
A relative trace formula and counting
geodesic segments in the hyperbolic

plane

Dimitrios Lekkas

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Mathematics

University College London

May 5, 2023



2

I, Dimitrios Lekkas, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.



Abstract

In this work we study a modification of the hyperbolic circle problem, which is

one of the problems originally studied by A. Good. We consider the orbit of double

cosets of a Fuchsian group Γ by two hyperbolic subgroups H1, H2 in the hyperbolic

plane.

We use a relative trace formula with suitable test functions for the counting of

lengths of geodesic segments perpendicular to the closed geodesics corresponding

to H1 and H2. We present an elementary proof providing the main term in the

asymptotics and an error term of order O(X 2/3). We study the mean square of the

error term and prove that it is consistent with the conjectural optimal error term

O(X 1/2+ϵ). To apply the relative trace formula we develop a large sieve inequality

for periods of Maass forms. This requires a more subtle understanding of Huber’s

transform, which is a special case of the Jacobi transform studied by Flensted-

Jensen and Koornwinder. Our counting problem is a special case of counting in

the orthospectrum. We are motivated by previous work on geodesic segments

between a point and a closed geodesic, studied by Huber and Chatzakos–Petridis.



Impact Statement

The hyperbolic circle problem, analogue of the Gauss circle problem in euclidean

space, is at the centre of investigations on the interaction of groups, geometry,

and number theory. We study a modified problem about affine symmetric spaces:

counting in the orbit of double cosets of a Fuchsian group Γ by two hyperbolic

subgroups H1 and H2 in the hyperbolic plane.

In this thesis we examine some important questions in number theory, the

branch of mathematics that underlies digital communication and internet security.

It supports the UK to keep its privileged status in fundamental research in number

theory. This thesis aligns with the EPSRC’s strategic focus for Number Theory in its

Mathematical Sciences theme. This research makes connections to neighbouring

fields such as the Mathematical Analysis, via spectral theory, and ergodic theory

and dynamical systems.

The beneficiaries of this research are other researchers in number theory,

automorphic forms, and dynamical systems. It is expected that the results will

have high long term impact on these disciplines.
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Chapter 1

Introduction

1.1 The hyperbolic circle problem

Hyperbolic lattice counting problems concern the counting of the number of

points in the orbit of a discrete group Γ that lie in a subset of the upper half-plane

H. The discrete subgroup Γ is a subgroup of PSL(2,R) thought as the orientation

preserving isometries onH, on which it acts by linear fractional transformations.

One of the classical problems in the field is the hyperbolic analogue of the Gauss

circle problem of counting on average

r (k) = #
{

(a,b) ∈Z2|a2 +b2 = k
}

.

Gauss used a geometric argument to show for r (k) that:

∑
k≤X

r (k) =πX +O
(
X 1/2) .

Counting the average representations of k as a sum of two squares, translates

geometrically into counting the number of integer points inside the disk of radius
p

X centered at the origin (0,0). In the hyperbolic setting, the integer points (x, y)

are substituted by points in the orbit Γz of some point z ∈H. The question in this

case is, whether these points lie in the hyperbolic circle of radius X centered at a
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point w ∈C, namely the estimating of the number

N (X , z, w) = #
{
γ ∈ Γ|2cosh(dist(γz,w)) ≤ X

}
,

where the hyperbolic distance dist is defined in (2.4).

1.2 Counting cosets on Fuchsian groups

The classification of elements of SL(2,R) by means of their trace into elliptic,

parabolic and hyperbolic elements describe all different kinds of motions that

could occur onH, when we act by Γ. Let Γ1 and Γ2, be each a stabilizer of a point,

cusp or geodesic. Considering the elements of the double coset Γ1\Γ/Γ2 of Γ,

instead of the full group Γ, leads to nine different counting problems. This set of

problems was studied by Good [11], who achieved the same asymptotic (letting

the ‘radius ’X →∞) for all of the problems with an error term O
(
X 2/3

)
. Although

this work dates back to the 1983, it is the best result so far. Unfortunately, Good’s

book is quite hard to understand and suffers from peculiar notation, something

that discourages the reader. His method was to define a certain type of generalized

Poincaré series for each different category of elements (elliptic, parabolic, hyper-

bolic) that can be used in the study of the aforementioned counting problems.

Our goal is to use a different, more flexible technique for the solution of the

problem, in the case that both subgroups in the double coset are stabilizers of

closed geodesics. We use a relative trace formula with fairly general test functions.

For the classical hyperbolic circle problem there is more extensive literature,

see [15],[16],[17, Ch. 12]. Already in [14] Huber was interested in the case where

the coset is formed by the stabilizer H1 of a closed geodesic and the other stabilizer

is trivial. Some results on this problem can be found in further work of Huber [16],

as well as in Chatzakos’ thesis [5]. We apply Huber’s method to counting double
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Figure 1.1: The orbit of γl for γ ∈ H1\Γ/H1.

cosets of a Fuchsian group Γ by two hyperbolic subgroups H1, H2.

More specifically, this problem concerns the estimation of

Ñ (X , l1, l2) = #
{
γ ∈ H1\Γ/H2| inf

z∈l1
w∈l2

cosh(dist(γz,w)) ≤ X
}

,

where the group Γ is a Fuchsian group of the first kind and H1\Γ/H2 is a double

coset of Γ by hyperbolic subgroups H1, H2, that correspond to closed geodesics

l1 and l2 (see chapter 4 for the relation). In comparison to the case studied on

[16] and [6], this problem appears to be more complicated as we consider two

hyperbolic subgroups of Γ that make the double coset, instead of the one stabilizer

being trivial. As it was explained in [23], the problem concerns the counting of

the number of γ ∈ H1\Γ/H2 such that γ · l1 and l2 have distance less than X . We

can assume that l1 lies on I , where I is the imaginary axis. The distance between

l1 and l2 is given by the length of the line segment, that is orthogonal to both

geodesics, see figure 1.1. Moreover we take l1 = l2. In [23] the distance between l1

and γl1 is related to δ(γ) := 2|ad +bc|, for a given γ=

a b

c d

 ∈ H1\Γ/H1. More

specifically it is shown in [23, Lemma 1] that:
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Figure 1.2: A closed geodesic l with norm m2 corresponding to the action of an
exceptional point γ.

Lemma 1.1. For γ ∈ PSL(2,R) and such that abcd ̸= 0 and u(z, w) the point-pair

invariant defined in (2.3) we have

inf(u(γ · i x, i y) |x, y ∈R+) =


δ(γ)−2, abcd > 0 ,

0, abcd < 0 .

Thus

max(δ(γ),2) = 2cosh(dist(γI, I)) ,

where dist(γI, I) = infz,w∈Iρ(γz,w) and ρ(z1, z2) is the hyperbolic distance between

z1 and z2.

Similarly to [23, see p.11] and [32, Lem. 8] we may assume that γ ∈ Γ− H1

is such that abcd ̸= 0 =⇒ δ(γ) ̸= 2. Those elements γ are called regular. From

[23, p. 11–12] we know that there finitely many double coset representatives γ in

H1\Γ/H1 for which δ(γ) < 2 or equivalently abcd < 0. Those elements γ are called

exceptional, see figure 1.2.

The normalization inf z∈l1
w∈l1

cosh(dist(γz,w)) ≤ X is equivalent to B(γ) :=
δ(γ)/2 < X for δ(γ) > 2. Since the exceptional double cosets are finite, our problem
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concerns the estimation of

N (X , l1, l1) = #
{
γ ∈ H1\Γ/H1|B(γ) < X

}
,

since N (X , l1, l1) = Ñ (X , l1, l1)+O(1).

Similarly, see [23, Chapter 6],

N (X , l1, l2) = #
{
γ ∈ H1\Γ/H2|B(τ−1γ) < X

}
,

where τ ∈ PSL2(R) is such that τ−1 · l2 lies on the imaginary axis.

However [23] does not give us a result regarding the main or error term of esti-

mating the number N (X , l1, l2) or N (X , l1, l1). The authors develop a relative trace

formula that relates sums of integrals of a test functionΦ to the Selberg–Harish-

Chandra transform of Φ and periods of Maass forms u j (see Proposition 1 in

[23]). Further, replacing the test function with a Bessel function they are able to

give results about the periods of Maass forms. The main result ([23, Theorem 2])

achieves an asymptotic formula for the sum of the period squares.

The problem when the two geodesics are the same l1 = l2 was also studied by

Tsuzuki [31], but unfortunately his result with error term O
(
X 5/6

)
is worse than

the general result of Good, see [11, Th. 4], who obtained O
(
X 2/3

)
. We are going to

state Good’s theorem [11, Th. 4] in Chapter 3.

1.3 Statements of our results

Set N (X , l ) := N (X , l , l ). Suppose that Γ is cocompact and torsion-free. Let {u j }∞j=0

be a complete orthonormal system of real-valued, normalized eigenfunctions for

the discrete spectrum of the hyperbolic Laplacian with eigenvalues λ j = s j (1− s j ).

We call the eigenfunctions u j Maass forms. The eigenvalues λ j such that λ j <
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1/4 ⇔ 1/2 < s j ≤ 1 are called small eigenvalues. We give an elementary proof of

Good’s theorem for H1\Γ/H1 with H1 a hyperbolic subgroup:

Theorem 1.2. We have

N (X , l ) = ∑
1/2<s j≤1

2

π
γ1(s j )û j

2X s j +O
(
X 2/3) ,

where

γ1(s) = π

2

Γ(s +1/2)Γ((s +1)/2)

Γ(s/2)3

4

s(2s −1)

and

û j =
∫

l
u j d s

for the geodesic l . The big-O estimate depends on the geodesic l .

We call û j the periods of the Maass forms u j along the geodesic l . We will

prove the following large sieve inequality for the periods û j :

Theorem 1.3. Let T, X > 1 and x1, . . . , xR ∈ [X ,2X ]. If |xν− xµ| > δ > 0 for ν ̸= µ,

then

R∑
ν=1

∣∣∣ ∑
|t j |≤T

a j x
i t j
ν û j

∣∣∣2 ≪ (
T +X logTδ−1)||a||2∗ ,

where

||a||∗ =
( ∑
|t j |≤T

|a j |2
)1/2

.

Note that this is analogous to Chamizo’s large sieve inequality [3, Theorem

2.2], who worked with sums of Maass forms u j (z) instead of periods û j . We use

similar methods for our proof.

We define the main term of our hyperbolic lattice counting problem as

M(X , l ) = ∑
1/2<s j≤1

2

π
γ1(s j )û j

2X s j
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and the error term as

E(X , l ) = N (X , l )−M(X , l ) .

Similarly to [6] (see Chapter 2, Proposition 2.12 and Theorem 2.13) we want to

show that on average E(X , l ) is O
(
X 1/2

)
. We will use Theorem 1.3 to prove the

following result about the mean square of the error term E(X , l ):

Proposition 1.4. Let X > 2 and δ > 0. Let X1, X2, . . . , XR ∈ [X ,2X ] such that |Xi −
X j | > δ, when i ̸= j . Then the following bound holds

R∑
m=1

|E(Xm , l )|2 ≪ R1/3X 4/3 log X +δ−1X 2 log3 X .

Using Proposition 1.4 we will prove the following bounds for the second

moment of the error term E(X , l ):

Theorem 1.5. If Rδ≫ X and R > X 1/2, then

1

R

R∑
m=1

|E(Xm , l )|2 ≪ X log3 X (1.1)

As R →∞, we have

1

X

∫ 2X

X
|E(x, l )|2d x ≪ X log3 X . (1.2)

From Theorems 1.2 and 1.5 we are able to formulate the analogous conjecture

to [6, Conj. 5.7]:

Conjecture 1.6. Let ϵ> 0, then the error term E(X , l ) satisfies the bound

E(X , l ) =O
(
X 1/2+ϵ) ,

where the estimate depends on l and ϵ.



Chapter 2

Hyperbolic lattice counting problems

2.1 Preliminaries

In this section we review the core parts of the theory of automorphic forms that

will be used in this work. Our main reference is [17].

LetH= {x + i y |x ∈R, y > 0} denote the hyperbolic upper half-plane and G be

the group PSL(2,R). The upper half-plane is equipped by the hyperbolic metric

(d s)2 = (d x)2 + (d y)2

y2
.

The measure element is given by

dµ(z) = d xd y

y2
.

By Γwe denote a Fuchsian group of the first kind (Γ≤G) such that the space Γ\H

has finite volume with respect to the hyperbolic measure. More generally, a group

Γ0 such that Γ0\H has finite volume is called cofinite.

The group G (and its subgroups) act on H by fractional linear transformations.

Those are defined by: a b

c d

 · z := az +b

cz +d
.
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An element g of G can be characterized by the value of its trace. It is called:

• elliptic if |Tr(g )| < 2 ,

• hyperbolic if |Tr(g )| > 2 ,

• parabolic if |Tr(g )| = 2 .

Elliptic elements can be shown to be conjugate to a rotation

 cosθ sinθ

−sinθ cosθ

. On

the other hand, hyperbolic elements are conjugate to a magnification

λ 0

0 λ−1

,

λ> 1 and parabolic elements are conjugate to translation matrices of the form1 x

0 1

, that shift an element z ∈H horizontally by x.

We are interested in studying functions f : H→ C which satisfy the periodicity

condition

f (γz) = f (z), γ ∈ Γ, z ∈H , (2.1)

hence they are invariant under this action of Γ. We call those functions auto-

morphic. If Γ contains a parabolic element of the form γ =

1 1

0 1

 , then the

action of γ on z ∈H, gives us f (z +1) = f (z) by the automorphic condition for f .

This suggests that we can apply concepts of Fourier Analysis for such f . Actually,

this is possible in the case that Γ is cocompact, i.e. Γ\H is compact, where we

decompose f in terms of eigenfunctions of the Laplace operator.

The inner product of two functions f , g ∈ L2(Γ\H) is defined by

〈 f , g 〉 :=
∫
Γ\H

f (z)g (z)dµ(z) .
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We define the hyperbolic Laplace operator onH by

∆=−y2
(
∂2

∂x2
+ ∂2

∂y2

)
.

Definition 2.1. A smooth function f ∈ L2(Γ\H) that satisfies the automorphic

condition (2.1) and is also an eigenfunction of the Laplace operator is called

a Maass form. We denote those by u j , where λ j stands for the corresponding

eigenvalue.

Another example of automorphic functions are the Eisenstein series:

Definition 2.2. We define the Eisenstein series onH around a cusp α as

Eα(z, s) = ∑
γ∈Γα\Γ

ℑ(σ−1
α γz)s ,

where the sum runs over the coset of Γ by the stabiliser Γα of α and σα is a scaling

matrix.

