validity. 

Prior studies have retrospectively assessed both structural137,233,235 and FDG-PET 

imaging420 at a group level, as correlates of CBS pathology. Three of these 

studies137,233,420 take no account of disease stage in their analysis and so are limited by 

the inherent assumption that all subjects are at a common disease stage (no temporal 

heterogeneity). The study by Whitwell et al.235 uses the MMSE score as a proxy for 

disease stage, which although an improvement, assumes that not only is the MMSE 

score is similarly affected across the different pathologies for a given stage of disease, 

but that it is sensitive and specific for marker of disease progression. In addition, none 

of these clinico-pathological studies include longitudinal imaging follow-up and 

provide little information on the earliest regions in the brain affected by disease within 

the different pathological subtypes. By using SuStaIn to jointly model both disease 

stage and subtype simultaneously, I am able to better account for this temporal 
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heterogeneity, highlighting the regions that are affected earliest in the disease course 

for each imaging subtype, whilst also providing a fine-grained staging model within 

each subtype that allowed staging of individual patients. 

It is important to note that the model was agnostic to underlying pathology, and I only 

used the pathology information post-hoc, to test the hypothesis that these imaging 

subtypes would provide information on the underlying pathology. In support of this 

hypothesis, the subtypes were differentially associated with underlying pathology; the 

data best supported a two-subtype model, with 4RT (PSP or CBD) confirmed cases 

being most commonly assigned to the Subcortical subtype (83% of PSP and 75% of 

CBD respectively), and AD cases being most commonly assigned to the Fronto-

parieto-occipital subtype (81% of cases). The Subcortical subtype (46% of cases) was 

characterised by early atrophy of the SCP, midbrain and dentate nucleus, followed by 

the basal ganglia, remaining brainstem structures and the thalamus, with the posterior 

frontal lobe the first cortical structure to become abnormal. This early involvement of 

the brainstem and subcortical structures in CBS-4RT is in keeping with previous work 

that shows that more severe atrophy is found in these regions in CBS-PSP and CBS-

CBD compared to controls and CBS-AD137. In contrast, the Fronto-parieto-occipital 

subtype demonstrates earliest atrophy in the parietal region closely followed by the 

posterior frontal, insular and occipital lobes. The basal ganglia, similar to the 

Subcortical subtype, are involved early in the sequence, as one might expect given 

these individuals have presented with a cortico-basal syndrome. The fact that AD 

pathology is strongly assigned to this subtype is also in keeping with published clinico-

pathological imaging studies, where CBS-AD demonstrates the most severe atrophy 

in the parietal and posterior frontal regions137,233,235 . 

The two-subtype model best explained the data in this cohort, as evidenced by the 

cross-validation log likelihoods and CVIC in Figure 5.1. The three-subtype model was 

underpowered with several of the different subtype stages only having a single 

individual assigned. Despite these caveats, further analysis of the three-subtype model 

was interesting. There was a suggestion that adding a third subtype allowed 

differentiation of PSP from CBD pathology, albeit at a loss of specificity for AD 

pathology. Given the availability of sensitive and specific AD biomarkers, this may 

allow for identification of these cases that do not map to the most “AD-like” subtype, 

thus enriching the other subtypes for 4RT pathology. PSP pathology was still strongly 
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assigned to the Subcortical subtype (83.3% of cases), though 75% of CBD cases were 

now assigned to the new Fronto-parietal subtype. Neither 4RT pathologies were 

assigned to the Parieto-occipital subtype, which had a very similar sequence of 

atrophy to the Fronto-parieto-occipital subtype from the two-subtype model. 68% of 

AD pathology was assigned to this Parieto-occipital subtype, with 23% assigned to 

the new Fronto-parietal subtype. The sequence of atrophy on the Fronto-parietal 

subtype demonstrates earliest involvement of the posterior frontal lobe and the basal 

ganglia with early involvement of the parietal and insula, which is consistent with 

imaging in autopsy confirmed CBD cases137,233,235. Interestingly this subtype also 

showed later involvement of the temporal lobe compared to the Parieto-occipital 

subtype, another feature that has been shown to differentiate CBS-CBD from CBS-

AD235. In keeping with the Parieto-occipital subtype being more strongly associated 

with AD pathology, analysis of regional volumes at baseline demonstrated that the 

hippocampal and temporal (as well as parietal and occipital) regions were more 

atrophic compared to the Fronto-parietal subtype at presentation (Table 5.10). 

Further support for this is that the MMSE was significantly lower in the Parieto-

occipital subtype (20.1, SD ± 8.8, 𝑡 = -2.3, Bonferroni corrected 𝑝 = 0.02) compared 

to the other subtypes (23.9 SD ± 4.6, 25.3 SD ± 4.9 for the Subcortical and Fronto-

parietal subtypes respectively). 

When comparing clinical scores between subtypes there was minimal difference; in 

the two-subtype model only the Limb-motor PSP rating scale sub-score was different 

(lower in the Subcortical subtype), whilst as mentioned above only the MMSE showed 

a difference between subtypes in the three-subtype model (lowest in the Parieto-

occipital subtype). This is perhaps unsurprising given the lack of clinical difference 

between the different pathology groups at baseline (Table 5.4), and the association 

of these pathologies with different subtypes identified by the model. The lack of 

clinical features that accurately identify the different underlying pathologies in 

CBS is well known409 and is likely a reflection of the similar spatial patterns 

of underlying pathology (whatever that pathology may be) leading to a similar 

constellation of clinical symptoms and signs. It is suggested that more fine-

grained cognitive tests, such as the Benson figure copy137, may be more sensitive to 

underlying AD pathology, but I unfortunately did not have access to these more 

detailed cognitive assessments 
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for this cohort. Instead, for cognitive scores I had to rely on the MMSE (or converted 

MOCA to MMSE) with the associated loss in diagnostic sensitivity.  

Overall, the fitted SuStaIn model showed strong subtyping and staging capabilities. In 

the two-subtype model, assignments were longitudinally consistent at 101 out of 103 

(98%) of follow-up visits with 101 individuals staying within the same subtype and 

one individual progressing from not-subtypable to subtypable. The two individuals 

who changed from the Fronto-parietal-occipital subtype to Subcortical at follow-up 

were only weakly assigned at baseline (0.43 and 0.58). From a staging perspective, 

individuals consistently moved to higher stages over time in both subtypes, with no 

cases dropping to a lower stage at follow-up scan. As expected, the three-subtype 

model the subtypes were slightly less stable, which likely reflects the increased 

uncertainty in assignment due to lower sample sizes in each cohort. 96 of the 103 

(93%) follow-up visits were assigned to the same subtype; five individuals in the 

Subcortical subtype switched to the Fronto-parietal subtype (only one of these cases 

had pathology and was CBD), while two individuals in the Fronto-parietal subtype 

switched to the Parieto-occipital subtype (both had AD pathology). An interesting 

observation was the variability in model predicted stage of CBS cases at baseline 

scan seen in both the two- and three-subtype model (Figure 5.2D and Figure 5.3D). 

This baseline temporal variability has important implications in terms of 

accurately stratifying patients at time of recruitment to clinical trials. The 

SuStaIn algorithm provides an intrinsic subtyping and staging mechanism for 

individual patients which may help with this process.  

5.4.1 Limitations 

An important limitation of this study is that, although I built a large imaging cohort 

from the perspective of CBS (135 cases with 113 follow-up visits), this is still small 

for a suitably powered SuStaIn analysis. In this study I decided to combine regions 

with a right and left label, and also to then select features based on Cohen’s 𝑑 greater 

than 0.6, to try and reduce the number of features included in the model, and so 

maximise power to detect subtypes with the available sample size. It is known that 

CBS-CBD, in particular, is characterised by asymmetric atrophy, at least later in the 

disease course235,418. However, there are also volumetric imaging studies 

demonstrating that many patients with CBD fall within the range of asymmetry seen 
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in healthy controls137. There is also a growing recognition from neuropathological 

studies that a lack of asymmetry does not exclude an diagnosis of underlying CBD 

pathology66. By combining right and left labels for cortical regions I am likely to have 

reduced the sensitivity for detecting a “CBD” like subtype in particular, as the effect 

size for a given region affected by CBD pathology would be diluted by the less severe 

atrophy in the contralateral hemisphere. It is interesting that the three-subtype model 

hinted at a third subtype in the data, associated with CBD pathology, even with right 

and left cortical labels combined. In future work I would like to expand the CBS 

imaging cohort through collaboration with additional sites, to investigate whether 

adding right and left labels separately increases the sensitivity to identify finer grained 

pathological specific subtypes. As it stands the two-subtype model is likely a 

conservative estimate of the true number of unique imaging subtypes in CBS. 

A related, but separate issue is the lack of pathology or amyloid biomarker data for 74 

of the cases (categorised as CBS-IDT). Although the focus of this study was to identify 

CBS imaging subtypes and stages a priori, I wanted to test post-hoc the assignment of 

the different pathologies to the these identified subtypes to test the hypothesis that joint 

modelling of disease stage and subtype would provide additional information on 

underlying pathology. The difficulty of interpreting these results is compounded by 

the fact that I had no data on TDP-43 pathology, which is known to account for up to 

14% of cases of CBS66. It is an interesting observation that of the 12 cases that were 

not subtypable at baseline, three cases were CBS-AD, nine were CBS-IDT, and of 

these six had negative biomarkers for AD and so were pathology other than AD. One 

might speculate that given all of the cases with 4RT pathology were subtypable that 

these un-subtypable cases could have a different underlying pathology such as TDP-

43. A good test of the pathology association with subtype will be testing whether those 

that come to post-mortem in the future match the expected pathology based on their 

subtype assignment. Another potential for follow-up work would be to subtype and 

stage new autopsy confirmed cases with our fitted model and assess whether they are 

assigned to the expected phenotypes.  

It is increasingly recognized that co-pathologies are common in neurodegenerative 

disease and may modify clinical presentations66. For example, concurrent AD 

pathology in PSP may modify the clinical presentation from PSP-Richardson 

syndrome to that of CBS421. Given I did not have data on the presence or absence of 
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co-pathologies in this study, one has to be careful when drawing conclusions based on 

the primary pathological diagnosis. Conversely, it could perhaps be argued that one of 

the explanations for the assignment of a minority of cases with a given pathology to 

subtype more strongly associated with a different pathology (e.g. in the two-subtype 

model CBS-4RT cases being assigned to Fronto-parieto-occipital subtype, or in the 

three-subtype model CBS-AD cases being assigned to the Subcortical or Fronto-

parietal subtype) could be due to the presence of co-pathologies that are “unseen” in 

our data. It would be interesting to stage and subtype individuals in a validation cohort 

with well-defined pathology (including co-pathologies) to test this hypothesis.  

5.5   Conclusions and future work  

In this chapter I provide data-driven evidence for the existence of two distinct and 

stable spatiotemporal subtypes of atrophy in clinically diagnosed CBS, by jointly 

modelling disease stage and subtype using cross-sectional structural MRI.  Underlying 

CBS pathology is differentially associated with these subtypes giving insights into the 

relationship between CBS pathology and the topographical distribution of atrophy. In 

addition, our model provides an intrinsic staging and subtyping mechanism by which 

individual patients can be more accurately stratified according to disease stage within 

each subtype. In the absence of sensitive and specific biomarkers for the range of 

different pathologies in CBS, being able to accurately subtype and stage CBS patients 

at baseline has important implications for screening patients on entry into clinical 

trials, as well as for tracking disease progression.  

Future work should focus on validating these results in larger datasets, ideally with 

detailed pathological data, to investigate whether (as suggested in this work) there is a 

third imaging subtype that is able to differentiate between the 4R tau pathologies. In 

addition, it will also be important to test newer iterations of the SuStaIn algorithm 

under development with the aim of extracting information on time to transition 

between subtype stages, which will have direct utility in disease progression 

monitoring for clinical trials. 
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Chapter 6:  Investigating the association of 

MAPT haplotypes with risk of Pick’s Disease 

The contents of this chapter form part of a manuscript which is currently in preparation 

for submission. 

6.1    Introduction 

Pick’s disease (PiD) is a rare and predominantly sporadic subtype of frontotemporal 

lobar degeneration (FTLD) and represents approximately 3-12% of all dementias 

worldwide422–424. Although there are no clinical diagnostic criteria for PiD, it typically 

develops in individuals approximately 55 years of age and presents with behavioural 

change, impaired cognition and occasionally motor difficulties53,61,63–65,67,425. PiD is a 

relatively rapidly progressive disease and patients die approximately 10 years after 

disease onset61–65,238. Current therapies are available to treat clinical symptoms, but no 

treatments are available to prevent disease onset or progression. 

Neuropathologically, PiD is classified by severe frontotemporal, knife-blade like 

cortical atrophy and microscopically the presence of ballooned neurons and 

argyrophilic inclusion “Pick bodies” in frontal and temporal regions61. Characteristic 

Pick bodies consist of hyperphosphorylated 3-repeat (3R) tau aggregate proteins which 

are encoded by the MAPT gene on chromosome 17425,426, and for this reason PiD is 

classified as a 3R tauopathy. MAPT codes for six major tau isoforms in the adult 

human brain, and this is determined by alternative splicing of exons 2, 3, and 10 

influencing the number of repeat domains in the N-terminus and C-terminus427. More 

specifically, alternative splicing leading to exon 10 exclusion results in 3-repeat units 

in the microtubule binding C-terminal domain, generating 3R tau proteins428.  

Rare mutations in MAPT have been reported in four individuals with PiD-like 

pathology429–432; however, this data is inconsistent as larger, independent cohorts of 

PiD cases do not report MAPT mutations433. The MAPT gene also has two well 

characterized common haplotypes, H1 and H2, which developed from a 900kb 

ancestral genetic inversion event172. Not only has MAPT H1 consistently been 

associated with an increased risk of 4-repeat (4R) primary tauopathies such as 

progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), but the 
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H1 haplotype is also the strongest genetic risk factor for both diseases169,193. To date, 

no such haplotype association has been shown in 3R tauopathy of PiD and this may be 

due to the limited available sample size185,186.  

Due to its rare prevalence and the inability to diagnose it clinically in life, PiD is an 

understudied neurodegenerative disease, and its genetic etiology is unknown. As 

previously mentioned, the few studies of MAPT haplotype in PiD that have been 

conducted have been very small and underpowered, failing to find an association of 

either the MAPT H1 or H2 haplotype with disease risk. Moreover, limited access to 

3R tauopathy samples has stalled research advancement in understanding how MAPT 

haplotypes and isoforms influence disease risk/pathology and has prevented 

progression of developing isoform-specific therapies.  

To address this, in collaboration with Mayo Clinic Jacksonville (MCJ) I established 

the Pick’s disease International Consortium (PIC), to collect data from pathologically 

confirmed PiD cases from sites worldwide. My primary aim in this study was to use 

samples collected via the PIC to evaluate the association of the MAPT H1/H2 

haplotype with PiD risk, age of onset (AAO), and disease duration (DD). As a 

secondary aim, I assessed the associations of the MAPT H1 subhaplotypes with disease 

outcomes. 

6.2   Methods 

6.2.1 Study Subjects 

At the time of this study, 338 neuropathologically confirmed PiD cases were available 

from the PIC, recruited from 36 sites (Figure 6.1). Please refer to Chapter 2 (Pick’s 

disease International Consortium (PIC)) for details on the neuropathological 

diagnostic criteria of cases and recruitment. Of the 338 samples, 200 were from the 

North America cohort (MCJ) and 138 from European/Australasian cohort (UCL). 

Frozen brain tissue from cerebellum or prefrontal cortex were obtained from each case. 

All subjects were unrelated and self-reported Caucasian and non-Hispanic. Baseline 

demographic information was collected for all subjects (age at symptom onset (AAO) 

and age at death (AAD) for PiD patients, age at blood collection for controls, and sex). 

Disease duration (DD) was calculated from the difference between AAD and AAO for 

a subset of 309 PiD cases. In addition to basic demographic information, the PIC also 
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collected information related to family histories, clinical outcomes (e.g. behavioural 

and language impairments, presence/absence of parkinsonism, upper and lower motor 

neurone deficits, Mini-Mental State Examination and Clinical Dementia Rating), and 

pathological information (e.g. Thal phase, Braak stage, and brain weight,) for each 

individual case, as well as noting whether other tissues and brain imaging data were 

available. Cases were removed if a rare MAPT mutation was identified. Peripheral 

blood was provided from 1,312 controls from the Mayo Clinic in Jacksonville, FL 

(MCJ)  (N=881) or Rochester, MN (N=431). Control subjects were deemed 

neurologically healthy by neurologists at Mayo Clinic. 

6.2.2 Neuropathological diagnosis of Pick’s disease 

As detailed in Chapter 2 (Neuropathological diagnosis of Pick’s disease) there are 

no established diagnostic criteria for the neuropathological diagnosis of PiD, and so I 

developed a diagnostic algorithm as part of the PhD, in collaboration with Professor 

Dickson and Dr. Shanu Roemer at the MCJ, to ensure that I had a homogenous cohort 

of cases with known 3R tau PiD pathology (see PIC diagnostic algorithm) 365 cases 

from the PIC were initially identified, and underwent neuropathological assessment as 

detailed in Chapter 2 (Neuropathologic methods for 3R/4R tau IHC). Of these 338 

cases were confirmed as PiD neuropathologically according to the algorithm and 

included in the study. 
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Figure 6.1 - Global map (A) and table (B) of reporting countries and recruitment sites that have contributed Pick’s disease tissues to the Pick’s disease International Consortium 

(PIC) to date. Note not all pathology confirmed samples included in MAPT analysis due to either ancestry or samples not collected at time of data freeze for analysis Red = 

countries that have collected and donated Pick’s disease tissues. 
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6.2.3 DNA Preparation 

For the majority of samples, DNA was extracted from each subject at their respective 

collection site (UCL or MCJ) as detailed in Chapter 2 (DNA preparation). I was 

responsible for the DNA extraction from all UCL samples, and Dr. Rebecca Valentino 

for all MCJ samples.  

6.2.4 MAPT SNP Genotyping 

The MAPT H2 haplotype-tagging variant rs8070723 was genotyped in all cases and 

controls to associate with disease. In addition, the five common MAPT variants 

(rs1467967, rs242557 [the H1C haplotype-tagging variant], rs3785883, rs2471738, 

and rs7521) which along with rs8070723 define H1-subhaplotypes were genotyped to 

assess MAPT subhaplotype structure176,202. Further details of the genotyping methods 

used at UCL and MCJ are provided in Chapter 2 (Targeted genotyping). 

All cases were assessed for population stratification using available whole genome 

SNP genotyping data. After standard genotyping data quality control steps, I 

performed a principal components analysis (PCA), merged all cases with the HapMap 

reference dataset, and identified any cases of non-white European ancestry which were 

excluded from further analysis. The details of PCA analysis to determine ancestry are 

covered in Chapter 7 (Quality control and imputation). Allele and 

genotype frequencies for each variant are detailed in Table 6.1. 
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Table 6.1 - Genotype counts and frequencies of six common MAPT SNPs in Pick’s disease cases and controls. 

 

Variant 
Minor allele count 

and frequency 

Major allele count 

and frequency 

Genotype 1 count  

and frequency 

Genotype 2 count 

and frequency 

Genotype 3 count 

and frequency 

rs1467967      

Pick’s disease  G: 190 (28.1%) A: 486 (71.9%) AA: 176 (52.1%) AG: 134 (39.6%) GG: 28 (8.3%) 

Controls G: 849 (32.4%) A: 1775 (67.6%) AA: 603 (46.0%) AG: 569 (43.4%) GG: 140 (10.7%) 

rs242557      

Pick’s disease  A: 236 (34.9%) G: 440 (65.1%) GG: 146 (43.2%) GA: 148 (43.8%) AA: 44 (13.0%) 

Controls A: 965 (36.8%) G: 1659 (63.2%) GG: 548 (41.8%) GA: 563 (42.9%) AA: 201 (15.3%) 

rs3785883      

Pick’s disease  A: 114 (16.9%) G: 562 (83.1%) GG: 231 (68.3%) GA: 100 (29.6%) AA: 7 (2.1%) 

- Controls A: 472 (18.0%) G: 2152 (82.0%) GG: 879 (67.0%) GA: 394 (30.0%) AA: 39 (3.0%) 

rs2471738      

Pick’s disease  T: 136 (20.1%) C: 540 (79.9%) CC: 215 (63.6%) CT: 110 (32.5%) TT: 13 (3.8%) 

- Controls T: 542 (20.7%) C: 2082 (79.3%) CC: 842 (64.2%) CT: 398 (30.3%) TT: 72 (5.5%) 

rs8070723      

Pick’s disease  G: 196 (29.0%) A: 480 (71.0%) AA: 167 (49.4%) AG: 146 (43.2%) GG: 25 (7.4%) 

Controls G: 603 (23.0%) A: 2021 (77.0%) AA: 784 (59.8%) AG: 453 (34.5%) GG: 75 (5.7%) 

rs7521      

Pick’s disease  A: 278 (41.1%) G: 398 (58.9%) GG: 117 (34.6%) GA: 164 (34.6%) AA: 57 (16.9%) 

Controls A: 1223 (46.6%) G: 1401 (53.4%) GG: 385 (29.3%) GA: 631 (48.1%) AA: 296 (22.6%) 
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6.2.5 Statistical Analysis 

Single-variant associations with risk of PiD were evaluated using logistic regression 

models that were adjusted for age and sex. Odds ratios (ORs) and 95% confidence 

intervals (CIs) were estimated and correspond to each additional minor allele. Single-

variant associations with AAO and DD in PiD patients were examined using linear 

regression models that were adjusted for sex and series (UCL or MCJ) (AAO analysis) 

or sex, AAO, and series (DD analysis). Regression coefficients (referred to as β) and 

95% CIs were estimated and are interpreted as the increase in the mean AAO or DD 

corresponding to each additional copy of the minor allele. For all single-variant 

associations, analysis involving rs8070723 (the H2-tagging variant) was considered as 

the primary analysis (to test the hypothesis that it is associated with risk of PiD), with 

results for the five remaining variants considered as secondary and I present these for 

completeness.   

Associations between six-variant MAPT haplotypes and risk of PiD were assessed 

using score tests for association under a logistic regression framework434, where tests 

were adjusted for age and sex. ORs and 95% CIs were estimated and correspond to 

each additional copy of the given haplotype. In analysis of PiD patients, associations 

of six-variant MAPT haplotypes with AAO and DD were assessed using score tests for 

association under a linear regression framework434, where tests were adjusted for sex 

and series (AAO analysis) or sex, AAO, and series (DD analysis). β-coefficients and 

95% CIs were estimated and are interpreted as the increase in the mean AAO or DD 

corresponding to each additional copy of the given haplotype. Haplotypes occurring 

in <1% of subjects in a specific analysis were excluded from that analysis.  

