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Abstract
Micro particles come in a wide variety of architectural designs and shapes. It is time to look beyond the conventional spherical 
morphology and focus on anisotropic systems. Rod-shaped micro particles in particular exhibit numerous unique behaviors 
based on their structural characteristics. Because of their various shapes, architectures, and material compositions, which 
are based on the wide range of synthesis possibilities, they possess an array of interesting characteristics and applications. 
This review summarizes and provides an overview of the substantial amount of work that has already been published in the 
field of rod-shaped micro particles. Nevertheless, it also reveals limitations and potential areas for development.
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Introduction

Colloidal particles have a wide range of applications from 
paints [1], stabilizers in emulsions and dispersions [2], 
and structure-directing agents to sensor components [3]. 
Due to their rather small dimensions, the material proper-
ties are often secondary to structural features such as size 
or shape [4] and these particles can exhibit a diversity of 
shapes, including spherical, rod-shaped, dumbbell, cuboid, 
urchin, and hollow. In general, such particles can be attained 
through various strategies, including top-down and bottom-
up approaches. Top-down methods, such as mechanical 

grinding and milling, laser ablation, focused ion beam mill-
ing, and electron beam lithography, involve the reduction of 
bulk materials to smaller particles. Conversely, bottom-up 
methods, such as vapor-liquid–solid growth, solvothermal 
synthesis, templated synthesis, and self-assembly, involve 
the assembly of smaller units to form larger structures. The 
selection of the appropriate synthesis method, and the design 
of the final shape of the particles, should take into account 
the desired properties and performance of the materials in 
the target application.

Although different shapes of materials have their own 
unique properties and functionalities, the synthesis of rod-
shaped materials at the nano and micro scale is particularly 
noteworthy. 

For the lower size range, i.e., nano particles, synthetic 
approaches for rod-shapes have been extensively studied 
and tuned. A large number of reviews describe concepts 
of synthesizing anisotropic nano materials [5] and how to 
achieve certain morphologies and optimize the aspect ratios 
(ARs), such as for absorption and scattering in plasmonic 
studies [6–10]. These nano scale entities are differentiated 
between nano rods (all dimensions smaller than 100 nm and 
typical ARs between 3 and 5) and nano wires, characterized 
by extended length values. A comprehensive review of the 
plethora of developments in this area is beyond the scope 
of the present discussion. We refer the interested readers to 
designated literature [5, 11, 12].

Highly relevant rod-shapes in nature also occur on a 
slightly larger scale, with bacteria being the most prominent 
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example, but also fungi and spores make use of the cylin-
drical morphology. For biological organisms, several rod-
forming growth mechanisms have been discovered and 
summarized in a review [13]. While individual synthetic 
strategies [14, 15] as well as engineering-based approaches 
[16, 17] to produce elongated micro structures have been 
reported, our investigation revealed a lack of a thorough 
and didactic review on synthetic approaches how to obtain 
cylindrical micro objects.

Behaviors

The examination of colloidal particles is crucial in under-
standing the dynamics of complex systems in nature. While 
spherical particles have been extensively studied [18–21],  
it is imperative to also investigate anisotropic systems [22], 
not at last for their biological relevance. These systems can 
display a far richer and intricate behavior as they possess both,  
translational and orientational degrees of freedom. The idea 
of dissipative coupling between the translational and rota-
tional motion was first proposed by Perrin [23, 24]. When 
the rotation of a uniaxial anisotropic particle is restricted, 
it exhibits two independent translational motions along its 
two principal axes. This results in distinct diffusion con-
stants, D‖ and D

⟂
 for motion parallel and perpendicular to 

the long axis as shown in Fig. 1a. The longitudinal diffu-
sion coefficient is higher than the transverse diffusion coef-
ficient as the particle experiences more resistance along the 

transverse direction. However, when rotation is allowed, the 
rotational diffusion of the particle, characterized by a single 
diffusion coefficient, D� , and an associated diffusion time, ��
=1∕

(
2D�

)
 , washes out the directional memory of the particle 

over time. This leads to a crossover from anisotropic to iso-
tropic diffusion, as the time scale becomes much longer than 
�� . As a result of the anisotropy of non-spherical particles, 
the probability distribution function of their displacements 
deviates from the Gaussian distribution typically observed 
in isotropic systems, such as spherical particles, to a non-
Gaussian distribution [27–29].

This was also experimentally demonstrated for ellipsoid 
PMMA particles confined in a quasi-two-dimensional envi-
ronment [30]. This crossover from anisotropic to isotropic 
diffusion was also established in an earlier work for prolate 
ellipsoids through molecular dynamics simulations [31]. 
Additionally, the diffusion coefficients of both translational 
and rotational motion for ellipsoidal particles were recorded 
as a function of concentration [32]. Since then, a plethora 
of studies have been conducted using both experimental and 
simulated methods to investigate the behavior of anisotropic 
structures in various environments [33, 34]. 

Due to the complexity of the environments in which rod-
like structures are implemented in real-world applications, 
which differs from the bulk behavior in terms of entropic and 
hydrodynamic interactions, a significant body of research 
has been conducted to replicate such conditions in con-
strained or confined geometries. Specific examples include 
but are not limited to the dynamics of single silica micro 
rods suspended in water microchannel flow [35], diffusion of 
thin nano rods in polymer melts [38], diffusion of iron-plated 
gold rods in corrugated channels [36], gold rods in confined 
quasi 2D porous media [39], and the diffusion of a silver 
nano wire through obstacles [37]. Some of these examples 
are illustrated in Fig. 2.

