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Liquid viscosity has a potential e�ect on bubble dynamics. This paper is concerned with bubble
dynamics in a compressible viscous liquid near the free surface. The liquid-gas ow is modeled
using the Eulerian �nite element method (EFEM) coupled with the volume of uid method (VOF).
The numerical results have been shown to be in excellent agreement with those from the spherical
bubble theory and experiment. Parametric studies are carried out regarding the Reynolds number
Re and the stand-o� parameter d. It clearly demonstrated that the liquid viscosity inhibits bubble
pulsation, jet ow, free surface jet, and bubble splitting. Quantitatively, as Reynolds number Re
decreases, the maximum bubble volume, jet tip velocity, free surface spike and crown height decrease,
and the toroidal bubble splitting weakens. As the stand-o� parameter d increases, the maximum
bubble volume, jet velocity, and bubble average pressure peak increase while the height of the free
surface spike decreases. Close observation reveals that the free surface crown tends to disappear at
small Re or large d, further indicating the complex mechanism behind the crown spike evolution.

I. INTRODUCTION

Pulsating bubble dynamics have been widely applied in marine engineering, biomedicine and other
�elds, such as underwater explosion1–8, ultrasonic bubble cleaning9–13, microbubble ultrasound contrast
agents14–16, and digital printing technique17–19. When the initial bubble pressure is much greater than the
pressure of the ow �eld, it will expand and start to oscillate under the action of the pressure gradient on
both sides of the interface. At the same time, bubbles oscillating near the boundary (such as the free surface)
can exhibit non-spherical dynamics such as jet generation due to the inuence of asymmetric forces20–27.
For the pulsating bubble near the free surface, the oscillation and migration of the bubble have strong
nonlinear characteristics due to the inuence of the deformation of the free surface28–32. If liquid viscosity
is considered, the nonlinear characteristics of the bubble, such as jets and tears, will be changed, which will
a�ect the application of the bubble in engineering. Thus it is necessary for us to study the interaction of
pulsating bubbles and the free surface in viscous uids.
Due to the common phenomenon of the pulsating bubble jet near the free surface in nature, many scholars

have studied this phenomenon and found that depth, buoyancy, and pressure are the key factors a�ecting
bubble dynamics and the free surface motion33–47.Theoretical models such as the Rayleigh-Plesset equation48,
and the Keller-Miksis equation49 can accurately predict the pulsating bubbles in free �eld, but they cannot
include the inuence of free surface and bubble migration. Recently, Zhang et al.50 established a new
oscillating bubble dynamics uni�ed equation with an elegant mathematical form, considering various factors
such as boundary, gravity, viscosity, compressibility, and bubble migration. This equation expands the
applicability of bubble theory and provides a new idea for subsequent research. However, most of the theories
are based on the assumption of spherical bubbles and cannot account for bubble jets and splitting, numerical
and experimental methods are still widely used to study bubble dynamics. Blake and Gibson33,34 observed
the movement of bubbles adjacent to the free surface through the experiment of spark-generated bubbles.
They found that the bubble is repelled during the collapse and generates downward liquid jets. Supponen36

studied the bubble jet's generation conditions through many laser-induced bubble experiments and proposed
an anisotropy parameter to describe the three states of the bubble jet, which can comprehensively consider the
inuence of the buoyancy of the bubble and the distance to the free surface. Zhang37 used the discharge spark
generator to study the interaction of the bubble and the free surface at di�erent initial depths. Furthermore,
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they summarized the laws of bubble shapes and pulsation periods, heights of the water skirts and the free
surface spikes, and jet tip velocities and identi�ed six distinctive patterns of the free surface. Cerbus42

observed the motion characteristics of the free surface jet and analyzed the formation mechanism of the
second jet and the e�ect of the two control parameters. Unfortunately, the e�ect of liquid viscosity on
the interaction between the pulsating bubble and the free surface has rarely been mentioned in previous
experiments. For numerical techniques, the boundary element method (BEM) has been widely employed in
studying non-spherical bubble dynamics because of low computational cost51–55. However, the traditional
BEM was developed based on the potential ow theory, thus it is not easy to calculate the e�ect of the
viscosity of the liquid on bubble dynamics. Based on the traditional BEM, Miksis56 proposed Boundary
Layer theory to deal with viscous bubble dynamics. Then Lunderen57 and Boulton-Stone58 extended the
theory and obtained the continuous expression of normal and tangential components. Based on these studies,
Li54 used the Boundary Layer theory to study the e�ects of the Reynolds number on the movement of two
bubbles close to the free surface and found that viscosity would depress the bubble movement. Lind53 paid
attention to the inuence of viscoelasticity on bubble dynamics in the vicinity of the free surface. Moreover,
Lind also found that viscoelasticity a�ected the bubbles' jet and changed the shape of collapsing bubbles.
However, the boundary layer theory only calculates in a thin layer at the bubble boundary, which cannot
accurately calculate the inuence of viscous dissipation on the liquid outside the boundary layer. It is also
challenging to consider the compressibility of the liquid at the same time.
Many numerical multiphase ow models based on domain methods are also widely used to analyze bubble

