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Abstract

Many works have considered two-dimensional free-surface flow over the edge of a horizontal

plate, forming a waterfall, and with uniform horizontal flow far upstream. The flow is assumed to

be steady and irrotational, whilst the fluid is assumed to be inviscid and incompressible. Gravity

is also taken into account. In particular, amongst these works, numerical solutions for supercrit-

ical flows have been computed, utilising conformal mappings as well as a series truncation and

collocation method. Here, an extension to this work is presented where a more appropriate ex-

pression is taken for the assumed form of the complex velocity. The justification of this lies in the

behaviour of the flows far downstream and the wish to better encapsulate the parabolic nature of

such a free-falling jet. New numerical results will be presented, demonstrating the improved shape

of the new free-surface profiles. Further adjustments to the method are presented which lead to

enhanced coefficient decay. The aforementioned adjustments are also applied to other supercritical

flows (such as weir flows) and similar improvements to the jet shape can be observed. Flows that

are still horizontal upstream but instead negotiate a convex corner and then run along an angled

supporting bed (i.e. spillway flows) are also surveyed. New spillway problems and results are

presented, where the spillway’s angled wall is more complex than a linear path; and, again, series

truncation and collocation are utilised. Finally, a wake model for potential flow past a finite plate,

perpendicular to the oncoming flow and below a free surface, is pursued. The approach here is to

adopt a closure model of horizontal flow far downstream and use the boundary integral equation

method to obtain a solution numerically. Related free-boundary problems are included to progress

from a case of zero-gravity, unbounded flow to the full problem.
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Impact Statement

Within the area of free-surface flows research, the investigations into waterfall flows presented

in this study are very beneficial. The numerical approach of series truncation and collocation is

utilised but its implementation is improved upon by taking more suitable forms for the complex

velocity ansatz and by refining the numerical method (smoothing and using the ‘A-method’ as in-

troduced in §2.4) to obtain better solutions that allow for the extrapolation of the results. Hence,

this improves the computational efficiency of the approach. This particular section of work has

been disseminated through publication in the Journal of Fluid Mechanics; and has been presented

and discussed at numerous talks both locally (within the Department of Mathematics at Univer-

sity College London) and more widely at conferences such as the British Applied Mathematics

Colloquium. Further benefit can arise from this work since the developments of the method can

be applied to other potential flow problems that involve jets. This means it is applicable to a wide

variety of practical examples such as flow from a nozzle or breaking-wave flows.

Again, within the research area of free-surface flows, the work presented here on spillways and

waterfalls with complex geometry upstream is valuable since we demonstrate the versatility of the

series truncation and collocation method, beyond its previous usage in the literature. For example,

we are able to consider curved spillway walls and waterfalls that follow stepped walls upstream.

Such potential flows (where the fixed, curvilinear boundaries are defined piecewise) can be difficult

to solve, but the aforementioned numerical approach enables us to tackle these problems. Moreover,

physical examples of spillways and waterfalls often involve complex geometries upstream. Hence,

there is scope and reason for investigation of further related free-surface flow problems utilising

this approach and the adjustments to the method discussed in this thesis.

Finally, the work presented here on cavity and wake flows past a plate normal to the undis-

turbed stream is motivated by flow around a submerged rowing blade. Design in industry is often

heavily influenced by experimental investigations. However, having a fundamental theoretical un-

derstanding of flows is crucial to avoid flawed design elements. The models studied in the present

work can be built upon to more closely model the flow past a rowing blade, hence its applicability

to sports science research.
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Introduction

Free-surface flow is the subject of this study. Spillways, waterfalls and flows past submerged

obstacles are the overarching problems that will be investigated. A spillway is a hydraulic structure

that has numerous intended functions such as energy dissipation, water treatment and flood release

[Chanson, 1994]. Often they are built into, or near to, a dam. In this case, their purpose of releasing

water from a dam in a controlled manner means that understanding the fluid flow of spillways is

paramount. Figure 1 shows some examples of spillways. Typically, spillway structures start with

a water basin and then there is a declining wall either all of the way down to or part of the way

down to a water basin below. Clearly, the term spillway in (engineering) literature corresponds

to a range of very different characteristic flows. Throughout this study, the term ‘spillway’ will

refer to the structure of a horizontal bed followed by an angled supporting bed. Evidently this

description does not apply to all of the structures shown in figure 1. We will use the term ‘waterfall’

for flow over the trailing edge of a horizontal plate, forming a gravity-driven free jet. Figure 2a

demonstrates a waterfall where the flow in any cross-section (away from the sides of the channel)

is essentially the same and so such a three-dimensional problem can be suitably approximated as

two-dimensional. Similarly, a weir flow is analogous to a waterfall except that the fluid negotiates

a region of raised bed, or lip, before falling freely under gravity. Figure 2b illustrates such weir

flows. Finally, the flows past submerged obstacles are self-explanatory and examples are depicted

in figure 3 that will be investigated here. We will study wake and cavity flows past a finite plate

that is normal or oblique to the oncoming flow. The particular motivation for this problem is

the behaviour of flow around a rowing blade but, given the simplified schematic of the flow, the

problem is applicable to other scenarios.

There is much engineering research conducted on spillway, waterfall and weir flows. This largely

concerns experimental investigations with interest in energy dissipation, hydrodynamic forces act-

ing upon the structures and discharge coefficients. The varying possible purposes (releasing excess

flood waters, an aesthetic water feature, serving as fish ladders, etc.) and constraints (geometry,

topography, material availability, etc.) have led to a wide range of these hydraulic structures that

exhibit different flow behaviours. For example, if energy dissipation is prioritised, common choices
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(a) A spillway flow, by StillWorksImagery. Adapted
from Pixabay.

(Pixabay License
https://pixabay.com/service/terms/#license).

(b) Srisailam Dam Spillway,
photographed by Chintohere. Adapted from

Wikimedia Commons.
Public Domain.

(c) A photograph of a cascade spillway flow, taken
by wfmillar. Adapted from Wikimedia Commons.

(Creative Commons License CC BY-SA 2.0
https://creativecommons.org/licenses/by-sa/2.0/).

(d) Kouris Reservoir Spillway, photographed by
Xaris333. Adapted from Wikimedia Commons.

(Creative Commons License CC BY-SA 4.0
https://creativecommons.org/licenses/by-

sa/4.0/deed.en).

Figure 1: Spillway examples.
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(a) A photograph of a waterfall flow from a city
fountain, taken by Mirek Durma. Adapted from

Pixabay.
(Pixabay License

https://pixabay.com/service/terms/#license).

(b) A weir flow, photographed by Ardfern. Adapted
from Wikimedia Commons.

(Creative Commons License CC BY-SA 3.0
https://creativecommons.org/licenses/by-

sa/3.0/deed.en).

Figure 2: Waterfall and weir flows.

Free surfaces

Horizontal bed with obstacle

(a) Waterfall flow with a submerged obstacle upstream.

Wake

Finite

plate

Free surface

(b) Flow past a finite plate normal to the flow.

Figure 3: Flows past submerged obstacles.
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include constructing a flip bucket (e.g. figure 1b) from which a high velocity jet takes off and

impinges into a downstream plunge pool; having a stilling basin downstream where a hydraulic

jump is created; or constructing a stepped spillway where either nappe or skimming flows occur

[Chanson, 1994]. For clarity, in the case of the stepped spillway, nappe flow is a series of free-falling

flows over the edge of each step; and skimming flow ‘skims’ over the edges of the steps as a stream

which is supported by recirculating vortices beneath it. Furthermore, the hydrodynamic forces are

of importance for investigating or predicting the potential damage caused to the structures as (in

some cases more than others) it is imperative for the structures not to fail. Finally, computing the

discharge coefficient is useful when comparing theoretical predictions for the flow with experimen-

tal results, and so aids design work further. A particular use of weirs is in determining the flow

rate of a channel, the calculation of which involves the discharge coefficient. Overall, it is clear

that experimental investigations of these hydraulic structures are valuable.

It is also necessary to understand the spillway, waterfall and weir flows theoretically. As already

mentioned, the varying specifications for the aforementioned hydraulic structures lead to a wide

variety of flows. Upstream, we could have a fluid basin or channel which can be shallow or deep.

Downstream, we have the same possibilities. The flows can be laminar or turbulent, depending

on the physical parameters involved. This means that the flows can involve jets, aeration, air

bubble entrainment or hydraulic jumps, to name a few possibilities. This is indeed a wide range.

In the investigations presented here, the concern will be with steady, laminar flows. Many works

have considered such flows. For example, Kistler and Scriven [1994] study the effects of viscosity

on sheet flow falling from the edge of an inclined plate — one of many investigations into the

‘teapot effect’. In another case, the effect of compressibility on a jet falling from a vertical pipe is

considered by Christodoulides et al. [2010]. However, in the present study, the assumptions will be

such that we have potential flow which is suitable for many applications. Regardless, differences

between observable results and those obtained via the approximation of potential flow theory can

also offer insight.

For flow past obstacles, there is much available in the literature regarding experimental results

since there are many applications for such research in industry. Since the flow depicted in figure 3a
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can be classed as a waterfall flow with a disturbance upstream (and it will be tackled in much the

same way as the waterfall and weir flows in this study), for now we focus on discussing investigations

relevant to flow past an obstacle in a uniform stream, i.e. figure 3b. We will consider both wake

flows and cavity flows in the present study due to the similarities between them. As discussed

in detail and with comparisons made to cavitating flows by Wu [1972], a (fully established) wake

flow is characterised by a dividing streamline that separates from the obstacle in the stream to

bound a region of slow recirculating fluid close behind the obstacle where the pressure is nearly

constant and less than the pressure in the far-field, followed by turbulent flow which diminishes

due to mixing and dissipation, and leading to regaining the undisturbed stream flow and recovery

of the pressure. Similarly, a (fully-developed or super-) cavitating flow is as described above but

with a cavity (a vapour-filled bubble) forming close behind the obstacle — still a region of slow

recirculation — and the occurrence (and type) of cavitation is dependent on the cavitation number.

This cavitation number is a nondimensional parameter that involves the difference between the

pressure within the cavity and in the far-field. Note that when the cavitation number falls below a

critical value, small air bubbles begin to form; whereas even smaller cavitation numbers correspond

to the formation of the single cavitation bubble as already described. For wake flows, instead of

referring to the cavitation number, we use the term ‘wake underpressure coefficient’ to refer to

the nondimensional parameter which involves the difference between the pressure within the wake

and in the far-field. Similarly to the cavitation number with respect to cavitating flows, the wake

underpressure coefficient characterises the wake flow.

Returning to the point of the existence of many experimental studies of wake and cavitating

flows forming behind an obstacle, we note the work of Fage and Johansen [1927] concerning wake

flow in air; and the works of Parkin [1958], Silberman [1959] and Dawson [1959] regarding these

flows in water. Coefficients of drag and lift are obtained, and Wu [1962] computes and compares

theoretical results with the available experimental data from the aforementioned studies. The work

of Wu [1962] concerns a wake forming behind a flat plate in potential flow with the effects of gravity

neglected and the analytic results compare well with those of physical simulations. Of greater

relevance to the full problem of interest in the present study (c.f. figure 3b) are the experimental
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investigations of Dawson [1959] into cavitating flow close to the free surface. Dawson [1959] looks

into the effect of several factors on the cavitating flow, such as depth of submergence, angle of

attack and cavitation number on various quantities, such as the coefficient of drag and the cavity

length. For instance, one particular observation is that the experimental cavity length decreases

with greater proximity to the free surface. However, Dawson [1959] does comment that some of

the results do not agree very well with existing theoretical approximations or other experiments.

There are unanswered fundamental questions regarding a wake or cavity that forms behind a finite

plate normal or oblique to the oncoming flow and close to the free surface, under the assumptions

necessary for potential flow with the effects of gravity included. These will be explored in the

present work.

As already discussed, many of the flows covered in this thesis are well-studied, both classically

and more recently. So, what justifies investigating all of these free-surface flows together here?

Under certain assumptions, the method of solution can be very similar and advancements made

for one problem can be applied to other relevant flows. In particular, here the flow is assumed to

be steady and irrotational, whilst the fluid is assumed to be inviscid and incompressible. Two-

dimensional flow under the aforementioned assumptions allows for the application of potential flow

theory. Exact solutions are obtainable in the absence of gravity through use of analytic techniques

such as utilising conformal mappings to map between the physical and complex potential planes.

However, the effects of gravity are included in the problems discussed here and so numerical

techniques will also be employed.

First, we will begin with spillway flow (see chapter 1). As explained earlier, this is where the

fluid negotiates a convex corner and then runs along an angled supporting bed. More specifically,

in the case presented here, we have uniform horizontal flow upstream before running along the

sloping wall. Under the assumptions already listed, we have potential flow and numerical solutions

for supercritical flows have already been computed for this problem by Vanden-Broeck and Keller

[1986]. Note that wave-free solutions are the focus of the present work. The method utilised to

obtain these numerical solutions will be presented as it will be repeatedly called-upon in subsequent

problems. The method, in short, is as follows. Given the assumptions of the flow, we look to find
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a solution to Laplace’s equation and the boundary conditions. Local analysis of singularities of

the flow enables us to remove such singularities from a series representation for the solution. For

a good numerical solution, we expect to find that the coefficients of the series decay rapidly for

a converged series representation. In order to actually implement such a method, the series is

truncated after a certain number of terms and mesh points along the boundaries of the flow are

introduced. The boundary conditions are then imposed at the mesh points and we can solve the

system of equations numerically by iteration. Clearly, due to the truncation involved, the series is

preferred to be rapidly convergent. It follows that a good numerical solution is characterised by

being largely independent of the truncation, i.e. the solution should not change greatly as more

terms are included in the series representation. Therefore, in analysing the solutions obtained via

this series truncation and collocation method, we will look for quick decay of the coefficients and

for the last few coefficients to be very small, typically of order 10−4 or less. We will regularly plot

the coefficients against the reciprocal of the index of the coefficient. A ‘decaying tail’ signifies good

convergence. A lack of this decaying tail signifies bad convergence and suggests that a singularity

of the flow has been incorrectly or insufficiently removed from the series representation.

Following the presentation of this spillway with basic geometry, new spillway cases will then

be investigated with a similar approach. This will include a curved corner; a stepped wall; and a

parabolic wall. Few alterations are made to the method described for the standard spillway case

in order to apply it to these more arbitrarily-shaped spillways. A key question that is explored

is whether the assumed form for the downstream jet singularity is suitable and sufficient. Note

that this is investigated further in a later chapter which is focused on waterfall flow. Then, the

problem of a stepped wall down to a horizontal channel will also be considered. Related to this are

the investigations into free-surface flow over a semi-infinite step in the bed of a channel by King

and Bloor [1987] and Binder et al. [2008], where a boundary integral equation approach is utilised.

Here, in the present study, we find that an exact solution for the zero-gravity case can be obtained

using conformal mappings. However, in the case of gravitational flow that is supercritical both

up- and downstream, we encounter problems in forming an appropriate ansatz for the complex

velocity. Numerical solutions are presented for this problem but analysis of the quality of solution
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is given which suggests further investigation is required.

We then turn our attention to waterfall flows (see chapter 2). Recall that this is where the

flow is uniform and horizontal far upstream and two free surfaces form a gravity-driven free jet far

downstream. Numerous studies have dealt with these fundamental potential flows over the edge

of a plate numerically. Here, we note some of the most seminal works of this kind. Solutions have

been obtained by Chow and Han [1979], Smith and Abd-el-Malek [1983], and Goh and Tuck [1985]

using finite difference methods or integral equations. Furthermore, Clarke [1965] uses the method

of matched asymptotic expansions to find the free surfaces for the waterfall flow: an expansion

that is valid downstream based on the thinness of the jet is matched with an expansion that is valid

upstream based on a parameter related to the inverse square Froude number. Most importantly,

Dias and Tuck [1991] advantageously utilise conformal mappings and the efficient series truncation

and collocation method — leading to more easily obtainable results. This work will be discussed

in terms of its method and results. The method of Dias and Tuck [1991], although used to study

waterfalls, implicitly imposes such a spillway flow as a downstream asymptote. So, could a form

specifically derived for a waterfall jet-flow downstream lead to better solutions? It will become clear

that a more appropriate expression for the assumed form of the complex velocity can benefit the

numerical solutions. The rigorous justification of this improvement lies in the representation of the

waterfall flow far downstream, where we should look to capture the physically relevant parabolic

downfall (c.f. figure 2a). Then, this extension will be presented. New numerical results will be

illustrated which, at first glance, are very similar to free-surface profiles obtained through use of

the complex velocity form of Dias and Tuck [1991]. However, profiles that have been extrapolated

further downstream are also presented, demonstrating the improvement in the shape of the new

free-surface profiles. Comparisons with the asymptotic solutions found by Clarke [1965] will be

made, validating these numerical solutions — in particular for flows with larger Froude numbers.

Further adjustments to the method and the form of the complex velocity will then be presented.

These points can lead to improved numerical solutions by enhancing the decay of the coefficients

that are obtained through the series truncation and collocation method.

A similar approach is also presented for including more terms of the expansion for the down-
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stream jet singularity in the case of supercritical, finite-depth weir flows (see chapter 3) — again,

further developing the complex velocity ansatz utilised by Dias and Tuck [1991]. A weir flow is

analogous to a waterfall except that the fluid negotiates a region of raised bed, or lip, before falling

freely under gravity. The influence on the flow of the height of this lip is of interest. As with the

waterfall, the new free-surface profiles are very similar to those of Dias and Tuck [1991]. However,

extrapolating the free surfaces to reach further downstream highlights the improvement to the

shape of the jet. The different types of solutions (Dias and Tuck [1991] refer to waterfall-type and

solitary-wave-type solutions) are still retained through employing the revised ansatz. Following

this, we will then apply the improved form to subcritical, finite-depth weir flows. It will be shown

that the one-parameter family of solutions obtained by Dias and Tuck [1991] for the subcritical,

finite-depth weir is unchanged. As in the supercritical case, extrapolated free-surface profiles show

the improvement to the downstream free-falling jet. Then, we consider the problem of waterfalls

with upstream obstacles: a stepped bed and a triangular obstacle. These examples show the need

for the correct form for the jet downstream, due to the effect the obstacles have on the conserved

horizontal momentum flux of the flow and (in turn) on the jet downstream. Note that these flows

can also be tackled using a boundary integral method instead, as calculated by Yoon and Semenov

[2011] for flows under the same assumptions with an arbitrarily-shaped weir wall. The alternative

approach of Yoon and Semenov [2011] still leads to numerical solutions, but it is the opinion of

the author that a solution is more-readily available if series truncation and collocation is utilised

instead, provided the singularities of the flow can be suitably captured.

There are many other studies of similar two-dimensional, free-surface flows with two free sur-

faces forming a jet downstream. These studies include jets emerging from a nozzle by Dias and

Christodoulides [1991]; breaking wave flows by Dias and Tuck [1993]; and flow which rises along

the bow of a ship and falls back down as a jet by Dias and Vanden-Broeck [1993]. These works

also use the approach of conformal mappings with series truncation and collocation. Furthermore,

since the parabolic nature of the jet is not incorporated into the form for the complex velocity,

as discussed above for the waterfall and weir flows of Dias and Tuck [1991], the present work has

great relevance to these other problems.
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Finally, a wake model for potential flow past a finite plate, perpendicular to the oncoming

flow and below a free surface, is pursued. Note that the assumptions required for potential flow

are reasonable here — in particular, neglecting the viscous effects is appropriate since we know

the locations of detachment points of the cavity or wake boundaries from the object, i.e. the two

ends of the plate in this case [Brennen, 1995]. The approach here is to adopt a closure model of

horizontal flow far downstream and use the boundary integral equation method to obtain a solution

numerically. Related free-boundary problems are included to progress from a case of zero-gravity,

unbounded flow to the full problem. We will begin with consideration of the problem of a cavity of

infinite extent forming behind the plate that is normal to the flow (see chapter 4). Here, we neglect

the effects of gravity, the pressure within the cavity is ambient and the assumptions on the flow

are still such that we have potential flow. As discussed by Batchelor [2010], free-streamline theory

and the method of solution that will be described are commonly attributed to Kirchhoff [1869] and

Helmholtz [1868]. Very briefly, conformal mappings are utilised to find a closed-form exact solution.

Note that the boundary of the cavity asymptotes to a parabola. It is also worth mentioning that

a similar approach can be employed in the case where the flat plate is at an arbitrary angle to the

stream. Again, a closed-form solution is obtained and is presented by Rayleigh [1876]. Note that,

whilst the calculations in chapter 4 and section 1 of chapter 5 of this thesis will be with reference

to a cavity forming behind the plate, the calculations are also applicable to the case of a wake

forming instead.

To develop the problem, we look to incorporate a closure model. This is required since potential

flow theory does not allow for complex processes within the cavity to be incorporated into the

calculations [Brennen, 1995]. We assume constant pressure throughout the cavitation bubble and

so we cannot simply join up the two cavity boundaries with a stagnation point at their intersection

since the pressure at this point would not be consistent [Franc and Michel, 2004]. It follows that we

adopt some form of closure of the cavitation bubble downstream. Here, we take a horizontal wall

closure model, often referred to as the open-wake model. This simply means that the boundaries

of the cavity become parallel to the undisturbed stream at some point downstream. The idea for

this model is suggested by Joukowsky [1890] in terms of the introduction of a point along a free

19



streamline before which we impose the usual dynamic boundary condition and after which the

streamline continues in someway to downstream infinity. This undetermined way of continuing the

free streamlines downstream is taken as the streamlines being parallel to the undisturbed stream

by Roshko [1954]. Wu [1956] and Mimura [1958] also employ the open-wake model in solving for

more generalised obstacle shapes: Wu [1956] formulates the problem for a general curved barrier

whilst providing explicit solutions for a circular arc and a flat plate; and the work of Mimura [1958]

concerns an inclined flat plate. Here, we present the method and solution for the flat plate normal

to the flow, using different conformal mappings to those utilised by the works already discussed

but arriving at the same results. Additional methods for solution are also presented: an analytic

approach where the Cauchy integral formula is utilised to obtain an integral equation which is

solved by inverting a finite Hilbert transform; and a numerical approach where the aforementioned

integral equation is discretised and the system can be solved by matrix inversion. The purpose of

including these methods is to show their use in the current problem and, therefore, their capacity

for use in other suitable potential flow problems. Note that the pressure is assumed to be constant

throughout the bubble but now it is not ambient (as opposed to the earlier case of the cavity

of infinite-extent). Interestingly, if the cavitation number is the fixed parameter, then the closure

points for the flow are found as part of the solution, i.e. the flow is dependent only on the cavitation

number. It should be acknowledged that we have a symmetric problem and so the closure is at the

same point (in terms of velocity potential or horizontal distance from the vertical plate) on each

free streamline.

When the flat plate is instead inclined so that it is at an arbitrary angle of attack, we then

have an asymmetric problem and a further constraint should be imposed since we then have two

unknown closure points (i.e. one on each free streamline). Wu [1956] and Mimura [1958] impose

that the velocity potential is the same on both free streamlines at the closure points. This constraint

is again later used in the work of Wu [1962] where the closure model is altered slightly so that,

instead of imposing that the free streamlines become parallel to the stream at the closure points,

it is assumed that after the closure points the pressure continuously returns from the pressure

within the cavity to the pressure of the free stream. The validation of these choices comes from
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comparison with experimental data and we note that these comparisons are really only of interest

in the local neighbourhood of the plate since the closure models are artificial by construction and

not designed for realistic representation of the flow far downstream.

Before moving on to discuss the development of the problem to involve the effects of gravity,

here, we first briefly mention a solution presented by Gurevich [1965] for the zero-gravity problem of

the flat plate normal to the stream, with the flow bounded above by a wall. It should be mentioned

that this solution is formed with reference to work by Bonder [1936] and the wall bounding the

stream is instead below. Again, a closed-form solution is obtainable using conformal mappings.

The result is that the magnitude of the drag on the flat plate is independent of the position of the

plate relative to the wall and is of the same magnitude as that obtained for the cavity of infinite

extent in an unbounded stream — a potentially surprising result.

Finally, we discuss the effects of gravity on the wake flow that forms due to a finite-length, flat

plate submerged in a uniform horizontal stream (see chapter 5). There are many works concerning

free-surface flow past submerged obstacles where the assumptions are such that we have potential

flow and gravity is included. For example, Dias and Vanden-Broeck [1989] seek wave-free solutions

for flow past a triangular obstacle that lies on the bed of the channel; Vanden-Broeck and Dias

[1991] find wave-free solutions for flow past a submerged, inclined flat plate; and Semenov and

Wu [2020] solve for flow past a submerged cylindrical body. However, these investigations do not

include a wake or cavity forming behind the obstacle. Of great relevance to the flow of interest

in the present study (c.f. figure 3b) is the work of Faltinsen and Semenov [2008] where a closed

cavity-wake model is used for the flow past a hydrofoil close to the free surface. Boundary integral

equations are obtained and solved numerically. It should be noted that Faltinsen and Semenov

[2008] propose a more mathematically complex closure: it is assumed that a curvilinear contour

closes the upper boundary of the cavity; the upper and lower boundaries meet at some point

downstream to physically close the cavity; and the shape of the closure of the lower boundary

is found from the solution. It is found that, as the depth of submergence decreases or gravity

increases, there is a decrease in the length of the cavity. Faltinsen and Semenov [2008] state

that this closure model is proposed to more realistically simulate the potential flow at the end of
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the cavity. There is good agreement with experimental results but this is also the case with the

employment of more simple closure models, at least in terms of quantities relevant to the local

neighbourhood of the plate. Recall that modelling the flow around rowing blades is the initial

motivation for this work, where the forces acting on the plate are of most physical importance.

Therefore, it is reasonable to utilise an open-wake closure model here.

We will begin by including gravity along the cavity boundaries that form behind a plate that

is normal to the undisturbed infinite stream. Here, similarly to the case with zero-gravity, we

use the Cauchy integral formula and Bernoulli condition along the boundaries to obtain integral

equations to be solved numerically for the flow speed and angle. Note that this is an asymmetric

problem and so the earlier discussion of extra constraints due to the point of closure on each cavity

boundary is relevant here. We will examine three reasonable options for this extra equation: the

usual assumption of equal velocity potential at the two closure points; an interpolation formula for

the flow angle at some point along a cavity boundary; or a constraint on the flow angle along the

boundaries derived to explicitly impose that the dividing streamline is parallel to the free stream

far upstream. Results are presented that support the use of the latter condition. Free-surface

profiles will be given to demonstrate the dependencies of the solution on the Froude and cavitation

numbers. The problem will then be generalised to model flow past a finite-length, flat plate that

is instead at an arbitrary angle of attack. A particular result that we will see is that for a given

angle of attack, a solution cannot be obtained for every set of the specified parameters (i.e. the

Froude and cavitation numbers). This will be explored in the case of the plate set normal to the

undisturbed flow.

The final problem presented here will be that of the finite-length plate submerged below the free

surface, as depicted in figure 3b. As in the previous cases, the plate is normal to the undisturbed

stream but now we will limit the model to only consider the formation of a wake behind the body

(i.e. the assumptions will not be justified for a cavitating flow). The effects of gravity will be

included in the model along the free surface. However, it is reasonable to not include gravity along

the boundaries of the wake — justification for this will be provided. Note also that we seek a

wave-free solution. Similarly to before, we employ the open-wake model and we obtain integral
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equations that are discretised in order to solve the system numerically, including solving for the

unknown shape of the wake boundaries and free surface. Analogous to the problem studied here

are ploughing flows as investigated by Tuck and Vanden-Broeck [1998]. The difference is that

the ploughing flows concern flow around a solid block that is submerged in a uniform horizontal

stream: the top and bottom sides of the object in the ploughing flows case contrast with the upper

and lower wake boundaries of the present study. The approach used here is similar to that utilised

by Tuck and Vanden-Broeck [1998]. As in the earlier cavity and wake problems, knowledge of

the behaviour of the flow far upstream will be imperative. Examples of free-surface profiles will

be given and the effects of various factors (including the Froude number and wake underpressure

coefficient) will be discussed.

Concluding remarks will then be presented, summarising some of the notable results and the

improvements to the numerical approaches utilised in the various problems. Finally, we will indi-

cate areas for future work. Amongst other points, we will give suggestions for further applications

of the improvements to the method for flows involving gravity-driven jets, along with ideas for

developing the investigations into wake flow past a plate normal to the stream.
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1 Spillway flows

1.1 Simple spillway

We consider the flow of an inviscid and incompressible fluid over a spillway (c.f. figure 4a). The

flow is steady, two-dimensional and irrotational; and the effects of gravity will be included. Far

upstream, we have a uniform horizontal stream of constant velocity and depth. The fluid flows

along a flat bed and then along an angled wall, forming a jet downstream. In working with a

general angle, say β, between the two walls of the spillway, it follows that this work can also be

used to consider a fluid being poured over a wedge-shaped lip (c.f. figure 4b), on the important

assumption that the flow remains attached. A numerical approach will be used to analyse these

flows: conformal mappings will be utilised with the aim of obtaining an expression for the physical

flow in terms of the associated complex potential, which can be achieved through use of the series

truncation and collocation technique, as in work on this flow by Vanden-Broeck and Keller [1986].

β

(a) Spillway

β

(b) Pouring flow

Figure 4: z-planes for spillway and pouring flows

1.1.1 Reproduction

The reproduction of this method serves to demonstrate the general approach that will be utilised

in many subsequent problems presented here; and comparisons to this work will be made later.
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We define the Froude number

F =
U√
gH

, (1.1)

where U is the far-upstream velocity, g is the acceleration due to gravity and H is the far-upstream

depth of the flow. In the calculations here, we are concerned with F > 1, i.e. supercritical flow.

We will assume constant atmospheric pressure and denote it by Pa. In particular, we assume that

the pressure along the free surface is this constant atmospheric pressure. We non-dimensionalise

with respect to the far-upstream depth and velocity and so we have unit depth and velocity far

upstream. Figure 5a depicts the z-plane of the spillway problem, where z is the complex variable

defined by z = x + iy. Note that the origin is set to be at the corner C of the spillway walls.

Throughout the flow, the Bernoulli condition gives that

1

2
q2 +

y

F 2
+ p =

1

2
+

1

F 2
, (1.2)

where q is the magnitude of the velocity; and p = (P − Pa)/(ρU
2) where P and ρ denote the

dimensional pressure and density. For brevity, we will refer to p as the pressure. Recalling that we

assume P = Pa on the free surface, then along IJ we have

1

2
q2 +

y

F 2
=

1

2
+

1

F 2
. (1.3)

The earlier stated assumptions for the fluid and flow mean that the flow satisfies Laplace’s

equation and so we can utilise potential flow theory. Therefore, we now introduce the complex

potential, f , which is defined by f = φ + iψ, where φ is the velocity potential and ψ is the

streamfunction. We set φ = 0 at the corner C; ψ = 0 along the wall ICJ ; and ψ = 1 along the free

surface IJ . Figure 5b shows the f -plane, which is an infinite strip of width 1, where 0 ≤ ψ ≤ 1.

Note that f is an analytic function of z; and that, in the flow domain, the velocity potential φ

satisfies Laplace’s equation.

We aim to map the flow region to a unit semi-circle in an intermediate complex plane, so we
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introduce the t-plane which is defined by

f =
2

π
log

1 + t

1− t
. (1.4)

This maps the infinite strip of the f -plane to the upper-half of a unit semi-circle in the t-plane.

The interior of the infinite strip maps into the interior of the semi-circle, whilst the free surface

IJ maps to the arc of the semi-circle; and the walls of the spillway map to the diameter of the

semi-circle along the real-axis of the t-plane (c.f. figure 5c).

β

y

x

I

I C

J

J

(a) Spillway z-plane
ψ

φ

I

I

J

JC

(b) f -plane

C

JI

(c) t-plane

Figure 5: Complex planes for spillway flow.

The final complex variable to be introduced here is the complex velocity, ζ, which is defined

by ζ = df/dz = u− iv = qe−iθ. Note that u and v are the horizontal and vertical components

of velocity, respectively; and q and θ are the magnitude and angle of the velocity, respectively.