𝑝-values <0.008 (6 tests) were considered as statistically significant after Bonferroni 

correction in the primary analysis involving the MAPT rs8070723 variant. In 

secondary analysis assessing associations between MAPT haplotypes and outcomes, 

𝑝-values ≤ 0.0028 (18 tests) were considered as statistically significant after 

Bonferroni correction in the disease-association analysis, and 𝑝-values ≤ 0.0031 (16 

tests due to two haplotypes below the 1% frequency threshold) were considered as 

statistically significant in the AAO and DD analyses. 𝑝-values ≤ 0.05 were considered 

as significant in all remaining analysis. All statistical tests were two-sided. Statistical 
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analyses were performed using R Statistical Software (version 4.1.2; R Foundation for 

Statistical Computing, Vienna, Austria).  

6.3   Results 

I identified a total of 338 pathologically confirmed PiD cases from the PIC for 

inclusion in the study. A summary of clinical characteristics is provided in Table 6.2. 

In the combined series the median age at death was 69 years (minimum-maximum; 

40-100 years) which was similar in both the North American and 

European/Australasian series (70 years (40-100 years) and 69 years (41-88 years) 

respectively). The age at disease onset for the combined series was 58 years (33-80 

years) which was consistent across series, with a median disease duration of 10 years 

(2-25 year). Interestingly there was a higher proportion of males in the combined series 

(60.7% compared to 39.3% females; this difference was more pronounced in the 

European series than the North American series (66.7% versus 56.5% males 

respectively). The controls were well matched from an age perspective, though had a 

lower proportion of males (46.6%). Both age and gender were controlled for in 

subsequent regression analysis to minimise the effects of these covariates on results. 

Table 6.2 - Clinical characteristics of samples included in MAPT haplotype analysis. 

Variable 
MCJ PiD 

series1 

UCL PiD 

series2 

Combined PiD 

series 
Controls 

Sample (n) 200 138 338 1,312 

Age (years) 70 (40, 100) 69 (41, 88) 69 (40, 100) 69 (45, 92) 

Age of disease onset (years) 58 (36, 80) 58 (33, 80) 58 (33, 80) n/a 

Disease duration (years) 10 (3, 25) 10 (2, 20) 10 (2, 25) n/a 

Sex 
   

- Male 113 (56.5%) 92 (66.7%) 205 (60.7%) 611 (46.6%) 

- Female 87 (43.5%) 46 (33.3%) 133 (39.3%) 701 (53.4%) 

1 North American samples, 2 Europe and Australasia samples. The sample median (minimum, maximum) is given 

for age. Age represents age at death in Pick’s disease cases and age at blood draw in controls. Age at disease 

onset and disease duration information was not available for 29 PiD cases. Abbreviations: MCJ = Mayo Clinic 

Jacksonville, UCL = University College London 
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6.3.1 Association results for the MAPT rs8070723 H2 allele 

rs8070723 and PiD risk 

There was a significant association between the MAPT rs8070723 H2 allele and an 

increased risk of PiD in the overall series (OR: 1.35, 95% CI: 1.12-1.64, 𝑝=0.0021) 

(Table 6.3), with minor allele frequencies (MAFs) of 29.0% in the 338 PiD patients 

and 23.0% in the 1,312 controls. For comparison the MAF in the non-Finnish 

European population on GnomAD (RRID:SCR_014964; http://

gnomad.broadinstitute.org/) was 19.7%, 19.8% in Southern Europeans and 22.8% in 

North-western Europeans. 

rs8070723 and AAO / DD 

MAPT rs8070723 was not associated with AAO (β: -0.54, 95% CI: -1.94 to 0.87, 

𝑝=0.45) or DD (β: 0.25, 95% CI: -0.46 to 0.96, 𝑝=0.50) (Table 6.3). Single-variant 

associations with PiD are also shown for the other five MAPT variants used to define 

MAPT haplotypes in Table 6.3 and Table 6.4 respectively. Of note, there was no 

association between rs242557 (the H1c haplotype defining SNP) and risk of PiD 

(OR: 0.94, 95% CI: 0.79-1.12, 𝑝=0.51). None of the other MAPT variants showed an 

association with disease risk, AAO or DD in PiD. 

http://gnomad.broadinstitute.org/
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Table 6.3 - Associations of individual MAPT variants with risk of Pick’s disease 

 Minor Allele Frequency   Association with PiD  

Variant PiD (N=338) Controls (N=1,312) NFE  OR (95% CI) 𝒑 value 

rs1467967 28.1% 32.4% 33.5%  0.83 (0.68, 1.00) 0.046 

rs242557 34.9% 36.8% 37.5%  0.94 (0.79, 1.12) 0.51 

rs3785883 16.9% 18.0% 17.9%  0.91 (0.72, 1.15) 0.42 

rs2471738 20.1% 20.7% 22.0%  0.96 (0.78, 1.18) 0.70 

rs8070723 29.0% 23.0% 19.7%  1.35 (1.12, 1.64) 0.0021 

rs7521 41.1% 46.6% 53.1%  0.81 (0.69, 0.96) 0.018 

ORs, 95% CIs, and p-values result from logistic regression models that were adjusted for age and sex. ORs correspond to each additional minor allele of the given variant. 𝑝 <0.008 are considered 

as statistically significant after applying a Bonferroni correction for multiple testing OR=odds ratio; CI=confidence interval, NFE = Non-Finnish Europeans, PiD = Pick’s disease 

 

Table 6.4 - Associations of individual MAPT variants with age of disease onset and disease duration in Pick’s disease subjects 

 Association with age of disease onset  Association with disease duration  

Variant MAF (N=309) β (95% CI) 𝒑  β (95% CI) 𝒑 value 

rs1467967 28.8% 32.4% 33.5%  -0.11 (-0.80, 0.59) 0.76 

rs242557 34.6% 36.8% 37.5%  -0.42 (-1.07, 0.24) 0.22 

rs3785883 16.8% 18.0% 17.9%  0.08 (-0.79, 0.94) 0.86 

rs2471738 19.9% 20.7% 22.0%  0.01 (-0.77, 0.80) 0.98 

rs8070723 29.6% 23.0% 19.7%  0.25 (-0.46, 0.96) 0.50 

rs7521 40.8% 46.6% 53.1%  -0.40 (-1.05, 0.26) 0.23 

β values, 95% CIs, and p-values result from linear regression models that were adjusted for sex and series (age of disease onset analysis) or sex, age of disease onset, and series (disease duration 

analysis). β values are interpreted as the change in the mean value of the given outcome (age of disease onset or disease duration) corresponding to each additional copy of the minor allele of the 

given  variant. 𝑝 <0.008 are considered as statistically significant after applying a Bonferroni correction for multiple testing. β=regression coefficient; CI=confidence interval.
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6.3.2 Association results for the MAPT H1 subhaplotypes 

H1 subhaplotypes and PiD risk 

In secondary analysis, an evaluation of associations between six-variant MAPT 

haplotypes and risk of PiD is displayed in Table 6.5. As with the single-variant 

analysis, the H2 haplotype was associated with an increased risk of PiD (OR: 1.34, 

95% CI:1.11-1.63, 𝑝 =0.0028); the slight difference between the two numerical 

estimates is due to the two different analysis approaches. Additionally, a nominally 

significant (𝑝 ≤0.05) protective association was noted for the rare H1f haplotype (0.0% 

in PiD, 1.2% in controls, 𝑝=0.049), with a slightly weaker finding noted for H1b (OR: 

0.76, 95% CI: 0.58-1.00, 𝑝=0.051). There were no other notable associations between 

MAPT haplotypes and risk of PiD (all 𝑝 ≥0.15).  

H1 subhaplotypes and AAO / DD 

Associations of MAPT haplotypes with AAO and DD in PiD patients are shown in 

Table 6.6. None of the six-variant MAPT haplotypes were significantly associated 

with AAO or DD after correcting for multiple testing (𝑝<0.0031 Bonferroni 

corrected). However, nominally significant associations were observed with AAO for 

H1b (β: 2.66, 95% CI: 0.63 to 4.70, 𝑝 =0.011), H1i (β: -3.66, 95% CI: -6.83 to -0.48, 

𝑝=0.025) and H1u (β: -5.25, 95% CI: -10.42 to -0.07, 𝑝=0.048), and with a shorter DD 

for H1x (β: -3.73, 95% CI: -6.98 to -0.48, 𝑝=0.025). 
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Table 6.5 - Associations between MAPT haplotypes and risk of Pick’s disease. 

 MAPT variant  Haplotype frequency  Association with PiD 

Haplotype rs1467967 rs242557 rs3785883 rs2471738 rs8070723 rs7521 
 PiD 

 (N=338) 

Controls 

(N=1312) 

 
OR (95% CI) 𝒑 value 

H1b G G G C A A  13.1% 16.0%  0.76 (0.58, 1.00) 0.051 

H1c A A G T A G  10.2% 11.3%  0.93 (0.70, 1.25) 0.65 

H1d A A G C A A  7.4% 7.1%  0.99 (0.68, 1.42) 0.94 

H1e A G G C A A  9.8% 9.0%  1.03 (0.74, 1.42) 0.87 

H1f G G A C A A  0.0% 1.2%  n/a1 0.049 

H1g G A A C A A  0.7% 1.1%  0.43 (0.11, 1.65) 0.22 

H1h A G A C A A  4.0% 4.1%  0.95 (0.57, 1.57) 0.85 

H1i G A G C A A  3.9% 4.4%  0.98 (0.60, 1.61) 0.95 

H1l A G A C A G  3.6% 3.0%  1.11 (0.67, 1.84) 0.69 

H1m G A G C A G  2.9% 2.9%  1.00 (0.56, 1.78) 0.99 

H1o A A A C A A  1.1% 2.3%  0.53 (0.23, 1.26) 0.15 

H1p G G G T A G  1.1% 1.5%  0.82 (0.33, 2.04) 0.66 

H1r A G G T A G  0.7% 1.1%  0.63 (0.20, 2.01) 0.44 

H1u A A G C A G  2.4% 2.4%  1.11 (0.58, 2.11) 0.75 

H1v G G A T A G  2.2% 1.2%  1.50 (0.70, 3.21) 0.30 

H1x G A A T A G  1.3% 1.3%  1.06 (0.44, 2.56) 0.91 

H1y A A A T A G  1.4% 1.6%  0.85 (0.34, 2.07) 0.71 

H2 A G G C G G  28.5% 22.7%  1.34 (1.11, 1.63) 0.0028 

ORs, 95% CIs, and p-values result from score tests of association that were adjusted for age and sex. 1Indicates a haplotype that was not observed in PiD patients, making estimation of an OR 

impossible. 𝑝 <0.0028 are considered as statistically significant after applying a Bonferroni correction for multiple testing. OR=odds ratio; CI=confidence interval, PiD = Pick’s disease
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Table 6.6 - Associations of MAPT haplotype with age of disease onset and disease duration in Pick’s disease cases. 

 

  Association with age of disease onset  Association with disease duration 

Haplotype 
Haplotype frequency 

(%), N=309 
β (95% CI) 𝒑 value 

 
β (95% CI) 𝒑 value 

H1b 13.3% 2.66 (0.63, 4.70) 0.011  -0.03 (-1.07, 1.02) 0.96 

H1c 10.0% 1.63 (-0.61, 3.86) 0.15  0.08 (-1.05, 1.22) 0.88 

H1d 7.2% 0.79 (-1.79, 3.38) 0.55  -0.91 (-2.21, 0.39) 0.17 

H1e 9.3% 0.52 (-1.94, 2.98) 0.68  0.52 (-0.72, 1.76) 0.41 

H1h 4.0% 2.03 (-1.57, 5.64) 0.27  -0.45 (-2.27, 1.37) 0.63 

H1i 4.1% -3.66 (-6.83, -0.48) 0.025  -0.90 (-2.53, 0.72) 0.28 

H1l 3.5% -1.75 (-5.42, 1.92) 0.35  0.43 (-1.42, 2.28) 0.65 

H1m 3.1% -1.25 (-5.33, 2.84) 0.55  0.94 (-1.11, 3.00) 0.37 

H1o 1.2% 0.05 (-6.91, 7.00) 0.99  0.03 (-3.47, 3.52) 0.99 

H1p 1.0% -5.65 (-12.60, 1.30) 0.11  0.17 (-3.36, 3.69) 0.93 

H1u 2.2% -5.25 (-10.42, -0.07) 0.048  -2.40 (-5.03, 0.22) 0.074 

H1v 2.1% -1.74 (-6.61, 3.13) 0.48  1.91 (-0.54, 4.35) 0.13 

H1x 1.4% -5.39 (-11.84, 1.07) 0.10  -3.73 (-6.98, -0.48) 0.025 

H1y 1.5% -0.70 (-6.93, 5.54) 0.83  1.82 (-1.31, 4.95) 0.26 

H1z 1.6% -1.81 (-8.02, 4.40) 0.57  -0.08 (-3.20, 3.05) 0.96 

H2 29.4% -0.62 (-2.03, 0.79) 0.39  0.22 (-0.49, 0.93) 0.54 

β values, 95% CIs, and p-values result from score tests of association that were adjusted for sex and series (age of disease onset analysis) or sex, age of disease onset, and series (disease duration 

analysis). β values are interpreted as the change in the mean value of the given outcome (age of disease onset or disease duration) corresponding to each additional copy of the given haplotype.  

𝑝 <0.0031 are considered as statistically significant after applying a Bonferroni correction for multiple testing. β=regression coefficient; CI=confidence interval. 
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6.4   Discussion 

PiD is a rare sporadic 3R tauopathy that presents primarily as a behavioural or 

language variant of frontotemporal dementia61–64,67. Little is known regarding the 

etiology or underlying pathobiology of the disease. To date, no genetic variation has 

been shown to associate with disease risk, although a handful of cases with PiD-like 

3R predominant tau pathology have been suggested to be caused by rare MAPT 

mutations; G389R429, Q336R430, G272V431 and Q336H432. In contrast to the majority 

of MAPT mutations, at least two of these mutations (Q336R and Q336H) lead to 

increased binding of tau to microtubules (MT) and their subsequent 

hyperstabilisation435. This MT hyperstabilisation is also seen in hereditary spastic 

paraplegia due to spastin mutations resulting in increased MT longevity due to 

decreased MT severing436. In the present study I have shown that the common MAPT 

H2 haplotype, strongly protective in 4R-tauopathy, is associated with an increased risk 

of PiD (3R tauopathy). This was only possible by establishing and creating a global 

consortium (PIC) to increase the number of available pathologically defined PiD cases. 

Previous genetic studies in PiD were underpowered with only 34 cases and 33 cases 

respectively185,186 and failed to show an association between the MAPT H2 haplotype 

and disease risk. A ten-fold increase in sample size was needed to establish MAPT H2 

as a risk factor for in PiD. 

Previous research in frontotemporal dementia linked to chromosome 17 with tau 

pathology (FTDP17t) has clearly demonstrated that mutations in the 5′ splice site of 

MAPT exon 10 can increase the incorporation of the exon into mRNA (10+ transcripts) 

thus increasing 4R isoform production. This emphasises how important exon 10 

alternative splicing regulation is as its dysregulation is sufficient to drive tangle 

formation and consequent neurodegeneration156,172 . Given the association of MAPT 

H2 with a 3R-tauopathy, and its protection in 4R-tauopathy, it is possible that the 

MAPT H1 and H2 haplotypes increase the expression of 4R and 3R tau respectively. 

Previous studies have investigated the haplotype influence on MAPT/tau expression 

but given the presence of six different isoforms in human brain it has remains to be 

conclusively proven437–439. There is a suggestion, however, using allele specific 

expression assays in cell models, that H1 chromosomes express significantly more 

exon 10+ transcripts (i.e 4R tau) than H2 chromosomes171,440. The genetic 
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predisposition herein described would appear to support the hypothesis that the 

pathologic effects of the H1-H2 haplotypes is via isoform specific expression 

differences. This may have implications in the determination of therapeutic strategies 

that have focused on either overall lowering of tau expression or specifically targeting 

the lowering of 4R-tau or increasing 3R-tau isoforms. The overall balance of the 3R 

and 4R forms of tau would appear to be important for the primary tauopathies but does 

not in itself explain the mixed pathology observed in AD, although it is tempting to 

suggest an overall expression of total tau may be underlying the mixed pathology.  

In addition to MAPT, other genes are located within the inversion on Chr17q21.31 

(LRRC37A, LRRC37A2, NSF, ARL17A, ARL17B, KANSL1, SPPL2C, and CRHR1). 

An additional explanation for the differing associations of the MAPT H1 and H2 

haplotypes in the 4R and 3R tauopathies could be that the signals are being driven by 

alternative genes to MAPT in a haplotype specific manner. In support of this 

hypothesis, multiple genes other than MAPT are differentially regulated by the 

inversion haplotypes in a tissue specific manner437. There is also growing evidence 

that the H1 association signal at Chr17q21.31 in Parkinson’s disease (PD), previously 

thought to be due to MAPT, may actually be driven by KANSL1183,184 and/or 

LRRC37A2175. Interestingly, in association studies in Asian populations, in which the 

H2 haplotype is absent, there is no evidence of a signal at Chr17q21441. It is therefore 

possible that the H2 association signal in PiD may be also driven by H2 specific 

regulation of genes within the haplotype inversion other than MAPT. To test this 

hypothesis, future studies to investigate the effect of the H2 haplotype on expression 

of these genes may be of interest. Alongside KANSL1 and LRRC37A2 which have been 

implicated in PD pathogenesis, N-ethylmaleimide sensitive fusion protein (NSF) is also 

an interesting gene at this locus and may warrant further investigation. A recent study 

using proximity-labelling proteomics to chart tau interactomes in primary neurons 

found that tau interacts with NSF, modulates its localisation, and reduces its activity 

in a dose dependent manner442. They go on to show that pathogenic tau from brain 

lysates of human AD can suppress NSF activation. Given NSFs role in synaptic 

function and memory maintenance via AMPA receptor stabilisation at the post-

synaptic membrane, they propose a mechanism by which pathogenic tau, via NSF 

inhibition, impairs synaptic function under disease associated conditions.  
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The results of this study provide evidence that the MAPT H2 haplotype is associated 

with an increased risk of PiD. In addition, I observed nominally significant 

associations that were observed with risk of PiD AAO, and DD, though these will 

require validation in larger studies. Although the strengths of this study (pathological 

diagnosis of PiD based on new consensus pathological derived criteria, and a large 

sample size for this disease) are important to highlight,  there are several limitations 

which are important to consider. Due to the scarcity of PiD samples there was no 

possibility of defining an external validation dataset. I decided to maximize power in 

the primary study by including all the samples, which made it unfeasible to build a 

replication series. As a result, validation of these findings in an independent dataset 

will be important. Despite including all the PiD patients identified through the PIC 

(n=338) the sample remains relatively small (though a factor of 10 larger than any 

study so far carried out), which coupled with the relatively rare nature of many of the 

MAPT haplotypes, results in a low power to detect disease associations. Therefore, the 

possibility of a type II error (i.e. false-negative finding) is important to consider, and 

we cannot conclude that there is no true association between a given haplotype and 

risk of PiD simply due to a non-significant p-value in this study. Another limitation 

was that the controls were defined clinically rather than neuropathologically which 

means that some cases may have had underlying neuropathology that was not yet 

manifesting in a clinical syndrome. Additionally, without available genome-wide SNP 

data for controls, genetic principal components could not be regressed out, and so it is 

possible that population stratification could have had an influence on our results. 

However, we used the case genetic principal components to exclude any cases of non-

European ancestry and our control MAPT H1-H2 frequencies were in keeping with 

published data443. The MAF for rs8070723 (H2 tagging variant) in the Mayo controls 

was 0.23, compared to 0.19 in the NFE population on GnomAD. This suggests, that if 

anything, that the H2 association with risk of PiD is more likely to be under- rather 

than over-estimated in this study. The fact that the association was still identified gives 

a degree of confidence that this is indeed a true effect. 

6.5   Conclusions and future work 

PiD is a rare and understudied disease with a devastating impact on both patients and 

their families. Through collaboration and building of the PIC, we have for the first 
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time a rare opportunity to engage in studies that may tease out the underlying 

pathobiology in PiD. In this chapter I have detailed the development of consensus 

neuropathological criteria for diagnosis of PiD pathology, there application to brain 

tissue samples collected as part of the PIC and used these samples to show for the first 

time that the MAPT H2 haplotype is associated with increased risk of developing PiD. 

As a primary tauopathy, there is the possibility that the identification of genetic 

variables, such as MAPT H2, involved in PiD pathology will inform into the other 

more common tau-related disorders, PSP, CBD, and potentially AD. Larger scale 

unbiased studies to explore genome-wide or structural genetic variation in PiD are now 

warranted. Furthermore, resolving the genetic determinants of PiD may help both in 

establishing diagnostic criteria and elucidating the dysfunctional pathways, which I 

hope will help to direct future therapeutic intervention strategies for this devastating 

disease.
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Chapter 7:  Potential genetic modifiers of 

disease risk in autopsy-confirmed Pick’s 

disease: a genome-wide association study 

7.1    Introduction 

PiD is characterised by severe “knife-blade” frontotemporal lobar atrophy and 

classified neuropathogically by the presence of ballooned neurons and argyrophilic 

inclusion Pick bodies. These eponymous Pick bodies contain hyperphosphorylated 3-

repeat tau aggregates, leading to its designation as a 3-repeat tauopathy, in contrast to 

the 4-repeat tauopathies such as progressive supranuclear palsy (PSP), corticobasal 

degeneration (CBD), argyrophilic grain disease (AGD) and globular glial tauopathy 

(GGT). A recently proposed structure-based classification of the tauopathies, derived 

using cryo-electron microscopy, demonstrates that these 3R tau aggregates consist of 

a distinct disease-specific molecular conformation of tau fibrils in PiD41.  

As discussed in more detail in Chapter 1 (Tau biology in health and disease) Tau is 

encoded by the MAPT gene on chromosome 17, with six major isoforms in the adult 

human brain33 generated through alternative splicing of exons 2, 3, and 10. Rare 

mutations in the MAPT gene can cause Pick’s-like 3R pathology54, though there has 

been no systematic study of large cohorts to ascertain their true prevalence in PiD. The 

genomic architecture of the MAPT locus is characterised by two haplotypes resulting 

from a 900kb inversion (H1) or non-inversion (H2) polymorphism173. Inheritance of 

the H1 haplotype has long been known to be a risk factor for both PSP (OR = 

5.46)167,172 and CBD169,193 (OR = 3.45). In the previous chapter (Chapter 6), I have 

shown though direct genotyping of the MAPT H2 tagging SNP (rs8070723), that 

conversely the H2 haplotype is associated with an increased risk of Pick’s disease (OR 

1.35).  

The rarity of PiD, combined with the difficulty of diagnosing the underlying pathology 

in life (due to lack of in vivo biomarkers and low clinico-pathological correlations), 

has impeded large scale genetic studies in this disease185,186. To overcome these issues, 

as part of the PhD I established the Pick’s International Consortium (PIC) (see Pick’s 

disease International Consortium (PIC)) and collected the largest number of PiD 
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cases to date to enable better powered genetic studies. There have been numerous 

GWASs in PSP; two case-control studies167,194, one investigating the genetic 

determinants of PSP phenotype195, and the most recent focused on association between 

genetic variation and survival198. There have been no equivalent studies yet performed 

in PiD.  