dynamics, which can obtain complete ow data. Li38 used the open-source software OpenFoam to numerically
study the bubble bursting properties close to the free surface and found that gas ow plays an important
role in the re-closure of burst bubbles. Singh45 studied the internal gas dynamics of burst bubbles using
the VOF method. Liu39 combined FVM and FTM to investigate the dynamical characteristics of oscillating
bubbles near the free surface at di�erent depths and buoyancy. Saade40 used the FVM solver to simulate the
crown of bubble-induced generation, analyzed the inuence of non-dimensional parameters such as Reynolds
number and stand-o� parameter on crown formation, and explained the mechanism of crown formation.
Saade aimed to obtain stable free surface jets for application in the LIFT process, and therefore a lower
initial pressure of the bubble was chosen. However, this is not suitable for simulating higher initial pressure
bubbles such as underwater explosions and high-voltage spark bubbles. Bempedelis41 numerically studied the
dynamics of a bubble-free surface coupling system, focused on the dynamic characteristics and deformation
of the free surface, and characterized the process of bubble-induced atomization. From the above analysis,
previous researchers hardly consider the e�ects of liquid compressibility and viscosity simultaneously when
analyzing the coupling e�ect between high-pressure bubbles and the free surface. However, compressibility
and liquid viscosity have essential e�ects on the dynamic characteristics of high-pressure pulsating bubbles.
For more accurate results, the compressibility e�ect should be considered59. The EFEM numerically solves
the Navier-Stokes equation and uid equation of state based on the domain approach. It can consider both
the strong compressibility, viscosity, and pressure distribution of the uid. The EFEM uses the operator
splitting algorithm to separate the governing equations, which allows it to be exibly combined with other
numerical techniques to improve accuracy and applicability. At the same time, the combination of VOF for
interface capture and reconstruction can accurately and exibly simulate the splitting and merging process of
two-phase interface deformation and topological relationship changes. This method can accurately simulate
the complete stage of underwater explosion and the interaction between the bubble and the free surface.
The present paper establishes an axisymmetric dynamics model of the interaction between the free surface

and bubbles using EFEM. The VOF is used to capture the uid interface and study the e�ect of liquid
viscosity on bubbles and free surface motion. The main contents are as follows: the second section describes
the physical model, governing equations, and initial conditions of the problem, establish the bubble dynamics
model, and veri�es the accuracy of the numerical results. In section 3, the e�ects of liquid viscosity and
distance on the bubble-free surface coupling dynamics are studied, and the mechanical mechanism is analyzed
in detail. The fourth section draws some critical conclusions.

II. THEORETICAL AND NUMERICAL MODELS

A. Problem assumptions and governing equations

This study mainly focuses on the interaction between bubbles and the free surface. A sketch is shown
in Fig.1(a) to describe the problem. An initial spherical bubble is placed in a static viscous liquid at a
depth d below the free surface. The bubble can be induced by spark discharge, underwater explosion, or
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air-gun, and the initial pressure is higher than the surrounding uid. The bubble expands rapidly under
pressure and interacts with the free surface. The non-reection boundary condition is used for the edge of
the computational domain60. An axisymmetric coordinate system is established as shown in Fig.1(a), where
O, r, z, and ' represent the coordinate origin, radial coordinate, axial coordinate, and angular coordinate,
respectively, and the computational domain size is w × h. The gravity points to the negative direction of
the z axis.
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FIG. 1. (a)Con�guration for the interaction between the single bubble and the free surface; (b)comparison of bubble
radius in di�erent calculation domain sizes 2Rm × 4Rm, 4Rm × 8Rm, 5Rm × 10Rm, 6Rm × 12Rm, and 8Rm × 16Rm.

In this paper, the e�ects of liquid viscosity on the interaction of a pulsating bubble and the nearby free
surface were studied, while surface tension and heat conduction could be neglected34,61–64. In the current
cylindrical coordinate system, the following governing equations can be established:
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�i�ieivr
r

= �i;

(1)

which represent the volume fraction, mass conservation, momentum conservation in r and z directions, and
energy conservation equations, respectively. Here, the subscript 'i' represents the type of uid, � represents
volume fraction which is the volume ratio of the uid phase to the element and

∑
�i = 1, � is the density

of the uid and �=�1�1+�2�2 is the average density, K= �c2 is uid bulk modulus, c is the sound speed
of the uid, p is the pressure, and e is the speci�c internal energy of the uid, v=(vr; vz)

T is the velocity
vector of the uid, g is gravity vector. The subscripts r; z indicate the components of the vector in the r and
z directions, respectively. τ is the viscous stress tensor, and τr=(�rr − �''; �rz)

T is a component of tensor

τ . The symbol '⊗' is the tensor product operator, and ∇=( @
@r ;

@
@z ) is the gradient operator. Besides, in the

mixing element, the average bulk modulus K can be determined by

K =
K1K2

�1K2 + �2K1
: (2)

Numerical analysis of nonlinear interaction between a gas bubble and free surface in a viscous compressible liquid



4

In a Newtonian uid, the viscous stress tensor τ can be expressed as38
τ = ��iτi = ��i�i
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where � is the dynamic viscosity coe�cient, and I is the unit matrix. For the energy conservation equation,

�i = τi : ∇v = �rr i
@vr
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vr
r
; (4)

which represents the viscous dissipation energy. The equation of state(Eos) of the uid is used to close the
governing equations of the compressible uid. In present work, the Tammann equation65 is used to describe
the uid state:

p = �e(� − 1)− �Pw: (5)

In this paper, the initial density � of liquid and gas is 1000.0 kg/m3 and 1.29 kg/m3, respectively. � is the
speci�c heat ratio of uid, which is 7.15 and 1.25 for liquid and gas, respectively. Pw = 3:309e8 Pa is the
pressure constant of water. For gas, Pw = 0 Pa is chosen to represent the ideal gas.