Another interesting feature of rod-shaped particles is their 
ability to display complex phase behavior compared to the 
isotropic structures as can be seen in Fig. 1(b–d). Whereas 
spherical particles show a transition between gas, liquid, 
crystal, and glass phase, rods can possess an additional inter-
mediate phase between liquid and crystal phase termed as 
liquid-crystal phase. One of the earliest theoretical expla-
nations for the formation of a nematic liquid-crystalline 
phase was provided by Onsager in 1949. He proposed that 
the transition from an isotropic to a nematic phase for long, 
hard rods could be purely entropy-driven [40]. Subsequently, 
numerical simulations showed that a transition from nematic 
to smectic phase can also be driven by entropy alone [41]. 
Subsequently, there have been notable advancements in the 
detailed study of the rich phase behavior of rods [42–46].

A variety of experimental techniques have been devel-
oped to probe these processes. Some of the commonly 
employed methods such as depolarized light scattering [47], 

Fig. 1   Behavior of rods: a translational and rotational diffusion coef-
ficients defined for a rod. b SEM image of a blue phase III assembled 
from dumbbell-shaped colloids (DBCs).  Reproduced with permis-
sion [25]. c, d Simulation of the phase behavior of short rods in 2D. 
Reproduced with permission [26]
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fluorescence anisotropy decay [48], dynamic light scattering 
[49], small-angle X-ray scattering [50], and nuclear mag-
netic resonance spectroscopy [51] have been used to study 
the diffusion of particles and molecules in liquids.

Theoretical description of methods

Synthesis of rod-shaped particles requires a driving force, 
which guides the growth anisotropically in one direction. 
For the synthesis of micro rods, different concepts and driv-
ing forces have been developed. A schematic illustration of 
five important concepts is displayed in Fig. 3. However, not 
all reported synthesis procedures can be classified into one  
of these concepts.

A commonly employed strategy is to utilize the anisot-
ropy of the crystal structure of the material. As different 
crystallographic facets possess different surface energies, the 
crystal growth occurs with different reaction rates. Addition-
ally, the growth rates of the facets can be tuned by addition 
ofcertain capping agents, which can selectively decrease the 
surface energies ofspecific facets [52]. However, it is to be 
noted that this concept is limited tocrystalline materials with 
preferably hexagonal or tetragonal structure.

Another concept is based on the introduction of an addi-
tional phase in the form of a liquid droplet, from where the 
growth of the rod develops. Here, a precursor is transferred 
from a surrounding phase (gas or liquid) to the droplet, 

Fig. 2   a Schematic of the experimental channel (left) and the geom-
etry of the channel (right). b and c The same rod moving through the 
channel 0.3 s apart. Reproducedwith permission [35]. d Trajectory 
of iron-plated gold rods in a corrugated channel. The orientation of 
the rod is color coded. When the rod is perpendicular to the chan-
nel boundary, its orientation is pi/2 and when it is parallel to it, its 

orientation is taken to be 0. Reproduced with permission [36]. A sil-
ver nano wire diffusing in different configurations: e a random repel-
ling laser field. f randomly placed polymer pillars. Reproduced with 
permission [37]. Diffusion of thin rods in g unentangled h entangled 
polymer melts. Reproduced with permission [38]

Fig. 3   Different driving forces enabling the synthesis of micro rods
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where it will be converted to the desired material at the 
droplet rod interface. An example, where this solution-
liquid–solid process is especially important for cylindrical 
micro particles, is the synthesis of silica micro rods [14, 53].

Asymmetry can also be induced by applying a shear force 
to an emulsion, leading to a linear deformation of the emul-
sion droplets. This concept has been applied for the synthe-
sis of polymer micro rods [54].

Application of a magnetic field can also be a source of 
asymmetry for the synthesis of magnetic micro rods. In fact, 
it can lead to an assembly of primary particles into chains 
during the growth [55].

Finally, the growth of micro structures can be carried 
out in a template. Common templates include anodic alu-
minum oxide (AAO) [56] or polycarbonate membranes [57] 
where materials can be deposited (e.g., by electrochemical 
reactions). Moreover, biological templates like bacteria or 
viruses have also been employed [58].

Materials

Metals

Synthesis of metal micro meter sized rods can be carried 
out in different templates including AAO and polycarbon-
ate membranes. These templates are available in sizes rang-
ing from few nm to several μm. One common approach 
is to immerse the template in a solution of the metal salt,  
contact one side of it to an electrochemical cell and apply 
a cathodic potential to reduce metal ions in the solution to 
the respective metal in the pores. While the diameter of 
the resulting rods is given by the diameter of the pores, the 
length can be controlled by the duration of the reaction and 
the applied potential. Later the rods can be released by dis-
solving the template in a suitable solvent. A collection of 
different metals and alloys synthesized by template assisted 
electrodeposition can be found in the work of Péter et al. 
[59]. This technique also offers the opportunity of grow-
ing rods with different segments of different materials [60, 
61], which can for example be used for synthesis of micro 
swimmers [62]. The concept can also be extended to tubu-
lar micro structures with layers of different compositions. 
Common examples include polymer metal composites with  
an outer polymer and an inner catalytically active metal layer, 
which are applied as bubble propelled micro swimmers [63,  
64]. Besides templated systems, few other concepts can be 
applied for the synthesis of metal rods on the micro scale. One 
approach is to coat the metal on a micro rod of another material 
(e.g. SiO2), leading to a core shell structure with a metal shell 
[65]. Many more syntheses can be found on the nano scale and 
they are a frequent study subject in physical chemistry. Even  

