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Abstract

Understanding how humans learn complex skills is a fundamental aim of cogni-
tive science. Digital games offer promising opportunities to study cognitive factors
associated with skill acquisition and performance, as they motivate longitudinal
engagement and produce rich, multivariate data sets. By applying mutlivariate
analysis techniques to data arising from gameplay, this thesis extended the liter-
ature on cognition as it pertains to psychomotor skill. We describe three studies
that were conducted in this regard.

In the first study, we analyzed the relationship between the temporal distribution
of play instances and performance in a commercial digital game (League of Leg-
ends). Using clustering techniques and big data, we demonstrated that players
who cram gameplay into short time frames ultimately perform worse than those
who space the same number of games over longer periods.

In the second study, we examined an experimental data set of participants who
played Meta-T, a laboratory version of Tetris. Using Principal Components Anal-
ysis and regression techniques, we identified cognitive-behavioural markers of per-
formance, such as action-latency and motor coordination. We also applied Hidden
Markov models (HMM) to time series of these markers, showing that moment-
to-moment dynamics in performance can be segmented into behavioural states
related to latent psychological states.

In the third study, we investigated the neural correlates of behavioural states
during performance. Using simultaneous MEG and behavioural recordings of
participants playing Tetris, we segmented time series datasets of neural activity
based on time stamps of behavioural epochs derived from HMMs. We compared
behavioural epochs based on neural markers, showing that cognitive states derived
from multivariate behavioural data correlate with neural activity in the alpha
band power.

Taken together, this thesis advances our understanding of using digital game
data to study cognition and learning. It demonstrates the feasibility of recording
high-density neuroimaging data during complex behavioural tasks and obtaining
reliable measures of internal neuronal states during complex behaviour.
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Introduction

The study of skill acquisition and expertise (i.e., domain-specific superior perfor-
mance) has been a central topic in psychology for over a century. Presumably
one reason for this is the assertion that if we understand processes of skill acqui-
sition, we can manipulate them to our advantage. In line with this aspiration, a
primary focus of this work is to further our understanding of the acquisition and
performance of psychomotor skills. By psychomotor skills, we refer to learned
behavioural patterns that involve the coordination of motor and cognitive func-
tions (Fitts & Posner, 1967). By performance, we refer to the observed execution
of these behavioural patterns.

This investigation is situated in the domain of digital games. In recent years
digital games have received increased attention from cognitive scientists interested
in the study of learning, owing in part to the availability of large, rich data
sets that enable unobtrusive interrogation of human behaviour. Game players
develop profound skill over years of play and practice, generating reservoirs of
ecologically valid data about practice behaviour and skill development that can
be unobtrusively recorded. This thesis will demonstrate that, analysed in detail,
such data help us to understand processes surrounding complex skill acquisition
and performance.

We anchor this investigation of learning to digital games for two main reasons.
The first is to take advantage of the richness and vastness of digital game data,
which enables us to study behaviour and cognition at a scale and level of detail
that was inaccessible prior to the big data age. The second reason is to conduct
research in a naturalistic domain. By extending cognitive science to digital games,
we may test whether extant findings survive outside the boundaries of laboratory
tasks, and in a real-world setting with millions of stakeholders.

In this chapter, we briefly introduce influential work on human expertise and
skill acquisition. This is followed by a literature review of studies that have used
digital games as the experimental paradigm to investigate how humans acquire
complex skills, and what separates elite players from average and novice players.
We conclude with a discussion of respective research gaps and the direction taken
in this thesis.
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Introduction

0.1 Psychological Studies of Expertise and Skill
Acquisition

In his thesis on the development of perceptual-motor expertise, Ward (2002)
traced inquiry into human excellence back some 2000 years, citing early insights
by Aristotle and Seneca. According to the former "We are what we repeatedly
do. Excellence then is not an act but a habit". Seneca did not view the effects of
ordinary, extended experience with such generosity, as evident in his correspon-
dence with his contemporaries: "Toil to make yourself remarkable by some talent
or other".

Although the benefits of specialist research methods and knowledge did not exist
in the classical era, the intuitions of these thinkers have had enough plausibility
to endure until present times. That is, whether expert skill is incidental to expe-
rience, the product of some genetic lottery, or the fruit of prolonged effort, has
been a centre of much academic debate in recent decades (e.g., Howe et al., 1998;
Simonton, 1999). While the issue is not fully untangled, the consensus view in
the behavioural sciences appears to acknowledge the interacting roles of innate
endowments, environmental factors, and practice (e.g., Campitelli, Connors, Bi-
lalic, and Hambrick, 2015; Den Hartigh, Van Dijk, Steenbeek, and Van Geert,
2016). In order to justify the present focus on practice behaviours alone, it is
important to briefly explore evidence pertaining to the contribution of talent.

0.1.1 The role of talent

Most reviews of research on expertise begin with Galton’s 1869 seminal work
Hereditary Genius. Analysing the characteristics and achievements of eminent
British individuals across various domains, Galton proposed that excellence is
determined by an individual’s intellectual ability and personal motivation. Ob-
serving that these individuals descended from a small number of families (at a
frequency much higher than chance) Galton further proposed that these qualities
must be heritable. Thus in this view, individuals are born with innate properties
or gifts that are key determinants of eventual excellence. Typically one refers to
this configuration of innate properties as talent, more formally conceptualised as
"any innate capacity that enables individuals to display exceptionally high per-
formance in a domain that requires special skills and training" (Simonton, 1999,
p. 436).

Notwithstanding Galton’s acknowledgement of the importance of training, the
hypothesis that talent is a key determinant of eventual excellence has received se-
rious attention from researchers. To evaluate evidence in support of this position,
Howe (1998) systematically reviewed a corpus of correlational research linking var-
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0.1 Psychological Studies of Expertise and Skill Acquisition

ious biological factors and measures of cognitive ability with performance across
domains ranging from music to sport. Howe concluded that individual differences
in motivation, environment, early experiences, and practice were more likely to
be determinants of excellence than talent. Noted were recurring issues underlying
studies in favour of the talent perspective, such as a reliance on anecdotal evi-
dence, failure to account for practice and training opportunities in retrospective
studies, and restriction of range in correlational analyses.

In more recent efforts, Johnston et al. (2018) conducted a systematic review of
talent identification research in sport. Following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA; Moher, Liberati, Tetzlaff, and
Altman, 2009) statement guidelines, studies were included for review provided
they contained an elite sample of athletes, a longitudinal or retrospective design,
a comparison between skill brackets, and a removal of "grey-area" topics such
as genetic predispositions, birthplace effects, and handedness, resulting in a final
selection of 20 studies conducted between the years 1990 and 2015. Overall
the authors found this body of work to be inconsistent in its ability to suggest
reliable predictors of success in sport. While a fraction of studies identified some
variables (e.g., sprint abilities, agility drills) that could differentiate between skill
brackets, others did not. In particular, anthropometric measures such as height
and weight were inconsistent in their predictive efficacy across different sports.
Taken together the results of Johnston and colleagues (2018) are valuable in
sketching current conceptualisations of talent in sport, but less so in supporting
Galton’s original postulation that heritable factors are an essential determinant
of excellence.

A weakness of this review was the exclusion of studies pertaining to genetic pre-
dispositions associated with skill. A starting point to examine this angle is to
consider the necessity of certain physiological traits for athletic success. For in-
stance, ballet dancers’ ability to turn out their feet appears to be genetically pre-
determined, and attempts to force the necessary hip turnout (through practice)
without the appropriate genetic makeup can result in injury (Hamilton, 1986).
Similarly, it is difficult to argue against the importance of height in basketball.
Besides such observable examples, decades of twin studies and advances in ge-
nomics have yielded a strong bed of evidence regarding the influence of genes on
athletic ability (see Brutsaert and Parra, 2016; Georgiades, Klissouras, Baulch,
Wang, and Pitsiladis, 2017). However, these studies also reveal that genes do not
account for 100% of the variance in this arena.

Beyond physiological traits, research on the relationship between innate cognitive
capacities and performance has typically concentrated on the role of intelligence,
most notably in chess. These studies have revealed a relationship between intelli-
gence and chess performance that cannot be easily dismissed (see Grabner, 2014;
Burgoyne, Sala, Gobet, Macnamara, Campitelli, and Hambrick, 2016 for a full
review). Two main approaches have been adopted in this regard. The first is to
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correlate psychometric measures of intelligence with ELO (a standardised mea-
sure of chess skill) and other measures of chess performance in players of varying
skill. A second approach is to compare expert chess players with novices on mea-
sures of performance and intelligence. The combined weight of these studies has
shown that intelligence is generally related to chess skill, and that expert chess
players almost consistently have an IQ higher than that of the population mean.
According to a recent meta-analysis (Burgoyne et al., 2016), correlations between
cognitive ability and chess skill are small to medium in effect size (r = 0.24).
Moreover, studies appear to be more consistent in correlating IQ with chess skill
in younger players or those in the early stages of chess skill.