B. Eulerian Finite Element Method(EFEM)

The EFEM has been maturely applied and has obtained reliable results in solving underwater ex-
plosion bubble dynamics66–69. The operator split technique is the key to EFEM, and the previous
literature60,62,66,70,71 has described the operator split method in detail. The operator split method sep-
arates the convection term from the governing equation to divide the equation into two parts for calculation,
called the Lagrangian phase and the Eulerian phase. The explicit �nite element method calculates the
equation without the convection term in the Lagrangian phase. Thus, the uid material follows the mesh
movement in a single time increment. The convection term in the equation is calculated in the Eulerian
phase, where the uid remains stationary, the mesh returns to its original position, and material transport
occurs between adjacent elements. A two-step calculation is performed in a time increment to move the
uid material while the mesh remains stationary. The equation solved in the Lagrangian phase does not
contain a convection term and can be solved by the FEM. Combining the mass conservation equation and
Gauss formula, the following momentum integral form can be obtained:∫∫

Ω

�
@v

@t
�ds =

∫∫
Ω

(
p∇�+ �g�− τ · ∇�+

τr
r
�
)
ds−

∫
@Ω

p�ndl +

∫
@Ω

τ� · ndl; (6)

where @
 is the outer boundary of the element volume 
, � is a weight function determined by the element
shape, and n = (nr; nz) is the interface unit normal vector. The variables on the right-hand side of Eq.(6) are
known, and the element nodal acceleration can be calculated according to Newton's second law of motion:

MAnode=Fnode; (7)

where M=
∫∫
Ω

��ds is the nodal mass matrix, Anode is the nodal acceleration vector, and Fnode is the

nodal force, which can be calculated from the right-hand side of Eq.(6). From this, the nodal velocity
and displacement can be calculated by the explicit �nite element method, and Tang67 gave the calculation
formula for any node:

vk+1=2 = vk−1=2 + ak�t; (8)

xk+1 = xk + vk+1=2�t; (9)

where �t is the time increment, k is the time count, a is the nodal acceleration vector obtained from Eq.(7).
Therefore a new node position is obtained, where the mesh and the uid material move together, and the
material inside the element at the current stage has not changed. However, the expansion and contraction
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of the element cause change in the material's physical properties. The changes in volume, mass, and energy
are calculated according to the continuity equation and energy equation after operator splitting:
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r

;
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(
�i�iei + p�i

K

Ki

)
(∇ · v +

vr
r
):

(10)

At this point, the calculation of the Lagrangian phase is completed, and the uid deforms with the mesh.

In the Eulerian phase, the material is �xed, and the mesh returns to its original position. During this
process, volume transport occurs between adjacent elements. The convection volume can be obtained by
integrating over the edges of the mesh. For single-phase elements, the uid transport volume equals the mesh
convection volume. However, for multiphase elements, the uid transport volume on each mesh edge needs to
be determined based on the location of the uid interface within the element. In this paper, the second-order
algorithm Piecewise Line Interface Calculation(PLIC) is applied to construct a linear uid interface72, and
the uid's transport of various variables is calculated by combining it with Monotone Upwind Schemes for
Conservation Laws (MUSCL)73. The Eulerian phase of EFEM is described in detail by Tian66,72, and these
numerical techniques will not be repeated again. After the Eulerian phase, the element's mass, momentum,
and energy are updated. After the material has been transported, the uid pressure p needs to be updated
using Eq.5. At this point, we have completed the calculation of a time increment.

This model must satisfy the CFL condition to ensure numerical stability. Therefore, the time increment
�t is limited by

�t = Co(
l

|vmax|+ c
)min ; (11)

where l is the characteristic size of the mesh, and the superscript min indicates the minimum value of all
elements. The Courant number Co = 0:3 is chosen in this paper. The sound speed c can be expressed as66

c2 =
�(p+ Pw)

�
; (12)

when the Tammann equation is given.

C. Initial conditions and dimensionless parameters

Fig.1(a) illustrates the calculation model in this paper. At the initial moment, the bubble is located in
a static viscous liquid, the depth from the free surface is d, the initial bubble radius is R0, and the bubble
pressure is P0, respectively. The atmospheric pressure of the air above the free surface is Patm=101 kPa.

In order to avoid introducing errors due to di�erent units or the numerical accuracy of the computer in
the study of the same problem, dimensionless variables are used to simulate bubble dynamics. The expected
maximum radius Rm of the spherical pulsation of the bubble in the inviscid and incompressible free �eld
is used as the length scale. Moreover, the initial density of the viscous liquid is used as the density scale
�ref = �l, and the ambient pressure Pref = Patm + |g|d�ref is used as the pressure scale. Therefore, the
scales of velocity, time, and acceleration can be represented separately, as shown in Table I. According to
these dimensionless scales, the case parameters of bubbles can be dimensionless in Table II. In this paper, the
buoyancy parameter � represents the gravity e�ect, the strength parameter " represents the initial pressure,
the stand-o� parameter d represents the dimensionless inception depth, the Mach number Ma represents
the compressibility of the liquid (c∞ is the sound speed in the liquid at in�nity), and the Reynolds number
Re represents the viscosity e�ect. The dimensionless radius and time are denoted as R∗ = R=Rm and
t∗ = t=[Rm(�ref=Pref )

1=2] respectively, and other variables are expressed in the same way, in which the
superscript '∗' represents dimensionless. Unless otherwise speci�ed, all subsequent analyses are performed
using dimensionless variables.
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TABLE I. Basic variables for dimensionless scales.