Let D(Γ\H) be the space of functions f on L2(Γ\H) such that f and ∆ f are

smooth and bounded. Every automorphic function can be written as a sum of

Maass forms and Eisenstein series, which is known as the spectral theorem in the

theory of automorphic forms. We recall [17, Theorem 7.3]:

Theorem 2.3. Let f ∈ L2(Γ\H) be an automorphic function. Then f can be expressed

in terms of Maass forms u j and Eisenstein series Eα as follows:

f (z) =∑
j
〈 f ,u j 〉u j (z)

+∑
α

1

4π

∫ +∞

−∞
〈 f ,Eα(·, 1

2
+ i t )〉Eα(z,

1

2
+ i t )d t ,

(2.2)

where the u j have eigenvalues λ j , a finite number of which satisfy 0 ≤ λ j < 1/4.

The expansion converges in the norm topology. If f (z) ∈ D(Γ\H) then the expansion

(2.2) converges pointwise absolutely and uniformly on compact sets.
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The question now becomes: What automorphic functions are useful in our

lattice point problem and what information can we extract from the spectral

decomposition? All of the hyperbolic lattice counting problems mentioned in the

beginning involve the notion of distance in the hyperbolic plane. This distance ρ

can be expressed in terms of the point-pair invariant function u.

Definition 2.4. For two points z, w ∈Hwe define the point-pair invariant u by

u(z, w) = |z −w |2
4ℑzℑw

. (2.3)

We see immediately that it satisfies u(g z, g w) = u(z, w), g ∈ G . Then the

hyperbolic distance ρ is given by

coshρ(z, w) = 1+2u(z, w) . (2.4)

We notice that the distance coshρ(z, w) would change if we acted on either z or

w by some element of Γ. Hence the function cannot be automorphic on any of

the two variables and the spectral theorem cannot be applied. We solve that issue

by summing over all elements of the group.

Definition 2.5. Let k(z, w) be a point-pair invariant on H, that is k(z, w) =
k(u(z, w)) and k(t) is a function on R+ of compact support. We define its au-

tomorphization by

K (z, w) = ∑
γ∈Γ

k(u(γz, w)) .

The sum converges because it has finite support for any fixed z, w .

Definition 2.6 (Eq. 1.62 [17]). For a function k = k(u) that depends only on the

distance u, i.e.

k(z, w) = k(u(z, w)) ,
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we define the Selberg–Harish-Chandra transform through the equations

q(v) =
∫ ∞

v
k(u)(u − v)−1/2du ,

g (r ) = 2q
((

sinh
r

2

)2)
,

h(t ) =
∫ ∞

−∞
e i r t g (r )dr .

For the automorphization K one can prove its spectral expansion, see [17, Th.

7.4]:

Theorem 2.7. Let K (z, w) be the automorphization of a smooth test function k

satisfying k(z, w) = k(u(z, w)) and whose Selberg–Harish-Chandra transform h(t )

satisfies the following conditions for ϵ> 0:

h(t ) even,

h(t ) is holomorphic in the strip |ℑt | ≤ 1

2
+ϵ,

h(t ) ≪ (|t |+1)−2−ϵ in the strip .

Then K (z, w) has the spectral expansion

K (z, w) =∑
j

h(t j )u j (z)u j (w)

+∑
α

1

4π

∫ ∞

−∞
h(t )Eα(z,

1

2
+ i t )Eα(w,

1

2
+ i t )d t ,

where the t j ’s parametrize the discrete spectrum i.e. s j = 1
2 +i t j , with λ j = s j (1−s j ).
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2.2 Results on hyperbolic lattice counting problems

2.2.1 Results on the hyperbolic circle problem

The most studied problem among hyperbolic lattice counting problems in the

hyperbolic space was the hyperbolic circle problem. We aim to estimate

N (X ) = #{γ ∈ Γ|4u(γz, w)+2 ≤ X } .

The first to consider was Delsartre [8]. Huber began his investigation on the

hyperbolic circle problem in 1959 with his paper [15]. He used a Dirichlet series

given by

G(s, z, w) = ∑
γ∈Γ

(
1

coshρ(γz, w)

)s

,

which converges absolutely and uniformly for z and w in compact sets ofH and

ℜs > 1.

There is the following main result about N (X ):

Theorem 2.8 (Selberg[29], Günther[13], Good[11]). Let Γ be cocompact or cofinite

and z, w be two points inH, then

N (X ) = ∑
1/2<s j≤1

p
π
Γ
(
s j − 1

2

)
Γ(s j +1)

u j (z)u j (w)X s j +O
(
X 2/3) .

Selberg’s work is unpublished but available online. Günter’s work is for gen-

eral rank one symmetric spaces. Good’s book covers all nine cases. One method

of proof, see also the proof of [17, Thm. 12.1], is to apply Theorem 2.7 to the

functions

k+(u) =



1, u ≤ X−2
4 ,

−4u
Y + X+Y −2

Y , X−2
4 ≤ u ≤ X+Y −2

4 ,

0, X+Y −2
4 ≤ u ,
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and

k−(u) =



1, u ≤ X−Y −2
4 ,

−4u
Y + X−2

Y , X−Y −2
4 ≤ u ≤ X−2

4 ,

0, X−2
4 ≤ u ,

which are smoothings of the characteristic function on the interval [0, (X −2)/4]

and compute suitable bounds for the corresponding Selberg–Harish-Chandra

transforms h±(t ). Here Y is a large parameter such that Y ≪ X to be determined

for optimizing error terms.

2.2.2 Huber’s work on counting in conjugacy classes

Assume, unless stated otherwise, that Γ is cocompact. Let T be a hyperbolic

conjugacy class, i.e. T = {a−1Pνa, a ∈ Γ} for a primitive hyperbolic element P .

Here ν is the number of times the invariant geodesic of P wraps around itself. For

γ ∈ Γ, let

µ=µ(γ) = inf
z∈H

ρ(γz, z) .

When γ ∈T, we see that µ(γ) =µ(Pν), hence µ(γ) is constant in conjugacy classes.

We write µ :=µ(T) =µ(Pν), which is the length of the closed geodesic correspond-

ing to the hyperbolic conjugacy class T. The hyperbolic lattice counting problem

in conjugacy classes counts

N (t ,T, z) = #
{
γ ∈T |ρ(γz, z) ≤ t

}
. (2.5)

Huber in 1954 used the Dirichlet series

G(z, s) = ∑
γ∈T

(
1

coshρ(γz, z)−1

)s
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to prove (see [14, Satz B])

N (t ,T, z) ∼ 1

p −1

1

ν

µ

sinh
(µ

2

)e t/2

as t →∞, where p is the genus of Γ\H. We notice that the asymptotic growth is

exponential for t , because Huber counts the number of γ ∈T such that ρ(γz, z) ≤ t .

This is different to the distance used in the hyperbolic circle problem, where the

counting is performed in terms of coshρ(γz, z) for γ ∈ Γ.

When Huber revisited the problem in 1998, in [16], he increased his flexibility by

considering a bigger family of automorphic functions and their spectral expan-

sion.

We now explain his work. We introduce a new system of coordinates (u, v)

on the upper half-plane: let z = x + i y and define

u(z) = log |z| and v(z) =−arctan
(x

y

)
. (2.6)

For these variables, we can verify that the ranges are

−∞< u(z) <+∞ and − π

2
< v(z) < π

2
.

From the definitions of u and v it also follows that

cos v(z) = y

|z| and sin v(z) =− x

|z| .

Moreover, for a diagonal hyperbolic element P =

λ 0

0 λ−1

 we have (see equations
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[16, p. 19 eq.23])

u(P z) = u(z)+2logλ and v(P z) = v(z) ,

where λ2 is the norm of P . Hence, acting by diagonal hyperbolic elements does

not change the coordinate v . The hyperbolic metric d s2 = (
d x2 +d y2

)/
y2 on the

hyperbolic upper half-plane H now becomes d s2 = (
du(z)2 +d v(z)2

)/
cos2 v(z).

This approach allowed him to obtain a much stronger result for N (t ,T, z), namely

the inequality (see [16, p. 11]) for X ≥ 4:

∣∣∣N (t ,T, z)− 1

2π(p −1)

µ

ν
X

∣∣∣≤ µ

ν
(2.56X 3/4 +6.75X 1/2) , (2.7)

where

X = sinh(t/2)

sinh(µ/2)
. (2.8)

The problem was solved by studying the spectral expansion of the series (see [16,

p. 16, eq. 4])

A( f )(z) = ∑
γ∈T

f

(
cosh(z,γz)−1

coshµ−1

)
,

for f ∈C∗
0 [1,∞): the space of real functions of compact support that are bounded

in [1,∞) and have at most finitely many discontinuities. Since Γ is cocompact and

f has compact support, A( f )(z) is finite. Using equation [16, p. 20, eq. 26] Huber

rewrote this series as

A( f )(z) = ∑
γ∈〈P〉\Γ

f
( 1

cos2 v(γz)

)
,

in the coordinates u, v . Huber explained that A( f )(z) is an automorphic function

that captures the analytic information needed to attack the problem of count-

ing N (t ,T, z). As an analogue to Theorem 2.7 he proved the following spectral

expansion about A( f )(z) (see [16, p. 17]):
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Theorem 2.9. The automophic function A( f )(z) has the following spectral expan-

sion

A( f )(z) =∑
j

c j ( f )u j (z) ,

where c j ( f ) = 2û j dt j ( f ). Here

û j =
∫

l
u j d s

is the period of the eigenfunction u j along a segment l of length
∫

l d s =µ/ν on the

invariant geodesic of P. The transform dt , called Huber transform, is given by

dt ( f ) =
∫ π/2

0
f
( 1

cos2 v

) ξλ(v)

cos2 v
d v ,

with λ= 1
4 + t 2. The function ξλ is the solution to the differential equation

ξ′′λ(v)+ λ

cos2 v
ξλ(v) = 0 , v ∈

(
− π

2
,
π

2

)
,

with initial conditions ξλ(0) = 1 and ξ′
λ

(0) = 0.

We can write ξλ(v) in terms of a sum of Legendre functions (see [6, page 5]):

ξλ(v) = 1

2
p
π
Γ
( s +1

2

)
Γ
(
1− s

2

)
(Ps−1(i tan v)+Ps−1(−i tan v))

and after substituting x = tan v , the transform takes the form

dt ( f ) = 1

2
p
π
Γ
( s +1

2

)
Γ
(
1− s

2

)∫ ∞

0
f (x2 +1)(Ps−1(i x)+Ps−1(−i x))d x . (2.9)

Huber, also proved the following important Lemma about the periods û j :

Lemma 2.10. For the sequence of period integrals {û j }∞j=0, the following bound is

true: ∑
t j≤T

|û j |2 ≪ T .
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We have better results than Lemma 2.10, for example Tsuzuki proved the

following asymptotic, see [32, Th. 1, p. 2388]

∑
λ j≤x

|û j |2 ∼ len(l )

π
x1/2, x →∞ .

In this problem the Huber transform dt ( f ), is an analogue to the Selberg–

Harish-Chandra transform. With the right choice of test function f the series

A( f )(z) can be used to count N (t ,T, z). Huber showed that by choosing f to be the

characteristic function on the interval
[

0,
p

X 2 −1
]

one gets A( f )(z) = N (t ,T, z).

As is done in the hyperbolic circle problem, we smooth the characteristic functions

in order to get good results for the error term. Chatzakos and Petridis in [6] defined

the functions for x > 0:

f +(x2 +1) =



1, x ≤U ,

V −x
V −U , U ≤ x ≤V ,

0, V ≤ x,

and

f −(x2 +1) =



1, x ≤ T,

U−x
U−T , T ≤ x ≤U ,

0, U ≤ x,

for U =
p

X 2 −1 and T,V satisfying the condition 0 <U /2 < T <U <V < 2U . With

this choice of test functions they provided another proof of Good’s theorem on

N (t ,T, z) for Γ cocompact or cofinite :

Theorem 2.11 (Chatzakos–Petridis [6]). Let X = sinh(t/2)
/

sinh(µ/2), then we

have

N (t ,T, z) = ∑
1/2<s j≤1

A(s j )û j u j (z)X s j +O
(
X 2/3) ,
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where A(s) is given by

A(s) = 2s cos

(
π(s −1)

2

)
Γ
( s+1

2

)
Γ
(
1− s

2

)
Γ
(
s − 1

2

)
πΓ(s +1)

.

Let

E(X , z) := N (t ,T, z)− ∑
1/2<s j≤1

A(s j )û j u j (z)X s j ,

be the error term in the hyperbolic conjugacy class problem. Chatzakos–Petridis

also showed the following results about the second moment of the error term

E(X , z) for Γ cocompact or cofinite:

Proposition 2.12 (Chatzakos–Petridis [6]). Let X > 2 and X1, X2, . . . , XR ∈ [X ,2X ],

such that |Xi −X j | > δ for some δ> 0, when i ̸= j . Then the following bound holds

R∑
m=1

|E(Xm , z)|2 ≪ R1/3X 4/3 log X +δ−1X 2 log2 X .

Theorem 2.13 (Chatzakos–Petridis [6]). If Rδ≫ X and R > X 1/2, then

1

R

R∑
m=1

|E(Xm , z)|2 ≪ X log2 X .

As R →∞, we have

1

X

∫ 2X

X
|E(x, z)|2d x ≪ X log2 X .

This theorem suggests that the correct order of growth for the error term

E(X , z) is O
(
X 1/2+ϵ).

Good in his book [11] considers all counting problems for Γ cocompact or

cofinite. For the conjugacy class problem instead of using the series A( f )(z), used

by Huber and Chatzakos–Petridis, he considers Poincaré series Pξ(z, s,m)[11, p.

73, Eq. 7.1] over single cosets Γ1\Γ and its automorphic expansion. His result is

the following formula, (see [11, Th. 4]):
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Theorem 2.14 (Good [11]). Let T be a hyperbolic conjugacy class,λT,λz be specific

constants and a j (T, z) be the product of u j (z), û j , g (s j ), where g (s j ) is an explicit

product of Gamma functions. Then

N (t ,T, z) = 2

vol(Γ\H)

µ

ν
X +2λTλz

∑
1/2<s j<1

a j (T, z)X s j +O
(
X 2/3) .

Unfortunately we cannot match the Gamma functions g (s) with A(s).

Parkkonen and Paulin used ergodic methods and more specifically the

geodesic flow to study the hyperbolic lattice counting problem in conjugacy

classes in [25] and gave an asymptotic for the counting of common perpendicular

arcs in negative curvature, see [26, Th. 1, p. 901].



Chapter 3

A proof of Good’s theorem for

counting geodesic segments

3.1 A relative trace formula

We let Γ be cocompact. In this section we investigate a relative trace formula

suitable for the problem of counting in the double coset H1\Γ/H1.

For simplicity we assume that L is a primitive closed geodesic, namely L is tra-

versed only once. By conjugation we can assume that the axis of the closed

geodesic L is the imaginary axis I , so that L = H1\I , where H1 is a hyperbolic

subgroup of Γ of the form

H1 =
〈m 0

0 m−1

〉
,m > 1 .