Based on the evidence summarised above it would appear that the role of indi-
vidual differences in (heritable) cognitive or physiological capacities cannot be
discarded from models of expertise and its development in several domains in-
cluding. In sum studies indicate that innate capacities do not comprehensively
account for individuals’ eventual skill level, regardless of the achievement domain
in question, nor do they permit statements regarding mechanisms of expertise
development. What remains debatable is the emphasis that should be placed on
nature versus nurture. In this regard, Ackerman (2014) asserts that extreme po-
sitions are "silly" and that both need to be taken into account. Current domain-
general models of excellence typically adopt a middle ground position, factoring
in the interrelationship between innate and environmental variables (Den Hartigh
et al., 2016; Gagné, 2004; Simonton, 2014, e.g.,).

0.1.2 The role of training

In a classic study of practice and performance in Morse code operators, Bryan
and Harter (1897; 1899) measured the performance of novice, average, and expe-
rienced telegraphers in the sending and receiving of messages for over a year. The
authors plotted performance trajectories over this time in weekly tests, where tele-
graphers were required to decode messages as they were being received, and asked
telegraphers task-specific questions pertaining to their attention and thinking dur-
ing performance. Periods of improvement as a result of repeated message encod-
ing were followed by plateaus in skill acquisition. These plateaus were eventually
overcome following intensive efforts to improve and reorganize skill, resulting in
qualitative differences in processing. That is, telegraphers consciously attended
to more complex units of information (i.e., letters, syllables, then words) as the
perception of lower order units became automatic. This study has influenced the
perception of some psychologists that mere repetition of behaviours is insufficient
to attain maximal levels of performance. For instance, Thorndike (1921) made
the general observation that adults perform at a suboptimal level even for tasks
that have been repeated numerous times, citing adults’ (and clerks’) tendency to
write slower and more illegibly than they are maximally capable.
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Ericsson and colleagues (1993; 1996) have arguably conducted the most well
known studies on this subject, asserting that a particular kind of sustained train-
ing, that they term deliberate practice, plays a critical role in the acquisition of
elite levels of skill. Reviewing a range of literature on human performance and ex-
pertise, the authors made several foundational arguments. Firstly, advancements
in human performance in various domains (e.g., Olympic Games events, musical
performance, typing speed) over the course of the past century can be partially
attributed to improvements in duration, intensity, and structure of training. Sec-
ondly, citing work involving the quantity of deliberate efforts required to attain
expertise (Chase and Simon, 1973; de Groot, 1978), the authors suggested that
up to 10 years of deliberate practice is required to reach maximal levels of perfor-
mance in any given domain. Deliberate practice, defined as "a highly structured
activity, the explicit goal of which is to improve performance" (Ericsson et al.,
1993, p. 369) was thus proposed as a framework for characterising those activities
most effective for improving performance. In its original conception the frame-
work was constrained in three ways: 1) according to the "resource constraint",
10 years of deliberate practice with access to relevant adequate teachers, training
materials, and facilities is required, 2) according to the "motivation constraint",
deliberate practice is not inherently enjoyable, and 3) according to the "effort
constraint", deliberate practice can only be sustained for a limited time each
day.

The authors tested these predictions by collecting quantitative data on practice
behaviours from three groups of violinists studying at an elite music academy.
Each group differed in level of performance, based on ratings of music profes-
sors. Data were collected by asking participants to record times and durations
of all practice activities over the course of a week. In an extended biographical
interview, each participant also provided retrospective estimates of practice en-
gaged in over each year of their life. Results confirmed the authors’ predictions
regarding quantity of practice required. Specifically, analyses revealed that the
two best groups of violinists practiced almost three times longer than violinists
from the third group. According to retrospective estimates, participants in the
best group had accumulated approximately 2000 more practice hours than partic-
ipants in the second best group. The authors also validated the effort constraint,
that is, participants rated many practice activities such as practice alone, taking
lessons, and solo and group performance as significantly more effortful than the
grand mean of all activities. However, results failed to validate the motivation
constraint, in that ratings of practice activities were not significantly lower than
the grand mean of enjoyment.

Though the theoretical framework of deliberate practice was initially tested in
the domain of music, Ericsson & Lehmann (1996) suggested that it can provide a
sufficient account of expertise in virtually any performance domain. More specif-
ically, they argued that expert performance is better explained as a result of
deliberate practice sustained for a minimum of 10 years (or 10,000 hours), than
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it is by talent. As of this year, the original study on deliberate practice (Eric-
sson et al., 1993) has been cited over 14000 times, and the authors’ egalitarian
view of excellence has captivated lay audiences (e.g. Gladwell, 2008) and lead to
many tests of the framework in different domains, including sports (e.g., Helsen,
Starkes, and Hodges, 1998; Baker, Côté, and Abernethy, 2003; Hodges, Starkes,
Nananidou, Kerr, and Weir, 2004) and chess (e.g., Charness, Tuffiash, Krampe,
Reingold, and Vasyukova, 2005; Gobet and Campitelli, 2007; Campitelli and Go-
bet, 2011). Adopting diary methods similar to the original work, these studies
have generally uncovered quantitative differences in practice between elite, sub-
elite, and novice practitioners, that are in line with the original tenets of the
deliberate practice framework. Some observations have also echoed the original
supposition that deliberate practice activities are "invented to overcome weak-
nesses" (Ericsson et al., 1993, p. 368). For example, in a study of figure skating
(Deakin & Cobley, 2003) elite skaters were reported to have spent 20% more time
practicing jumps and 30% less time resting on the rink than sub-elite skaters. It
was also found that elite skaters fell down more often than sub-elite skaters while
practicing specialised jumps. This finding is attributed to the tendency of elite
performers to work on techniques at the periphery of their current ability, rather
than refining skills that they are already capable of performing well.

The deliberate practice framework has come under scrutiny primarily because the
original claim (i.e., that accumulated practice is sufficient to explain expertise)
exceeded the bounds of what was observed in the foundational studies. Several re-
views have since been conducted across domains in which this construct has been
studied (e.g., Baker and Young, 2014; Campitelli and Gobet, 2011; Hambrick,
Oswald, Altmann, Meinz, Gobet, and Campitelli, 2014b; Hambrick, Altmann,
Oswald, Meinz, and Gobet, 2014a) have indicated that the importance of delib-
erate practice was largely overstated. A meta-analysis conducted by (Macnamara
et al., 2014) has revealed that deliberate practice accounts for 26% of the vari-
ance in games (i.e., chess), 21% in music, and 18% in sports respectively. Claims
regarding necessary amount of practice have also been called into question. In
a study of deliberate practice in chess, Gobet and Campitelli (2007) found that
experts exhibited substantial variance in accumulated number of practice hours,
ranging from 3000 to 23000 hours. A later study in the same domain found that
a minimum of only 3000 hours of practice appears to be necessary (Campitelli &
Gobet, 2011) for the attainment of expertise in chess, far from the 10000 hours
originally hypothesized by Ericsson and colleagues.

More recently, Macnamara and Maitra (2019) sought to replicate the original
study of deliberate practice conducted in violinists Ericsson et al. (1993). The
authors improved upon the original design, collecting data from a larger sam-
ple than in the original study, employing a double-blind protocol, and running
non-parametric tests to account for the small sample size (whereas Ericsson and
colleagues ran parametric tests). Interestingly, the original finding was not repli-
cated - although the top two groups of violinists ("best" and "good") differed
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significantly in accumulated practice than the lowest skill bracket, the best vio-
linists had accumulated less practice than the good violinists. Further, practice
alone explained only 26% of the variance in performance level, which is in line
with the meta-analytic average amount of performance variance (23%) reported
by Macnamara and colleagues (2014).

Taken together, previous studies show that effortful practice sustained over many
years is an important determinant of human excellence. However, just like the
extreme talent perspective, current literature shows that the deliberate practice
framework is not sufficient in accounting for the totality of variables that influence
the acquisition of elite skill. Moreover findings pertaining to deliberate practice
and expertise are often inconsistent. These difficulties may arise due to various
reasons. As noted by Macnamara & Maitra (2019), one potential issue is Ericsson
and colleagues’ inconsistent definition of deliberate practice. In addition to result-
ing in inconsistent recordings of practice, this is likely to exacerbate the influence
of existing differences in the domain-specific skills and respective training proto-
cols that learners engage with. Inconsistency may also relate to high variability
in reported practice hours arising from inaccuracy in participants’ retrospective
estimates of accumulated practice.