though these examples do not fulfil the size requirements we 
established above,we have nonetheless decided to include 
an overview on this research to incentive the development 
of novel synthetic techniques in the interface area, resulting 
in metal micro rods. Metallic rod-shaped nano structures 
have received significant attention due to their unique opti-
cal, electronic, and catalytic properties. Due to their small 
size and large surface-to-volume ratio, metallic nano struc-
tures display a range of extraordinary physical and chemi-
cal properties that are not observed in bulk materials. The 
properties and potential applications of metallic nano rods  
and metallic nano wires are distinct, owing to their differ-
ent shape characteristics. Due to the ability of tuning their 
AR, metallic nano rods are highly desirable for plasmonic 
applications, as they can exhibit strong absorption and scat-
tering capabilities across a wide range of wavelength from 
visible to infrared regions [66]. The electrical conductivity 
of nano wires is higher than that of metallic nano rods [67]. 
This feature renders them particularly suitable for electronic 
applications, including interconnects and sensors [68]. Here, 
we are going to focus mainly on gold, silver, and copper.

Au

Seed-mediated growth is a widely used method for the 
synthesis of gold and silver nano and micro rods. The pro-
cess involves the use of small seed particles as nucleation 
sites for the growth of nano rods. The seed particles are 
typically prepared by reduction of metal precursors, such 
as chloroauric acid or silver nitrate, with a reducing agent, 
such as sodium borhydride or ascorbic acid. Once the seed 
particles have been prepared, they are added to a solution 
containing a metal precursor and a capping agent. The 
metal precursor provides the atoms that are used to grow 
the nano rods, while the capping agent, such as cetyltri-
methylammonium chloride or polyvinylpyrrolidone (PVP), 
helps to stabilize the seeds and control the growth of the 
nano rods. The first pioneering study on seed-mediated 
growth of gold nano rods (AuNRs) was done by Jana et al. 
[79]. More papers, improving upon the existing study, 
were published [80, 81].

In order to produce a specific shape and cross-section, 
researchers have manipulated the capping and reducing 
agents during the synthesis process. For instance, a com-
bination of CTAB and NaBH

4
 favorably produces Au nano 

rods that exhibit a pentagonal cross-section, commonly 
referred to as penta-twinned AuNRs. By switching the 
agent used to stabilize the seeds from CTAB to citrate 
or PVP, single-crystal AuNRs with an octagonal cross-
section have been synthesized [82].

The AR of gold nano rods has been a subject of intense 
research due to its importance in various applications. 
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In recent years, several studies have reported the use of 
diverse techniques, such as the introduction of aromatic 
compounds [66, 83], binary surfactant mixtures [84], and 
temperature [85] control to precisely regulate the AR of 
AuNRs. Additionally, research has also been focused on 
further modifications of the shape of AuNRs, such as 
tapered [86] and rice-shaped structures [87], thus adding 
to the versatility and potential of these nano materials. 
The first panel of Fig. 4 shows a general schematic of the 
seed-mediated growth of AuNRs and AuNRs synthesized 
through different techniques.

Ag

Silver NRs have also been prepared using a seed-mediated 
process. One of the first studies to achieve this was done by 
Jana et al. [88]. However, the polyol method became more 
popular for synthesizing Ag nano structures. It involves the 
use of metal precursors dissolved in a polyol solvent, such 
as ethylene glycol or glycerol. PVP acts as an excellent 

capping agent as well as reducing agent and has been used 
extensively to synthesize Ag nano rods as well as nano 
wires [73, 89]. This method has been used to synthesize Ag 
nano bars which could subsequently be turned into Ag nano 
rice [89]. Silver nano bars could also be produced by site-
selective of Ag nano cubes [90]. The second panel of Fig. 4 
shows a general schematic of the synthesis of Ag nano wires 
and some images of Ag nano rods as well as wires.

Cu

Compared to Au and Ag, there have been limited reports on 
the synthesis of Cu-based nano and micro structures. This 
can be mainly attributed due to the difficulty of reducing 
Cu salts into metallic Cu. Moreover, lack of effective cap-
ping agents and poor stabilization at ambient conditions 
still remains a challenge [76]. In general, Cu nano rods and 
wires have been synthesized using seed-mediated [74, 77] 
and template-based methods [91, 92]. The third panel of 
Fig. 4 shows a schematic of the solution phase synthesis of 
Cu nanostructures.