Let l represent the closed geodesic L on the imaginary axis. Here m2 is the norm

of the primitive closed geodesic L. For a path σ : [a,b] →H, we define its length by

len(σ) =
∫ b

a

|σ′(t )|
ℑ(σ(t ))

d t .
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It follows that len(l ) = 2logm. Suppose Γ\H is compact and let k :
(− π

2 , π2
)→R be

a test function that depends only on v , the angle defined in (2.6). In practice we

also assume that k is even. We consider its automorphization with respect to Γ:

K (z) := ∑
γ∈H1\Γ

k(v(γz)) .

Firstly, we develop the geometric side of the relative trace formula by integrating

K over the geodesic segment l .

We split the sum into the identity coset H1 and the rest of the cosets. For the coset

H1 and z = i y ∈ l we have that k(v(γz)) = k(v(z)) = k(0), since an element γ ∈ H1

is a magnification, that preserves the angle v(z) to the imaginary axis. Hence, we

compute ∫
l

K (z)d s = k(0)len(l )+
∫

l

∑
γ∈H1\Γ−H1

k(v(γz))d s . (3.1)

For the second sum we have:

∫
l

∑
γ∈H1\Γ−H1

k(v(γz))d s = ∑
γ∈H1\Γ−H1/H1

∑
γ0∈H1

∫
l

k(v(γγ0z))d s

= ∑
γ∈H1\Γ−H1/H1

∫
I

k(v(γz))d s ,
(3.2)

because H1 is the stabilizer of l and we notice that action with the elements of H1

on l will cover the whole imaginary axis I .

The function K (z) is automorphic with respect to Γ. Since k(v) is a function of the

angle v to the imaginary axis only, we wish to apply Theorem 2.9 for

k(v(z)) := f

(
1

cos2(v(z))

)
.

In order to ensure convergence of the series K (z) = A( f )(z) we assume that either

f ∈C∗
0 [1,∞) or f is in the Schwartz class. In the first case the series is finite, while
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in the latter case we can write K (z) as a Stiltjes integral:

∑
γ∈H1\Γ

f

(
1

cos2 v(γz)

)
=

∫ π/2

0
f

(
1

cos2 v

)
d

(
Ñ (v, z)

)
, (3.3)

where

Ñ (V , z) := #
{
γ ∈ H1\Γ

∣∣ v(γz) ≤V
}

.

For X = 1/cos v we have that

Ñ (v, z) = N (t ,T, z) ≪ X

by (2.5), (2.8) and Huber’s bound (2.7). Applying integration by parts on the

integral from (3.3) shows that K (z) converges if f and its derivatives are rapidly

decreasing.

By Theorem 2.9 we get:

K (z) =∑
j

2dt j ( f )û j u j (z) . (3.4)

The spectral side of the relative trace formula comes from integrating the above

over l . Equating (3.1) and (3.2) with (3.4) gives:

f (1) · len(l )+ ∑
γ∈H1\Γ−H1/H1

∫
I

f

(
1

cos2 v(γz)

)
d s =∑

j
2dt j ( f )û j

2 .

In order to evaluate

N (X , l ) = ∑
γ∈H1\Γ/H1

B(γ)<X

1 ,

where B(γ) = |ad +bc|, we analyse further the geometric side, specifically the

integral
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J I
γ( f ) =

∫
I

f

(
1

cos2 v(γz)

)
d s =

∫ ∞

0
f

(
1

cos2 v(γ · i y)

)
d y

y
,

where we used that the hyperbolic metric d s is given by d s2 = (d x2 +d y2)
/

y2.

We would like to express J I
γ( f ) in terms of the matrix entries of γ. We show the

following result.

Lemma 3.1. Let z = i y and γ=

a b

c d

, then

1

cos2 v(γz)
= (a2 y2 +b2)(c2 y2 +d 2)

y2
.

Proof. We notice that

cos v(γz) = ℑ(γz)

|γz| .

Since z = i y and γ=

a b

c d

 we compute:

γz = ai y +b

ci y +d
= (ai y +b)(−ci y +d)

|ci y +d |2 = ac y2 +bd + (ayd −bc y)i

|ci y +d |2 = ac y2 +bcd + yi

|ci y +d |2 ,

hence ℑ(γz) = y
|ci y+d |2 . Therefore,

cos v(γz) = ℑ(γz)

|γz| = y

|ci y +d |2
( |ai y +b|
|ci y +d |

)−1

= y

|ai y +b||ci y +d |
= y√

a2 y2 +b2
√

c2 y2 +d 2
,

from which we conclude that

1

cos2 v(γz)
= (a2 y2 +b2)(c2 y2 +d 2)

y2
.
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The result of Lemma 3.1 is an analogue to Lemma 1.1, which was proved in

[23]. We now present its proof:

Proof of Lemma 1.1. From [23, p. 9, eq. 9] we have that

4u(γ · i x, i y) = a2x

y
+ b2

x y
+ c2x y +d 2 y

x
−2 .

Let h(x, y) = 4u(γ · i x, i y). We want to find the minimum value of h, hence we

compute its gradient:

hx(x, y) = 0 =⇒ y2 = a2x2 −b2

d 2 − c2x2
.

Using that y in the equation of hy (x, y) = 0 we get the solutions

x4 = b2d 2

a2c2
.

Working in a similar way we find that the solutions to the equation hx(x, y) are

y4 = a2b2

c2d 2
.

Let x2
min = |(bd)/(ac)| and y2

min = |(ab)/(cd)|. Then we compute

h(xmin, ymin) = 2|ad |+2|bc|−2 .

Now, suppose that abcd < 0 then there are two cases: either i) ad > 0 and

bc < 0 or ii) ad < 0 and bc > 0. The second case is not possible because ad−bc = 1.

In the first case we have h(xmin, ymin) = 0.

On the other hand, if abcd > 0 then either i) ad > 0 and bc > 0 or ii) ad < 0
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and bc < 0. In both cases we have

h(xmin, ymin) = 2|ad +bc|−2 .

Moreover the point (xmin, ymin) minimizes h because h(x, y) goes to ∞ as x or

y approaches either 0 from above or ∞. More precisely, there exist constants

C , M ∈R>0 such that for all N ≥ M and for all (x, y) ∉ [1/N , N ]2,h(x, y) ≥C ·N .

Using Lemma 3.1, we see that the integral J I
γ( f ) takes the form

J I
γ( f ) =

∫ ∞

0
f

(
a2c2 y2 + b2d 2

y2
+a2d 2 +b2c2

)
d y

y
.

Now, similarly to [23], we introduce the change of variables y = e t , hence d y =
e t d t =⇒ d y

/
y = d t . So we have:

J I
γ( f ) =

∫ ∞

−∞
f
(
a2c2e2t +b2d 2e−2t +a2d 2 +b2c2)d t .

Let p = a′e2t + b′e−2t , with a′ = a2c2 and b′ = b2d 2, so that d p = (
2a′e2t −

2b′e−2t
)
d t . We compute:

d t = d p

2a′e2t −2b′e−2t
= d p

2(a′e2t −b′e−2t )
= d p

2
√

p2 −4a′b′

because

p2 −4a′b′ = (
a′)2e4t + (

b′)2e−4t +2a′b′−4a′b′ = (
a′e2t −b′e−2t )2

= (
a2c2e2t −b2d 2e−2t )2 .

In order to find the lower limit of the integral after the change of variables to p, we

need to compute mint∈R(a2c2e2t −b2d 2e−2t ). Using the first derivative test, we
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end up with:

2a2c2e2t −2b2d 2e−2t = 0 ⇔ e4t = b2d 2

a2c2
⇔ t = 1

2
log

∣∣∣bd

ac

∣∣∣ .

We conclude that

J I
γ( f ) =

∫ ∞

2|abcd |
f
(
p +a2d 2 +b2c2) d p√

p2 −4a2b2c2d 2
.

Suppose that the element γ is such that abcd > 0, namely B(γ) > 1. Because ad −
bc = 1, we immediately get that a2d 2 +b2c2 = 2abcd +1. Now let q = p +2abcd ,

which gives us

J I
γ( f ) =

∫ ∞

4abcd

f (q +1)√
q(q −4abcd)

d q .

In order to match our test function with the ones defined in [16] and [6], we finally

introduce the change of variables x2 +1 = q +1 =⇒ d x = d q/2x = d q/(2
p

q) and

the integral becomes

J I
γ( f ) = 2

∫ ∞
p

4abcd

f (x2 +1)p
x2 −4abcd

d x .

We recall at this point that

δ(γ) = 2B(γ) = 2(ad +bc) .

Since ad −bc = 1 implies a2d 2 +b2c2 − 2abcd = 1, we can relate the quantity

4abcd that appears inside the integral with B(γ). We have:

B(γ)2 = a2d 2 +b2c2 +2abcd = 1+4abcd

=⇒ B(γ)2 −1 = 4abcd ,
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which leads to

J I
γ( f ) = 2

∫ ∞
p

B(γ)2−1

f (x2 +1)√
x2 − (B(γ)2 −1)

d x .

This is the contribution to the geometric side of our trace formula for the double

coset H1\Γ/H1.

Now, suppose that abcd < 0, i.e. B(γ) < 1. Following the same process we find

that

J I
γ( f ) = 2

∫ ∞

0

f (x2 +1)√
x2 − (B(γ)2 −1)

d x .

Let

q(z) = 2
∫ ∞
p

z2−1

f (x2 +1)√
x2 − (z2 −1)

d x (3.5)

and

q̃(z) = 2
∫ ∞

0

f (x2 +1)√
x2 − (z2 −1)

d x , (3.6)

then we have proved the following formula:

Proposition 3.2 (Relative Trace Formula). Let f ∈C∗
0 [1,∞) or f : [1,∞) →R be in

the Schwartz class. For q as in (3.5) and q̃ as in (3.6), we have:

f (1)len(l )+ ∑
γ∈H1\Γ−H1/H1

B(γ)<1

q̃(B(γ))+ ∑
γ∈H1\Γ−H1/H1

B(γ)>1

q(B(γ)) =∑
j

2dt j ( f )û j
2 .

3.2 Applications of the relative trace formula

3.2.1 The geometric side of the trace formula

To apply the relative trace formua we want to choose a test function f so that

q(B(γ)) = 1, whenever B(γ) < X , namely q is the characteristic function on the

interval [0, X ]. However, this is not continuous and we will need to use smoothings

of the characteristic function instead, following ideas from [6]. Motivated by the

Selberg–Harish-Chandra transform, we want to write q as a Weyl integral (see

[9, Chapter XIII] for the definition of such integrals, more information will be
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given in Chapter 4). We rewrite (3.5) using the substitution u = x2 +1 =⇒ d x =
du

/(
2
p

u −1
)
, as

q(z) =
∫ +∞

z2

f (u)p
u −1

dup
u − z2

.

We therefore set

F (u) = f (u)p
u −1

.

We now let

g (v) =
∫ ∞

v

F (u)p
u − v

du .

From [17, equations 1.64] we can recover F (and consequently f ). We get:

F (u) =− 1

π

∫ ∞

u

1p
v −u

d g (v) . (3.7)

The outcome is

q(z) = g (z2) .

Now, we choose g to be piecewise linear so that q is a smoothing of the character-

istic function. Let H = Y 2 +2Y X . We choose

g (y) =



1, y ≤ X 2,

(X +Y )2 − y

H
, X 2 ≤ y ≤ (X +Y )2,

0, y ≥ (X +Y )2 .

(3.8)

We now compute F using (3.7).

• When u > (X +Y )2 then F (u) = 0.

• For u < X 2 we get

F (u) =− 1

π

∫ (X+Y )2

X 2

1p
v −u

g ′(v)d v ,
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since the derivative of g is 0 for u < X 2. We compute:

F (u) = 1

πH

∫ (X+Y )2

X 2

1p
v −u

d v = 2

πH

[p
v −u

](X+Y )2

X 2

= 2

πH

(√
(X +Y )2 −u −

√
X 2 −u

)
.

Hence, for u < X 2, we get

f (u) = 2

πH

p
u −1

(√
(X +Y )2 −u −

√
X 2 −u

)
.

Since in (3.5) f appears as f (x2 +1) we write

f (x2 +1) = 2

πH
x
(√

(X +Y )2 −x2 −1−
√

X 2 −x2 −1
)

.

After setting a =
p

X 2 −1 and A =
√

(X +Y )2 −1 the previous expression

becomes

f (x2 +1) = 2

πH
x
(√

A2 −x2 −
√

a2 −x2
)

.

• When X 2 ≤ u ≤ (X +Y )2 or equivalently a ≤ x ≤ A for u = x2 +1 we get:

F (u) =− 1

π

∫ (X+Y )2

u

1p
v −u

g ′(v)d v

and with a similar computation:

f (x2 +1) = 2

πH
x
√

A2 −x2 .
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We conclude that

f (x2 +1) =



2

πH
x
(√

A2 −x2 −
√

a2 −x2
)
, x ≤ a,

2

πH
x
√

A2 −x2, a ≤ x ≤ A,

0, else .

(3.9)

Since the corresponding q is an overestimate of the characteristic function of the

interval [0, X ] we denote this function as q+ and similarly we denote f by f + and

g by g+. After defining

g−(y) =



1, y ≤ X 2 −H ,

X 2 − y

H
, X 2 −H ≤ y ≤ X 2,

0, y ≥ X 2,

(3.10)

and repeating the same process, we obtain the test function

f −(x2 +1) =



2

πH
x
(√

a2 −x2 −
√

T 2 −x2
)
, x ≤ T,

2

πH
x
√

a2 −x2, T ≤ x ≤ a,

0, else ,

(3.11)

where T =
p

X 2 −H −1.

Given these choices of f −, f +, let g̃−(z2) = q̃−(z) and g̃+(z2) = q̃+(z) be the

corresponding functions for the exceptional terms, namely

g̃+(z2) = 2
∫ ∞

0

f +(x2 +1)√
x2 − (z2 −1)

d x

and

g̃−(z2) = 2
∫ ∞

0

f −(x2 +1)√
x2 − (z2 −1)

d x .
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For B(γ) < 1 we notice that

g̃+(
B(γ)2)≤ ∫ ∞

0

f +(x2 +1)

x
d x = 2

πH

(∫ A

0

√
A2 −x2d x −

∫ a

0

√
a2 −x2d x

)
.

After the change of variables x = A sin t for the first integral and x = a sin t for the

second integral we see that

g̃+(
B(γ)2)≤ 2

πH

(A2 −a2)π

4
≤ 1 . (3.12)

A similar calculation gives that g̃−(
B(γ)2

) ≤ 1. We note that by discretness and

inequality (3.12) the sums for the exceptional terms are O(1). Also note that

f +(1) = f −(1) = 0.