Velocity(Vref ) Time(Tref ) Acceleration(Aref )√
Pref

�ref
Rm

√
�ref
Pref

Pref

Rm�ref

TABLE II. Critical dimensionless case parameters.

�2 " d Ma Re

�ref |g|Rm

Pref

P0

Pref

d

Rm

√
Pref=�ref

c∞

Rm

√
�refPref

�

D. Validation and convergence test

Before starting the veri�cation, we �rst analyze the convergence of the computational domain. The
computational domain sizes of 2Rm × 4Rm, 4Rm × 8Rm, 5Rm × 10Rm, 6Rm × 12Rm, and 8Rm × 16Rm are
selected for numerical simulation. The radius time history is shown in Fig.1(b), from which it can be found
that the results are approximately the same except for 2Rm × 4Rm, indicating that the current calculation
results are plausible. Although the di�erence in the radius curves in Fig.1(b) is not particularly obvious, in
our numerical results, the bubble shape appears nonphysically distorted in the 2Rm × 4Rm, which indicates
that the boundary a�ects the bubble in a smaller computational domain. To avoid the error caused by the
free surface jet impacting the boundary of the computational domain, we select 6Rm×12Rm for calculation.
Then we compare the model with theoretical and experimental results to verify the accuracy of the bubble
dynamics model. First, we a�rm the validity of the viscosity in our numerical model. The uni�ed equation
for bubble dynamics proposed by Zhang50 can be used to describe bubble pulsation and migration in the
free �eld of a viscous uid. Taking a single spherical pulsating bubble in an in�nite domain as the research
object and ignoring the inuence of initial velocity and surface tension, the bubble pulsation equation and
migration equation of the simpli�ed uni�ed equation can be expressed as:(

c− _R

R
+

d

dt

)[
R2

c

(
1

2
_R2 +

1

4
v2
m +

Pb − Pa

�

)]
= 2R _R2 +R2 �R; (13)

Ca(R _vm + 3 _Rvm)− gR+
3

8
Cd� (vm) = 0; (14)

where R is the bubble radius, c is the sound speed of the external uid, Pa is the ambient pressure at the
bubble center, Pb = Pgas − 4� _R=R is the uid pressure on the outer bubble surface, Pgas is the internal
bubble pressure, Ca is the added mass coe�cient, Cd is the drag coe�cient, vm is the migration velocity,
�(·) = (·)| · | is a signed square operator, and the top dot represents the �rst or second derivatives of the
variable for time. When the migration of bubbles is not considered, Eq.13 can be further degenerated to
the Keller-Miksis49 equation. The KM(Keller-Miksis) equation improves the RP equation and includes the
e�ect of uid compressibility. Therefore, the KM equation is also used to compare the results of this paper.
Select the strength parameter " = 100(which is considered a reasonable value74), the buoyancy parameter

� ≈ 0:1, the gravity acceleration |g| = 9:8 m=s2, the speed of sound c = 1536 m/s(according to Eq.12),
the added mass coe�cient Ca = 1:0, the drag coe�cient Cd = 0:5, and ignore the surface tension, assume
that the maximum dimensionless bubble radius is 1.0 in incompressible and inviscid cases. According to the
relationship between the bubble radius and initial bubble pressure given by Klaseboer2, the dimensionless
initial radius R∗

0=0.149 is obtained. The numerical results are compared with Zhang et al.50 and the KM
equations at Re=100 as shown in Fig.2, where Re=∞ represents the inviscid case. The bubble migration
distance of KM equation is zero because gravity is not considered. It can be found that the maximum bubble
radius decreases signi�cantly when Re=100. Due to the liquid compressibility e�ect, the bubble does not
reach the expected maximum radius Rm. However, the bubble radius evolution and migration curves of
numerical simulation are in good agreement with the theoretical model, indicating that the EFEM bubble
dynamics model can accurately predict the e�ect of viscosity on bubble motion.
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FIG. 2. Comparison of bubble radius evolution(a) and bubble migration(b) between EFEM and theoretical model
at Re=100; (a)convergence analysis of equivalent radius for di�erent mesh sizes l = 0:005Rm, l = 0:01Rm, and
l = 0:02Rm.