Finding ζ as an analytic function of the complex potential is the aim. To achieve this, we first

consider the behaviour and conditions at various points in the flow. Far upstream, as x → −∞,

the flow approaches a uniform horizontal stream of constant unit velocity. Proceeding similarly to

Vanden-Broeck [2010] in analysis of the flow approaching a uniform stream, we let y = 1 + η(x) be
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the equation of the free surface IJ . Then, the governing equations for the flow far upstream are:

φxx + φyy = 0 for 0 < y < 1 + η (Laplace’s equation) (1.5)

φy = φxηx on y = 1 + η (Kinematic boundary condition on free surface) (1.6)

1

2
(φ2

x + φ2
y) +

y

F 2
=

1

2
+

1

F 2
on y = 1 + η (Bernoulli equation) (1.7)

φy = 0 on y = 0 (Kinematic boundary condition along wall). (1.8)

Taking small perturbations about the equations for uniform horizontal flow of constant unit veloc-

ity, we write ζ = 1 + ζ̃ + · · · , φ = x+ φ̃+ · · · and η = η̃ + · · · , where ζ̃, φ̃ and η̃ are small. Then

the linearised equations are

φ̃xx + φ̃yy = 0 (1.9)

η̃x = φ̃y on y = 1 (1.10)

φ̃x + F−2η̃ = 0 on y = 1 (1.11)

φ̃y = 0 on y = 0. (1.12)

Eliminating η̃, we arrive at

φ̃xx + F−2φ̃y = 0 on y = 1. (1.13)

Using separation of variables to find a solution to (1.9) of the form φ̃(x, y) = X(x)Y (y), we have

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= π2λ2 and Y ′(0) = 0, (1.14)

and we obtain the following solution:

X(x) = Be−πλx + Ceπλx and Y (y) = D cos πλy, (1.15)

where B, C, D are unknown constants. We require that φ̃ is bounded as x→ −∞ and so we set

B = 0. Therefore, we have

φ̃ = Ãeπλx cosπλy, (1.16)
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where Ã = CD is an unknown constant. We can now utilise (1.13): substituting in for the partial

derivatives of φ̃, (1.13) becomes

π2λ2Ãeπλx cos πλy − F−2πλÃeπλx sin πλy = 0, (1.17)

on y = 1. Rearranging and simplifying leads us to

πλ = F−2 tanπλ. (1.18)

Since φ = x+ φ̃+ · · · and utilising (1.16), far upstream we have

ζ =
∂φ

∂x
− i

∂φ

∂y
∼ 1− Ãπλeπλx cosπλy + iπλÃeπλx sin πλy = 1− Ãπλeπλz. (1.19)

By noting that since df/dz = ζ → 1 far upstream, we have z ∼ f as φ→ −∞, and so

ζ ∼ (1 + Aeπλf ) as φ→ −∞, (1.20)

where A = Ãπλ is an unknown constant and λ is the smallest positive root of πλ−F−2 tanπλ = 0.

Here, we take the smallest positive root since we wish to remove the dominant singularity upstream,

i.e. taking the value of λ that leads to the slowest decay in (1.20) as φ → −∞. Note that if the

Froude number is less than 1, then there is no real root for λ and from (1.20) we can see that we

have subcritical flow with waves. However, we are investigating supercritical flow here, i.e. where

F > 1.

Far downstream, the behaviour of the flow is

ζ ∼ f 1/3 as φ→ +∞, (1.21)

since the flow approaches a thin wall jet [Keller and Weitz, 1957; Keller and Geer, 1973]. Keller

and Geer [1973] present a method for computing asymptotic expansions for several types of flow

that involve slender streams. In particular, their equation (4.8) allows for the calculation of the
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first-order term of the outer expansion of a jet flow along a wall that is defined through some

function y = η(x). However, for the case of y = (tan β)x for the wall that we have here, it is

quick to show the origin of (1.21). Formally, we can write z(φ + iεψ; ε) to be defined throughout

the jet flow, where ε is a measure of the slenderness of the jet. Hence, we look to expand z for

small ε. Since we are only looking for the first-order term, i.e. of order ε0, we simply look to find

z(φ) = x(φ) + iy(φ) to satisfy both the condition along the wall and the free surface (physically,

due to the slenderness of the jet). Therefore, we solve


1
2
|x′(φ) + iy′(φ)|−2 + y

F 2 = 1
2

+ 1
F 2 , Bernoulli condition

y = (tan β)x, wall condition,

(1.22)

which leads to

x′(φ) = cos β
(

1 +
2

F 2
− 2 tan β

F 2
x(φ)

)−1/2

. (1.23)

Solving this ordinary differential equation by separation of variables and recalling that we wish to

satisfy y = (tan β)x, it follows that

z(φ) =
F 2

2 tan β

(
1 +

2

F 2
− (b1φ+ b2)2/3

)
+ i

F 2

2

(
1 +

2

F 2
− (b1φ+ b2)2/3

)
, (1.24)

where b1 = −3F−2 sin β and b2 = (1 + 2F−2)3/2. Differentiating with respect to φ and taking the

leading order terms, we obtain that dz/dφ ∼ φ−1/3. We can then arrive at (1.21) for the behaviour

of the complex velocity far downstream.

At the corner C of the spillway, we have flow around a corner where the angle between the

walls is β. We know that the complex potential behaves like f(z) ∼ z
π

2π−β near the corner C — a

standard result of potential flow theory [Batchelor, 2010]. Since ζ = f ′(z) ∼ z
β−π
2π−β , then

ζ ∼ fβ/π−1 as f → 0. (1.25)

Furthermore, due to the no normal flow condition along the spillway walls, we know that v = 0 on

ψ = 0, φ < 0 (i.e. along the horizontal bed) and u tan β − v = 0 on ψ = 0, φ > 0 (i.e. along the
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sloped wall). Finally, the Bernoulli condition (1.3) should be satisfied along the free surface IJ .

It can be verified that

ζ(t) = (−t)β/π−1(− log c(1− t))1/3(− log 2c)−1/3
(

1 + (1 + t)2λ

∞∑
n=0

ant
n
)

(1.26)

immediately satisfies all of the above conditions, apart from the Bernoulli equation. Note that c is

a constant which we are free to choose such that 0 < c < 1
2

and it has been introduced to ensure

that the complex velocity is real for −1 < t < 0, i.e. no normal flow along the horizontal wall.

It now remains to find the unknown coefficients, an, for given values of the Froude number and

angle between the spillway walls. As mentioned earlier, we will use a numerical approach, that is,

series truncation and collocation. First, we truncate the infinite series in (1.26) after N terms, so

we have

ζ(t) = (−t)β/π−1(− log c(1− t))1/3(− log 2c)−1/3
(

1 + (1 + t)2λ

N−1∑
n=0

ant
n
)
. (1.27)

Since the image of the free surface IJ in the t-plane can be expressed by t = eiσ, where

0 < σ < π, we introduce N mesh points defined by

σI =
π

2N
+
π

N
(I − 1), for I = 1, . . . , N, (1.28)

which gives N equally-spaced points along the image of the free surface. Recall that it still remains

for ζ to satisfy the Bernoulli condition (1.3) on the free surface. Therefore, for each of the N mesh

points, we require the magnitude of the velocity and the corresponding y-value. We can obtain

the speed at each mesh point by noting that q = |ζ| and simply evaluating the expression (1.27)

for ζ at each point, in terms of the unknown coefficients an, n = 0, . . . , N − 1. We can also find

the value of y at each of the mesh points by taking the imaginary part of the following integral for

zI (the value of z at the mesh point σI):

zI = z0 +

∫ σI

π/2

dz

df

df

dt

dt

dσ
dσ = z0 +

∫ σI

π/2

1

ζ

(
− 4

π

1

t2 − 1

)
ieiσdσ, (1.29)
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using t = eiσ and where z0 is

z0 =

∫ 1

0

dz

df

df

dψ
dψ = i

∫ 1

0

1

ζ
dψ, (1.30)

using t = (eiπψ/2 − 1)/(1 + eiπψ/2) — found by inverting (1.4). Note that (1.29) arises from

integrating from z = 0 across the flow along the equipotential φ = 0 from ψ = 0 to ψ = 1 (i.e.

the integral (1.30)), and then integrating from t = i (which corresponds to the point z0) along the

arc of the unit semi-circle to each mesh point. By evaluating the Bernoulli condition at each of

the N mesh points, we then have N algebraic equations in terms of N unknown coefficients an.

To find the unknowns, we can solve the system numerically by iteration. Here, we use the fsolve

function of MATLAB, starting with the initial guess of all the unknown coefficients being zero and

the solution is obtained within 4 iterations for N = 100.

Once the coefficients have been found, we can then plot the results to find the shape of the

free surface IJ . This is achieved by evaluating the integral in (1.29) for the z-values along the free

surface. It should be noted that the resulting flow is for a given pair of parameters: the Froude

number, F , and the angle between the spillway walls, β.

Figure 6 shows the resulting plot for the case where F =
√

1.3 and β = 3π/4. In this case, 100

coefficients of the truncated series of the complex velocity expression were found. This free-surface

plot matches well with that of Vanden-Broeck and Keller [1986]. Whilst the same method was

utilised, there is a difference in the calculations: instead of working with the derivative of the

Bernoulli equation (c.f. Vanden-Broeck and Keller [1986]), it is the Bernoulli equation itself that

is imposed here for the condition to be satisfied along the free surface. However, the same results

have been obtained. An advantage of using the differentiated form of the Bernoulli condition is that

it is less computationally expensive. This is since, to find the y-values at the mesh points, many

numerical integrations need to be performed; but when using the differentiated Bernoulli condition,

the y-values are not required whilst solving for the unknown coefficients, hence it is then a less

computationally-expensive system to solve. However, the undifferentiated form has been used in

the calculations presented here since this will be the approach in subsequent problems where using

the differentiated form is not possible (e.g. when there are two free surfaces).
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Figure 6: Spillway free-surface plot: F =
√

1.3, β = 3π/4, c = 0.2, N = 100. The dashed line is
the asymptotic solution (1.31), valid for y � −F 2.
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Figure 7: Spillway free-surface plot: F = 10, β = 3π/4, c = 0.2, N = 100. The dashed line is the
line of symmetry of the flow along θ = 3π/8.
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Coefficients, an
N

100 200 300 400
a0 0.10658 0.10657 0.10656 0.10656
a1 −0.08388 −0.08390 −0.08390 −0.08390
a2 0.03037 0.03036 0.03036 0.03036
a3 −0.01871 −0.01872 −0.01873 −0.01873
a4 0.00950 0.00950 0.00949 0.00949

Table 1: Coefficients of the truncated series for F =
√

1.3, β = 3π/4, c = 0.2.

The asymptotic solution

x = y cot β +
F

sin β

1

(F 2 + 2− 2y)1/2
(1.31)

(as given by Vanden-Broeck and Keller [1986]) is also present in Figure 6 and shows that the

numerical and asymptotic solutions fit well together, for y � −F 2. We can also validate the

results by taking a large Froude number: the resulting flow profile should be symmetric about the

corner, C, of the spillway walls due to the lack of dominance of gravity. This can be seen in figure

7 where the green dashed line is the line of symmetry and we have Froude number F = 10.

To further validate the numerical method involved here, there are some points to observe. We

can take a number of the coefficients of the power series in t and check that their values do not vary

greatly with the number of collocation points taken, and that the coefficients are each converging

to some value. Table 1 shows that the coefficients do indeed behave as we would hope. We can

also see that the coefficients decay rapidly, as shown by figure 8. Finally, various values within the

interval (0, 1
2
) have been tested for the constant c that is used in the complex velocity ansatz (1.27).

Whilst the resulting coefficients do depend on the value chosen for c, the free-surface profiles are

not affected.
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Figure 8: Coefficient decay for F =
√

1.3, β = 3π/4, c = 0.2, N = 100.
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1.1.2 Alternative mapping

We now adapt the numerical method presented in the previous section to enable us to consider

spillway geometries where the walls are not straight. The first step will be to demonstrate, in

this section, the validity of this new approach by reproducing the results of the previous section.

The approach will remain largely the same as before, but different conformal mappings will be

utilised. The initial set up is the same, as shown in figure 9a, and the variables have again been

non-dimensionalised so we have unit velocity and depth far upstream. The pressure is, as before,

assumed to be constant on the free surface and so the f -plane (for the complex potential) is as in

figure 9b: an infinite strip of unit width.

We wish to map the flow region of the f -plane to the upper-half of a unit semi-circle centred

at the origin of the t-plane, as before. Again, the interior of the infinite strip will map into the

interior of the semi-circle. However, now we want the free surface IJ to map to the left-hand arc

of the semi-circle, the sloped wall of the spillway to map to the right-hand arc of the semi-circle,

and the horizontal wall of the spillway to map to the diameter of the semi-circle (c.f. figure 9c). It

will be useful to have this mapping for later problems where the streamline along CJ is not just a

straight, sloping wall. The mapping meeting the aforementioned specifications is stated in related

works such as Vanden-Broeck and Keller [1987] and Dias and Tuck [1991]. However, it appears

without derivation since the mapping can be verified if the reader so wishes. Here, we mention

how the conformal mapping can be obtained. Using standard conformal mappings, we can map

the unit half-disc to the upper half-plane (using the Möbius Transformation) and we can map

the upper half-plane to the infinite unit-width strip of the f -plane (using the Schwarz-Christoffel

mapping). Alternatively, loosely following Chaplygin’s singular point method, we look to find and

analyse the behaviour of the singularities in the flow region [Gurevich, 1965]. We have unit volume

momentum flux, so at I we have a source of unit strength, i.e. there is a logarithmic singularity

at t = −1. There must then be a sink of unit strength at J , so we have logarithmic singularity

at t = i. We can analytically continue f(t) beyond the definition given for the upper-half unit

semi-circle, extending the definition of the mapping over the real-axis of the t-plane, through use of

the Riemann-Schwarz symmetry principle [Nehari, 1952; Lavrent’ev and Shabat, 1967]. It follows
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that we have another sink of unit strength at t = −i and the source at t = −1 is of double strength

and so

f(t) =
2

π
log (t+ 1)− 1

π
log (t− i)− 1

π
log (t+ i) + f0, (1.32)

where f0 is an arbitary constant. Setting the corner of the spillway to have zero complex potential

leads to f0 = − 1
π

log 2. Therefore, the t-plane is defined by

f =
1

π
log

(t+ 1)2

2(t2 + 1)
. (1.33)
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Figure 9: Complex planes for spillway flow.

The aim, as in the previous section, is to find ζ as an analytic function of the complex potential,

f . Our function for ζ must satisfy the kinematic boundary conditions and the conditions far

upstream and downstream, as discussed in the previous section. Due to a different relation between

t and f utilised here, a new form for ζ is required. Firstly, due to the uniform horizontal flow far

upstream of unit velocity, we know that ζ ∼ (1 + Aeπλf ) as φ → −∞, where A is an unknown

constant and λ is the smallest positive root of πλ− F−2 tanπλ = 0. Using the mapping (1.33), we

have that f ∼ (2/π) log (t+ 1) as t→ −1. Therefore, ζ ∼ 1 + A(t+ 1)2λ as t→ −1.

36



For the flow around the corner C as f → 0, we consider the limit as t → 1; hence we set

t = 1 + ε, such that ε� 1. Expanding (1.33) near t = 1, we have

f =
1

π
log

(t+ 1)2

2(t2 + 1)

=
1

π

(
log
(

1 + ε+
ε2

4

)
− log

(
1 + ε+

ε2

2

))
= − ε

2

4π
+O(ε3).

(1.34)

Then f ∼ −(t − 1)2/(4π) as t → 1. It follows that, since ζ ∼ fβ/π−1 as f → 0 (due to the flow

around the corner), we have ζ ∼ [−(t− 1)2/(4π)]β/π−1 as t→ 1.

Finally, for the flow far downstream, we still have the jet along the spillway wall and so ζ ∼ f 1/3.

Using (1.33), we have that f ∼ −(1/π) log (t2 + 1) as t→ i. Therefore, ζ ∼ [−(1/π) log (t2 + 1)]1/3

as t→ i.

We try

ζ(t) = (− log 2c)−1/3(− log c(1 + t2))1/3
(1

4
(t− 1)2

)β/π−1(
1 + (1 + t)2λ

∞∑
n=0

ant
n
)
, (1.35)

where λ is the smallest positive root of πλ − F−2 tanπλ = 0, and c is a constant such that

0 < c < 1/2. This is similar to the expression for the complex velocity that appears in the work

of Dias and Tuck [1991] on weir flows and waterfalls where (1.33) is utilised. Note that the role of

c is to ensure that the branch cut in the logarithm of c(1 + t2) lies outside the unit circle |t| = 1.

In terms of verifying (1.35), it remains to show that the boundary conditions are satisfied.

For the kinematic boundary condition along the horizontal wall, it is clear that ζ is real for

−1 < t < 1, by considering each multiplicative term in turn, hence v = 0 is satisfied along the

horizontal spillway wall. Note that the constant c being restricted to the interval (0, 1
2
) enables this

result. Also, the coefficients an must be real in order for this condition to be satisfied. Another

point to note is that we have ζ(−1) = 1 by carefully choosing the multiplicative constants so that

the condition far upstream is met.

In this method of solution for the spillway, the boundary condition u tan β − v = 0 along the

slope of the spillway is not automatically satisfied by our ansatz (1.35) for ζ, with the unknown
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coefficients, an. Instead, along with the Bernoulli equation, this will be a condition that will need

to be satisfied through finding the coefficients of the power series in t.

As in the previous section, series truncation and collocation will be utilised: we truncate the

series after N terms and introduce mesh points as defined in the previous section by (1.28) —

equally-spaced along the arc of the unit semi-circle in the t-plane — for the collocation method.

Only N/2 of the mesh points correspond to the free surface, in particular the mesh points for

which π/2 < σ < π. At these points, we impose the Bernoulli condition (1.3), so we then have

N/2 equations in terms of N unknown coefficients. Now, the other N/2 algebraic equations arise

from the kinematic boundary condition along the sloping wall by imposing Im(ζ)+Re(ζ) tan β = 0

at the N/2 mesh points where 0 < σ < π/2.

The two conditions to be satisfied numerically involve finding ζ at each mesh point. This is

easily achieved by simply using the ansatz (1.35) for the complex velocity, substituting in the

values for the mesh points through use of t = eiσ. In order to evaluate the Bernoulli condition at

the necessary points, we need to find the value of y at each mesh point along the free surface, so

we take the imaginary part of the following:

zI = z0 +

∫ σI

arccos (− 1
3

)

dz

df

df

dt

dt

dσ
dσ = z0 +

∫ σI

arccos (− 1
3

)

1

ζ

( 2

π

1− t
(t+ 1)(t2 + 1)

)
ieiσdσ, (1.36)

using t = eiσ and where z0 is

z0 =

∫ 1

0

dz

df

df

dψ
dψ = i

∫ 1

0

1

ζ
dψ, (1.37)

using t = (1 −
√

1− (2s− 1)2 )/(2s − 1), s = eπiψ, from inverting (1.33). Figure 10 shows the

image of the line φ = 0 where 0 < ψ < 1 in the t-plane, which we integrate along this curve to

find z0.

Overall, we have N equations in N unknowns and we can use a numerical iterative method

to solve the system, as before. Once the coefficients have been found, we can then plot the free

surface IJ , for a given Froude number, F , and angle between walls of the spillway, β.

Figure 11 shows a comparison of the free-surface profiles for F =
√

1.3 and β = 3π/4, resulting

from this calculation with (1.33) for N = 200 (red line and markers), and from the mapping (1.4)
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Figure 10: Here, we have the t-plane with the red line corresponding to φ = 0 and 0 ≤ ψ ≤ 1,
along which we integrate to find z0.

of the previous section (blue line). The two free-surface profiles are very similar. The first point

to note is that 200 collocation points are used for both plots but all of the mesh points are spread

along the free surface in the previous section and only half of the points are along the free surface

in the work presented here. This is due to the mapping used in each case and will be discussed

later. Another point to note is that the profiles do not quite agree downstream. This is again

down to the mappings used and the resulting spacing of the points in the physical plane: where

only 100 points are used along the free surface (red line and markers), the accuracy is low for the

final point compared with the blue line where 200 points are used and there is a great density of

mesh points in the region. However, if 400 mesh points are instead taken with the calculation of

this section using (1.33), the free-surface profiles are the same since both are calculated with 200

collocation points along the free surface.

The angle between the two spillway walls can be between 0 and π. So far, we have shown the

results for the case where this angle is obtuse. As in the work of Vanden-Broeck and Keller [1986],

the free-surface profile for pouring flows can be found, i.e. where β < π/2. Figures 12 and 13

show the free-surface profiles for the case β = π/4 and with F =
√

1.3 and F = 5, respectively.

The sloping spillway wall has been plotted using the mesh points, instead of simply plotting

y = (tan β)x. This allows us to appreciate how short a distance can be reached downstream when

200 equally-spaced collocation points are used. This is due to the logarithmic behaviour of the
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Figure 11: Spillway free-surface plot comparison with §1.1.1: F =
√

1.3, β = 3π/4, c = 0.2,
N = 200.

mapping (1.33): without either a very large value for N or using non-equally-spaced points, we

cannot get sufficiently close to t = i such that we reach very far downstream. It seems logical

to try mesh points that are not equally-spaced along the arc of the semi-circle in the t-plane,

with a higher density of points close to t = i. However, this has not led to any better solutions.

Either a solution which is similar in the z-plane is obtained but the coefficients do not decay well

(in particular, instead of a nice decaying tail, the order of magnitude of the last few coefficients

increases); or a converged solution cannot be obtained at all. Therefore, in the present study,

interest in the flow downstream will be satiated either by taking a large value for N when solving,

or by extrapolating the converged solution. One point to note is that the jet is made to stick to the

sloped wall by requiring that there is no normal flow along the sloped spillway wall. Pouring flows

with separation from the wall have been calculated by Vanden-Broeck and Keller [1989] where

gravity has been neglected and, for a straight wall, the point of separation can be freely chosen.

One disadvantage of using the conformal mapping (1.33) of this section is that the efficiency

of the numerical method decreases due to not only the free surface z-coordinates being unknown,

but also the z-coordinates of the streamline along the sloping wall being unknown. Therefore, N

in this section must be double value of the N chosen in the previous section for there to be the
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Figure 12: Spillway free-surface plot: F =
√

1.3, β = π/4, c = 0.2, N = 200. Streamlines are for
ψ = 0.05 + 0.1i for i = 0, 1, . . . , 9.
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Figure 13: Spillway free-surface plot: F = 5, β = π/4, c = 0.2, N = 200. Streamlines are for
ψ = 0.05 + 0.1i for i = 0, 1, . . . , 9.
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same number of collocation points along the free surface. On the other hand, the advantage of the

conformal mapping introduced in this section is that the spillway shape can be more generalised.

For example, the corner could instead be rounded; or the sloping wall of the spillway would not

have to be just a straight wall. The following sections will show some examples of this.
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1.2 Curved wall corner

Physical examples of spillways are very often not simply two straight walls at an angle to each

other. Several of these structures, for example the Beaver Dam spillway (c.f. figure 14) in the

United States of America, involve a curved corner (although, it should be noted here that the

Beaver Dam spillway does not have uniform horizontal flow upstream along a flat horizontal wall

— instead it has a deep basin of still water upstream). We will be able to study such spillways using

the method presented in §1.1.2. To change the geometry of the corner of the spillway, there are

two aspects of the method that we must alter. Firstly, the form of the no normal flow condition on

the sloping wall will change. By expressing the sloping wall in parametric form, a normal vector

can be found and then the no normal flow condition can be written in terms of a parametric

variable (the distance along the wall from the origin) and the components of the velocity along

the wall. Alternatively, the condition on the sloping wall can be specified by imposing that the

streamline along the wall (i.e. when ψ = 0) follows the spillway shape, y = p(x). Then, the second

alteration is to change the assumed form of the complex velocity, ζ, if necessary, to capture any

new singularities.

Let the constant φD ∈ [0,∞) be the value for the velocity potential at the point D along the

spillway wall CDJ , as depicted in figure 15a. Then, we will consider a spillway composed of a

horizontal wall for φ < 0; a curved wall for 0 < φ ≤ φD; and a wall of constant negative gradient

for φ > φD. It is important to note that the wall of constant negative gradient has the same

gradient as that of the curved wall at the point corresponding to φD. The curved portion of the

wall will be defined by a function in x. Along the streamline ψ = 0 for φ > 0, we can impose the

position of this streamline as a function of x in the z-plane by fixing it equal to the shape of the

wall, i.e. the no normal flow condition. In terms of implementing the method, it is sensible to fix

the value of σD instead of φD, where σD is such that tD = eiσD maps to fD = φD. The value for σD

should be chosen between zero and π/2. Note that the problem could instead be formulated for

a particular physical geometry by prescribing the position of D in the z-plane. This is not shown

here but the normalisation of solutions with respect to some specified geometry in the z-plane will

be included in later problems.
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Figure 14: Beaver Dam Spillway, by Seanfranklin. Adapted from Wikimedia Commons.
Public Domain.
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Figure 15: Complex planes for spillway with curved corner.
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The rest of the flow will be as discussed in the previous section: uniform horizontal flow of

unit speed and depth far upstream; and thin jet flow far downstream, running along the sloping

spillway wall. Also, β will denote the angle between the horizontal wall and the tangent to the

curved wall at z = 0 (c.f. figure 15a). Hence, for some curved corner defined by y = ycorner(x), the

angle β satisfies tan (β − π) = y′corner(0). Then, the previous mappings and complex planes of the

previous section remain the same for this problem (c.f. figures 15b–15c); and the ansatz for the

complex velocity will remain as before (c.f. (1.35)).

To summarise the formulation, there will be N equally-spaced mesh points (1.28) along the arc

of the unit semi-circle in the t-plane and N unknown coefficients (after truncating the series in t

after N terms) to be found. We have that the ansatz for the complex velocity, ζ, is as stated in

(1.35). The far-upstream, far-downstream and corner flow behaviours are satisfied by this form.

It remains to satisfy the Bernoulli condition (1.3) along the free surface IJ , i.e. at mesh points

where π/2 < σ < π; and to satisfy the no normal flow condition along the wall CDJ . Along

CD where 0 < σ < σD, we have y(x) = ycorner(x); and along DJ where σD < σ < π/2, we have

y(x) = m(x− xD) + yD. Here, m = y′corner(xD), xD = Re(zD) and yD = Im(zD) for

zD =

∫ σD

0

dz

df

df

dt

dt

dσ
dσ. (1.38)

The known parameters to be specified are the Froude number F and the point σD marking the

end of the curved part of the spillway wall. The shape of the wall CDJ is also to be given. We

solve the system of N equations in the N unknowns numerically by iteration.

The first case we consider is where the curve is defined by a polynomial in x. Figure 16a shows

the resulting free-surface profile (with other streamlines included) for F = 1.2, σD = 1.4 and

ycorner = −x4 − 0.1x2 − x. Since the forces acting on the spillway walls are important to calculate

from a practical point of view (to avoid constructing or to understand a defective spillway), we

calculate the pressure along the walls. Using the Bernoulli equation (1.2), we have that

p =
1

2
(1− |ζ|2) +

1

F 2
(1− y). (1.39)
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(a) Free-surface profile: Streamlines are for ψ = 0.05 + 0.1i for i = 0, 1, . . . , 9.
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(b) Pressure against displacement from C.

Figure 16: F = 1.2, σD = 1.4, N = 200 and ycorner = −x4 − 0.1x2 − x.

46



Once the coefficients have been found, we can evaluate ζ and y along the wall and so the pressure

can be easily calculated. Figure 16b is a plot of the pressure along the walls against the displace-

ment from the corner C. Clearly, there is a singularity in the pressure: from (1.39) the nature of

the singularity is (t− 1)4(β/π−1) and since β ≈ 3π/4 here, we have (t− 1)−1. Note that there is a

‘wobble’ in the pressure distribution just after the singularity at the corner C. This is due to the

pressure gradient required to move the flow around the curved corner since the ψ = 0 streamline

flows along this wall, whilst maintaining the constant pressure along the ψ = 1 free surface.

To investigate the effect of the curved corner of the spillway wall, we will define the corner by

ycorner = −ax2 − bx. Then, we know that β = π + arctan (−b) and so, in keeping the value set for

b fixed, we can vary a to vary the shape of the wall. We let F = 1.2 and σD = 1.4 and consider

the case where b = 1, hence β = 3π/4. Figures 17a and 17b show the resulting free-surface profiles

and pressure distributions along the spillway walls for a = 0.1, 1, 5 and 10. Note that, the greater

the value of a, the greater the curvature of the wall near the corner C. Since the gradient of the

straight portion of the wall is different for different values of a, the effect of the wall curvature

alone cannot be discussed. The pressure distributions along the walls for the different values of a

are similar: the overall shape of the distribution is similar; each has a singularity in the pressure

at the corner C of nature (t − 1)−1; and far upstream, the value for the pressure is the same for

each, i.e. p = F−2. However, the greater the value of a, the slower the increase in pressure from

the singularity. This initial slower recovery in the pressure around the corner for larger values of a

is due to larger speed required for the ψ = 0 streamline to flow along the curved wall around these

corners of greater curvature. The pressure distribution lines appear to be on the way to a common

asymptote downstream. However, note that there is a numerical accuracy issue to consider here:

the last few points of the pressure distributions correspond to the last few mesh points along CJ ,

i.e. the mesh points closest to t = i whose arguments are less than π/2. Due to the logarithm

involved in the mapping between the f and t-planes, the equally-spaced mesh points along the

arc near to t = i map to points that are far apart in the physical plane. More points should be

used throughout the calculation (both in solving for the unknowns and in any post-processing

calculations) close to this singularity but, as discussed earlier, good converged solutions have not
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(a) Free-surface profiles.
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Figure 17: F = 1.2, σD = 1.4, N = 200 and ycorner = −ax2 − x.

48



been obtained when this has been attempted. Overall, whilst the specific requirements of a spillway

determine the interpretation of the results here, the pressure distributions suggest that it is most

sensible to minimise a — in terms of designing a spillway that does not fail at any point along

the sloping wall (and bearing in mind that a physical spillway would not involve a sloping wall of

infinite length).

Now, we move to consider a concave corner for the spillway, for which we will use a circular arc.

Let ycorner = ya −
√
R2 − (x− xa)2, where (xa, ya) = (

√
R2 − y2

a, ya) is chosen to be the centre of

the circular arc of constant radius R > 0. Note that, to choose the shape of this arc, we will specify

the values of R and ya such that 0 < ya < R. Then, the angle between the horizontal spillway wall

and the tangent to the circular arc at z = 0 is

β = π + arctan

(
(x0 − xa)√

R2 − (x0 − xa)2

)
. (1.40)

We can continue to use the same form for the complex velocity ansatz (1.35).

Figure 18a shows the resulting free surfaces for the case of F = 2, and the circular arc defined

by R = 1 and ya = 0.5. We set various values for σD (the argument of the point in the t-

plane marking the end of the curved corner): for larger σD, we have a longer arc for the spillway

corner. The pressure distribution along the spillway wall is also presented in figure 18b. Obtaining

these solutions is not problem-free. To find the solution for a large given value for N , we can

start with an initial guess for the unknown coefficients that comprises of the solution coefficients

from a smaller value for N and the remaining unknowns being zero. This usually works well in

using the series truncation and collocation method but here, the number of iterations can still be

large. This signifies a problem with the solution method, likely in the form taken for the complex

velocity ansatz — in particular, a singularity in the flow may not have been correctly or sufficiently

incorporated so that the power series in t can converge. There is a discontinuity in the curvature at

D (the end of the corner wall section) and this has not been removed from the series representation

for ζ, although this singularity is likely to be relatively weak. Figure 19 shows this more clearly:

we have a plot of the coefficient decay for N = 200 and there is not a nice decaying tail for large

n (i.e. the index of the coefficients) which supports the thought that the solution is problematic.
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Figure 18: F = 1.3, N = 200 and ycorner = ya −
√
R2 − (x− xa)2 with ya = 0.5, R = 1 and
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Improving the complex velocity ansatz is left for future work, but these results serve as a useful

example for showing the typical characteristics of a solution of this numerical approach where

adjustments are required for a good solution.
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Figure 19: Coefficient decay for n = 19, 20, . . . , 199 where F = 1.3, N = 200 and
ycorner = ya −

√
R2 − (x− xa)2 with ya = 0.5, R = 1, xa =

√
R2 − y2

a and σD = 1.35.