From (3.8) and (3.10), since 0 ≤ g−(y) ≤ 1 in
[
0, X 2

]
and g−(y) = 0 for y > X 2,

we clearly have that

∑
γ∈H1\Γ−H1/H1

B(γ)>1

g−(
B(γ)2)≤ ∑

γ∈H1\Γ−H1/H1
1<B(γ)<X

1 ≤ ∑
γ∈H1\Γ−H1/H1

B(γ)>1

g+(
B(γ)2) . (3.13)

By its definition N (X , l ) can be written as

N (X , l ) = ∑
γ∈H1\Γ/H1

B(γ)≤1

1+ ∑
γ∈H1\Γ−H1/H1

1<B(γ)<X

1 ,

so from (3.13) we have

∑
γ∈H1\Γ/H1

B(γ)≤1

1+ ∑
γ∈H1\Γ−H1/H1

B(γ)>1

g−(
B(γ)2)≤ N (X , l ) ≤ ∑

γ∈H1\Γ/H1
B(γ)≤1

1+ ∑
γ∈H1\Γ−H1/H1

B(γ)>1

g+(
B(γ)2) .

(3.14)
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3.2.2 The spectral side of the relative trace formula

We proceed with the analysis of the spectral side of Proposition 3.2 for f +. The

computations regarding f − follow in the same way. The integral transform that

appears in the Huber transform in (2.9) is

∫ ∞

0
f +(x2 +1)(Ps−1(i x)+Ps−1(−i x))d x

and for the specific test function f + that we chose in (3.9), it becomes

∫ a

0

2

πH
x
(√

A2 −x2 −
√

a2 −x2
)
(Ps−1(i x)+Ps−1(−i x)) d x

+
∫ A

a

2

πH
x
√

A2 −x2(Ps−1(i x)+Ps−1(−i x))d x .

For y > 0, let

Js(y) =
∫ p

y

0
x
√

y −x2
(
Ps−1(i x)+Ps−1(−i x)

)
d x ,

then the Huber transform of f + can be written as

dt ( f +) =π−3/2Γ
( s +1

2

)
Γ
(
1− s

2

) Js
(

A2
)− Js

(
a2

)
H

. (3.15)

We prove the following Lemma for dt ( f +):

Lemma 3.3. For any s = 1
2 + i t with t ∈R or 1/2 < s < 1 and |s|≪ A2 we have:

dt ( f +) = γ1(s)

π

2

s +2

As+2 −as+2

A2 −a2
(1+O(|t |X −2))

+ γ2(s)

π

A3−s −a3−s

A2 −a2
(1+O(|t |X −2))

+ γ3(s)

π

A−a

A2 −a2
(1+O(|t |X −2)) ,

(3.16)
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where

γ1(s) = π

2

Γ(s +1/2)Γ((s +1)/2)

Γ(s/2)3

4

s(2s −1)
, γ2(s) = π

2

Γ((1−2s)/2)Γ((2− s)/2)(
Γ((1− s)/2)

)2
Γ((5− s)/2)

and γ3(s) =−1

2

Γ((−1− s)/2)Γ((s −2)/2)

Γ((1− s)/2)Γ(s/2)
.

Proof. By the definition of the Legendre function Ps−1 we have that

Js
(

A2)=∫ A

0
x
√

A2 −x2
(
Ps−1(i x)+Ps−1(−i x)

)
d x

=
∫ A

0
x
√

A2 −x2
(

2F1

(
1− s, s;1;

1− i x

2

)
+ 2F1(1− s, s;1;

1+ i x

2

))
d x .

Applying formulas [12, 9.136.2 and 9.136.3] for α = (1− s)/2,β = s/2, z = −x2 to

both hypergeometric functions inside the integral, we get

Js
(

A2)= 2D(s)
∫ A

0
x
√

A2 −x2
2F1

(1− s

2
,

s

2
;

1

2
;−x2

)
d x , (3.17)

where

D(s) =
p
π

Γ
(2−s

2

)
Γ
( s+1

2

) .

Let x2 = u =⇒ 2xd x = du, then

Js
(

A2)= D(s)
∫ A2

0

√
A2 −u 2F1

(1− s

2
,

s

2
;

1

2
;−u

)
du

and for u = v A2 =⇒ du = d v A2, the resulting integral is

A3D(s)
∫ 1

0

p
1− v 2F1

(1− s

2
,

s

2
;

1

2
;−v A2

)
d v .

By [12, Eq. 7.512.12] we have

Js(A2) = A3D(s)
Γ(3/2)

Γ(5/2)
3F2

(1− s

2
,

s

2
,1;

1

2
,

5

2
;−A2

)
.
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By [24, Eq. 16.8.8] for q = 2, z =−A2 we have for s ̸= 1/2,1

Js(A2) =A3D(s)
Γ(3/2)Γ(1/2)

Γ((1− s)/2)Γ(s/2)

(
Γ((1− s)/2)Γ((2s −1)/2)Γ((1+ s)/2)

Γ(s/2)Γ((4+ s)/2)
As−1×

× 3F2

(1− s

2
,1− s

2
,−1− s

2
;

3−2s

2
,

1− s

2
;−A−2

)
+ Γ(s/2)Γ((1−2s)/2)Γ(1− s/2)

Γ((1− s)/2)Γ((5− s)/2)
A−s

3F2

( s

2
,

s +1

2
,

s −3

2
;

2s +1

2
,

s

2
;−A−2

)
+ Γ((−1− s)/2)Γ((s −2)/2)

Γ(−1/2)Γ(3/2)
A−2

3F2

(
1,

3

2
,−1

2
;

s +3

2
,

4− s

2
;−A−2

))
=A3D(s)

Γ(3/2)Γ(1/2)

Γ((1− s)/2)Γ(s/2)

(
Γ((1− s)/2)Γ((2s −1)/2)Γ((1+ s)/2)

Γ(s/2)Γ((4+ s)/2)
As−1×

× 2F1

(
1− s

2
,−1− s

2
,

3−2s

2
,−A−2

)
+ Γ(s/2)Γ((1−2s)/2)Γ(1− s/2)

Γ((1− s)/2)Γ((5− s)/2)
A−s

2F1

( s +1

2
,

s −3

2
,

2s +1

2
;−A−2

)
+ Γ((−1− s)/2)Γ((s −2)/2)

Γ(−1/2)Γ(3/2)
A−2

3F2

(
1,

3

2
,−1

2
;

s +3

2
,

4− s

2
;−A−2

))
.

(3.18)

Excluding D(s), we compute the Gamma factors for the first summand to be

γ1(s)(2/(s +2)), where

γ1(s) := π

2

Γ(s +1/2)Γ((s +1)/2)

Γ(s/2)3

4

s(2s −1)

are the Gamma functions appearing in [32, p.16, Th.25]. We work similarly for the

other summands to get

γ2(s) = π

2

Γ((1−2s)/2)Γ((2− s)/2)(
Γ((1− s)/2)

)2
Γ((5− s)/2)

and

γ3(s) =−1

2

Γ((−1− s)/2)Γ((s −2)/2)

Γ((1− s)/2)Γ(s/2)
.

If |s|≪ A2, we use the series expansion of the hypergeometric functions that

appear in the expansion of Js(A2) to compute that

2F1

(
1− s

2
,−1− s

2
,

3−2s

2
,−A−2

)
= 1+O

(|t |A−2) ,



3.2. APPLICATIONS OF THE RELATIVE TRACE FORMULA 44

2F1

( s +1

2
,

s −3

2
,

2s +1

2
;−A−2

)
= 1+O

(|t |A−2) ,

3F2

(
1,

3

2
,−1

2
;

s +3

2
,

4− s

2
;−A−2

)
= 1+O

(|t |−2 A−2) .

We use the same methods to compute Js(a2). Since a, A ∼ X we have

dt ( f +) = 1

2
p
π
Γ
( s +1

2

)
Γ
(
1− s

2

) 2

πH

(
Js

(
A2)− Js

(
a2))

= γ1(s)

π

2

s +2

As+2 −as+2

A2 −a2

(
1+O

(|t |X −2))
+ γ2(s)

π

A3−s −a3−s

A2 −a2

(
1+O

(|t |X −2))
+ γ3(s)

π

A−a

A2 −a2

(
1+O

(|t |−2X −2)) .

We note that using Stirling’s approximation (A.1) the gamma functions ap-

pearing can be bounded as follows:

γ1(s) ≪|t |−1/2 , γ2(s) ≪|t |−3/2 and γ3(s) ≪|t |−2 . (3.19)

More generally we can prove the following result about dt ( f +):

Lemma 3.4. Let f + be the function from (3.9), then there exists ξ ∈ [a2, A2] such

that

dt ( f +) = Γ
( s+1

2

)
Γ
(
1− s

2

)
π3/2

∫ p
ξ

0

x√
ξ−x2

(
Ps−1(i x)+Ps−1(−i x)

)
d x .

Proof. We define

Gs(y, x) = x
√

y −x2
(
Ps−1(i x)+Ps−1(−i x)

)
,



3.2. APPLICATIONS OF THE RELATIVE TRACE FORMULA 45

so that the Huber transform of f can be written as

dt ( f +) = 2Γ
( s+1

2

)
Γ
(
1− s

2

)
π3/2

Js
(

A2
)− Js

(
a2

)
H

.

Since H = A2 −a2, we can apply the Mean Value Theorem for Js on the interval

[a2, A2]. In order to do so, first we have to compute the derivative of Js . By the

Leibniz Rule, we have

J ′s(y) =Gs(y,
p

y)(
p

y)′−Gs(y,0)0′+
∫ p

y

0

∂

∂y
Gs(y, x)d x

= 1

2

∫ p
y

0

x√
y −x2

(
Ps−1(i x)+Ps−1(−i x)

)
d x .

Using the Mean Value Theorem we find ξ ∈ [a2, A2] =⇒ X 2 −1 < ξ< (X +Y )2 −1,

such that

dt ( f +) = 2Γ
( s+1

2

)
Γ
(
1− s

2

)
π3/2

J ′s(ξ)

= Γ
( s+1

2

)
Γ
(
1− s

2

)
π3/2

∫ p
ξ

0

x√
ξ−x2

(
Ps−1(i x)+Ps−1(−i x)

)
d x .

Using Lemma 3.3 we prove the main estimate for the Huber transform of f +

as follows:

Proposition 3.5. i) For any s = 1
2 + i t with t ∈R or 1/2 < s < 1 and |s|≪ A2, we

have

dt ( f +) = γ1
(1

2 + i t
)

π
X

1
2+i t + γ2

(1
2 + i t

)
π

(5

2
− i t

)
X

1
2−i t

+O
(∣∣∣γ1

(1

2
+ i t

)∣∣∣|t |X − 1
2 Y +

∣∣∣γ2

(1

2
+ i t

)∣∣∣|t |2X − 1
2 Y

)
.
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ii) Let t ∈R and t ̸= 0. Then dt ( f +) can be written in the form

dt ( f +) = a(t , X ,Y )X
1
2+i t +b(t , X ,Y )X

1
2−i t ,

where

a(t , X ,Y ),b(t , X ,Y ) =O
(

min{|t |−1/2, |t |−3/2X /Y }
)

.

iii) Let t ̸∈R, i.e. s ∈ (1
2 ,1

]
, then the Huber transform can be written as

dt ( f +) = γ1(s)

π
X s + γ2(s)

π

(3− s

2

)
X 1−s

+O
(
Y +

∣∣∣Γ(1

2
− s

)∣∣∣X 1/2
)

.

iv) For t = 0, we have

d0( f +) ≪ X 1/2 log X .

Proof. i) We use the Mean Value Theorem for the function x(s+2)/2 to find

ξ ∈ [a2, A2] such that

As+2 −as+2

A2 −a2
= s +2

2
ξs/2 (3.20)

and notice that ξs/2 = X s +O
(|s|∣∣X s−1

∣∣Y )
. Also by the Mean Value Theorem

for the function x(3−s)/2, we find ζ ∈ [a2, A2] such that

A3−s −a3−s

A2 −a2
= 3− s

2
ζ(1−s)/2 . (3.21)

We see that ζ(1−s)/2 = X 1−s+O
(|1−s|∣∣X −s

∣∣Y )
. For the last summand in (3.16)

we use Stirling’s approximation to conclude that it is O(1). Hence, using

(3.20) and (3.21), for |s|≪ A2 we write (3.16) as:

dt ( f +) = γ1(s)

π
X s + γ2(s)

π

3− s

2
X 1−s

+O
(
|γ1(s)||t |∣∣X s−1

∣∣Y +|γ2(s)||t |2∣∣X −s
∣∣Y )

.
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After plugging s = 1
2 + i t to the last formula the result follows.

ii) Suppose that t ∈R, t ̸= 0. From (3.15) and (3.18) we have that

dt ( f +) =γ1(s)

πH

2

s +2

(
As+2

2F1

(
1− s

2
,−1− s

2
,

3−2s

2
,−A−2

)
−as+2

2F1

(
1− s

2
,−1− s

2
,

3−2s

2
,−a−2

))
+ γ2(s)

πH

(
A3−s

2F1

( s +1

2
,

s −3

2
,

2s +1

2
;−A−2

)
−a3−s

2F1

( s +1

2
,

s −3

2
,

2s +1

2
;−a−2

))
+ γ3(s)

πH

(
A 3F2

(
1,

3

2
,−1

2
;

s +3

2
,

4− s

2
;−A−2

)
−a 3F2

(
1,

3

2
,−1

2
;

s +3

2
,

4− s

2
;−a−2

))
.

We know from part i ) that the terms containing X 1/2+i t come from the terms

containing the function Gs(x), where

Gs(x) = x(s+2)/2
2F1

(
1− s

2
,−1− s

2
,

3−2s

2
,−x−1

)
.

Using Gs(x) we can write

dt ( f +) = γ1(s)

π

2

s +2

Gs(A2)−Gs(a2)

H

+ γ2(s)

π

G1−s(A2)−G1−s(a2)

H

+ γ3(s)

πH

(
A 3F2

(
1,

3

2
,−1

2
;

s +3

2
,

4− s

2
;−A−2

)
−a 3F2

(
1,

3

2
,−1

2
;

s +3

2
,

4− s

2
;−a−2

))
.

We use formula (A.3) for the two hypergeometric functions appearing in

Gs(A2) and Gs(a2) for parameters α= 1, β= 1/2, γ= 3, λ=−s/2, z =−A−2

or z =−a−2 and e±φ = (
2− z ±2(1− z)1/2

)
/z. We also use Stirling’s approxi-
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mation for the Gamma functions appearing to get the bound

2γ1(s)

π

2

s +2

Gs(A2)−Gs(a2)

H
≪|t |−3/2 A5/2 +a5/2

H
≪|t |−3/2X 3/2Y −1

By the Mean Value Theorem, we find ξ ∈ [a2, A2] such that

Gs(A2)−Gs(a2)

H
=G ′

s(ξ) .

But we have

G ′
s(ξ) = s +2

2
ξs/2

2F1

(
1− s

2
,−1− s

2
,

3−2s

2
,−ξ−1

)
+ξs/2 (1− s/2)(−1− s)/2

(3−2s)/2
2F1

(
2− s

2
,− s

2
,

5−2s

2
,−ξ−1

)
,

using (A.2) for the derivative of 2F1. We again apply Stirling’s approximation

for the gamma functions γ1 and formula (A.3) for the two hypergeometric

functions in G ′
s(ξ) with parameters α= 1, β= 1/2, γ= 3, λ=−s/2, z =−ξ−1

for first one and α= 2, β= 1/2, γ= 3, λ=−s/2, z =−ξ−1 for the second one.