The aim of this study was to perform a GWAS using autopsy-confirmed cases from 

the PIC, to identify genes that modify the risk for developing PiD, and so better 

understand the underlying pathophysiology with the hope that this will lead to new 

therapeutic approaches. 

7.2   Methods 

7.2.1 Study design and participants  

Due to the rarity of PiD, and the consequent sample size, I was only able to perform a 

discovery case-control GWAS. Future work will need to validate the findings from 

this work in an independent PiD cohort. 

At the time of this study, 321 neuropathogically confirmed PiD cases were available 

from the PIC (see Pick’s disease International Consortium (PIC)), recruited from 

31 international clinical or pathological research centres in the UK, France, Italy, 

Netherlands, Germany, Italy, Spain, Sweden, Australia, United States and Canada 

(Table 7.1). Of the 321 cases, 151 were from the UCL cohort and 170 from MCJ. For 

inclusion, all cases had to meet the strict PIC diagnostic criteria for PiD (as defined in 

Neuropathological diagnosis of Pick’s disease); as a minimum there needed to be the 

presence of Pick bodies with 3R tau positive and 4R tau negative inclusions. The 

additional presence of ballooned neurons and positive Gallyas staining was preferred 

to confirm diagnosis. All samples were screened for the known MAPT mutations; the 

MCJ samples by direct sequencing, and the UCL samples by using the NeuroBooster 

Array that covers all known MAPT variants. Clinical and demographic data was 

collected for all cases, and included age at symptom onset, age at death and gender. 

This information was used to calculate the total disease duration, defined as age at 

death – age at symptom onset. Age at symptom onset was defined as the age at which 

first symptoms appeared, including initial cognitive dysfunction in judgment, 

language, or memory, or changes in behaviour or personality. Healthy controls with 
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no clinical signs of neurological disease were collected with the aim of having a ~1:3 

ratio (cases:controls), a similar age (defined as age at blood draw), and similar gender 

balance to cases. Controls were obtained from two sources; the Global Parkinson’s 

Genetics Program (GP2)311, and the Invasive Fungal Infection and GENetics 

(IFIGEN) cohort312.  

The appropriate institutional review boards for each site approved the study, and 

written informed consent was obtained for each participant.   
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Table 7.1 - Overview of total PiD samples included, broken down by contributing site. 

Contributing Site Country # samples 

UCL Institute of Neurology cohort (Europe / Australia)  151 

   

Netherlands Brainbank, Amsterdam Netherlands 33 

UCL Queen Square Brain Bank, London UK 18 

Neurological Tissue Bank, Biobanc-Hospital Clínic-IDIBAPS, Barcelona Spain 14 

Manchester Brain Bank, Manchester UK 11 

Cambridge Brain Bank, Cambridge UK 11 

London Neurodegenerative Diseases Brain Bank, London UK 8 

South West Dementia Brain Bank, University of Bristol UK 8 

Sydney Brain Bank, Sydney Australia 8 

Neurobiobank München, Munich Germany 7 

Oxford Brain Bank, Oxford UK 7 

Newcastle Brain Tissue Resource, Newcastle-upon-Tyne UK 7 

Neuro-CEB Biobank France, Paris France 5 

Victorian Brain Bank, Florey Institute, Parkville, VIC Australia 5 

Douglas-Bell Canada Brain Bank, Montreal, QC Canada 3 

The Brain Bank at Karolinska Institutet, Stockholm Sweden 3 

Fondazione IRCCS Instituto Neurologico Carlo, Milan Italy 2 

DZNE e.V. Standort Tübingen Germany 1 

Mayo Clinic, Jacksonville cohort (North America)  170 

   

Mayo Clinic, Jacksonville, FL/Rochester, MN USA 55 

University of California, San Francisco, CA USA 21 

University of Pennsylvania, Philadelphia, PA USA 18 

Massachusetts General Hospital, Boston, MA USA 15 

Northwestern University, Chicago, IL USA 14 

Banner Sun Health Research, Sun City, AZ USA 9 

Sunnybrook Health Research, Toronto, ON Canada 9 

Columbia University, New York City, NY USA 9 

Emory University, Atlanta, GA USA 7 

University of British Columbia Hospital, Vancouver. BC Canada 5 

Houston Methodist Hospital, Houston. TX USA 4 

Krembil Research Institute, University of Toronto, Toronto, ON Canada 2 

UCLA - Sepulveda, Los Angeles, CA USA 1 

Parkwood Institute, University of Toronto, Toronto, ON Canada 1 

Total PIC samples  321 
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7.2.2 DNA preparation  

For the majority of samples, DNA was extracted from each subject at their respective 

collection site (UCL or MCJ) as detailed in Chapter 2 (DNA preparation). I was 

responsible for the DNA extraction from all UCL samples, and Dr. Rebecca Valentino 

for all MCJ samples.  

7.2.3 Genotyping 

As detailed in Chapter 2 (Whole-genome microarray genotyping), all samples from 

MCJ (North American samples), Sydney (Australasia samples) and IFIGEN controls 

were genotyped by the local teams on the Illumina Global Screening Array version 3 

(GSA). GP2 controls were genotyped on the Illumina NeuroBooster Array (NBA) by 

the local teams. All UCL samples (European samples) were genotyped at UCL 

Genomics on the Illumina NeuroBooster Array; I carried out the DNA sample quality 

control and preparation for genotyping including the NanoDrop and Qubit fluorometry 

and plated all samples which were then delivered to UCL Genomics for genotyping.  

Raw IDAT files were shared with me at UCL, and I called genotypes using 

GenomeStudio version 2.0 (Illumina), as detailed in Chapter 2 (Genome-wide 

genotype calling). All UCL cases and GP2 controls were screened for known MAPT 

mutations covered by the NBA and were excluded from downstream analysis if a 

MAPT mutation was identified. MCJ samples had already been screened for MAPT 

mutations before being included in the study. 

7.2.4 Quality control and imputation 

I performed standard quality control procedures in PLINK (v1.9)444 and R (4.0.5, 

2021-03-31) at the individual sample level and then the SNP level . I performed all the 

quality control (QC) steps detailed below separately for the NBA and GSA samples. 

Post-QC each dataset was imputed separately, then merged post-imputation based on 

overlapping SNPs for downstream analysis. 

Samples with a low overall genotyping rate (<98%), related individuals (Identity-By-

Descent PIHAT>0.1), and heterozygosity outliers (>2SDs away from the mean) were 

removed, as were individuals where clinically reported biological sex did not match 

genetically determined sex. I also excluded variants with a missingness rate > 5%, 
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minor allele frequency (MAF) < 0.01 and Hardy-Weinberg equilibrium (HWE) 𝑝 < 

1x10-6. I performed principal component analysis (PCA) (see Principal component 

analysis) on a linkage disequilibrium (LD) pruned set of variants (removing SNPs with 

an r2 > 0.5 in a 50kb sliding window shifting five SNPs at a time), after merging with 

the HapMap3 reference panel (Figure 7.1A and Figure 7.1B) for NBA and GSA 

datasets respectively). Individuals who deviated more than six standard deviations 

(6SD) from the mean of the first 10 principal components of the HapMap3 CEU 

population were excluded from the analysis. 

I imputed the two genotyping array datasets (NBA and GSA) separately against the 

Haplotype Reference Consortium (HRC) reference panel (version r1.1 2016; 

http://www.haplotype-reference-consortium.org/) in the Michigan Imputation Server 

(RRID:SCR_017579; https://imputationserver.sph.umich.edu) using Minimac4 

(version 1.0.0; https://genome.sph.umich.edu/wiki/Minimac4). Imputed variants were 

excluded if the imputation information R2 was ≤ 0.7 and the genotype posterior 

probability was ≤ 0.9, to ensure that only high-quality genotype calls were retained 

for further analysis. I then merged the two datasets based on shared variants, and 

variants with missingness >5% and minor allele frequencies < 1% were also excluded. 

Ancestry was then rechecked on the merged dataset using the same procedure as 

detailed above, excluding any further samples that were greater than 6SD from 

the mean of the first 10 principal components of the CEU population (Figure 7.1C). 

After this final extraction of European-ancestry samples I re-calculated the first ten 

principal components and used as these as covariates in the association analysis 
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Figure 7.1 - Genetic principal component plots. First two principal components of the NBA 

(A) and GSA (B) and combined dataset (C) plotted against the HapMap3 Genome Reference 

Panel. These data include cases and controls. The NBA and GSA datasets are plotted before 

samples more than 6SD from the mean of the first 10 principal components were removed. For 

the combined dataset (C) all samples are within 6SD of the CEU reference population (outliers 

removed), which is expanded in the figure to the right.  
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7.2.5 Association analysis 

I used logistic regression (see Logistic (and linear) regression) to test the additive 

genetic model of each variant for association with disease status using PLINK v1.9. I 

applied stepwise logistic regression (step function in R stats package [version 3.6.2]) 

to identify the optimal number of covariates to include in the GWAS (from gender, 

genotype array, age and PC1-10) that minimised the AIC and maximised the R2. Using 

this method, the final covariates used in the logistic GWAS were gender, genotype 

array, age (at death for cases and age at blood draw for controls), and three principal 

components (PC1, 8 and 10), which gave an AIC of 1027 and an R2 of 0.40. I defined 

a genome-wide significant threshold at 𝑝 < 5 x 10-8,  with a threshold of 𝑝 < 5 x 10-6 

for a suggestive (nominal) association. Variant positions are reported on human 

genome version 37 (GRCh37/hg19). 

7.2.6 Genomic risk loci definition and gene mapping 

I used FUMA (described in more detail in Functional Mapping and Annotation of 

GWAS (FUMA)) to annotate and functionally map the variants included in the 

GWAS343. I defined genomic risk loci around variants with 𝑝<5 x 10-6, and included 

all variants correlated (𝑅2 > 0.6) with the most significant variant. Genomic risk loci 

within 250 kilobases (kb) of each other were incorporated into the same locus. The 

individual genomic risk loci were mapped genes using positional and eQTL mapping; 

for positional mapping all variants within 10kb of a gene in the genomic risk locus 

were assigned to that gene. For eQTL mapping, FUMA maps variants on the basis of 

significant eQTL interactions in the PsychEncode, BloodeQTL, CMC, and GTEXv8 

(Brain and whole blood) data repositories. To identify whether any of the lead SNPs 

were eQTLs for gene expression I used GTEXv8. Regional association plots were 

generated in LocusZoom (RRID:SCR_021374; https://my.locuszoom.org/), and 

LDProxy was used to identify any deleterious variants in high linkage disequilibrium 

(LD) with variants of interest (https://ldlink.nci.nih.gov/?tab=ldproxy)445 in European 

populations (excluding the Finnish population).  

https://my.locuszoom.org/
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7.2.7 Conditional analysis 

To understand whether there were one or more variants at the same locus contributing 

to the signal at each genomic risk locus, I performed conditional analysis on single 

SNPs using a conditional and joint association approach446. I used the GWAS 

summary statistics and the AMP-PD cohort (n = 10,418) as the reference sample for 

linkage disequilibrium estimation. The reference sample went through the same QC 

steps as described above for the PiD cohort. I used CGTA-COJO software (v.1.93.0 

beta for Linux; https://yanglab.westlake.edu.cn/software/gcta/#Overview)357 to 

perform association analyses conditioned on SNPs of interest.  

7.2.8 Fine-mapping and functional annotation 

To nominate causal variants, fine-mapping was applied using SuSiE (v. 0.12.27; 

https://github.com/stephenslab/susieR)447 and FINEMAP 

(v.1.3.1;http://www.christianbenner.com/)448 on all variants within 1Mb of the lead 

variant of each genomic risk loci. A credible set, in the context of a multiple regression 

model, is defined as a subset of variants that has a 95% probability of 𝑝, or greater, of 

containing at least one effect variant (i.e. a variant with a non-zero regression 

coefficient). SuSiE calculates the credible set using a simple model-fitting algorithm, 

Iterative Bayesian Stepwise Selection (IBSS), that fits a “single effects" regression 

model at each step449. FINEMAP on the other hand uses a Shotgun Stochastic Search 

(SSS) algorithm that explores the causal configuration space by concentrating effort 

on those configurations with non-negligible probability448. To compute the SNPs 

correlation matrix necessary to infer the SNPs credible set, I used the 503 European 

ancestry individuals from the Phase 3 of the 1000 Genomes Project.  

The echolocatoR R package (V. 1.4; https://github.com/RajLabMSSM/echolocatoR) 

was used to report the Union Credible Set SNPs (UCS), which is the union of all tool-

specific CS95%, as well as the Consensus SNPs, which are those nominated from the 

two fine mapping tools. 

 To further investigate cis and trans regulatory mechanisms in these nominated 

genomic regions, each locus was mapped to brain cell type specific enhancer-promoter 

interactome data, to regulatory elements data from the FANTOM5 

(RRID:SCR_002678) project450,451, and to functional DNA elements from the 

https://yanglab.westlake.edu.cn/software/gcta/#Overview
https://github.com/stephenslab/susieR
http://www.christianbenner.com/
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ENCODE dataset (RRID:SCR_006793, https://www.encodeproject.org/)348 using the 

echolocatoR R package as detailed above. 

7.2.9 Colocalisation analysis 

To investigate whether there was an overlap between the  GWAS loci that reached 

nominal significance (𝑝 < 5x10-6) and expression quantitative trait loci (eQTLs), a 

colocalization analysis was performed using the coloc R package for all genes within 

± 1Mb of the lead genomic loci SNP (version 5.1.0; https://cran.r-

project.org/web/packages/colocr/index.html)356. More detail on this method is given 

in Chapter 2 (Colocalisation analysis). Given coloc calculates Bayes factors under 

the assumption that there is a single casual variant at a locus, I first performed 

conditional analysis (see Conditional analysis), to confirm that there were no 

additional independent signals and so ensure that this assumption of a single casual 

variant was met. 

I used cortex-specific cis-eQTLs from MetaBrain (https://www.metabrain.nl/)452; this 

is the largest meta-analysis of brain eQTLs studies available to date, providing more 

confident effect sizes and significance estimates, hence increasing the power and the 

certainty when doing colocalisation analyses. Coloc was run using default priors; these 

are the prior probabilities that any random SNP in the region is associated with trait 1 

or trait 2, p1=10-4 and p2=10-4. A threshold of p12=5 x 10-6 was used for the p12 prior, 

which is the probability that a SNP in the region is associated with both traits. Loci 

with a posterior probability of hypothesis 4 (PP.H4) ≥ 0.85 were considered as 

significant evidence of colocalization between the GWAS and the eQTL traits (one 

shared causal variant). I used a more conservative threshold for PP.H4 than used in the 

original work by Giambartolomei et al356 (0.75), in line with more recent work where 

a threshold of 0.85453 or even 0.90446 has been used on GWAS data.  

In addition, to investigate whether the  nominated loci regulate alternative splicing, a 

similar approach was followed using cortex splicing QTLs (sQTLs) from the 

GTEXv8351 containing all variant-gene association from 255 individuals, based on 

LeafCutter (version 0.2.9 RRID:SCR_017639; 

https://davidaknowles.github.io/leafcutter/)454. 

https://www.encodeproject.org/
https://cran.r-project.org/web/packages/colocr/index.html
https://cran.r-project.org/web/packages/colocr/index.html
https://www.metabrain.nl/
https://davidaknowles.github.io/leafcutter/
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7.2.10 Assessment of gene transcript and protein 

expression of lead genes 

Brain expression profiles of gene transcripts and encoded proteins highlighted by the 

GWAS were assessed, using a range of different publicly available online data sources. 

Bulk RNA and protein expression was assessed using The Human Protein Atlas 

(RRID:SCR_006710; https://www.proteinatlas.org/)455. This resource provides 

consensus RNA expression data derived from the GTEXv8 RNA-seq, Human Protein 

Atlas (HPA) RNA-seq and the FANTOM CAGE datasets. Protein expression by tissue 

is based on tissue profiles generated from 6120 antibodies with more than five million 

immunohistochemistry-based images covering 5067 human genes, corresponding to 

approximately 25% of the human genome456.  

Cell specific RNA expression was investigated using the Brain RNA-Seq database 

(RRID:SCR_017483; https://www.brainrnaseq.org/)457, and single cell RNA-seq data 

provided by DropViz (http://dropviz.org/)458. Data in the Brain RNA-seq dataset was 

generated from healthy temporal lobe samples resected from 14 patients intra-

operatively. The cell types sequenced from these samples were mature astrocytes 

(n=12), microglia (n=3), oligodendrocytes (n=3) and neuron (n=1). DropViz provides 

gene expression on 690,000 individual cells derived from nine different regions of the 

adult mouse brain. Predicted protein interaction networks were investigated using the 

STRING database (RRID:SCR_005223; https://string-db.org/). 

7.2.11 Candidate variant analysis 

Specific variants that have previously been identified in related diseases were extracted 

to check whether they showed any association with risk of PiD. This included variants 

identified in the primary tauopathies (PSP167,195,298, CBD169 and primary aged-related 

tauopathy (PART)459 and clinically diagnosed FTD204. I also checked for an 

association between MAPT haplotypes and risk of PiD, by extracting the six MAPT 

variants that define the H1-subhaplotype structure (see MAPT SNP Genotyping). In 

particular, I wanted to confirm the association of the H2 haplotype with risk of PiD 

that I demonstrated in Chapter 6 when directly genotyping the six MAPT sub-

haplotype defining SNPs. Finally, I checked whether ApoE genotype460 and 

TMEM106B166 were associated with risk of PiD disease. APOE genotypes were 

https://www.proteinatlas.org/
http://dropviz.org/
https://string-db.org/
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inferred from the imputed genotypes of rs7412 and rs429358 variants. I also tested for 

an association between either ApoE genotype or MAPT H2 haplotype, age at onset and 

survival (age at death - age at onset). 

7.3   Results 

7.3.1 Cohort characterisation 

A total of 321 autopsy confirmed PiD cases were considered for inclusion from 31 

different brainbanks in the PIC (Table 7.1). Of these, 143 cases were genotyped on 

the NBA (all from the UCL series), and 178 cases were genotyped on the GSA (171 

from the Mayo series and 7 from Sydney collected as part of the UCL series). 1446 

controls were considered for inclusion (989 from NIH that were genotyped on the 

NBA, and 457 from IFIGEN genotyped on the GSA). Samples excluded at each stage 

of the QC process are summarised in Figure 7.2. After thorough quality control and 

filtering, 294 cases (135 NBA and 159 GSA), and 1055 controls (980 NBA and 75 

GSA), covering 6,316,457 variants were available for association analysis. Due to the 

young average age of the IFIGEN controls compared to the GSA genotyped cases 

(Mean, SD; 37.7 years ± 12.1 vs 70.1 years ± 7.6; 𝑡 = -31, p <0.05), I only selected 

GSA controls older than 50yrs for selected for inclusion. This resulted in 75 GSA 

controls being selected (55.7 years ± 5.6) that were more closely matched in age, while 

still leaving enough GSA genotyped controls to allow inclusion of array type as a 

covariate to regress out array batch effects in the association analysis. Demographics 

and basic clinical characteristics of the samples included for analysis are summarised 

in (Table 7.2). The median age of onset for cases was 58 years (min-max; 33-80 

years), median age at death 70 years (40-90 years) with a median survival of 10 years 

(3-25 years). Interestingly there were a higher percentage of men (186/294, 

63.3%) compared to woman (108/294, 36.7%) in the overall cohort, with this 

difference more pronounced in the UCL series (67.4% males vs. 59.7% in the MCJ 

series). 
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Figure 7.2 - Overview of sample quality control for PiD GWAS. Summary of samples excluded at 

each stage of quality control (QC) pre-imputation (PreImp) and post-imputation (PostImp). Final 

number of samples included in GWAS detailed at bottom of figure. 
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Table 7.2 - Clinical characteristics of samples included in GWAS. 

Variable MCJ PiD series1 (GSA) UCL PiD series (NBA) Combined PiD series Controls2 

Sample (n) 159 135 294 1055 

Age (years) 70 (40, 90) 69 (41, 88) 70 (40, 90) 65 (50, 98) 

Age of disease onset (years) 59 (36, 79) 58 (33, 80) 58 (33, 80) N/A 

Disease duration (years) 10 (3, 25) 10 (3, 20) 10 (3, 25) N/A 

Sex     

- Male 95 (59.7%) 91 (67.4%) 186 (63.3%) 558 (52.9%) 

- Female 64 (40.3%) 44 (32.6%) 108 (36.7%) 497 (47.1%) 

The sample median (minimum, maximum) is given for age. Age represents age at death for Pick’s disease cases and age at blood draw in controls. 1 Includes 7 Australasian samples from the UCL 

series which were also genotyped on the GSA-v3. 2 NBA ctls: n = 980, median age (min, max) = 66 (55, 98), GSA ctls: n = 75, median age (min, max) = 54 (50, 72). Abbreviations: GSA = Illumina 

Global Screening Array, PiD = Pick’s disease, MCJ = Mayo Clinic Jacksonville, NBA = Illumina NeuroBooster Array, UCL = University College London 
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7.3.2 MAPT mutations 

All samples included from MCJ and Sydney had negative MAPT mutation screening. 

All UCL samples were screened for known MAPT mutations covered by the NBA at 

the GenomeStudio genotype calling stage. This identified four samples with a total of 

five rare MAPT variants; K280del (GRCh37/hg19 Chr17:44087694 AAG>---), A239T 

(Chr17:44073923 G>A; p.Ala239Thr), S318L (Chr17:44061123 C>T, p.Ser319Leu) 

and V363I (Chr17:44096073 G>A; p.Val363Ile) in the same case, and Q230R 

(Chr17:44060859 A>G; p.Gln305Arg). Of these four samples, two of them failed QC 

(A239T IBD, S318L and V363I > 3SD HZ) so were excluded from the association 

analysis anyway. The K280del was excluded from downstream analysis, while the 

Q230R was included given this is likely a benign polymorphism in MAPT with a MAF 

of 0.05 in the European (non-Finish) population (GnomAD; 

https://gnomad.broadinstitute.org/). The MAF for this variant tagging Q230R in this 

dataset was 0.06 for both cases and controls, supporting the fact that this is unlikely to 

be a deleterious variant in PiD.  