The method presented in this section can be applied to spillways with other shapes specified

for the corner of the walls. The form of the complex velocity (1.35) can remain the same if the

following conditions hold for the investigated flow:

1. uniform, horizontal flow far upstream of unit speed,

2. declining wall of constant gradient far downstream so that the thin wall jet behaviour is

applicable with ζ ∼ f 1/3 as φ→∞,

3. horizontal wall ψ = 0, φ < 0,

4. corner at ψ = 0, φ = 0 with angle of β,

5. no singularities along the sloping spillway wall.
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In the next section, we will consider a sloping wall consisting of steps. This will require the

alteration of the complex velocity ansatz (1.35) that has been suitable for the spillways so far.
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1.3 Stepped wall

We turn our attention to a spillway with a step built into the sloping wall. The (physical) impor-

tance of this modification to the spillways already considered in this work lies in the dissipation

of energy of the fluid flow — although, with our assumptions on the fluid and flow, this cannot

be investigated here. Figure 20 shows Leonardo da Vinci’s interest in water falling down over

steps, and in his work he comments on the effect of deep and wide steps decreasing the destructive

power of the flow [Richter, 1939]. Recently, interest in stepped spillways has increased due to the

development of different building materials [Chanson, 1994].

Figure 20: Leonardo da Vinci’s investigations into water cascading over steps [da Vinci,
1478-1518]. Courtesy of the British Library (Arundel MS 263, f.167v).

The schematic for the flow that we investigate here is as depicted in figure 21a. As before,

we assume uniform, horizontal flow with unit depth and velocity far upstream. The walls IC and

EF are horizontal, whilst walls CE and FJ are at an angle of depression of π − β. Finally, we

have thin jet flow along the wall FJ . Note that the corner F is set at the origin of the z-plane.

The method utilised in this section will closely follow that of the spillway problems covered so far.

In particular, we set the complex potential to zero at F (i.e. the corner before the last sloping

wall section) and the f -plane is still the infinite strip of unit width (c.f. figure 21b). Then, we

use (1.33) to map the flow region of the f -plane to the unit semi-circle in the t-plane (c.f. figure

21c), as before. We denote by tC and tE the values of the image points of the corners C and E,
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respectively, in the t-plane. The positions of tC and tE can be chosen as any values between −1

and 1, such that tC ≤ tE. The positions of the corners C and E in the z-plane will then be found

as part of the solution (although, later we will instead fix the positions of C and E in the z-plane,

leaving tC and tE unknown).
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Figure 21: Complex planes for spillway step flow

Compared with the earlier spillways presented here, the conditions far upstream, far down-

stream and around the corner F remain as before. Therefore, the complex velocity ζ must satisfy

the following: ζ ∼ (1 + Aeπλf ) as φ → −∞; ζ ∼ f 1/3 as φ → +∞; and ζ ∼ fβ/π−1 as f → 0.

However, we have another two singularities to consider along the spillway wall: the flow around

the corner of angle β at C and the flow inside the corner of angle β at E. Noting the standard

results for flow inside and around a corner in potential flow theory, we have that ζ ∼ fβ/π−1 near

C and ζ ∼ f 1−β/π near E. Throughout the flow, the Bernoulli equation gives that

|ζ|2

2
+

y

F 2
+ p =

1

2
+

1 + h

F 2
, (1.41)
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where h = |zC − zE| sin (π − β) is the perpendicular height of the step, with zC and zE being the

points in the z-plane corresponding to C and E, respectively. Further to this, we have the no

normal flow condition to satisfy along the wall ICEFJ and the Bernoulli condition

|ζ|2

2
+

y

F 2
=

1

2
+

1 + h

F 2
, (1.42)

to satisfy along the free surface IJ .

It follows that the assumed form for the complex velocity is

ζ(t) = (− log 2c)−1/3(− log c(1 + t2))1/3
(1

4
(t− 1)2

)β/π−1(
1 + (1 + t)2λ

∞∑
n=0

ant
n
)

×
( tC − t

1− ttC

)β/π−1( tE − t
1− ttE

)1−β/π
,

(1.43)

which is very similar to the form of ζ in the earlier spillway cases — the difference here is the two

extra multiplicative terms that encapsulate the singularities at corners C and E. It can be checked

that the no normal flow boundary conditions along the walls IC, CE and EF are satisfied by this

complex velocity ansatz. Also, ζ approaches 1 as t→ −1, i.e. far upstream. Downstream, we have

the thin wall jet behaviour ζ ∼ f 1/3 as t → i. The conditions that remain to be imposed (since

they are not automatically satisfied by the assumed form for ζ) are:

1. the Bernoulli equation along the free surface IJ ,

2. the no normal flow condition along the sloped wall FJ .

For the boundary along the wall FJ , the condition can either be specified by imposing that the

ψ = 0 streamline satisfies y = (tan β)x or u.n = 0, where u and n are the velocity and normal

vectors, respectively. In the results presented here, the former option is taken.

We then proceed as usual: truncating the infinite series of (1.43) after N terms, so we have N

unknowns; taking N collocation points, equally-spaced along the arc of the unit semi-circle in the

t-plane; satisfying the Bernoulli condition at the mesh points along IJ and setting y = (tan β)x at

the mesh points along FJ ; and then solving the N equations in the N unknowns numerically, by

iteration. Once the unknown coefficients are obtained, we can plot the free-surface profiles. Note
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that the solution depends on the following set of parameters: F , β, tC and tE.

Some examples of resulting free-surface profiles are shown in figures 22–24. Figure 22a also

shows a comparison with the free-surface profile of the spillway with one corner in the wall (i.e.

that which was discussed in §1.1). Visually, the greatest difference in the free surfaces is as the

flow falls around the corner/step, due to the maintenance of the pressure distribution across the

stream. However, it is also of note that the free surfaces cross downstream and so the jet following

the one corner thins more quickly than that following the stepped wall. This is to be expected

due to the contribution of the pressure force along the sloped wall of the stepped spillway to the

horizontal momentum flux. Overall, figures 22 and 23 show the variation of the free-surface profile

with Froude number. It should be noted that, despite keeping tC and tE constant through the

subfigures of figures 22 and 23, the variation in Froude number will affect the positions of C and

E in the z-plane, i.e. the size of the step is not kept the same through these cases. Further to this,

it is clear that the flow is horizontal far upstream and of unit depth for F = 2 with tC = −0.6 and

tE = −0.3 (c.f. figure 22a). However, for the other cases discussed so far, it is not so clear that

this condition is met since, due to the size of the step and the Froude number, more mesh points

are required to reach sufficiently far upstream to consider this point. Figure 24 shows the same

flow as in figure 23b but with a larger value taken for N and the streamlines within the flow have

been included. Here, we are more convinced that we do indeed head towards horizontal flow of

unit depth far upstream, but more mesh points are still really required for this.

In terms of verifying the numerical method, the dependence on the constant c (c.f. the complex

velocity ansatz of (1.43)) can be investigated. We find that the resulting coefficients (an) do depend

on the value of c chosen (between 0 and 0.5). However, the free-surface profiles do not depend on

c (for values of c sufficiently far from 0 and 0.5, with N sufficiently large). The convergence of the

coefficients can also be investigated. Figure 25 shows the coefficient a4 against 1/N . The graph

suggests that there is convergence to a particular value. Also, for N = 400, figure 26 is a plot of

an against 1/(n+ 1) which shows good convergence of the coefficients to zero as n→∞. To verify

the efficacy of the method, we can consider limiting cases. For example, figure 27 is the case where

β is chosen to be close to π. It appears to approach horizontal flow as β → π, but there is still
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(a) F = 2. For comparison with the one corner spillway discussed in §1.1, the dashed lines show the
(translated) free surface and corner of the wall in that case with F = 2, c = 0.2 and N = 400.

-3 -2 -1 0 1

0

1
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Figure 22: Spillway step free-surface plot: c = 0.2, N = 200, tC = −0.6, tE = −0.3, β = 3π/4.
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Figure 23: Spillway step free-surface plot: c = 0.2, N = 150, tC = −0.8, tE = −0.3, β = 3π/4.
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Figure 24: Free-surface profile for F = 1.1, c = 0.2, N = 400, tC = −0.8, tE = −0.3, β = 3π/4.
Streamlines are for ψ = 0.05 + 0.1i for i = 0, 1, . . . , 9.

evidence of jet flow downstream, particularly with a Froude number so close to 1. Note that, as

β → π, analysis of the spillway jet-flow far downstream (c.f. (1.22)) will result in the coefficient of

the f 1/3 term approaching zero, and leading to simply ζ(f) ≡ 1. Another example to consider is a

step of very small perpendicular height to check that, as the step diminishes, we retrieve the results

of §1.1 where there is not a step. Figure 28 shows a comparison of the free surface obtained for

a spillway with and without a small step. The profiles are very similar with the largest difference

appearing far upstream in the height of the free surface. This is to be expected since we should

have unit depth flow far upstream in both cases but, in the case including the step, the horizontal

wall will not run along y = 0.

We can find the pressure distribution along the spillway wall, which, from a practical perspec-

tive, will be of use for understanding the potentially destructive nature of the flow. Utilising the

Bernoulli equation (1.41), we have the following expression for the pressure, p, along the wall

p =
1

2
(1− |ζ|2) +

1

F 2
(1 + h− y), (1.44)

59



0 0.004 0.008 0.012 0.016 0.02
-0.0104

-0.0102

-0.01

-0.0098

a4

1/N

Figure 25: A plot of a4 against 1/N to show convergence of this coefficient with F = 1.1, c = 0.2,
tC = −0.8, tE = −0.3, β = 3π/4.

where h is the height of the step. Figure 29 shows the pressure distribution along the spillway wall

ICEFJ for an earlier discussed set of given parameters. As expected, the pressure asymptotes

towards a positive constant, F−2, as we approach the point I far upstream; and there are singu-

larities at the corners C, E and F . We know that the nature of these singularities in the pressure

are (tC − t)2(β/π−1), (tE − t)2(1−β/π) and (t− 1)4(β/π−1) at C, E and F , respectively.

A logical next step here is to rework the method to specify the positions of the corners C and

E in the z-plane, instead of prescribing tC and tE. This will enable us to check that the method

gives the same results. It will also mean that this work can be applied more easily to a physical

spillway geometry. For this, we simply add two extra unknowns to the system (i.e. tC and tE),

along with two conditions to impose which fix the positions corresponding to points C and E in

the z-plane (i.e. zC and zE, respectively). These conditions take the following form:

zC,E =

∫ 1

tC,E

1

ζ

( 2

π

1− t
(t+ 1)(t2 + 1)

)
dt. (1.45)

This can be simplified by considering the direction of the velocity along the wall sections CE and

EF . First, we notice that ζ(t) is real along the wall EF and so for zE we can adjust the condition
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(a) Coefficient decay where n = 0, 1, 2, . . . , 399.
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Figure 26: Coefficient decay plot of an against 1/(n+ 1) for c = 0.2, N = 400, F = 1.1,
tC = −0.8, tE = −0.3, β = 3π/4.
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Figure 27: Free-surface profile for F = 1.1, c = 0.2, tC = −0.8, tE = −0.3, β = 3.1. Streamlines
are for ψ = 0.05 + 0.1i for i = 0, 1, . . . , 9.
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Figure 28: Comparison of free-surface profiles with and without step for F = 1.1, c = 0.2,
N = 200 and β = 3π/4. In the case of the step tC = −0.8 and tE = −0.3.
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Figure 29: Pressure against displacement from F for F = 1.1, c = 0.2, N = 400, tC = −0.8,
tE = −0.3, β = 3π/4.

to involve only a real integral, i.e.

zE =

∫ 1

tE

1

|ζ|

( 2

π

1− t
(t+ 1)(t2 + 1)

)
dt. (1.46)

Now, along the wall CE, the velocity has direction exp i(β − π). Also, we can express zC as

zE + δ exp (iβ), where δ > 0 is a real constant. Then we can write

zE + δeiβ = zE +

∫ tC

tE

1

|ζ|ei(π−β)

( 2

π

1− t
(t+ 1)(t2 + 1)

)
dt (1.47)

and this can be simplified to

δ = −
∫ tC

tE

1

|ζ|

( 2

π

1− t
(t+ 1)(t2 + 1)

)
dt. (1.48)

As before, truncating the infinite series of (1.43) after N terms, we have N unknowns, along

with two extra unknowns tC and tE. Choosing N collocation points, we obtain N equations in the

unknowns, along with the two extra conditions, (1.46) and (1.48). Now, we can use a numerical,
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iterative method to solve this system of N + 2 equations in N + 2 unknowns. It should be noted

that since zE and δ are used in the extra conditions, the spillway dimensions are specified by the

lengths of the walls CE and EF . Several examples have been worked through to check that the

two methods, i.e. starting with the values of tC and tE known or unknown, give the same results.

Finally, we can generalise the work presented here on the spillway with a step upstream to

instead have multiple steps upstream. Only the formulation is given here and examples are left for

future work. Let us consider M steps where each declining wall (apart from the last wall section) is

followed by a horizontal section as depicted in figure 30a. The corners before and after the sloping

walls are labelled as Ci and Ei, respectively, for i = 1, 2, . . . ,M . The angles at these corners are

αi at both Ci and Ei. At F , the angle between the walls is β. The f - and t-planes remain as

before, but with the extra points corresponding to the additional corners also labelled (c.f. figures

30b and 30c). Note that tCi and tEi are the points in the t-plane corresponding to the corners Ci

and Ei, respectively, for i = 1, 2, . . . ,M . The overall method is as for the one-step case already

discussed. We take the following ansatz for the complex velocity

ζ(t) = (− log 2c)−1/3(− log c(1 + t2))1/3
(1

4
(t− 1)2

)β/π−1(
1 + (1 + t)2λ

∞∑
n=0

ant
n
)

×
( tC1 − t

1− ttC1

)α1/π−1( tE1 − t
1− ttE1

)1−α1/π( tC2 − t
1− ttC2

)α2/π−1( tE2 − t
1− ttE2

)1−α2/π

× · · · ×
( tCM − t

1− ttCM

)αM/π−1( tEM − t
1− ttEM

)1−αM/π

(1.49)

and truncate the infinite series after N terms. We still use the equally-spaced collocation points

along the arc of the unit semi-circle of the t-plane; and so we satisfy the no normal flow condition

at the points along the wall FJ (i.e. y = (tan β)x) and we satisfy the Bernoulli condition at the

points along the free surface. More specifically, for the condition along the free surface IJ , we

satisfy

|ζ|2

2
+

y

F 2
=

1

2
+

1 + h

F 2
, (1.50)

where

h = |zC1 − zE1| sin (π − α1) + |zC2 − zE2| sin (π − α2) + · · ·+ |zCM − zEM | sin (π − αM). (1.51)
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If we wish to set the physical lengths of the wall sections, then we can leave the values of tCi and

tEi for i = 1, 2, . . . ,M to be found; and we then impose the lengths of the walls similarly to (1.46)

and (1.48). Overall, there are then N+2M unknowns to be found: the unknown coefficients an for

n = 0, 1, . . . , N − 1 and the values of t corresponding to the first 2M corners. There are N + 2M

equations from satisfying the Bernoulli condition or no normal flow condition at the relevant N

mesh points; and from imposing the lengths of the 2M finite length wall sections.
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Figure 30: Complex planes for spillway step flow.

So far, all the spillway cases presented here involve a straight sloping wall far downstream.

This allowed us to take ζ ∼ f 1/3 as φ→ +∞ for the behaviour of the jet singularity downstream,

in order to form the complex velocity ansatz similarly each time. In the following section, we will

consider cases where this is not so.
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1.4 Parabolic wall

We consider a spillway where the sloping wall is described by y = −ax2 − bx, where a and b are

real, positive constants. It should be pointed out that this differs from the curved corner spillway

discussed in §1.2 since there we had a wall of constant slope following the corner. The fluid and

flow assumptions are as in the previous cases and the f - and t-planes remain as in figures 9b and

9c. For the flow around the corner of the horizontal and sloping walls, we note that the angle

between the horizontal wall and the tangent to the sloping wall at the origin is π + arctan (−b).

Hence, ζ ∼ f arctan (−b)/π as f → 0. We can analyse the flow far downstream similarly to the linear

spillway wall case that has been discussed earlier. Most simply, for the dominant term of the

expansion for ζ(f), we can make use of the work of Keller and Geer [1973]. In particular, solving

their first-order differential equation (4.8) with η(x) = −x2 − x for the boundary condition along

the wall will lead to finding the first term of the expansion for the complex velocity to be of order

f 1/3. If we take the behaviour of the jet flow far downstream to be ζ ∼ f 1/3 as φ→ +∞, then we

can take the complex velocity ansatz to be

ζ(t) = (− log 2c)−1/3(− log c(1 + t2))1/3
(1

4
(t− 1)2

)arctan (−b)/π(
1 + (1 + t)2λ

∞∑
n=0

ant
n
)
. (1.52)

Note that at the end of this section and in later chapters, we will look at subsequent terms in

the expansion of ζ for the jet far downstream and (in the case of waterfall flow) we will include

these extra terms in the complex velocity ansatz. However, for now we proceed as usual: from

truncating the infinite series above after N terms and introducing N mesh points along the arc

of the unit semi-circle in the t-plane, we have N unknown coefficients and we have N equations

in these unknowns. The N equations are formed by evaluating y = −ax2 − bx at the mesh points

with argument (in the t-plane) less than π/2 (i.e. points corresponding to the streamline ψ = 0

for φ > 0) and evaluating the Bernoulli condition (1.3) at the remaining mesh points.

Figure 31 shows the resulting free-surface profiles for the case where a, b = 1 (note β = 3π/4 in

this case) and different Froude numbers are considered. The condition on the wall of the spillway

is imposed by specifying y = −x2 − x on ψ = 0, for φ > 0, and this is adhered to in each of the
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profiles. The width of the flow downstream increases as the Froude number increases. This is to

be expected since the larger the Froude number, the more diminished the effect of gravitational

forces.

We can investigate the effect of increased curvature on the pressure along the spillway wall. In

terms of our parabolic form taken for the wall, we set b = 1 and vary a. Therefore, the angle at

the origin remains constant, i.e. β = 3π/4. The expression for calculating the pressure is obtained

using the Bernoulli condition (1.2) and is given by

p =
1

2
(1− |ζ|2) +

1

F 2
(1− y). (1.53)

Figure 32b shows the pressure along the wall, plotted against the displacement from the origin, for

a number of different values of a. Since the angle between the horizontal wall and the tangent to

the curved wall at the origin is the same for all the cases in figure 32, the nature of the singularity

in the pressure at this corner is also the same for each case and is (t−1)4(arctan(−1)/π), i.e. (t−1)−1.

This results in the similarity that can be observed, near to x = 0, between the pressure distribution

plots for the different values of a. There is also similarity and a clear trend between the upstream

pressure distributions. The greater the value of a, the quicker the pressure descends towards the

singularity. Furthermore, the starting value for the pressure far upstream is the same for all values

taken for a. More of a difference can be seen downstream in both the free-surface profiles and the

pressure distributions. Here, we can see that along the sloping wall, the greater the value of a,

the slower the increase in pressure from the singularity. The pressure distribution lines appear to

cross further down the wall than calculated here. As discussed earlier, this may be as a result of

the limited number of mesh points close to t = i along the wall.

A limitation of this calculation is that only the range of the mesh points used in the collocation

method can be used in the free-surface profiles, i.e. we cannot then use additional points to

extrapolate the free surfaces to see further both up- and downstream. This is since these additional

points will not satisfy the boundary condition on the spillway’s parabolic wall (since it is only

imposed at the specified mesh points) and the only requirement for the downstream flow is that

ζ ∼ f 1/3 as φ→ +∞ (so only imposing a jet flow along a linear, declining wall). Earlier, the work
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Figure 31: Free-surface profile for spillway with parabolic wall y = −x2− x and c = 0.2, N = 100.
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Figure 32: Free-surface profiles and pressure distribution plots for spillways with parabolic walls
defined by y = −ax2 − x for various values of a. Here, we take F = 2, c = 0.2, N = 150.
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of Keller and Geer [1973] was discussed in relation to finding the suitable form for the downstream

singularity. Calculating the next term of the asymptotic expansion in this way leads to finding

that

ζ ∼ Af 1/3 +B + . . . as φ→ +∞ (1.54)

where A and B are constants. Therefore, better results could be obtained by including both of

these terms for a more appropriate form for the singularity in the complex velocity ansatz. This

is left for future work. However, this idea for improvement will be employed in chapter 2 where

the focus is on waterfall flow, i.e. including a jet bounded by two free surfaces.
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1.5 Stepped wall to horizontal channel

Before moving on to waterfall flow in the next chapter, the final case that we consider here is a

spillway with a horizontal wall downstream (c.f. figure 33). It is a physically relevant problem to

consider since often the purpose of a spillway is to provide a controlled escape route for water from

a full reservoir to another basin of water below. However, depending on the ratio of the depth of

the flow far upstream to the height of the sloping wall, these calculations can also be interpreted

for open channel flow navigating a small change in the horizontal bed.

y

xE

CI

I

J

Jβ
β

Figure 33: The z-plane for the spillway with a horizontal wall downstream.

We start by considering the zero-gravity case, leading to an exact solution. Surprisingly, such

a free-streamline solution has not been found in existing searched literature. We reintroduce

f =
2

π
log

1 + t

1− t
(1.55)

for mapping the complex potential f (c.f. figure 34a) to the unit semi-circle in the t-plane (c.f.

figure 34b). This mapping was utilised in the first spillway problem (see §1.1.1). As with the

previously considered cases, we assume uniform horizontal flow of unit velocity upstream. Then,

due to neglecting the effects of gravity, we have unit speed along the free streamline IJ . This

allows for the complex velocity ζ to be written simply as

ζ(t) = t 1−β/π

(
t− tC

1− t tC

)β/π−1

. (1.56)

This form for ζ satisfies the no normal flow condition along the spillway wall; and the flow conditions
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around and inside corners C and E, respectively. It also satisfies the condition that the flow has

unit speed along the free streamline IJ since for σ ∈ [0, π] we have

|ζ(eiσ)| = |eiσ| 1−β/π
∣∣∣∣∣ eiσ − tC
1− eiσ tC

∣∣∣∣∣
β/π−1

=

∣∣∣∣∣ (cos θ − tC) + i sin θ

(1− tC cos θ)− itC sin θ

∣∣∣∣∣
β/π−1

=

(
t2C − 2tC cos θ + cos2 θ + sin2 θ

t2C(cos2 θ + sin2 θ)− 2tC cos θ + 1

)(β/π−1)/2

= 1.

(1.57)

This expression for ζ adopts a similar form to that used by Dias and Vanden-Broeck [1989] when

considering flow past submerged objects, and its particularly useful quality is that it naturally

satisfies |ζ| = 1 for t = eiσ.
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Figure 34: Complex planes for the spillway with a horizontal wall downstream.

We eliminate t from (1.55) and (1.56) and arrive at a closed-form solution for the complex

velocity in terms of the complex potential:

ζ(f) =
(

tanh
(πf

4

))1−β/π
(

tanh (πf
4

)− tC
1− tC tanh (πf

4
)

)β/π−1

. (1.58)

Recalling that the complex velocity can also be written by df/dz, we can integrate the reciprocal

of ζ with respect to f to obtain the position of the free streamlines in terms of the complex velocity

and the constant tC . We can then plot the profiles where, for φ ∈ R, points along the wall ICEJ
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can be found via

z(φ) =

∫ φ

0

(
tanh

(πφ′
4

))β/π−1
(

tanh (πφ
′

4
)− tC

1− tC tanh (πφ
′

4
)

)1−β/π

dφ′, (1.59)

and points along the free streamline IJ are found by evaluating

z(φ) = z0 +

∫ φ

0

(
tanh

(π(φ′ + i)

4

))β/π−1
(

tanh (π(φ′+i)
4

)− tC
1− tC tanh (π(φ′+i)

4
)

)1−β/π

dφ′, (1.60)

with

z0 = i

∫ 1

0

(
tanh

(πiψ

4

))β/π−1
(

tanh (πiψ
4

)− tC
1− tC tanh (πiψ

4
)

)1−β/π

dψ. (1.61)

Figure 35 shows the free-streamline plots with β = 3π/4 for a number of different values of

tC ∈ (−1, 0]. Note that as tC increases towards zero, the size of the step decreases. As tC → 0, the

flow approaches the limiting behaviour: uniform horizontal flow of unit speed. On the other hand,

the limiting configuration at tC = −1 is the flow along an infinite slope before the final horizontal

wall, i.e. the flow without the wall IC. In this case, ζ does not satisfy the condition far upstream

of uniform horizontal flow as t→ −1.

Now we look to include the effects of gravity. In particular, we are searching for solutions

that are supercritical downstream. Therefore, assuming no waves, we have u2 + v2 ∼ constant as

x→ +∞ and so the flow approaches a uniform stream of constant velocity, say UD, and constant

depth, say HD. Recall that, throughout this study so far, we have non-dimensionalised with respect

to the upstream parameters. Here, UD and HD denote the non-dimensionalised speed and depth of

the downstream flow. We let y = HD + η(x) be the equation of the free surface IJ . The governing

equations for the flow far downstream, in terms of the velocity potential, are:

φxx + φyy = 0 for 0 < y < HD + η (Laplace’s equation) (1.62)

φy = φxηx on y = HD + η (Kinematic boundary condition on free surface) (1.63)

1

2
(φ2

x + φ2
y) +

y

F 2
=

1

2
U2
D +

HD

F 2
on y = HD + η (Bernoulli equation) (1.64)

φy = 0 on y = 0 (Kinematic boundary condition along wall). (1.65)
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Figure 35: Profiles for the spillway with a horizontal step downstream with g = 0, i.e. the exact
solution. Here, we take β = 3π/4.

Note that the Froude number F is based on the upstream speed and depth of the flow. Similarly to

the calculations presented in §1.1.1, we take small perturbations about the equations for uniform

horizontal flow of constant velocity UD. Using the linearised equations, far downstream we have

ζ ∼ UD +Be−µ̃z (1.66)

where B ∈ R is a constant and

µ̃ =
1

F 2U2
D

tan (µ̃HD). (1.67)

We define the downstream Froude number FD = ŨD/

√
gH̃D and hence the relation becomes

µ̃HD =
1

F 2
D

tan (µ̃HD). (1.68)

Note that ŨD and H̃D denote the dimensional speed and depth of the flow downstream.

Utilising (1.33) for the complex potential in terms of t, it follows that far downstream, we
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have f ∼ −(2/π) log (1− t). Then, since df/dz = ζ → UD as t → 1, we have z ∼ f/UD far

downstream. It follows that

ζ ∼ UD +B(1− t)2µ as t→ 1, (1.69)

where µ = µ̃/(UDπ). Similarity can be seen between this expression and that taken for the

exponential decay of the flow far upstream from uniform horizontal flow of unit velocity (c.f.

ζ ∼ (1 + Aeπλf ) as φ→ −∞).

Proceeding as we have in the previous problems, we look to find a suitable form for the complex

velocity that removes the singularities of the flow. Aside from (1.69) for the downstream singularity,

we also need to incorporate ζ ∼ (1 + Aeπλf ) as φ → −∞ for the upstream flow; and the flows

around and inside the corners of the spillway wall which were already included in the zero-gravity

case (c.f. (1.56)). Difficulty arises here in attempting to combine the flow behaviours far up- and

downstream into one expression. Dias and Vanden-Broeck [1989] consider a similar problem with

flow past a submerged obstacle with supercritical flow both up- and downstream. However, due

to the symmetry involved (since the obstacle is an isoceles triangle) a suitable complex velocity

ansatz is obtainable where the same exponential decay expression for ζ is taken at either end of

the flow. A similar approach cannot be taken here. Using the Bernoulli condition along with

conservation of mass, we can find the downstream constant horizontal velocity, UD. We have

1

2
+

1

F 2
(1 + h) =

1

2
U2
D +

1

F 2
U−1
D , (1.70)

where h is the non-dimensional perpendicular height of the step. Then, neglecting to remove

the downstream singularity, we can form a complex velocity ansatz and compare the resulting

downstream values with those expected (as calculated from (1.70)). We take

ζ(t) = t 1−β/π

(
t− tC

1− t tC

)β/π−1(
1 + (1 + t)2λ

∞∑
n=0

ant
n

)
, (1.71)

which satisfies the flow conditions upstream, at the corners C and E, and along the walls. As
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usual, we truncate the series after N terms. The unknowns will be the N coefficients of the

truncated series and tC . We will have the usual equally-spaced mesh points along the arc in the

t-plane (corresponding to the free surface IJ), leading to N equations by evaluating the Bernoulli

condition

1

2
q2 +

y

F 2
=

1

2
+

1

F 2
(1 + h) (1.72)

at these points. Note that the specified parameters will be β, F and h. Therefore, the final

equation is formed by imposing that the calculated perpendicular height of the step is indeed the

given value for h. Then, we solve the N + 1 equations for the N + 1 unknowns numerically by

iteration.

Figure 36a shows the resulting free-surface profile for F = 2, β = 3π/4 and h = 0.2 with

200 collocation points. Waves are not apparent downstream and so, despite not incorporating

the exponential decay of the flow far downstream, it seems that a supercritical solution has been

obtained. The horizontal component u of the velocity along the wall is plotted against x in figure

36b where it seems that the flow develops constant speed far downstream. The same is plotted in

figure 36c, but for u along the free surface instead. The values of u downstream are UD ≈ 1.0618

and UD ≈ 1.0626 along the wall and free surface, respectively. This compares well with one of the

expected possible values from (1.70), i.e. UD = 1.0628, which can also be seen from figure 36d.

For this value of UD, it follows that HD = 0.9409 and FD = FUD/
√
HD = 2.1913.

Recalling that we have not removed the downstream singularity in the complex velocity ansatz

(1.71), it is of interest to consider the quality of the solution. Figure 37 shows the decay of the

coefficients an. Whilst the coefficients are of order 10−5 for large n, there is not a nice decaying

tail of the coefficients as seen in previous problems (e.g. figure 26). Since we want the infinite

series of the ansatz (1.71) to be convergent inside the unit disc |t| < 1, there is a problem with the

solution. A development to likely improve this would be to find a more suitable form for ζ where

the behaviour of the flow far downstream is included.
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Figure 36: Results for the g 6= 0 case of the spillway with a horizontal step downstream. Here, we
have used (1.71) for the complex velocity ansatz and we have set F = 2, β = 3π/4 and h = 0.2

where N = 200.
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Figure 37: Further results for the g 6= 0 case of the spillway with a horizontal step downstream
where we have used (1.71) for the complex velocity ansatz (i.e. not including the downstream

singularity) and we have set F = 2, β = 3π/4 and h = 0.2 where N = 200.
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We can include the downstream behaviour by taking

ζ(t) = t 1−β/π

(
t− tC

1− t tC

)β/π−1

×

(
1− t

2

(
1 + (1 + t)2λ

∞∑
n=0

ant
n
)

+
1 + t

2

(
UD + (1− t)2µ

∞∑
n=0

bnt
n
))

.

(1.73)

This form for the complex velocity ansatz involves two power series in t. We can still proceed as

usual by truncating the series after N terms, leading to 2N unknown coefficients. We also leave tC

unknown. The values for the Froude number F , angle β between the walls and perpendicular height

h of the step in the spillway wall will be specified. Furthermore, we know the value of UD a priori

through use of (1.70); and the values of HD, FD and µ follow directly from conservation of mass,

FD = FU
3/2
D and (1.68), respectively. Note that the value taken, of the (maximum) two possible

values, for UD is that which corresponds to supercritical flow downstream. We introduce 2N mesh

points along the arc of the semi-circle in the t-plane and we satisfy the Bernoulli condition (1.72)

at each point, leading to 2N equations. The last equation, as before, is from setting the value for

h. Therefore, we have 2N + 1 equations in 2N + 1 unknowns that can be solved numerically by

iteration.