Although the deliberate practice framework alone may be ill-suited to provide
a comprehensive account of skill acquisition and expertise, some combination of
individual differences and behaviour must clearly be examined. In this thesis, we
concentrate on the latter for several reasons. Firstly, as noted by Ward (2002) a
focus on individual differences and innate abilities precludes an understanding of
how the acquisition of expertise develops over time. As these are fundamentally
trait-like, performance and behaviour may be better suited to tracing moment-to-
moment changes in performance over the long-term. More importantly, in terms
of research impact, we argue that it is in the interests of any population interested
in accelerating skill acquisition to gain a better understanding of factors that
are maximally controllable, such as practice behaviours and other environmental
factors. However, advance this research focus in ecologically valid domains such as
sports or chess, it may be prudent to move beyond imprecise, wholesale methods
of measuring practice, such as retrospective reports of total practice or diary logs
of concurrent practice.

Multiple research groups have pointed to digital games task environments to
study skill acquisition (e.g., Boot, 2015; Chabris, 2017; Charness, 2017; Allen
et al., 2023). This approach is unique in its capability to bypass the problems
we have highlighted here, because as computerised tasks, digital games can leave
behind accurate records of behaviour, such as what game mode a player played,
when they played it, and how well they performed. Certain populations of play-
ers, such as those that play so-called "esports" (i.e., competitive games played
for spectators) play these games regularly for years on end, developing expertise
without the influence of systematic training environments present in more devel-
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oped domains. Digital games can thus act as model environments for studying
self-guided learning, and have even been compared to chess in terms of their
potential to advance our understanding of expertise (Pluss et al., 2019). It has
also been suggested digital games are "manageably complex", and let us track
multiple metrics associated with complex performance in parallel (Gray, 2017).
Combined with state-of-the-art analytic methods, data sets generated by these
tasks can assist researchers identifying plateaus in skill trajectories, and poten-
tially pinpointing the behavioural strategies that allow learners to push past these
plateaus (Gray & Lindstedt, 2017). As such, we review in the following chapter
recent studies of skill acquisition in expertise that have used digital games as
experimental paradigms for research.
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1.1 Previous reviews

In keeping with growing academic interest in digital games and esports, sev-
eral reviews examining the intersection of games and human psychology have
already been published. Although these reviews provide a valuable synthesis of
the broader research domain, they each capture areas of research that, while adja-
cent, are not in immediate alignment with the aims of this thesis. We summarise
these reviews here with the aim of contrasting their contents and methods with
those of the current review.

With a view toward magnifying research attention on gaming activity, Bányai,
Griffiths, Király and Demetrovics (2019) reviewed empirical studies on the psy-
chology of professional esport players. The authors identified 8 empirical studies
published between the years 2000 and 2017 concerning the characteristics and
development pathways of esport players, as well as the motivations of esport
spectators. Following a detailed content summary of each study, the authors
concluded that the process of becoming a professional esport player bears sim-
ilarities to the process of becoming a professional athlete, such as the requisite
practice and dedication exemplified in both pathways. The authors additionally
discussed parallels between excessive gaming and problem gambling, issuing a
call for future research to explore these similarities, as well as to further examine
the sport-status of esports and provide further empirical data on esport player
psychology.

Mora-cantallops and Sicilia (2018) reviewed any studies involving MOBA games
that were published since the year 2011, identifying 23 in total. Due to the general
nature of their literature search, these studies comprised a broader range of topics,
including player behaviour and motivation, player churn, as well as team dynamics
and gender studies. The review consists of a high-level summary of each article,
overview of the state of each research topic, and closing suggestions for researchers
investigating MOBA games. It is concluded that MOBA games, despite their
growing popularity, suffer from underexploration and inconsistent terminology as
an area of research. Nevertheless, the authors encourage researchers to make use
of opportunities presented by MOBA games in the form of large playerbases and
accessible APIs.
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Pedraza-Ramirez, Musculus, Raab, and Laborde (2020) reviewed studies investi-
gating psychological aspects of esport performance, aiming to summarise avail-
able empirical findings in this domain as well as to integrate them into the field of
sport psychology. As a result of a rigorously reported search strategy, the authors
identified 52 relevant quantitative studies, published between the years 1994 and
2018. These studies were all quantitative in design. Studies were classified as
concerning either cognitive (e.g., working memory, inhibitory control) or in-game
outcomes (e.g., position in ranking system, game performance) associated with
playing esports games, although many concerned both. Studies were further cat-
egorised in terms of their focus on either expert-novice differences or (sustained)
participation in esport games as the key variable affecting these outcomes. In
addition to providing a content summary as in previous reviews, the authors
evaluated methodological differences in studies (where such differences may have
contributed to differences in results), and postulated a heuristic model of esports
performance psychology.

More recently, Allen et al. (2023) discussed the use of games as tools for advanc-
ing psychological and cognitive science research, reviewing a range of games and
describing how different design features present different advantages and disad-
vantages for research. The authors propose that games can be used to test and
scale theories, highlighting their ability to reveal interactions between cognitive
processes, including complex phenomena such as tool use, relational structures,
and social behaviours. They also note that games have been instrumental in
improving artificial systems’ capabilities and have potential for understanding
natural intelligence. Finally, it is suggested that researchers can use existing
games or create their own, while carefully considering factors like game rewards,
complexity, and progression.

Literature reviews adjacent to the current document focus overwhelmingly on
esport games as the domain of interest. Although there is overlap between their
contents and the objectives of this thesis, it is worth noting that parallel studies
relating psychology to digital games, including games that do not meet accepted
definitions of "esport", may also offer contributions relevant to the literature.
For instance, studies of Space Fortress, a digital game paradigm developed by
DARPA for the study of complex skill acquisition, have demonstrated differences
in learning outcomes arising from differences in sustained attention across suc-
cessive gameplay sessions (Donchin, 1995; Mane & Donchin, 1989; Lim & Yen,
2004). Such studies were excluded from these reviews due to their use of search
queries that isolated papers involving esports at the expense of non-esport task
environments. Relatedly, despite aiming to capture the totality of literature,
several reviews covered a relatively small amount of studies, with Bányai and
colleagues (2019) identifying only 8 and Mora-Cantallops and colleagues (2018)
23 respectively.

An additional limitation of existing reviews relates to the method of review it-
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self. Besides some discussion surrounding the sport status of esports, overview
of existing research has previously been provided by collating central findings
of reviewed papers. Authors have also recommended some directions for future
research and highlighted potential challenges. In particular, Pedraza-Ramirez
and colleagues (2020) made several valuable observations, writing on the role of
deliberate practice (Ericsson et al., 1993) in esports and the dearth of related
empirical literature, as well as on correct interpretation of in-game performance
metrics and proper methodological design for research involving games (Dale and
Green, 2017). Notwithstanding their contributions, what is lacking from these
reviews is consistent consideration of the methods employed in each study and dis-
cussion concerning the interpretation and quality of resultant findings. Without
this critical step, it is difficult to establish which lines of inquiry are promising,
which are problematic, and ultimately what might be most beneficial for the
future of this research area.

1.2 Aims and rationale

Taken together, existing literature reviews do not provide a comprehensive sum-
mary of studies that have used digital games as a paradigm to shed light on
expertise and skill acquisition. The aim of this literature review is to address
this gap by producing a synthesis and analysis of current knowledge in this area.
Specifically, the review is concentrated on empirical research that:

i) has produced observations of human performance, skill level, and/or cogni-
tive factors related to digital games

ii) has related any combination of these variables to longitudinal performance,
cross-sectional performance at a different time point, and/or skill level (e.g.,
in-game rating)

within the same digital games from which data were collected. As such, the
present focus excludes related but tangential research domains such as gamifica-
tion and the transfer of skill obtained via game playing to other contexts outside
the respective game environment (e.g., Green & Bavelier, 2015) In contrast to
previous reviews, the present scope is not limited to studies that adopt a purely
quantitative approach. Rather, studies that adopt qualitative methods are also
considered for eligibility, given the potential for such approaches to yield insights
that quantitative designs may overlook (Salmon, 2003).
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1.3 Search strategy

To capture the state of the art, the search focused on the past decade of published
work, ranging from the year 2009 to 2020. Only studies published in peer-reviewed
journals and conferences within this time frame were considered. As in Pedraza-
Ramirez and colleagues (2020), the Population, Intervention, Comparator, and
Outcomes study design model was adopted for formulating the inclusion criteria
(Schardt et al., 2007). These critera delineate the characteristics of a study
considered to be a requirement for addressing the aims of this review, and thus
be eligible for inclusion (Table 1.1).

Population Intervention/
Phenomena

Comparators Outcomes

Digital games,
healthy human
population re-
search, excluding
AI agents

Psychological
and/or be-
havioural as-
pects of per-
formance, in
particular prac-
tice patterns
and training
interventions

1. Level
of prac-
tice/training
intervention

2. Individual
differences
in cognitive
factors

3. Expertise
or in-game
rating

a.
Performance
trajectory
over time

b.
Performance
at a given
time point

c. Expertise
or in-game
rating

Table 1.1: PICO criteria of the review

The search was executed across multiple electronic databases to capture litera-
ture from psychology as well as related interdisciplinary fields: PsycINFO, Web
of Science, and SCOPUS. Bibliographies of studies included in the final stage
of screening were additionally hand-searched to identify studies that may have
evaded our initial electronic query.