7.3.3 Targeted assessment of candidate variants 

Variants were extracted that have either previously been associated with tauopathies 

or related diseases, to test for an association with PiD (Table 7.3) This confirmed the 

association for the MAPT H2 haplotype (OR: 1.52, 95% CI: 1.18 - 1.97, 𝑝 = 0.001) 

that I previously demonstrated in Chapter 6 through direct genotyping rs8070723 (see 

Association results for the MAPT rs8070723 H2 allele). Six tagging SNPs were used 

to infer H2 and H1 subhaplotypes in MAPT; rs8070723 (H2 tagging variant), 

rs1467967, rs242557 (H1C haplotype-tagging variant), rs3785883, rs2471738, and 

rs7521 There was 100% concordance between the direct genotyping and chip-based 

imputation of these six SNPs. Looking at the frequency of MAPT H1 and H2 

haplotypes one can see that there is a small, but significant increase (Chi square: χ = 

6.04, df =2, p = 0.003) in both H1/H2 heterozygotes (45.6% PiD cases vs. 36.1% 

controls) and H2/H2 homozygotes (6.8% PiD cases vs. 5% controls) (Table 7.4). Of 

the other 17 variants tested, none passed the analysis-wide significance threshold (𝑝 = 

0.05/18; 0.003), though MOBP showed a nominal association (OR: 0.76, 95% CI: 0.59 

– 0.98, 𝑝 = 0.03) which did not survive Bonferroni correction. Neither the ApoE4 

genotype or the MAPT H2 haplotype were associated with age of onset or survival. 
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Table 7.3 - Candidate variant analysis using GWAS data 

Disease Chr SNP Nearest gene OR (95% CI) 
MAF  

(cases) 

MAF  

(controls) 

MAF  

(total cohort) 
𝒑 value 

MAPT (H2) 17 rs8070723 MAPT 1.52 (1.18 - 1.97) 0.29 0.23 0.24 0.001a 

MAPT (H1c) 17 rs242557 MAPT 1.02 (0.80 - 1.20) 0.35 0.34 0.34 0.86 

AD 19 rs429358 ApoE 1.40 (1.02 - 1.93) 0.15 0.13 0.13 0.04 

AD 19 rs7412 ApoE 0.97 (0.66 - 1.43) 0.09 0.09 0.09 0.89 

PSP 1 rs564309 TRIM11 1.31 (0.88 - 1.96) 0.09 0.09 0.09 0.19 

PSP 12 rs2242367 SLC2A13 1.11 (0.86 - 1.42) 0.29 0.26 0.27 0.43 

PSP 1 rs1411478 STX6 1.08 (0.86 - 1.35) 0.42 0.41 0.41 0.51 

PSP 3 rs1768208 MOBP 0.76 (0.59 - 0.98) 0.25 0.28 0.28 0.03b 

PSP 2 rs7571971 EIF2AK3 0.96 (0.74 - 1.25) 0.28 0.26 0.26 0.77 

FTD-TDP 7 rs1990622 TMEM106B 1.24 (0.98 - 1.56) 0.42 0.39 0.40 0.07 

FTD 11 rs302668 RAB38 1.15 (0.90 - 1.45) 0.37 0.35 0.35 0.26 

FTD 11 rs16913634 RAB38/CTSC 0.95 (0.63 - 1.45) 0.09 0.09 0.09 0.81 

FTD 6 rs9268877 HLA-DRA/DRB5 1.04 (0.83 - 1.31) 0.42 0.44 0.44 0.72 

FTD 6 rs9268856 HLA-DRA/DRB5 0.91 (0.70 - 1.19) 0.25 0.24 0.24 0.50 

FTD 6 rs1980493 BTNL2 1.04 (0.74 - 1.46) 0.15 0.14 0.14 0.82 

PART 4 rs56405341 JADE1 1.01 (0.79 - 1.31) 0.27 0.29 0.28 0.91 

CBD 2 rs963731 SOS1 0.63 (0.37 - 1.08) 0.05 0.05 0.05 0.09 

CBD 8 rs643472 lnc-KIF13B-1 1.13 (0.74 – 1.25) 0.23 0.22 0.27 0.35 

Logistic regression additive model adjusted for gender, age, 3 PCs (PC1, 8 and 10) were used to study the association of candidate loci with risk of PiD in the total cohort (294 cases, 1055 

controls). a significant after correction for multiple comparisons (Bonferroni: 𝑝=0.05/18=0.003). b significant without correction for multiple comparisons. Abbreviations: CI = confidence 

interval, MAF = minor allele frequency, OR = odds ratio. Bold text highlights statistically significant variants. 
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Table 7.4 - MAPT Haplotypes from GWAS 

H1/H1 H1/H2 H2/H2 

Cases 47.6% (140) 45.6% (134) 6.8% (20) 

Controls 58.9% (621) 36.1% (381) 5.0% (53) 

Total 56.4% (761) 38.2% (515) 5.4% (73) 

Samples size (n) = 294 controls, 1055 cases within 6SD of CEU. MAPT haplotypes derived from rs8070723 H2 

tagging SNP (minor allele G = H2). Chi square: 𝜒 = 6.04, df =2, 𝑝 = 0.003 

7.3.4 Association Results 

Using a case-control logistic regression model, adjusting for gender, genotype array, 

age and three genetic principal components (PCs 1, 8 and 10) to account for population 

substructure, I assessed the role of 6,316,457 variants in the risk of developing PiD. 

The genomic inflation factor (𝜆) was 0.99 (𝜆1000 = 0.97) demonstrating there was no 

confounding by population stratification. No disease-associated variants reached 

genome-wide significance (𝑝< 5 x 10-8), but there were suggestive associations (𝑝 < 5 

x 10-6) at five genomic loci (Figure 7.3), with the leading SNP at each these loci 

shown in Table 7.5. 

Figure 7.4 shows more detailed regional association plots for each of the five genomic 

loci with suggestive associations. Conditional analyses were performed on the lead 

variant at each of these five loci to confirm that there were no additional independent 

signals. 

rs11216197 (KCTD8) 

The most significant SNP, rs11216197 on Chromosome 4, is an intronic variant 

located in KCTD8 (Odds Ratio (OR) = 7.53,  95% Confidence Interval (CI) = 3.62-

15.65, 𝑝 = 6.37 x 10-8) (Figure 7.4B). The KCTD8 gene encodes a potassium 

tetramerisation domain that facilitates GABAB receptor expression in axonal terminals 

and contributes to presynaptic excitation by GABAB receptors461,462. c.500kb 

downstream of the lead variant there are three genes: YIPF7, GUF1 and GNPDA2. 

rs112161979 is an eQTL for GNPDA2 in blood (GTEXv8; 𝑝 = 6.4 x 10-5) and nerve-

tibial tissue (GTEXv8; 𝑝 = 6.3 x 10-5), and for GUF1 in blood (GTEXv8; 𝑝 = 1.9 x 

10-4), though not for either gene in the brain. GNPDA2 (Glucosamine-6-Phosphate

Deaminase 2) encodes an enzyme that controls flux through the hexosamine 

biosynthetic pathway; increased flux through this pathway  modulates the unfolded 

protein response463, and also mediates endoplasmic reticulum (ER) stress resistance 

and longevity464,465. The GUF1 (GTP Binding Elongation Factor) gene encodes a 
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GTPase that triggers back-translocation of the elongating ribosome during 

mitochondrial protein synthesis. Homozygous variants in GUF1 have been associated 

with West syndrome, an infantile disorder characterised by infantile spasms, 

hypsarrhythmia and developmental regression466. YIPF7 encodes a protein that forms 

the alpha subunit of the YIPF complex 1 that localises to the early compartment of the 

Golgi apparatus (ERGIC) and is recycled between the endoplasmic reticulum and the 

cis-Golgi467. 

rs66481907 (TRIM22) 

The next suggestive association was on Chromosome 11; the lead variant in this region 

was rs66481907 (OR = 2.10,  95% CI = 1.54-2.84, 𝑝 = 1.83 x 10-6), an intronic SNP 

located in the TRIM22 gene (Figure 7.4B). TRIM22 is a member of the tripartite 

motif-containing (TRIM) superfamily, all of which have an E3 ubiquitin ligase 

function, and are involved in a wide range of cellular processes including degradation 

of misfolded proteins468, and regulation of the NLRP3 inflammasome signalling 

pathway469. TRIM22 and TRIM5 also have been shown to have antiretroviral activity 

against a wide range of viruses including HIV, Influenza A, Hepatitis B and C470, and 

play an important role in the innate immune response to infection471. Interestingly the 

rs66481907 SNP is a sQTL for TRIM22 in nerve-tibial tissue (GTEXv8; intron id 

5708603:5709053:clu_7256, 𝑝 = 1.2 x 10-8, is associated with both non-coding 

transcripts with a retained intron, as well transcripts targeted for nonsense mediated 

decay in ENSEMBL (RRID:SCR_002344; ENSEMBL) and has a Combined 

Annotation Dependent Depletion (CADD) score of 10.02 placing it in the top 10% 

most deleterious variants in the genome. 

rs112721576 (GABRG3), rs11881082 (RYR1) and rs7720520 (RANBP3L) 

The final three suggestive genomic loci with variants showing nominal significance 

were Chromosome 15 (lead SNP rs112721576, an intronic variant in GABRG3 (OR = 

3.73,  95% CI = 2.14-6.48, 3.10 x 10-6)), Chromosome 19 (lead SNP rs11881082, a 

splice site variant in RYR1 (OR = 2.96,  95% CI = 1.87-4.69, 4.00 x 10-6), and 

Chromosome 5 (lead SNP rs7720520, an intergenic variant close to RANBP3L (OR = 

1.76,  95% CI = 1.38-2.23, 4.50 x 10-6)) (Figure 7.4C-E). The rs11881082 SNP on 

Chromosome 19 was an eQTL for RYR1 in the amygdala (GTEXv8; 𝑝 = 3.36 x 10-5), 

anterior cingulate cortex (GTEXv8; 𝑝 = 4.22 x 10-11), nucleus accumbens (GTEXv8; 
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𝑝 = 1.05 x 10-8), putamen (GTEXv8; 𝑝 = 3.00 x 10-5) and the caudate (GTEXv8; 2.48 

x 10-11). No eQTLs were identified for the other two variants. GABRG3 encodes the 

GABA Type A receptor subunit gamma, mutations in which have been shown to be 

associated with autism472,473. RYR1 encodes the Ryanodine Receptor Type 1, an 

intracellular calcium channel that mediates the release of calcium from the intra-

cellular stores, and although primarily expressed in the sarcoplasmic reticulum of 

muscle474, it is also expressed at lower levels in the brain; in particular the 

hippocampus and cerebellum475.
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Figure 7.3 - Association plots for PiD. (A) Quantile-quantile (QQ) plot based on 6,316,457 variants after imputation. The genomic inflation factor (lambda λgc) was 0.987. (B) 

Manhattan plot showing -log10 (𝑃) values from logistic regression of imputed variants corrected for age, gender, array and three principal components (PC1, 8 and 10). Red dots 

indicate the variant (rsID and nearest gene labelled) with the lowest 𝑝 value at each genomic locus that reached nominal significance (𝑝 < 5 x 10-6 indicated by the blue dashed 

line). Genome-wide significance was set at 𝑝 < 5x10-8 and indicated by the grey dashed line. 
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Table 7.5 - Top independent SNPs at suggestive loci from PiD GWAS 

     MAF   

Chr BP SNP Nearest gene Minor allele Cases Controls Population* OR (95% CI) 𝒑 value 

4 44,392,571 rs112161979 KCTD8 A 0.040 0.013 0.016 7.53 (3.62-15.65) 6.37 x 10-8 

11 5,724,803 rs66481907 TRIM22 A 0.206 0.126 0.120 2.10 (1.54-2.84) 1.83 x 10-6 

15 27,729,149 rs112721576 GABRG3 G 0.045 0.029 0.038 3.73 (2.14-6.48) 3.10 x 10-6 

19 39,029,201 rs11881082 RYR1 A 0.070 0.050 0.053 2.96 (1.87-4.69) 4.00 x 10-6 

5 36,376,351 rs7720520 RANBP3L G 0.421 0.328 0.337 1.76 (1.38-2.23) 4.50 x 10-6 

Logistic regression additive model adjusted for gender, age, array and 3 PCs (PC1, 8 and 10) was used to study the association between 6,316,457 variants and risk of PiD (294 cases, 1055 

controls). *European Non-Finnish population (GnomAD v2.1.1). Abbreviations: CI = confidence interval, MAF = minor allele frequency, OR = odds ratio 
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Figure 7.4 - Regional association plots and recombination rates at suggestive genomic loci. (C-E) 

Regional association plots at 4: 44392571 (rs112161979) (A), 11: 5724803 (rs66481907) (B), 15: 

27729149 (rs112721576) (C), 19:39029201 (rs11881082) (D), and 5:36376351 (rs7720520) (E). The 

index variants are indicated by a purple diamond and corresponding rsID. Linkage disequilibrium 

between the index variant and nearby variants, as measured by r2, is colour-coded (dark blue: 0 ≤ r2 < 

0.2; light blue: 0.2 ≤ r2 < 0.4; green: 0.4 ≤ r2 < 0.6; orange: 0.6 ≤ r2 < 0.8; red: 0.8 ≤ r2 ≤ 1; grey: no r2 

available). All plots were generated in http://locuszoom.org/. 
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Figure 7.5 - Conditional analyses adjusted for the lead SNP at each suggestive GWAS loci. For 

chromosome 4 (A) Unconditioned Manhattan plot (B) Manhattan plot conditioned on the KCTD8 

variant rs112161979. For chromosome 11 (C) Unconditioned Manhattan plot and (D) Manhattan plot 

conditioned on the TRIM22 variant rs66481907. For chromosome 15 (E) Unconditioned Manhattan plot 

and (F) Manhattan plot conditioned on the GABRG3 variant rs112721576. For chromosome 19 (G) 

Unconditioned Manhattan plot and (H) Manhattan plot conditioned on the RYR1 variant rs11881082. 

For chromosome 5 (I) Unconditioned Manhattan plot and (J) Manhattan plot conditioned on the 

intergenic variant rs7720520 near RANBP3L 
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7.3.5 Fine-mapping and functional annotation 

I decided to focus on the top two lead genomic loci (Chromosome 4 and 11) for this 

analysis. Based on the single causal variant assumption (supported by the conditional 

analysis detailed in Figure 7.5) statistical fine-mapping was performed at these two 

loci with FINEMAP448 and SuSiE447. 

No consensus causal SNPs (supported by both fine-mapping techniques) were 

identified at the lead locus (Chromosome 4). However, SuSiE nominated rs990356 as 

the likely causal SNP (posterior probability 1), a 3’ UTR variant in YIPF7 (Yip1 

Domain Family Member 7) (Table 7.6 and Figure 7.6A). Mapping the Chromosome 

4 locus against genomic regulatory elements did not show any significant signals. 

Fine-mapping of the Chromosome 11 locus also failed to demonstrate a consensus 

causal SNP across the two fine-mapping algorithms. SuSiE nominated three SNPs as 

potentially causal, while FINEMAP nominated one (Table 7.6 and Figure 7.6B). Of 

particular interest was the rs7397032 SNP identified by SuSiE; this is in high LD (D’ 

0.95, R2 0.86) with the lead SNP from the GWAS (rs66481907), is a 3’UTR variant in 

TRIM22. Mapping this region against available genomic regulatory elements  

demonstrated that the lead SNP, and surrounding SNPs in high LD, sit within a 

conserved transcription factor binding site, supporting that this locus is involved in 

transcriptional regulation of surrounding genes (Bottom panel in Figure 7.6B ). 
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Table 7.6 - Fine-mapping results of KCTD8 and TRIM22 loci   

SNP CHR N T_stat FINEMAP.CS FINEMAP.PP SUSIE.CS SUSIE.PP Support Consensus Mean.PP 

rs990356 4 2668 3.80 1 0 2 1 1 FALSE 0.33 

rs11038885 11 2692 4.32 1 0 3 1 1 FALSE 0.25 

rs7397032 11 2688 4.29 1 0 2 1 1 FALSE 0.25 

rs76253329 11 2678 2.26 1 0.96697 0 0 1 FALSE 0.15 

Abbreviation = N, Sample size to do fine-mapping; t_stat = test statistic; CS = Credible Set; PP = Posterior Probability. Mean.PP = the mean posterior probability from the two fine-mapping 

posterior probabilities
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Figure 7.6 - Fine-mapping of the two lead loci. (A) shows the chromosome 4 locus (KCTD8) and (B) shows the chromosome 11 (TRIM22) locus. Transcript plots are shown 

in the top row. The second row shows the GWAS results with the log10 𝒑 value for each SNP (x-axis). The next three rows show the cross tools fine-mapping output (FINEMAP 

and SuSie) and the consensus results (mean) respectively. For the fine-mapping results the x-axis represents the per SNP posterior probability (PP). The final two rows show 

transcription factor binding site (TFBS) data for the region. Row six shows TFBS clustered by cell type from ENCODE and the final row the TFBS density conserved across 

species from XGR (human/mouse/rat). 
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7.3.6 Colocalisation analysis 

To try to further delineate the effects of the chromosome 4 and 11 loci on regulation 

of gene expression, colocalisation analysis was performed using cortical cis-eQTLs 

from the MetaBrain dataset452. There was no evidence of colocalisation (defined as a 

PP.H4 of > 0.85) between the two lead PiD GWAS loci and eQTLs for genes within 

± 1Mb of the locus. At the chromosome 4 locus KCTD8 had a PP.H4 of colocalisation 

of 0.02, while the three genes downstream YIPF7, GUF1 and GNPDA2 had PP.H4s 

of 0.74, 0.81 and 0.72 respectively. At the chromosome 11 locus, TRIM22 and TRIM5 

both had PP.H4s of 0.04. Given the suggestion (though not consensus) that the causal 

SNP for the chromosome 4 signal may be mediated by rs990356 in the 3’ region of 

YIPF7, regional association plots for the eQTL signal from KCTD8 and YIPF7 and the 

PiD GWAS signal were plotted (Figure 7.7). Visual inspection of these plots 

demonstrates that the GWAS signal is more closely aligned with the YIPF7 than the 

KCTD8 eQTL signal and suggests that the GWAS signal at the chromosome 4 locus 

could be mediated by dysregulation of YIPF7 gene expression. However, this 

association did not meet the predefined threshold of certainty for colocalisation and so 

with the current sample size this cannot be confirmed. Given the chromosome 11 lead 

SNP (rs66481907) is a sQTL for TRIM22 in nerve-tibial tissue, I wanted to explore 

whether this region could have a role in alternative splicing of the gene in cortical 

tissue, so performed colocalisation analysis using cortex sQTLs from the GTExv8 

dataset351. Again, there was no evidence for colocalisation of the GWAS signal in this 

region and sQTLs for TRIM22 in cortical tissue (PP.H4: min 0.036, max 0.055).  

Given that there was not a genome wide significant signal at either of the loci, it is 

possible that this study was underpowered to find colocalisation support for 

dysregulated gene expression in these regions. Equally, it may be possible that 

dysregulation of gene expression by these variants is not their mechanism of action. 

Although there was a suggestion of an association for YIPF7 (PP.H4 0.74), GUF1 

(PP.H4 0.81) and GNPDA2 (PP.H4 0.72) at the chromosome 4 locus, the current data 

does not provide strong support for colocalisation in cortical tissue. Likewise, there 

was no evidence of colocalisation of the chromosome 11 signal with cortex sQTLs for 

TRIM22.  
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Figure 7.7 - Regional plots from PiD GWAS and MetaBrain cis-eQTLs for KCTD8 and YIPF7 

genes. The PP.H4 of there being a shared causal variant associated with both PiD (bottom panels) and 

regulation of gene expression (top panels) was 0.02 for KCTD8 (left side) and 0.74 for YIPF7 (right 

side). 

7.3.7 Transcript and protein expression of suggestive 

genes  

Given the suggestion that the causal SNP at the chromosome 4 locus was located in 

YIPF7, I investigated the gene and protein expression profile of this gene in addition 

to KCTD8, alongside TRIM22 located at the chromosome 11 locus.  

KCTD8 transcript expression is enriched in the central nervous system (Figure 7.8A); 

the cerebellum has the highest expression levels (normalised transcripts per million 

(nTPM) 16), with expression in the cerebral cortex, amygdala and hippocampus at 7.0, 

6.4 and 5.4 nTPM respectively. Human single cell RNA-seq data shows that 

oligodendroglia are the most enriched cell type (576.7 nTPM) followed by inhibitory 

neurons (435.3 nTPM), then excitatory neurons (219.9 nTPM). Astrocytes and 

microglia are the least enriched of the brain cell types (164.2 and 69.3 nTPM 

respectively) (Figure 7.8B). Mouse scRNA data suggests that it is specifically 
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habenula neurons that most highly express KCTD8 (Figure 7.8C). At the protein level, 

in keeping with RNA expression levels, immunohistochemistry demonstrates that 

KCTD8 is most highly expressed in the cerebellum and the cerebral cortex (Figure 

7.8D). Figure 7.8E shows the predicted protein interaction network for KCTD8 

protein, highlighting its interactions with GABRG1, GABRA4 and GABRB1 all of 

which are subunits of the GABAa receptor in the human brain. 

The TRIM22 gene on the other hand has low tissue specificity and is ubiquitously 

expressed throughout the body, with highest expression in lymphoid tissues (spleen 

nTPM 143.1) (Figure 7.9A). It is, however, still expressed in the brain with transcript 

expression in the brain ranging from 12.8 nTPM in the thalamus to 29.3 nTPM in the 

white matter. This low specificity is also reflected at the level of protein expression, 

with levels in the brain ranging from low in the cerebellum and hippocampus to 

medium in the cerebral cortex and caudate (Figure 7.9B). The Brain RNA-seq data 

shows that TRIM22 is predominantly expressed microglia within the brain (FPKM; 

39.07 ± 3.36) , with little expression in neurons (FPKM; 0.632) (Figure 7.9C). 

Unfortunately, TRIM22 is not included in the mouse scRNA dataset so I was unable 

to interrogate single cell RNA specificity. Figure 7.9D shows the predicted protein 

interaction network for TRIM22. Of interest is the interaction with promyelocytic 

leukaemia protein (PML also known as TRIM19) a protein that promotes clearance of 

misfolded proteins (including mutant ataxin-7 in Spinal Cerebellar Ataxia Type 7)476 

via the ubiquitin proteosome system (UPS)477. PML has been shown to colocalise with 

TRIM22 in nuclear complexes upon IFN-γ induced TRIM22 expression478. 