The resulting bound is given by

γ1(s)

π

2

s +2

Gs(A2)−Gs(a2)

H
≪|t |−1/2X 1/2 .

Hence, if we set

a(t , X ,Y ) = γ1(s)

π

2

s +2

Gs(A2)−Gs(a2)

H
X −(1/2+i t )

and use the Stirling asymptotic for the Gamma functions appearing in the

expression we get

a(t , X ,Y ) =O
(

min
{|t |−1/2, |t |−3/2X /Y

})
.
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We do the same for G1−s(x) as above and the coefficient b(t , X ,Y ) defined as

b(t , X ,Y ) =
(
γ2(s)

π

G1−s(A2)−G1−s(a2)

H

+ γ3(s)

πH

(
A 3F2

(
1,

3

2
,−1

2
;

s +3

2
,

4− s

2
;−A−2

)
−a 3F2

(
1,

3

2
,−1

2
;

s +3

2
,

4− s

2
;−a−2

)))
X −(1/2−i t ) .

Note that here we also bound the summands involving the functions 3F2 by

using the hypergeometric series expansion (notice that the factors involving

s appear on the denominator) and Stirling’s approximation for γ3, see (3.19).

For z = A or a, we have that

γ3(s)

πH
z 3F2

(
1,

3

2
,−1

2
;

s +3

2
,

4− s

2
;−z−2

)
≪|t |−2Y −1 ,

hence those terms are negligible and will not affect the overall bound that

we get from the terms involving G1−s(x). We conclude the same bound for

b(t , X ,Y ) that we got for a(t , X ,Y ) and the result follows.

iii) It follows from i). If s = 1, i.e. t =−i /2, from [12, Eq.8.711.1] we have that

P0(±i x) = 1. We see that d−i /2( f ) = (2/π)X +O(Y ). If s ̸= 1 we estimate

the Gamma factors in i) using Stirling’s approximation and keep the factor

Γ
(1

2 − s
)
.

iv) We first need a bound on the sum P−1/2(i x)+P−1/2(−i x). The transformation

formula [24, Eq. 16.8.8] for the hypergeometric function used above, is not

valid for s = 1/2, hence we are going to use the integral representation [12,
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8.713.3]. Firstly, assume that x < 1. Then we have

P−1/2(i x)+P−1/2(−i x) ≪
∫ ∞

0
(cosh2 t +x2)−1/4d t

≪
∫ ∞

0
(cosh t )−1/2d t

≪ 1 .

Secondly, assume that x ≥ 1, then we have

P−1/2(i x)+P−1/2(−i x) ≪
∫ ∞

0
(cosh2 t +x2)−1/4d t

≪ x−1/2
∫ ∞

0

((cosh t

x

)2 +1
)−1/4

d t .

Now we set u = cosh t
/

x and compute:

∫ ∞

0

((cosh t

x

)2 +1
)−1/4

d t =
∫ ∞

1/x
(u2 +1)−1/4 xp

x2u2 −1
du

=
∫ 2

1/x
(u2 +1)−1/4 xp

x2u2 −1
du

+
∫ ∞

2
(u2 +1)−1/4 xp

x2u2 −1
du .

For u ≥ 2 we notice that

xp
x2 −u2 −1

≪ 1

u
,

hence we can bound the second integral as follows:

∫ ∞

2
(u2 +1)−1/4 xp

x2u2 −1
du ≪

∫ ∞

1
(u2 +1)−1/4 1

u
≪ 1 .

As for the first integral we compute

∫ 2

1/x
(u2 +1)−1/4 xp

x2u2 −1
du ≪

∫ 2

1/x

xp
x2u2 −1

du .
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Let xu = coshr , then we have

∫ 2

1/x

xp
x2u2 −1

du =
∫ cosh−1(2x)

0
dr = cosh−1(2x) .

We conclude that

∫ 2

1/x
(u2 +1)−1/4 xp

x2u2 −1
du ≪ log x .

Now, we have shown in Lemma 3.4 that dt ( f +) ≪ ∫pξ

0
xp
ξ−x2

∣∣Ps−1(i x)+
Ps−1(−i x)

∣∣d x for every t and for some ξ ∈ [a2, A2], hence we have

d0( f +) ≪
∫ 1

0

x√
ξ−x2

∣∣P−1/2(i x)+P−1/2(−i x)
∣∣d x

+
∫ p

ξ

1

x√
ξ−x2

∣∣P−1/2(i x)+P−1/2(−i x)
∣∣d x

≪
∫ 1

0

x√
ξ−x2

d x +
∫ p

ξ

1

√
x

ξ−x2
log xd x

≪ 1+
∫ p

ξ

1

ξ1/4√
ξ
√

1− x2

ξ

log
√
ξd x

≪ 1+ξ−1/4 logξ
∫ p

ξ

1

1√
1− x2

ξ

d x

≪ ξ1/4 logξ≪ X 1/2 log X .

3.2.3 Proof of Theorem 1.2

We will now use our results about the Huber transform dt ( f +) to analyse the

spectral contribution to the relative trace formula, Proposition 3.2, and finally

prove Theorem 1.2.
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Proof of Theorem 1.2. We have by Proposition 3.5:

∑
j

2dt ( f +)û j
2 = ∑

1/2<s j≤1

2

π
γ1(s j )û j

2X s j + 1

π
(3− s j )γ2(s j )û j

2X 1−s j

+O

( ∑
1/2<s j≤1

(
û j

2Y +
∣∣∣Γ(1

2
− s j

)∣∣∣û j
2X 1/2

))
+ ∑

0 ̸=t j∈R
2dt ( f +)û j

2 +O
(
X 1/2 log X

)
,

where the last term is due to the estimate for d0( f +) (see Proposition 3.5(iv)).

Since the spectrum is discrete, for s j corresponding to a small eigenvalue, s j − 1
2 is

bounded away from zero. As the number of small eigenvalues is finite, we get

∑
1/2<s j≤1

(
û j

2Y +
∣∣∣Γ(1

2
− s j

)∣∣∣û j
2X 1/2

)
=O

(
Y +X 1/2) .

For the same reason,

∑
1/2<s j≤1

1

π
γ2(s j )(3− s j )û j

2X 1−s j =O
(
X 1/2) .

Let

S( f +) = ∑
0 ̸=t j∈R

2dt ( f +)û j
2 ,

then

∑
j

2dt ( f +)û j
2 = ∑

1/2<s j≤1

2

π
γ1(s j )û j

2X s j +S( f +)+O
(
Y +X 1/2 log X

)
. (3.22)

Using Proposition 3.5 and the discreteness of the spectrum, we get

S( f +) = ∑
|t j |≥1

2dt ( f +)û j
2 + ∑

|t j |<1
2dt ( f +)û j

2

= ∑
|t j |≥1

2dt ( f +)û j
2 +O

(
X 1/2) .
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Since dt ( f +) is an even function of t , see e.g. (4.1), after using dyadic decomposi-

tion we get the bound

∑
|t j |≥1

2dt ( f +)û j
2 ≪ ∑

t j≥1
2
∣∣dt ( f +)

∣∣û j
2

=
∞∑

n=0

( ∑
2n≤t j<2n+1

2
∣∣dt ( f +)

∣∣û j
2
)

≪
∞∑

n=0
sup

2n≤t j<2n+1

∣∣dt j ( f +)
∣∣( ∑

2n≤t j<2n+1

û j
2
)

.

(3.23)

From Proposition 3.5 and Lemma 2.10, we compute

S( f +) ≪ X 1/2
∞∑

n=0
2−n/2 min

{
2n , X Y −1

}
+X 1/2 .

We split the sum according to n < log2(X /Y ) and n > log2(X /Y ). We get

S( f +) ≪ X 1/2
∑

n<log2(X /Y )
2−n/2 min

{
2n , X Y −1

}
+X 1/2

∑
n≥log2(X /Y )

2−n/2 min
{

2n , X Y −1
}
+X 1/2

≪ X
1
2

∑
n<log2(X /Y )

2n/2 +X 3/2Y −1
∑

n≥log2(X /Y )
2−n/2 +X 1/2

≪ X Y −1/2 +X 1/2 .

(3.24)

With this result for the spectral side and the analysis for the geometric side of our

trace formula in Proposition 3.2, we can finally show Theorem 1.2. From the above

we have that

∑
γ∈H1\Γ−H1/H1

B(γ)<1

g̃+(
B(γ)2)+ ∑

γ∈H1\Γ−H1/H1
B(γ)>1

g+(
B(γ)2)= ∑

1/2<s j≤1

2

π
γ1(s j )û j

2X s j

+O
(

X Y −1/2 +Y +X 1/2 log X
)

.
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But the sum for the exceptional terms γ, i.e. B(γ) < 1, is O(1) because there are

finitely many such terms and by equation (3.12) we know that g̃+(
B(γ)2

)=O(1)

for B(γ) < 1. Hence we have that

∑
γ∈H1\Γ−H1/H1

B(γ)>1

g+(
B(γ)2)= ∑

1/2<s j≤1

2

π
γ1(s j )û j

2X s j +O
(

X Y −1/2 +Y +X 1/2 log X
)

.

We notice that the choice X Y − 1
2 = Y ⇐⇒ Y = X 2/3 balances the two error terms

and makes them equal to O
(
X 2/3

)
. It follows that

∑
γ∈H1\Γ−H1/H1

B(γ)>1

g+(
B(γ)2)= ∑

1/2<s j≤1

2

π
γ1(s j )û j

2X s j +O
(
X 2/3) .

We work similarly for the sums of g−, g̃− and use equation (3.14) to get that

N (X , l ) = ∑
γ∈H1\Γ/H1

B(γ)≤1

1+ ∑
1/2<s j≤1

2

π
γ1(s j )û j

2X s j +O
(
X 2/3) .

Since the first sum is of order O(1) we conclude that

N (X , l ) = ∑
1/2<s j≤1

2

π
γ1(s j )û j

2X s j +O
(
X 2/3) .

Remark 3.6. For s = 1, using the fact that

û0 = µp
vol(Γ\H)ν

the contribution to the main term of N (X , l ) is

2
γ1(1)

π
û0

2X = 2

π

µ2

vol(Γ\H)ν2
X .
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Remark 3.7. Let l1, l2 be representatives of two closed geodesics and H1 a hyper-

bolic subgroup of Γ that corresponds to l1 and H2 a hyperbolic subgroup that

corresponds to l2. We assume that l1 and τ−1 · l2 lie on the imaginary axis I , for

some τ ∈ PSL2(R). Then we consider the series

K̃ (z) := ∑
γ∈H2\Γ

k(v(τ−1γz)) .

Similarly to the proof of Proposition 3.2 we have

∫
l1

K̃ (z)d s = ∑
γ∈H2\Γ

∑
γ0∈H1

∫
l1

k(v(τ−1γγ0z))d s

= ∑
γ∈H2\Γ/H1

∫
I

k(v(τ−1γz))d s .

The geometric side of Proposition 3.2 is the same for B(τ−1γ) in place of B(γ). The

difference in the spectral side case comes from the periods û j . The sum appearing

there becomes ∑
t j

2dt j ( f )
∫

l1

u j (z)d s
∫

l2

u j (z)d s .

For the sum
∑

t j≤T
∫

l1
u j (z)d s

∫
l2

u j (z)d s, we use Lemma 2.10 and the Cauchy–

Schwarz inequality to obtain the same bound as the one in the proof of the main

theorem. We have

∣∣∣∣ ∑
0≤t j≤T

∫
l1

u j (z)d s
∫

l2

u j (z)d s

∣∣∣∣≤ ( ∑
0≤t j≤T

∣∣∣∫
l1

u j (z)d s
∣∣∣2 ∑

0≤t j≤T

∣∣∣∫
l2

u j (z)d s
∣∣∣2

)1/2

≪ T ,

which can be used to show equations (3.23) and (3.24) in this case and the same

error term as in Theorem 1.2 follows for N (X , l1, l2).



Chapter 4

Average results for the error term

4.1 The large sieve inequality

4.1.1 The Jacobi transform

In this chapter we prove Theorem 1.5, namely that on average the error term

E (X , l ) is O
(
X 1/2 log3/2 X

)
. In order to do so, we relate the integral transform dt ( f ),

which we call Huber’s transform, to the Jacobi transform studied by Flensted-

Jensen [10] and Koornwinder [20],[21]. Then, we develop a large sieve inequality

for periods of Maass forms (see Theorem 1.3). To prove the inequality, we choose

the integral transform to be a Gaussian and study its inverse transform. We use

it in the relative trace formula (Proposition 3.2) and follow Chamizo’s proof of a

similar sieve inequality for values of Maass forms (see [3, Th. 2.2, p. 306]). For the

proof of Theorem 1.5, we follow the ideas of Chatzakos and Petridis, where we use

our new sieve inequality (Theorem 1.3) in place of Chamizo’s inequality [3, Th.

2.2, p. 306].

From the definition of the Huber transform (2.9) and working similarly to the

proof of Lemma 3.3 (see (3.17)) we can see that given a test function f , its Huber

transform can be written as:

dt ( f ) =
∫ ∞

0
f (x2 +1) 2F1

(1− s

2
,

s

2
,

1

2
,−x2

)
d x , (4.1)
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where s = 1
2 + i t , as usual t ∈ R or 1/2 ≤ s ≤ 1. Now, let us make the change

of variables x = sinh w =⇒ d x = cosh wd w . Hence, we can rewrite the Huber

transform as

dt ( f ) =
∫ ∞

0
f (sinh2 w +1) 2F1

(1− s

2
,

s

2
,

1

2
,−sinh2 w

)
cosh wd w .

We now introduce the Jacobi functions. For the discussion and formulas below,

see [20, Ch. 2]. Consider for α,β,µ ∈C and w > 0 the differential equation

(
∆(α,β)(w)

)−1 d

d w

(
∆(α,β)(w)

dU (w)

d w

)
=−(µ2 +ρ2)U (w) ,

where ρ =α+β+1 and

∆(α,β)(w) :=∆(w) := (e t −e−t )2α+1(e t +e−t )2β+1 .

Then the function

φµ(w) :=φ(α,β)
µ (w) := 2F1

(1

2
(ρ+ iµ),

1

2
(ρ− iµ),α+1;−sinh2 w

)
,

is a solution to the differential equation above with φ(0) = 1 and φ′(0) = 0. This

is called the Jacobi function of the first kind. A second linearly independent

solution (Jacobi function of the second kind) to the same differential equation for

µ ̸= −i ,−2i ,−3i , . . . , is the function:

Φµ(w) = (e t −e−t )iµ−ρ
2F1

(1

2
(β−α+1− iµ),

1

2
(ρ− iµ),1− iµ,− 1

sinh2 w

)
.