The following query was used to search for peer-reviewed studies published in
journals and conferences between the years 2009 and 2020: (learning OR skill OR
practice OR training OR performance OR expertise) AND ("digital game*" OR
"video game*" OR "complex game*" OR "online game*" OR "action game*" OR
"space fortress"). The search was executed across multiple databases to capture
literature from psychology as well as related interdisciplinary fields: PsycINFO,
Web of Science, and SCOPUS. Further, any results that contained the terms
"exergame*", "game-based", or "gamification" were eliminated. This was done
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to filter out studies investigating the effects of game playing on factors outside
the game environment, such as general health and cognition. Additional studies
that fit these criteria, but fall outside the original time range of the query, have
also been included in this literature review to account for recent developments
since its conception.

1.4 Laboratory studies of skill acquisition

1.4.1 Studies using Space Fortress

A large body of work has used digital games to investigate behavioural or cognitive
factors that influence skill acquisition. Many of these studies have focused on the
effects of different training strategies on the rate at which individuals learn to
play Space Fortress (SF; Donchin 1995). SF is a game in which players maneuver
a spaceship in a frictionless 2D playfield with the aim of shooting missiles at
a central space fortress to amass points and ultimately destroy it. This must
be accomplished whilst evading an intermittently appearing mine and remaining
within a specific boundary of the playfield. In the original verison of SF, players
controlled the spaceship (i.e., rotation, acceleration, missiles) using a joystick,
although a more recent pygame implementation allows players to play the game
using a computer keyboard (Destefano & Gray, 2008, 2016). Originally designed
to study the acquisition of psychomotor and cognitive skills in complex multi-
tasking environments, SF is particularly conducive to such inquiry as achieving
the overarching goal of destroying the fortress requires players to successfully
progress towards several subgoals, previously codified in a cognitive task analysis
of SF (Wang et al., 2010). Progress towards each of these subgoals, namely
dealing with mines, protecting the ship, maneuvering, and managing resources
(e.g., missiles) is logged by the game in the form of related subscores that are
made visible to the player together with overall score (see Figure 1.1 for an
overview of the game display and presented subscores). This logging system
allows researchers to measure players’ acquisition of component skills and overall
skills and investigate how overall skill acquisition might be optimised.

Wang et al. (2010) investigated the effects of two different training protocols on
skill acquisition. Participants randomly assigned to a Fixed Priority (FP) or
Variable Priority (VP) condition were instructed to either give equal emphasis
to each of the four subscores (points, control, speed, or velocity), or to empha-
sise a different subscore during each block of practice over a training protocol
spanning 10 days. Participants engaged in 7 practice blocks each day, begin-
ning and ending with one test block for which they were instructed to emphasise
total scores. Comparisons of test block score trajectories between the two train-
ing groups revealed a superior rate of skill acquisition for participants in the VP
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Figure 1.1: Screenshot of Space Fortress game (from Lee et al., 2015).

group. Moreover, differences between VP and FP training were significantly more
pronounced for participants that initiated at a lower skill level.

These results extend early work on training strategies in SF, and more broadly
extend a skill acquisition literature concerned with the effects and applications of
attentional control across different training protocols (e.g., Gopher et al., 1989;
Swanson & Law, 1993; Kurtz & Lee, 2003; Wickens et al., 2013; Frerejean et al.,
2019), including part- (i.e., decomposing a complex skill and practicing subtasks),
whole-task (i.e., practicing all components of a complex skill simultaneously), and
part-whole training (i.e., practicing subtasks first followed by the whole task). In
a later study, Lee et al. (2015) investigated why low initial performance may
have a different effect on opposing training strategies. Comparing two groups
of participants in training protocols similar to Wang et al. (2010), they demon-
strated that the effects of training are moderated by fluid intelligence, with skill
acquisition in a Full Emphasis Training (FET) condition correlating with fluid
intelligence, while skill acquisition in a Hybrid Variable-Priority training (HVT;
a combination of part-task and VP training) did not correlate with skill acqui-
sition. Blumen et al. (2010) conducted a study of skill acquisition in SF with
similar training protocols, but this time in ageing participants that were trained
over the course of 36 training sessions spread out over 12 weeks. In addition, par-
ticipants in the VP condition were instructed to emphasise one subscore each in
training session, rather than in each training block as previous studies had done.
Possibly related to this altered scheduling of practice, results of this experiment
indicated the opposite effect: training with emphasis on total score resulted in
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superior performance as compared to shifting focus on a different subscore each
session.

Other studies have used a similar experimental design to investigate how the ef-
fects of training strategies on skill acquisition relate to underlying cognitive or
neural factors. Erickson et al. (2010) were able to replicate the effects of VP
and FP training on naive learners over an analogous 10 session training schedule,
which resulted in superior performance for participants in the VP condition. Ad-
ditionally, pre- and post-training MRI scans revealed areas of the brain that were
predictive of skill acquisition, with nucleus accumbens volume predicting perfor-
mance improvement early on in the skill acquisition trajectory and dorsal striatal
volume predicting performance for the VP, but not the FP protocol. Analysing
the same data, Vo et al. (2011) found that activity in the dorsal striatum recorded
before the onset of training was highly predictive of skill acquisition, highlight-
ing the differences in neuroanatomy that may predict to what extent individuals
will benefit from training in a psychomotor skill. Several studies have similarly
combined neuroimaging techniques with training interventions in SF to study the
neural mechanisms of acquiring complex skills. Prakash et al. (2012) also demon-
strated that HVT training results in faster skill acquisition than FP training.
Relative to a control group that received less contact with SF and no training
instructions, participants in both training groups showed less post-training neural
activity in brain regions implicated in attentional control, suggesting increased
automaticity of the acquired skills (Poldrack et al., 2005). Parallel work has
identified other brain regions associated with visuo-spatial attention and motor
control that differ between HVT and FP participants following training Lee et al.
(2012), as well as differences in functional connectivity between participants who
receive VP versus FP training Voss et al. (2012).

These studies of skill acquisition allow several inferences to be made, the most
obvious of them being that practicing a complex psychomotor skill improves per-
formance over time. More importantly, the evidence suggests that the manner
in which complex skills are practiced has a significant impact on outcome. In
most cases, training protocols that shifted the learner’s attention between differ-
ent components of a multifaceted skill produced superior results compared to a
practice regime involving exclusive focus on overall performance. Furthermore,
the relationship between training and skill acquisition appears to be moderated
by individual differences in cognition, an effect that has also been demonstrated
in longitudinal performance data from the domain of chess (Vaci et al., 2019).
This suggests that tailoring training protocols to an individual’s abilities can
maximise the benefits of practice. While this idea is certainly not new (e.g.,
Vygotsky, 1978), these studies demonstrate how combining complex behavioural
tasks with psychometric assessments (and neuroimaging techniques) can produce
the high-density data sets required to study how training protocols may possibly
be optimised, and to understand the cogntive and neural mechanisms surrounding
these processes.
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1.4.2 Model-based studies of Space Fortress

A common feature of many studies we have reviewed thus far is the assumption
that complex tasks can be broken down into simpler components that, when
identified and studied separately, can help us understand how complex tasks
are performed and represented in the brain. Referring to this position as the
Decomposition Thesis, Anderson et al. 2002; 2011 have proposed two challenges
that researchers should address to explain inconcistencies in earlier work: Either
the Decomposition Thesis is erroneous on account of the possibility that complex
tasks are greater than the sum of their parts, or inconsistent findings are related to
an informal decomposition of the task. In line with this proposition, the authors
conducted several studies of the Decomposition Thesis using SF (Anderson et al.,
2011, 2016, 2019), but with a stricter decomposition of the task.

A key difference in their work is the adoption of a model-based approach. The au-
thors used the Adaptive Control of Thought-Rational (ACT-R; Anderson et al.,
2004; Anderson, 2007) model as a computational framework for explaining and
predicting the cognitive processes involved in learning SF. ACT-R aims to pro-
vide an integrated model of human cognition by describing cognitive processes
and their interactions through a set of symbolic representations and production
rules that dictate when and how these processes unfold. In the context of SF,
ACT-R assumes that the player’s cognitive processes can be represented by dif-
ferent modules (Anderson et al., 2011), such as a visual module (e.g., encodes
on-screen symbols representing the mine), an imaginal module (e.g., determines
how to aim at the mine), and a goal module (e.g., dictates switching of focus
from fortress to mine). These modules respond to inputs (e.g., from SF) and
coordinate with each other based on guidance from a procedural module (i.e.,
the aforementioned production rules). Thus, researchers use ACT-R to test pre-
dictions about cognition in different environments (e.g. Borst & Anderson, 2013;
Van Rij et al., 2010; Liang et al., 2016), making revisions to the model and theory
in response to simulations and human experiments.