Although YIPF7 is predominantly expressed in skeletal muscle (nTPM 84.9), with low 

transcript levels in the bulk brain tissue (cerebellum 5.4 nTPM, cerebral cortex 1.3 

nTPM) (Figure 7.10A), interestingly antibody staining in the Human Protein Atlas 

suggests that the protein is present in the brain with high levels detected in glial cells 

in the hippocampus and medium levels in neurons of the cerebral cortex, caudate and 

cerebellum (Figure 7.10B). However, this discrepancy between RNA and protein 

expression does raise concerns about the specificity of the antibody used in IHC and 

will need to be confirmed in follow-up studies. In addition, although overall RNA 

expression is low in the brain, its expression is enriched specifically within excitatory 

and inhibitory neurons (Figure 7.10C). Further investigation of YIPF7’s protein 

interaction network yields some interesting findings (Figure 7.10D). Firstly, it is 
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predicted to interact with both YIF1A and YIF1B to form the YIPF complex 1467, that 

is localised to the early compartment between the endoplasmic reticulum (ER) and the 

Golgi, and participates in the anterograde recycling of proteins from the ER to the cell 

membrane. YIF1A has been shown to bind VAPB; the VAPB P56S mutation is known 

to cause amyotrophic lateral sclerosis479. Homozygous mutations in YIF1B have 

recently been shown to cause a progressive encephalopathy with global developmental 

delay and cognitive impairment480. Secondly, YIPF7 is also predicted to interact with 

dystrophica myotonica-protein-kinase (DMPK), mutations in which cause myotonica 

dystrophy type 1 (DM1). This is of particular interest given the known association 

between DM1 and predominantly 3R-tau pathology in the brain at post-mortem207,481. 
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Figure 7.8 - KCTD8 RNA and protein expression levels. Comparison of (A) Bulk RNA expression across different tissue types (normalised transcripts per million (nTPM)) 

(B) single cell RNA (scRNA) expression (nTPM) across different cell types (C) Mouse scRNA expression (nTPM) across cell subtypes (D) Protein expression (score: high,

medium, low or not detected on immunohistochemistry) by tissue type (E) Protein-protein interaction network of KCTD8 (predicted interactions: green lines = text mining,

black = co-expression; known interactions:  pink = experimentally determined, light blue = curated databases; purple = protein homology ). (A-B) Consensus data from Human

Protein Atlas, (C) data from DropViz (D) IHC data from Human Protein Atlas (E) Protein interaction data from string-db.org.
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Figure 7.9 - TRIM22 RNA and protein expression levels. Comparison of (A) Bulk RNA expression across different tissue types (normalised transcripts per million (nTPM)) 

(B) Brain RNA expression (nTPM) across different cell types (C) Protein expression (score: high, medium, low or not detected on immunohistochemistry) by tissue type (D)

Protein-protein interaction network of TRIM22 (predicted interactions: green lines = text mining, black = co-expression; known interactions:  pink = experimentally determined,

light blue = curated databases; purple = protein homology ). (A) Consensus data from Human Protein Atlas, (B) data from BrainRNA-seq.org (C) IHC data from Human Protein

Atlas (D) Protein interaction data from string-db.org.
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Figure 7.10 - YIPF7 RNA and protein expression levels. Comparison of (A) Bulk RNA expression across different tissue types (normalised transcripts per million (nTPM)) 

(B) Brain RNA expression (nTPM) across different cell types (B) Protein expression (score: high, medium, low or not detected on immunohistochemistry) by tissue type (C)

Single cell RNA (scRNA) expression clusters for brain cell types (D) Protein-protein interaction network of YIPF7 (predicted interactions: green lines = text mining, black =

co-expression; known interactions:  pink = experimentally determined, light blue = curated databases; purple = protein homology ). (A) Consensus data from Human Protein

Atlas, (B) IHC data from Human Protein Atlas (C) Consensus scRNA data from Human Protein Atlas (D) Protein interaction data from string-db.org.
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7.4   Discussion 

In this chapter using samples collected through the PIC I have conducted the first 

GWAS in 294 autopsy confirmed PiD cases to identify risk factors for developing the 

disease. Unfortunately, no disease-associated common variants reached genome-wide 

significance. Given a previous GWAS of 219 autopsy-confirmed corticobasal 

degeneration (a 4R tauopathy) did identify significant disease-associated common 

variants169, this may indicate that the contribution to disease risk in PiD is governed 

by genetic modifiers with smaller effect sizes that this study was underpowered to 

detect. Although no SNPs reached genome wide significance, there were five 

suggestive genomic loci with nominal association with disease; the top two genomic 

loci were located on chromosome 4 in the KCTD8 gene (rs112161979, 𝑝 = 6.37 x 10-

8), and chromosome 11 in the TRIM22 gene (rs66481907, 𝑝 = 1.83 x 10-6) respectively. 

The association of the MAPT H2 haplotype with risk of PiD was confirmed through 

the candidate variant analysis. A limitation of the direct genotyping method used in 

Chapter 6, was that without genome-wide SNP data for the controls it was not 

possible to regress out genetic principal components, and so there was a possibility 

that population stratification could have influenced the results. This study shows that 

the association remains after controlling for population stratification, and actually 

becomes slightly stronger after accounting for this (OR: 1.52, 95% CI: 1.18 - 1.97, 𝑝 

= 0.001 vs. OR: 1.35, 95% CI: 1.12-1.64, 𝑝 = 0.0021 respectively). There was no 

evidence that the H2 haplotype was associated with age at onset, or survival. The 

ApoE4 genotype was also not associated with age of onset or survival in PiD, which 

is of interest given that previous work has suggested that there is a lower age of onset 

in FTLD-tau cases482 with the ApoE4 allele. However, in their study the FTLD-tau 

cohort contained both individuals with MAPT mutations (53/104) and sporadic FTLD-

tau (51/104) with no break-down of 3R versus 4RT pathology. It is therefore possible 

that, especially given the findings in this study, that this lower age of onset may be 

driven by non-3R tau pathology. 

Variants known to be associated with the 4R tauopathies, PSP and CBD, are not 

associated with PiD, with the exception of MOBP (OR 0.76, 95% CI 0.59 - 0.98, 𝑝 = 

0.03), though this effect did not survive correction for multiple testing. Larger sample 

sizes will be needed to prove or refute the association of MOBP with PiD. At present 
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this data suggests that different variants drive disease risk in the 3R and 4R 

tauopathies, implying that there are different underlying pathophysiological 

mechanisms in PiD compared to the 4R tauopathies.  

The identification of a deltaK280 mutation in one of the cases was confirmed by direct 

sequencing, and re-checking the post-mortem pathology confirmed that this case met 

the PIC criteria for PiD pathology, with minimal AD co-pathology. The pathogenicity 

of the deltaK280 mutation, first described in 1999483, is a topic of long-standing and 

ongoing debate within the field. Although  cell-based work shows it is likely to be 

fibrillogenic (at least for the 4R transcripts) and decreases the 4R/3R tau isoform 

ratio484–486, segregation with underlying  3R tau pathology has yet to be shown and in 

one deltaK280 case the underlying pathology was shown to be AD rather than PiD487. 

My finding of a deltaK280 mutation in a case with 3R tau PiD pathology, in the 

absence of 4R tau on IHC, and minimal AD pathology is in keeping with the 

hypothesis that this mutation abolishes a splice enhancer element in exon 10 leading 

to increased 3R tau transcripts. However, in the absence of data showing segregation 

within family members the debate on deltaK280 pathogenicity in PiD pathology 

remains open.  

The lead signal at the chromosome 4 locus comes from an intronic SNP located within 

the KCTD8 gene. There are no deleterious coding variants in LD with the lead SNP, 

no colocalisation of the GWAS signal in this region with brain eQTLs of KCTD8 or 

the three genes c.500kb downstream (YIPF7, GNPDA2 or GUF1), and fine mapping 

was inconclusive with regards to a consensus causal SNP. However, given the 

colocalisation analysis was likely to be underpowered due to the absence of genome-

wide significance in the GWAS data, we cannot exclude that this variant does not 

actually affect expression of these downstream genes. YIPF7 is an interesting potential 

candidate gene at this locus given its predicted interactions with proteins that when 

mutated are known to cause neurodevelopmental disorders as well as ALS. The 

predicted interaction with the DM1 gene DMPK is also intriguing given the known 

presence of 3R tau at post-mortem in these patients. However, with the data in this 

study it is not possible to confirm the relevance of this gene, and will require better 

powered genetic studies alongside functional studies to confirm or refute its relevance. 

The KCTD8 gene, a member of the potassium channel tetramerisation domain family, 

that acts as an auxiliary subunit facilitating GABAb receptor expression462, is highly 
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expressed within the brain, predominantly in neurons and oligodendrocytes, and the 

protein it encodes has been shown using IHC to be present in the cortex. scRNA 

analysis suggests its expression is specifically enriched in habenula neurons, which is 

supported by in situ hybridisation analysis of KCTD receptor transcripts in the mouse 

brain showing its particular abundance in the medial habenula followed by the 

subiculum of the hippocampus488. The habenula and the subiculum are of interest with 

regards to PiD. The habenula is affected by neurodegeneration in behavioural variant 

FTD (bvFTD) (the most common presentation of PiD) showing a 29% lower volume 

compared to controls489, and its degeneration can lead to perseveration or disinhibition 

and impulsivity22, symptoms commonly seen in bvFTD. The subiculum is commonly 

affected by Pick’s pathology with high densities of Pick bodies found in this part of 

the hippocampus at post-mortem490. The KCTD family of proteins are currently poorly 

characterised, though are increasingly recognised to be involved in a range of 

neurocognitive, neurodevelopmental and neuropsychiatric disorders. These include 

mutations in KCTD3 (global developmental delay, seizures and cerebellar 

hypoplasia)491,492, KCTD13 (autism and schizophrenia)493–495, KCTD17 (myoclonus-

dystonia)496–498, KCTD12 (bipolar 1 disorder)499, and KCTD7 which can cause either 

a severe progressive myoclonic epilepsy syndrome (EPM3)500 or neuronal ceroid 

lipofuscinosis501 depending on the specific mutation. KCTD8, specifically, acts as an 

auxillary subunit of GABAb receptors and has been shown to facilitate their axonal 

expression in habenula cholinergic neurons462. GABA deficits in FTD have long been 

recognised, with evidence that GABAergic neurons are markedly reduced in FTD at 

post-mortem502, with PET503 and MRS imaging studies demonstrating GABAergic 

deficits in vivo504. Overall, the localisation of the lead SNP, and the gene expression 

profiles described above make KCTD8 the most plausible candidate gene at the 

chromosome 4 locus, though further work will be needed both to validate this signal, 

and also delineate the mechanisms by which it contributes to PiD pathology.  

The GWAS signal at chromosome 11 implicates TRIM22. The lead SNP rs66481907 

is a sQTL in nerve tibial tissue for TRIM22, is located in alternatively spliced 

transcripts with retained introns (non-functional) and others targeted for nonsense 

mediated decay, and has a CADD score of 10.02 placing it in the top 10% most 

deleterious variants in the genome. TRIM22 is expressed both at the transcript and 

protein level in the brain and is enriched within microglia in contrast to KCTD8 which 
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is predominantly expressed in neurons. The TRIM family of proteins, the majority of 

which have E3 ubiquitin ligase activity, have a wide range of functions within cellular 

processes including eliminating misfolded proteins (via autophagy505,506, the ubiquitin 

proteosome system (UPS)196,468, and endoplasmic-reticulum associated degradation 

(ERAD)507), antiviral activity508, and regulation of the NF-kB/NLRP3 inflammasome 

pathway509. Mutations in TRIMs are increasingly recognised as a cause of a wide range 

of disease pathologies including a more aggressive phenotype in PSP (TRIM11/17)195, 

cerebral small vessel disease (TRIM47)510, and limb girdle muscular dystrophies 

(TRIM32)511. Although TRIM22 was first identified through its anti-viral properties in 

HIV infection512, more recent work has demonstrated its role autophagy through 

interaction with autophagy regulators ULK1 and Beclin1505,506, as well as effectively 

promoting elimination of misfolded proteins via the UPS during cell transformation513. 

Consistent with this role is the finding that TRIM19/PML, which promotes clearance 

of misfolded proteins (including ataxin-7 in SCA7) via the proteosome476, colocalises 

with TRIM22 in nuclear bodies under IFN-𝛾 stimulation478. Overall, TRIM22 is a 

biologically plausible candidate gene for risk of PiD, based on the hypothesis that 

variation at the chromosome 11 locus modifies the function of the protein (potentially 

through nonsense mediate decay or alternative splicing of gene transcripts), leading to 

decreased degradation of toxic 3R tau protein via the UPS and / or the autophagy 

pathway(s).   

There are a number of limitations to this study. Ideally a GWAS should have a two-

stage design with a discovery phase that identifies a “genome-wide significant” signal, 

followed by a replication phase where this signal remains significant after correction 

for multiple testing. Despite collecting all of the known autopsy-confirmed cases of 

PiD worldwide, the sample size was still small by GWAS standards. The study is likely 

underpowered even for this discovery GWAS, and there was certainly no way to 

conduct a two-stage study to validate the findings. The lack of clinico-pathological 

correlation meant it was also not possible to meaningfully enrich for PiD pathology 

from the main FTD clinical presentations. This would require in vivo biomarkers to 

distinguish PiD pathology from 4R tauopathies (including PSP and CBD) and also 

from TDP-43 pathology at a minimum. Given the estimated number of autopsy-

confirmed cases per year that will be collected from the PIC brainbank network is only 

10-15 per year, without these biomarkers it will not realistically be feasible to replicate
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the findings from this study within the next 5-10 years. I hope that not only will this 

work stimulate hypotheses for further functional and biomarker studies, but also that 

the PIC will provide a network for neuroscience centres to coordinate collection of 

future cases with a standardised set of pathological diagnostic criteria.  

Another limitation of this study was that apart from direct genotyping of the six MAPT 

variants, there was no direct genotyping of lead SNPs at the suggestive loci and thus 

genotypes were inferred from imputed data. Although stringent QC thresholds were 

used, including an R2 of ≥0.7 and the genotype posterior probability was ≥ 0.9 for 

imputed genotypes, small errors in the frequency of minor alleles in cases versus 

controls could have a significant impact on variant effect size and therefore the 

𝑝 value. This is especially true for the lead variant on chromosome 4 which was a 

relatively rare variant with minor allele frequency of 0.011 (1.1%) in controls (0.016 

[1.6%] in European Non-Finish population in GnomAD), and 0.040 (4%) in cases. In 

future work it will be necessary to directly sequence the suggestive regions highlighted 

in this study both to confirm the genotypes, and also check (especially for the 

chromosome 4 locus) whether the GWAS signal is actually tagging a deleterious 

mutation.  

7.5   Conclusions and future work 

In this chapter I have performed the first GWAS with the aim of identifying the genetic 

drivers of disease risk in PiD. The data confirms that the MAPT H2 haplotype is 

associated with PiD, as opposed to the more common H1 haplotype in PSP and CBD. 

Known risk variants for the 4R tauopathies are not associated with disease, which 

suggests that the underlying genetic architecture of disease risk for PiD is distinct. This 

has important implications for the future development of therapeutics to treat PiD, and 

emphasises the need for  PiD specific biomarkers to identify these individuals in life. 

KCTD8, the most plausible gene at the lead locus, modulates GABAb receptor 

expression within anatomically relevant regions of the brain and implicates 

dysregulation of the GABAergic neurons as an important driver of disease pathology. 

This is supported by the other suggestive association within the GABRG3 gene (a 

GABAa receptor subunit) on chromosome 15. In addition, common variation in 

TRIM22 may also play a role in disease pathogenesis, potentially through perturbation 
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of the UPS and its ability to eliminate toxic tau species, representing a potential target 

for disease modifying therapies. 

Future work should focus on further GWASs with larger sample sizes to confirm or 

refute the findings from this study, whole genome sequencing of the lead loci to 

identify if rare deleterious variants are driving the signals here, and functional studies 

to unravel how these genes may be contributing to PiD risk.  
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Chapter 8:  Genetic determinants of survival in 

Pick’s disease: a genome-wide association study 

The contents of this chapter form part of a manuscript which is currently in preparation 

for submission.  

8.1    Introduction 

Pick’s disease (PiD) is a rare and sporadic neurodegenerative tauopathy characterised 

by the aggregation of three-repeat (3R) tau in neuronal argyrophilic Pick bodies, 

predominantly in the frontal and temporal regions61. PiD usually develops in those 

over the age of 55 years, with average survival approximately ten years form symptom 

onset61–65,67. There is, however, significant variation in survival with some individuals 

surviving for more than 20 years61.  

In progressive supranuclear palsy (PSP), a related tauopathy characterised by 

deposition of four repeat (4R) tau, tau seeds from PSP cases injected into primates 

induce a PSP syndrome with prion-like seeding and trans-synaptic spread of 

pathology514. Although less well studied than PSP, and characterised by deposition of 

a different isoform of tau (3R), “prion-like” seeding of tau followed by its spread 

through the brain could also underlie disease pathogenesis in PiD. Indeed, 

neuropathological studies are consistent with the sequential spread of tau pathology in 

PiD, with Irwin et al.62 proposing that 3R tau deposition progresses in a sequential 

pattern starting in the limbic/paralimbic and neocortical regions progressing to the 

subcortical regions, followed by the primary motor cortex and finally the visual cortex. 

Clinical disease progression mirrors the sequential spread of pathology through the 

brain, with differing regional neuronal susceptibility to pathology proposed to account 

for the specific temporal sequence. Variation in survival between individuals may be 

explained, at least in part, by differing genetic susceptibility or resistance to the spread 

of the underlying pathology through different brain regions.  

The majority of genome-wide studies in neurodegenerative disease have focused on 

identifying genetic susceptibility loci that increase the risk of disease (case-control 

studies) and have provided powerful insights into the underlying pathways that are 

associated with disease. In Chapter 7 apply this methodology to identify genomic loci 
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that are implicated in PiD pathogenesis. However, there is increasing recognition that 

the genetic risk factors for developing disease may be different to the risk factors for 

clinical progression and survival. In PSP genetic variation at the LRRK2 locus is 

associated with survival though not disease risk198, while in Parkinson’s disease (PD) 

there is minimal overlap between variants associated with PD risk and PD motor or 

cognitive progression515. Given that future clinical trials in PiD will likely focus on 

disease modifying therapies that slow or halt disease progression in individuals that 

have already developed the disease (i.e. diagnosed with PiD), it is important to 

understand whether there are unique genetic risk factors for disease progression and 

survival independent of those for disease risk. This understanding may provide 

important biological insights that spur new hypotheses for therapeutic intervention. 

The aim of this study was to identify genetic determinants of survival (symptom onset 

to death) in PiD cases of European ancestry, by performing a Cox-proportional hazards 

genome wide survival study (GWSS).  

8.2   Methods 

8.2.1 Study design and participants 

For the initial selection, pathology confirmed PiD cases identified through the PIC (see 

Total cases collected by the PIC) were recruited from 31 international clinical or 

pathological research centres in the UK, France, Italy, Netherlands, Germany, Italy, 

Spain, Sweden, Australia, United States and Canada. For inclusion, all cases had to 

meet the strict PIC diagnostic criteria for PiD (Figure 2.6); as a minimum there needed 

to be the presence of Pick bodies with 3R tau positive and 4R tau negative inclusions. 

The additional presence of ballooned neurons and positive Gallyas staining was 

preferred to confirm diagnosis. All samples were screened for the known MAPT 

mutations; the MCJ samples by direct sequencing, and the UCL samples by using the 

NBA that covers all known MAPT variants. Clinical and demographic data was 

collected for all cases, and included age at symptom onset, age at death and gender. 

This information was used to calculate the total disease duration, defined as age at 

death – age at symptom onset. Age at symptom onset was defined as the age at which 

first symptoms appeared, including initial cognitive dysfunction in judgment, 

language, or memory, or changes in behaviour or personality. Only samples that had 
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clinical information to allow calculation of disease duration (age at symptom onset 

and age at death) were included in the study. 

The appropriate institutional review boards for each site approved the study, and 

written informed consent was obtained for each participant. 

8.2.2 DNA extraction and Genotyping 

DNA was extracted and samples were genotyped as detailed in Chapter 2 (DNA 

preparation and Whole-genome microarray genotyping). 

8.2.3 Quality control and imputation 

I performed standard pre-imputation quality control, imputation and post-imputation 

quality control as detailed in Chapter 7 (Quality control and imputation) The only 

QC step that differed in this study was the application of the variant missingness rate 

threshold. Due to the fact that the sample size was smaller in this study than the case-

control GWAS, I applied a more stringent variant missing rate (<1%) threshold to try 

and prevent false positive signals. As before for each array I generated genetic 

principal components to identify sample ancestry, and excluded any sample greater 

than 6SD from the CEU population in HAPMAPv3 (Figure 8.1).  
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Figure 8.1 - Genetic principal component plots. First two principal components of the GSA (A) and 

NBA (B) and combined dataset (C) plotted against the HapMap3 Genome Reference Panel. The NBA 

and GSA datasets are plotted before samples more than 6SD from the mean of the first 10 principal 

components were removed. For the combined dataset (C) all samples are within 6SD of the CEU 

reference population (outliers removed), which is expanded in the figure to the right. 

8.2.4 Survival analysis 

I carried out a time-to-event genome-wide survival study (GWSS) in R (version 4.05), 

using the Cox proportional hazards (CPH) function in the survival package (version 

3.2.11; RRID:SCR_021137; https://CRAN.R-project.org/package=survival), with an 

event defined as death which was regressed against each SNP along with covariates. 

This results in each SNP having a hazard ratio (HR), 95% confidence interval (CI) and 

a 𝑝 value. I tested all SNPs for adherence to the proportional hazards assumption. The 

Schoenfeld residuals for all reported SNPs were not time dependent (Cox.zph 𝑝 > 

0.05), demonstrating that the proportional hazards assumption was met. To identify 

the optimal number of covariates to include in the final model I performed a stepwise 

CPH regression analysis using the stepwiseCox function in the StepReg package, with 

https://cran.r-project.org/package=survival
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default settings (version 1.4.3;  https://cran.r-

project.org/web/packages/StepReg/index.html). The best model was selected such that 

the Akaike Information Criterion (AIC) was minimised, and the amount of variance 

(𝑅2) explained by the model was maximised. Using this method, the final covariates

selected were array, age at onset, and three principal components (PC2, 6 and 8) which 

gave an AIC of 2483 and an R2 of 0.13. I defined a genome-wide significant threshold 

at 𝑝 < 5 x 10-8,  with a threshold of 𝑝 < 5 x 10-6 for a suggestive (nominal) association. 

Variant positions are reported on human genome version 37 (GRCh37/hg19). I 

generated Manhattan plots of the PiD survival GWAS, and Kaplan-Meier (KM) 

survival curves of lead SNPs using R (version 4.0.5) and the survfit function (for KM 

survival curves) from the survival package (version 3.4.0, https://cran.r-

project.org/web/packages/survival/index.html). 

8.2.5 Genomic risk loci definition and gene mapping 

As detailed in Chapter 2 (Functional Mapping and Annotation of GWAS (FUMA)), 

I used FUMA to annotate and functionally map the variants included in the GWAS. I 

used the same settings as previously detailed in Chapter 7 (Genomic risk loci 

definition and gene mapping). 

8.2.6 Conditional analysis 

To understand whether there were one or more variants at the same locus contributing 

to the signal at each genomic risk locus, I performed conditional analysis on genome 

wide loci single SNPs with a 𝑝 < 5 x 10-7 using a conditional and joint association 

approach446, as detailed in Chapter 7 (Conditional analysis).  

8.2.7 Fine-mapping and functional annotation 

I performed fine-mapping and functional annotation of the lead loci using the same 

methods as detailed in Chapter 7 (Fine-mapping and functional annotation). For the 

fine-mapping in addition to using SuSiE and FINEMAP,  I also used coloc (version 

5.1.0; https://cloud.r-project.org/web/packages/coloc/index.html)356 and PolyFun-

SuSiE (v. 1.0; https://github.com/omerwe/polyfun)516. Coloc, like SuSiE and 

FINEMAP, is a purely statistical fine-mapping method that does not incorporate 

functional data into the model. Coloc calculates an approximate Bayes factor (ABF) 

https://cran.r-project.org/web/packages/StepReg/index.html
https://cran.r-project.org/web/packages/StepReg/index.html
https://cloud.r-project.org/web/packages/coloc/index.html
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for all the variants in a defined region around the index variant (± 500kb); variants are 

ordered by their posterior probabilities and sequentially added to the credible set until 

the cumulative sum is >0.95 (95% credible set). In contrast to the other three methods, 

PolyFun prioritises variants in enriched functional annotations by specifying prior 

causal probabilities in proportion to the predicted per-SNP heritabilities516 (these 

priors are then used as input to statistical fine-mapping algorithms (in this case to 

SuSiE, hence the name PolyFun-SuSiE). 