Here, we discuss the results where the parameters are set as F = 2, β = 3π/4 and h = 0.2.

Note that we utilise the value UD = 1.0628, obtained from (1.70), in the complex velocity ansatz.

At first glance, this solution is ideal, since we have been able to incorporate both the up- and

downstream behaviours in the form for ζ. The free-surface profile is not presented here since it is

the same (to order 10−5) as that of figure 36a where the downstream singularity was not removed

from the series representation for the complex velocity. A comparison of free-surface profiles that

are extrapolated up- and downstream also agree to order 10−4. There does not appear to be any

marked improvement in the profiles by incorporating the downstream behaviour. Further to this,

neither of the power series in t of (1.73) appear to have coefficients that decrease to zero with n.

Additionally, there is not clear convergence of individual coefficients as N increases. On the other

hand, the value of tC is consistent and appears to converge to some value as N increases. Also,

the value of the power series with coefficients an at t = −1 and the value of the power series with
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coefficients bn at t = 1 seem to converge with N . However, these positives do little to distract

from the lack of a distinct improvement with the inclusion of the downstream behaviour and the

lack of convergence of the power series’ coefficients.

The issues of the previous attempt are likely due to the two power series in t involved in

the complex velocity ansatz as a result of too many degrees of freedom. Instead, we reattempt

removing the downstream singularity from the series representation for the complex velocity by

retaining the power series in t associated with the upstream behaviour and simply introducing an

unknown coefficient of the downstream exponential decay. More specifically, we take

ζ(t) = t 1−β/π

(
t− tC

1− t tC

)β/π−1(
1− t

2

(
1 + (1 + t)2λ

∞∑
n=0

ant
n
)

+
1 + t

2

(
UD +B(1− t)2µ

))
,

(1.74)

where B is an unknown constant to be found. We truncate the series after N − 1 terms and we

have tC and B also as unknowns. We utilise N mesh points that are equally-spaced along the arc

of the unit semi-circle in the t-plane. Satisfying the Bernoulli condition (1.72) at these points gives

rise to N equations. As before, we impose the perpendicular height h of the step. Overall, we have

N + 1 equations in N + 1 unknowns. We keep the same the other details of the previous attempt:

the parameters are F , β and h; and we can know the value of UD by (1.70) prior to solving the

(N + 1)× (N + 1) system.

Again, we discuss the results for F = 2, β = 3π/4 and h = 0.2. The free-surface profile is

not presented here since it is the same as previously obtained (c.f. figure 36a) to order 10−5.

We obtain tC = −0.2038 and B = −0.0895 (recall that B is the coefficient of the exponential

decay downstream). The quality of the numerical solution appears to be much better than the

previous attempt where two power series were included in the complex velocity ansatz since we

have now recovered the usual coefficient decay for large n (c.f. figure 38a). The coefficient decay

is also slightly improved compared with an earlier attempt (c.f. figure 37) where the downstream

singularity is not taken into account at all in the form adopted for ζ. We still do not have a

particularly nice decaying tail in the coefficients for large n, but the amplitude of the oscillation of

the coefficients is smaller. Another test of the efficacy of the method is looking for convergence of
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the value obtained for tC (the position in the t-plane corresponding to the corner C) as N → +∞.

Figure 38b shows the values of tC obtained against 1/N for N = 20, 40, 60, . . . , 200 and it seems

that we do indeed have convergence as N → +∞. Finally, a further example free-surface profile is

included in figure 39 where we set the perpendicular height of the step to be h = 1. This serves to

demonstrate the capability of the numerical method for larger steps rather than just the smaller

value of h = 0.2 that has been discussed through the analysis of the results.
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(a) Coefficient decay plot for N = 200.
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(b) Convergence of tC as N → +∞.

Figure 38: Results for the g 6= 0 case of the spillway with a horizontal step downstream. Here, we
have used (1.74) for the complex velocity ansatz to include the downstream singularity. We set

F = 2, β = 3π/4 and h = 0.2.

Overall, it appears that the downstream singularity does not need to be incorporated into the

complex velocity ansatz in order to obtain the numerical solution, particularly if interest is mainly
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Figure 39: Free-surface profile for F = 2, β = 3π/4 and h = 1 for N = 400. This has been
obtained through use of (1.74) for the complex velocity ansatz which includes the downstream

singularity.

in the free-surface profile. However, when forming the ansatz for ζ, the upstream exponential

decay is included by replacing the unknown coefficient of this decay by an unknown function in

t. This function is analytic for |t| < 1 and continuous for |t| ≤ 1 and so we replace it by a power

series in t, with unknown coefficients to be found. Due to the properties of the unknown function,

to have obtained a good numerical solution means to obtain coefficients such that the series is

convergent inside the unit disk and coefficients that decay sufficiently quickly so that we do not

have a sizeable error due to the truncation of the series. Therefore, whilst we have not obtained a

good decaying tail to the coefficients for large n by removing the downstream singularity from the

power series in t, we have decreased the amplitude of the oscillations of the coefficients for large n.

In this chapter, we have demonstrated the use of the mapping (1.33) in solving for the flow

in the most basic spillway case (i.e. consisting of two straight walls, as in §1.1.2) when utilising

the numerical approach of series truncation and collocation. We have then shown the application

of this mapping and numerical approach when the walls of the spillway are defined piecewise or

are curvilinear. Whilst using a different mapping in the case of the stepped wall in the horizontal

channel (of §1.5), we still utilise the same approach to obtain a numerical solution. The decay of

the coefficients of the power series involved in the complex velocity ansatz has been used to analyse

the quality of the solutions in these different examples. It is clear that, for good coefficient decay

(and therefore a numerical solution of good quality) it is required that we suitably capture the
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singularities of the flows. In particular, with reference to the case of the spillway with a parabolic

sloping wall (of §1.4), we have discussed the potential need for more terms in the expansion for

the complex velocity ζ for the jet singularity downstream, as opposed to taking ζ ∼ f 1/3 far

downstream. This will be discussed and explored further in the following chapter where we turn

our concern to waterfall flow.
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2 Waterfall flows

As discussed in the introduction, we now move on to look at waterfall flows. The difference here

(compared with the spillway flows) is that we now have two free surfaces downstream, bounding

the jet. The fluid and flow assumptions remain as before, meaning that we can still utilise potential

flow theory. The overall method of solving is the same as already employed, i.e. we use conformal

mappings, form an ansatz for the complex velocity and then use series truncation and collocation

to numerically find the unknown coefficients of the series involved in the ansatz. As usual, to

achieve this we must analyse the flow to identify the behaviour of any flow singularities. The focus

will be on the jet flow far downstream. Existing literature uses the form ζ ∼ f 1/3 for the jet (as

seen and frequently used in the previous chapter for the spillways) but we will show that a more

suitable expression can be applied for the waterfall. Following this, the numerical solutions will be

further investigated and improvements to the solution method will be introduced. These lead to

enhanced coefficient decay of the power series that appears in the complex velocity ansatz. This

work on improvements to the waterfall problem has been previously published [McLean et al.,

2022].

2.1 Reproduction

Here, we formulate the problem and present the numerical method and solutions, as obtained by

Dias and Tuck [1991], which will later be used for comparison. We consider two-dimensional, free-

surface flow past the trailing edge of a horizontal plate, where the flow is uniform and horizontal far

upstream and two free surfaces form a free jet far downstream. The physical z-plane is as depicted

in figure 40a and note that the origin is set to be at the edge of the plate at point C. The flow is

assumed to be steady and irrotational, whilst the fluid is assumed to be inviscid and incompressible,

and gravity is taken into account. As in the spillway chapter, we non-dimensionalise with respect

to the upstream flow velocity and depth; and so we have unit depth and velocity far upstream.

This non-dimensionalisation gives rise to the Froude number, as defined earlier. However, for later

ease of notation, we further define G = F−2. In the calculations here, we focus on supercritical

flow, i.e. G < 1.
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Figure 40: Complex planes for waterfall flows.

Throughout the flow, the Bernoulli condition yields

1

2
q2 +Gy + p =

1

2
+G, (2.1)

where q is the magnitude of velocity and p is the pressure. Atmospheric pressure is assumed along

both the upper (IJ) and lower (CJ) free surfaces. Since the pressure is equal and constant along

these free surfaces, we set this pressure to be zero. Then, we arrive at 1
2
q2 + Gy = 1

2
+ G along

both free surfaces. The complex potential is still denoted by f with φ and ψ denoting the velocity

potential and the streamfunction, respectively. We set φ = 0 at C. We also set ψ = 0 and ψ = 1

along the lower and upper free surfaces, respectively. Then, the f -plane is as shown in figure 40b:

an infinite strip of width 1.

We now introduce the intermediate t-plane which is defined by

f =
1

π
log

(t+ 1)2

2(t2 + 1)
. (2.2)
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This maps the f -plane to the upper-half of a unit semi-circle centred at the origin of the t-plane.

The interior of the infinite strip maps into the interior of the semi-circle, whilst the upper free

surface IJ maps to the left-hand arc of the semi-circle and the lower free surface CJ maps to

the right-hand arc of the semi-circle (c.f. figure 40c). This mapping was utilised in the spillway

chapter in cases where we required collocation points along the sloping spillway wall.

The complex velocity is defined as before and is still denoted by ζ. The aim now is to find

ζ as an analytic function of the complex potential, f . Dias and Tuck [1991] use the following

conditions:

1. ζ ∼ (1 + aeλf ) as φ → −∞, where a is an unknown constant and λ is the smallest positive

root of λ−G tanλ = 0,

2. v = 0 on ψ = 0, φ < 0,

3. ζ ∼ f 1/3 as φ→ +∞.

The first condition above describes the upstream flow such that as φ→ −∞, the flow approaches

a uniform horizontal stream of constant unit velocity. The second condition simply ensures no

normal flow along the horizontal wall. The third condition describes the downstream behaviour of

the free-falling jet — this condition will later be reconsidered. This is because the current form is

appropriate for the jet of spillway-flow (as seen earlier, c.f. Vanden-Broeck and Keller [1986]), but

instead we expect parabolic flow for the free-falling jet.

The Dias and Tuck [1991] form for the complex velocity is

ζ(t) = (− log 2c)−1/3(− log c(1 + t2))1/3
(

1 + (1 + t)2λ

∞∑
n=0

ant
n
)
, (2.3)

where λ is the smallest positive root of πλ − F−2 tanπλ = 0, and c is a constant such that

0 < c < 1/2. Recall that different choices of c will affect the value of the coefficients an but will

not affect the function ζ(t) represented by (2.3) and so the solution will also not be impacted. It

can be checked that this analytic function (2.3) for ζ(t) satisfies the necessary flow conditions far

upstream, downstream and along the horizontal bed.
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It remains to satisfy the Bernoulli condition (2.1) on both free surfaces which will, for a given

Froude number, enable us to find the unknown coefficients an. We truncate the series (convergent

inside the unit disc) of (2.3) after N terms and it remains to find the unknown coefficients an,

n = 0, 1, 2, . . . , N − 1. Recall that, for the image of the free surfaces in the t-plane, we can use

t = eiσ where 0 < σ < π. We introduce N mesh points σI = π/2N + (π/N)(I − 1), for I = 1, ..., N

for the collocation method, as before. We evaluate the Bernoulli equation at each collocation

point and so we have N equations in N unknowns which can be solved numerically by iteration,

for example using Newton’s method. As mentioned earlier, we have used the fsolve function of

MATLAB to obtain our numerical solutions. Once the coefficients have been found for a given

Froude number, F , we can plot the free surfaces for the waterfall.

Figure 41 shows the resulting free-surface profiles for the cases where the Froude number is 1.2,

1.6 and 2. As expected, the downfall curvature is greater for smaller Froude numbers since, for

such Froude numbers, the flow is dominated by gravitational forces. The plotting points (which

correspond to the mesh points in the t-plane) are shown in figure 41a. It shows that it is difficult

to plot the free-surface profiles far downstream if only plotting using the mesh points. This is since

an abundance of points are required to see a very small distance further downstream due to the

logarithm involved in the conformal mappings; and the last few (equally-spaced) mesh points close

to t = i map to the last few points downstream that are spaced quite far apart in physical space.

If we extrapolate the profiles further downstream, a concern is that the flow may not be parabolic

but instead follow a more spillway-like path. In comparisons made later, following analysis of the

jet singularity far downstream, we will see that this is indeed the case (c.f. figure 43).
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Figure 41: Free-surface profiles for the waterfall flow with c = 0.2 and N = 100. Here, we have
utilised the complex velocity ansatz (2.3).
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2.2 Large-φ analysis: flow far downstream

We wish to analyse the waterfall flow far downstream in order to obtain a multiple-term expansion

for the behaviour of ζ as φ → +∞. To obtain a form of Torricelli’s law — which, generally with

reference to gravitational flow out of an orifice of a tank, states that the speed q of a jet out of the

hole is proportional to the depth h below the surface at which the jet starts, specifically q =
√

2gh

where g denotes the gravitational acceleration — we introduce the following shift:

xs = x− x0, ys = y − 1− 1

2G
and φs = φ− φ0. (2.4)

It follows that zs = xs + iys and fs = f − φ0 = φs + iψ, where x0 and φ0 are real constants. We

rewrite the Bernoulli condition (2.1) on the free surfaces in terms of the new variables, so we have

∣∣∣dfs
dzs

∣∣∣2 = −2Gys. (2.5)

Therefore, we have obtained Torricelli’s law. We have a conserved horizontal momentum flux since

there are no external forces acting in this direction, and so there is some finite value, say u∞, for

the horizontal component of velocity far downstream. Also, we have |ζ| ∼ −v as y → −∞. It

follows that

dy

dx
=

dy

dt

dt

dx
∼ − |ζ|

u∞
(2.6)

along streamlines, far downstream. Then,

(dys
dxs

)2

∼ −2Gys
u2
∞

(2.7)

far downstream through use of (2.5). It still remains to find the value of u∞.

We define y∞ to be the vertical width of the jet far downstream and note that, by conservation

of mass, we know y∞ = 1/u∞. The angle approaches −π/2 far downstream and the jet thins such

that the pressure becomes ambient. Then, due to the conserved horizontal net momentum flux,
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we have that ∫ ψ=1

ψ=0

(u2 + p) dy (2.8)

at some x-position takes the same value far downstream as it does far upstream. We can utilise

(2.1) and (2.5) to evaluate this integral far up- and downstream and this leads to the constraint

u∞ = 1 +
G

2
. (2.9)

Therefore, we can now rewrite (2.7) as

(dys
dxs

)2

∼ − 2Gys
(1 +G/2)2

, (2.10)

far downstream. It should be noted that the integrated form of this is already found as a result of

the integral horizontal momentum balance as equation (6-29) of Henderson [1966]. From (2.10),

we infer

ys ∼ −
G

2

1

(1 +G/2)2
x2
s, (2.11)

also far downstream. This highlights that the shape of the free-falling jet far downstream should be

parabolic (as found by Clarke [1965]), not following a linear path like a spillway flow (i.e. ζ ∼ f 1/3,

c.f. Keller and Weitz [1957] and Vanden-Broeck and Keller [1986]).

Using (2.5), we have that the vertical component of velocity behaves like −(−2Gys)
1/2 as

ys → −∞ and so we can deduce that, far downstream,

fs ∼ (−2G)1/2
(
− 2

3
y3/2
s + ixsy

1/2
s

)
. (2.12)

Also, by expanding

z3/2
s = i3/2y3/2

s

(
1− i

xs
ys

)3/2

(2.13)

as ys → −∞, we can then show that

z3/2
s ∼ 3

2i1/2

(
− 2

3
y3/2
s + ixsy

1/2
s

)
as ys → −∞. (2.14)
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It follows that we arrive at

zs ∼ Ãf 2/3
s + B̃fαs + · · · as φs → +∞, (2.15)

where α < 2/3, Ã and B̃ are unknown constants to be found. Focusing attention on the streamline

corresponding to ψ = 0, we can then write

zs ∼ (A1 + iA2)φ2/3
s + (B1 + iB2)φαs + · · · as φs → +∞, (2.16)

where A1, A2, B1 and B2 are unknown, real constants. Utilising this with (2.11), we find A1 = 0.

Now, we obtain the following expression:

dzs
dφs
∼ i

2

3
A2φ

−1/3
s + α(B1 + iB2)φα−1

s + · · · as φs → +∞. (2.17)

We can utilise the form of Torricelli’s law obtained earlier (c.f. (2.5)) to find the value of the

constant A2: far downstream, we have

4

9
A2

2φ
−2/3
s +

4

3
A2αB2φ

α−4/3
s +α2(B2

1 +B2
2)φ2(α−1)

s + · · · ∼ − 1

2G

(φ−2/3
s

A2

− B2

A2
2

φα−4/3
s + · · ·

)
. (2.18)

The leading order terms give

A2 = −
( 9

8G

)1/3

. (2.19)

It remains to calculate the value of B1, B2 and α. For this, we look to the next order and find

that

4

3
A2αB2 =

1

2G

B2

A2
2

⇒ B2 = 0 or α = −1

3
. (2.20)

To choose the correct solution here, we recall that earlier we found that the finite constant for

the horizontal velocity far downstream is u∞ = 1 + G/2. Utilising (2.17) and recalling that

df/dz = u− iv, we can write

1 +
G

2
∼ 9α

4A2
2

B1φ
α−1/3
s + · · · as φs → +∞. (2.21)

91



It follows that α = 1/3, and so we can then find that

B1 =
2

3
(2 +G)A2

2. (2.22)

We can also conclude that B2 = 0.

Now, we look to find the next term, i.e. finding the constants C1, C2 and β of

zs ∼ iA2f
2/3
s +B1f

1/3
s + (C1 + iC2)fβs + · · · as φs → +∞, (2.23)

noting that β < 1/3. Again, utilising Torricelli’s law, we find that far downstream

4

9
A2

2φ
−2/3
s +

1

9
B2

1φ
−4/3
s +

4

3
A2βC2φ

β−4/3
s +

2

3
B1βC1φ

β−5/3
s + (2.24)

+ β2(C2
1 + C2

2)φ2(β−1)
s + · · · ∼ − 1

2G

(φ−2/3
s

A2

− C2

A2
2

φβ−4/3
s + · · ·

)
. (2.25)

To leading order, we recover the already known value for A2. Since we know B1 6= 0 and β < 1/3,

then to the next leading order (i.e. O(φ
−4/3
s )) we find that β = 0. Therefore, we have

zs ∼ iA2f
2/3
s +B1f

1/3
s + (C1 + iC2) + · · · as φs → +∞. (2.26)

Since this next term is just a constant, and noting that we introduced a shift for the z-variable

earlier in the derivation for the behaviour near the downstream singularity, we leave C1 and C2 as

unknown constants.

Finally, we can deduce that

ζ ∼ i(3G)1/3f 1/3 +
(

1 +
G

2

)
+ Cf−1/3 as φ→ +∞, (2.27)

where C is an unknown constant. This captures the parabolic nature of the free-falling jet and this

expansion will be used to alter the complex velocity ansatz (2.3) when using the series truncation

and collocation numerical approach.

It should be noted that only the first term of (2.27) is included in the form for ζ taken by Dias
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and Tuck [1991]. Before moving on to make use of the new form for ζ far downstream, we can

investigate the downstream jet of the numerical solutions obtained using the Dias and Tuck [1991]

complex velocity ansatz. We can compare the expected value of ζ/f 1/3 far downstream with the

value obtained through the numerical solution. We take the example where the Froude number is

1.2. Table 2 contains the complex velocity on the free surfaces far downstream (i.e. as σ → π/2),

acquired using 400 collocation points but 40 000 plotting points along the free surfaces. In other

words, we have extrapolated the numerical results to get closer to the downstream singularity.

The coefficient of the f 1/3 term of complex velocity expansion (2.27) should be purely imaginary.

However, the values calculated here do not find this coefficient to be purely imaginary. A possible

reason may be that the values taken are not from sufficiently far downstream. Alternatively, it may

be due to the current complex velocity ansatz (2.3) not sufficiently encapsulating the behaviour of

the flow far downstream, at least when extrapolating the numerical results further downstream.

In the next section, a new form for ζ is considered where more terms of the expansion of (2.27)

are incorporated.

σ f ζ ζ/f 1/3

1.57068 2.6590 + 0i 1.5330 + 0.8934i 1.1065 + 0.6449i

1.57076 3.0086 + 0i 1.5787 + 0.9304i 1.0935 + 0.6445i

1.57084 3.0086 + 1i 1.4818 + 1.0721i 1.0808 + 0.6179i

1.57091 2.6589 + 1i 1.4244 + 1.0411i 1.0865 + 0.6095i

Table 2: Complex velocity as σ → π/2, for F = 2 and c = 0.2 using the Dias and Tuck [1991]
ansatz (2.3).
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2.3 Improved calculation

The aim here is to find the complex velocity as an analytic function of f such that it now satisfies:

1. ζ ∼ i(3G)1/3f 1/3 + (1 +G/2) + Cf−1/3 as φ→ +∞, where C is a constant to be found,

2. ζ ∼ (1 + aeλf ) as φ → −∞, where a is an unknown constant and λ is the smallest positive

root of λ−G tanλ = 0,

3. v = 0 on ψ = 0, φ < 0.

It is the first condition above that differs from that utilised in the work of Dias and Tuck [1991]

for the behaviour of the flow far downstream: here, the three-term expansion (2.27) of ζ(f) for the

free-falling jet is adopted.

It can be checked that the following form for ζ satisfies those conditions:

ζ(t) = 1 + (1 + t)2λ/πB(t), (2.28)

where

B(t) =
(3G

π

)1/3(
− log

(
c(1 + t2)

))1/3

l1(t) +
G

2
l2(t) +

∞∑
n=0

ant
n
(
− log

(
c(1 + t2)

))−1/3

, (2.29)

and l1 and l2 are the following linear functions:

l1(t) = 2−λ/π
(

sin
(λ

2

)
+ t cos

(λ
2

))
, l2(t) = 2−λ/π

(
cos
(λ

2

)
− t sin

(λ
2

))
. (2.30)

The constants an, n = 0, 1, 2, ... are to be found; and c is a real constant such that 0 < c < 1/2.

This constant c is needed to ensure the complex velocity is real along the horizontal wall, where

−1 < t < 1. The form of (2.28) allows for the upstream condition to be satisfied as t → −1,

whilst (2.29) is necessary to incorporate the form of the revised three-term expansion (2.27) for

the behaviour of the jet far downstream as t→ i. Note that the power series in t that appears in

(2.29) replaces an unknown analytic function of t that is analytic for |t| < 1 and continuous for
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|t| ≤ 1. The linear functions l1 and l2 of t are required to enforce the correct coefficients of the

three-term expansion as t→ i, given the form adopted for ζ in (2.28).

It remains to satisfy Bernoulli’s equation on both free surfaces which will, for a given Froude

number, enable us to find the unknown coefficients an. We truncate the infinite series in (2.29)

after N terms. For the image of the free surfaces in the t-plane, we can use t = eiσ, for 0 < σ < π.

We introduce N mesh points

σI =
π

2N
+
π

N
(I − 1), (2.31)

for I = 1, ..., N for the collocation method. For the N mesh points, we obtain N equations in N

unknowns (the N unknown coefficients) to be solved numerically by iteration.

The results presented here have been obtained through use of the fsolve function of MATLAB

in order to solve the system of N equations. For the numerical integration (with respect to σ)

to each mesh point along the free surfaces to find the z-coordinates, the integral function of

MATLAB has been utilised. Figure 42 shows a comparison of the free-surface profiles obtained

using the Dias and Tuck [1991] complex velocity and the revised form. The profiles are the same

to order 10−3 and so are very similar. There is a small difference that can be observed between

the two profiles downstream, depicted in figures 42b and 42c.

The effect of the altered complex velocity ansatz can better be seen in figure 43. Here, the

system has been solved with 400 equations in 400 unknowns, as before, but 40 000 mesh points

have been used to plot the free surfaces — hence, the profiles have been extrapolated and we

can now see further downstream. In the work of Dias and Tuck [1991], the assumed form for

the complex velocity far downstream (i.e. ζ ∼ f 1/3) means that the flow will approach a jet of

constant slope. The new waterfall appears to approach a more parabolic shape, as hoped for.

Figure 43 also includes the asymptotic outer solution of Clarke [1965] which agrees well with the

free-surface profile obtained via the revised complex velocity form. It is computationally expensive

to plot free surfaces far downstream if plotting using the same number of mesh points as used

for solving the system. This is due to the logarithmic singularity of the t-plane mapping (2.2).

An increase in the number of equally-spaced mesh points means that we have collocation points

closer to the singularity at t = i, but this leads to only a very small advancement in distance
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Figure 42: Comparison of waterfall free-surface profiles for G = 0.25, c = 0.2 and N = 400.
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Figure 43: Comparison of extrapolated waterfall free-surface profiles for G = 0.25, c = 0.2 and
N = 400. The asymptotic solution of Clarke [1965] has also been included.
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(a) G = 1.1−2 ≈ 0.8264
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Figure 44: Free-surface profiles with N = 400 and c = 0.2 for revised ζ form compared with the
outer solution of Clarke [1965].

downstream. This is particularly evident from figure 43 where 40 000 mesh points have been

used to plot the free surfaces and yet we only reach x ≈ 2.6, i.e. an extra 39 600 mesh points

results in an extra horizontal distance downstream of only around 1.1. Therefore, the improvement

in the extrapolated profiles far downstream points to the revised complex velocity ansatz being

computationally beneficial.

Figure 44 shows further examples of comparisons with the outer solution of Clarke [1965] for

different values of G. The agreement improves as G decreases (or as the Froude number increases).

This is to be expected since the asymptotic solution works from a perturbation of flow under weak

gravity. Therefore, it is more appropriate to utilise the numerical method described here with the

revised complex velocity — rather than to utilise the asymptotic solution of Clarke [1965] — for

larger values of G (or smaller Froude numbers) where the gravitational effects are more dominant.

The effect of the value of the constant, c, can also be investigated. For all values of c between

0 and 0.5 that have been tested, whilst the value affects the coefficients of the finite series, the

free-surface profiles do not depend on c (up to order 10−4) and so we obtain equivalent solutions.

We have seen that the inclusion of the extra terms of the expansion for ζ in terms of the complex

potential f leads to extrapolated solutions which are more parabolic in nature far downstream (as

hoped for) and agree (with some dependence on the Froude number) with the asymptotic solution

of Clarke [1965]. Additional numerical investigations can lead to further improvements in the

numerical solutions for this waterfall problem, as will be discussed in the following section.
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2.4 Further numerical investigations

The decay of coefficients from the truncated series can be improved upon. Closer inspection of

the resulting velocity (here we take just the horizontal component) highlights an area of concern

far downstream. Figures 45 and 46 are plots of the horizontal component u of the velocity against

σ (the argument of a point along the free surface in the t-plane). Interpolation accentuates the

spurious oscillations in the velocity: in figures 45 and 46, the interpolation plot for u is obtained

by evaluating the solution ζ at intermediate mesh points. We see that the amplitude of these

oscillations increases far downstream along both free surfaces as σ → π/2. The line of u = 1+G/2

is also indicated on the plot since this is the value expected (c.f. (2.9)) for u∞. It is apparent that

the values of u along the free surfaces do not reach u∞, but it must be noted that we do not reach

very far downstream, even with N = 400, due to the logarithm involved in the mapping (2.2).

Previously, it was discussed that we are able to arrive further downstream by extrapolating the

solution (see §2.3), however, here we focus only on the actual solution (i.e. without extrapolation).

Overall, the jump discontinuity in u as σ → π/2 may explain the appearance of the spurious

oscillations as the solution attempts to correct for the discontinuity between u on the two free

surfaces far downstream, analogous to the Gibbs phenomenon.

0 0.5 1 1.5 2 2.5 3
1

1.05

1.1

1.15

1.2

1.25

Interpolated values

N=400

u∞ = 1 + G
2

u

σ

u at the last mesh point
on the upper free surface

u at the last mesh point
on the lower free surface

Figure 45: Horizontal component u of the velocity against σ, for G = 0.25, N = 400. Figure 46
shows the oscillations more clearly.
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Figure 46: Horizontal component u of the velocity against σ, for G = 0.25, N = 400. These
figures are magnifications of figure 45, allowing for closer examination of the oscillations that

arise from evaluating the velocity at intermediate mesh points.

One resolution to this problem is to modify our approach in finding y at the collocation points

(these values are utilised in satisfying the Bernoulli equation). In the results presented so far, the

MATLAB integral function (performed to an accuracy of order 10−6) has been used to evaluate
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the integral

zI =

∫ σI

0

dz

df

df

dt

dt

dσ
dσ, (2.32)

where σI is a collocation point, in order to obtain the values of z (and hence y) along the free

surfaces at the collocation points. Instead, we can utilise the MATLAB integral function to find

y at two points either side of a collocation point and then take the average of these values to be

the y value at the collocation point. This leads to a smoothing effect — visible in the plot of figure

47 where we interpolate the newly obtained values for the horizontal velocity u, for comparison

with figure 46 — and it results in improved decay of the coefficients: the first ten coefficients are

the same as previously obtained, to order 10−4; and the last few coefficients have improved from

being of order 10−4 to being of order 10−6. Note that the correct value for u, approached (ideally,

continuously) from both sides at σ = π/2, is given by u∞ (c.f. (2.9)).

Further altering the form of the complex velocity ζ grants additional improvement to coefficient

decay. If, for the y-values along the upper free surface, we integrate from t = −1 (i.e. σ = π) and

set y = 1 at this point, then we force unit depth and velocity of the flow as x → −∞ through

several conditions:

1. y = 1 (Limit of integration),

2. ζ(−1) = 1 (c.f. (2.28)),

3. 1
2
|ζ(−1)|2 +G = 1

2
+G (Bernoulli constant).

The first and second points above imply that the volume flux has been normalised to unity, which

is implicit in the third point. However, the explicit imposition of all three has an impact on

the decay rate of the coefficients an in the numerical method we utilise. We can instead use the

following form for the complex velocity:

ζ = A+ (1 + t)2λ/πB(t), (2.33)

with the function B(t) defined as before (c.f. (2.29)-(2.30)) and where A is an additional unknown

for which to solve, but which we expect to converge to unity as more collocation points are used. We
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Figure 47: Horizontal component u of the velocity against σ, for G = 0.25, N = 400. This plot is
obtained using the solution obtained via smoothing, i.e. averaging for the y-values at the mesh

points.
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Figure 48: Coefficient decay resulting from integrating to each collocation point directly
(N = 400) compared with coefficient decay from finding y by averaging values either side of the

collocation point and using A-method (N = 399), for G = 0.25, c = 0.2.

will refer to the employment of this additional unknown in the form for ζ as the ‘A-method’. Figure

48 shows the improved coefficient decay when both averaging y-values either side of collocation

points and employing the A-method, compared with simply integrating directly to each collocation

point. The first few coefficients agree very well, to order 10−4; the last few coefficients have decayed

to be of order 10−7; and a clearly improved decaying tail is apparent in figure 48. As for the value

found for A as part of the solution, for N = 400 and G = 0.25 we have A = 0.999991, i.e. very

close to 1 as expected.

The A-method can also be utilised for spillway flows. Here, the form for the complex velocity

(as discussed earlier, c.f. (1.35)) is altered to become

ζ(t) =
(
A+ (1 + t)2λ

N∑
n=0

ant
n
)

(− log(c(1 + t2)))1/3(− log(2c))−1/3
(1

4
(t− 1)2

)β/π−1

, (2.34)

in order to use the t-plane defined through (2.2). This complex velocity form has the extra unknown

constant A to be found as part of the solution and it results in similar improvement in the decay of

the coefficients as can be seen in the case of the waterfall. Note that, unless stated otherwise, the

smoothing of the y-values and the A-method will be utilised in subsequent supercritical waterfall
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and weir problems with unit horizontal velocity far upstream.