Fig. 4   Synthesis schemes for metallic rods and wires: a TEM image 
of a penta-twinned Au nano rod. b TEM image of single crystal Au 
nano rod. Reproduced with permission [69]. c Schematic illustration 
of seed-mediated growth of Au nano rods. Reproduced with permis-
sion [7]. d and e 2D STEM-HAADF image of Au nano bipyramid 
coated with Ag. Reproduced with permission [70]. f SEM image of 
Ag nano rod. Reproduced with permission [71]. g SEM image of a 
Ag nano bar. Reproduced with permission [72]. h Schematic illus-
tration of growth of Ag nano wires with pentagonal cross-section. i 
SEM image of a Ag nano wire. j TEM image of microtomed Ag nano 

wires. Reproduced with permission [73]. k TEM image of Cu nano 
rod. Reproduced with permission [74]. l HAADF-STEM image of Cu 
nano rod. Reproduced with permission [75]. m Schematic illustra-
tion of solution phase synthesis of Cu. Reproduced with permission 
[76]. n (i) TEM image of Cu nano wire. (ii) SEM image showing the 
pentagonal cross-section of the nano wire. (iii) Schematic of the Cu 
nano wire showing different facets of the nano wire and the growth 
direction of the nano wire. Reproduced with permission [77]. o SEM 
image of Cu nano wire. Reproduced with permission [78]

787Colloid and Polymer Science (2023) 301:783–799



1 3

Metal compounds

Another major class of materials is metal oxides. Before 
discussing this category, various metal oxyhydroxides are 
reviewed since they are widely used as templates for the 
production of metal oxide rods [93].

Metal oxyhydroxides

Ignoble metals such as iron [94], cobalt [95], and manga-
nese [96] commonly result in rods with various diameters, 
lengths, and structures as a result of either solvothermal or 
hydrothermal synthesis parameters.

In a study from 2015, the impact of pH-value and Fe3+  
concentration on the synthesis of FeOOH nano rods was 
investigated. Higher concentrations of the precursor cause 
an expansion of the rod length. Similar hydrothermal tech-
niques based on a nitrate precursor were used to create 
FeOOH rods with a diameter of about 20 nm and a length 
of about 750 nm in an alkaline environment [97].

Other methods, such as a template synthesis process, can 
be employed to produce larger FeOOH rods [15]. Hollowed-
out FeOOH micro rods were formed using MgO particles 
as template and adding an aqueous solution of FeCl

2
 . After 

4 h of stirring at room temperature, the resulting rods were 
substantially larger than those produced by the hydrothermal 
process, measuring a few micrometers in width and tens of 
micrometers in length [96].

In 2008, rod-shaped MnOOH particles with diameters 
up to 200 nm and lengths up to tens of micrometers were 
produced using a hydrothermal technique, taking MnSO

4
 

as a precursor and using sometimes beta-cyclodextrine as 
an additive [96, 98]. The size of the rod could be con-
trolled in the previously specified ranges by varying the 
stoichiometric factor of beta cyclodextrin as additive, and 
modifying the temperature [98].

GaOOH rods with different properties were created 
by adjusting the hydrothermal method’s parameters. The 
generation of GaOOH rods has been the subject of numer-
ous works. In some studies, these rods were synthesized 
from Ga(NO

3
 ) employing low temperatures of 95 ◦C and 

short reaction times, producing rods with a diameter of 
1 �m and a few micrometers in length [115]. The impact 
of pH value is also mentioned in the work of this group 
and demonstrated that the AR is significantly influenced 
by the amount of the precursor [100]. When performed 
in a weak acidic environment, with GaCl

3
 as a precursor, 

the synthesis results in rhombic rods with a diameter of 
300 nm and a length of around 1.5 �m [99]. At compara-
ble conditions, this particle form is also observed for �
-FeOOH on a smaller scale [116, 117]. More inhomogene-
ous GaOOH rods with lengths ranging from 0.5 to 10 �m 
and diameters varying from 0.4 to 2 �m were produced by 

the hydrothermal synthesis process carried out at a high 
temperature of 225 ◦C for 10 h [101]. By attempting to use 
a liquid reaction at low temperatures of 95 ◦C and adding 
urea, which continually decomposes during the reaction 
and causes the necessary hydrolization, zeppelin-shaped 
rods with lengths of about 1 to 2 �m were produced. Using 
pure water results in defined rods with lengths of about 
3 �m [102]. Similarly, the formation of FeOOH rods by 
adding urea for hydrolization has also been reported to 
yield zeppelin-shaped rods [118].

The fabrication of CoOOH rods with lengths ranging 
from 3 to 10 �m and a diameter of about 800 nm was the 
focus of another group applying a chemical bath deposi-
tion technique. The resulting rods composed of stacked 
nano sheets were produced on a stainless steel mesh from a 
Co(NO

3
)
2
 precursor solution at low temperatures [95].

Metal oxides

Metal oxyhydroxide rods are frequently utilized as precur-
sors for their metal oxide equivalent, which is typically 
converted through the calcination process. This is also 
applicable for the synthesis of MnO

2
 micro rods, which are 

produced by annealing hydrothermally produced MnOOH 
micro rods to 350 ◦C for 10 h. The resulting rods have diam-
eters ranging from 0.10 to 0.62 �m and lengths ranging from 
1.9 to 12 �m [110]. MnO

2
 rods with lengths ranging from 

2 to 3 �m were produced using a similar procedure [108].
The hydrothermal process is another method used to 

directly produce MnO
2
 micro rods. Template-assisted elec-

trodeposition using MnSO
4
 as precursor offers the synthe-

sis of MnO
2
 micro rods with tune-able length and diameter 

[57]. Micro rods and other morphologies made from ZnO 
[119] are often formed using hydro- or solvothermal tech-
niques. ZnO rods with diameters up to several micrometers 
and lengths of a few micrometers are produced via a low-
cost hydrothermal technique based on a Zn(NO