Anderson et al. (2011) used SF with simultaneous neuroimaging to investigate the
brain regions involved in part- and whole-task practice, testing the predictions of
ACT-R with behavioural and neural data. While previous studies manipulated
the focus of participants’ practice by giving them different training instructions,
Anderson et al. (2011) manipulated focus on different subtasks directly by modi-
fying the programming of SF for different training conditions. Participants played
in one of four different conditions in a 2x2 design where the presence of both the
Fortress and Mines was controlled for (present versus not present), resulting in a
set of training conditions that necessarily constrained attention to specific sub-
tasks. Although the ACT-R model was fitted only to behavioural data from the
Fortress-only and Mine-only (i.e., part-task) conditions, the authors found evi-
dence to support predictions of both behavioural and neural activity across the
whole-task conditions. Model predictions for neural activity across predetermined
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brain regions showed a high correspondence with observed activity, suggesting
that extant intuitions about the neural underpinnings of complex performance,
at least in the context of SF, may be accurate.

In a subsequent study, Anderson et al. (2016) conducted a study of SF perfor-
mance with similar experimental conditions, but this time aiming to predict skill
acquisition based on the sequential activation of participants’ mental states dur-
ing gameplay. These states were identified using a classifier trained on observed
behavioural states (e.g., navigating the ship, shooting at mines) and neural data,
and ACT-R predictions. The authors found classifying brain activity into discrete
states and modifying the sequential activation of these states, was predictive of
individual differences in performance and skill acquisition.

1.4.3 Studies using commercial games

SF is one exemplar of how games can be utilised as experimental tasks to generate
such data, but researchers have used many other game paradigms to study vari-
ables associated with skill acquisition. A promising direction is the use of existing
commercially successful games to study skill acquisition. By situating research
on behaviour and cognition in a commercial game environment, researchers ap-
proach the study of phenomena that have immediate bearing on stakeholders in
real world environments, such as casual and competitive players.

Basak et al. (2011) extended work on the neural correlates of skill acquisition
previously studied in SF by acquiring high-resolution MRI scans of individuals
before and after completing 20 hours of training in Rise of Nations, a complex
real-time strategy (RTS) game. In contrast to SF, Rise of Nations loads less on
fine motor control and more on rapid situation assessment and decision-making, as
players are required to govern a growing civilisation composed of multiple entities
that accept individual command inputs from the player. Regional differences in
volume, particularly in the medial prefontal cortex and anterior cingulate cortex
(areas important for tasks associated with motor control and cognitive control
respectively), were found to be signficantly predictive of improvement in the game.
These findings further our understanding of the neuroanatomical correlates of skill
acquisition. Other studies have used modified versions of existing first-person
shooter (FPS) games, a popular genre of action game, to examine how task
difficulty can be adapted to the learner, and how such processes are impacted by
differences in cognitive ability and personality (Hughes et al., 2013; Bauer et al.,
2012; Richels et al., 2020).

Digital games, in particular commercially successful ones, also present the op-
portunity of recruiting large samples of willing online participants. Johanson &
Mandryk (2016) improved skill acquisition and skill retention in an online sam-
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ple of FPS players by providing augmented feedback that taught novice players
how to identify opponent location via audio cues. In another experiment, Jo-
hanson et al. (2019) tested the generalisability of the distributed practice effect:
the phenomenon whereby gaps taken between individual practice episodes can
produce superior acquisition and retention skill as opposed to schedules in which
all practice episodes are clustered close together in time. The researchers created
a copy of Super Hexagon, a casual action game, to collect and analyse data from
another online sample of players, demonstrating that performance and skill ac-
quisition can be improved by taking short breaks between sittings and extending
the distributed practice effect to an ecologically valid setting.

1.5 Observational studies of skill acquisition and
expert performance

1.5.1 Longitudinal studies using telemetry data

Although more detailed review of research on the distributed effect is reserved
for Chapter 2, we devote some space to these studies in the present section due
to their relevance to the topic of games as research methods. Notably, several
research groups have recognised that online games can generate data sets of un-
precedented size via remote logging of user behaviour. Stafford & Dewar (2014)
were the first to analyse skill acquisition trajectories of a huge player sample
obtained through telemetry, collecting data from 854,064 playeres in a casual on-
line game called Axon, designed and deployed in collaboration with professional
game developers. These researchers extended previously known effects to this
novel setting, confirming that practice amount is a strong predictor of ultimate
performance, and that distributing practice over extended time windows leads to
better performance than massed practice.

Other analyses of this data set have explored factors influencing the benefits of
distributed practice, as well as reasons why players discontinue sessions of play.
By comparing subsamples of players who took breaks during time periods likely
to contain sleep versus those that did not, Stafford & Haasnoot (2017) were able
to test whether sleep consolidation contributed to skill acquisition (but failed to
find an effect). Agarwal et al. (2017) reproduced the practice spacing effects found
by Stafford & Dewar (2014) using an alternative analysis, and additionally found
that the probability of aborting a series of games is higher if the last game ended
with much lower performance than previous games. Individuals that persisted in
the face of low scores were ultimately able to achieve higher scores than those
who quit, which authors related to the psychological construct of grit.
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Work using Axon shows what is achievable with telemetry data even when
measures are relatively simple (e.g., machine location, game timestamps, game
scores), and similar work has also been conducted using commercial FPS games
such as Destiny (Stafford et al., 2017) and Halo Reach (Huang et al., 2017).
Researchers can study changes in skill acquisition with large sample sizes and
over lengths of time that would be prohibitive to study in a laboratory setting.
Moreover, researchers can not only test for effects that are difficult to arrange in
controlled experiments but also compare the relative sizes of effects with one
another. For instance, (Stafford & Dewar, 2014) showed that the benefit of
distributing play sessions in Axon over 24 hours was almost equivalent to the
experience benefits of playing an additional 5 games in the early stages of skill
acquisition. Thus, although these observational studies are unable to test for
causal relationships, they can test and scale existing theories in ecologically valid
environments, and assistant in the identification of research directions that are
maximally impactful.

Several studies have analysed observational data from online games that are mul-
tiplayer, highlighting another affordance of such data: the ability to study the in-
teraction between social behaviours and skill acquisition. Landfried et al. (2019)
studied skill acquisition in Conquer Club, a turn-based game of diplomacy in-
spired by the board game RISK, where players compete either individually or
in teams in the pursuit of geopolitical objectives. Comparing skill trajectories
of individuals with different patterns of sustained social behaviour, the authors
found that players with team-oriented play strategies achieved superior skill levels
in the long-run as compared to players that mostly played as individuals. More-
over, the authors observed a "loyalty" effect whereby sustained teamwork with
the same players over successive games resulted in a significant short-run boost
to skill acquisition. Sapienza et al. (2018) examined performance of individuals
playing in temporary teams in League of Legends, a game from the Multiplayer
Online Battle Arena genre (MOBA games; we take a closer look at this particular
MOBA in Chapter 2 as we analyse our own data set). Similar to findings from
(Agarwal et al., 2017), the authors observed a tendency in individuals to stop
playing after performance started declining in successive matches, although the
consequences of this behaviour is unclear in their analysis.

1.5.2 Cross-sectional studies using telemetry data

In the previous section we reviewed studies that have used observational methods
to trace skill acquisition over the long term. In contrast, many studies have fo-
cused on cataloguing differences in performance between players of different skill
levels at a single moment in time. Drachen et al. (2014) compared players across
four skill tiers in Dota 2, a MOBA game in which each player controls the move-
ments and abilities of a single "hero" entity as they fight for control of a 2.5D
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game arena in team-based five versus five matches. Analysing spatio-temporal
data describing moment-to-moment movements of player-controlled "heroes" in
Dota 2, another MOBA game, the authors found that teams of higher skill level
initiated more zone changes across the game arena and exhibited less intra-team
distance than lower teams from lower skill levels. Moll et al. (2020) analysed
telemetry data from Fortnite, a popular online game in which 100 players land
their avatars on a remote island and battle until a single player remains. Data
visualisation suggested that experienced players made choices regarding initial
start position that differed from the choices of beginners. This was weakly sup-
ported by inferential analysis that showed a modest correlation between start
position and end-of-match placement. In another exploratory analysis of 6615
League of Legends matches, Sangster et al. (2016) observed trends suggestive of a
link between intra-team familiarity and team performance, although correlations
failed to reach statistical significance.