In order to eliminate the inuence of the mesh size on the model calculation results, it is necessary to carry
out the convergence analysis. Set the calculation mesh size to 0.005Rm, 0.01Rm, and 0.02Rm, respectively.
The evolution of bubble radius with time is shown in Fig.2(a). As the mesh size decreases, the bubble radius
curve converges to a theoretical solution. In order to take into account the calculation e�ciency, the grid
size is selected as l = 0:01Rm in this paper. In addition, the numerical model is compared with the spark
discharge experiment in glycerol. The experiment was carried out in a cube tank with a side length of 300mm
and a glycerol depth of 200 mm. The density of glycerol �=1261 kg=m3 and the dynamic viscosity �=1499
mPa · s (20◦C), respectively. Bubbles were generated by spark discharge using a high voltage device of 1800
V. The motion of bubbles and the free surface was captured by a high speed camera(Phantom V711). In
the numerical model, a bubble with an initial radius of 4.1 mm is placed 26.1 mm below the free surface,
and the initial pressure is set to 100P∞ (P∞ represents the liquid pressure at in�nity at the same depth as
the bubble). According to Zhang et al.50, the expected maximum radius of the bubble was Rm=27.5 mm,
thus the dimensionless inception depth was d = 0:95, and the Reynolds number Re=183. The interaction
of the bubble with the free surface is simulated using the EFEM model.

The main results are shown in Fig.3(a). The numerical results show the changes in the uid pressure
(contour map) and the bubble boundary (black line). At t = 2:6 ms, the bubble reaches a radius of 26.67
mm, lower than the expected maximum bubble radius(27.5mm), mainly caused by the liquid viscosity and the
free surface e�ect. The kinetic viscosity of glycerol is strongly dependent on temperature. Spark discharge
causes a change in the temperature of the surrounding uid temperature, which leads to a change in viscosity.
Unevenly distributed uid viscosity can lead to errors between numerical and experimental results. There
is a slight di�erence in the period caused by complicated reasons. First, the initial bubble formed by the
spark discharge has complex dynamical properties rather than a spherical static bubble. Second, the gas
inside the bubble in the experiment is water vapor rather than ideal gas. In addition, Unevenly distributed
uid viscosity a�ects the motion of the bubble. The bubble and the free surface shapes calculated by the
numerical model agree with the experiments, indicating that this paper's model can simulate the motion
of bubbles and the free surface in viscous uids. The bottom of Fig.3(b) also compares the interfaces with
viscous (Re=183) and non-viscous (Re=∞) uids in the same case. It can be found that the liquid viscosity
hinders the rise of the free surface, while the e�ect on the bubble position is not signi�cant. This is because
the free surface jet velocity is much smaller than the bubble expansion velocity. The free surface has a
smaller local Reynolds number, resulting in a more signi�cant viscous e�ect. The e�ect of viscosity on the
bubble is mainly reected in the bubble jet and shape. For example, in the fourth sub�gure of 3(b), bubbles
split in a viscosity-free liquid but not in a viscous liquid. It indicates that viscosity has an essential e�ect
on the bubble-free surface coupled system.

The above results show that the EFEM bubble dynamics model can accurately simulate the interaction
of bubbles and the free surface in compressible viscous uids. This paper will use this model to study the
e�ects of di�erent parameters.
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FIG. 3. (a)Comparison of EFEM bubble dynamics model(right) with experimental results(left) in glycerol at
t=0.70ms, 2.60ms, 4.45ms, 5.60ms; (b)comparison of results for viscous(right) and non-viscous(left) uids. The
black line represents the bubble boundary and the free surface boundary; the colored contour represents the pressure
�eld.

III. RESULTS AND DISCUSSION

Scholars have extensively studied the dynamics of bubbles in non-viscous uids. However, when small
bubbles are moving in highly viscous liquids, the e�ect of viscosity on bubble dynamics must be considered,
which has potential value in the �elds of the food-chemical industry. This section will discuss the bubble
and the free surface coupling system's dynamic characteristics at di�erent viscosity and depths. In the real
problem, the inuence of surface tension is feeble. In order to study only the e�ect of viscosity, the bubble
surface tension e�ect is not considered. Therefore, our numerical results are not applicable to the bubble
dynamics problem with dominant surface tension. In addition, due to the small Reynolds number, it is not
necessary to solve the turbulence problem in this paper. The maximum bubble radius Rm = 0:02m and
the dimensionless initial radius R∗

0 = 0:149 were selected in the simulation. In order to avoid boundary
e�ects, the computational domain is set to 6Rm × 12Rm, and other dimensionless parameters are " = 100
and � = 0:044, respectively. The initial dimensionless depth and Reynolds number are determined according
to the cases, and the grid size l = 0:01Rm was used for simulation.

A. Bubble dynamics with di�erent viscosity

In order to analyze the viscous e�ects, the computations are carried out for Re = 50; 100; 200; 400;∞ and
d = 0:5, where Re = ∞ for the inviscid case. Fig.4 shows the evolution results of bubbles and the free
surface for Re = ∞, 100, and 50, respectively.

In Fig.4, (a)-(d) display the bubbles at the maximum volume, the jet penetration, the minimum volume,
and the second maximum volume. Under initial high pressure, the bubble expands rapidly and radiates
pressure waves outwards. Due to the inuence of the free surface and gravity, the bubble expands faster
upwards. Meanwhile, the free surface bulges under the push of the bubble. Fig.4(a) shows that when the
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FIG. 4. Re = ∞; 100; 50, d = 0:5 bubbles at four important moments of pressure and velocity contours: (a)
maximum volume; (b) jet penetration; (c) minimum volume; (d) maximum volume in the second cycle of pulsation.
The black line represents the bubble boundary and the free surface boundary; the left colored contour represents the
pressure �eld; the arrow and the right colored contour represent the velocity �eld.