The two solutions φ andΦ are related via the formula

p
π(Γ(α+1))−1φµ(w) = 1

2
c(µ)Φµ(w)+ 1

2
c(−µ)Φ−µ(w) ,
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for

c(µ) := c(α,β)(µ) = 2ρΓ
(1

2 iµ
)
Γ
(1

2 (1+ iµ)
)

Γ(1/2(ρ+ iµ))Γ(1/2(α−β+1+ iµ))
.

The Jacobi transform of a function f is defined as

f̂ (µ) := f̂(α,β)(µ) := (p
2
/
Γ(a +1)

)∫ ∞

0
f (w)φµ(w)∆(w)d w .

We notice that the Huber transform is related to the Jacobi tranform as follows

dt ( f ) = (p
π
/

23/2)ĥ(µ) ,

for α = −1
2 ,β = 0,ρ = 1

2 ,µ = t and h(w) := f (sinh2 w +1). The Jacobi transform

has been studied extensively in [10],[20] and [21], where many properties for

φµ(w) and c(µ) have been shown. For ℜµ > 0, s′ ≥ 0,σ > 0, following [20, eq.

3.10,3.11] and [9, Chapter XIII] we define the Weyl fractional integral transform as(
W σ
µ ( f )

)
(s′) of a function f as

(
W σ
µ ( f )

)
(s′) = 1

Γ(µ)

∫ ∞

s′
f (v)(cosh(σv)−cosh(σs′))µ−1d(coshσv) ,

where d(cosh v) = sinh vd v and f is taken such that the integral converges (e.g. f

is rapidly decreasing). By analytic continuation W σ
µ extends to an entire function

of µ by

(
W σ
µ ( f )

)
(s′) = (−1)n

Γ(µ+n)

∫ ∞

s′

(
d n

d(coshσv)n
f (v)

)
(cosh(σv)−cosh(σs′))µ+n−1d(coshσv) ,

where

n = 0,1,2, . . . , ℜµ>−n .

Here, by d n f (v)
/

d(coshσv)n we mean the application of chain rule to the func-
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tion r (x) = f (v), for x = coshσv , hence

d n

d xn
r (x) = d n f (v)

d(coshσv)n
.

It can easily be seen (see [19, page 4],[20, page 153]) that

W σ
µ+ν =W σ

µ ◦W σ
ν (4.2)

and in particular

W σ
µ ◦W σ

−µ =W σ
−µ ◦W σ

µ = i d ,

which shows that the Weyl transform can be inverted. One very important property

of the Jacobi transform, proved in [20, eq. 3.7, Cor. 3.3] (see also [19, eq. 2.10]) is

that

f̂ (µ) =Fc ◦Fα,β( f )(µ) , (4.3)

where

Fα,β( f )(s) = 23α+ 3
2 W 1

α−β ◦W 2
β+ 1

2
( f )(s) (4.4)

and

Fc ( f )(s) =
√

2

π

∫ ∞

0
f (t )cos(st )d t

denotes the Fourier cosine transform (see also [12, p. 1121]). This was proved

in [20] for functions f of compact support, but the proof remains the same for

f such that the integral defining the Jacobi transform converges. We can use

equations (4.3) and the properties of the Weyl fractional integrals and Fourier

cosine transform to invert the Jacobi transform. We have

f (s) = 2−3α− 3
2 W 2

−β− 1
2
◦W 1

β−α ◦F−1
c ( f̂ )(s) , (4.5)

where F−1
c is the inverse cosine transform of a function. For simplicity, from now
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on we assume that f is such that f (sinh2 s+1) ∈ cosh−1 s ·S , where S is the space

of even rapidly decreasing functions on R (see [19, p. 3]). From [12, p. 1092, eq.

4.(iv)] even functions satisfy Fc ( f )(s) = F ( f )(s), where F ( f )(s) is the classical

Fourier Transform:

F ( f )(s) = 1p
2π

∫ ∞

−∞
f (t )e i st d t .

Hence, in equation (4.3) we can substitute the Fourier cosine transform Fc with

the classical Fourier transform F . We also define the convolution of two functions

f , g (see [12, p. 1088]) as

( f ∗ g )(t ) :=
∫ ∞

−∞
f (τ)g (t −τ)dτ .

The convolution satisfies the properties f ∗ g = g ∗ f and f ∗ (g ∗h) = ( f ∗ g )∗h.

For the Fourier transform of a convolution of two functions the following property,

also known as convolution theorem, holds

F ( f ∗ g )(s) =F ( f )(s)F (g )(s) .

4.1.2 Proof of the large sieve inequality

In order to prove our large sieve inequality (Theorem 1.3) we need to apply the

relative trace formula (3.2) for a suitable choice of test function f . Here we choose

dt ( f ) and estimate f .

Lemma 4.1. Let T,C0,c,u,r be positive with T ≥ 1 and r ≪ 1. Suppose that u ≥ u0

for some fixed u0 > 0. Let dt ( f ) = e−t 2/4T 2
cos(r t ), where f is defined through (4.5),

then the following inequalities hold:

a) For f we have that:

f (1) ≪ min
{
T,r−1} and f (sinh2 s +1) ≪ Te−cT 2(s−r )2

for s ≥ 2r .



4.1. THE LARGE SIEVE INEQUALITY 61

b) Moreover, we can show for sinh−1 u ≥ 2r

∫ ∞

u

f (x2 +1)p
x2 −u2

d x =
∫ ∞

sinh−1 u

f (sinh2 s +1)cosh s√
sinh2 s −u2

d s ≪ Te−C T 2(sinh−1 u−r )2
.

(4.6)

c) For sinh−1 u < 2r we have

∫ ∞

sinh−1 u

f (sinh2 s +1)cosh s√
sinh2 s −u2

d s ≪ Te−C T 2r 2
.

d) Also we have ∫ ∞

0

f (x2 +1)p
x2 +u2

d x ≪ Te−C T 2r 2
.

Proof. a) Using that the Huber transform is a Jacobi transform with α=−1/2

and β= 0, we can use that dt ( f ) = e−t 2/4T 2
cos(r t ) to recover f . By linearity

of the transforms F and W σ
µ we write the inversion formula (4.5) as

f (sinh2 s +1) = 23/2

p
π

W 2
− 1

2
◦W 1

1
2
◦F−1(dt ( f ))(s) . (4.7)

We use the convolution theorem for ordinary Fourier transform to compute

the inverse Fourier transform of dt ( f ). Informally, let h1(x) = p
2Te−x2T 2

and h2(x) = (p
π
/p

2
)(
δ(x − r ) + δ(x + r )

)
, where δ is the delta function.

Then from [12, Page 1119, eq.4] and [12, Page 1119, eq.13] we find that

F (h1)(t ) = e−t 2/4T 2
and F (h2)(t ) = cos(r t ). Since

F−1(dt ( f )
)
(s) =F−1(e−s2/4T 2

cos(r s)
)=F−1(F (h1)F (h2)

)
(s)

=F−1(F (h1 ∗h2)
)
(s) = (h1 ∗h2)(s) .
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We compute the convolution:

(h1 ∗h2)(s) =p
πT

∫ ∞

−∞
e−τ2T 2(

δ(s − r −τ)+δ(s + r −τ)
)
dτ

=p
πT

(
e−T 2(s−r )2 +e−T 2(s+r )2)

.

We now proceed with the Weyl fractional integrals (equations (4.3) and (4.4)).

From the properties of the Weyl fractional integral [19, Eq. 2.8] and the proof

of [19, Lemma 3.4] we can see that

W 2
−1 =

1

2cosh(·)W 1
−1 .

By equation (4.2) we can rewrite the Weyl fractional integrals as

W 2
− 1

2
◦W 1

1
2
=W 2

1
2
◦W 2

−1 ◦W 1
1
2
=W 2

1
2
◦
( 1

2cosh(·)W 1
− 1

2

)
.

Let g (s) :=p
2T

(
e−T 2(s−r )2 +e−T 2(s+r )2)

. First we calculate W 1
− 1

2
(g )(s):

W 1
− 1

2
(g )(s) = 1p

2

∫ ∞

s

d g (v)

d cosh v

1p
cosh v −cosh s

d cosh v

= 2T 3
∫ ∞

s

(v − r )e−T 2(v−r )2 + (v + r )e−T 2(v+r )2

p
cosh v −cosh s

d v .

We turn to the study of f (1), i.e. s = 0. Using (4.5) we compute

f (1) = 23/2

p
π

∫ ∞

0

W 1
− 1

2
(g )(v)

cosh v
(cosh2v−1)−1/2d cosh2v = 27/2

p
π

∫ ∞

0
W 1

− 1
2

(g )(v)d v .
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Applying the Mean Value Theorem for the denominator, we see that

f (1) ≪ T 3
∫ ∞

0

∫ ∞

v

|w − r |e−(w−r )2T 2 + (w + r )e−(w+r )2T 2

p
cosh w −cosh v

d wd v

≪ T 3
∫ ∞

0

∫ ∞

v

(sinh v)−1/2

p
w − v

(
|w − r |e−(w−r )2T 2 + (w + r )e−(w+r )2T 2

)
d wd v .

Rearranging the order of integration in the double integral, we see that

f (1) ≪T 3
∫ ∞

0

∫ ∞

v

(sinh v)−1/2

p
w − v

(
|w − r |e−(w−r )2T 2 + (w + r )e−(w+r )2T 2

)
d wd v

=T 3
∫ ∞

0

(∫ w

0

(sinh v)−1/2

p
w − v

d v

)(
|w − r |e−(w−r )2T 2 + (w + r )e−(w+r )2T 2

)
d w .

We have ∫ w

0

(sinh v)−1/2

p
w − v

d v ≪
∫ w

0

1p
v

1p
w − v

d v =π .

Hence, we compute

f (1) ≪
∫ ∞

0
W 2

− 1
2

(g )(v)d v ≪ T 3
∫ ∞

0

(
|w − r |e−(w−r )2T 2 + (w + r )e−(w+r )2T 2

)
d w

≪ T 3 e−r 2T 2

2T 2
≪ Te−r 2T 2

.

If r T < 1 ⇐⇒ T < r−1 then Te−r 2T 2 ≤ T , while if r T ≥ 1 we have r Te−r 2T 2 ≤
1 =⇒ Te−r 2T 2 ≪ r−1. We conclude that

f (1) ≪ min
{
T,r−1} .

Assume now that s ≥ 2r . Up to a constant the integral W 1
− 1

2
(g )(s) appeared

in the proof of [3, Lemma 3.1(b), p.312]. He proved that for s ≥ 2r and some
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C > 0

W 1
− 1

2
(g )(s) ≪ T 2e−C T 2(s−r )2

.

Since W 2
1
2

is a positive operator, i.e. g ≥ 0 implies W 2
1
2

(g ) ≥ 0, we can bound

the next Weyl fractional integral in (4.7) as follows

W 2
1
2
◦
( 1

2cosh(·)W 1
− 1

2

)
(g )(s) ≪W 2

1
2

(
T 2e−C T 2(s−r )2

cosh s

)
≪ T 2

∫ ∞

s

e−C T 2(v−r )2

cosh v
(cosh2v −cosh2s)−1/2 sinh2vd v

≪ T 2
∫ ∞

s

e−C T 2(v−r )2

p
cosh2v −cosh2s

sinh vd v .

(4.8)

Suppose now that r T ≥ 1. Let C1 =C /2, then from (4.8) we see that

f (sinh2 s +1) ≪ T 2e−C1T 2(s−r )2
∫ ∞

s

e−C1T 2(v−r )2

p
cosh2v −cosh2s

sinh vd v .

By the Mean Value Theorem on the interval [2s,2v] we get the bound

f (sinh2 s +1) ≪ T 2 e−C1T 2(s−r )2

p
sinh2s

∫ ∞

s

e−C1T 2(v−r )2

p
v − s

sinh vd v .

We apply integration by parts to our integral:

∫ ∞

s

e−C1T 2(v−r )2

p
v − s

sinh vd v ≪
∫ ∞

s
e−C1T 2(v−r )2p

v − s cosh vd v

+T 2
∫ ∞

s
e−C1T 2(v−r )2

(v − r )
p

v − s sinh vd v .

Let

K1 =
∫ ∞

s
e−C1T 2(v−r )2p

v − s cosh vd v

and

K2 = T 2
∫ ∞

s
e−C1T 2(v−r )2

(v − r )
p

v − s sinh vd v .
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To bound K2, as in the proof of [19, Lemma 3.2,page 5] we use the simple

bound sinh v ≪ vev
/

(1+ v) to conclude for s ≥ 2r :

K2 ≪ T 2
∫ ∞

s
e−C1T 2(v−r )2

(v − r )3/2 sinh vd v

≪ T 2
∫ ∞

s
e−C1T 2(v−r )2+v (v − r )3/2vd v .

With the substitution w = v − r , then

K2 ≪ T 2
∫ ∞

s−r
e−C1T 2w2+w w 3/2(w + r )d w

≪ T 2
∫ ∞

s−r
e−C1T 2w2+w w 5/2d w

≪ T 2
∫ ∞

s−r
e
−C1T 2

(
w− 1

2C1T 2

)2

w 5/2d w .

Next, we substitute m = w −1
/

(2C1T 2) to get

K2 ≪ T 2
∫ ∞

s−r− 1
2C1T 2

e−C1T 2m2
m5/2dm .

Let N = s − r −1
/

(2C1T 2) and l =C1T 2m2, then we have

K2 ≪ T 2
∫ ∞

N
e−C1T 2m2

m5/2dm ≪ T 2
∫ ∞

C1T 2N 2
e−l

( l

C1T 2

)5/4 1

C1T 2
√

l
/

C1T 2
dl

≪ T 2

T 7/2

∫ ∞

C1T 2N 2
e−l l 3/4dl = T −3/2Γ

(7

4
,C1N 2T 2

)
,

where Γ(a, x) denotes the incomplete Gamma function. Bounds for the

incomplete Gamma function are well-known (see [12, Eq. 8.350]), we just

need that Γ(a, x) ≪ Γ(a) ≪ 1 for a > 0 and x > 0, to conclude that K2 ≪
T −3/2.

For the integral K1, we use the simple bound cosh v ≪ ev and the same

method as before to show that K1 ≪ T −3/2Γ
(1

2 ,C1N 2T 2
)≪ T −3/2. If r T > 1,
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then

1p
sinh2s

≪ 1p
sinh2r

≪ 1p
r
≪

p
T

and it follows that f (sinh2 s +1) ≪ Te−C1T 2(s−r )2
.

Suppose that r T ≤ 1. We know that there is a constant C1 > 0 such that

f (sinh2 s +1) ≪ T 2e−C1T 2(s−r )2
∫ ∞

s

e−C1T 2(v−r )2

p
cosh2v −cosh2s

sinh vd v .