8.2.8 Colocalisation analysis 

To investigate whether there was an overlap between the lead GWSS loci (which I 

defined in this study as any loci with lead SNP 𝑝 <5x10-7) and expression quantitative 

trait loci (eQTLs), I performed a colocalisation analysis using the coloc R package for 

all genes within ± 1Mb of the lead genomic loci SNP (version 5.1.0; https://cran.r-

project.org/web/packages/colocr/index.html)356. More detail on this method is given 

in Chapter 2 (Colocalisation analysis). Given coloc calculates Bayes factors under 

the assumption that there is a single casual variant at a locus, I first performed 

conditional analysis, as detailed in Chapter 7 (Conditional analysis), to confirm that 

there were no additional independent signals and so ensure that this assumption of a 

single casual variant was met.  

I used both cortex-specific cis-eQTLs from MetaBrain (https://www.metabrain.nl/)452 

and blood-specific cis-eQTL from the eQTLGen dataset (https://www.eqtlgen.org/)517. 

Coloc was run using default priors; these are the prior probabilities that any random 

SNP in the region is associated with trait 1 or trait 2, 𝑝1=10-4 and 𝑝2=10-4. A 

threshold of 𝑝12=5 x 10-6 was used for the 𝑝12 prior, which is the probability that a 

SNP in the region is associated with both traits. Loci with a posterior probability of 

hypothesis 4 (PP.H4) ≥ 0.85 were considered as significant evidence of colocalization 

between the GWSS and the eQTL traits (one shared causal variant). A more 

conservative threshold for PP.H4 than used in the original work by Giambartolomei et 

al356 (0.75), in line with more recent work where a threshold of 0.85453 or even 0.90446  

has been used for GWAS data. 

https://www.eqtlgen.org/
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8.2.9 Assessment of gene transcript and protein 

expression of lead genes 

I assessed brain expression profiles of gene transcripts and encoded proteins 

highlighted by the GWSS, using the same methods described in Chapter 7 

(Assessment of gene transcript and protein expression of lead genes). 

8.2.10 Candidate variant analysis 

I extracted specific variants that have previously been identified in related diseases to 

check whether they showed any association with risk of PiD. This included variants 

identified in the primary tauopathies (PSP167,195,198, CBD169 and primary aged-related 

tauopathy (PART)459) and clinically diagnosed FTD204. I checked for an association 

between MAPT haplotypes and PiD survival, by extracting the six MAPT variants that 

define the H1-subhaplotype structure (see MAPT SNP Genotyping). I also checked 

whether ApoE genotype460 and TMEM106B518 were associated with PiD survival. 

APOE genotypes were inferred from the imputed genotypes of rs7412 and rs429358 

variants. Finally, I checked whether the lead SNPs from the five suggestive genomic 

loci from the PiD case-control GWAS (Table 7.5) were associated with survival.  

8.3   Results 

8.3.1 Cohort characterisation 

At the time of this study 321 autopsy confirmed PiD cases from 31 recruitment sites, 

diagnosed pathogically according to the PIC neuropathological criteria (Figure 2.6), 

were available for inclusion in the study (Table 7.1). Of these, 143 cases 

were genotyped on the NBA (all from the UCL series), and 178 cases were 

genotyped on the GSA (171 from the Mayo series and 7 from Sydney collected as 

part of the UCL series). After quality control (pre and post imputation) and 

imputation, 272 cases (134 NBA and 138 GSA), covering 3,227,157 variants were 

available for survival analysis (Figure 8.2). 
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Figure 8.2 - Overview of sample quality control for PiD GWSS. Summary of samples excluded at 

each stage of quality control (QC) pre-imputation (PreImp) and post-imputation (PostImp). Final 

number of samples included in GWSS detailed at bottom of figure. 

Demographics and basic clinical characteristics of the samples included in the GWSS 

are summarised in Table 8.1. The median age of disease onset was 58 years (min-

max; 33-80 years), the median age at death of 69 years (min-max; 40-90 years) 

resulting in a median disease duration of 10 years (min-max; 3-25 years). These 

was very little variation between these figures across the two arrays, with both 

having a similar variation in disease duration. Figure 8.3 shows the distribution of 

disease duration for the whole cohort, confirming a wide variation in survival for PiD. 

There was a higher percentage of men (172/272, 63.2%) vs women (100/272, 36.8%), 

with the difference more pronounced in the UCL series than the MCJ series 

(67.2% vs 59.4% respectively). 

All samples included from MCJ and Sydney had negative MAPT mutation screening. 

All UCL samples were screened for known MAPT mutations covered by the 

Neurobooster array at the GenomeStudio genotype calling stage. The MAPT mutations 

identified and those excluded from further analysis have already been detailed in 

Chapter 7 (MAPT mutations). 



 

 272 

Table 8.1 - Clinical characteristics of samples included in GWSS. 

 

 MCJ PiD series1 

(GSA) 

UCL PiD series 

(NBA) 

Combined  

PiD series 

Sample (n) 138 134 272 

Age (years) 70 (40, 90) 69 (41, 88) 69 (40, 90) 

Age of disease onset (years) 59 (36, 79) 58 (33, 80) 58 (33, 80) 

Disease duration (years) 10 (3, 25) 10 (3, 20) 10 (3, 25) 

Sex    

- Male 82 (59.4%) 90 (67.2%) 172 (63.2%) 

- Female 56 (40.6%) 44 (32.8%) 100 (36.8%) 

The sample median (minimum, maximum) is given for age. Age represents age at death for Pick’s disease cases.   
1 Includes 8 Australasian samples from the UCL series which were also genotyped on the GSA-v3.. Abbreviations: 

GSA = Illumina Global Screening Array v3, PiD = Pick’s disease, MCJ = Mayo Clinic Jacksonville, NBA = 

Illumina NeuroBooster Array, UCL = University College London 

 

 

Figure 8.3 - Distribution of disease duration across PiD cohort. Histogram of survival times (disease 

duration defined as time from first symptom onset to death in years) with survival plotted on the 𝑥-axis 

and count on the 𝑦-axis.  
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8.3.2 Targeted assessment of candidate variants 

Variants were extracted that have either previously been associated with tauopathies 

and related diseases or identified in the case-control GWAS (Table 7.5) to test for an 

association with PiD. The results are summarised in Table 8.2. Of the 23 variants 

tested only rs7720520 (chromosome 5, nearest gene RANDBP3L), that was the lead 

SNP at one of the nominally associated genomic loci in the PiD case-control (HR 1.76, 

95% CI 1.38-2.23, 𝑝 = 4.5 x 10-6) showed an association with survival (HR 1.24, 95% 

CI 1.04-1.47, 𝑝 = 0.02) though this did not survive correction for multiple comparisons 

(Bonferroni threshold: 𝑝 < 0.002) 
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Table 8.2 - Candidate variant analysis using GWSS data. 

        Effect Allele Frequency   

Disease Chr BP SNP Effect allele Nearest gene HR 95% CI PiD survival NFE 𝒑 value 

Tauopathy 17 44081064 rs8070723 G (H2) MAPT 0.99 0.80-1.21 0.3015 0.1972 0.91 

Tauopathy 17 44019712 rs242557 A (H1c) MAPT 1.02 0.84-1.22 0.3314 0.3725 0.87 

AD 19 45411941 rs429358 C ApoE 1.01 0.79-1.29 0.1562 0.1486 0.95 

AD 19 45412079 rs7412 T ApoE 0.88 0.67-1.14 0.0978 0.0767 0.33 

PSP 1 228585562 rs564309 A TRIM11 0.95 0.71-1.26 0.0882 0.0989 0.70 

PSP 12 40413698 rs2242367 A SLC2A13 0.97 0.80-1.18 0.2907 0.2820 0.78 

PSP 1 180962282 rs1411478 A STX6 1.04 0.88-1.24 0.4320 0.5881 0.64 

PSP 3 39523003 rs1768208 T MOBP 1.22 0.99-1.49 0.2371 0.2714 0.06 

PSP 2 88895351 rs7571971 T EIF2AK3 0.97 0.79-1.19 0.2708 0.2726 0.76 

FTD-TDP 7 12283787 rs1990622 G TMEM106B 1.11 0.94-1.31 0.4185 0.4055 0.21 

FTD 11 87876911 rs302668 C RAB38 1.04 0.88-1.24 0.3759 0.3569 0.63 

FTD 11 87934068 rs16913634 A RAB38/CTSC 0.94 0.67-1.32 0.0787 0.0965 0.74 

FTD 6 32431147 rs9268877 A HLA-DRA/DRB5 0.90 0.76-1.07 0.4265 0.4436 0.23 

FTD 6 32429719 rs9268856 A HLA-DRA/DRB5 1.14 0.89-1.45 0.2335 0.2759 0.29 

FTD 6 32363215 rs1980493 C BTNL2 0.81 0.56-1.17 0.1434 0.1530 0.26 

PART 4 130085480 rs56405341 A JADE1 0.86 0.71-1.05 0.2731 0.2896 0.14 

CBD 2 39216873 rs963731 T SOS1 1.11 0.75-1.66 0.0515 0.0483 0.59 

CBD 8 29153777 rs643472 C lnc-KIF13B-1 1.05 0.86-1.28 0.2331 0.2296 0.63 

PiD 4 44392571 rs112161979 A KCDT8 1.08 0.69-1.70 0.0392 0.016 0.74 

PiD 11 5724803: rs66481907 A TRIM22 1.07 0.86-1.32 0.2118 0.120 0.56 

PiD 15 27729149 rs112721576 G GABRG3 0.83 0.55-1.25 0.0466 0.038 0.37 

PiD 19 39029201 rs11881082 A RYR1 1.14 0.83-1.56 0.0757 0.053 0.43 

PiD 5 36376351 rs7720520 G RANBP3L 1.24 1.04-1.47 0.4240 0.337 0.02a 

Cox proportional hazards model adjusted for age at onset, array and 3 PCs (PC2, 6 and 8) was used to study the association of candidate loci survival (time from symptom onset to death) in PiD 

(272 cases).a significant uncorrected for multiple comparisons (Bonferroni: p=0.05/23=0.002). Abbreviations: CI = confidence interval, NFE = Non-Finnish Europeans (GnomAD), HR = hazard 

ratio 
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8.3.3 Identification of genetic determinants of survival in 

Pick’s disease 

Using a CPH survival model, adjusting for genotyping array, age at onset and three 

genetic principal components (PCs 2, 6 and 8) to account for population substructure, 

I assessed the role of 3,227,157 variants in survival for those with underlying PiD 

pathology. The genomic inflation factor (𝜆) was 1.04 suggesting minimal confounding 

from population stratification (Figure 8.4A). There was a genome-wide significant 

association signal at chromosome 3 (Figure 8.4B), with two SNPs in the NLGN1 

gene reaching the genome-wide significance threshold (Table 8.3). All genomic loci 

with a nominally significant lead SNP (𝑝 < 5 x 10-6) identified using FUMA are 

summarised in Table 8.4. 

Table 8.3 - Top independent genome wide significant SNPs from PiD GWSS 

Effect allele 

frequency 

Chr BP SNP 
Effect 

Allele 

Nearest 

gene 
HR 95% CI 

PiD 

Cohort 
NFE 𝒑 value 

3 173570502 rs76490009 C NLGN1 6.06 3.11-11.82 0.0184 0.0169 4.23E-08 

3 173572356 rs190532340 A NLGN1 6.06 3.11-11.82 0.0184 0.0201 4.23E-08 

Cox proportional hazards model adjusted for gender, age at onset, 3 PCs (PC2, 6 and 8) were used to study the 

association of candidate loci with survival (time from symptom onset to death) in PiD (272 cases). Abbreviations: 

BP = base pair, Chr = Chromosome, CI = confidence interval, NFE = Non-Finnish Europeans (GnomAD v2.1.1), 

OR = odds ratio 

Both of the lead SNPs, rs76490009 (GRCh37/hg19 genome assembly, 

chr3:173570502) and rs190532340 (GRCh37/hg19 genome assembly, 

chr3:173572356) (Figure 8.4C) had the same HR and 𝑝 value (HR 6.06, 95% CI 3.11-

11.82, 𝑝 = 4.23 x 10-8) (Table 8.3). The SNPs were in high linkage disequilibrium as 

measured by 𝐷′ (1) though had a lower 𝑅2 (0.6) due to differences in the underlying

population minor allele frequencies (MAF) (rs76490009 = 0.0169 vs rs190532340 = 

0.0201). In the PiD cohort the MAFs for each was identical (0.0185).  
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Figure 8.4 - Association plots for PiD survival GWAS.      

(A) Quantile-quantile (QQ) plot based on 3,227,157 variants 

after imputation. The genomic inflation factor (lambda λgc) 

was 1.04. (B) Manhattan plot showing -log10 (P) values from 

logistic regression of imputed variants corrected for age at 
onset, array and three principal components (PC2, 6 and 8). Red 

dots indicate the variant (rsID and nearest gene labelled) with 

the lowest p value the genomic locus that reached genome-wide 

significance (p < 5 x 10-8) indicated by the black dashed line). 

Nominal significance was set at p < 5x10-6  and is indicated by 
the blue dashed line. (C) Regional association plots and 

recombination rates at lead locus. The index variants are 

indicated by a purple diamond and corresponding rsID. Linkage 

disequilibrium between the index variant and nearby variants, 

as measured by r2, is colour-coded (dark blue: 0 ≤ r2 < 0.2; light 
blue: 0.2 ≤ r2 < 0.4; green: 0.4 ≤ r2 < 0.6; orange: 0.6 ≤ r2 < 

0.8; red: 0.8 ≤ r2 ≤ 1; grey: no r2 available). All plots were 

generated in http://locuszoom.org/.
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Table 8.4 - Lead Genomic Loci from PiD GWSS (𝒑 < 5 x 10-6) 

Effect allele frequency 

Chr BP SNP Effect Allele Nearest gene HR 95% CI PiD Survival NFE 𝒑value 

3 173570502 rs76490009 C NLGN1 6.06 3.11-11.82 0.0185 0.0169 4.23E-08 

18 44593746 rs55682632 G KATNAL2 4.89 2.63-9.07 0.0222 0.0246 4.86E-07 

8 3552391 rs77405284 C CSMD1 7.98 3.55-17.93 0.0129 0.0154 4.97E-07 

9 78557508 rs5022354 A PCSK5 2.38 1.69-3.36 0.0762 0.0956 6.53E-07 
14 77460200 rs12435060 G IRF2BPL:RP11-7F17.1 2.78 1.85-4.18 0.0500 0.0506 7.86E-07 

17 78864497 rs2672883 T RPTOR 7.29 3.3-16.11 0.0130 0.0201 9.30E-07 

3 134279279 rs62271502 T CEP63 3.45 2.10-5.69 0.0277 0.0200 1.11E-06 

1 62587111 rs140486433 T INADL 6.88 3.13-15.11 0.0130 0.0112 1.56E-06 
4 187824750 rs423093 C MRPS36P2 1.99 1.50-2.64 0.1259 0.1267 1.76E-06 

20 49520302 rs6096175 A ADNP 7.72 3.33-17.89 0.0111 0.0187 1.85E-06 

6 91596780 rs56302597 A MAP3K7 3.32 2.03-5.45 0.0332 0.0587 1.89E-06 

7 42503417 rs61638218 A AC027269.2 4.61 2.46-8.67 0.0203 0.0130 2.02E-06 

4 98276739 rs996455 T STPG2:RP11-681L8.1 4.12 2.30-7.41 0.0241 0.0387 2.13E-06 
7 67661041 rs35946692 A RP5-945F2.3 2.77 1.82-4.23 0.0463 0.0480 2.32E-06 

6 80307871 rs113616685 C SH3BGRL2 5.21 2.63-10.35 0.0148 0.0200 2.35E-06 

4 180441783 rs76896758 T RP11-404J23.1 2.32 1.63-3.29 0.0648 0.0745 2.63E-06 

2 51957838 rs11563091 G AC007682.1 5.31 2.64-10.65 0.0167 0.0390 2.69E-06 

2 153497962 rs186630669 T FMNL2 7.69 3.28-18.04 0.0111 0.0099 2.77E-06 
11 108445649 rs11212714 A EXPH5 4.89 2.51-9.51 0.0185 0.0215 3.02E-06 

3 149283200 rs149355495 G WWTR1 5.20 2.6-10.41 0.0167 0.0242 3.16E-06 

17 75838777 rs62077154 A FLJ45079 5.58 2.7-11.52 0.0148 0.0166 3.35E-06 

11 72433925 rs61894163 A ARAP1 6.08 2.84-13.01 0.0130 0.0196 3.36E-06 

1 70496017 rs111722349 C LRRC7:RP11-181B18.1 3.87 2.19-6.85 0.0185 0.0237 3.38E-06 
2 161292848 rs116362068 T RBMS1 5.71 2.74-11.91 0.0148 0.0097 3.45E-06 

20 29989958 rs62204599 T DEFB121 3.43 2.04-5.78 0.0297 0.0392 3.63E-06 

4 18216699 rs76182690 T LCORL 4.10 2.25-7.47 0.0223 0.0167 3.92E-06 

14 98419836 rs140025898 G C14orf64 3.35 2.00-5.59 0.0316 0.0239 3.99E-06 

5 168519124 rs144408570 G SLIT3 7.22 3.12-16.73 0.0112 0.0148 4.00E-06 
10 33452029 rs111383576 C NRP1 3.87 2.17-6.87 0.0241 0.0296 4.07E-06 

6 85531998 rs192911302 C TBX18 6.08 2.81-13.17 0.0130 0.0121 4.62E-06 

Lead SNP for each genomic locus defined using FUMA standard setting. Cox proportional hazards model adjusted for gender, age at onset and three PCs (PC2, 6 and 8) were used to study the 

association of candidate loci with survival (time from symptom onset to death) in PiD in the total cohort (272 cases).Abbreviations: BP = base pair, Chr = Chromosome, CI = confidence interval, 

NFE = Non-Finnish Europeans (GnomAD v2.1.1), OR = odds ratio. 
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There were no proxy coding variants in high linkage disequilibrium with either of the 

two lead variants on chromosome 3 (using the LD Proxy tool). Conditional analyses 

at the chromosome 3 locus adjusting for both rs76490009 and rs190532340 in turn, 

did not reveal any other independent SNPs contributing to the signal at the 

chromosome 3 locus (Figure 8.5A-C). I also performed conditional analysis for the 

other locus on chromosome 18 (rs55682632 an intronic variant in KATNAL2; HR 

4.89, 95% CI 2.63-9.07, p = 4.86 x 10-7), which again did not reveal any other 

independent SNPs contributing to the chromosome 18 signal (Figure 8.5D-E). 

Figure 8.5 - Conditional analyses adjusted for the lead SNP at the top two GWSS loci. For 

chromosome 3 (A) Unconditioned Manhattan plot (B) Manhattan plot conditioned on the NLGN1 

variant rs76490009 and (C) conditioned on the NLGN1 variant rs190532340. For chromosome 181 (C) 

Unconditioned Manhattan plot and (D) Manhattan plot conditioned on the KATNAL2 variant rs556826 
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The minor allele (defined as the effect allele) for both of the genome wide significant 

SNPs on chromosome 3 were associated with worsening survival (Figure 8.6); 

6.30 yrs SD ± 1.57 yrs for those carrying one effect allele versus 10.77 yrs SD ± 4.05 

for those not carrying an effect allele (unpaired two-tailed t test, t statistic = 8.04, p = 

1.19 x 10-6 ). No individuals survived longer than 10 years in the heterozygous state 

(CPH log rank test = 70.58 on 6 df, p =3 x-13). Using the summary statistics from 

the PiD case-control GWAS, there was no association between either SNP and 

risk of PiD (rs76490009: OR 1.08, 95% CI 0.46-2.53, p = 0.86 and rs190532340: 

OR 1.03, 95% CI 0.44-2.28, p = 0.99).  
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Figure 8.6 - Survival curves for genome-wide significant SNPs. Kaplan-Meier curves for PiD survival (disease duration, yrs from symptom onset to death) based on (A) rs76490009 and (B) 

rs190532340 allele number. Statistical analysis was conduction using Cox proportional hazards models in 272 PiD samples. Both SNPs met the proportional hazards assumption. (C) Table showing 

mean survival by allele dosage for each SNP. Unpaired two-tailed 𝒕-test performed to compare means between two allele dosage groups. 
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8.3.4 Fine-mapping and functional annotation 

Given the conditional analysis results, statistical and functional fine-mapping was 

performed under the single variant assumption on the genome-wide significant locus 

on chromosome 3. No consensus SNPs were identified (Figure 8.7), though given 

rs76490009 had a higher CADD score (8.76) versus  rs190532340 (0.39) I nominated 

this putative causal SNP out of the two. 

The potential effects of the lead GWSS loci in controlling gene expression were then 

investigated using available genomic regulatory elements datasets. The chromosome 

3 locus was mapped against 1) functional DNA elements from the ENCODE dataset 

(Figure 8.8) 2) cell-type specific enhancer marks (Figure 8.9) and 3) regulatory 

elements data from the FANTOM5 dataset (Figure 8.10) respectively). The only 

finding of note was that the genome wide signal is located at a transcription factor 

binding site within the NLGN1 gene (Figure 8.8), suggesting that variation at this site 

may affect transcription factor binding and therefore dysregulate gene expression. In 

support of this there is a proxy SNP in high linkage disequilibrium (rs73035447, 

𝑅2=0.94, 𝐷′= 1) with the lead SNP (rs76490009), that in the Regulome database 

(RegulomeDB) has high chromatin accessibility in the brain based on DNase-seq and 

is predicted to be part of a transcription factor binding motif. 
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Figure 8.7 - Fine-mapping of the NLGN1 locus. The first five rows show the cross tools fine-mapping 

output (ABF, FINEMAP, SUSIE and POLYFUN-SUSIE) and the mean values across all tools with the 

fine-mapping posterior probabilities (PP) plotted on the x-axes.  
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Figure 8.8 - Transcription factor binding site mapping at the NLGN1 locus. ENCODE and XGR 

transcription factor binding site plots (on bottom 3 rows), with GWSS locus, transcript and SUSIE fine-

mapping and mean plots respectively in top five rows. 
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Figure 8.9 - Cell-type specific regulatory element mapping at NLGN1 locus. Cell type specific 

regulatory element marks from Nott dataset (bottom two rows) with top seven rows showing GWAS 

loci, transcript and fine-mapping plots respectively. 
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Figure 8.10 - Enhancer element mapping at NLGN1 locus. The bottom row shoes the FANTOM5 

enhancer marks from the FANTOM project, with GWAS loci, transcript and fine-mapping plots 

respectively on top seven rows. 
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8.3.5 Colocalisation analysis 

Using FUMA I mined available eQTL datasets, but this failed to show that either of 

the two lead SNPs were associated with altered gene expression of NLGN1 or any 

nearby genes. I therefore performed co-localisation analysis to further evaluate 

whether there was an overlap between SNPs modulating survival and gene expression. 