Before moving on to study the applications of the numerical method improvements presented

in this section, it is worth noting some other relevant numerical investigations. In what has been

presented so far on this improved calculation of the waterfall flow, the coefficients of (2.29) are fixed

to be the known values as determined from the expansion (2.27) for the complex velocity in terms

of f for the jet far downstream. Now, we may consider leaving these coefficients unknown to be

found as part of the solution. This means taking the revised complex velocity ansatz (2.28)-(2.30)

but instead writing (2.29) as

B(t) = a
(
− log

(
c(1 + t2)

))1/3

l1(t) + b l2(t) +
∞∑
n=0

ant
n
(
− log

(
c(1 + t2)

))−1/3

, (2.35)

leaving a and b to be found. In order to leave these unknown, we can keep the number of unknown

coefficients of the truncated power series in t the same, but increase the number of mesh points by

two. Therefore, we are still able to solve a square system of equations, numerically by iteration.

When we set a and b fixed to be the predetermined values, we obtain the expected parabolic

shape of the jet (including when extrapolating the solution) since we then impose the downstream

asymptote as in (2.27). Taking the case of a Froude number of 2, if we concern ourselves with

just one coefficient of the power series in t, we can see from figure 49 that the value of a3 appears

converge to some value at N → +∞. We also have good coefficient decay, as discussed earlier (c.f.

figure 48).

If, instead, we leave a and b to be found as part of the solution, then we obtain improved

coefficient decay as shown in figure 50: in particular, the last few coefficients are of order 10−9 and

this plot can be compared with the black line of figure 48 where a and b are fixed. However, the

convergence of individual coefficients appears to be inferior compared to when the values of a and

b are fixed — figure 51a is a plot of the coefficient a3 against 1/N to support this. Furthermore,

figures 51b and 51c show the plots of the values obtained for a and b against 1/N . Here, we

see that the values found for these constants do not appear to approach the expected values, i.e.

a = (3G/π)1/3 and b = G/2. Whilst the coefficient decay is better when a and b are unknown, the

convergence of a, b and the individual coefficients of the truncated series is not so good. Note that
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Figure 49: Plot of the coefficient a3 against 1/N when a and b are fixed. Note that F = 2 and
c = 0.2.

part of the judgment of the efficacy of the method is based on the independence of the coefficients

from N , i.e. the independence of the numerical solution from the truncation of the power series.

These results support the method of fixing the values of a and b to their predetermined values. Note

also that our discussion has frequently concerned the extrapolated solutions further downstream:

if we leave a and b unknown and their values obtained are not as in the expansion (2.27) for

ζ(f), then we cannot expect the jet of the extrapolated profiles to be correct. It should also be

noted that, as N increases (with a and b unknown), obtaining a converged solution becomes more

difficult: the initial guess has to be chosen carefully, e.g. from a converged solution for a smaller

(but close) value of N .
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Figure 50: Coefficient decay for n = 212 . . . , 299, where F = 2 and c = 0.2. Here, a and b have
been left unknown to be found as part of the solution.
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Figure 51: Plots relating to the numerical investigations when a and b are left unknown. Note
that F = 2 and c = 0.2.
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A similar story can be observed if we instead fix one and leave the other to be found. In

particular, in the case of fixing a and leaving b to found, the coefficient decay is not even so good

and the (pre-extrapolated) free-surface profiles are problematic downstream. Overall, given that

we can (in the case of the waterfall) determine the values of a and b, these known values should

be utilised in the complex velocity ansatz.

In this chapter, we have focused on the behaviour of the jet singularity far downstream in the

case of waterfall flow. We have retained the use of the numerical approach of series truncation and

collocation, as utilised by Dias and Tuck [1991] to solve this potential flow problem. Improvements

to the method have been presented: a three-term expansion for ζ(f) of the jet singularity has

been derived and this has been incorporated into a revised form for the complex velocity ansatz;

smoothing the y-values at the collocation points has been utilised; and the ‘A-method’ has been

introduced which involves adding an extra unknown to the system by replacing the known upstream

unit velocity in the complex velocity ansatz with the unknown constant A. The adjustment to the

form of the ansatz due to the three-term expansion around the jet singularity leads to improved

extrapolated free-surface profiles that capture the parabolic nature of the free-falling jet and the

profiles agree well with asymptotic solutions. Smoothing the y-values and utilising the A-method

results in improved numerical solutions which is apparent due to the superior coefficient decay.

We now move on to apply the numerical method improvements (i.e. the three-term expansion for

the jet singularity; smoothing the y-values at the collocation points; and the A-method) to other

flows that involve a free-falling jet downstream.
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3 Application of three-term jet singularity

The numerical improvements presented in the previous chapter on waterfall flow can be applied to

other similar cases. We will first consider supercritical and subcritical weir flows. The formulation

is very similar to that of the waterfall, but weir flow includes a vertical wall that must be navigated

before the free-falling jet downstream. This leads to there being an unknown contribution to the

conserved horizontal momentum flux due to the pressure force along the vertical wall and this

must be calculated in order to apply the revised form for the behaviour of the jet singularity

downstream. Following this, flows will be considered where there is a disturbance upstream, such

as a triangular obstacle or a stepped wall, before falling over the edge of a horizontal plate as a

waterfall.

3.1 Finite-depth, supercritical weir flows

For weir flows, as depicted in figure 52a, we can employ the revision to the complex velocity ζ

that incorporates the improved form for the behaviour of the jet far downstream. This work on

applying the improvements to supercritical weir flow has been previously published [McLean et al.,

2022]. The variables are non-dimensionalised, resulting in unit depth and velocity far upstream as

earlier in the waterfall case. We retain (2.2) to relate f and t; and the complex planes (c.f. figure

52b and 52c) are very similar to those used for the waterfall.

Dias and Tuck [1991] present supercritical solutions for this weir problem, utilising the same

expansion for the assumed behaviour of the jet far downstream as in their waterfall calculations

(i.e. ζ ∼ f 1/3 as φ→ +∞). As seen earlier, for the jet we take

ζ ∼ i(3G)1/3f 1/3 + u∞ + Cf−1/3 as φ→ +∞, (3.1)

where u∞ and C are unknown constants. It is important to note that the constant term u∞ in this

expression is unknown here (in contrast to the waterfall case, where it is known to be 1 + G/2).

This is due to the unknown contribution (or rather, reduction) to the horizontal momentum flux

provided by the vertical weir wall. It can be checked that the following form for ζ satisfies the
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Figure 52: Complex planes for weir flows.

necessary conditions for the supercritical weir flow far upstream, downstream and inside the corner

at the origin:

ζ(t) = −i
( t− tO

1− ttO

)1/2(
1 + (1 + t)2λ/πB(t)

)
, (3.2)

where

B(t) =
( 1

π

)1/3(
− log

(
c(1 + t2)

))1/3

l1(t) + l2(t) +
∞∑
n=0

ant
n
(
− log

(
c(1 + t2)

))−1/3

, (3.3)

and l1 and l2 are the linear functions:

l1(t) = Re(m1) + t Im(m1), l2(t) = Re(m2) + t Im(m2), (3.4)

with

m1 = −(3G)1/32−λ/πe−iλ/2
(1− itO

i− tO

)1/2

, m2 = 2−λ/πe−iλ/2
(

iu∞

(1− itO
i− tO

)1/2

− 1
)
. (3.5)
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Also, tO denotes the point in the t-plane corresponding to the origin in the z-plane. Of (3.3) and

(3.5), the constants u∞ and an, n = 0, 1, 2, ... are to be found. The solution (3.2)–(3.5) is formed

similarly to the solution for the waterfall of the previous chapter. Here, the difference for the weir

is the need to satisfy the condition of flow inside the corner at the origin of the z-plane.

The constant u∞ can be found by adding an extra equation to the system. This constraint is

derived similarly to (2.9), taking care to include the pressure force due to the vertical portion of

the wall in the horizontal momentum balance. Then, the extra equation to be satisfied is

u∞ = 1 +
G

2
−
∫ w

0

p
∣∣∣
ψ=0

ds, (3.6)

with s being the displacement from the origin along the vertical wall and w denoting the length

of the vertical weir wall. The pressure p along this wall can be found via

p =
1

2
(1− |ζ|2) +G(1− y). (3.7)

As before, we truncate the series in the complex velocity ζ after N terms. We impose the height,

w, of the vertical weir wall and so leave tO as an unknown to be found as part of the solution. We

also wish to find u∞ — overall we have N +2 unknowns to find. Satisfying the Bernoulli condition

along the free surfaces at N collocation points, along with imposing the height of the vertical weir

and the condition (3.6) on u∞, results in N + 2 equations in N + 2 unknowns. The A-method

(introduced in the previous chapter) can also be employed here to improve coefficient decay.

Application of the revised form for the complex velocity leads to free-surface profiles that are

very similar to those obtained by Dias and Tuck [1991] for supercritical weir flows. Figure 53

shows profiles obtained for a weir wall height of w = 0.2 with various values taken for G. Note

here that for G = 0.64 we have two supercritical solutions. This agrees with the findings of Dias

and Tuck [1991]: for sufficiently large values of w and for Froude numbers sufficiently close to 1, we

obtain two solutions — a waterfall-type solution (c.f. figures 53a and 53b) and a solitary-wave-type

solution (c.f. figure 53c). The difference between these two solution types is characterised by the

‘bump’ in the free surface for the solitary-wave-type. In particular, the latter solution type heads
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(a) G = 0.25, y? = 1.25. An example of a waterfall-type solution.

-5 -4 -3 -2 -1 0 1
0

0.5

1

1.5

(b) G = 0.64 (or F = 1.25), y? = 1.32. An example of a waterfall-type solution.
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(c) G = 0.64 (or F = 1.25), y? = 1.47. An example of a solitary-wave-type solution.

Figure 53: Free-surface profiles for w = 0.2, N = 200, c = 0.2.
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toward a limiting configuration where there is a stagnation point (with difficulty in obtaining such

solutions due to the unknown location of the stagnation point), which is conjectured and discussed

by Dias and Tuck [1991]. Figure 54a shows many solutions by focusing on the values obtained for

y? (value of y corresponding to the point ψ = 1 and φ = 0) plotted against the Froude number, for

different choices of the physical weir wall height w. This may be compared with figure 9 of Dias

and Tuck [1991] (shown here in figure 54b) which shows similar curves but instead for different

choices of tO, marking the position of the corner of the weir in the t-plane. As tO increases towards

1, the weir height decreases to zero. A qualitative comparison of the curves shows similar features.

From figure 54a it can also be observed that, for sufficiently tall weir walls (e.g. w = 0.2), there

is a maximum value for G above which (or a minimum value for F below which) a solution cannot

be obtained. These maximum values of G correspond to maximum values of the unknown constant

u∞ for the same wall height (c.f. figure 55). It is interesting to note that, for a particular value of G

for which there exist two supercritical solutions (e.g. figures 53b and 53c), the values obtained for

the unknown constant u∞ are very similar despite resulting in very different free-surface profiles:

one of waterfall-type and the other of solitary-wave-type. This is due to the global nature of the

constant u∞ for the flow. The value of u∞ is dominated by 1 +G/2 and the contribution from the

pressure force along the vertical weir wall is comparatively small.

More generally, figure 55 shows the increase in u∞ as the wall height w decreases, whilst u∞

always remains less than 1 + G/2 (the value of u∞ for the waterfall), as expected. It should be

noted that the value of u∞ appears to converge as N increases — see table 3 for the case where

G = 0.25, w = 0.2 and c = 0.2. For each wall height, the value of u∞ also increases as G increases,

until a maximum value of u∞ (as mentioned above) is reached. In the absence of gravity, an exact

solution can be found (c.f. equations 17 and 18 of Dias and Tuck [1991]) and then we can integrate

the pressure p = 1
2
(1 − |ζ|2) along the vertical weir wall in order to obtain u∞, the (finite) value

of the horizontal velocity far downstream. Whilst the constant u∞ is not involved in the complex

velocity form in the case of zero-gravity, this physical quantity is still relevant and allows us to

compare the results obtained through the exact and numerical solutions as G → 0. The lines on

figure 55 have been extrapolated to G = 0 to facilitate this comparison and table 4 gives the values
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(a) N = 99 (A-method has been applied) and c = 0.2. Plots of curves for various values of wall height w.

(b) Figure 9 of Dias and Tuck [1991], where instead curves are for fixed values of tO (denoted by tc in
their study). Additional lines on this plot are: maximum elevation that the free surface can reach (short
dashes); and the family of subcritical solutions (long dashes). Note the subcritical case will be discussed

in §3.2. Reproduced with permission, c© 1991 Cambridge University Press.

Figure 54: y? (value of y at point corresponding to ψ = 1 and φ = 0) against F . Here, we plot
trends with the Froude number F for comparison with figure 9 of Dias and Tuck [1991].
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Figure 55: A plot of u∞ against G with N = 99 (A-method has been applied) and c = 0.2 for
various wall heights. The dashed line is 1 +G/2 (the value of u∞ for the waterfall, i.e. when

w = 0).
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N u∞

50 0.996750
100 0.996764
200 0.996768
300 0.996769
400 0.996770

Table 3: Values obtained for u∞ for various values of N where G = 0.25, w = 0.2 and c = 0.2.

w u∞ (exact) u∞ (numerical)

0.4 0.827747 0.827845
0.3 0.870165 0.870228
0.2 0.913041 0.913076
0.1 0.956336 0.956350
0.05 0.978129 0.978134

Table 4: Comparison of values obtained for u∞ when G = 0 via the exact solution and numerical
solution.

of u∞ obtained through the exact solution — the values agree to order 10−3. Also, note that as

G → 0, then u∞ → 1 −
∫ w

0
p
∣∣∣
ψ=0

ds. Hence, it is as expected that the values of u∞ presented in

table 4 approach 1 as the weir wall height w decreases to zero.

The effect of the revised form for the complex velocity ζ can be seen in the free-surface profiles

of figure 56. This figure compares the profiles obtained through the Dias and Tuck [1991] form for

ζ with the profiles obtained through use of the revised ζ form (along with use of the A-method).

Also, note that both are extrapolated free-surface profiles and the revised form leads to a jet that

appears to approach a more parabolic shape. It is surely expected for the free-surface profiles

to differ more considerably after the points on the free surfaces that correspond to the last two

collocation points downstream (these points are marked on figure 56). This is since the Bernoulli

condition is not imposed on the mesh points used in extrapolating the profiles and so the form

taken for ζ will have greater influence. However, it may not be so expected for the free-surface

profiles to be so very similar up to the last collocation points downstream, as can be seen in figure

56. This can be explained since the Bernoulli condition is explicitly imposed up to these last points

downstream which is a local condition, whereas the difference in the assumed form for ζ due to

the inclusion of more terms in the downstream singularity expansion has a more global effect (but
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Figure 56: Comparison of extrapolated weir free-surface profiles for G = 0.25, c = 0.2 and
w = 0.1. The A-method has been utilised here for the revised ζ free surfaces only, i.e. N = 399

for the revised ζ case and N = 400 for the Dias and Tuck [1991] free surfaces. The two circles are
the last two points of the non-extrapolated profiles.

less dominant locally). As in the case of the waterfall, whilst the revised complex velocity ansatz

leads to very similar profiles when the number of mesh points used for plotting is the same as used

in finding the unknown coefficients, the improvements observed when extrapolating the profiles

downstream point towards great computational benefit from the revised ζ form.

Further extrapolated free-surface profiles are shown in figure 57. They serve to demonstrate

the difference in the shape of the parabolic downfall for a fixed value of G but different vertical

weir wall heights. In particular, recall that the revised form (3.2)–(3.5) for ζ involves the unknown

horizontal component u∞ of the velocity far downstream. Here, we find that for w = 0.1 we have

u∞ = 1.1181; and for w = 0.4 we obtain u∞ = 0.9032. The effect of the wall height on the value

obtained for u∞ is relatively small. However, the effect of the value of u∞ on the extrapolated

profiles is evident when compared with those obtained via the approach of Dias and Tuck [1991]. In

both cases shown in figure 57, the shape is clearly adjusted from a linear, spillway-like jet flow to a

parabolic flow. It is also apparent (and expected) that the smaller value of u∞ (i.e. corresponding

to the larger vertical weir wall) corresponds to a more steeply declining parabolic jet. In §2.3, we

discuss the increased suitability of the revised form for ζ in the case of the waterfall, particularly

for larger values of G where the effect of gravity is more significant, by comparison to the work
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(a) w = 0.1, where we find u∞ = 1.1181.
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(b) w = 0.4, where we find u∞ = 0.9032.

Figure 57: Comparison of extrapolated weir free-surface profiles for G = 0.3906 (since we set
F = 1.6 here) and c = 0.2. The A-method has been utilised here for the revised ζ free surfaces

only, i.e. N = 399 for the revised ζ case and N = 400 for the Dias and Tuck [1991] free surfaces.
The two circles are the last two points of the non-extrapolated profiles.

of Clarke [1965] and Dias and Tuck [1991]. On top of this, here we also have increased suitability

across the range of possible values for the parameter w, compared with Dias and Tuck [1991].
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3.2 Finite-depth, subcritical weir flows

Finite-depth weirs with subcritical flow can also be studied in much the same way as the super-

critical case in the previous section. Recall that the Froude number F is based on the upstream

conditions and that subcritical flow refers to the case of F < 1 (or G > 1). The complex planes of

figure 52 can be used here since the geometry has not been altered and we are still seeking wave-

free solutions. Vanden-Broeck and Keller [1987] and Dias and Tuck [1991] present such solutions

to this problem, taking ζ ∼ f 1/3 for the downstream singularity. To form the complex velocity

ansatz, we note that inside the corner at O, the flow behaves like ζ ∼ (t − tO)1/2 as t → tO; and

we have the aforementioned ζ ∼ f 1/3 as φ → +∞, for the jet downstream. We also have the

following conditions:

1. v = 0 on ψ = 0, φ < φ(tO) (no normal flow along wall section IO),

2. u = 0 on ψ = 0, φ(tO) < φ < 0 (no normal flow along wall section OC),

3. ζ(t = −1) = 1 (unit horizontal flow far upstream),

4. Bernoulli condition (2.1) along the free surfaces IJ and CJ , with p = 0 as before.

In this case, the form for the complex velocity is

ζ(t) = −i(t− tO)1/2(− log c(1 + t2))1/3 exp

(
∞∑
n=0

ant
n

)
, (3.8)

where 0 < c < 1/2. Note that the last two conditions are not automatically satisfied by the

ansatz, so they will be additionally imposed . As usual, we truncate the series in t after N terms,

leaving N unknown coefficients to be found. Either, we can set the value for the Froude number

and leave w (the length of the vertical weir wall) to be found in post-processing, or we can set w

as in the supercritcal case and leave F to be found. Regardless, we will have N + 1 unknowns.

We temporarily refer mostly to the Froude number F rather than G — this is to facilitate more

convenient comparisons with previous works. The remainder of the method details remain the

same: we introduce N mesh points which are equally-spaced along the arc of the semi-circle in

the t-plane, and recall that we require ζ(−1) = 1. Then, we solve numerically by iteration. Note
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that the A-method is not utilised here since the upstream conditions are only specified through

the Bernoulli condition and through ζ(−1) = 1, and not through the complex velocity ansatz.

Of particular note is that a one-parameter family of solutions is obtained by Vanden-Broeck and

Keller [1987] and Dias and Tuck [1991], i.e. for a given Froude number, there is a particular vertical

weir wall height for which a wave-free solution exists. Vanden-Broeck and Keller [1987] concentrate

on very small Froude numbers in order to make comparisons with experimental data, while Dias

and Tuck [1991] demonstrate that wave-free solutions without exponential decay upstream — recall

that exponential decay upstream is associated with the supercritical flow — can be obtained for

Froude numbers 0 < F ≤ 1.6. However, here (c.f. figure 58a) we show that such solutions exist

for a greater range of Froude numbers. First, we comment that for F < 1, the plot of figure 58a is

very similar to figure 5 of Dias and Tuck [1991] (shown here in figure 58b). As the Froude number

decreases from 1, the weir wall height increases. Taking N = 250, we are able to obtain a converged

solution for F = 0.09 but no smaller. Note that, as N increases, the smallest value of F for which

a converged solution is obtainable decreases, hence increasing N leads closer to the limiting case

of F → 0. At the other end of the Froude number range, instead of there being a minimum

weir wall height corresponding to F ≈ 1.3 (beyond which the weir wall height increases with the

Froude number, c.f. figure 5 of Dias and Tuck [1991]), we have a monotonic relationship between

the Froude number and weir wall height. This result is most readily obtained by ‘smoothing’

the y-values obtained through integration (as discussed in §2.4), which works to diminish any

spurious oscillations that can appear in the solutions (particularly apparent if one interpolates the

resulting components of velocity). Figure 58a also shows the relation between the Froude number

and wall height when smoothing the y-values is not employed. The lines obtained where N is

a multiple of 100 most closely resemble the result presented by Dias and Tuck [1991]. However,

as N increases, the monotonic branches (when N = 50, 150, 250) and non-monotonic branches

(when N = 100, 200, 300) appear to be converging towards the line obtained through smoothing.

Therefore, whilst for smaller values of N (say N = 100) three solution branches appear in figure

58a, for sufficiently large N it seems that there will be only one solution (i.e. one value for the

weir wall height for each Froude number) — and this one solution can be obtained when taking
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smaller values for N if ‘smoothing’ is employed.
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(a) The solid black line is obtained when smoothing the y-values for N = 250. The dashed lines result
from only integrating directly to each mesh point to find the y-values. The lines curving upwards are for
N = 100, 200, 300 (from top to bottom); and the lines appearing to asymptote to the x-axis are for

N = 50, 150, 250 (from bottom to top).

(b) Figure 5 of Dias and Tuck [1991]. Reproduced with permission, c© 1991 Cambridge University Press.

Figure 58: Vertical weir wall length w against F .

The justification for this investigation of the results is that, at first glance, the results of Dias

and Tuck [1991] were not initially reproduced; but the numerical integration options appear to

account for the differences. However, it should be noted that the wave-free solutions obtained
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here where F > 1 are just special cases of results obtained from the supercritical formulation (c.f.

equation (16) of Dias and Tuck [1991]) but with the coefficient of the exponential decay term for

the velocity far upstream being
∑∞

m=0 am(−1)m = 0.

Now, we turn our attention to develop the complex velocity ansatz in order to better encapsulate

the parabolic nature of the free-falling jet far downstream. Employing the three-term expansion

for ζ far-downstream, the complex velocity must now instead satisfy (3.1), i.e. as φ → +∞, we

have that ζ ∼ i(3G)1/3f 1/3 + u∞ + Cf−1/3, where u∞ and C are unknown constants. Then, we

can take

ζ(t) = −i
( t− tO

1− ttO

)1/2

B(t), (3.9)

where

B(t) =
( 1

π

)1/3(
− log

(
c(1 + t2)

))1/3

l1(t) + l2(t) +
∞∑
n=0

ant
n
(
− log

(
c(1 + t2)

))−1/3

, (3.10)

and l1 and l2 are the linear functions:

l1(t) = Re(m1) + t Im(m1), l2(t) = Re(m2) + t Im(m2), (3.11)

with

m1 = −(3G)1/3
(1− itO

i− tO

)1/2

, m2 = iu∞

(1− itO
i− tO

)1/2

. (3.12)

As with the supercritical case, u∞ satisfies (3.6).

We truncate the series in the complex velocity ζ after N terms. The point tO and u∞ are also

unknowns to be found. By evaluating the Bernoulli condition at N mesh points along the free

surfaces, we have N equations. We also impose ζ(−1) = 1 and the condition (3.6) on u∞, resulting

in N + 2 equations in N + 2 unknowns. It should be noted that we still only specify the Froude

number.

Figure 59a shows the resulting free-surface profile for F = 0.3. For this Froude number, we

obtain w = 0.4142. We also find u∞ = 2.8988 which is, as expected, smaller than 1 + G/2 (the

value of the constant term for the behaviour of the downstream singularity for the waterfall with no
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Figure 59: Comparison of free-surface profiles for F = 0.3 and c = 0.2.

vertical weir wall). Despite the change in form for the complex velocity ansatz, for a given Froude

number we obtain the same value for tC and w to order 10−4. Hence, we are able to compare the

free-surface profiles from the original [Vanden-Broeck and Keller, 1987; Dias and Tuck, 1991] and

the revised ansatz for ζ. Figure 59a shows this comparison. The profiles agree well with each other

with some difference appearing in the last few points downstream of order 10−4. The extrapolated

free-surface profiles are shown in figure 59b. As expected, the revised form for ζ leads to a more

parabolic jet downstream instead of the spillway-like linear jet flow. Figure 60a is a plot of w

against F and it is very similar to that obtained before revising complex velocity ansatz. However,

it should be noted that there is improvement to the numerical efficiency of the method. The plot

shown in figure 60a compares the results from the form of ζ employed by Vanden-Broeck and

Keller [1987] and Dias and Tuck [1991] taking N = 250 with the results obtained from the revised

form (3.9)–(3.12) taking N = 200. Both reach the lower limit of F = 0.09 for which a converged

solution is found, but the revised form requires fewer points to do so.

Now, we look at the quality of the numerical solutions obtained. As in the supercritical case,

the value for u∞ approaches 1 + G/2 as the vertical weir wall height decreases to zero (note that
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(a) A comparison plot of the vertical weir wall length w against Froude number F . The solid line
corresponds to the revised form for ζ with N = 200; and the dotted line results from the original form

for the ζ with N = 250.
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(b) A plot of u∞ against F . The solid line is the numerically obtained value and the dashed line is the
expected value for u∞ in the case of the waterfall.

Figure 60: Subcritical weir results when employing (3.9)–(3.12) for the complex velocity ζ.

122



increasing the Froude number results in decreasing w). This is evident in figure 60b and is to be

expected since u∞ = 1 +G/2 in the case of the waterfall. Moreover, the numerical method results

in good convergence as N increases. This is apparent in figure 61 which is a plot of tC against 1/N

where tC is constant to order 10−3 for N ∈ [100, 400].

Overall, the inclusion of the extra terms of the expansion for the jet singularity downstream

has been shown to improve the shape of the jet downstream, the computational efficiency and the

quality of the numerical solutions in terms of convergence. Now, we will look at further examples

of applying the revised expression for the downstream singularity.
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-0.1134

-0.1133

-0.1132

-0.1131

tC

1/N

Figure 61: A plot of tC against 1/N to show the convergence of this value as N →∞. Here,
F = 0.3 and c = 0.2.
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3.3 Steps upstream of waterfall

We return to investigating supercritical overfall problems, now with steps in the wall upstream

(c.f. figure 62a). After non-dimensionalising with respect to the upstream depth and velocity, we

have uniform horizontal flow far upstream, of unit velocity. Recall that we define G = F−2, where

the F is the Froude number. The step is of perpendicular height h and the angles between the

walls are both denoted by β. The Bernoulli condition throughout the flow is

1

2
q2 +Gy + p =

1

2
+G(1 + h), (3.13)

where q is the magnitude of the velocity. Once again, the complex potential plane is the infinite

strip of unit width (c.f. figure 62b) and we retain (2.2) that relates f and t. The flow region is,

therefore, mapped to the unit semi-circle of the t-plane as depicted in figure 62c.
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Figure 62: Complex planes for the waterfall flow with a step upstream.

We will proceed as usual, considering the various flow behaviours involved and constructing an

ansatz for the complex velocity ζ. We have

1. ζ ∼ (1 + aeλf ) as φ → −∞, where a is an unknown constant and λ is the smallest positive
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root of λ−G tanλ = 0,

2. ζ ∼ i(3G)1/3f 1/3 + u∞ + Cf−1/3 as φ→ +∞, where C is a constant to be found,

3. ζ ∼ (t− tC)β/π−1 as t→ tC ,

4. ζ ∼ (t− tE)1−β/π as t→ tE,

5. v = 0 on ψ = 0: φ < φC and φE < φ < 0,

6. v + u tan β = 0 on ψ = 0, φC < φ < φE.

Note that φC and φE denote the points in the f -plane corresponding to corners C and E, re-

spectively; and similarly, tC and tE are the points in the t-plane corresponding to corners C and

E. The first condition describes the upstream behaviour: as φ → −∞, the flow approaches a

uniform horizontal stream of constant unit velocity. The second condition listed here describes the

downstream behaviour of the free-falling jet. The use of this three-term expansion is as discussed

in the earlier overfall cases. The third and fourth conditions describe the flow around the corners

C and E. The final two conditions simply ensure no through-flow along the walls.

It can be checked that the conditions listed above are satisfied by

ζ(t) =
( tC − t

1− ttC

)β/π−1( tE − t
1− ttE

)1−β/π
(1 + (1 + t)2λ/πB(t)), (3.14)

where

B(t) =
( 1

π

)1/3(
− log

(
c(1 + t2)

))1/3

l1(t) + l2(t) +
∞∑
n=0

ant
n
(
− log

(
c(1 + t2)

))−1/3

, (3.15)

and l1 and l2 are the following linear functions:

l1(t) = Re(m1) + t Im(m1), l2(t) = Re(m2) + t Im(m2), (3.16)

with

m1 = i(3G)1/3(1 + i)−2λ/π
( tC − i

1− itC

)1−β/π( tE − i

1− itE

)β/π−1

(3.17)
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and

m2 = (1 + i)−2λ/π
(
u∞

( tC − i

1− itC

)1−β/π( tE − i

1− itE

)β/π−1

− 1
)
. (3.18)

Recall that c is a constant such that 0 < c < 1/2, and u∞ is an unknown constant to be found.

Note that

u∞ = 1 +
G

2
−Gh+

∫ sE

sC

p
∣∣∣
ψ=0

sin β ds, (3.19)

with sC and sE being the displacement along the wall from the origin to corners C and E, respec-

tively. This expression for u∞ is derived similarly to (3.6), where we integrate the x-momentum

Euler equation over the flow region.

The power series that appears in the complex velocity ansatz (3.15) is truncated after N terms,

leaving the coefficients an, n = 0, 1, 2, . . . , N − 1 as unknown constants. We also leave u∞, tC

and tE as unknowns to be found as part of the solution — the latter two allowing us to set the

positions of corners C and E in the z-plane. Overall, we have N+3 unknowns. Now, we introduce

N equally-spaced collocation points along the arc of the semi-circle in the t-plane. We evaluate

the Bernoulli condition (3.13) (noting that p = 0 along the free surfaces) at each collocation point

and so we have N equations. Another two equations arise from setting the positions of corners C

and E. More specifically, we set the values of zE (position of C in the z-plane) and δ (the length

of the wall CE) by imposing

zE =

∫ 1

tE

1

|ζ|

( 2

π

1− t
(t+ 1)(t2 + 1)

)
dt, (3.20)

and

δ = −
∫ tC

tE

1

|ζ|

( 2

π

1− t
(t+ 1)(t2 + 1)

)
dt. (3.21)

These expressions are obtained as discussed earlier for the spillway case with a stepped wall (c.f.

(1.45)–(1.48)). Finally, we have N + 3 equations in the N + 3 unknowns by also imposing the

condition (3.19) on the value for u∞. This system can be solved numerically by iteration. It should

be noted that G, β, zE and δ are the parameters for the problem. In theory, numerical solutions

can be obtained for any (suitable) values taken for F , β, zE and δ. However, due to the limitation
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of the method in needing many collocation points to reach far up- and downstream, the number

N of mesh points chosen will limit the size of the step that can be taken.

In the results presented, interpolation of the y-values and the A-method are utilised, as pre-

sented in §2.4. A few example free-surface profiles are presented here. Figure 63a depicts the case

of G = 0.5 where β = 3π/4, zE = −0.1 and δ = 0.5. As usual, the larger the value of G, the

faster the flow around the corner and over the step, and the greater the curvature of the parabolic

downfall. In the interest of avoiding repeating analysis of the numerical results as presented for

the previous cases, they are summarised as follows: the values of u∞, tC and tE appear to converge

as N →∞ (c.f. figure 64); the value of u∞ converges to 1 +G/2 as the size of the step diminishes

(c.f. figure 65); and there is good coefficient decay (c.f. figure 66).