From the bound e−C1T 2(s−r )2 ≪ e−C2T 2s2
used in [3, p. 312] when r T ≤ 1, we

find C2 > 0 such that

f (sinh2 s +1) ≪ T 2e−C2T 2(s−r )2
∫ ∞

s

e−C2T 2v2

p
cosh2v −cosh2s

sinh v d v .

We apply integration by parts to get

f (sinh2 s +1) ≪ T 2e−C2T 2(s−r )2
([p

cosh2v −cosh2s
e−C2T 2v2

cosh v

]∞
s

−T 2
∫ ∞

s

e−C2T 2v2

cosh v
v
p

cosh2v −cosh2s d v

−
∫ ∞

s

e−C2T 2v2
sinh v

cosh2 v

p
cosh2v −cosh2s d v

)

By the Mean Value Theorem on the interval [2s,2v] we find the bound

f (sinh2 s +1) ≪ T 2e−C2T 2(s−r )2
(
T 2

∫ ∞

s

e−C2T 2v2

cosh v
v
p

sinh2v
p

v − s d v

+
∫ ∞

s

e−C T 2v2
sinh v

cosh2 v

p
sinh2v

p
v − s d v

)

≪ T 2e−C2T 2(s−r )2
(
T 2

∫ ∞

s
e−C2T 2v2

v

√
sinh v

cosh v

p
v − s d v

+
∫ ∞

s
e−C2T 2v2

( sinh v

cosh v

)3/2p
v − s d v

)
.
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Let

L1 = T 2
∫ ∞

s
e−C2T 2v2

v
p

tanh v
p

v − s d v .

and

L2 =
∫ ∞

s
e−C2T 2v2

(
tanh v

)3/2p
v − s d v .

Using the bound tanh v ≪ v , we see that

L1 ≪ T 2
∫ ∞

s
e−C2T 2v2p

v v
p

v − s d v ≪ T 2
∫ ∞

s
e−C2T 2v2

v2d v

and

L2 ≪
∫ ∞

s
e−C2T 2v2

v3/2pv − s d v ≪
∫ ∞

s
e−C2T 2v2

v2 d v .

Similarly to K1 and K2 we use the change of variables l =C2T 2v2. We get

∫ ∞

s
e−C2T 2v2

v2 d v ≪
∫ ∞

C2T 2s2
e−l l

C2T 2

p
C2T

2C2T 2
p

l
dl ≪ T −3

∫ ∞

C2T 2s2
e−l

p
l dl .

Hence ∫ ∞

s
e−C2T 2v2

v2 d v ≪ T −3Γ
(3

2
,C2T 2s2

)
≪ T −3 .

We see that L1 ≪ T −1 and L2 ≪ T −3, hence we conclude that

f (sinh2 s +1) ≪ Te−C2T 2(s−r )2
.

b) We now prove the estimate in b). Suppose that sinh−1 u ≥ 2r . Using a) we

have

∫ ∞

u

f (x2 +1)p
x2 −u2

d x =
∫ ∞

sinh−1 u

f (sinh2 s +1)cosh s√
sinh2 s −u2

d s

≪ T
∫ ∞

sinh−1 u

e−C0T 2(s−r )2
cosh s√

sinh2 s −u2
d s .
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Let k = sinh−1 u and c =C0/2. Suppose that k > 2r then we have

∫ ∞

u

f (x2 +1)p
x2 −u2

d x ≪ Te−cT 2(k−r )2
∫ ∞

k

e−cT 2(s−r )2
cosh s√

sinh2 s − sinh2 k
d s .

We apply integration by parts to the last integral and the Mean Value Theo-

rem to get:

∫ ∞

k

e−cT 2(s−r )2
cosh s√

sinh2 s − sinh2 k
d s = 1

2

∫ ∞

k

−2cT 2(s − r )e−cT 2(s−r )2

sinh s

√
sinh2 s − sinh2 kd s

− 1

2

∫ ∞

k

e−cT 2(s−r )2
cosh s

sinh2 s

√
sinh2 s − sinh2 kd s

≪ T 2
∫ ∞

k
e−cT 2(s−r )2

(s − r )

√
cosh s

sinh s

p
s −kd s

+ 1

2

∫ ∞

k
e−cT 2(s−r )2

(cosh s

sinh s

)3/2p
s −kd s .

These integrals can be bounded the same way as the integrals K1 and K2

that appeared before in both cases r T ≥ 1 and r T < 1.

We use bounds for cosh s and sinh s as before to get

∫ ∞

k

e−cT 2(s−r )2
cosh s√

sinh2 s − sinh2 k
d s ≪ T 2

∫ ∞

k
e−cT 2(s−r )2

(s − r )3/2 1p
s

d s

+
∫ ∞

k
e−cT 2(s−r )2p

s − r s−3/2d s .

Since s ≥ k > 0 we have that s−3/2 ≪ 1. After setting w = s − r we get

∫ ∞

k

e−cT 2(s−r )2
cosh s√

sinh2 s − sinh2 k
d s ≪ T 2

∫ ∞

k−r
e−cT 2w2

wd w +
∫ ∞

k−r
e−cT 2w2p

wd w

≪ e−c(k−r )2T 2 +
∫ ∞

cT 2(k−r )2
e−l

( l

cT 2

)1/4 dl

2cT 2
√

l /(cT 2)

≪ e−c(k−r )2T 2 +T −3/2Γ
(3

4
,cT 2(k − r )2

)
≪ e−c(k−r )2T 2

.
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We conclude that

∫ ∞

u

f (x2 +1)p
x2 −u2

d x ≪ Te−cT 2(k−r )2
.

c) Suppose that k < 2r . Then from (4.7) and the definition of g we have that

f (sinh2 s +1) ≪
∫ ∞

s

W 1
− 1

2
(g )(v)

cosh v
(cosh2v −cosh2s)−1/2d(cosh2v)

≪
∫ ∞

s

W 1
− 1

2
(g )(v)sinh v

p
cosh2v −cosh2s

d v

≪ T 3
∫ ∞

s

∫ ∞

v

(
(w − r )e−(w−r )2T 2 + (w + r )e−(w+r )2T 2

)
sinh v

p
cosh2v −cosh2s

p
cosh w −cosh v

d wd v

≪ T 3

p
sinh2s

∫ ∞

s

∫ ∞

v

(
(w − r )e−(w−r )2T 2 + (w + r )e−(w+r )2T 2

)p
sinh v

p
v − s

p
w − v

d wd v

≪ T 3

p
sinh2s

∫ ∞

0

(∫ w

s

p
sinh vp

w − v
p

v − s
d v

)(
(w − r )e−(w−r )2T 2 + (w + r )e−(w+r )2T 2

)
d w .

We bound the inside integral:

∫ w

s

p
sinh vp

w − v
p

v − s
d v ≪ ew/2pw

∫ w

s

1p
w − v

p
v − s

d v ≪ ew/2pw .

Hence, we have that

f (sinh2 s+1) ≪ T 3

p
sinh2s

∫ ∞

0
((w−r )e−(w−r )2T 2+w/2pw+(w+r )e−(w+r )2T 2+w/2pw)d w .

When w ≤ 2r we have

∫ 2r

0
(w − r )e−(w−r )2T 2+w/2pw d w ≪p

r
∫ 2r

0
e−(w−r )2T 2

(w − r ) d w ≪
p

r

T 2

[
e−(w−r )2T 2

]2r

0

≪
p

r

T 2
e−Cr 2T 2

.
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Similarly

∫ 2r

0
(w + r )e−(w+r )2T 2+w/2pw d w ≪

p
r

T 2
e−Cr 2T 2

.

For the integral

∫ ∞

2r

(
(w − r )e−(w−r )2T 2+w/2pw + (w + r )e−(w+r )2T 2+w/2pw

)
d w

we consider again the cases r T > 1 and r T ≤ 1 separately and work as in the

previous step to conclude that

∫ ∞

2r
(w−r )e−(w−r )2T 2+w/2pw+(w+r )e−(w+r )2T 2+w/2pwd w ≪ T −3/2e−Cr 2T 2

.

Overall we see that

f (sinh2 s +1) ≪ T

p
rp

sinh2s
e−Cr 2T 2

.

For 0 < k = sinh−1 u < 2r we split the integral in (4.6) as

∫ ∞

k

f (sinh2 s +1)cosh s√
sinh2 s −u2

d s =
∫ 2r

k

f (sinh2 s +1)cosh s√
sinh2 s −u2

d s+
∫ ∞

2r

f (sinh2 s +1)cosh s√
sinh2 s −u2

d s.

For the second integral we have s ≥ 2r and we use the bound from a)

f (sinh2 s +1) ≪ Te−C (s−r )2T 2

to conclude again that

∫ ∞

2r

f (sinh2 s +1)cosh s√
sinh2 s −u2

d s ≪ Te−Cr 2T 2
.

For the first integral we use the bound f (sinh2 s +1) ≪ T
p

rp
sinh2s

e−Cr 2T 2
to



4.1. THE LARGE SIEVE INEQUALITY 71

get

∫ 2r

k

f (sinh2 s +1)cosh s√
sinh2 s −u2

d s ≪ Te−Cr 2T 2
∫ 2r

k

cosh s
p

sinh2s
√

sinh2 s − sinh2 k
d s

≪ Te−Cr 2T 2
∫ 2r

k

1p
sinh2k

p
s −k

d s

≪ Te−Cr 2T 2
[p

s −k
]2r

k

≪ Te−Cr 2T 2
.

d) Lastly we consider the integral

∫ ∞

0

f (sinh2 s +1)cosh s√
sinh2 s +u2

d s =
∫ 2r

0

f (sinh2 s +1)cosh s√
sinh2 s +u2

d s+
∫ ∞

2r

f (sinh2 s +1)cosh s√
sinh2 s +u2

d s.

For the second integral we use again the bound f (sinh2 s+1) ≪ Te−C (s−r )2T 2

and work as before to get that

∫ ∞

2r

f (sinh2 s +1)cosh s√
sinh2 s +u2

d s ≪ Te−Cr 2T 2
.

For the first integral from the bound f (sinh2 s +1) ≪ T
p

rp
sinh2s

e−Cr 2T 2
we

have

∫ 2r

0

f (sinh2 s +1)cosh s√
sinh2 s +u2

d s ≪ T
p

r e−Cr 2T 2
∫ 2r

0

cosh s
p

sinh2s
√

sinh2 s +u2

≪ T
p

r e−Cr 2T 2
∫ 2r

0

1p
s

d s ≪ Te−Cr 2T 2
.

We will also use [3, Lemma 3.2], which states:

Lemma 4.2. Let R ∈N, b = (b1, . . . ,bR ) be a unit complex vector and let M = (mνµ)
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be an R ×R complex matrix such that |mνµ| = |mµν|. Then

|b ·Mb| =
∣∣∣ R∑
ν,µ=1

bνb̄µmνµ

∣∣∣≤ max
ν

R∑
µ=1

|mνµ| .

Using Lemmata 4.1, 4.2 and ideas from [3] we can now prove Theorem 1.3:

Proof of Theorem 1.3. We follow the proof of [3, Theorem 2.2] replacing u j (z) by

û j :

Let

S =
R∑
ν=1

∣∣∣ ∑
|t j |≤T

a j x
i t j
ν û j

∣∣∣2
.

By duality there exists a unit complex vector b = (b1,b2, . . . ,bR ), such that

S =
( R∑
ν=1

bν
∑

|t j |≤T
a j x

i t j
ν û j

)2

.

After changing the order of summation and applying the Cauchy–Schwarz in-

equality on the space CR we get

S ≪||a||2∗S̃ ,

where S̃ is defined as

S̃ = ∑
|t j |≤T

∣∣∣ R∑
ν=1

bνx
i t j
ν û j

∣∣∣2
.

We can extend the spectrum and achieve the following bound in order to smooth

our sum:

S̃ ≪∑
j

e−t 2
j /(4T 2)

∣∣∣ R∑
ν=1

bνx
i t j
ν û j

∣∣∣2
.

After opening the squares and changing the order of summation we get

S ≪||a||2∗ max
µ∈{1,2,...,R}

R∑
ν=1

∣∣Sνµ∣∣ ,
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where we define

Sνµ =
∑

j
e−t 2

j /(4T 2) cos(rνµt j )û j
2

and

rνµ = | log(xν/xµ)| .

Since |xν−xµ| ≥ δ by the spacing condition, we have

∣∣∣ xν
xµ

−1
∣∣∣≥ δ

|xµ|
≥ δ

X
.

Since X ≤ xν, xµ ≤ 2X we get

rνµ = | log(xν/xµ)| ≤ log2 .

We recall that there are finitely many double coset representatives γ ∈ H1\Γ/H1

such that B(γ) < 1. By Proposition 3.2 and Lemma 4.1(a) it follows that

Sνµ≪ min
(
T,r−1

νµ

)+ ∑
γ∈H1\Γ−H1/H1

B(γ)<1

q̃(B(γ))+ ∑
γ∈H1\Γ−H1/H1

1<B(γ)<cosh(2rνµ)

q(B(γ))+ ∑
γ∈H1\Γ−H1/H1
B(γ)≥cosh(2rνµ)

q(B(γ)) .

By Lemma 4.1(c), (d) for the first two sums and the discreteness of the terms B(γ)

we have

Sνµ≪ min
(
T,r−1

νµ

)+ ∑
γ∈H1\Γ−H1/H1
B(γ)≥cosh(2rνµ)

q(B(γ)) .

Lastly, by Lemma 4.1(b) we conclude that

Sνµ≪ min
(
T,r−1

νµ

)+T
∑

γ∈H1\Γ−H1/H1
B(γ)≥cosh(2rνµ)

e−cT 2
(

sinh−1
(p

B(γ)2−1
)
−rνµ

)2

,

where c is a positive constant. By a trivial estimate (see bound forπδ(x) = N (X /2, l )

in [23, p. 14]) we can prove that the above series converges quickly and is smaller
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than the first term as follows:

Since the terms B(γ) are discrete we can assume that B(γ) > M , where M > 1.

Using that sinh−1 (p
x2 −1

)= cosh−1 x we write

∑
γ∈H1\Γ−H1/H1

B(γ)>M

e−cT 2
(

sinh−1
(p

B(γ)2−1
)
−rνµ

)2

=
∫ ∞

M
e−cT 2

(
cosh−1 x−rνµ

)2

d(N (x, l )) .

We apply integration by parts to get

∫ ∞

M
e−cT 2

(
cosh−1 x−rνµ

)2

d(N (x, l )) =
[

N (x, l )e−cT 2
(

cosh−1 x−rνµ
)2]∞

M

−2cT 2
∫ ∞

M
N (x, l )e−cT 2

(
cosh−1 x−rνµ

)2(
cosh−1 x − rνµ

) 1p
x2 −1

d x

≪ e−cr 2
νµT 2 +T 2

∫ ∞

M
e−cT 2

(
cosh−1 x−rνµ

)2(
cosh−1 x − rνµ

)
d x

≪ e−cr 2
νµT 2 +T 2

∫ ∞

cosh−1 M
e−cT 2(w−rνµ)2 w − rνµ

sinh w
d w

≪ e−cr 2
νµT 2 +T 2e−cr 2

νµT 2
∫ ∞

cosh−1 M
e−cT 2(w−rνµ)2

(w − rνµ) d w

≪ e−cr 2
νµT 2

.