3
)2 precur-

sor. Therein, the pH level and precursor concentration are 
important factors in the development of micro rods. In addi-
tion, the reaction time affects both the crystal shape and 
size [111, 113, 120]. Another method for producing ZnO 
micro rods is the hydrothermal deposition at copper stripes. 
Thus, by adjusting the temperature and the response time, 
the growth process may be controlled [121]. It has also been 
shown that ZnO micro rods may be synthesized using the 
microwave-assisted hydrothermal technique [122]. Addition-
ally, the use of additives affects the synthesis parameters 
and the shape of the rods [123]. While using the hydro-
thermal method, it has also been reported that the cooling 
temperature affects the rods’ morphology and characteris-
tics [124]. Aside from the hydrothermal method, there are 
a few solvo-chemical synthesis techniques for producing  
ZnO micro rods. The synthesis of ZnO rods is often based 
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on the transformation of ZnOOH to ZnO and that the con-
centration of additives, such as HMTA, affects the growth 
rate [125]. ZnO can also be deposited electrochemically into 
polycarbonate membranes, where H 

2
O
2
 is electrochemically 

reduced to OH− , which leads to precipitation of Zn(OH)
2
 

[126].
Next to ZnO, there are a few papers dealing with MoO

3
 

rods, which are mostly formed with the hydrothermal 
method, using Na2MoO4 or (NH4)2MoO4 as precursor in an 
acidic environment. Using a low temperature and a shorter 
reaction time generates bigger rods in length and diameter 
than using high temperatures of 180 ◦C and a longer reac-
tion time [106, 107, 127]. MgO rods are typically made 
using a wet chemical process that starts with the synthesis 
of MgCO

3
 micro rods at room temperature and ends with 

the calcination to MgO rods in the presence of air [15, 
128–130]. The addition of dextrose is known to enhance 
anisotropic growth during the calcination process, which 
helps to obtain a rod-like form [131, 132].

Additionally, Fe2O3
 rods grown on top of other materi-

als, such as MgO, are produced using MgO micro rods as 
templates. For doing this, a FeCl

3
 solution was mixed with 

the MgO micro rods, and after calcination, �-Fe2O3
 hollow 

micro rods with diameters of several micrometers and tens of 
micrometers in length were produced [15]. In addition, hema-
tite rods were produced hydrothermally from FeCl

2
 [104] and 

via the thermal decomposition of FeAc [133]. Furthermore, 
using a microwave-assisted technique and polyethyleneglycol, 
Fe

3
O

4
 rods with diameters of 800 nm and lengths of 3 to 6 �m 

were created. Also, a relatively recent technique is used in this 
material section to form rod-like shapes by applying an exter-
nal magnetic field during the hydrothermal synthesis [134].

S-doped TiO
�
 micro rods can be synthesized via ultrason-

ication of TiOSO
4
 in water. The obtained rods consist of a 

polycrystalline anatase phase with a diameter of about 2 �m 
and a length of several tens of �m . TiO

2
 micro rods are also 

accessible by templated methods including electrodeposition 
using TiCl

3
 [135] and sol gel electrophoresis of positively 

charged TiO
2
 sol particles into a template [56]. The latter 

method has been applied for a variety of materials including 
BaTiO

3
 and SrNb

2
O
6
 [136]. Finally, ink-jet printing could be 

optimized to produce TiO
2
 rods of various diameters [137].

Co
�
O

�
 can be synthesized either hydrothermally or with the 

use of a microwave, followed by calcination, to produce rods 
with lengths and diameters of around 6 to 30 �m and 0.7 to 
1.5 �m , respectively [112, 138, 139]. Similar to how GaOOH is 
formed, Co

2
O
4
 rods may also be formed using a solvothermal 

process, urea as an addition, and a final calcination phase [103].
CuO rods up to 200 nm in diameter and 11 �m in length 

are the end product of an alkaline hydrothermal synthesis 
using NaNO

3
 and CuSO

4
 as precursors [109].

NH
4
VO

3
 is used as a precursor for a hydrothermal synthe-

sis that yields 500 nm long V
�
O

5
 rods at high temperatures 

and extended reaction times [105]. At even greater tempera-
tures, the precursor V 

2
O

5
 produces VO

2
 micro rods that are 

4 �m long [114]. An overview over different influences on 
metal oxide rod syntheses is given in Fig. 5.

Metal organic frameworks (MOFs)

Metal organic frameworks are a class of compounds intro-
duced by Yaghi et al. [140]. Different units are linked together 
by strong bonds, achieving a combination of inorganic and 
organic properties: the organic part consists of negatively 
charges species, mostly carboxylates which in combination 
with positively charged metals result in high volume spe-
cies. Using different di- or polytopic linkers with different 
geometries, the structure of linker molecules determines the 

Fig. 5   Synthesis of metal oxide rods: Two important parameters in hydrothermal syntheses are time and temperature: influences these have on 
metal oxyhydroxides (left). Reproduced with permission [94, 96–102] and metal oxides (right). Reproduced with permission [103–114]
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morphology of the final particles (Fig. 6a–c) [141]. Therein, 
especially ditopic linkers can cause rod-shaped growth [142, 
143]. Not only shape, also porosity and crystallinity benefitted 
from the rod shape, caused by the incorporation of rod-favor-
ing, linear 1,4-benzenedicarboxylic acid linkers. A possible 
application of the rod-shaped MOFs is the mimicking of bac-
terial shapes, using for example a Fe(III) carboxylate-based 
MOF named MIL-88A exposing Lewis acid sites and terminal 
carboxylic groups. These are available for surface modifica-
tion, which allows tuning internalization kinetics, endocytosis 
pathway, and the intracellular fate of different MOF particles 
to a certain extent [144].