Overall, these new solutions are obtained using a numerical method that has earlier been

rigorously justified in the case of the standard waterfall (see chapter 2); and results presented here,

specifically relating to the problem of the waterfall with a step upstream, support the conclusion

that we obtain good, converged solutions. Recalling that a physical justification for investigating or

constructing stepped spillway or waterfall is for energy dissipation of the flow, a useful modification

would be to incorporate a dissipation factor in order to retain the potential flow approach presented

here. This is left for future work.
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(a) Here, we calculate with 199 unknown coefficients for G = 0.5. Streamlines are for ψ = 0.05 + 0.1i for
i = 0, 1, . . . , 9.
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(b) Extrapolated free-surface profile for G = 0.5.
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(c) Extrapolated free-surface profile for G = 0.9.

Figure 63: Free-surface profiles for β = 3π/4, δ = 0.5 and zE = −0.1 with c = 0.2.
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(a) Values of tC obtained, plotted against the reciprocal of the number of unknown coefficients.
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(b) Values of tE obtained, plotted against the reciprocal of the number of unknown coefficients.
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(c) Values of u∞ obtained, plotted against the reciprocal of the number of unknown coefficients.

Figure 64: These plots show the convergence of tC , tE and u∞ as N → +∞. Here, we take
G = 0.7, β = 3π/4, δ = 0.1 and zE = −0.1 with c = 0.2. Due to the use of the A-method and
averaging of the y-values to improve the numerical method, N does not actually denote the

number of unknown coefficients. Therefore, for clarity and ease of reproducibility, in this figure
we denote by M the number of unknown coefficients.
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Figure 65: A plot of the values obtained for u∞ against the perpendicular step height h. These
results are from setting G = 0.7, β = 3π/4 and zE = −0.1 with c = 0.2 for 99 unknown

coefficients.
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Figure 66: Coefficient decay: a plot of coefficients an against 1/(n+ 1). Here, we take G = 0.7,
β = 3π/4, δ = 0.1 and zE = −0.1 with c = 0.2 and N = 399.
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3.4 Obstacle upstream of waterfall

Another example is explored here, to which we can apply the revised form for the downstream jet

singularity. We can calculate the waterfall flow with an upstream disturbance, which here we take

to be an isosceles triangular obstruction on the horizontal bed (c.f. figure 67a). The sides of the

triangle that are of equal length are the walls CD and DE, with the angle between them denoted

by α and these walls make the angle β with the horizontal walls on either side. We proceed in

much the same manner as the previous example. Recall that we assume the dimensional pressure

along the free surfaces is set to atmospheric pressure (i.e. a constant). After non-dimensionalising

as usual, with respect to the far-upstream depth and speed of the flow, we have uniform horizontal

flow far upstream of unit speed and depth. Note that the edge of the horizontal bed at F is set at

the origin on the z-plane. The Bernoulli condition throughout the flow is

1

2
q2 +Gy + p =

1

2
+G (3.22)

and along the free surfaces IJ and FJ we have

1

2
q2 +Gy =

1

2
+G, (3.23)

where G = F−2. It follows that the f -plane remains as an infinite strip of unit width (c.f. figure

67b) and, retaining (2.2) for the relation between f and t, we have the unit semi-circle in the

t-plane (c.f. figure 67c).

Similarly to the previous cases considered, we must form an ansatz for the complex velocity ζ.

The flow behaviours to be incorporated are

1. ζ ∼ (1 + aeλf ) as φ → −∞, where a is an unknown constant and λ is the smallest positive

root of λ−G tanλ = 0,

2. ζ ∼ i(3G)1/3f 1/3 + u∞ + Cf−1/3 as φ → +∞, where C is a constant to be found and u∞

denotes the horizontal component of the velocity far downstream,

3. ζ ∼ (t− tC)1−β/π as t→ tC ,
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Figure 67: Complex planes for waterfall flow with a triangular obstacle upstream.

4. ζ ∼ (t− tD)α/π−1 as t→ tD,

5. ζ ∼ (t− tE)1−β/π as t→ tE,

6. v = 0 on ψ = 0: φ < φC and φE < φ < 0,

7. Arg(ζ) = β − π on ψ = 0, φC < φ < φD,

8. Arg(ζ) = π − β on ψ = 0, φD < φ < φE.

Note that φC , φD and φE denote the points in the f -plane corresponding to corners C, D and E,

respectively; and similarly, tC , tD and tE are the points in the t-plane corresponding to corners C,

D and E. The first condition listed above describes how the flow approaches a uniform horizontal

stream of constant unit velocity as φ → −∞, i.e. far upstream. The second condition describes

the downstream behaviour of the free-falling jet, as derived in §2.2. The third, fourth and fifth

conditions describe the flow inside the corners C and E, and the flow around corner D. The final

three conditions impose no normal flow along the walls.
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For the complex velocity ansatz, we take

ζ(t) =
( t− tC

1− ttC

)1−β/π( t− tD
1− ttD

)α/π−1( t− tE
1− ttE

)1−β/π
(1 + (1 + t)2λ/πB(t)), (3.24)

where

B(t) =
( 1

π

)1/3(
− log

(
c(1 + t2)

))1/3

l1(t) + l2(t) +
∞∑
n=0

ant
n
(
− log

(
c(1 + t2)

))−1/3

, (3.25)

and l1 and l2 are the following linear functions:

l1(t) = Re(m1) + t Im(m1), l2(t) = Re(m2) + t Im(m2), (3.26)

with

m1 = i(3G)1/3(1 + i)−2λ/π
( i− tC

1− itC

)β/π−1( i− tD
1− itD

)1−α/π( i− tE
1− itE

)β/π−1

(3.27)

and

m2 = (1 + i)−2λ/π

(
u∞

( i− tC
1− itC

)β/π−1( i− tD
1− itD

)1−α/π( i− tE
1− itE

)β/π−1

− 1

)
. (3.28)

The flow conditions discussed above are satisfied by (3.24)–(3.28).

Unsurprisingly, we truncate the series of (3.25) after N terms, leading to N unknown coeffi-

cients. We also solve for tC , tD, tE and u∞. Hence, we have N + 4 unknowns. We will impose

conditions on the physical geometry of the obstacle by setting the positions of the corners in the

z-plane. By zC , zD and zE we denote the corners of C, D and E in the z-plane. In particular, we

impose ∫ tE

1

1

|ζ|

( 2

π

1− t
(t+ 1)(t2 + 1)

)
dt = zE, (3.29)

∫ tD

tE

1

|ζ|

( 2

π

1− t
(t+ 1)(t2 + 1)

)
dt = δ, (3.30)

and ∫ tC

tD

1

|ζ|

( 2

π

1− t
(t+ 1)(t2 + 1)

)
dt = δ, (3.31)

where we specify the values of zE and δ. Therefore, we are setting the position of the corner E in
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the z-plane and the lengths of the sides CD and DE of the triangular obstacle. Note that we also

have the condition on the horizontal component u∞ of the velocity far downstream. This is

u∞ = 1 +
G

2
−
∫ sD

sC

p
∣∣∣
ψ=0

sin β ds+

∫ sE

sD

p
∣∣∣
ψ=0

sin β ds (3.32)

and it is derived in much the same way as in the previous cases, integrating the x-momentum

Euler equation over the flow region, just as (3.6) is obtained. Then, introducing N equally-spaced

mesh points along the arc of the semi-circle in the t-plane and satisfying the Bernoulli condition

(3.23) at each of these points leads to another N equations. Overall, we have N + 4 equations in

N + 4 unknowns and the parameters to be fixed are G, the position zE of E in the z-plane and

the length δ of the walls CD and DE. As usual, this can be solved numerically by iteration.

The motivation for investigating this problem is not a particular physical scenario, but instead

this further example serves to demonstrate the applicability of the revised approach in solving

for potential flows that involve jets and obstacles. Hence, the presentation and discussion of the

results will be brief. Note that the A-method (introduced in §2.4) is utilised in obtaining the

following results. Figure 68a shows an example free-surface profile where G = 2/3 and we set

β = 3π/4, zE = −0.4 and δ = 0.4. The following plot shown in figure 68b shows a comparison of

extrapolated free-surface profiles obtained for a channel with and without the triangular obstacle.

In the case where the obstacle is present compared with the case where it is absent, we can

observe (as expected) upwards displacement of the upper free surface locally to the obstacle. With

the triangular obstacle, the resulting value of the horizontal component of velocity in this case

(presented in figure 68) is u∞ = 1.343. This is greater than the theoretical value for the simple

waterfall case, i.e. u∞ = 1 + G/2. However, the difference between the values for u∞ with and

without the obstacle is very small, of order 10−3 in the particular case discussed here, and so the

effect of the obstacle on the value obtained for u∞ is relatively small because the pressure forces

along the walls of the obstacle are small. This observation is as noted in earlier cases, such as the

finite-depth supercritcal weir flows of §3.1, where we comment that the value of u∞ is dominated

by the 1 +G/2 contribution.

We also find that, as δ increases (resulting in an increase in the perpendicular height of the
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Figure 68: Free-surface profiles for flow past the triangular obstacle where we set G = 2/3 (i.e.
F =

√
1.5), β = 3π/4, zE = −0.4 and δ = 0.4 with 200 collocation points used in solving.
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Figure 69: Values of u∞ obtained for varying positions and sizes of triangular obstacle where we
set G = 2/3 and β = 3π/4 with 200 collocation points.
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triangle), the horizontal component u∞ of the velocity far downstream increases too. The value of

u∞ also increases as the triangle approaches the edge of the horizontal plate. These observations

are supported by the plots of figure 69. As to be expected, we conclude that the larger the

obstacle, the greater the effect on the flow; and the further upstream the obstacle, the lesser the

effect of the obstacle on the flow. Note that, when the obstacle has a lesser effect, the value of

u∞ approaches the theoretical value for the simple waterfall case, i.e. u∞ = 1 + G/2. Whilst

the following point has not been investigated in detail, there is a further observation that can be

made, with greater analysis left for future work. There appears to be a maximum length δ that

can be chosen for a given set of values for G, β and zE in order to obtain a converged solution.

For a given configuration where β and zE are fixed, the maximum height of the triangular obstacle

is dependent on G. For example, given β = 3π/4 and zE = −0.4, if G = 2/3 then a converged

solution has not been obtained for δ > 0.64, whereas for G = 5/6 a converged solution has not

been obtained for δ > 0.46. Therefore, for a larger value of G, the maximum height of the obstacle

is smaller. This is as seen earlier in the supercritical finite-depth weir case discussed in §3.1: for

sufficiently tall weir walls, there is a maximum value for G above which a solution cannot be

obtained.

Overall, the results presented here for the waterfall flow past a triangular obstacle upstream are

qualitatively similar to those discussed for the supercritical finite-depth weir. It should be noted

that the flow studied in the present section could be viewed as a particular case of a broad-crested

weir flow when the triangular obstacle is near to the edge of the horizontal plate (i.e. near to the

point labelled by F ). It has been demonstrated that the three-term expansion for the downstream

jet singularity can be incorporated into the complex velocity ansatz in a case where there is an

obstacle lying on the horizontal bed of the channel upstream.

Chapter 3 has included several examples of free-surface flow problems that include a free-

falling jet and where it is suitable to apply the improvements to the numerical approach that were

introduced in chapter 2. This includes the adoption of the three-term expansion for the behaviour

of the gravity-driven jet and the use of the A-method to advance the decay of the coefficients of
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the truncated power series involved in the complex velocity ansatz. The various cases to which

we have applied these improvements are weir flows and waterfalls that follow on from steps or

obstacles upstream. The efficacy of the method in several cases has been investigated, with a focus

on the decay of the coefficients and the convergence (with N , i.e. the number of coefficients of the

truncated series) of various unknowns of the problems. The good decay and convergence that was

seen in the simple waterfall case of chapter 2 has also been achieved in the applications explored in

the current chapter. It is clear that the revised approach can be applied to many physical problems

with free-falling jets, including those with complex geometry upstream.

137



4 Zero-gravity cavity and wake flows

We now consider another problem involving free surfaces — in particular, building towards a

gravity model for flow past a submerged bluff body. The calculations here will demonstrate how

numerical methods other than series truncation and collocation can be used to solve free-surface

flow problems. Here, we investigate the flow past a finite-length plate that is normal to a uniform

horizontal stream, with a wake or cavity forming behind the plate. As discussed in the introduction,

in this chapter we predominately make reference to a cavity forming behind the plate, but the

calculations are also applicable to a wake forming instead.

We first discuss the problem where a cavity of ambient pressure and of infinite extent forms.

Utilising conformal mappings leads to an exact solution for the position of the free streamlines

in terms of the complex potential f . Then, we move to discuss the case of a cavity that forms

behind the plate but using a horizontal wall closure model (also known as the open-wake model).

Again, conformal mappings lead to an exact solution. This problem is then reconsidered with

an alternative approach: an integral equation is obtained for the unknown flow angle of the free

streamlines. This can then be solved by inverting a finite Hilbert transform that is involved, or we

discretise to form a system of equations and unknowns to be solved by matrix inversion. It should

be noted that the problems and results presented here have previously been obtained, as discussed

in the introduction. However, they are included here for completeness of the discussion and to build

towards the overarching wake-flow problem that is of interest. Further to this, the demonstration

of the additional two methods of inverting the finite Hilbert transform or inverting the matrix is

useful in highlighting their potential use for other problems. They each have their own flexibilities

compared with solving by exclusively using conformal mappings to relate the physical plane to the

complex potential — the latter requires much more careful consideration when not dealing with

simple geometries, i.e. if the finite-length plate is not simply flat. Following the presentation of

these methods in §4.2.2 and §4.2.3, it will become clear where their benefits lie in simplifying the

calculations for solution in more complex cases.
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4.1 Cavity of infinite extent

We have a finite plate of length l that is perpendicular to uniform horizontal flow of speed U . A

cavity forms behind this obstacle with a dividing streamline splitting to form two free streamlines

that bound the cavitation bubble. This is as depicted in figure 70a. The assumptions on the fluid

and flow remain as in the previous chapters, i.e. such that we have potential flow. We neglect

the effects of gravity here. The pressure within the cavity is taken to be equal to that of the far-

field. Batchelor [2010] mentions that potential flow theory allows for the pressure within a cavity

to be chosen freely. However, the method utilised here does require that the cavitation bubble

is at ambient pressure. As discussed earlier in the introduction, the solution of this problem is

commonly accredited to Kirchhoff [1869], whilst the method of approach (using free streamline

theory) is credited to Helmholtz [1868]. Batchelor [2010] also presents the method of solution

for this problem in detail. Therefore, it will not be rederived here, but the salient points will be

summarised.

We non-dimensionalise with respect to the upstream flow velocity and blade length so that

we have unit velocity far upstream and unit blade length. We set z = 0 at the midpoint of the

blade and note that, due to the symmetry of the problem and the absence of gravity, the dividing

streamline runs along y = 0. Note that the stagnation point occurs at z = 0. As usual, we use

f to denote the complex potential of the flow. We set ψ = 0 along the dividing streamline and

along the free streamlines bounding the cavity. The complex potential plane is then, as depicted

in figure 70b, the whole plane with a branch cut along the positive real-axis. We look to find

an expression for z in terms of f . Several conformal mappings are utilised to map between these

planes: we define ω = log(dz/df) which maps the flow region to a semi-infinite strip of width

π that is symmetric in the positive real-axis of the ω-plane; the flow region in the f -plane can

be opened up to the upper-half of an intermediate complex plane (say λ-plane) by λ = (k/f)1/2

with k a constant to be determined; and then the Schwarz-Christoffel theorem can be utilised to

map the (polygonal) flow region of the ω-plane to the upper-half of the λ-plane. Note that these

mappings are discussed here due to their relevance to problems in later sections. It follows that a

closed-form solution is obtained for z(f). From this, parametric equations can be written down for
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Figure 70: Various planes for the cavity of infinite extent.
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the free streamlines that bound the cavity. Then, we find that the boundaries asymptote to x ∼ s

and y ∼ ±(sk)1/2 as s → +∞, hence the free streamlines asymptote to the parabola y2 = 4kx

where k = 1/(π + 4).

To obtain the drag force on the finite plate, we integrate the pressure difference along the plate.

An expression for the pressure along the plate is obtainable through use of the Bernoulli condition,

also requiring knowledge of the velocity along the plate which is obtainable from the expression

for the solution z(f). The magnitude of the drag is D = π/(π+ 4) on the unit length plate and it

follows that the coefficient of drag is cD = 2π/(π + 4).

Note that the concise nature of the method of solution and the solution itself is due to the

symmetry of the problem (since gravity is neglected and the finite-length plate is normal to the

uniform horizontal stream) and the fact that we have ambient pressure within the cavity with no

closure model. A very similar approach can be taken if the current problem is modified to now

be a plate at an arbitrary angle of attack to the stream. As mentioned earlier, the solution to

this is given by Rayleigh [1876], but the details provided for the calculation are brief. A thorough

presentation of the calculation is not included here since this was included in work submitted for

assessment towards the author’s undergraduate degree [McLean, 2018]. We still define the ω and

λ-planes as in the case of the plate normal to the flow and the constant k is again to be determined.

During calculation, it is also convenient to rotate the z-plane so that the flat plate lies along the

y-axis with the stagnation point on the plate fixed at z = 0. However, the results written here

are orientated in the z-plane so that the uniform horizontal stream is indeed horizontal and so

the plate is at the arbitrary angle, α, of attack (c.f. figure 70c). Again, a closed-form solution is

obtainable and then parametric equations for the free streamlines lead to the fact that the cavity

boundaries asymptote to the parabola y2 = 4kx/ sin2 α where k = sin4 α/(4 + π sinα). As in the

case of the plate normal to the flow, we can find the forces acting on the plate. It can be found

that the drag is D = π sin2 α/(π sinα + 4) and the lift force is L = π sinα cosα/(π sinα + 4).

Overall, we have summarised the method and results for the cavity of infinite extent. The

conformal mappings and complex planes discussed here will appear again in the next section

where we move to consider the open-wake model.
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4.2 Cavity horizontal closure

4.2.1 Analytic method (reproduction)

Clearly, the fact that the free streamlines of the cavity of infinite extent asymptote to a parabola is

an unphysical result for the flow far downstream. It is observable that, far downstream in a cavity

or wake flow, there is dissipative mixing of the slowly-recirculating gas or fluid (respectively) with

the stream, and then the flow returns to the undisturbed stream. Here, we modify the previous

problem to now employ a closure model where the free streamlines bounding the cavity become

horizontal downstream. The points at which the cavity boundaries become horizontal are unknown

and will be referred to as the closure points. A solution to this problem is presented by Roshko

[1954]. We follow a similar method here, with deviation occurring in the choice of conformal

mappings.

The flow is as depicted in figure 71a: a cavity forms behind a finite-length, flat plate (BB′)

that is normal to the uniform horizontal stream of constant speed, with horizontal closure far

downstream. As usual, we define z = x + iy and then we set the blade along the y-axis with

the stagnation point set at z = 0. Note that we still have potential flow and neglect the effects

of gravity. In the far-field, the pressure is denoted by p∞. Conversely, within and along the

boundaries of the cavity, the pressure is constant and is denoted by pc. Then, we know that we

have constant speed Qc along the free streamlines BC and B′C ′. We non-dimensionalise with

respect to the length l of the plate and the speed Qc. We now use the lowercase notation — i.e. x,

y, z and p (for the pressure) — to denote the non-dimensionalised variables in the physical plane.

The Bernoulli condition along the free streamlines becomes

1

2
ρU2 + p∞ =

1

2
ρ+ pc, (4.1)

where U is the (non-dimensionalised) speed of the undisturbed horizontal stream and ρ denotes

the density. Note that the Bernoulli constant has been calculated by evaluating the Bernoulli

142



condition far upstream. By defining the dimensionless parameter

K =
p∞ − pc

1
2
ρU2

, (4.2)

we obtain that U = (K + 1)1/2. Note that K is commonly referred to as the cavitation number

and it determines the characteristics of the cavitating flow, e.g. whether we have numerous small

bubbles of air or the formation of a large cavitation bubble.
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Figure 71: Complex planes for cavity forming behind a finite plate with horizontal wall closure.
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The complex potential is denoted by f , as before, and we set ψ = 0 along the dividing streamline

and φ = 0 at the stagnation point S. We look to find z as a function of the complex potential.

The f -plane is the same as in the previous case of the cavity of infinite extent (c.f. figure 71b); and

we define ω = log(dz/df), again as in the case of the infinite extent cavity. The ω-plane is shown

in figure 71c where the flow occupies a semi-infinite strip of width π. Two further intermediate

complex planes are introduced:

λ = −
(φB
f

)1/2

and Ω = −(−ω2 + ε2)1/2, (4.3)

where φB is an unknown constant and ε = log(1/U). The Schwarz-Christoffel theorem can then

be utilised to relate λ and Ω. This gives

λ = − cos
( π

2c
(Ω + c)

)
, where c =

(π2

4
+ ε2

)1/2

. (4.4)

We can then eliminate λ and Ω from (4.3) and (4.4) to find that

ω(f) =
[
−
(2c

π
arccos

(φA
f

)1/2

− c
)2

+ ε2
]1/2

. (4.5)

Finally, we integrate exp(ω(f)) with respect to f for z(f). Recalling that we non-dimensionalise

with respect to the length of the finite plate BB′, we solve to find the unknown constant φB such

that we have unit blade length. Therefore, the upper free streamline (and the lower free streamline,

analogously) can be plotted via

z(φ) = 0.5i +

∫ φ

φB

exp(ω(f)) df, (4.6)

such that ∫ φB

0

exp(ω(f)) df = 0.5. (4.7)

Free-streamline plots for various values of K are shown in figures 72 and 73.

The resulting drag coefficient for K = 0 agrees with that obtained via the exact solution for
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the cavity of infinite extent, i.e. cD = π/(π + 4). More generally, we note that, since we only

specify the cavitation number and obtain the closure position of the cavity as part of the solution,

we cannot specify pc and xC (the x-coordinate of the closure point) independently of each other.

Table 5 lists, for a given cavitation number K, the resulting values of the x-coordinate of the

closure point, the width of the cavitation bubble and the coefficient of drag. The results agree

with those obtained by Roshko [1954] — comparison can be made with their figure 3 and noting

that the value of U−1 here is equivalent to their parameter k. As K increases, the horizontal cavity

closure approaches z = 0 ± 0.5i, i.e. we approach having a submerged, semi-infinite, rectangular

block instead of a cavitation bubble. This is then similar to the investigations into ploughing flows

by Tuck and Vanden-Broeck [1998], but without a free surface bounding the stream above and

with an infinite Froude number. Recall that the idea behind using closure models is to (hopefully)

find a realistic description of the flow near the blade and sacrifice having such a realistic description

far downstream. However, for large cavitation numbers, this closure model is not ideal since the

closure mechanism is in the local neighbourhood of the blade.
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Figure 72: Free-streamline plot for cavity with horizontal wall closure K = 1.2

As mentioned in the introduction, solutions can be obtained in a very similar way for a finite,

flat plate or curved plate at an arbitrary angle of attack to the flow. The closure model employed

is still such that the free streamlines become parallel to the undisturbed stream at some unknown

closure points along these streamlines. Such solutions are presented by Wu [1956] and Mimura
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Figure 73: Free-streamline plots for cavity with horizontal wall closure. From top to bottom:
K = 0, 0.4, 0.8, 1.2.

K U φB xC bubble width drag coeff., cD

0 1 0.140 3.73× 1031 3.05× 1015 0.880

0.4 0.845 0.138 4.64 3.09 1.24

0.8 0.745 0.134 1.38 2.00 1.60

1.2 0.674 0.130 0.70 1.64 1.96

Table 5: Results for cavity with horizontal wall closure
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[1958]. Recall that it has also been discussed that an extra constraint is required. This is since

there is an extra degree of freedom introduced due to the asymmetry of the problem, now that the

plate is at an arbitrary angle of attack and so the position of the stagnation point along the plate

is not known a priori. Wu [1956] and Mimura [1958] impose that the velocity potential is the same

at both of the closure points. We will later move to include gravity in the problem and we will

use this condition as one of the possibilities for the extra constraint required there — again, since

it is an asymmetric problem but now this asymmetry arises from the inclusion of gravity. First,

we will reconsider the zero-gravity case of the flat plate that is normal to the stream, but using

alternative methods.
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4.2.2 Finite Hilbert transform method

We consider the same problem as in the previous section, i.e. as depicted in figure 71a. However,

for convenience of the method presented here, this time we non-dimensionalise such that we have

unit incoming horizontal flow and unit plate length. We denote by qc the (non-dimensional) flow

speed along the free streamlines. We still retain the definition of the complex potential f as before

with ψ = 0 along the dividing streamline and φ = 0 at the stagnation point S. Then, we define

Ω = τ− iθ through u− iv = exp(τ − iθ), where u and v are the horizontal and vertical components

of the velocity. It follows that, along the free streamlines, we have τ = log qc. To find the free

streamlines, it remains to solve for θ along BC and B′C ′.

We can write down the Bernoulli condition along the free streamlines as

q2
c = K + 1, (4.8)

noting that the cavitation number K is as previously defined. This can be rewritten as

e2τ = K + 1, (4.9)

along BC and B′C ′. Now, we wish to obtain another expression for τ along the free streamlines.

The Cauchy integral formula will be of use and is stated below.

Theorem 1 (Cauchy Integral Formula) Let f(z) be a holomorphic function inside and on the

closed contour γ oriented counterclockwise. Then, for every a in the interior of γ,

f(a) =
1

2πi

∮
γ

f(z)

z − a
dz. (4.10)

Since we have uniform horizontal flow in the far-field of unit speed, then we have that τ − iθ → 0

in the far-field. We apply the Cauchy integral formula to Ω(φ) for φ ∈ R in the f -plane with the

contour C̃ = [−R, φ− ε] ∪ Cε ∪ [φ+ ε, R] ∪ CR as depicted in figure 74. The contour is traversed

anti-clockwise and we consider the limit as R→ +∞ and ε→ 0. Note that these calculations are
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with reference to the upper free streamline BC. For φ ∈ R, on the contour C̃, we have

(τ − iθ)(φ) =
1

2πi

∮
C̃

τ(ϕ)− iθ(ϕ)

ϕ− φ
dϕ

=
1

2πi
lim
R→∞

[
P.V.

∫ R

−R

τ(ϕ)− iθ(ϕ)

ϕ− φ
dϕ+

∫
CR

τ(ϕ)− iθ(ϕ)

ϕ− φ
dϕ

]
+

1

2πi
lim
ε→0

∫ 0

−π

(τ − iθ)(φ+ εeiγ)

φ+ εeiγ − φ
iεeiγdγ

=
1

2πi
P.V.

∫ ∞
−∞

τ(ϕ)− iθ(ϕ)

ϕ− φ
dϕ+

i

2πi

∫ 0

−π
(τ − iθ)(φ)dγ

=
1

2πi
P.V.

∫ ∞
−∞

τ(ϕ)− iθ(ϕ)

ϕ− φ
dϕ+

1

2
(τ − iθ)(φ).

(4.11)

It follows that

τ(φ)− iθ(φ) =
1

πi
P.V.

∫ ∞
−∞

τ(ϕ)− iθ(ϕ)

ϕ− φ
dϕ. (4.12)

Taking the real part of (4.12), we find

τ(φ) = − 1

π
P.V.

∫ ∞
−∞

θ(ϕ)

ϕ− φ
dϕ. (4.13)

Further to this, since θ = 0 for φ ∈ (−∞, 0] and [φC ,∞), and θ = π/2 on [0, φB], then we have

τ(φ) = − 1

π

∫ φB

0

π
2

ϕ− φ
dϕ− 1

π
P.V.

∫ φC

φB

θ(ϕ)

ϕ− φ
dϕ, (4.14)

along BC. Finally, the Bernoulli condition (4.9) along the upper free streamline for φB < φ < φC

becomes

1

π
P.V.

∫ φC

φB

θ(ϕ)

ϕ− φ
dϕ = −

[1

2
log (K + 1) +

1

2
log
(φ− φB

φ

)]
. (4.15)

Reordering the terms in the denominator of the integral on the left-hand side gives rise to

1

π
P.V.

∫ φC

φB

θ(ϕ)

φ− ϕ
dϕ =

1

2
log (K + 1) +

1

2
log
(φ− φB

φ

)
. (4.16)

The Bernoulli condition has been rewritten in this way to emphasise the fact that we have a finite

Hilbert transform of θ on the left-hand side. We now look to find θ(φ) through use of an inversion

formula for the transform.
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Figure 74: f -plane for lower free streamline

For ease of calculation, we first rescale by introducing variables ϕ̃ and φ̃ and then setting

ϕ = φB + (φC − φB)ϕ̃ and φ = φB + (φC − φB)φ̃. We also define θ(φ) = θ̃(φ̃). Then, (4.16) be-

comes

1

π
P.V.

∫ 1

0

θ̃(ϕ̃)

φ̃− ϕ̃
dϕ̃ =

1

2
log (K + 1) +

1

2
log

(
Rφ̃

1 +Rφ̃

)
, (4.17)

where R = (φC − φB)/φB. We denote by F (φ̃) the right-hand side of the integral equation (4.17),

i.e.

F (φ̃) =
1

2
log (K + 1) +

1

2
log

(
Rφ̃

1 +Rφ̃

)
. (4.18)

Now, we look to solve this integral equation for θ along the upper free streamline BC through use

of the following inversion formula for the finite Hilbert transform provided by Tricomi [1985]. In

its general form, Tricomi [1985] gives that for

Hf(s) =
1

π
P.V.

∫ b

a

f(t)

s− t
dt, (4.19)

we have

f(t) =
1

π
√

(t− a)(b− t)

(∫ b

a

Hf(s)

s− t
√

(s− a)(b− s) ds+

∫ b

a

f(s) ds

)
. (4.20)

Therefore, in our case we have

θ̃(φ̃) =
1

π

√
φ̃(1− φ̃)

(∫ 1

0

F (s)

s− φ̃

√
s(1− s) ds+ c

)
, (4.21)
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where c is an unknown constant.

We require that θ̃ is finite at φ̃ = 0 and φ̃ = 1, so we can see from (4.21) that we need to set the

expression within the bracket of (4.21) to zero at the two aforementioned values of φ̃. It follows

that we have ∫ 1

0

F (s)

√
1− s
s

ds+ c = 0 (4.22)

and ∫ 1

0

F (s)

√
s

1− s
ds− c = 0. (4.23)

It follows that we can eliminate the constant c from (4.22) and (4.23) and, recalling the definition

of the function F (φ̃) from (4.18), we obtain

∫ 1

0

[
1

2
log (K + 1)+

1

2
log

(
Rs

1 +Rs

)]√
1− s
s

ds

+

∫ 1

0

[
1

2
log (K + 1) +

1

2
log

(
Rs

1 +Rs

)]√
s

1− s
ds = 0.

(4.24)

Noting that
∫ 1

0

√
s/(1− s) ds =

∫ 1

0

√
(1− s)/s ds = π/2, then we find

π

2
log (K + 1) =

∫ 1

0

1

2
log
(

1 +
1

Rs

)[√1− s
s

+

√
s

1− s

]
ds. (4.25)

By evaluating the integral above and simplifying, we obtain

log (K + 1) = 2 log (1 +
√

1 +R)− logR, (4.26)

which provides a relation between the constants R and K.

From (4.21), along with (4.22) and (4.23), we have

θ̃(φ̃) =
1

π

√
φ̃

1− φ̃
P.V.

∫ 1

0

1
2

log (K + 1) + 1
2

log
(

Rs
1+Rs

)
s− φ̃

√
1− s
s

ds (4.27)
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and

θ̃(φ̃) =
1

π

√
1− φ̃
φ̃

P.V.

∫ 1

0

1
2

log (K + 1) + 1
2

log
(

Rs
1+Rs

)
s− φ̃

√
s

1− s
ds. (4.28)

Therefore, for a given value of K, using either (4.27) or (4.28) along with (4.26), we can obtain

the values of θ̃(φ̃) along the upper free streamline BC. To actually evaluate the principle value

integral to obtain values of θ̃, we can rewrite the integral as follows:

θ̃(φ̃) =
1

π

√
φ̃

1− φ̃

[∫ 1

0

F (s)− F (φ̃)

s− φ̃

√
1− s
s

ds+ P.V.