Given the absence of additional signals at the top two genomic loci, confirmed through 

conditional analysis, the single variant assumption require for colocalisation analysis 

was met. eQTLS were obtained from the eQTLGen and MetaBrain Cortex datasets, 

and the coloc package was used to test for colocalisation with genes within ±1mb of 

the GWSS loci with a 𝑝 value < 5 x 10-7. Of note, NLGN1 was present in the MetaBrain 

cortex data but not in the eQTLGen data. There were no colocalisation signals for any 

gene at the chromosome 3 locus (GWSS signal, 𝑝 = 4.23 x 10-8) or at the 

chromosome 18 locus (GWSS signal, 𝑝 = 4.86 x 10-7) (Table 8.5).  

Table 8.5 - Colocalisation analysis of MetaBrain and eQTLGen datasets for genomic loci 𝒑< 

5x10-7 

Dataset Gene PP.H0 PP.H1 PP.H2 PP.H3 PP.H4 

eQTL_CORTEX SPATA16 0.759 0.138 0.08 0.014 0.010 

eQTL_CORTEX RNF165 0.679 0.184 0.099 0.027 0.012 

eQTL_CORTEX NAALADL2 0.676 0.165 0.118 0.029 0.012 

eQTL_CORTEX IER3IP1 0.669 0.150 0.136 0.030 0.015 

eQTL_CORTEX SKOR2 0.614 0.142 0.185 0.043 0.016 
eQTL_CORTEX ST8SIA5 0.540 0.131 0.247 0.06 0.022 

eQTL_CORTEX PSTPIP2 0.512 0.141 0.252 0.069 0.026 

eQTL_CORTEX ATP5F1A 0.488 0.134 0.276 0.076 0.026 

eQTL_CORTEX CSMD1 0.448 0.237 0.194 0.103 0.019 

eQTL_CORTEX NLGN1 0.337 0.070 0.463 0.096 0.033 
eQTL_CORTEX ELOA2 0.398 0.088 0.369 0.082 0.063 

eQTL_CORTEX ZBTB7C 0.009 0.002 0.781 0.153 0.055 

eQTL_CORTEX PIAS2 0.000 0.000 0.777 0.182 0.041 

eQTL_CORTEX LOXHD1 0.029 0.007 0.739 0.183 0.041 

eQTL_CORTEX C18orf25 0.048 0.013 0.70 0.193 0.046 
eQTL_CORTEX SMAD2 0.013 0.003 0.727 0.180 0.076 

eQTL_CORTEX HAUS1 0.000 0.000 0.736 0.202 0.062 

eQTL_CORTEX HDHD2 0.000 0.000 0.726 0.161 0.113 

eQTL_CORTEX KATNAL2 0.000 0.000 0.682 0.160 0.158 

ciseQTL_blood PIAS2 0.000 0.000 0.679 0.162 0.159 
ciseQTL_blood IER3IP1 0.000 0.000 0.769 0.173 0.057 

ciseQTL_blood RNF165 0.000 0.000 0.738 0.212 0.050 

ciseQTL_blood PSTPIP2 0.000 0.000 0.710 0.196 0.094 

ciseQTL_blood ATP5F1A 0.000 0.000 0.746 0.212 0.041 

ciseQTL_blood HAUS1 0.000 0.000 0.731 0.208 0.061 
ciseQTL_blood C18orf25 0.000 0.000 0.747 0.207 0.046 

ciseQTL_blood LOXHD1 0.000 0.000 0.757 0.198 0.044 

ciseQTL_blood KATNAL2 0.000 0.000 0.764 0.178 0.058 

ciseQTL_blood HDHD2 0.000 0.000 0.764 0.174 0.062 

ciseQTL_blood SMAD2 0.000 0.000 0.753 0.195 0.053 
ciseQTL_blood CSMD1 0.000 0.000 0.639 0.328 0.033 

ciseQTL_blood ZBTB7C 0.000 0.000 0.722 0.161 0.117 

ciseQTL_blood UTP18 0.050 0.014 0.662 0.183 0.092 

ciseQTL_blood HDHD2-AS 0.000 0.000 0.766 0.174 0.061 

ciseQTL_blood Lnc-CTIF-8 0.000 0.000 0.753 0.195 0.053 

eQTL_CORTEX = MetaBrain cortex eQTLS, ciseQTL_blood = eQTLGen blood eQTLs. PP.H = posterior 

probability of hypothesis 0,1,2,3, or 4. 
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8.3.6 Gene and protein expression 

Given the fact that the lead SNP was located within NLGN1, combined with its 

location in a transcription factor binding site, and the lack of evidence for it modulating 

expression of any genes within 1Mb, made it the most likely candidate gene at the 

chromosome 3 locus. I therefore went on to investigate NLGN1’s gene and protein 

(Neuroligin1) expression profiles in the brain. 

NLGN1 RNA transcript expression is enriched within the central nervous system 

(Figure 8.11A); the cerebellum has the highest expression levels (normalised 

transcripts per million (nTPM) 31.0), with the amygdala, hippocampus and cerebral 

cortex all showing similar levels (12.6 nTPM, 12.5 nTPM and 12.1 nTPM 

respectively). Protein expression mirrors gene expression with high Neuroligin1 

protein expression, as measured through antibody staining, in the cerebral cortex and 

the hippocampus (Figure 8.11B). Consensus human scRNA data from the HPA shows 

that gene expression is highly enriched in oligodendrocyte precursor cells (3834.34 

nTPM), inhibitory and excitatory neurons (1658.7 nTPM and 1462.4 nTPM 

respectively) and oligodendrocytes (1191.2 nTPM) (Figure 8.11C). This enrichment 

within neurons and oligodendrocytes is supported by cell type data from the Brain 

RNA-seq dataset (Figure 8.11E). Mouse scRNA data suggests that the gene is 

specifically enriched within Layer 5 neurons (Neuron_Layer5_bcl6 and 

Neuron_Layer5_Parm1) in the posterior and frontal cortex respectively, as well as 

CA3 neurons in the hippocampus (Neuron_CA2CA3_Pvrl3-Rgs15-Calb2) and the 

substantia nigra (Neuron_CA3_C1ql3) (Figure 8.11E). The protein interaction 

network for Neuroligin1 shows it interacts with Neurexin 1, a pre-synaptic cell surface 

protein , as well as other post-synaptic proteins including DLG4 (PSD-95), SHANK1, 

SHANK2 and GRIN1 (Figure 8.11F). 
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Figure 8.11 - NLGN1 RNA and protein expression levels. 
Comparison of (A) consensus Bulk RNA expression across different 
tissue types (normalised transcripts per million (nTPM)) from HPA 

dataset (B) protein expression (score: high, medium, low or not 

detected on immunohistochemistry) by tissue type from HPA dataset 
(C) consensus single cell RNA (scRNA) expression (nTPM) across 

different cell types from HPA dataset (D) mouse scRNA expression 
(nTPM) across cell subtypes from DropViz (E) brain RNA 

expression (nTPM) across different cell types from BrainRNA-

seq.org (F) protein-protein interaction network of NLGN1 (predicted 
interactions: green lines = text mining, black = co-expression; known 

interactions:  pink = experimentally determined, light blue = curated 
databases; purple = protein homology).  
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8.3.7 Neuroligin 1  

On balance, the evidence supports NLGN1 as the most likely candidate gene at the 

chromosome 3 locus, with the possibility that the SNP at this locus modulates 

transcription factor binding, thus altering expression of the gene.  

Neuroligin 1, the protein coded for by the NLGN1 gene, belongs to the neuroligin 

superfamily; a group of trans-synaptic cell adhesion molecules anchored at the post-

synaptic membrane, that act as synaptic organisers involved in the functional 

maturation and identity specification of the synapse519. Their main binding partners 

are neurexins on the pre-synaptic membrane520. The neuroligin-neurexin bridge 

stabilises the synapse as well as functionally coupling the post-synaptic density with 

the pre-synaptic complex that is responsible for neurotransmitter release521–523  and 

endocytosis524. Mutations in the genes of these proteins have been demonstrated in a 

range of neurodevelopmental disorders including schizophrenia and autism519,525,526.  

Neuroligin1, specifically, is usually expressed in neurons at post-synaptic excitatory 

synapse densities523 and has been implicated in a range of neurological and 

neuropsychiatric disorders including schizophrenia, autism and stroke527–529. The 

relevance of Neuroligin1 (and its binding partner Neurexin1) in AD and other 

tauopathies has been emphasised in a number of studies over the last decade; a 

truncating mutation in the gene has been shown to cause AD pathology530, amyloid-𝛽 

protein oligomers were shown to bind Neuroligin1 in vitro and modulate synaptic 

integrity531,532, and there is evidence that Neuroligin1 levels can be decreased in 

different brain regions in Alzheimer’s disease as well PiD, CBD and PSP533,534. Work 

in rat models suggests that neuroinflammation triggered by amyloid deposition results 

in the epigenetic suppression of Neuroligin1, and subsequent impairment of synaptic 

function and memory535. 

Overall NLGN1 constitutes a promising candidate gene for modifying survival in PiD, 

though from this study it is unclear whether the lead SNP’s effect is effect is to increase 

or decrease NLGN1 expression. Further work will be required both to validate the 

finding in an independent PiD cohort, as well as functional studies in model systems 

(such as induced pluripotent stem cells) to better understand the effect of the lead SNP 

on NLGN1 expression and how this perturbs the underlying biological pathway to 

impact on PiD survival.  
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8.3.8 Potential candidate genes 

Finally, I searched for potential candidate genes with a 𝑝 value near the genome-wide 

significant threshold that could be relevant to PiD survival. 30 independent genomic 

loci were identified where the lead SNP had a suggestive 𝑝 value < 5 x 10-6 (Table 

8.3). The nearest genes to some of these variants are involved in pathways known to 

contribute to neurodegeneration, including complement (CSMD1)536 and autophagy 

(RPTOR)537,538, as well as pathways involved in neuronal microtubule stabilisation 

(KATNAL2, ADNP)539, and dendrite development (NRP1)540. CSMD1 is a complement 

inhibitor, that in its native state opposes the complement cascade in neural tissue, 

preventing synaptic pruning by microglia541. Common variation at CSMD1 is a risk 

factor for both schizophrenia542 and is also associated with immediate episodic 

memory in healthy adults543. Recently heterozygous mutations in this gene have also 

been shown to cause familial Parkinson’s disease544.  

Of particular interest with regards to PiD and tauopathy are KATNAL2 on chromosome 

18 (lead SNP rs55682632, HR 4.89, 95% CI 2.63-9.07, 𝑝 = 4.86 x 10-7) and ADNP on 

chromosome 20 (lead SNP rs6096175, HR 7.72, 95% CI 3.33-17.89, 𝑝 = 1.85 x 10-6). 

The protein encoded by KATNAL2, though poorly characterised, is part of the Katanin 

family which function as microtubule-severing enzymes regulating the development 

of neuronal protrusions through cytoskeletal rearrangements545. In normal 

physiological conditions microtubules are protected from the basal microtubule 

severing capacity of Katanin by microtubule-bound tau546,547. The gene has been 

consistently associated with autistic spectrum disorders (ASD), with 49 mutations so 

far identified in patients with ASD and other neurodevelopmental disorders548. ADNP 

(activity dependent neuroprotective protein) is essential for brain formation and 

function549, and its expression has been found to be dysregulated in a range of 

neurological and neurodegenerative disorders including schizophrenia550,551, 

Parkinson’s disease441 and Alzheimer’s disease552. ADNP deficiency in mice causes 

pathological tau hyperphosphorylation concomitant with cognitive dysfunction553, and 

heterozygous mutations in the gene cause a neurodevelopmental disorder with a 

tauopathy evident at post-mortem554. Interestingly, ADNP is correlated with higher 3R 

Tau expression555, and the ADNP-derived peptide NAP (Davunetide) which has been 

shown to prevent microtubule degradation by recruiting tau to microtubules, 

preferentially binds 3R tau556. The relevance of these genes to PiD survival is still to 
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be determined, and future studies with larger sample sizes are needed to confirm or 

refute these associations. 

8.4   Discussion 

In this chapter I have conducted genome-wide survival study using 272 samples from 

the PIC and shown that variation at the NLGN1 locus on chromosome 3 is a genetic 

determinant of disease duration in PiD. For those individuals carrying the minor allele 

at the lead SNP (rs76490009), none survived more than 10 years from symptom onset, 

with an average survival of 6.3 years. Mapping the loci to regulatory elements data 

from the FANTOM5 demonstrates that this region is located at a transcription factor 

binding site within NLGN1, suggesting that the lead SNP may modify transcription of 

the gene.  

Candidate variants that have been previously reported in association with primary or 

secondary tauopathy risk did not show an association with PiD survival. In addition, 

there was no association for rs2242367, the variant that has been previously shown to 

modify PSP survival198. The MAPT H2 haplotype, which I have previously shown to 

increase the risk of PiD (Chapter 6), as well as the lead genomic loci in the PiD case-

control GWAS, were also not associated with PiD survival suggesting that the risk 

conferred by these loci affects pathways upstream of those implicated in decreased 

survival. These findings have important implications for the development of disease 

modifying therapeutics for slowing PiD progression. Firstly, they suggest that 

therapeutics targeting aberrant pathways in the 4R tauopathies (such as PSP) may not 

be efficacious in individuals with PiD. Secondly, in the absence of biomarkers to 

identify individuals at increased risk of developing PiD, any future clinical trial in PiD 

will involve recruitment of those that already have a clinical diagnosis with the aim of 

slowing disease progression/prolonging survival. Given the genetic variants associated 

with survival appear to be different to disease risk, these findings suggest that multiple 

different pathways may need to be targeted to treat the disease.  

NLGN1 is a plausible candidate gene for modulating survival in PiD. It is highly 

expressed in the brain in regions relevant to PiD pathology (amygdala, hippocampus 

and cerebral cortex)62, with highest expression within neurons, the cell types with the 

highest burden of 3R tau pathology at post-mortem62. Interestingly mouse scRNA data 

shows that Layer V neurons are the most enriched neuronal type for NLGN1 
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expression. This finding is in keeping with the neurons in this layer showing a high 

density of Pick bodies in human post-mortem samples62,557,558, as well as the 

observation of early loss of Von Economo neurons (Layer 5 neurons) in behavioural 

variant FTD (the most common presentation of PiD)559. At the protein level, 

Neuroligin1 is decreased in the hippocampi of AD patients and importantly this 

decrease is greater than in those with amnestic cognitive impairment (aMCI)534 and 

correlates with degree of cognitive impairment. The decrease in Neuroligin1 is greater 

in magnitude than PSD-95 (another post-synaptic scaffolding protein) suggesting that 

this finding is not simply a result of greater neuronal loss in the AD and aMCI cases. 

Decreased Neuroligin1 levels compared to controls has also been shown in the primary 

tauopathies, with the greatest decrease occurring in PiD specifically533. The discovery 

of a truncating heterozygous NLGN1 mutation in a familial case of AD shows that 

NLGN1 is sufficient to cause to neurodegeneration, giving credence to the assertion 

that it may play a role in progression of PiD530. 

Neuroligin1, through binding to pre-synaptic Neurexin1, and its interaction with PSD-

95 in the post-synaptic density, stabilises the synapse and is essential for normal 

synaptic transmission and plasticity519,560. The Neuroligin1:PSD-95 post-synaptic 

complex modulates pre-synaptic neurotransmitter (NT) release via Neurexin1561, as 

well as regulating pre-synaptic NT endocytosis524. In mice, synaptic activity has been 

shown to reduce accumulation of pathological tau through stimulation of the 

autophagic-lysosomal degradation pathway562. Conversely, in the same study when 

they inhibited synaptic activity there was a worsening of tau pathology, with 

accumulation of Tau oligomers in swollen lysosomes and induction of further 

deterioration of synapses. Given that knock out of NLGN1 in mice leads to significant 

impairment in synaptic transmission563,564, a possible mechanism explaining the 

association with PiD survival is that dysregulation of NLGN1 will impair normal 

synaptic activity and so lead to worsening tau pathology in individuals with PiD. PSD-

95, which dynamically regulates Neuroligin1 function and trafficking to the cell 

membrane565, can itself form a complex with tau566, and in a P301L mouse model pTau 

has been shown to disrupt the binding of PSD-95 to nitrous oxide synthase (NOS) in 

the post-synaptic density leading to impairment of NOS function567. It is possible that 

a similar mechanism with regards to Neuroligin1 may occur in the presence of 

hyperphosphorylated tau which is known to mis-localise to the presynaptic dendritic 
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spines568. This would lead to a vicious cycle where hyperphosphorylated tau impairs 

Neuroligin1 function, leading to decreased synaptic activity which in turn would lead 

to impaired tau degradation, accumulation and then further dysregulation of Nlgn1 via 

PSD-95.  

One other interesting observation with regards to Neuroligin1 is that it contains an 

extracellular acetylcholinesterase-like domain that forms the interaction site with 

Neurexin1 at the pre-synaptic membrane569. Excess expression of AChE in-vitro 

decreases the association between Neurexin1 and Neuroligin1570,571 and inhibits 

Neuroligin1 mediated synaptic integrity. Given the long-standing clinical observation 

that AChE inhibitors are ineffective in the FTD syndromes (in particular bvFTD the 

main presentation of PiD) and can lead to worsening of disinhibition and compulsive 

behaviour, opens up the intriguing possibility that this effect may by mediated by 

AChE inhibitors competitive inhibition of (already dysfunctional) Neuroligin binding 

to Neurexin1 via its AchE-like domain.  

A strength of this study is the fact that disease duration, which captures the entire 

clinical disease course from symptom onset to death, was used as the outcome measure 

for analysis. This has advantages over the use of longitudinal rate of change in clinical 

scores325,572, which only capture specific timepoints in the disease course, and can be 

subject to inter- and intra-rater variability573,574. In addition, given all individuals 

included had a pathological diagnosis of PiD using rigorous and standardised 

diagnostic criteria, diagnostic accuracy was not an issue in this study.  

On the other hand, I acknowledge that there are potential limitations with this study. 

Firstly, as with the case-control GWAS (Chapter 7), there was no replication cohort 

available with which to validate the findings from this study. Through the PIC I 

collected all available pathology confirmed PiD cases worldwide (321 at the time of 

performing study), but due to some cases having missing clinical data only 294 were 

available for inclusion, and due to exclusion of 22 cases during the QC process only 

272 were available for analysis. This sample size is small by GWAS standards and 

makes it likely the study was underpowered. It also made it impossible to perform a 

two-stage study to replicate the findings. Despite this I hope that the discovery of the 

genome-wide significant NLGN1 locus, with a plausible testable hypothesis for the 

mechanism by which Neuroligin1 modulates survival, will stimulate future work on 

biomarker and functional studies to confirm or refute the involvement of synaptic 
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pathology in PiD. In addition, the suggestive association of the KATNAL2, ADNP and 

CSMD1 genes at nominally significant loci, all of which are involved in biologically 

plausible pathways, provides additional hypotheses that should be tested in future 

studies. Since performing this study, a further 45 PiD cases have been collected by the 

PIC network, though given that the estimated number of PiD cases that will be 

collected a year is c.10-15, it will be difficult to perform a replication study within the 

next few years. A second limitation was that apart from direct genotyping of the six 

MAPT variants, there was no direct genotyping of lead SNPs at the lead loci. I applied 

stringent QC thresholds, including an R2 of ≥0.7 and a genotype posterior probability 

of ≥ 0.9 for imputed genotypes, but acknowledge that small errors in the frequency of 

imputed minor alleles have a significant impact on variant effect size and therefore the 

𝑝 value. In future work it will be necessary to directly sequence the NLGN1 locus to 

confirm the genotypes found by micro array genotyping. Perhaps the most effective 

way to do this will through large-scale analysis of whole genome sequencing of the 

PIC samples, as this will also allow us to identify any deleterious rare coding variants 

that may associated with PiD survival. Finally, due to the MCJ and UCL cohorts being 

genotyped on two different chips (the GSA and NBA respectively) I had to impute the 

two datasets separately and merge based on common SNPs. A disadvantage of this 

approach is that there was a loss of total number of SNPs in the final analysis, due to 

the GSA having less dense genome coverage than the NBA, which may have led to 

missing potential signals in less well covered parts of the genome. Again, by carrying 

out future whole genome sequencing of the samples this limitation will be mitigated.  

8.5   Conclusions and future work 

This is the first study to use disease duration to look for genetic risk factors that modify 

survival in PiD. Using a cox proportional hazards model, I identified a genome-wide 

significant variant located in the NLGN1 gene on chromosome 3, which when present 

in the heterozygous state reduced survival by nearly 4 years. In addition, I identified 

several other possible loci that may be involved in disease progression; in particular 

CSMD1, mutations in which can cause Parkinson’s disease; KATNAL2 which is 

involved in microtubule cleavage, and ADNP, mutations in which cause a 

neurodevelopmental disorder characterised by the accumulation of 3R tau at post-

mortem. Loss of synaptic integrity with resulting dysregulation of synaptic 
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transmission leading to increased pathological tau accumulation is a plausible 

mechanism though which NLGN1 dysfunction could impact on survival in PiD. It will 

be necessary to replicate the findings in an independent cohort of PiD cases, as well as 

sequence the cases from this study to confirm the accuracy of imputed genotypes as 

well as identify if any rare deleterious mutations or indels could be driving the signal 

at this locus. Although future studies with larger sample sizes would be preferable to 

allow identification of associations with suggestive variants of smaller effect sizes and 

allele frequencies, in the absence of in vivo biomarkers to diagnose Pick’s pathology 

in life this will prove difficult due to the rarity of samples. Future studies focused on 

identification of biomarkers for PiD will be essential to accelerate research progress in 

this disease, and I hope this study will help stimulate hypotheses to this end. Functional 

studies in in-vitro model systems, as well as animal models, to investigate the interplay 

of NLGN1, synaptic dysfunction and neuronal tau accumulation in PiD will be 

necessary to further our knowledge of disease pathogenesis. And finally, investigation 

of the NLGN1 loci as potential genetic determinant of disease progression and survival 

in related tauopathies (AD, PSP and CBD) will be important, as this may identify a 

common target across these disorders that could be amenable to therapeutic 

intervention. 
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Chapter 9:  General conclusions and future 

directions 

9.1    Summary 

The primary tauopathies (FTLD-tau) are a heterogenous group of disorders both 

pathogically and in terms of clinical presentation. The most common of them, PSP, 

has a prevalence of 4-7 per 100,000 of the population14,75,76,417 with healthcare costs 

previously estimated at up to £43,000 per patient per year575. CBS has a prevalence of 

c.2 per 100,000417, while the prevalence of PiD is currently unknown. Aside from the 

terrible toll these diseases take both physically and emotionally on both patients and 

their families, there is also a significant economic impact worsened by the fact that 

they have a younger age of onset than other neurodegenerative diseases, such as AD. 