Furthermore, even if the MOF structure itself is polyhe-
dral and not elongated, their geometrically perfect shapes 
and size distributions allow highly directional bonding 
which can lead to rod geometries (Fig. 6d, e) [145].

Polymers

In contrast to the well-defined crystalline MOFs, the related 
class of infinite coordination polymers (ICP) is mostly amor-
phous, which impedes the understanding of mechanical for-
mation details. The team around Chad Mirkin developed 
Salen-based homochiral ICP particles, which are amor-
phous spheres or rod-shaped crystalline structures, depend-
ing on the solvent [146]. Different jetting-based techniques 
allow fabrication of a variety of shapes, a method espe-
cially valid for polymeric materials [17]. Light structured 

photopolymerization, mold-based printing [16], and dif-
ferent 3D printing approaches will not be discussed here, 
despite the promise and variability of sizes and materials 
that can be used. We consider these techniques more of an 
engineering approach and do not deepen the discussions. For 
most polymeric materials, we must differentiate between de 
novo and shape modification-based approaches.

An early shape modification approach relies on stretch-
ing liquefied isotropic particles (Fig. 7a), as described by 
Champion et al. [147] and followed up by several others 
[148, 149].

In recent years, progress has been made also in the de 
novo synthesis of rod-like polymer particles. The polymer 
rods result if the polymerization of monomers is directed, for 
example via emulsion polymerization of tetrafluoroethylene 
[150]. The rod-like particles are formed, when the surfactant 
concentration is near or above the critical micelle concentra-
tion. A related approach leading to rod-shaped polymeric 
structures is termed mesophase polymerization, i.e., the 
use of surfactant mesophases as templates for “molecularly 
imprinted” micro rods [151, 152]. Furthermore, the ther-
mopolymerization of thiophene-based precursors on the 
microscale, resulting in elongated conducting polymer rods/
wires in water, was shown to be viable [153]. An efficient 
scale-able process for the formation of a new class of poly-
mer micro rods was reported by the Velev group [54]. It is 
based on the liquid-liquid dispersion technique. The process 
begins by adding a small amount of concentrated solution of 
SU-8 in gamma-butyrolactone to an organic liquid medium. 

Fig. 6   Synthesis of MOF rods: Depending on the molecular structure 
of linkers different morphologies from a spherical,  b evolving over 
ovoid, to c rod-shaped indium-based MOF. Reproduced with permis-

sion [141]. d and e show 1D and 2D rod formation by assembly of 
individual building blocks. Reproduced with permission [145]

790 Colloid and Polymer Science (2023) 301:783–799



1 3

Then, a shear force, stirring by impeller, was given to the 
emulsion leading to the deformation, resulting in elongation 
of those particles and then results in a dispersion of rod-like 
particles (Fig. 7b) [54]. A more recent method to shape SU-8 
into rods builds up on the liquid-liquid dispersion technique. 
The colloidal SU-8 polymer rods are prepared by shearing 
an emulsion of SU-8 polymer droplets and then broken into 
colloidal rods with ultrasonic waves [154]. Concluding, con-
ducting polymers were also shaped into rods using templated 
methods such as electrochemical deposition, for example 
using nano porous coordination templates in which poly-
thiophene micro rods with ordered chain alignment can be 
prepared [155]. A similar strategy is used to synthesize pro-
tein-imprinted magnetic polymer micro rods [156]. Selecting 
the template, this method facilitates controlling the shape 
and size of particles, but the materials are restricted by the 
necessity to remove the template.

Silica

A facile synthesis for SiO
2
 micro rods with tune-able 

length was firstly reported by Kuijk [14]. The synthe-
sis is taking place in an emulsion in pentanol using the 
silica precursor tetraethyl  orthosilicate (TEOS). The 

hydrophobic TEOS is mainly dissolved in the continuous 
pentanol phase, where it will be hydrolyzed causing an 
increase in hydrophilicity and a transfer to the H 

2
 O emul-

sion droplets. There, further hydrolysis and condensation 
of TEOS is taking place, which leads to a nucleation of 
SiO

2
 at the droplet-pentanol-interface. The change in solu-

bility during the hydrolysis of TEOS enables a directed 
growth of the SiO

2
 from the H 

2
 O droplets, which causes 

a rod-shaped morphology of the product. The overall pro-
cess is depicted in Fig. 8a. The overall concept can be 
referred to as a solution-liquid–solid method [53]. The 
length of the rods is controlled by the amount of TEOS 
and the reaction time [14].

The resulting diameter is mainly influenced by the droplet 
size and the contact angle between the three phases: SiO

2
 , 

H 
2
 O, pentanol, and is in the range of 200–300 nm [158]. 