∫ 1

0

F (φ̃)

s− φ̃

√
1− s
s

ds

]

=
1

π

√
φ̃

1− φ̃

∫ 1

0

1

2

log
(

1 + 1

Rφ̃

)
− log

(
1 + 1

Rs

)
s− φ̃

√
1− s
s

ds− F (φ̃)

√
φ̃

1− φ̃
.

(4.29)

Using the fact that df/dz = u − iv = exp (τ − iθ) and that τ = 1
2

log (K + 1) along the free

streamlines, we can then integrate to find the values of z along the free streamlines which we can

subsequently plot. We also wish to normalise such that we have a plate of unit length. To achieve

this, we note that from (4.14) and for 0 < φ < φB (or 0 < φ̃ < 1) we have

τ(φ) = −1

2
log
∣∣∣φB − φ

φ

∣∣∣− 1

π

∫ φC

φB

θ(ϕ)

ϕ− φ
dϕ

=
1

π

∫ 1

0

θ̃(s)

θ̃ − s
ds+

1

2
log
∣∣∣1 +

1

Rφ̃

∣∣∣. (4.30)

This can then be used to set the scale in the physical z-plane by integrating dz/df along the plate

section OB (again, noting that θ = π/2 here) to obtain the unscaled length of half of the plate.

Hence, we can set the scale factor such that the plate is of unit length. Note that we can set K as

the parameter and find the corresponding value of R by (4.26) to then be used in the expressions

for τ and θ along the free streamline when evaluating to find z along BC and B′C ′. The upper

free streamline for K = 1, plotted using the method presented here, is shown figure 75.

The method of inverting the finite Hilbert transform is presented here not only to showcase

an alternative method of solution for this particular problem, but also to possibly prompt the

solution of other potential flow problems using this approach. However, most relevant to the

current problem, an example of when this method of inverting the finite Hilbert transform may be
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Figure 75: Profile of the upper free streamline for K = 1, obtained through the method of
inverting the finite Hilbert transform.

useful is if a more generalised plate shape and/or angle of attack is involved. This would retain

the assumptions and closure model taken for the far-field and so it would only be the known values

of θ along the finite-length plate that would change. This would affect the function of φ on the

right-hand side of (4.16). Whether an analytic solution exists will depend on the form of this

function of φ.

We will now consider the same zero-gravity problem of a finite-length plate normal to the stream

yet again, but this time using a method that leads to a numerical solution. It is a modification to

the approach used in the current section and so it could be used to obtain a numerical solution for

a more generalised plate shape if an analytical solution is not attainable, as discussed above.
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4.2.3 Matrix inversion method

Before moving on to develop the complexity of the problem of flow past the finite-length plate

normal to the stream, we present a third method of solution for the zero-gravity case. As opposed to

the conformal mappings method and the method of inverting the finite Hilbert transform, here we

will obtain a numerical solution. Numerical methods will be necessary later where the assumptions

will not allow for the utilisation of the analytic methods discussed so far. The approach begins

as in the previous section, i.e. we use the Cauchy integral formula to integrate along a contour in

the complex potential plane and, via the Bernoulli condition, obtain an integral equation to find

θ along the free streamlines. Therefore, we pick up the method from (4.17), repeated below for

convenience:

1

π
P.V.

∫ 1

0

θ̃(s)

φ̃− s
ds =

1

2
log (K + 1) +

1

2
log

(
Rφ̃

1 +Rφ̃

)
, (4.31)

where R = (φC − φB)/φB. To solve for θ along the free streamlines, we simply introduce N mesh

points along BC. Note that we only discretise along the upper free streamline since the problem

is symmetric. We let τc = 1
2

log (K + 1) (c.f. (4.9)) and we leave this to be found as part of the

solution, so we have N + 1 unknowns. Recall that, along the upper streamline, we have 0 < φ̃ < 1,

so we introduce the mesh points

φ̃i =
i− 1

N − 1
, where i = 1, 2, . . . , N. (4.32)

Corresponding to these points, we have the following unknown values of θ along BC: θ̃i = θ̃(φ̃i)

for i = 1, 2, . . . , N . We also define the intermediate mesh points

φ̃inter
i =

i− 1
2

N − 1
, where i = 1, 2, . . . , N − 1, (4.33)

at which we will satisfy the integral equation (4.31). On top of these N − 1 equations, we also

have θ̃1 = π/2 and θ̃N = 0 due to the known values at the end of the plate at B and at the

closure point C. Then, we have N + 1 equations. To form the matrix equation, we note that for
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j = 1, 2, . . . , N − 1 we can first rewrite the integral of the (4.31) as

1

π
P.V.

∫ 1

0

θ̃(s)

φ̃inter
j − s

ds =
1

π

N∑
i=2

P.V.

∫ φ̃i

φ̃i−1

θ̃(s)

φ̃inter
j − s

ds

=
1

π

[
θ̃1(L1j + A2j) +

N−1∑
i=2

θ̃i(Ai+1,j − Aij) + θ̃N(−(LNj + ANj))

]
,

(4.34)

where Lij = log |φ̃inter
j − φ̃i|, Nij = −(φ̃i − φ̃inter

j ) log |φ̃inter
j − φ̃i| and Aij = ∆Nij/∆φ̃i + 1. Then,

the matrix equation can be formed and the set of solution values is found simply by inverting the

(N + 1)× (N + 1) matrix and evaluating



θ̃1

θ̃2

θ̃3

...

θ̃N

τc


= M−1



π
2

−1
2

log
(

1 + 1

Rφ̃inter1

)
−1

2
log
(

1 + 1

Rφ̃inter2

)
...

−1
2

log
(

1 + 1

Rφ̃interN−1

)
0


, (4.35)

where

M =



1 0 · · · 0 0 0

1
π
(L11 + A21) 1

π
(A31 − A21) · · · 1

π
(AN1 − AN−1,1) − 1

π
(LN1 + AN1) −1

1
π
(L12 + A22) 1

π
(A32 − A22) · · · 1

π
(AN2 − AN−1,2) − 1

π
(LN2 + AN2) −1

...
... · · · ...

...
...

1
π
(L1N + A2N) 1

π
(A3N − A2N) · · · 1

π
(ANN − AN−1,N) − 1

π
(LNN + ANN) −1

0 0 . . . 0 1 0


.

(4.36)

Note that, here, the parameter is R (instead of K as in the previous methods). The value of K

can be obtained once the value of τc is found through τc = 1
2

log (K + 1).

Alternatively, we could pick up the method from (4.16), i.e. the integral equation before

rescaling the variables. To solve for θ along the free streamlines, we introduce N mesh points
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along BC. We recall that, along this streamline we have φB < φ < φC , so we introduce the mesh

points

φi = φB + (φC − φB)
i− 1

N − 1
, where i = 1, 2, . . . , N. (4.37)

As before, we have N unknown values of θ along BC, i.e. θi = θ(φi) for i = 1, 2, . . . , N . Overall,

with the addition of φB and φC to the list of unknowns, we have N + 2 unknowns. We also define

the intermediate mesh points

φinter
i = φB + (φC − φB)

i− 1
2

N − 1
, where i = 1, 2, . . . , N − 1. (4.38)

The integral equation for θ is satisfied at these intermediate points. On top of these N−1 equations,

we also have θ1 = π/2 and θN = 0. Then, we have N + 2 equations with the inclusion of setting

yB = 0.5 (due to the normalisation that gives a unit-length plate and since yB denotes the value

of y at B). This system of N + 2 equations in N + 2 unknowns can simply be solved numerically

with K being the parameter that we set. This approach is mentioned here since it will be utilised

later in cases where the assumptions are not sufficiently simplified for the earlier methods to be

employed. It is the easiest and quickest method to adapt for a flat plate at an arbitrary angle of

attack. This method is also advantageous in terms of the minimal calculations required once the

integral equation has been formed and extra scaling in post-processing is not required since the

normalisation with respect to the plate length is included in the set of equations to be solved.

In this chapter, we have considered zero-gravity cavity and wake flows. Discussion in §4.1 of the

method of solution in the case of the cavity of ambient pressure introduced the most basic form of

the problem where conformal mappings are utilised to obtain the exact solution. In the following

three subsections, the problem has been developed such that the cavity is no longer at ambient

pressure and we have included an open-wake model. In each of the three subsections, this problem

has been considered with a different method of solution. An analytic solution is obtainable, again

by conformal mappings. An analytic solution has also been achieved through use of the Cauchy

integral formula to reach a boundary integral equation that involves a finite Hilbert transform
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of the flow angle. This finite Hilbert transform has then been inverted to obtain the flow angle

along the cavity boundaries and hence, the solution. The applicability of this method to other

similar problems has been discussed. The final method that has been presented is discretising

the boundary integral equation and then solving for the unknown flow angles along the cavity

boundaries by collocation, leading to a numerical solution. This approach will be used in the next

chapter where gravity is introduced to the model.
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5 Gravitational cavity and wake flows

In the final mathematical contribution of this thesis, we include the effects of gravity on the flows

where we have a cavity or wake that forms behind a flat, finite-length plate that is either normal

or oblique to a horizontal stream. First, in §5.1, we include gravity on the boundaries of the cavity

or wake. Note that, in this case, we still consider an unbounded horizontal stream. Then, the

problem is discussed in §5.2 where we have a submerged, finite-length plate that is normal to the

horizontal stream which is bounded above by a free surface. We limit the model at this point to

only consider the case of a wake (not a cavity) forming behind the plate.

5.1 Cavity horizontal closure

Here, we include gravity along the cavity or wake boundaries that form behind a flat, finite-length

plate that is normal to (see §5.1.1) or at an arbitrary angle to (see §5.1.2) the unbounded, uniform,

horizontal stream. As was the case in chapter 4, whilst the calculations of this section (§5.1) are

applicable to both cases of a wake or cavity forming behind the plate, we will refer only to the

cavity case. Conformal mappings and a boundary integral equation method are utilised here whilst

in pursuit of a numerical solution. Due to the asymmetry of the problem, an extra condition on

the flow will be required. Discussion will be presented for possible options for this condition. In

particular, we propose using either a condition derived from imposing that the dividing streamline

is horizontal far upstream, a condition to impose equal velocity potential at the closure points or

an interpolation formula for the value at a collocation point on the cavity boundaries.

5.1.1 Plate perpendicular to flow

The inclusion of the effects of gravity on the boundaries of the cavity means we are now considering

a problem with asymmetry. As before, we set the horizontal stream to have speed U and we set the

vertical, finite-length plate normal to the flow to be of length L. The open-wake model comprising

of two horizontal walls (or streamlines) far downstream is employed, i.e. the open-wake closure

model. This scenario is as depicted in figure 76a with the closure along CD and C ′D′. Note that

the stagnation point, at which the dividing streamline AS meets the plate BB′, is set at z = 0.
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Along the free surfaces that bound the cavity, we have

1

2
ρq2 + ρgy + pc =

1

2
ρU2 + p∞, (5.1)

where ρ is the density, q is the magnitude of the (dimensional) velocity, g is the acceleration due

to gravity and pc is the pressure in the cavity. We also use p∞ = ρgy0 + p0 to denote the pressure

far upstream along the horizontal dividing streamline, where y0 and p0 are the constant values of

y and pressure p along the dividing streamline far upstream. We non-dimensionalise the variables

with respect to the speed U of the flow far upstream and the length L of the plate; and we define

the Froude number F and cavitation number K by

F =
U√
gL

and K =
p∞ − pc

1
2
ρU2

, (5.2)

respectively. Then, the Bernoulli condition along the free surfaces bounding the cavity is

1

2
q2 +

y

F 2
=

1

2
(K + 1), (5.3)

where q is the magnitude of velocity. Note that q = eτ and so we can write

τ(w) =
1

2
log

(
K + 1− 2

F 2
y(w)

)
. (5.4)

As usual, we define the complex potential by f = φ+ iψ and so we can sketch this plane as in

figure 76b. The flow region is mapped to the whole f -plane with a branch cut along the positive

real-axis. The values of the velocity potential φ at the edges of the plate and the points of cavity

closure (C and C ′) are unknowns to be found.

We introduce the w-plane (c.f. figure 76c), where w = f 1/2. Therefore, the flow region is

mapped to the upper-half of the w-plane. The dividing streamline AS is mapped to the positive

imaginary-axis; and the plate BB′ and the cavity boundaries are mapped to the real axis.

Recall that we define u− iv = eΩ = eτ−iθ. We then apply the Cauchy integral formula to Ω(w)

for w ∈ R in the w-plane with the contour C̃ = [−R,w − ε] ∪ Cε ∪ [w + ε, R] ∪ CR, consisting of
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Figure 76: Complex planes for horizontal wall cavity closure with g 6= 0.
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Figure 77: w-plane with contour C̃ = [−R,w − ε] ∪ Cε ∪ [w + ε, R] ∪ CR
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semi-circular arcs CR (of radius R centred at the origin) and Cε (of radius ε centred at w); and

intervals [−R,w − ε] and [w + ε, R] along the real axis (c.f. figure 77). The contour is traversed

anti-clockwise and we consider the limit as R→∞. Then, for w ∈ R, on the contour C̃, we obtain

that

(τ − iθ)(w) =
1

πi
P.V.

∫ ∞
−∞

τ(σ)− iθ(σ)

σ − w
dσ. (5.5)

The calculation leading to this is very similar to that of (4.11) — recall that we use that the flow

is horizontal and of unit speed in the far-field, hence τ and θ tend towards to zero in the far-field.

It follows that we have

τ(w) = − 1

π
P.V.

∫ ∞
−∞

θ(σ)

σ − w
dσ (5.6)

along the boundaries of the cavity. We also recall that the angle of flow is zero along the horizontal

closures CD and C ′D′; 1
2
π along the upper section OB of the plate; and −1

2
π along OB′. Then,

the integral expression for τ can be simplified to

τ(w) = − 1

π

[ ∫ b1

c1

θ(σ)

σ − w
dσ +

∫ c

b

θ(σ)

σ − w
dσ

]
+

1

2

∫ 0

b1

1

σ − w
dσ − 1

2

∫ b

0

1

σ − w
dσ

= − 1

π

[ ∫ b1

c1

θ(σ)

σ − w
dσ +

∫ c

b

θ(σ)

σ − w
dσ

]
+

1

2
log

∣∣∣∣ w2

(b1 − w)(b− w)

∣∣∣∣, (5.7)

where b, b1, c and c1 are the values of w corresponding to the points B, B′, C and C ′, respectively.

In (5.7), θ is to be determined for c1 < w < b1 and b < w < c, i.e. along the cavity boundaries. By

equating (5.4) and (5.7), we obtain the following integral equation:

− 1

π

[ ∫ b1

c1

θ(σ)

σ − w
dσ +

∫ c

b

θ(σ)

σ − w
dσ

]
+

1

2
log

∣∣∣∣ w2

(b1 − w)(b− w)

∣∣∣∣ =
1

2
log

(
K + 1− 2

F 2
y(w)

)
, (5.8)

for w ∈ R. The values for y in (5.8) can found by evaluating

y(w) =

∫ w

0

2σe−τ(σ) sin(θ(σ))dσ. (5.9)
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To determine θ along the cavity boundaries, we introduce mesh points

wUj = b+
c− b
N − 1

(j − 1) and wLj = b1 +
c1 − b1

N − 1
(j − 1), (5.10)

where j = 1, 2, . . . , N . Then, we look to determine θUj = θ(wUj ) and θLj = θ(wLj ) for j = 1, 2, . . . , N ,

i.e. the values of θ at the mesh points. The other unknowns to be found are b, b1, c and c1, taking

the total number of unknowns to 2N + 4. Collocation points are now introduced, in order to

discretise equation (5.8), as follows:

wUinter
i = b+

c− b
(N − 1)

(
i− 1

2

)
and wLinter

i = b1 +
c1 − b1

(N − 1)

(
i− 1

2

)
, (5.11)

for i = 1, 2, . . . , N − 1. Satisfying equation (5.8) at these collocation points gives rise to 2N − 2

equations. For the necessary number of equations for a square system to find the 2N+4 unknowns,

the remaining six equations are comprised of

1. the known flow angles at the vertical plate ends, i.e. θ(b) = 1
2
π, θ(b1) = −1

2
π, θ(c) = 0 and

θ(c1) = 0; which can be rewritten as θU1 = 1
2
π, θL1 = −1

2
π, θUN = 0 and θLN = 0;

2. the vertical plate is of unit length, i.e. y(b)− y(b1) = 1, which can be rewritten as

∫ b

0

2σe−τ(σ)dσ +

∫ b1

0

2σe−τ(σ)dσ = 1; (5.12)

3. and imposing either ∫ b1

c1

θ(σ)dσ +

∫ c

b

θ(σ)dσ +
π

2
(b+ b1) = 0, (5.13)

c = −c1, (5.14)

or

θUn =
1

2
(θUn−1 + θUn+1), for some n ∈ [1, N − 1]. (5.15)

We now discuss the three possible conditions (5.13), (5.14) and (5.15) that are stated above.

The first option of imposing (5.13) is to ensure that the dividing streamline far upstream is indeed
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horizontal and it is derived here. We can analyse the behaviour of Ω(w) far upstream by considering

the zero-gravity case of a submerged rectangular block that is semi-infinitely long in a uniform

horizontal stream. Tuck and Vanden-Broeck [1998] obtain an analytic solution for this problem.

However, the complex planes used in their calculation are different to those used in the present

study, so we cannot simply quote the solution. Instead, by (5.6) and noting that here we are

considering a solid, rectangular block, for w ∈ R we obtain

τ(w) = − 1

π
P.V.

∫ b

0

π/2

σ − w
dσ − 1

π
P.V.

∫ 0

b1

−π/2
σ − w

dσ

= −1

2
log
∣∣∣b− w
w

∣∣∣+
1

2
log
∣∣∣ w

b1 − w

∣∣∣. (5.16)

Then, a suitable form for Ω for the whole flow is

Ω(w) = logw − 1

2
log ((w − b)(w − b1)), (5.17)

which one can check satisfies the boundary conditions on the rectangular block and Laplace’s

equation. Then, for large |w| we have

Ω(w) ∼
1
2
(b+ b1)

w
+O

( 1

w2

)
. (5.18)

Therefore, in the present case with g 6= 0 with flow past the plate normal to the stream, we take

Ω ∼ α/w for large |w| where α is an unknown constant. We also obtain another expression for

Ω(w) for large |w|. Recall that the dividing streamline is mapped to the imaginary axis of the

w-plane. Then, for w /∈ R, by applying the Cauchy integral formula to Ω(w) in the w-plane with

a contour in the upper half-plane comprising of the semi-circular arc CR and interval [−R,R]

traversed anticlockwise under the limit as R→ +∞, we obtain

Ω(w) =
1

2πi

∫ ∞
−∞

Ω(σ)

σ − w
dσ. (5.19)

Along the dividing streamline AS, we write w = iW and then we take interest in Ω(iW ) as
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W → +∞. Let ∆,W ∈ R such that 1 << ∆ << W . Then, we rewrite (5.19) as

Ω(iW ) =
1

2πi

[∫ −∆

−∞

Ω(σ)

σ − iW
dσ +

∫ ∆

−∆

Ω(σ)

σ − iW
dσ +

∫ ∞
∆

Ω(σ)

σ − iW
dσ

]

=
1

2πi

[∫ −∆/W

−∞

Ω(Wq)

Wq − iW
W dq +

∫ ∆

−∆

Ω(σ)

σ − iW
dσ +

∫ ∞
∆/W

Ω(Wq)

Wq − iW
W dq

]

=
1

2πi

[∫ −∆/W

−∞

α

Wq

1

q − i
dq +

∫ ∆

−∆

iΩ(σ)

W
dσ +

∫ ∞
∆/W

α

Wq

1

q − i
dq

]
+O

( 1

W 2

)
=

1

2πi

[
α

W
P.V.

∫ ∞
−∞

1

q(q − i)
dq +

i

W

∫ ∞
−∞

Ω(σ) dσ

]
+O

( 1

W 2

)
=

α

2iW
+

1

2π

1

W

∫ ∞
−∞

Ω(σ) dσ +O
( 1

W 2

)
.

(5.20)

Note that, in the final simplification step above, we use that

P.V.

∫ ∞
−∞

1

q(q − i)
dq = lim

a→0+
lim
A→∞

(∫ A

a

i

q
− i

q − i
dq +

∫ −a
−A

i

q
− i

q − i
dq

)

= π.

(5.21)

Using this along with (5.17) for w = iW where W � 1, we have that

α

iW
+O

( 1

W 2

)
=

α

2iW
+

1

2π

1

W

∫ ∞
−∞

Ω(σ)dσ +O
( 1

W 2

)
(5.22)

and so

α =
i

π

∫ ∞
−∞

Ω(σ)dσ. (5.23)

It follows that, using the behaviour of Ω(w) for large |w|, we have

τ(iW )− iθ(iW ) ∼ 1

πW

∫ ∞
−∞

Ω(σ) dσ where W >> 1. (5.24)

Since we require the dividing streamline to be horizontal far upstream, we deduce that

1

πW

∫ ∞
−∞
=
(

Ω(σ)
)

dσ = 0 ⇒
∫ ∞
−∞

θ(σ) dσ = 0. (5.25)
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Hence, we have arrived at the first equation (5.13) of the possible conditions to be imposed.

Now, we discuss the remaining two possible conditions, (5.14) and (5.15). As stated in (5.14),

we can set c = −c1 which imposes that the velocity potential is the same at C and C ′, i.e. at

the two closure points. This condition has been used in previous investigations where closure

models have been employed, such as in the works of Wu [1956], Mimura [1958] and Faltinsen and

Semenov [2008]. However, (5.14) may be considered to be an unnecessary, artificial addition to the

model. Therefore, picking this particular solution (as opposed to a different solution that bears an

alternative relation between the two closure points) is questionable. It imposes a symmetry on the

solution of the non-zero gravity case that is not required by the theory. The final possible condition

that we can impose is an interpolation formula, as given in (5.15). The justification for including

this equation in the system to be solved is simply to ensure that it is square, without imposing

another condition that could potentially restrict the solution. This would avoid the aforementioned

potential issue of imposing (5.14). Furthermore, the condition (5.13) — which explicitly imposes

that the dividing streamline is horizontal far upstream — may also be considered unnecessary

since we utilise the upstream conditions on the flow when applying the Cauchy integral formula,

i.e. that Ω→ 0 far upstream. Overall, the potential benefits of imposing the interpolation formula

(5.15) are apparent. Results for imposing each of the three possible conditions (5.13)–(5.15) are

presented later.

Once we have solved the 2N + 4 square system for the unknowns, we can plot the free surfaces

using

z(w) =

∫ w

0

2σe−τ(σ) cos(θ(σ))dσ + i

∫ w

0

2σe−τ(σ) sin(θ(σ))dσ. (5.26)

Also, note that, in order to plot the dividing streamline, we can write

z(iWs) =

∫ Ws

0

dz

df

df

dw

dw

dW
dW

=

∫ Ws

0

e−τ(iW )+iθ(iW )2iW i dW

= −
∫ Ws

0

2W e−τ(iW ) cos(θ(iW )) dW − i

∫ Ws

0

2W e−τ(iW ) sin(θ(iW )) dW,

(5.27)

where Ws ∈ R is a point along the positive imaginary axis of the w-plane corresponding to dividing
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streamline. Expressions for τ and θ along the positive imaginary axis of the w-plane, to be utilised

in evaluating (5.27), can be obtained using equation (5.19). We find that, for W ∈ R,

Ω(iW ) =
1

2πi

∫ ∞
−∞

στ(σ) +Wθ(σ) + i(Wτ(σ)− σθ(σ))

σ2 +W 2
dσ (5.28)

and so we have

τ(iW ) =
1

2π

∫ ∞
−∞

Wτ(σ)− σθ(σ)

σ2 +W 2
dσ

=
1

2π

[ ∫ ∞
−∞

Wτ(σ)

σ2 +W 2
dσ −

∫ b1

c1

σθ(σ)

σ2 +W 2
dσ −

∫ c

b

σθ(σ)

σ2 +W 2
dσ

]
+

1

8
log

(
W 4

(b2
1 +W 2)(b2 +W 2)

)
(5.29)

along with

θ(iW ) =
1

2π

∫ ∞
−∞

στ(σ) +Wθ(σ)

σ2 +W 2
dσ

=
1

2π

[ ∫ ∞
−∞

στ(σ)

σ2 +W 2
dσ +

∫ b1

c1

Wθ(σ)

σ2 +W 2
dσ +

∫ c

b

Wθ(σ)

σ2 +W 2
dσ

]
+

1

4
arctan

b1

W
+

1

4
arctan

b

W
.

(5.30)

In order to evaluate these functions for τ and θ along the positive imaginary axis, we need

to calculate the integrals that run along the whole real axis in (5.29) and (5.30). To do so, we

numerically evaluate a truncated integral on the interval [−L,L], for some L > 0. Then, for the

intervals (−∞,−L] and [L,+∞), we will utilise an asymptote for τ . To find this asymptote, we

use (5.7), i.e. the expression for τ(w) that is valid for w ∈ R. For large |w|, this can then be

rewritten as

τ(w) =
1

π

[∫ b1

c1

θ(σ)
( 1

w
+

σ

w2
+O

( 1

w3

))
dσ +

∫ c

b

θ(σ)
( 1

w
+

σ

w2
+O

( 1

w3

))
dσ

]

+
b+ b1

2w
+
b2 + b2

1

4w2
+O

( 1

w3

)
=

1

w

[
1

π

∫ b1

c1

θ(σ) dσ +
1

π

∫ c

b

θ(σ) dσ +
b+ b1

2

]

+
1

w2

[
1

π

∫ b1

c1

σθ(σ) dσ +
1

π

∫ c

b

σθ(σ) dσ +
b2 + b2

1

4

]
+O

( 1

w3

)
.

(5.31)

We can see that the coefficient of the w−1 term is the left-hand side of (5.13) divided by π. In
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the earlier analysis of the flow upstream, (5.13) is obtained by noting that the dividing streamline

should be horizontal far upstream due to the conditions of the undisturbed flow. Therefore, we

know here that the coefficient of the w−1 term is zero and so the leading-order term for τ(w) is

instead w−2. It follows that, for the asymptote, we can take

τ(w) ∼ 1

w2

[
1

π

∫ b1

c1

σθ(σ) dσ +
1

π

∫ c

b

σθ(σ) dσ +
b2 + b2

1

4

]
(5.32)

for large |w|.

Now, we look at the results obtained through solving the 2N + 4 square system. We first

consider the solutions found when imposing (5.13), i.e. the condition that explicitly requires the

dividing streamline to be horizontal upstream. Figure 78 shows several free-surface profiles for

different Froude and cavitation numbers. For large F (e.g. F = 100, figures 78a–78c), we obtain

very symmetrical results — as expected, since the plate is normal to the stream and the effect

of gravity is very small. As F decreases, we find increased asymmetry, clear in both the cavity

boundaries and the position of the stagnation point along the finite vertical plate (c.f. figures

78d–78f). In particular, the lower cavity boundary is shorter than the upper boundary. Figure 79

focuses on the dividing streamline near the stagnation point and figures 79a–79c demonstrate that

as F decreases towards 1, the dividing streamline deviates further from the line y = 0.

We now look at the effect of the cavitation number and observe that, as K increases, we obtain a

smaller cavitation bubble — the closure starts closer to the blade (c.f. figures 78a–78c). Increasing

K also increases the symmetry, particularly evident in the position of the stagnation point along

the plate (c.f. figures 78g–78i) and the straighter horizontal dividing streamline along y = 0 (c.f.

figures 79d–79f).

Figure 80 shows for which values of the cavitation and Froude numbers a converged solution can

be reached when we discretise the integral equation with N = 40 mesh points on each free surface.

As the Froude number increases, the range of values of K for which a solution can be obtained

increases. For small Froude numbers, K needs to be sufficiently large to obtain a solution. At this

end of the range for the parameter F , achieving a converged solution becomes more sensitive to the

initial guess — a resolution for which is to use the solution for a similar set of parameters as the
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Figure 78: Free-surface profiles obtained by taking N = 40 and imposing (5.13).
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Figure 79: Focusing on the dividing streamline of free-surface profiles obtained by taking N = 40
and imposing (5.13).

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5
Solution obtained
Solution not obtained

K

F

Figure 80: K against F to show which combinations of these parameters lead to a converged
solution for N = 40 and imposing (5.13).
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initial guess. Faltinsen and Semenov [2008], in their work on the effect of gravity and cavitation

on flow past a hydrofoil, investigate the limiting size of the cavitation bubble by setting K = 0

and varying the Froude number. Figure 80 shows that the limiting size of the cavity here, for each

Froude number, does not occur when K = 0 since a converged solution cannot be obtained for

this cavitation number. The open-wake closure model utilised here — in contrast to the complex,

cusp-like closure model used by Faltinsen and Semenov [2008] — does not allow for a solution to

be obtained as K → 0 for non-zero gravity. This is since, with the effect of gravity included, a

small value for K forces the cavity closure too locally to the vertical plate. The closure model

adopted here requires that the heights of the cavity boundaries remain constant along the closures

CD and C ′D′ whilst the pressure gradient returns to that of the undisturbed stream and the flow

speed returns to unity. However, the boundaries (in particular, the lower boundary) must be able

to support the pressure within the cavitation bubble; and, with diminishing K, the boundaries are

also diminishing, with the pressure along the lower boundary closure C ′D′ increasing back towards

that of the undisturbed stream.

We now move on to consider the results if we instead impose (5.14), i.e. setting the velocity

potential to be equal at both of the cavity closure points on the free surfaces. Figure 81 shows

some resulting free-surface profiles for a variety of values of the parameters F and K. The same

sets of parameters are taken here as earlier (c.f figure 78). For F = 100, we obtain very symmetric

free-surface profiles (c.f. figures 81a–81c). This is to be expected since the condition of c = −c1

is complemented by very small gravity and hence, there is a lack of asymmetry. The result that

we obtain symmetric solutions for large Froude numbers is as found earlier. Also, as before, we

have that the bubble size decreases as K increases (c.f. figures 81g–81i). We find that decreasing

the Froude number leads to more asymmetric results (c.f. figures 81d–81f) — again, another

quality observed earlier. However, the asymmetry is now more evident in the shape of the dividing

streamline rather than in any differences between the two cavity boundaries. This is to be expected

since we impose some degree of symmetry specifically on the free surfaces by specifying that the

velocity potential is equal at the closure points, but the asymmetric effect of gravity on the flow

must be diverted elsewhere.
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Figure 82 highlights a concern of these results: is it clear that the dividing streamline heads

towards being horizontal far upstream? Even in the least extreme case given here (c.f. figure 82a),

the streamline does not appear to be (or head towards) horizontal upstream. Whilst the condition

that θ = 0 in the far-field is imposed implicitly (since it used in deriving the integral equation for

the flow), here it is not imposed explicitly far upstream. An issue of imposing c = −c1 is that it

not particularly well-justified. A cavity closure model is an artificial mechanism and, generally,

focus is near to the object behind which the cavitation bubble forms, e.g. interest in forces acting

on the body. However, whilst these closure models are accepted as not being particularly useful

far downstream, it still calls into question whether it is reasonable to set the velocity potential

equal at the closure points C and C ′. As discussed earlier, Wu [1956] and Mimura [1958] use this

condition for the zero-gravity problem, where it seems more reasonable to impose such symmetry

on the flow. Faltinsen and Semenov [2008] also set the velocity potential equal at the closure

points, but it is better justified to be used in their calculations due to the closed-cavity model

that they employ, as opposed to the open-wake model used in the present study. Overall, there

is evidence here to suggest that it is necessary to explicitly impose that the dividing streamline is

horizontal upstream through use of (5.13).