One key study run by the Association for Frontotemporal Degeneration revealed that 

the economic costs associated with FTD were nearly two times higher than for AD, 

most likely due to loss of productivity for both patient and carers from being pulled 

out of the workforce at the height of their careers576. There are no curative treatments 

for the primary tauopathies at present, and there is an urgent need to develop new 

therapies, both from a symptomatic and a disease-modifying perspective. The 

development of therapies is hampered by the wide variability in clinical presentations 

for each underlying pathology, with presentations often overlapping, as well as the 

frequent occurrence of atypical presentations that may mimic other non-FLTD 

pathologies (most commonly AD). Although progress has been made in understanding 

the genetic contribution to disease risk in the more common 4R tauopathies (PSP and 

CBS), very little is known about the genetics of the 3R tauopathy PiD. 

In this thesis I have focused firstly on trying to better delineate disease progression in 

vivo in the 4R tauopathies (PSP and CBS), and secondly to understand the genetic 

drivers of disease risk and progression in the PiD. Given the rarity of these diseases, I 

had to build two separate cohorts (the 4R tau imaging cohort and the PIC), through 

collaboration with a large number of international groups, to facilitate the analyses laid 

out in the aims of this thesis. I hope that these cohorts will provide a framework for 

ongoing international collaboration, and allow researchers to build on the findings 
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from this thesis, to develop new biomarkers and identify therapeutic targets to treat 

these devastating diseases.   

9.2   Disease progression modelling in the 4R 

tauopathies 

9.2.1 PSP-RS event based modelling 

The first aim of this thesis was to develop an image-based model of brain volume 

biomarker changes in PSP-RS to enable to in vivo staging of disease. In Chapter 3 I 

used a probabilistic EBM applied to cross-sectional structural MRI scans to determine 

the sequence of brain atrophy in clinically diagnosed PSP-RS. I used a combination of 

12-month follow-up scans, and a validated clinical rating scale (the PSP rating scale) 

to demonstrate the longitudinal consistency and the utility of the EBM’s staging 

system.  The order of regional atrophy broadly mirrors the sequential spread of tau 

pathology proposed by Kovacs et al.51 in their post-mortem PSP staging study, and 

confirms that the brainstem and cortical structures are affected early in the disease, 

while demonstrating how atrophy (and presumably pathology) spreads via the 

thalamus to the frontal cortex before progressing in a caudal to rostral direction with 

the occipital lobe affected last. My work presents an advance for clinical PSP research, 

as it opens up the possibility to stage disease and track disease progression using easily 

available, objective structural MRI-based measures in living patients359.  

This work does however pose further questions for future research. Although the EBM 

provides information on the sequence of atrophy in PSP-RS and allows probabilistic 

staging of individuals at baseline, it remains to be shown whether its power to detect 

change in brain volumes over time is superior to a classical volumetric change analysis. 

A structural MRI study by Hoglinger et al.265 employing atlas-based volumetry in PSP 

patients demonstrated that combined analysis of annualised percentage volume change 

in three regions with the highest effect sizes (third ventricle, frontal lobe and 

midbrain), allowed the reduction in sample size required to detect a 50% treatment 

effect over one year by 65% compared to the PSP rating scale score. It will be 

interesting to compare these findings with an equivalent analysis using the EBM. It 

may be, however, that the real utility of the EBM in the clinical trial setting comes 

from using the predicted stage as an objective biomarker to stratify individuals at entry 
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to minimise disease stage heterogeneity. In support of this application a recent study 

by Oxtoby at al.288 used an ADNI-trained EBM to stage baseline data from the ADCS-

MCI clinical trial, and in a post-hoc analysis identified a data driven subgroup with 

more severe cognitive impairment who showed a clearer treatment response than 

observed in the full cohort. Following a similar approach using the trained EBM from 

this thesis to stage data from recent PSP clinical trials could prove informative. 

An important difference between my work and the PSP pathological staging system 

proposed by Kovacs et al.51, is that theirs is based on post-mortem 4R tau pathology 

as opposed to in vivo atrophy. This may, at least in part, explain the differences in the 

order of events in some regions between the two models. For example, the GP is the 

eighth of 19 stages in the EBM, but  the first of six stages in the tau pathology staging, 

while the medulla which is first in the EBM and second in the pathology staging. 

Differential aggregation of tau in neurons, astrocytes and oligodendroglia may 

contribute to this discrepancy, as might atrophy in brain areas distal to, but not 

colocalised with, tau pathology. Although not yet validated for clinical use, there are 

promising second generation tau PET tracers that show potential in the 4R 

tauopathies255. Once a sensitive and specific tau PET tracer has been identified, it will 

be important to perform a similar EBM analysis to ascertain whether tau pathology 

demonstrates an identical or differential sequential pattern of brain region involvement 

in PSP-RS. Similarities or differences between these two imaging modalities will be 

highly informative as to how volume loss, as assessed on structural MRI, and 

progressive spreading of tau pathology are related to each other.  

Another consideration is that the EBM only provides an ordering of biomarker events, 

and contains no information on the time between events. Understanding the time to 

transition between stages predicted by the EBM will also be important, and progress 

in this area has been made with the development of the temporal EBM (TEBM)384. 

The TEBM is able to learn both an individual’s stage, as well as progression risk, with 

the potential to stratify patients at clinical trial entry based on disease stage and 

predicted rate of progression. Applying this model to PSP is an important area for 

future studies. 
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9.2.2 Subtype and stage inference in the 4R tauopathies 

The second aim of this thesis was to investigate the spatiotemporal heterogeneity of 

atrophy in the 4R tauopathy clinical syndromes, and identify population subgroups 

with distinct patterns of disease progression. To do this I applied a novel unsupervised 

machine learning algorithm, SuStaIn290, to cross-sectional structural MRI data firstly 

from clinically diagnosed PSP patients (including PSP-RS and vPSP syndromes) 

(Chapter 4), and secondly to clinically diagnosed CBS patients (Chapter 5). 

9.2.2.1 PSP 

In 426 clinically diagnosed PSP cases (of which 69 had vPSP syndromes), when 

accounting for both disease stage and subtype heterogeneity with SuStaIn, the data 

supported two imaging subtypes: a Subcortical subtype  and a Cortical subtype. There 

was a strong association between clinical diagnosis and SuStaIn subtype with 82% of 

PSP-Subcortical cases and 81% of PSP-Richardson cases assigned to the Subcortical 

subtype and 82% of PSP-Cortical cases assigned to the Cortical subtype. Increasing 

stage was associated with worsening clinical scores, while the Subcortical subtype was 

associated with worse clinical severity scores compared to the Cortical subtype (PSP 

rating scale and Unified Parkinson’s Disease Rating Scale). Validation experiments 

showed that subtype assignment was longitudinally stable (95% of scans were 

assigned to the same subtype at follow-up) and individual staging was longitudinally 

consistent with 90% remaining at the same stage or progressing to a later stage at 

follow-up. The finding that PSP-SC (PSP-P and PSP-PGF) cases are assigned to the 

same subtype as PSP-RS, but on average at an earlier stage, and progressing more 

slowly through stages, is in keeping with previous studies of these variant 

syndromes77,78,104,105,107,399. The PSP-Cortical variants (PSP-F, PSP-SL and PSP-CBS) 

appeared to be most commonly assigned to the Cortical subtype with more generalised 

atrophy in the early stages, with early involvement of the insula and the frontal lobes.  

An interesting question arises as to why c.10% of PSP-RS and PSP-SC cases were 

assigned to the Cortical subtype and a similar percentage of PSP-C to the Subcortical 

subtype. For the PSP cases from  4RTNI1, DAV and pre-2017 UCL PSP cases I 

labelled them PSP-RS, given they had all been diagnosed as probable PSP (vertical 

supranuclear gaze palsy plus postural instability and falls within the first year of 

symptom onset) according to the NINDS-SPSP criteria. These criteria have been 
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shown to have a low sensitivity for variant PSP syndromes98 and so it seemed 

reasonable to do this. However, it is possible that some of these cases actually had a 

variant syndrome rather than PSP-RS; in particular a PSP-C variant given that the 

NINDS-SPSP criteria do not include a cortical functional domain component. Another 

possibility is that the classification of these minority cases to the alternative subtype, 

could represent the uncertainty in clinical diagnosis with cases “forced” into a 

procrustean diagnostic category. If this is the case the SuStaIn imaging subtype may 

represent the “true” underlying disease subtype. Alternatively, if one assumes that the 

clinical diagnostic category is correct, the assignment of these cases may represent the 

underlying atrophy heterogeneity for those with the same clinical label. 

There are a number of areas that may be worth pursuing in future studies. The first is 

to increase the number of variant PSP syndromes included in the model (ideally 

pathology confirmed cases), to see whether there are more imaging subtypes within 

the PSP clinical spectrum. In particular, it would be interesting to see whether there 

are additional subtypes within the Cortical subtype, that this study did not have the 

power to resolve. Work by Whitwell et al.249 shows that the PSP-SL variant in 

particular has more severe atrophy in the supplementary motor and precentral regions, 

with less atrophy in brainstem structures than the PSP-F and PSP-CBS variant. Given 

there was no correction for disease stage (only age at scan) in the analyses, these 

differential atrophy patterns may simply be due to disease stage heterogeneity between 

groups. Running SuStaIn, better powered for these variants, may allow us to unravel 

these discrepancies. A second area worth further investigation is the finding from this 

study of the apparent slower progression through SuStaIn stages of PSP-SC variants 

assigned to the Subcortical subtype. Similar to the EBM, SuStaIn only learns the 

relative ordering of events/stages, and does not provide an explicit timescale of 

transition times between events. I inferred this slower progression through staging 

follow-up scans with the fitted model, and calculating the rate of progression (change 

in stage per year) for these cases in a post-hoc analysis. The TEBM, discussed in the 

previous section, is currently being integrated into the SuStaIn algorithm to allow 

identification of both subtype and progression rate, and would provide the ideal tool 

to try and show this slower rate of progression directly384. It may also help to identify 

whether a proportion of PSP cases fit into the recently described long 

duration/protracted course PSP category109,577, where up to 24% autopsy confirmed 
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PSP cases have a disease duration of greater than 10 years. Interestingly although PSP-

P was the most common clinical diagnosis in these cases577, it only accounted for one 

third of cases, suggesting that the clinical diagnostic criteria do not adequately predict 

disease duration in these cases. 

9.2.2.2 CBS 

The aim of this study (Chapter 5) was to uncover imaging subtypes of CBS based 

solely on a data-driven assessment of atrophy patterns, to test the hypothesis that 

modelling disease subtype and stage jointly would provide information on the 

underlying pathology.  

Applying SuStaIn to 135 CBS cases from the 4R tau imaging cohort, the data best 

supported a two subtype model; a Subcortical subtype with an atrophy progression 

pattern characterised by early brainstem and subcortical involvement, and a Fronto-

parieto-occipital subtype with early involvement of the parietal, posterior frontal and 

occipital regions. 81% of CBS-AD cases were assigned to the Fronto-parieto-occipital 

subtype, in keeping with previous autopsy work showing that CBS-AD is 

characterised by atrophy in these areas. Conversely 83% of CBS-PSP and 75% of 

CBS-CBD cases were assigned to the Subcortical subtype, again in keeping with the 

previous studies137,235. There was a suggestion that there could be a third subtype that 

is able to differentiate CBS-CBD from CBS-PSP; splitting the Fronto-parieto-

occipital subtype into a Fronto-parietal (“CBD like”) and a Parieto-occipital (“AD-

like). However, using the CVIC criteria for model selection, I was unable to justify 

selecting this three-subtype model, over the more parsimonious two-subtype model. It 

will be important to build a larger pathology confirmed CBS cohort to confirm the 

existence of this third subtype with SuStaIn, and if proven to test the fitted model on 

unseen data from an independent pathology confirmed CBS cohort. A model that is 

able to accurately predict underlying pathology in CBS would have direct clinical 

utility for disease management and prognosis, as well as for selecting patients for entry 

into clinical trials for pathology specific disease modifying therapeutics.  

Although Ling et al.119 have proposed characteristic features of pathological 

progression in CBD, there is currently no consensus pathological staging system. It 

would be worth exploring whether we can use SuStaIn to better understand the 

progression and spatial heterogeneity of CBD pathology directly. SuStaIn has recently 
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been adapted to accommodate ordinal data578, and has been used to assess the 

progression and heterogeneity of TDP-43 accumulation in a range of TDP43 

proteinopathies579. I would like to perform a similar analysis using CBD pathology 

data, with the aim of building a data-driven pathological staging system. Should a 

single sequence of pathology progression exist in CBD this could be compared to the 

third imaging subtype identified in Chapter 5. 

As with PSP, the development of 4R specific tau PET tracers will be important to 

enable direct visualisation of pathology in life. The recent identification of disease 

specific tau filament folds41 will hopefully facilitate this development. If these tracers 

can be developed, it will be important to compare the subtypes and sequences of 4R 

tau pathology identified by SuStaIn with the atrophy patterns identified in this thesis. 

Another approach, should these tau PET tracers become available, would be to train a 

machine learning classifier (such as decision tree classifiers or support vector 

machines) on 4R tau PET tracer positive cases to try and distinguish between PSP and 

CBS pathology in vivo. 

9.3   Genetics analyses in the 3R tauopathy PiD 

9.3.1 The association of MAPT haplotypes with risk of 

PiD 

The first aim in this part of the PhD was to test the hypothesis that the MAPT haplotype 

structure was associated with the risk of developing PiD (Chapter 6). It has long been 

known that the MAPT H1 is associated with increased risk of  the 4R tauopathies PSP 

(H1 OR 5.5, H1c OR 2.1) and CBD (H1 OR 3.4, H1c 1.5)169,193, but equivalent studies 

looking to replicate this finding in PiD have been underpowered due to rarity of 

autopsy confirmed cases185,186. Through establishing the PIC, I was able to increase 

the available sample size by a factor of ten compared to these previous studies (338 

cases versus 34 cases). The finding that the H2 haplotype is associated with increased 

risk of PiD is important as it contrasts with the strong protective effect that this 

haplotype has in PSP and CBD, and may inform future MAPT isoform-specific 

therapeutic strategies for the primary tauopathies.  



 

 303 

It is currently unclear how the MAPT H1/H2 haplotypes differentially drive disease 

risk in the 4R and 3R tauopathies, and future work should focus on trying to understand 

how each haplotype is involved in disease specific pathogenesis. It will be important 

to compare tau isoform expression between the different tauopathies using long read 

sequencing, to test the hypotheses that haplotype status modulates the 3R-4R tau 

isoform ratio (H1 decreased and H2 increases), as well as overall levels of MAPT gene 

expression (H1c increases). There is conflicting evidence regarding the effect of the 

H1c subhaplotype on overall expression levels; while some studies suggest its 

pathogenic role in PSP may be related to an increase in overall MAPT expression580,581, 

other work suggests that this association is likely the result of a technical artefact582. 

The increased inclusion of exon 3 is consistently identified on the H2 

background582,583, highlighting the need to also understand the role of N-terminal 

splicing better in the tauopathies, and how this relates to background haplotype status 

and the resulting disease. Another area that merits further investigation is the effect 

that the H2 haplotype has on the expression of other genes located within the haplotype 

inversion. The recent evidence that the H1 association signal in PD may actually be 

driven by KANSL1183,184 and/or LRRC37A2175, opens up the possibility that haplotype 

specific effects at this locus in the 3R and 4R tauopathies may at least partially driven 

by genes other than MAPT. 
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9.3.2 A genome-wide association study in PiD 

In Chapter 7 I addressed the second aim of this part of the PhD; namely to identify 

the genetic determinants of disease risk in PID using a genome wide approach. The 

association of the MAPT H2 haplotype with risk of disease was confirmed using this 

approach, and importantly after accounting for population stratification, the OR was 

slightly higher than using the targeted genotyping approach in Chapter 6 (OR 1.52 𝑝 

= 0.001 vs 1.35 𝑝 = 0.003 respectively). Although no genomic loci reached genome 

wide significance, likely due to the study being underpowered (sample size of 294 PiD 

cases), I identified five suggestive genomic loci with a with nominal association with 

risk of disease (𝑝 < 5 x 10-6). The lead variant was located on chromosome 4 in the 

KCTD8 gene (rs112161979, 𝑝 = 6.37 x 10-8) that encodes an auxiliary subunit of 

GABAb receptors, implicating dysregulated GABAergic signalling in the pathogenesis 

of PiD. The second genomic locus was located on chromosome 11 within TRIM22 

(rs66481907, 𝑝 = 1.83 x 10-6), which encodes an E3 ubiquitin ligase involved in a wide 

range of cellular process including misfolded protein clearance via the UPS system, 

antiviral activity and regulation of the NF-kB/NLRP3 inflammasome pathway. The 

TRIM family of proteins are of particular interest given the increasing recognition of 

their involvement in a wide range of neurodegenerative disease; TRIM11 is associated 

with the more aggressive Richardson syndrome phenotype in PSP195, while 

TRIM19/PML has been shown to promote clearance of misfolded ataxin-7 in SCA7476. 

Although the lead variant (rs66481907) is a sQTL for TRIM22 in nerve tibial tissue, I 

was unable to find an equivalent effect of the variant on splicing in brain tissue. It is 

possible that due to the smaller sample size for cortical sQTLs in GTEX, combined 

with the sub-genome wide signal in the GWAS, that I was simply underpowered to 

detect this effect.  

It is important to note that the lead SNPs at these two genomic loci are intronic and are 

not associated with coding changes in expressed proteins, making it difficult to know 

which gene at these loci is driving the association signals. For the lead variant on 

Chromosome 4 (rs112161979) there was no colocalisation with brain eQTLs for 

KCTD8 or YIPF7, GNPDA2 or GUF1 500kb downstream. At the TRIM22 locus the 

lead variant has a CADD score of 10.02 and is located in alternatively spliced TRIM22 

transcripts with retained introns (non-functional) and others targeted for nonsense 
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mediated decay suggesting that it is likely to mediate its effects through dysregulation 

of TRIM22 expression.  

9.3.3 A genome-wide survival study in PiD 

In Chapter 8 I addressed the final aim of the thesis, by performing a genome wide 

survival study using a CPH model to identify genetic variants associated with survival 

(defined as symptom onset to death). I discovered a genome wide association signal at 

the NLGN1 locus on chromosome 3, which encodes a synaptic scaffolding protein 

located at the pre-synaptic membrane in neurons. Heterozygous carriers of the minor 

allele had a more aggressive disease course, with none surviving longer than 10 years 

(the median survival time in the cohort). As with the variants identified in the case-

control GWAS, the lead variant here (rs76490009) is an intronic SNP. I was unable to 

identify any brain eQTL colocalisation signals, though it is possible given its location 

in a TF binding site that variation at this locus alters gene expression through 

perturbing TF binding. Further functional studies in cell and animal models will be 

needed to investigate this hypothesis, as well as potential mechanisms for NLGN1 

mediated pathogenesis in neuronal dendrites. The importance of PSD-95 in 

Neuroligin1 function and trafficking to the cell membrane565 is well established, and 

given it has been shown in mouse models that PSD-95 function can be perturbed by 

hyperphosphorylated tau566,567, this provides a potentially interesting pathway to 

investigate in future studies. 

There were several other candidate loci with nominal associations with survival that 

may also warrant further investigation. In particular KATNA2L which encodes a 

protein involved in microtubule cleavage545, and ADNP a neuroprotective protein, 

mutations in which cause a neurodevelopmental disorder with predominantly 3R 

tauopathy at post-mortem554. 

Importantly there was no overlap between variants associated with risk of PiD and 

survival, suggesting that different biological pathways are involved in each of these 

processes. In addition, the LRRK2 locus which has been shown to be a genetic 

determinant of PSP survival198 is not associated with survival in PiD. This, in 

combination with the finding that none of the variants known to be associated with 

other tauopathies are associated with PiD, suggests that the genetic risk for PiD (both 

disease and survival risk) is unique among the tauopathies. This has important 
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implications for the development of disease modifying therapies and emphasises the 

need to develop sensitive and specific biomarkers that are able to identify PiD in life 

to facilitate pathology specific clinical trials.  

9.3.4 General limitations and considerations 

The difficulty in identifying the causal variant and so the causal gene is a challenge 

common to all GWAS studies584. It will be vital to perform functional studies in cell 

and animal models to understand the functional consequences of genetic variation at 

the loci identified in this thesis and how these influence PiD risk and progression. An 

additional general limitation is that the genetic analyses in this thesis were restricted 

to white Caucasians. This means these results cannot be extrapolated to other 

populations, given there are likely to be different LD structures, allele frequencies, 

causal variants and effect sizes in other populations441. For genetic studies to have a 

positive impact on clinical practice and to reduce healthcare inequalities, participation 

needs to be widened to include a more diverse set of populations. In other neurological 

disorders this process us already well underway and include the Global Parkinson's 

Genetics Program (GP2)311, and the ADAMS study in MS 

(https://app.mantal.co.uk/adams). Genetic studies of disease risk and progression in a 

more diverse group of populations are clearly also needed in PiD, though again in the 

absence of disease specific biomarkers, the rarity of autopsy samples will make this 

challenging in the foreseeable future. 

Ideally replication studies will be required to validate the findings from both GWASs. 

However due to the rarity of autopsy confirmed PiD samples, and the fact that only 

10-15 new cases per year are estimated to be collected by the sites included within the 

PIC, this will prove difficult to achieve in a reasonable time frame. Only through 

identification of a PiD specific biomarker, such as a 3R tau PET tracer or RT-QuIC 

for 3R-tau, will we be able to significantly increase the recruitment of new PiD cases 

to enable a well powered replication study. Another consideration is that GWASs can 

only detect common variation, and it is possible that there are also rare variants with 

larger effect sizes, as well as structural variants, that could contribute to disease risk 

and progression. With that in mind, in my view the next steps should include targeted 

sequencing of the lead genomic loci for all samples to confirm the accuracy of the 
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genotyping, and also check whether there are any deleterious rare coding variants that 

are being tagged by the GWAS signals.  

A final consideration, given the difficulties in finding additional PiD samples, is to 

look at other neurodegenerative disorders in which 3R tau predominates to see whether 

common pathogenic mechanisms can be identified that may inform on PiD 

pathogenesis. It is known that there are autosomal dominant MAPT mutations that can 

cause a 3R predominant pathology54; studies on the effect of MAPT haplotype 

background on the 3R/4R tau ratio in these mutations will be important. The presence 

of 3R predominant tau pathology in myotonic dystrophy type 1 and 2207–209, and 

tuberous sclerosis210 is also of interest, especially because these diseases are caused by 

autosomal dominant mutations in non-MAPT genes. Given their rarity an international 

collaboration would need to be established, with a focus initially on better 

characterising the post-mortem brain pathology. An advantage of investigating these 

diseases is that they are caused by autosomal dominant mutations with a high 

penetrance, which would enable identification of cases with a high level of certainty 

using genetic testing, and allow the study of the presymptomatic period providing a 

window in the earliest stages of the disease process in the brain. Assuming that the 

predominant brain pathology is indeed 3R tau in these diseases, this approach could 

facilitate 3R tau biomarker development, and allow increased recruitment to clinical 

trials to test disease modifying therapies specifically targeting 3R tau pathology.
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