bubble reaches maximum radius, the liquid on both sides ows towards the top of the bubble and generates
a high-pressure region. Due to the high-pressure region, the top interface collapses faster, forming a jet that
points to the inside and pushes the free surface to move upward rapidly to form a sharp jet. Under the
continuous action of pressure, the top jet of the bottom forms a toroidal bubble, and this impact will create
a high-pressure region, as shown in Fig.4(b). Due to the small stand-o� parameter d, the bubble has not
yet collapsed the minimum volume when the jet penetrates. The bubble continues to shrink and generate
an annular "sideways jet" on the side wall pointing to the inside of the bubble, which will cause the bubble
to split into two smaller toroidal bubbles, as shown in Fig.4(c), called toroidal bubble splitting. After the
bubble collapses to the minimum volume, the internal pressure is greater than the external pressure, and the
bubble begins to expand again into the second pulsation period. With the pulsation of the toroidal bubble,
a low water skirt is formed around the free surface, also called a crown spike because of its shape resembling
a crown. The formation mechanism of the crown is complex. Youssef40 pointed out that crown is caused
by the combined action of ow focusing induced by pressure distortion over the curved interface and ow
reversal in the secondary expansion process of bubbles.

Comparing the bubble and the free surface motion under di�erent Reynolds numbers in Fig.4, the dimen-
sionless times for the bubble to expand to the maximum radius for the three Reynolds numbers in Fig.4(a)
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FIG. 5. Time histories of (a)equivalent radius of bubbles ;(b)average pressure in bubbles with di�erent Reynolds
numbers Re = 50; 100; 200; 400;∞, and stand-o� parameter d = 0:5, respectively.

are t∗ = 0:581, 0.576 and 0.566, respectively. Due to the hindrance of the liquid viscosity, the bubble expands
to the maximum radius earlier when Re = 50. Moreover, the high-pressure region also decreases with the
Reynolds number decrease. The main reason is that the liquid velocity owing to this area on both sides of
the bubble is slowed down by viscous retardation, and the impact e�ect is weakened. When the viscous e�ect
is considered, the bubble jet velocity also changes. From the contours in Fig.4(b), the jet velocity decreases
with the Reynolds number, and the shape of the top of the bubble jet is also smoother at small Re. The
viscous friction is related to the velocity gradient, so the kinetic energy dissipates rapidly near the jet region,
which leads to a smaller jet velocity when Re = 50. Because of the reduced velocity, the impact pressure
formed by the small Re bubble jet penetrating the bottom is smaller than that in the inviscid case. The
di�erent bubble shapes di�ered signi�cantly when the bubbles shrunk to the minimum volume. The bubble
with Re = 50 has almost no toroidal bubble splitting (generated by an annular "sideways jet"), as shown
in Fig.4(c). It is noteworthy that the ambient pressure increases with the decrease of the Reynolds number,
mainly because viscous dissipation transforms liquid kinetic energy into internal energy, thus causing pres-
sure increase. Due to the obstruction of viscosity, the crown height caused by the second cycle pulsation of
low Reynolds number bubbles is much smaller than that under the inviscid condition in Fig.4(d).

Signi�cant di�erences exist in the maximum bubble radius and period at di�erent Reynolds numbers.
Fig.5(a) shows the evolution of the equivalent radius of the bubble pulsation with time. During the �rst
quarter of the pulsation period, the initial internal pressure pushes the bubble to expand rapidly, resulting
in a large instantaneous Reynolds number. At this time, due to the small velocity gradient, the e�ect of
liquid viscosity is relatively weak, and there is no noticeable di�erence in the radius of bubbles with di�erent
Reynolds numbers. It is necessary to know that the viscous force always exists and continuously accumulates
in the bubble. As the Reynolds number decreased, the maximum equivalent radius of the bubble decreased,
and the period also decreased. After the internal bubble pressure is less than the liquid �eld, it continues
to expand under inertia, and the viscosity dissipates the kinetic energy so that the bubble cannot reach a
larger radius. Unlike BEM or BIM, the pressure inside the bubble calculated by the EFEM model is not
evenly distributed. Since the unevenly distributed pressure is di�cult to be compared, the average pressure
variation of the gas inside the bubble is calculated in this paper, as shown in Fig.5(b). It can be found that
during most of the �rst period of bubble pulsation, the average pressure in the bubble has little di�erence
under di�erent Reynolds number conditions. Comparing the second pressure peak (corresponding to the
minimum volume of the bubble), as shown in Fig.5(b), the average pressure peak shows a non-monotonic
variation as the Reynolds number decreases, with the peak �rst increasing and then decreasing. However,
it is worth noting that this law does not apply to the stand-o� parameter d = 1:0, 1.2, and 1.5. In these
cases, the average pressure peak in the bubble decreases with the decrease of the Reynolds number. At the
same time, the minimum equivalent radius increases with decreasing Reynolds number, which is caused by
the strength of the bubble-free surface interaction.