Hence we have that

Sνµ≪ min

(
T,

1

rνµ

)
.

By the definition of rνµ we conclude that

R∑
µ=1

∣∣Sνµ∣∣≪ R∑
µ=1

min
(
T, X |xν−xµ|−1) .

By the spacing condition we have

R∑
µ=1

min
(
T, X |xν−xµ|−1)≪ R∑

j=1
min

(
T,

X

jδ

)
.
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Then we have

R∑
µ=1

min(T, X |xν−xµ|−1) ≪ T + ∑
1≤ j≤ X

Tδ

T + ∑
X

Tδ< j≤R

X

jδ
≪ T +Xδ−1 logT ,

which concludes the estimate for S.

4.2 Second moment of the error term

In this section we give a bound for the second moment of the averaging of the

error term in counting N (X , l ).

We recall that the main term of our hyperbolic lattice counting problem is

M(X , l ) = ∑
1/2<s j≤1

2

π
γ1(s j )û j

2X s j

and the error term is

E(X , l ) = N (X , l )−M(X , l ) .

Also we define the error term related to a test function f as

E f (X , l ) = f (1)len(l )+ ∑
γ∈H1\Γ−H1/H1

Q(B(γ))−2
∑

1/2<s j≤1
dt j ( f )û j

2 ,

where

Q(B(γ)) =


q(B(γ)), B(γ) > 1,

q̃(B(γ)), B(γ) < 1,

and q , q̃ are given by (3.5) and (3.6). In the proof of Theorem 1.2 (see (3.22),(3.24))

we showed that

E f +(X , l ) =O(X Y −1/2 +X 1/2) ,

E f −(X , l ) =O(X Y −1/2 +X 1/2) ,
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E f −(X , l ) < E(X , l )+O
(
Y +X 1/2 log X

)
< E f +(X , l ) .

We choose Y such that X 1/2 log X < Y < X , then

E f +(X , l ) < E(X , l )+O(Y ) < E f −(X , l ) .

We can now use Theorem 1.3 to prove Proposition 1.4:

Proof. We follow the proof of [6, Proposition 5.3]. We start by choosing Y such

that X 1/2 log X ≪ Y ≪ X , then

E f +(X , l ) < E(X , l )+O(Y ) < E f −(X , l ) .

In the following we write f for either f − or f + defined in (3.9) and (3.11). For the

average sum of E(X , l ) over points X1, X2, . . . , XR we have

R∑
m=1

|E(Xm , l )|2 ≪
R∑

m=1
|E f (Xm , l )|2 +RY 2 .

We define the sum

S(X ,T ) = 2
∑

T<|t j |≤2T
dt j ( f )û j

2 .

and split the t j in the following intervals:

A1 = {t j : 0 < |t j | ≤ 1},

A2 = {t j : 1 ≤ |t j | ≤ X 2Y −2},

A3 = {t j : |t j | > X 2Y −2} .

Let also

Si = 2
∑

t j∈Ai

dt j ( f )û j
2 ,
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so that the error term with regard to f can be written as

E f (X , l ) = S1 +S2 +S3 .

We start by bounding S1: using the estimates for dt j ( f ) from Proposition 3.5 we

have

∑
t j∈A1

2dt j ( f )û j
2 ≪ X 1/2

∑
|t j |<1

t−3/2
j min{t j , X /Y }û j

2 ≪ X 1/2 ≪ Y ,

since there exist finitely many eigenvalues λ j with spectral parameter |t j | ≤ 1.

For S3 we compute

∑
t j∈A3

2dt j ( f )û j
2 ≪ ∑

|t j |>X 2Y −2

|t j |−3/2 min{t j , X /Y }X 1/2û j
2

≪ ∑
t j>X 2Y −2

t−3/2
j X 3/2Y −1û j

2 .

By partial summation and Lemma 2.10 we get

S3 ≪ X 1/2 ≪ Y .

Hence we have shown that

E f (X , l ) = ∑
t j∈A2

2dt j ( f )û j
2 +O(Y ) .

We will consider values T = 2k ,k = 0,1, . . . , log2(X 2Y −2) and we sum over only

those T ′s to get

E f (X , l ) ≪ ∑
1≤T=2k≤X 2Y −2

S(X ,T )+Y
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and we also add for X1, X2, . . . XR to get

R∑
m=1

|E f (Xm , l )|2 ≪
R∑

m=1

∣∣∣ ∑
1≤T=2k≤X 2Y −2

S(Xm ,T )
∣∣∣2 +RY 2 .

At this point we use the Cauchy–Schwarz inequality for the inner sum

∣∣∣ ∑
1≤T=2k≤X 2Y −2

S(Xm ,T )
∣∣∣2 ≪ log X

∑
1≤T=2k≤X 2Y −2

|S(Xm ,T )|2 .

Combining the last two inequalities we show

R∑
m=1

|E f (Xm , l )|2 ≪ log X
∑

1≤T=2k≤X 2Y −2

( R∑
m=1

|S(Xm ,T )|2
)
+RY 2 .

In Proposition 3.5 we have written the Huber transform of f as

dt j ( f ) = X 1/2(a(t , X ,Y )X i t +b(t , X ,Y )X −i t ) ,

where a(t , X ,Y ) and b(t , X ,Y ) are functions satisfying

a(t , X ,Y ),b(t , X ,Y ) ≪|t |−3/2 min{|t |, X /Y } .

Now using Theorem 1.3 for a j x
i t j
ν = dt j ( f )û j , we have

R∑
m=1

∣∣∣ ∑
T<|t j |≤2T

dt j ( f )û j
2
∣∣∣2 ≪ (T +X logTδ−1)||a||2∗

or equivalently
R∑

m=1
|S(Xm ,T )|2 ≪ (T +X logTδ−1)||a||2∗ .
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Let us now bound the norm ||a||2∗:

||a||2∗ ≪
∑

T<|t j |≤2T

∣∣|t j |−3/2 min{t j , X /Y }X 1/2û j
∣∣2

≪ X T −3 min{T 2, X 2Y −2}
∑

T<|t j |≤2T
|û j |2 .

By Lemma 2.10 we can see that

||a||2∗ ≪ X T −2 min{T 2, X 2Y −2} ,

hence overall we have shown:

R∑
m=1

|S(Xm ,T )|2 ≪ (T +X logTδ−1)X T −2 min{T 2, X 2Y −2} .

The last part of the proof follows from [6, Page 20]: using the last bound we have

R∑
m=1

|E(Xm , l )|2 ≪ log X
∑

1≤T=2k≤X 2Y −2

( R∑
m=1

|S(Xm ,T )|2
)
+RY 2

≪ log X
∑

1≤T=2k≤X 2Y −2

(T +X logTδ−1)X T −2 min{T 2, X 2Y −2}+RY 2 .

We get the bound

R∑
m=1

|E(Xm , l )|2 ≪ X log X
∑

1≤T=2k<X Y −1

T +X 2δ−1 log2 X
∑

1≤T=2k<X Y −1

1

+X 3Y −2 log X
∑

X Y −1≤T=2k<X 2Y −2

T −1

+X 4δ−1Y −2 log2 X
∑

X Y −1≤T=2k<X 2Y −2

T −2 +RY 2 .
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By trivial bounds for each term individually we can show that

R∑
m=1

|E(Xm , l )|2 ≪ X 2Y −1 log X +δ−1X 2 log3 X +RY 2 .

We notice that the optimal choice for Y is Y = R−1/3X 2/3 and that choice gives us

the bound
R∑

m=1
|E(Xm , l )|2 ≪ R1/3X 4/3 log X +δ−1X 2 log3 X ,

which concluded the proof of Proposition 1.4.

The proof of Theorem 1.5 also follows from the proof of [6, Theorem 5.4]:

Proof. To prove equation (1.1) we choose δ−1 ≪ R X −1 and R > X 1/2 in the bound

R∑
m=1

|E(Xm , l )|2 ≪ R1/3X 4/3 log X +δ−1X 2 log3 X .

We get
R∑

m=1
|E(Xm , l )|2 ≪ R1/3X 4/3 log X +R X log3 X ≪ R X log3 X .

To prove equation (1.2) we choose the points Xi to be equally spaced in [X ,2X ]

with δ = R−1X . By taking the mesh X /R to tend to 0 and, since the function

|E (x, l )|2 is integrable, because it has finitely many discontinuities as a function of

x, we have
R∑

m=1
|E(Xm , l )|2 X

R
→

∫ 2X

X
|E(x, l )|2d x .

This implies

1

X

∫ 2X

X
|E(x, l )|2d x ≪ X log3 X .



Appendix A

Special functions

We use the following special functions, see [12]. We list the main properties that

we use.

Definition A.1. For ℜz > 0 the Gamma function is defined as

Γ(z) =
∫ ∞

0
e−t t z−1d t .

By [12, eq. 8.328.1] we have the following Stirling’s approximation

lim
|y |→∞

|Γ(x + i y)|e π
2 |y ||y | 1

2−x ∼p
2π . (A.1)

Definition A.2. The lower incomplete Gamma function is defined as

γ(α, x) =
∫ x

0
e−t tα−1d t ,

whereas the upper incomplete Gamma function is defined as

Γ(α, x) =
∫ ∞

x
e−t tα−1d t .
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Definition A.3. Let ℜx > 0 and ℜy > 0, then the Beta function is defined as

B(x, y) =
∫ 1

0
t x−1(1− t )y−1d t .

By [12, Eq. 8.384] the Beta function satisfies

B(x, y) = Γ(x)Γ(y)

Γ(x + y)
= B(x, y) .

Definition A.4. For |z| < 1 the Gauss hypergeometric function is defined by the

power series

2F1(a,b,c; z) = 1+a ·b

c ·1
z+a(a +1)b(b +1)

c(c +1) ·1 ·2
z2+a(a +1)(a +2)b(b +1)(b +2)

c(c +1)(c +2) ·1 ·2 ·3
z3+. . . .

It follows that 2F1(a,b,c;0) = 1. For ℜb >ℜc > 0 the Gauss hypergeometric

function has the integral representation [12, 9.111]

2F1(a,b,c; z) = 1

B(b,c −b)

∫ 1

0
t b−1(1− t )c−b−1(1− t z)−ad t .

The derivative of 2F1(a,b,c; z) with respect to z is given by

d

d z

(
2F1(a,b,c; z)

)= ab

c
2F1(a +1,b +1,c +1; z) . (A.2)

We also need the transformation formula [12, 9.132.2]

2F1(a,b,c; z) = Γ(c)Γ(b −a)

Γ(b)γ(c −a)
(−z)−a

2F1

(
a, a +1− c, a +1−b;

1

z

)
+ Γ(c)Γ(b −a)

Γ(a)Γ(c −b)
(−z)−b

2F1

(
b,b +1− c,b +1−a;

1

z

)
,

where arg z < π, a −b ̸= ±m, m = 0,1,2, . . . and formulas [12, 9.136.1–9.136.2]:
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Let

A = Γ
(
a +b + 1

2

)p
π

Γ
(
a + 1

2

)
Γ
(
b + 1

2

) , B = −Γ(
a +b + 1

2

)
2
p
π

Γ(a)Γ(b)
;

then we have

2F1

(
2a,2b, a +b + 1

2
;

1−p
z

2

)
= A 2F1

(
a,b,

1

2
; z

)+B
p

z 2F1

(
a + 1

2
,b + 1

2
,

3

2
; z

)

and

2F1

(
2a,2b, a +b + 1

2
;

1+p
z

2

)
= A 2F1

(
a,b,

1

2
; z

)−B
p

z 2F1

(
a + 1

2
,b + 1

2
,

3

2
; z

)
.

The series

p Fq (α1,α2, . . .αp ;β1,β2, . . . ,βq ; z) =
∞∑

k=0

(α1)k (α2)k · · · (αp )k

(β1)k (β2)k · · · (βp )k

zk

k !

is called a generalized hypergeometric series.

For the series p Fq we use the integral formula [12, 7.512.12]:

∫ 1

0
xµ−1(1−x)ν−γ−1

p Fq (a1, . . . , ap ,b1, . . . ,bq ; ax)d x

= Γ(µ)Γ(ν)

Γ(µ+ν)
p+1Fq+1(ν, a1, . . . , ap ,µ+ν,b1, . . . ,bq ; a) ,

where ℜµ > 0, ℜν > 0, p ≤ q + 1, if p = q + 1 then |a| < 1. We also write the

transformation formula [24, 16.8.8] which reads for z ∈Rwith |arg(−z)| <π :

q+1Fq (a1, . . . , aq+1,b1, . . . ,bq ; z) =
q+1∑
j=1

(q+1∏
k=1
k ̸= j

Γ(ak −a j )

Γ(ak )

/ q∏
k=1

Γ(bk −a j )

Γ(bk )

)
w̃ j (z) ,

with

w̃ j (z) = (−z)a j
q+1Fq

(
a j ,1−b1+a j , . . . ,1−bq+a j ,1−a1+a j , · · ·∗. . . ,1−aq+1+a j ;

1

z

)
,
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for j = 1, . . . , q +1, where ∗ indicates that the entry 1−a j +a j is omitted. Lastly

we use the asymptotic of Watson [33], in the form found in [22, p. 237, eq. 11]

2F1(α+λ,1+α−γ+λ,1+α−β+2λ; z)

=2α+βΓ(1+α−β+2λ)(π/λ)1/2e−(α+λ)φ(1−e−φ)γ−α−β−1/2
(
1+O(λ−1)

)
Γ(1+α−γ+λ)Γ(γ−β+λ)zα+λ(1+e−φ)γ−1/2

,

(A.3)

where

e±φ = 2− z ±2(1− z)1/2

z
.

Definition A.5. The associate Legendre function of the first kind is defined as (see

[12, 8.704])

Pµ
ν (z) = 1

Γ(1−µ)

(
z +1

z −1

)µ/2

2F1

(
−ν,ν+1,1−µ;

1− z

2

)
.

The associate Legendre function of the first kind is defined as (see [12, 8.705])

Qµ
ν (z) = π

2sinµπ

(
Pµ
ν (z)cos(µπ)− Γ(ν+µ+1)

Γ(ν−µ+1)
P−µ
ν (x)

)
.

We use the integral representation for P−µ
ν (z) [12, 8.713.3]

P−µ
ν (z) =

√
2

π

Γ
(
µ+ 1

2

)(
z2 −1)µ/2

Γ(ν+µ+1)Γ(µ−ν)

∫ ∞

0

cosh
(
ν+ 1

2

)
t

(z +cosh t )µ+
1
2

d t ,

where ℜz >−1, |arg(z ±1)| <π, ℜ(ν+µ) >−1 and ℜ(µ−ν) > 0.
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