Thompson et al. (2013, 2014, 2017) conducted a series of studies on expertise
using a data set of 3360 Starcraft 2 players, a popular RTS game formerly with a
large competitive following. Asserting that many studies of expert-novice differ-
ences assume predictors of performance to be uniformly important across the skill
curve, Thompson et al. (2013) performed classification analyses to rank the pre-
dictive importance of performance variables across 7 different skill levels. Results
showed that the predictive importance of many performance variables (e.g., action
latencies, use of hotkeys to select units, actions per minute) changed across skill
levels, suggesting that assuming the static importance of performance variables,
particularly in the context of expert-novice differences, may lead to an erroneous
understanding of expertise and the factors that relate to its acquisition. More
generally, the authors interrogate a rich set of variables including action laten-
cies and perception-action cycles (Fuster, 2004) in an environment that requires
persistent switching between multiple complex tasks. This further demonstrates
how game replays from the RTS genre can serve as a testbed for cognitive science
in environments analogous to traditional laboratory paradigms.

Further analysis of this data set has produced results relating to cognitive ageing
and motor chunking. Regression analyses of "looking-doing latency" (i.e., the
time to first action immediately following a switch in position on the in-game
map) showed that reaction times in this environment increase with age, starting
most prominently at the age of 24 (Thompson et al., 2014). Results also indicated
that this decline in performance was not ameliorated by expertise, providing
evidence that experience cannot compensate for age-related deficits in this kind
of cognitive task. In a third study, the authors extended the study of motor
chunking to this domain, that is, the notion that individuals "chunk" sequences
of familiar actions in a motor skill and reproduce these individual units of motor
memory in relevant situations. Results suggested that motor chunking is a valid
model of action preparation as, in line with previous laboratory experiments of
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motor skill, the onset of the first action in action sequences was delayed relative
to other actions in the same sequence.

1.6 Cross-sectional studies of expertise and
performance

1.6.1 Skill-based differences in cognition and behaviour

In this section, we provide an overview of recent studies that have generated
primary data sets describing snapshots of individuals at different levels of skill.
Reminiscent of early expert-novice differences studies (Chi et al., 1981; Murphy
& Wright, 1984), these studies provide cross-sectional comparisons of individuals
on salient cognitive and/or behavioural factors relating to complex skill in digital
games.

Tanaka et al. (2013) found that expert Guilty Gear players, a 2D fighting game,
performed significantly better on a visual working memory task than novices with
negligible experience in digital games. Additionally, analyses of structural MRI
images revealed that experts had larger gray matter volume in the right inferior
parietal cortex than novices. In a similar study, Zhang et al. (2015) used diffusion
tensor imaging to compare white matter integrity of visual and motor pathways
between individuals with considerable digital gaming experience and those with-
out. Several clusters in visual pathways were found to have higher white matter
integrity in experienced game players versus non-game playing control partici-
pants. Furthermore, experienced players performed better in a visual attention
task, and faster reaction times in this task correlated with higher connectivity in
the left corticospinal tract.

Kokkinakis et al. (2017) related expertise in digital games to fluid intelligence and
age in two laboratory experiments. Collectively, the authors found a significant
correlation between scores on the Wechsler Abbreviated Scale of Intelligence (Sec-
ond Edition, Matrix Reasoning Subtest) and in-game rank in League of Legends, a
weak correlation between rank and tests of visuospatial working memory, but no
relationship between rank and theory of mind as measured by the "Reading the
Mind in the Eyes Test" (MITE). Similar to Thompson et al. (2014), it was also
found that performance related to age, with performance in two separate samples
of FPS players exhibiting an early peak following decline in the late 20s, while
two samples of MOBA players exhibited peak performance in the mid-20s.

Many other studies have also focused on MOBA game players as the population
of choice for studies relating individual differences to game expertise. Large et al.
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(2019) conducted a correlational study by deploying a battery of cognitive tasks
to a large sample of League of Legends players, albeit in an online setting (Large
et al., 2019). In-game rank was found to significantly (but weakly) relate to cog-
nitive control, speed of processing, and a statistical learning task (measured using
an exploitation-exploration choice paradigm), but not to a deductive reasoning
task. Furlough & Gillan (2018) investigated whether and how individuals’ mental
models of League of Legends changed with experience by comparing relatedness
ratings of in-game concepts measured using a questionnaire. Results were sugges-
tive of broad structural differences in mental models between low, medium, and
high expertise groups, such as high expertise groups exhibiting more conceptual
abstractions than less experienced groups. These results are tempered, however,
by the fact that expertise was measured through retrospective self-reports of ex-
perience.

Rohlcke et al. (2018) failed to detect a relationship between working memory
capacity or fluid intelligence (also measured using a matrix reasoning task) and
rank in an online sample of Dota 2 players, in conflict with previous results.
However, rank was positively correlated with number of games played as well as
psychological "grit", measured using the Short Grit Scale. Nagorsky & Wiemeyer
(2020) found similar evidence in support of higher skill levels across competitive
digital games relating to differences in practice quantity or structure, suggesting
that competitive gamers may naturally titrate their training with a view towards
accelerated skill acquisition. Other behavioural work has investigated whether
expert and novice Dota 2 differ in their gaze behaviour. Castaneda et al. (2016)
found weak evidence for differences in fixation and scan patterns between experts
and novices during gameplay, but found posited that experts’ verbal reports of
gaze behaviours were qualitatively more abstract than those of novices.

More recently, top ranking and averagely ranked League of Legends players were
found to significantly differ on measures of executive functioning, including task
switching and impulse control (Li et al., 2020). Bonny et al. (2020) measured
both cognitive ability and personality in Dota 2 players, finding that fluid intel-
ligence, theory of mind, and neuroticism, in addition to experience were signfi-
cantly predictive of in-game rank. An adjacent study of personality and rank in
League of Legends produced conflicting results, finding that higher ranked players
scored lower in agreeableness and extravesion, but higher in openness to expe-
rience (Matuszewski et al., 2020). Neuroticism was not found to differ between
in-game ranks as in Bonny et al. (2020), suggesting that the relationship between
personality and game expertise may not be as clear as it is for cognitive ability.
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1.6.2 Detailed behavioural analyses of individual players

Seminal work on expertise by Ericsson & Smith (1991) argued that uncovering
the mechanisms in domains of expertise should involve detailed analyses of ex-
pert performance, observed and traced in laboratory environments. Asserting
that information loss arising from the averaging of performance data may im-
pede the identification of the mechanisms underpinning skill acquisition, several
groups have suggested that this "individual-analysis technique" can be extended
to complex laboratory tasks such as SF as well (Towne et al., 2016; Boot et al.,
2017; Harwell et al., 2018).

Towne et al. (2016) analysed archival performance data of the most skilled SF
players from an earlier experiment (Boot et al., 2010), and contrasted their be-
havioural patterns to those of other players. Qualitative and quantitative in-
terrogation of the time series of SF subscores across games, compared between
players, illustrated diversity in behavioural strategies within the sample. For in-
stance, while the top scoring player maintained a careful orbit around the fortress
(in line with experimental instructions) with relatively low movement variance,
another high performing participant was found to have exploited an alterna-
tive but viable flight strategy, in violation of experimental instructions. Among
other examples of individual naunces in behavioural patterns that could only be
made visible with concentrated analyses of individual players, the authors caution
against research approaches in this context that rely exclusively on group-level
comparisons.

Extending this work, Boot et al. (2017) conducted an experiment in which a
single participant was trained to play SF in laboratory conditions over a period
of 20 hours (360 games). This participant was selected through a sampling pro-
cess in which individuals were screened for SF aptitude through a test battery
including a measure of fluid intelligence as well as an SF aiming task. To permit
some insight into ongoing cognition during the training process, the authors col-
lected concurrent verbal reports from the participant for every three games out
of each block of 10. The authors then analysed these data using the behavioural
results surrounding the top performing participant from Towne et al. (2016) as a
guide (referred to as "Participant 17") Their participant performed comparably
to Participant 17 on all but one subscore, and was found to perform over 50%
better than the sample average from Boot et al. (2010), thus supporting their
selection procedure. Analyses of verbal protocols allowed the researchers to iden-
tify the sources of errors in performance, as well as providing rich descriptions
of strategies surrounding subgoals throughout performance. Although this data
set showed that performance was clearly disrupted during games with concurrent
verbal reports, it is revealing of possible advantages of collecting verbal data as
a supplement for rich behavioural time series.

Harwell et al. (2018) also adopted a fine-grained behavioural analysis approach
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to examine sex differences in SF performance, reanalysing archival data from Lee
et al. (2012) and situating their work in the context of sex differences in visu-
ospatial ability. By individually analysing flight control patterns in low and high
performing women, the authors indicate that low performing women rely on sub-
optimal behavioural patterns that could be corrected by training. Controlling
for this subsample of women almost entirely eliminated sex difference in video
game performance in this sample. Supported by these results, the authors high-
light that using summary scores of task performance to compare men and women
on visuospatial ability may mask important differences underlying behavioural
patterns that are correctable through training.