Fig.6(a) shows the position of the top and bottom of the bubble at the axis. As the air above the free
surface always maintains atmospheric pressure, the liquid pressure around the top of the bubble is less
than the bottom when the bubble expands, leading to a faster expansion speed of the top, showing the
phenomenon that the free surface attracts the bubble. When the bubble begins to collapse, the top is more
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FIG. 6. Time histories of (a)the bubble top and bottom locations at Re = ∞ and 50, γd = 0.5; (b)the free surface
spike height at different Reynolds numbers Re = 50, 100, 200, 400,∞, and stand-off parameter γd = 0.5, respectively.

violently affected by the high-pressure region than the bottom. The jet penetrates the bottom at about
t∗ = 1.03, while the Re = 50 bubble jet penetrates at t∗ = 1.13. The slope of the displacement curve of the
bubble in Fig.6(a) represents the jet velocity. It can be found that compared with the bubble with Re = 50,
the jet velocity is faster without considering the viscosity of the liquid. Meanwhile, compared with Fig.4(a),
it can also be found that the inviscid bubble has formed an obvious top jet before the bubble reaches the
maximum volume.

The evolution of the free surface spike height at different Reynolds numbers is shown in Fig.6(b). In the
initial expansion stage of the bubble, due to the relatively long distance from the free surface, the change
of the free surface with different Re is the same. It can be seen from Fig.6(b) that as the Re decreases,
the viscous effect increases and the height of the jet on the free surface decreases significantly. The main
reason is the significant rate of change of tangential velocity caused by the jet, which leads to sizeable viscous
friction and faster kinetic energy loss.

The pulsation of the bubble in the second period induces a low axisymmetric water skirt on both sides
of the free-surface jet, called the crown spike. Fig.7(a) shows the shape of the crown spike under different
Reynolds numbers Re when the bubble expands to the maximum volume in the second pulsation cycle. With
the increase in Reynolds number, the phenomenon of a crown spike is more pronounced, and the height of
the water skirt is also increasing. And the shape is sharp, and when Re = 50, the free surface almost does
not form a crown spike, indicating that the viscous effect weakens the evolution of the free surface. Fig.7(b)
shows the shapes of bubbles when jet impact with different Reynolds numbers. The Re = ∞ bubble jet has a
bulge at the front, called a mushroom-shaped jet. Koukouvinis26 believes that the jet is caused by interface
instability. However, compared with an inviscid bubble, the jet tip at the top of low Reynolds number
bubbles is smoother, and no mushroom-shaped jet appears. Meanwhile, the volume of jet penetration is
smaller, and the velocity and impact strength of the bubble jet is weak, which is reflected in the contours in
Fig.4.

The bubble expands under the initial pressure. With the increase of liquid viscosity, the Reynolds number
under the corresponding conditions decreases. The retardation effect of viscosity on bubble expansion be-
comes stronger and stronger, and the maximum radius of the bubble decreases. At the same time, the bubble
jet is also affected by the viscosity, the jet velocity decreases with the decrease of the Reynolds number, and
the jet penetration time is also delayed. The viscosity of the liquid affects the height and speed of the free
surface jet: the viscosity increases, and the speed and height of the free surface jet decrease. When the
viscosity increases to a specific value, the free surface crown spike generated by the pulsation of the bubbles
will disappear, and the viscosity of the liquid weakens the interaction between bubbles and the free surface.

B. Bubble dynamics with different stand-off parameters

In the same fluid, the viscosity coefficient of the liquid has been determined. When a pulsating bubble is
generated using the same method, the effect of viscosity on bubbles is unchanged. The parameter that affects
the dynamics of bubbles and the free surface is the distance d (as shown in Fig.1(a)), and the dimensionless
parameter γd represents the inception depth of the bubble. Set Re = 100, other parameters remain the same
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FIG. 7. (a)Shape of the free surface; (b)shape of the bubble when the jet impact at different Reynolds numbers
Re = 50, 100, 200, 400,∞, and stand-off parameter γd = 0.5, respectively.

as the previous section, and study the bubble dynamics for γd = 0.5− 1.5.

Fig.8 shows the bubble and the free surface shapes, pressure, and velocity contours at three important
moments when Reynolds number Re = 100 and stand-off parameter γd = 0.5, 1.0 and 1.5, respectively,
corresponding to maximum bubble volume, jet impact, and maximum volume in the second pulsation period.
The dimensionless time for the bubble to expand to the maximum radius increases with γd, t

∗ = 0.576, 0.775,
and 0.848, respectively, as shown in Fig.8. The bubble jet is already formed in the expansion phase when
γd = 0.5, while the bubble jet in the other two cases starts to form in the contraction phase. Compared
with the other two conditions, the bubble and the free surface jet with smaller γd are also more slender,
and the jet impacts the bottom earlier. As shown in Fig.8(b), bubble jets of γd = 1.0 and 1.5 impacting the
bottom occurred near the moment when bubbles collapsed to the minimum volume. In contrast, bubble jets
of γd = 0.5 had penetrated through the bottom in the contraction stage, and a local high-pressure region
was formed when the jets penetrated through the bottom. It can be seen from Fig.8(c) that the bubble with
γd = 0.5 produces toroidal splitting because the jet penetrates the bottom earlier, and the annular sideways
jet is generated when the bubble continues to collapse. This phenomenon is noticeable at large Reynolds
numbers, and bubbles with larger stand-off parameters do not produce apparent toroidal splitting. At the
same time, with the increase of γd, the free surface jet becomes lower, and the phenomenon of a crown spike
is less obvious. The free surface does not produce a crown spike during the secondary pulsation of the bubble
when γd = 1.5.