These properties can be changed by modifying the composi-
tion of the alcoholic phase or changing the temperature. The 
impact of the hydrophobicity on the resulting structures is 
summarized in Fig. 8b. Notably, these properties can also be 
changed during the growth, enabling the synthesis of rods 
with segments with different diameters (Fig. 8c) [157, 159]. 
Additionally, the diameter can be increased by Stöber growth 
of layers of silica around the rods [14].

Fig. 7   Synthesis of polymer rods: Schematic illustration of a shape modification based on film-stretching method. Reproduced with permission 
[147]. Copyright (2007) National Academy of Sciences. b Liquid-liquid dispersion technique. Reproduced with permission [54]

Fig. 8   Synthesis of SiO
2
 rods: 

a schematic illustration of the 
solution-liquid–solid process. 
b SEM images of SiO

2
 rods 

with segments with different 
diameters controlled by reaction 
temperature. Reproduced with 
permission [157]. c Schematic 
illustration of impact of alcohol 
hydrophobicity on morphology 
of SiO

2
 rods. Reproduced with 

permission [158]
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More complex morphologies can be obtained by adding 
seed particles to the medium. The emulsion droplets can 
attach to the seed and start the rod growth from the there. 
By this, the diameter of the rod can be increased to about 
800 nm and depending on the choice of seed material, dif-
ferent functionalities like magnetic or optical properties can 
be introduced [160–162].

Theoretically this synthesis concept could also be 
extended to materials other than silica. Hagemans et al. 
replaced TEOS by different titanium alkoxide precursors, 
which similar to TEOS react to TiO

2
 by hydrolysis and con-

densation reactions. However, it was found that the much 
higher reaction rates allow nucleations in the pentanol 
phase and therefore no formation of rods was observed 
[163].

Other notable materials

There are a several works reporting micro rods consist-
ing of special or mixed materials like rare earth oxides. 
Examples include the 100 nm wide Eu(OH)

2
 rods pro-

duced hydrothermally [164]. Besides, solvothermal syn-
thesis can yield other rare earth rods, such as the tens of 
micrometer long Y 

2
O

3
 rods [165] or the up to 2 �m long 

Gd
2
O

3
 micro rods [166]. Furthermore, there are many 

rods consisting of mixed materials. To name two, there 
is Zn

2
SiO

4
 , which is produced using a special hydrother-

mal diamond anvil cell and supercritical water [127].  
Furthermore, there are several tens of micrometer-sized large 
rods made out of CuNb

3
O

8
 via flux synthesis [167]. Besides 

many other mixed phases, there are also Calcium Hydroxy-
lapatite Ca

5
(PO4)3(OH) rods, which can generate diameters 

up to 5 �m and tens of micrometers in length obtained by 
the hydrothermal synthesis method [168]. 

The growth of magnetic materials can be guided towards 
one-dimensional structures by application of a magnetic 
field during the synthesis. This concept has been applied 
for the synthesis of FeS

2
 and Fe

3
S
4
 micro rods consisting 

of aligned primary particles with different structures [55]. 
Analogously, micro rods consisting of Fe

3
O

4
 and carbon 

were synthesized in a solvothermal approach. The carbon, 
which was introduced by addition of glucose, adsorbed on 
the formed Fe

3
O

4
 nano particles and enabled a binding 

of these particles to chains, guided by the magnetic field 
[169]. Apart from mono-metallic rods, more complex and 
intricate designs can also be synthesized through various 
methods. These include alloys (e.g., Cu-Au/Ag, Ag-Au, 
Cu-Ag-Au, Ni-Pd/Pt/Ag/Au) [170], core-sheath structures 
(e.g., Au@Pd, Ag@Au, Cu@Au) [171], metal-dielectric 
composites (Au@SiO

2
 ), and metal–semiconductors com-

posites (e.g., Ag@TiO
2
 , Au@Cu

2
 O [172]).

Applications

The “Behaviors” section of the paper demonstrated that rod-
shaped micro structures exhibit unique properties compared to 
their spherical counterparts. This segment aims to investigate 
how these behaviors can be utilized in potential applications. 
Micro rods are promising candidates for various applications, 
including waste water purification [130–132], and catalysis 
[173] due to their larger surface to volume ratio. The review 
paper also presented instances of the micro rods operating in 
restricted geometries, as real-world settings are often intricate. 
In biomedical applications such as drug [174] and vaccine 
delivery [16], an advantage of the rod-shape has been con-
firmed for nano particles due to increased cell internalization, 
tumor penetration, and retention in blood [175, 176], especially 
concerning bio-distribution [177, 178]. In one of the studies, 
rods were selectively internalized by neutrophils compared to 
spherical structures, demonstrating that altering the shape of 
particles can be used to selectively target neutrophils for the 
treatment of different inflammatory conditions [179]. On the 
other side, micro fabricated rod arrays in the upper micron-range 
were shown to enable bio-interfacing [180]. In highly specific 
scenarios, rods were found to be more suited for particular appli-
cations, e.g., their one-dimensional structure can also be used 
as optical wave guides, to propagate light in tiny devices [181]. 
Another example are lithium-ion batteries, where the particles, 
because of their shape, can adjust well to the volume change in 
the charge–discharge cycles and rapidly transport electrons as 
well as ions [104, 134, 139, 182]. Furthermore, when applied 
to a surface or deposited thereon, rods can modify it and imi-
tate the effects of a lotus leaf, as it was done with ZnO rods 
[183, 184]. Additionally, it is discussed how flexible LEDs and 
micro devices based on GaN micro rods may be made due to the 
regulated controllable three-dimensional growth [185, 186]. As 
previously mentioned, rods possess the ability to exhibit an extra 
liquid crystal structure as compared to spherical particles. This 
feature makes them a potential candidate for applications in pho-
tonics. In one of the studies, it was shown that achiral dumbbell-
shaped colloids (DBCs) can form various liquid crystal phases 
including blue phase III with double-twisted chiral columns 
[25]. Blue phase liquid crystals can deliver sub-millisecond 
switching time, allowing LCDs to produce sharper images and 
compete with OLED displays [187]. They are also appealing for 
use in fast optical and electrooptical devices. Hence, this work 
opens up a path for creating blue phases from silica DBCs for 
use in photonic applications. Looking at niche applications like 
near infrared (NIR) obscurants for military uses, CuO rods were 
to be found to effectively diffuse NIR light [109]. The synthe-
sized rods can frequently be utilized as templates for rods made 
of other materials or tubes, as was already mentioned in this 
study [15].