1.7 Future research

The current literature shows that use of digital games to study skill acquisition
and performance has received growing attention in recent years. This use is
diverse both in terms of methodological approach and of the research questions
that have been studied. We summarise the implications of this literature for
future work here, concluding with a summary of the rationale for this thesis.

Broadly speaking, research on psychomotor skills in the context of digital games
can be characterised as taking two approaches. The first approach tracks mea-
sures of performance through time (e.g., days, weeks, months), and relates differ-
ences in these performance trajectories to sustained differences in behaviour, or
individual differences such as cognition, gender, or personality (e.g., Lee et al.,
2015; Wang et al., 2010; Anderson et al., 2011). The second approach takes snap-
shots of individuals’ performance at singular points in the skill curve, typically
groups of individuals at the beginning (i.e., novices) and the end (i.e., experts)
of the curve. These groups are then compared on variables considered in the for-
mer approach, such as behavioural strategies or cognitive ability (e.g., Thompson
et al., 2014; Tanaka et al., 2013; Kokkinakis et al., 2017; Bonny et al., 2020). Both
of these approaches appear to be enhanced when behavioural and cognitive vari-
ables are measured simultaneously, due to the evident interrelationship between
cognitive ability and behaviour in the context of skill acquisition (e.g., Prakash
et al., 2012; Erickson et al., 2010; Vaci et al., 2019). In particular, combining
neural data with detailed records of in-game behaviour has allowed researchers to
identify neural signatures associated with particular aspects of psychomotor skill
(e.g., Erickson et al., 2010; Vo et al., 2011; Basak et al., 2011), and to test theories
regarding the mechanisms of skill acquisition (e.g., Anderson et al., 2011, 2016,
2019). It remains to be seen whether these findings are restricted to particular
games such as SF, or whether some findings may generalise to other complex
games that also tap multi-tasking. Likely this can only be ascertained through a
more formal classification of the skills involved in specific tasks.
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With the advent of online gaming and resultant large observational data sets, it is
now possible to test the validity of laboratory-born theories of skill acquisition in
real world settings where "participants" naturally generate data sets describing
the trajectories of their skill development. Researchers adopting this approach
benefit from ecological validity, large sample sizes, and potentially even opportu-
nities to collaborate with game developers and other stakeholders involved with
competitive games, who may have an interest in the science underlying how play-
ers improve their skills. Given the demonstrated link between fluid intelligence
and in-game scores, some studies have suggested that telemetry data from games
may also be used for purposes of "cognitive epidemiology", that is, the tracking
of population-level cognitive health on the basis of fluctuations in online game
scores (e.g., Kokkinakis et al., 2017).

Most importantly, we propose that each of these approaches would benefit by
borrowing from the strengths of the other of the other. For instance, many labo-
ratory studies of expert-novice differences measure expertise using self-reports of
previous experience. Inaccuracy relating to this method of measurement can be
mitigated using telemetry data tracking actual hours of experience or algorith-
mic measures of skill rank. On the other hand, longitudinal studies may benefit
from combined laboratory/observational approach whereby online participants
are brought to the lab for a one-off measurement of demographic and cognitive
variables before their performance is tracked through telemetry methods. Perhaps
the most fruitful direction would be to combine commercial games with labora-
tory methods. Adapting successful commercial games for use in the laboratory
can allow researchers to study ecologically valid tasks in controlled conditions,
and record detailed behavioural data that may be non-trivial to acquire through
developer APIs. Without the ability to track metrics describing progress in indi-
vidual subskills, such as in SF, commercial games may be ill-suited as paradigms
to study more difficult questions, such as how training may be optimised when
multi-tasking is involved, and how plateaus in the acquisition of parts of a skill af-
fect development of the whole skill (see Gray & Lindstedt, 2017). This approach
also allows researchers to modify the task based on the demands of particular
research questions and experimental requirements, making it more flexible than
using commercial games alone. Finally, deploying adaptations of commercial
games to online experiments could allow for the scaling up of findings to larger
samples that are truly representative of populations of interest.

This thesis is an attempt to extend previous research on the acquisition and
performance of complex skills that have used digital games as experimental
paradigms. The first chapter is an observational study that iterated on research
into the distributed practice effect. We used a large telemetry data set of League
of Legends players to investigate the effects of distributed versus clumped prac-
tice schedules on skill acquisition, and used time series clustering techniques to
address potential weaknesses related to previous operationalisations of practice
spacing. In addition to confirming the relevance of distributed practice in a com-
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petitive online game played by millions of people, this chapter made apparent
difficulties related to the use of telemetry data taken from commercial games.
The second chapter aimed to address these limitations by exploring the use of a
commercial game, Tetris, that has previously been adapted for the laboratory for
use as an experimental paradigm. This was done by analysing an archival data
set of Tetris players collected by Lindstedt & Gray (2015). We investigated how
rich behavioural data with high temporal resolution can be used to characterise
different aspects of performance in Tetris, distinguish between players of different
skill level, and build models that can detect shifts in players’ internal state dur-
ing gameplay. In the third chapter, we investigated the validity of our approach
to identifying players’ internal states by collecting simultaneous behavioural and
neural data as players played Tetris in an MEG scanner. After fitting a Hid-
den Markov model to players’ behavioural data, we compared the amplitudes of
occipital alpha, an index of visuospatial attention, to examine whether players
switch between neurally distinct states during gameplay.
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on Acquisition

2.1 Introduction

Among the many determinants of expertise in skilled human endeavour, the ac-
cumulation of experience is one over which the aspiring expert has significant
control. Research on skill acquisition and expertise, in particular the framework
of "deliberate practice" (Ericsson et al., 1993; Ericsson & Lehmann, 1996), has
demonstrated that the quantity and quality of sustained engagement within a
domain of skill is an important driver of ultimate performance. The relationship
between practice, performance, and expertise has been subjected to much sci-
entific inquiry (e.g., Baker et al., 2003; Hodges et al., 2004; Ward et al., 2007;
Tenison & Anderson, 2017; Macnamara & Maitra, 2019), and despite much de-
bate surrounding its importance in relation to other factors, the effect of practice
is widely accepted to be substantial (Baker & Young, 2014; Hambrick et al.,
2014c). Researchers seeking to understand and accelerate skill acquisition have
adopted a mixture of approaches, including the measurement and comparison of
expert and novice performance (e.g. Shapiro & Raymond, 1989; Wiggins et al.,
2002), the tracing of expert thought during practice (e.g., Gegenfurtner & Sep-
pänen, 2013; Eccles & Arsal, 2017; Samson et al., 2017), and use of interview
methods to elicit expert knowledge (e.g., McAndrew & Gore, 2013; Den Hartigh
et al., 2014). Unfortunately these methods share several difficulties - notably the
expenses of recruiting human (expert) samples, the detailed tracking of cognition
and behaviour over periods of training, as well as the use of laboratory tasks that
may fail to generalise to the real world.

As introduced in Chapter 1, researchers have recently proposed the use of games
as a solution to some aspects of these problems (e.g., Boot, 2015; Charness, 2017;
Gray, 2017). The competitive and immersive nature of many games encourages
players to develop profound skill over hours, days and even years of practice.
Because most actions taken during a game are recorded on a computer, many
competitive online games generate huge reservoirs of ecologically valid perfor-
mance data that can be requested and interrogated by the curious analyst. Due
to their size and richness, naturally occurring data sets from online games af-
ford both statistical power and the ability to extract and examine "participants"
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that exhibit features of interest to the researcher - features that would usually
require experimental manipulation to permit empirical investigation (Goldstone
& Lupyan, 2016). In the present study we analysed the relationship between skill
acquisition and the distribution of practice across time using a data set drawn
from League of Legends, an immensely popular online game that has previously
been estimated to generate over one billion hours of game play per month (Ken-
reck, 2012), with a current tournament viewership of over four million spectators
(Esguerra, 2021). In doing so we generalised a known effect in the psycholog-
ical literature to a real-world context comprising millions of stakeholders, and
extended previous methodological approaches in this space by using clustering
techniques to interrogate how learners space their practice sessions across time.

2.1.1 Effects of practice distribution on learning

One aspect of practice that has received considerable attention from researchers
is its distribution across time. In the literature on learning and skill acquisition,
the effect of distributed practice refers to the tendency of learners to exhibit su-
perior performance following a practice schedule containing rest periods between
practice sessions (i.e., distributed practice), compared to a practice schedule con-
taining shorter or no rest periods (i.e., massed practice). The terms distributed
and massed practice lack strict definitions - researchers distinguish between the
two in terms of the relative amounts of rest time between sessions in different prac-
tice schedules (Magill & Anderson, 2017). While there is some consensus that
distributed practice leads to better learning than massed practice (e.g., Lee &
Genovese, 1988; Donovan & Radosevich, 1999; Benjamin & Tullis, 2010; Smolen
et al., 2016), it is important to examine what is meant by "learning" in this
context, and to consider factors that have been shown to moderate this effect.