Fig.9(a) shows the shape of the bubble when the jet penetrates with different γd. It can be seen from
the figure that with the increase of the stand-off parameter, the volume of bubble jet impact continues to
decrease. When the inception depth is small, the impact time of the jet is earlier than the minimum volume
time due to the strong interaction between bubbles and the free surface. The bubble jet width also varies
with the change of the stand-off parameter. When the γd increases from 0.5 to 1.0, the jet width gradually
increases; when the γd increases from 1.0 to 1.5, the jet width gradually decreases, which is the same as the
law obtained by Li38 without considering viscosity. With the increase of γd, the water jet penetration time
is delayed, and the jet width changes due to the different degrees of bubble shrinkage. It can also be seen
from the velocity contours in Fig.8(b) that the velocity of the jet impinges increases with the increase of γd.
Fig.9(b) shows the shape of the free surface when the jet penetrates. With the increase of γd, the jet height
of the free surface decreases while the jet width gradually increases. From the pressure contours in Fig.8(a),
there is no high-pressure region below the free surface when the γd is large, which is not conducive to the
generation of the bubble and the free surface jet. At the same time, the effect of bubble expansion on the
free surface is weakened, which is also the reason for the low height of the free surface jet. Fig.10 shows
the position changes of the top and bottom of the bubble on the axis, which can vividly see the changing
trend of the axial length of the bubble. Meanwhile, the velocity of the bubble surface at the axis can also be
obtained by calculating the slope of the curve. In the early stage of bubble expansion, the displacement of
the upper surface of bubbles with different γd is different, and the displacement decreases with the increase
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FIG. 8. Pressure and velocity contours at d = 0:5; 1:0; 1:5, Re=100, respectively:(a) maximum volume; (b) jet
impact; (c) bubble second pulsation period. The black line represents the bubble boundary and the free surface
boundary; the left colored contour represents the pressure �eld; the arrow and the right colored contour represent
the velocity �eld.

of d. However, the displacement of the lower surface changes almost the same, mainly because the existence
of the free surface a�ects the movement of the upper surface of bubbles. It is worth noting that at d = 1:5,
the axial bubble jet does not directly penetrate the bottom, but generates a temporary air cushion, as shown
in Fig.8(b) and Fig.9(a). This is mainly because the bubble jet at impact is very wide and penetrates the
side walls of the bubble �rst rather than the bottom. According to the slope analysis of the bubble top
displacement curve in Fig.11(a), it can be found that the jet with d = 1:5 is always in the acceleration stage
from bubble contraction to jet slamming, which is the reason why the bubble jet velocity increases with the
increase of d.

The time histories curve of the equivalent radius of bubble pulsation with di�erent stand-o� parameters d
is shown in Fig.11(a). With the increase of the bubble-free surface distance, the maximum equivalent radius
of the bubble increases, the minimum equivalent radius decreases, and the inuence of the free surface on the
bubble gradually decrease. The diamonds in Fig.11(a) represent the moment when the liquid jet penetrates
the bubbles' bottom. With the decrease of the stand-o� parameter, the time of jet penetration is advanced.
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For d = 0:5 and 0.7, the jet penetration occurs in the contraction phase of the �rst pulsation period. In
contrast, the bubble jet penetration for d = 1:0, 1.2, and 1.5 occurs in the second pulsation period. Because
the buoyancy parameter � is relatively small, the primary inuence on the jet is the free surface. In the case
with a greater stand-o� distance, the repulsion e�ect of the free surface on the bubble is weaker and a delay
in the jet penetration is observed.
Fig.11(b) shows the variation of the average pressure in the bubble with time. The average internal

pressure of bubbles with di�erent d has little di�erence in the �rst pulsation cycle and is at a small value
most of the time. The second pressure peak (corresponding to the bubble's collapse to the minimum volume)
increases with increasing d, and the bubble radius at the time corresponding to the peak pressure decreases
with increasing d. Because bubbles with small distance parameters do more work on the free surface and
lose more energy, thus resulting in smaller internal pressure of bubbles.

IV. CONCLUSIONS

A dynamic model is established for the interaction between a bubble and a free surface in a viscous
compressible liquid based on the EFEM coupled with the VOF. The numerical model is veri�ed by the
spherical bubble theories and experiments with excellent agreement. Bubble dynamics and free surface
evolution are analyzed in terms of the Reynolds number Re and the dimensionless inception depth d of the
bubble. The following features are observed:
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FIG. 11. Time histories of (a)the equivalent radius of bubbles; (b)average pressure in bubbles with different stand-off
parameters γd=0.5, 0.7, 1.0, 1.2, and 1.5, Re=100, respectively.

(I) As Re decreases, the bubble oscillation amplitude and period decrease, the bubble jet shape is blunter,
the jet velocity decrease, and the impact time is delayed. At a lower Re, the jet is weaker and associated
with less kinetic energy, resulting in earlier collapse. The viscosity also reduces the toroidal bubble
splitting during pulsation, and the bubble with Re=50 hardly splits.

(II) As γd increases, the maximum bubble volume increases, the minimum bubble volume decreases, and
the second pressure peak of the bubble increases. When γd decreases from 1.5 to 0.5, the jet becomes
sharper and impacts the opposite bubble surface earlier.

(III) As Re decreases, the height and velocity of the free surface jet decrease, and the crown spike height
decreases or even disappears in the second pulsation cycle. As γd increases, the free surface jet’s height
decreases, the jet’s width increases, and the crown spike tends to be low or even disappear.
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