792 Colloid and Polymer Science (2023) 301:783–799



1 3

Comprehensive summary

In general, we can conclude that the formation of rod shapes 
requires a driving force that pushes the system away for the 
often favored spherical symmetry. To achieve this, we identi-
fied and grouped some of the most important methods:

•	 When crystal structures favor growth along a particular 
direction, rod-like growth can result, which is frequently 
the case for metal oxides or hydroxides.

•	 Growth directed by templates, external fields, or interfaces.
•	 Pre-formed particles or droplets can be re-shaped into 

rods by external forces like shear.

We list some representative examples with the respective 
references in the table below:

Method Material examples

Crystal structure dependent
Hydrothermal/solvothermal FeOOH [94, 116, 134], GaOOH 

[99-101, 115], MnOOH [96, 
98], MnO

2
 [108, 110], ZnO 

[113, 120, 121, 123, 125], 
MoO

3
 [106, 107], CoO

4
 [103, 

112], CuO [109], V 
2
O

5
 [105], 

VO
2
 [114]

Sonication TiO2 [188]
Wet chemical MgO [15, 128-132]. GaOOH 

[102], FeOOH [117, 189], ICP 
[146], MOFs [141–144]

Geometrically restricted
Templated Metals [59]; Fe

2
O

3
 [15], 

MnO
2
 [57]; TiO

2
 [56, 135, 136], 

Co
3
O

4
 [139], Cu

2
 O [190]

Solution-liquid-solid SiO
2
 [14]

Ink-jet TiO
2
 [137]

Externally influenced 
deformation

Shear-driven deformation SU-8 polymer [54]
Stretching Polystyrene [147, 149]
Magnetic field FeS

2
 and Fe

3
S
4
 [55], Fe

3
O

4
 [169]

While certain “fashions and trends” such as the interest in 
well-controlled shapes have led to the availability of (mostly 
noble) metals in smaller and larger sized rods (nano rods and 
nano wires, respectively), intermediate sizes are yet largely 
missing. We had a particular interest in rod shaped structures 
to explore self probelled rolling motion of micro rods, which 
has recently been observed on the macro scale for fiberboids 
[191] and in nature for the influenza virus on cell membranes 
[192]. However, a smart design of synthetic approaches, even-
tually combining different techniques, will probably overcome 
this restriction in the close future. There are a few examples, 
such as the magnetic assembly into iron oxide rods [134], 

where a new synthetic methodology has been developed for 
a single material, but the generic method is not yet explored. 
While the use of magnetic fields is certainly restricted, the 
approach could probably be extended to electric or acoustic 
fields, broadening the target materials significantly. Despite 
the extensive research efforts to synthesize various micro 
structures, certain challenges still persist and require further 
investigation. The underlying mechanism for their growth 
is not fully understood, and methods for producing these 
structures at large scale with high efficiency remain elusive. 
Furthermore, the stability of these materials under ambi-
ent conditions, particularly for metallic materials, and their 
environmental impact must be thoroughly evaluated before 
considering their practical application for commercial usage.

Overall, a general comparison in terms of achieved 
homogeneities and reproducibilities is difficult. Not only 
are resulting quality factors highly dependent on individual 
skills and reagent purities, also technical factors such as the 
experimental setup including heat rate contribute signifi-
cantly. Templated methods are frequently more difficult to 
scale up, but result in more homogeneous structures. Syn-
thetic techniques based on chemical equilibria can result 
in very narrow size distributions, if optimized conditions 
are selected.

Furthermore, we envision that a combination of differ-
ent materials provides opportunities to tune properties. 
Examples here are core-shell metals [171] that allow tun-
ing the plasmonic properties, or hybrid structures that use 
well-structured MOFs as templates that yield oxide materi-
als after calcination [193–195]. We conclude by highlight-
ing that the fascinating peculiarities in rod-behaviors can 
be coupled to many specific material properties, paving the 
way towards deeper understanding of biological systems, as 
well as advanced functionalities and practical applications 
at large scale.
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