Finally, we briefly discuss imposing the interpolation formula instead, i.e. setting (5.15). Many

parameter combinations have been tested, but a converged solution has not been obtained. This

suggests that an extra restriction on the flow is indeed necessary, whether that be requiring a flat

dividing streamline far upstream or that the velocity potential is equal at the closure points, or

another option altogether. It stands to reason that a condition other than the interpolation formula

is required here since we obtained solutions both when setting (5.13) and when setting (5.14). This

means that an extra restriction on the flow is needed in order to ‘pick’ the solution. The results

presented here support the idea of imposing the condition on the flow angle far upstream and it is

well-justified in its derivation. We will utilise this in the following section where we set the plate

to be at an arbitrary angle of attack.
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Figure 81: Free-surface profiles obtained by taking N = 40 and imposing equal velocity potential
at the closure points via (5.14).
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Figure 82: Focusing on the dividing streamline of free-surface profiles obtained by taking N = 40
and imposing equal velocity potential at the closure points via (5.14).
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5.1.2 Plate at arbitrary angle of attack

A small adjustment can be made to the formulation of the problem in order to allow for a specified

angle of attack, α ∈ (0, π), other than just π/2 as considered in the previous subsection. The

model is as depicted in figure 76a with the origin of the z-plane still set at the stagnation point,

but with the top section OB of the plate at an angle of α to the x-axis (and the bottom section

of the plate is at α − π to the x-axis, i.e. we still have a flat plate BB′). The plate is of unit

length in a uniform, horizontal stream of unit velocity and we still employ the open-wake model

downstream. It follows that the complex f - and w-planes remain the same as depicted in figures

76b–76c. The Cauchy integral formula can be applied to the w-plane and, since the far upstream

and downstream conditions are as before, we arrive at the same expression for τ(w), i.e. (5.6).

Using the known flow angles along the blade BB′ and along the closures CD and C ′D′ we can

rewrite this as

τ(w) = − 1

π

[ ∫ b1

c1

θ(σ)

σ − w
dσ +

∫ c

b

θ(σ)

σ − w
dσ +

∫ 0

b1

α− π
σ − w

dσ +

∫ b

0

α

σ − w
dσ

]
= − 1

π

[ ∫ b1

c1

θ(σ)

σ − w
dσ +

∫ c

b

θ(σ)

σ − w
dσ

]
− α

π
log

∣∣∣∣ b− wb1 − w

∣∣∣∣+ log

∣∣∣∣ w

b1 − w

∣∣∣∣. (5.33)

Note that this is equivalent to (5.7) for α = π/2, i.e. when the blade is perpendicular to the

undisturbed flow. The Bernoulli condition (5.4) remains the same and so our integral equation

becomes

− 1

π

[ ∫ b1

c1

θ(σ)

σ − w
dσ +

∫ c

b

θ(σ)

σ − w
dσ

]
− α

π
log

∣∣∣∣ b− wb1 − w

∣∣∣∣+ log

∣∣∣∣ w

b1 − w

∣∣∣∣ =
1

2
log

(
K + 1− 2

F 2
y(w)

)
,

(5.34)

for w ∈ R.

We solve numerically by introducing N mesh points along each free surface as defined in (5.10)

and we look to determine the values of θ corresponding to each of the mesh points, i.e. θUj = θ(wUj )

and θLj = θ(wLj ) for j = 1, 2, . . . , N . We also leave b, b1, c and c1 as unknowns to be found. Just as

for the case of the plate normal to the flow, we have 2N + 4 unknowns. Discretising (5.34) using

N − 1 collocation points (as defined in (5.11)) along each cavity boundary, then we have 2N − 2
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equations. The flow angles at the plate ends and at the cavity closure points are known, so we set

θ(b) = α, θ(b1) = α − π, θ(c) = 0 and θ(c1) = 0. These conditions can be rewritten as θU1 = α,

θL1 = α−π, θUN = 0 and θLN = 0. We also set unit length of the vertical plate via |z(b)− z(b1)| = 1,

i.e. ∣∣∣∣ ∫ b

0

2σe−τ(σ)eiαdσ −
∫ b1

0

2σe−τ(σ)ei(α−π)dσ

∣∣∣∣ = 1. (5.35)

This can be simplified to ∫ b

0

2σe−τ(σ)dσ +

∫ b1

0

2σe−τ(σ)dσ = 1. (5.36)

The final equation is chosen to be
∫∞
−∞ θ(σ) dσ = 0, i.e. imposing that the dividing streamline is

horizontal far upstream. Utilising the known flow angles, this can be rewritten as

∫ b1

c1

θ(σ)dσ +

∫ c

b

θ(σ)dσ + α(b− b1) + b1π = 0. (5.37)

Overall, we have 2N + 4 equations in 2N + 4 unknowns as before, to be solved numerically.

Some example free-surface profiles are presented here for various values taken for the parameters

F , K and α. As seen in the case where α = π/2 (of the previous subsection), here we have that,

for a given angle of attack, the bubble size increases as K decreases (c.f. figures 83d–83f). The

cavitation number impacts the position of the stagnation point along the finite plate, but only to

a very small degree. The Froude number also affects the stagnation point but, again, not greatly.

The angle α of attack clearly dominates the positioning of the stagnation point (c.f. figures 83a–

83c). Another point to note is that, as the Froude number decreases, the bubble size increases.

This is as seen in the previous subsection for α = π/2. It has been checked that, if we set α = π/2,

then we recover the profiles and results as presented in the previous subsection. Another similarity

is that a converged solution is not obtainable for every given set of the parameters (i.e. F , K and

α). However, it is left for future work to obtain a plot as shown in figure 80 to identify (for a given

Froude number) the smallest cavitation number for which a solution can be achieved and how this

depends on α. For now, we move on to the final problem, where the flow is bounded above by a

free surface.
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Figure 83: Free-surface profiles obtained by taking N = 40 for the gravity flow past the plate at
an angle α of attack.
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5.2 Wake horizontal closure with free surface

The final problem that is presented here now includes a free surface that bounds the flow from

above. The flow is as depicted in figure 84a. We have a finite-length plate that is normal to a

uniform, horizontal stream of speed U . The plate is submerged with the lower edge of the plate

at B′ at a distance d̃ below the level of the free surface of the undisturbed stream. We will refer

to d̃ as the draft of the flow. The effects of gravity will be included and, again, we utilise the

open-wake closure model. Recalling that the motivation for this problem here is interest in flow

past rowing blades, it is sensible to limit the work in this section to wake-flow only. This leads to

a useful simplification of the problem: whilst gravity is included here on the free surface, we will

neglect the effects of gravity on the wake boundaries. This can be justified by noting that a wake

contains fluid of the same density as that of the rest of the flow, but it is at rest and so we have

hydrostatic pressure within the wake. The Bernoulli condition tells us that

p+ ρgy = pc (5.38)

within the wake, where p denotes that pressure, ρ is the density, g is the gravitational acceleration

and pc is a constant. Then, through use of (5.38) to eliminate the pressure p from the Bernoulli

condition, along the wake boundaries we have

1

2
ρq2 + pc = C, (5.39)

where C is a constant and q denotes the speed. Hence, gravity does not appear in this boundary

condition and so it seems reasonable to neglect the effects of gravity along the boundaries of the

wake.

We will now formulate the overall problem. The flow is as described above and shown in figure

84a where z = x + iy with the x-axis set along the level of the undisturbed free surface and the

y-axis is set along the vertical plate BB′. We have an open-wake model, so the flow angle is zero

along CD and C ′D′. The effect of gravity is included on the free surface EF that bounds the

flow above and we assume constant atmospheric pressure p = pa along this free surface. On the
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Figure 84: Complex planes for open-wake closure with a free surface bounding the flow above.

other hand, gravity is not included along the wake boundaries BC and B′C ′; and the pressure is

taken to be constant (say, p = pc) along these boundaries. We normalise the velocity such that

the uniform, horizontal stream is of unit speed and we normalise the distances such that π is the

magnitude of the net volume flux of the flow above the plate. We denote the characteristic length

for the latter normalisation by L; and note that the normalised depth of the dividing streamline

far-upstream is such that it lies along y = −π. Then, the Bernoulli condition on the free surface

EF is

1

2
q2 +

y

F 2
=

1

2
, (5.40)

where F = U/
√
gL. Along the wake boundaries we have

q2 = K + 1, (5.41)

where K = (p∞ − pc)/(1
2
ρU2) is the wake underpressure coefficient and p∞ denotes the pressure
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of the stream in the far-field. As discussed in the introduction, the wake underpressure coefficient

for wake flows is analogous to the cavitation number for cavity flows.

As usual, we let f denote the complex velocity for the flow. We set ψ = 0 along the dividing

streamline and ψ = π along the free surface (since we have a net volume flux of π for the flow

between the dividing streamline and the free surface). We set the velocity potential at the stag-

nation point to be φ = 1. Then, there is a branch cut along the positive φ-axis for φ > 1. The

f -plane is as depicted in figure 84b. We also define an intermediate complex plane by ζ = ξ + iη

via

f = ζ − log ζ. (5.42)

Therefore, the flow region maps to the lower half of the ζ-plane. In particular, the free surface EF

maps to the negative ξ-axis; and the wake boundaries, along with the vertical plate, map to the

positive ξ-axis. Also note that, by the given mapping, ζ = 1 corresponds to the stagnation point

S. The positions in the ζ-plane corresponding to the edges of the plate and the closure points

are unknown and left to be determined. By b, b1, c and c1 we denote these unknown positions

corresponding to B, B′, C and C ′ in the ζ-plane, respectively.

As was the case earlier, we define Ω = τ−iθ = log (df/dz). Then, we apply the Cauchy integral

formula to Ω(ζ) for ζ ∈ R with a semi-circular contour C̃ = CR ∪ [R, ζ + ε] ∪ Cε ∪ [ζ − ε,−R] in

the lower-half of the ζ-plane, where CR is the semi-circular arc of radius R centred at the origin,

Cε is the semi-circular arc of radius ε centred at ζ and the intervals [R, ζ + ε] and [ζ − ε,−R] are

along the real ζ-axis. We obtain

τ(ζ)− iθ(ζ) = − 1

πi
P.V.

∫ ∞
−∞

τ(σ)− iθ(σ)

σ − ζ
dσ (5.43)

and in particular,

τ(ζ) =
1

π
P.V.

∫ ∞
−∞

θ(σ)

σ − ζ
dσ. (5.44)

Then, by using the known flow angles along the vertical plate and the open-wake closure, the
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expression can be rewritten as

τ(ζ) =
1

π

[ ∫ 0

−∞

θ(σ)

σ − ζ
dσ +

∫ b

c

θ(σ)

σ − ζ
dσ +

∫ c1

b1

θ(σ)

σ − ζ
dσ

]
+

1

2
log

∣∣∣∣ (1− ζ)2

(b− ζ)(b1 − ζ)

∣∣∣∣. (5.45)

Recall that the speed of the flow can be expressed as q = exp(τ) and that the dynamic boundary

condition along the wake boundaries is given by (5.41). It follows that, along BC and B′C ′ where

ζ ∈ R such that c < ζ < b or b1 < ζ < c1, we have

1

2
log (K + 1) =

1

π

[ ∫ 0

−∞

θ(σ)

σ − ζ
dσ+

∫ b

c

θ(σ)

σ − ζ
dσ+

∫ c1

b1

θ(σ)

σ − ζ
dσ

]
+

1

2
log

∣∣∣∣ (1− ζ)2

(b− ζ)(b1 − ζ)

∣∣∣∣. (5.46)

We also look to obtain an integral equation that is valid along the free surface EF . First, we

differentiate the Bernoulli condition (5.40) along EF with respect to ζ so we have

dτ

dζ
e2τ +

1

F 2

dy

dζ
= 0. (5.47)

Note that we can express the derivative that appears in the second term above as

dy

dζ
= e−τ(ζ)

(
1− 1

ζ

)
sin (θ(ζ)). (5.48)

Then, using this along with (5.47) and the fact that τ → 0 as ξ → −∞, we find

τ(ζ) =
1

3
log

(
1− 3

F 2

∫ ζ

−∞

(
1− 1

ξ

)
sin (θ(ξ)) dξ

)
. (5.49)

Finally, eliminating τ between (5.45) and (5.49), then along EF where ζ ∈ R s.t. −∞ < ζ < 0,

we look to satisfy

1

3
log

(
1− 3

F 2

∫ ζ

−∞

(
1− 1

ξ

)
sin θ(ξ) dξ

)
=

1

π

[ ∫ 0

−∞

θ(σ)

σ − ζ
dσ +

∫ b

c

θ(σ)

σ − ζ
dσ

+

∫ c1

b1

θ(σ)

σ − ζ
dσ

]
+

1

2
log

∣∣∣∣ (1− ζ)2

(b− ζ)(b1 − ζ)

∣∣∣∣.
(5.50)

Before summarising the problem and discretising to obtain a numerical solution, we first discuss
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the flow far upstream where, along the free surface, we have ξ → −∞. Considering (5.45) as

ξ → −∞, we have that

τ(ξ) ∼ 1

ξ

(
− 1

π

∫ ∞
−∞

θ(σ) dσ
)

+ · · ·

∼ 1

ξ

[
− 1

π

(∫ 0

−∞
θ(ξ)dξ +

∫ b

c

θ(ξ)dξ +

∫ c1

b1

θ(ξ)dξ

)
− 1 +

1

2
(b+ b1)

]
+ · · ·

∼ B

ξ
+ · · · ,

(5.51)

where we let B denote the constant coefficient of the ξ−1 term. From this behaviour of τ far

upstream, the Bernoulli condition (5.40) along the free surface and the fact that x ∼ ξ as ξ → −∞

(since we have unit horizontal velocity of the undisturbed flow), then we have

dy

dx
∼ BF 2

x2
as x→ −∞ (5.52)

and hence

θ(ξ) ∼ BF 2

ξ2
as ξ → −∞, (5.53)

where B is the constant as defined above.

As in the previous cases, we discretise the problem by introducing N + 1 mesh points along

each of the wake boundaries and along the free surface, i.e. we have

ξUj − log ξUj = b− log b+
j − 1

N

(
c− b+ log

b

c

)
, upper wake boundary BC

ξLj − log ξLj = b1 − log b1 +
j − 1

N

(
c1 − b1 + log

b1

c1

)
, lower wake boundary B′C ′

ξFSj − log |ξFSj | = X− +
j − 1

N
(X+ −X−), free surface EF

(5.54)

where j = 1, 2, . . . , N + 1 and where the finite range (X−, X+) is used to truncate the range

(−∞,∞) of the velocity potential. Then, the unknowns of the problem are the values of the flow

angle θ at each of these mesh points, i.e. looking to find θFSj = θ(ξFSj ), θUj = θ(ξUj ) and θLj = θ(ξLj )

for j = 1, 2, . . . , N + 1. Recall that the positions corresponding to B, B′, C and C ′ in the ζ-plane

which are b, b1, c and c1, respectively, are unknowns. We also have the constant B of (5.51) to be
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determined. Therefore, overall we have 3N + 8 unknowns.

For the equations in these unknowns, we introduce N collocation points along the free surface

and wake boundaries defined by

ξUinter
j − log ξUinter

j = b− log b+
j − 1

2

N

(
c− b+ log

b

c

)
, upper wake boundary

ξLinter
j − log ξLinter

j = b1 − log b1 +
j − 1

2

N

(
c1 − b1 + log

b1

c1

)
, lower wake boundary,

ξFSinter
j − log |ξFSinter

j | = X− +
j − 1

2

N
(X+ −X−), free surface,

(5.55)

for j = 1, 2, . . . , N . Satisfying the condition (5.50) at the collocation points along the free surface

and the condition (5.46) at the collocation points along the upper and lower wake boundaries leads

to 3N equations. We also have several known values of the flow angle θ. Along the upper wake

boundary we know that

θ(b) = θU1 =
π

2
and θ(c) = θUN+1 = 0. (5.56)

Along the lower wake boundary we have

θ(b1) = θL1 = −π
2

and θ(c1) = θLN+1 = 0. (5.57)

Along the free surface we take

θFS1 =
BF 2

(ξFS1 )2
and θFSN+1 = 0, (5.58)

where the upstream asymptote for τ is utilised in the first condition here. We also have that the

constant B is constrained by

B = − 1

π

(∫ 0

−∞
θ(ξ)dξ +

∫ b

c

θ(ξ)dξ +

∫ c1

b1

θ(ξ)dξ

)
− 1 +

1

2
(b+ b1). (5.59)

This is as derived earlier in (5.51). Finally, we set the (normalised) length H of the vertical plate

by imposing

yB − yB′ = H. (5.60)
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Hence, we have 3N + 8 equations. Note that we specify the values of the parameters F , K and H.

We can plot the profiles from a known vertical placement of the closure C ′D′ of the lower wake

boundary: we have that yC′ = −π(1 + B), where yC′ denotes the y-value at C ′. This expression

can be derived by noting that the depth of the dividing streamline far upstream (i.e. point A in

figure 84a) is −π. Also, the πB contribution to the expression for yC′ can be obtained by finding

the difference between the y-values far upstream at A and far downstream at D′. This is achieved

by integrating around a large arc in the lower-half of the ζ-plane, taking the limit as the radius

of this arc tends to infinity and noting that Ω ∼ B/ζ in the far-field. The (normalised) draft d of

the plate can then be determined in post-processing (by integrating from the closure point C ′ on

the lower wake boundary to the bottom B′ of the plate). It is worth noting that, in the present

study, the problem is posed with the wake underpressure coefficient K as a free parameter and

the draft is obtained from the solution. This allows for convenient comparison of the results with

those found by Tuck and Vanden-Broeck [1998]. However, the problem could (although it is not

done here) be reworked so that the draft is prescribed and K is left to be found — this is a more

natural way to consider the physical problem of the submerged plate placed at some given distance

beneath the level of the undisturbed free surface. The results will be discussed with this in mind.

We begin analysis of the results by first looking solely at the wake boundaries. Figure 85 shows

numerous plots of the wake boundaries obtained where we set K = 1 and H = 0.2. We find that,

as the Froude number F decreases, the upper wake boundary decreases in length and the lower

wake boundary increases in length. Therefore, for large Froude numbers (above some value, say

Fe), the upper wake boundary is longer than the lower wake boundary; and for Froude numbers

below Fe, the opposite is true. In the case presented in figure 85, we can see that the value for

Fe lies between 4 and 5. The decrease in the upper wake boundary length is to be expected since

the jet between the upper wake boundary and the free surface will have greater curvature due

to the greater gravitational dominance and, therefore, obtain a zero flow-angle sooner, thereby

shortening the boundary. As F → ∞, there is a limiting size of the wake. We can see this from

figure 86 which is a plot of the x-coordinate of the closure point on the upper free surface. Also,

the resulting draft d increases as F decreases, i.e. with greater gravity, the vertical plate must be
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submerged deeper to obtain the wave-free solution.

Further to this, still looking at just the wake boundaries, we have that, as K decreases, the

size of the wake increases — this is qualitatively as seen in the earlier cavity and wake problems.

This is clear in figure 87. Also, as K decreases, the draft d decreases. This is not visibly obvious

from the plots of figure 87 since the differences in the draft are small. Therefore, we note that, for

K = 1 we have d = 3.23 and for K = 0.6 we have d = 3.18. Recall that earlier, it was discussed

that it may be more natural to instead set the draft d and leave the wake underpressure coefficient

to be found. In this light, it worth restating the observation relating K and d: as d decreases, K

decreases also.

Finally, we consider the effect of varying H. We find that, as the length H of the vertical plate

decreases, the width of the wake obviously decreases and the length of the wake decreases also.

This is evident in figure 88. However, as H decreases, the draft d also decreases. This is due to

the vertical plate and wake becoming more slender as H decreases, and so the effect of the body

and wake on the flow diminishes. Then, a wave-free solution can still be obtained when the draft

of the plate is small.

We continue to analyse the results, but now we shift focus away from just the wake boundaries.

Figures 89 and 90 show numerous examples of flow profiles: the parameters F , K and H are

varied and the effects on the wake boundaries and free surface are visible. Figures 89a and 89b

demonstrate that a larger wake underpressure coefficient K results in smaller disturbance to the

free surface. This is to be expected since a larger value of K leads to shortened wake boundaries,

so the combined ‘obstacle’ of the vertical plate and the wake is smaller, hence the lesser effect on

the free surface. Recall that the Froude number F is based on the characteristic length L which is

the depth of the stagnation streamline far upstream. Figures 89c and 89d show how F affects the

flow profiles. As discussed earlier, a larger Froude number results in a smaller draft and the visibly

increased disturbance to the free surface is, therefore, to be expected. Similarly, the increased

effect on the free surface of a longer plate (i.e. larger H) is clear in figure 90. Furthermore, it

is clear that the undisturbed level of the free surface (i.e. y = 0) is not reached until very far

upstream, due to the slow decay of Ω far upstream. However, in the case shown in figure 90a
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Figure 85: Profiles to show the wake boundaries for N = 200, K = 1 and H = 0.2. Note that the
undisturbed free surface is set along y = 0. The dashed lines are the horizontal wake closures.
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Figure 86: A plot of the x-coordinate xC of the closure point on the upper wake boundary for
N = 200, K = 1 and H = 0.2.
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Figure 87: Profiles to show the wake boundaries for N = 200, F = 4 and H = 0.5. Note that the
undisturbed free surface is set along y = 0. The dashed lines are the horizontal wake closures.
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Figure 88: Profiles to show the wake boundaries for N = 200, F = 3 and K = 1. Note that the
undisturbed free surface is set along y = 0. The dashed lines are the horizontal wake closures.
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Figure 89: Profiles to show the wake boundaries and free surface for N = 200. Note that the
undisturbed free surface is set along y = 0. The dashed lines are the horizontal wake closures.
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Figure 90: Further profiles to show the wake boundaries and free surface for N = 200. Note that
the undisturbed free surface is set along y = 0. The dashed lines are the horizontal wake closures.

where the plate is small, we can observe the recovery of the undisturbed flow far upstream.

For a more quantitative examination of the results, we introduce Froude numbers based on the

draft d of the plate and based on the flow quantities that characterise the channel between the

free surface and the upper wake boundary. We let q∞ and h∞ denote the non-dimensional speed

and width (respectively) of the channel that forms above the wake. Then, we let

Fd =
F√
d
, (5.61)

which is a Froude number defined based on the draft; and we let

Fh =
Fq∞√
h∞

, (5.62)

which is a Froude number defined based on the downstream channel above the wake. These Froude

numbers are as utilised by Tuck and Vanden-Broeck [1998] in their work on the similar ploughing
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flows where the bluff body is a semi-infinite, rectangular block (instead of the plate and wake that

we investigate in the present study). A small change to the problem can aid in discussing the

results: instead of setting the plate length H we can instead impose a given value for the ratio

between the plate length and draft of the body, i.e. we set H/d (instead of H) to some given value

and this does not change the number of unknowns or equations. It is worth noting that Tuck and

Vanden-Broeck [1998] present their findings with respect to this H/d parameter.

Figure 91 shows plots of Fh against Fd for two different given values for the wake underpressure

coefficient and for various given values of the ratio H/d. Note that these Froude numbers are

determined here in post-processing once the solution has been obtained. These plots are similar to

those presented by Tuck and Vanden-Broeck [1998]. In figure 91, as H/d → 0, Fh varies linearly

with Fd. In the ploughing flows case of Tuck and Vanden-Broeck [1998], as H/d → 0, it is found

that Fh = Fd which is to be expected since it is the zero-disturbance limit. To recover these

results in the model of the present study, the limit as K → ∞ is also required. This is apparent

since, in figure 91, the plots of Fh against Fd (approximately) translate horizontally to the left

as the wake underpressure coefficient increases; and since increasing K decreases the length of

the wake boundaries then, as K → ∞, we are left with a vertical plate and horizontal (closure)

streamlines that begin at the plate corners — hence approaching a semi-infinite, rectangular block

as studied by Tuck and Vanden-Broeck [1998]. We also approach a linear relationship between Fh

and Fd in figure 91 for each value of H/d for large given values of F . Note that this corresponds

to all of the Froude numbers tending towards infinity, i.e. for small gravity. Unlike the ploughing

flows case of Tuck and Vanden-Broeck [1998], we do not simply obtain Fh ≈ Fd for small gravity

since the pressure difference between the stream and within the wake in our case means that the

velocity upstream and the velocity downstream in the channel above the wake cannot be equal.

Quantitatively, this is due to the wake underpressure coefficient being non-zero.

From figure 91, it is also clear that, for supercritical flow downstream, there is a minimum

value for Fd (the Froude number based on the draft of the plate). We can obtain solutions where

we find that Fh < 1 and there appear to be small waves on the free surface. However, it should be

noted that, by the truncation utilised in the numerical procedure — where we set θ = 0 close to
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Figure 91: A plot of Fh against Fd for N = 200 and various given values for H/d. From left to
right, the lines correspond to setting H/d = 0.01, 0.1, 0.2, 0.5 and 1.
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the origin in the ζ-plane, i.e. for ξ between ξFSN+1 and zero — we suppress waves. In future work,

the numerical procedure could be adapted to more-readily allow for wave solutions, similarly to

calculations by Tuck and Vanden-Broeck [1998] for their ploughing flows.

The model and results presented here can be used to better understand the flow past a sub-

merged, finite-length plate that is normal to the stream with a wake forming behind the object.

The wake model presented here utilises a closure model that is relatively simple to implement,

but it does lack use in terms of understanding the flow far downstream. However, the artificial

nature of such a closure mechanism is discussed in the introduction of this thesis and its merits

are highlighted — in particular, the resulting flow close to an object is largely unaffected by choice

of closure model. Future work on this problem could involve solving with an alternative closure

model that leads to a closed wake (as opposed to the open-wake closure model utilised in the

present work) and so resulting in more physical flow far downstream.

In this chapter, we first considered the effect of gravity on the cavity or wake flow in an

unbounded fluid. By obtaining a boundary integral equation and discretising, we have looked to

numerically solve for the flow. We have considered three possible options for the extra equation in

order to have a square system to be solved. We have considered using an equation derived from

explicitly imposing horizontal flow far upstream, setting equal velocity potential at the closure

points and imposing an interpolation formula. We concluded that a condition on the flow is required

and that the interpolation formula is not sufficient. More specifically, we found that imposing that

the dividing streamline is horizontal far upstream is the most suitable. This condition is then

utilised in the subsequent iteration of the problem where the plate is at an arbitrary angle of

attack. Overall, we found that (as usual), as the cavitation number decreases, the size of the

cavity increases. Furthermore, for a given Froude number, there is a minimum cavitation number

for which a solution can be obtained. We then moved to investigate (exclusively) wake flow past

a submerged plate that is normal to the stream which is bounded above by a free surface (upon

which gravity acts). Note that in this case we do not include the effects of gravity on the wake

boundaries. Again, we have found that, as the wake underpressure coefficient decreases, the wake

191



size increases. Also, a solution cannot be obtained for every set of the parameters, i.e. the Froude

number, wake underpressure coefficient and length of the plate. In particular, for supercritical

flow downstream, there is a minimum value for the Froude number based on the draft of the plate.

It has also been discussed that future work on this wake flow past a submerged plate normal to

the stream would benefit from reformulating the problem to instead prescribe the draft to better

reflect the physical problem.
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6 Conclusions and future work

A wide variety of free-surface, potential flows have been investigated in this thesis. In particular,

we have considered spillways, waterfalls and flows past submerged obstacles. Numerical approaches

have been utilised to obtain solutions to these problems, but it should be noted that conformal

mappings are at the centre of these approaches. Series truncation and collocation has been used for

the spillways and waterfalls, including those cases that involve a submerged obstacle upstream; and

a boundary integral method has been used for the problems concerning cavity and wake flows. The

numerical methods utilised in this study are very powerful. The series truncation and collocation

technique allows for a numerical solution to be obtained easily (since the code is simple to write)

once a suitable complex velocity ansatz has been established, but arriving at such an ansatz can be

difficult. On the other hand, it is quick to obtain the boundary integral equations via the Bernoulli

condition and application of the Cauchy integral formula, but care must be taken in numerically

evaluating the principal value integrals that are involved whilst taking note of the singularities in

the flow (for example, at the ends of the plate in the cases considered in chapters 4 and 5).

It has been shown (in chapters 1 and 3) how conformal mappings coupled with series trunca-

tion and collocation can be applied to a greater range of scenarios than previously investigated,

highlighting the use and flexibility of this approach as a tool for obtaining solutions to potential

flow problems. Furthermore, when jets are involved and conformal mappings that involve loga-

rithms are utilised, a limitation of the method is that a very large number of points are required

to reach a reasonable distance downstream (if plotting using the mesh points utilised in solving for

the unknowns). However, in the case of a free-falling gravity jet, we have shown that employing

a three-term expansion for the jet singularity downstream enables the profiles to be extrapolated

whilst still maintaining the expected parabolic nature of the jet downstream. The three-term

expansion also allows for obtaining good solutions that we can extrapolate in more generalised

cases than just the simple waterfall, i.e. cases where there is a free-falling jet downstream and an

arbitrarily-shaped bed upstream.

Investigations into the numerical method used for flows involving jets (i.e. spillways and wa-

terfalls) have led to the conclusion that, by smoothing the values of y at the collocation points
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(which are then utilised in satisfying the dynamic boundary condition along the free surface(s))

and by employing the A-method (introduced in §2.4), we arrive at improved coefficient decay of

the series representation for the complex velocity of the flow. Hence, we obtain improved numerical

solutions.

In the cavity and wake flow problems discussed in chapters 4 and 5, we have employed the open-

wake model. In the zero-gravity case, we have demonstrated three methods of solution: using only

conformal mappings; forming a boundary integral equation and then inverting the finite Hilbert

transform involved; and discretising the boundary integral equation to solve numerically. It has

been discussed that the latter two approaches are suitable to be applied to other related zero-

gravity cavity and wake flow problems. In the cavity and wake flows including the effects of

gravity (chapter 5), we have obtained numerical solutions by using a boundary integral equation

method. We have found that, for a given Froude number, a solution cannot be obtained for every

cavitation number — more specifically, there is a minimum cavitation number that can be set for

each Froude number. In §5.2, we restricted our investigation to just consider wake flow past a

submerged plate that is normal to a uniform, horizontal stream. Again, we obtained numerical

solutions through use of a boundary integral equation method and these solutions are dependent

on a Froude number, wake underpressure coefficient and a prescribed length or ratio of lengths

(i.e. setting either the length of the plate or the ratio of the length of the plate and the draft). The

dependencies of the solution on these parameters have been investigated; and similarly to earlier

wake and cavity cases, we have found that a solution cannot be achieved for every combination

of the parameters. In particular, there is a minimum Froude number (based on the draft of the

plate) for which solutions can be obtained that are supercritical downstream.

Whilst the investigations presented in this thesis answer many questions, there is certainly scope

for future work on the flows discussed here. For example, in the interest of further validating the

numerical results of the present study, comparisons could be made with experimental simulations.

In particular, comparing numerical and experimental coefficients of drag and lift would be of use

for investigations of wake flow past the submerged vertical plate. With reference to a motivation of

this particular problem, these comparisons would be useful for research into the flow past a rowing
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blade. Further to this, generalising the model to investigate the flow past an arbitrarily-shaped

obstacle would clearly improve the applicability to the rowing scenario.

Specifically regarding problems that involve a free-falling jet, the improved numerical approach

presented in chapter 2 can be applied to more related problems such as broad-crested weirs,

breaking-wave flows and fluid expelled from a nozzle — all of which are clearly physical examples.

Moreover, practical research interest in stepped spillways or waterfalls is often motivated by use

of the steps in dissipating energy. Future investigations could include a dissipation factor in the

calculations whilst still retaining the potential flow theory approach.

More broadly, we have exclusively sought wave-free solutions in the problems discussed through-

out this work. However, wave solutions are also valid, realistic solutions and they are obtainable

through the series truncation and collocation approach. Therefore, this is another direction of

future work from the problems discussed here.

Overall, in this thesis, we present several improvements to methods and results for potential

flow problems that have been investigated previously by other authors; we present solutions to

many problems that have not been covered in the existing literature; and there are several avenues

available to take this work further to improve our understanding of (and ability to calculate) jet,

cavity and wake flows.
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