The study of distributed practice can be traced back to early studies on the re-
call of verbal material by Ebbinghaus (1885/1964), and so a significant amount
of related work has been conducted on the effects of spaced studying on ver-
bal memory, which we will not consider here. However, the effect has also been
demonstrated in psychomotor learning (Adams, 1987). In its simplest form, a
study of distributed practice in this context involves participants practicing some
motor task (e.g., mirror tracing, rotary pursuit) over a block of practice trials.
The amount of rest time between a block of trials (i.e., the "intertrial" or "inter-
session" interval) in a distributed practice condition is greater than in a massed
practice condition, but the spacing between individual trials within each block
is kept constant. The researcher then compares performance on a final "test"
trial between the two groups. Because learning is said to have occurred when
changes in performance are relatively stable (Fitts & Posner, 1967), more in-
volved designs include a final trial or block of trials separated from the practice
block by a non-trivial amount of time (≥ 24 hours). By comparing performance
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in the "retention" block and the practice block, it can be judged how well ac-
quired performance is retained following a period of no practice. Donovan and
Radisevich (Donovan & Radosevich, 1999) use the terms acquisition performance
(performance in the last trial of the practice block), and retention performance
(performance in the first trial of the retention block) to denote this distinction.

Overall, distributed practice appears to have a moderate to large positive effect on
motor learning. For example, in a meta-analysis of 47 psychomotor studies, Lee
and Genovese (Lee & Genovese, 1988) reported a large weighted average effect
size of .91 for acquisition, and a moderate average effect size of .49 for retention,
although the spread on these effect sizes was large. A later meta-analytic review of
61 studies (Donovan & Radosevich, 1999) yielded a smaller mean weighted effect
size of .46, with a 95% confidence interval ranging from .42 to .50. The authors
computed separate averages for effects sizes describing acquisition performance
(.45) and retention performance (.51). Noting the importance of the type of task
trained in these studies, the authors conducted additional moderator analyses to
estimate how task type may influence the magnitude of the distributed practice
effect. Ratings of task complexity were collected from 95 graduate and undergrad-
uate students across three dimensions (overall complexity, physical requirements,
mental requirements) for all 28 tasks examined in these studies. A cluster analysis
resulted in four clusters of task complexity, optimised for maximal within-group
homogeneity with meaningful between-group heterogeneity. Correlating between
task complexity and effect size suggested that the distributed practice effect is di-
minished with increasing overall complexity (Pearson’s r = -.25, p <0.05), while
mental and physical requirements were not significantly correlated with the ef-
fect. Moreover, bucketing studies into four different levels of intertrial interval,
the authors considered the relationship between intertrial interval and task com-
plexity by examining a 4 x 4 matrix of effect sizes. While it was noted that
tasks of different complexity may have a different "optimal" intertrial spacing,
the observation is caveated by a small number of effect sizes per cell.

2.1.2 Distributed practice in digital games

As mentioned previously, one approach to mitigating difficulties associated with
laboratory-based experimentation is through the use of digital games. In cognitive
science, a growing body of researchers have advocated for the use of games as
an environment for the study of skill learning (e.g., Boot, 2015; Charness, 2017;
Gray, 2017) noting several advantages afforded by games that allow researchers
to bypass limitations of experimentation. These include large observational data
sets (affording statistical power and ecological validity), participants that are
intrinsically motivated to engage with the task, and a level of task complexity
resembling that of real-world tasks. We review here studies that have used digital
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games to investigate the spacing effect of practice, in order to provide background
on the current work.

Three observational studies of skill acquisition examined the relationship between
practice and performance in Axon, a casual computer game where players click
on periodically generated targets with a mouse to maximise growth of an axon.
Performance is measured by a single game score - the final length of the axon.
In a first study, Stafford & Dewar (2014) analysed digital records of ∼850,000
Axon players to test the impact of spacing on acquisition. Players were identified
heuristically as having distributed (versus massed) their practice if their first
10 plays took place in a >24 hour window (versus <24 hour window). Defined
this way, distributed practice had a small but significant effect on subsequent
performance (highest score on plays 11 to 15; d = 0.11, p <0.00001). Further
analysis showed that the association between spacing and acquisition remained
after testing separately on subsamples of players with comparable initial ability.

Stafford and Haasnoot (Stafford & Haasnoot, 2017) extended this work by in-
vestigating whether the presence of sleep could explain the effect of distributed
practice, and by examining the magnitude of the effect at different levels of spac-
ing. Players in the aforementioned distributed practice category were categorised
into a "sleep" or "wake" group based on the timing of their breaks, accounting for
geographical location. Comparing average scores between these groups showed
no additional benefit of sleep (in fact, players in the wake group had slightly
higher scores than their counterparts). To examine how different rest intervals
affected acquisition, the authors plotted average scores of players on plays 11 to
15 against amount of time elapsed between games 1 and 10 - an amount ranging
from 0 to 60 minutes, discretised into 16 bins. The resulting curve suggested that
the relationship between practice distribution and acquisition can be described
by a non-monotonic function, where optimal spacing between games lies in the
middle of this range.

Agarwal, Burghardt, and Lerman (Agarwal et al., 2017) also investigated the rela-
tionship between practice and performance by revisiting the Axon data set. After
segmenting the players’ games into sessions (defined as a sequence of games with
no longer than 2 hours between consecutive games), they plotted aggregated per-
formance trajectories for sessions of different length (ranging from 4 to 15 games
per session), observing that players scored abnormally high on the last game of a
session, regardless of session length. Consequently, the authors suggested that the
spacing related performance boost observed by Stafford & Dewar (2014) could be
attributed to this score spike at the last game of a session. The accuracy of this
claim is difficult to assess, however, as the two groups of researchers had different
quantifications of rest interval, and Agarwal and colleagues did not report any
statistics to support this particular observation.

Two studies investigated the effect of distributed practice on acquisition in first-
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person shooters (FPS), a genre of action video game characterised by fast-paced
weapon-based combat in a three-dimensional environment. Importantly, these
games are considerably more complex than Axon (and many motor tasks em-
ployed in the study of distributed practice), seeing as they are played against
human or AI opponents, load on bimanual dexterity, and involve communication
with other players on the same team. Huang and colleagues (2013; 2017) re-
ported on the effects of play frequency and breaks between play on performance
in Halo Reach using a longitudinal data set comprising performance of 3.2 million
players over a 7 month period. Players were subsampled by play frequency (op-
erationalised as number of matches played per week), and average performance
of each group was plotted first against match, then against time. This produced
two perspectives. Players who played a relatively small number of matches per
week (4 - 8) had the fastest acquisition per match, while those who played more
frequently (>64 matches per week) had the fastest acquisition over time. Despite
starting lower on initial performance, these players had the highest performance
by the end of the 7 month period. These findings show some agreement with the
literature on deliberate practice, and illustrate a trade-off inherent to spacing -
taking breaks between practice sessions results in greater learning per unit of time
invested into practice, but massing of practice can result in the fastest acquisi-
tion within a given time period. Additionally, the authors reported a reduction
in skill rating following a break from the game longer than a day. However, the
magnitude of this reduction grew smaller with an increase in gap size, and in
most cases players regained their pre-break skill level after several hours of play.
In contrast to Agarwal et al. (2017), the Halo Reach data suggested that players
terminate a session of play after a decline in performance rating (associated with
a loss) as opposed to after an atypically strong performance.

Stafford et al. (2017) obtained similar results by observing the performance of
players in Destiny, another FPS game. Performance was measured by a propri-
etary "Combat Rating", a Bayesian skill rating system comparable to TrueSkill
and Elo (Herbrich et al., 2007), systems fundamentally based on a player’s
win/loss ratio. The authors reported a small but significant positive correlation
between performance and distribution of practice (r - 0.18, 99% CI [0.14, 0.22]),
operationalised as the time range over which players recorded their first 25 days
of play. In contrast to results from Huang and colleagues (2013; 2017), players
who spaced their practice started slightly lower on initial ability (Pearson’s r =
-0.09, 99% CI [-0.14, -0.05]). Additionally, performance over the first 50 matches
were plotted for players in the top and bottom quartiles of spacing, defined as
the time gap between the 1st and 25th match. Players who distributed their first
25 matches over a greater time range had higher performance in their subsequent
25 matches. However, this difference was not tested for statistical significance.

Johanson and colleagues (Johanson et al., 2019) are the first group, to our knowl-
edge, to have procured experimental data on distributed practice in digital games.
In an online experiment participants played Super Hexagon, a minimal action
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game where players must rotate a triangle inside a hexagon with the aim of
avoiding incoming obstacles. Players control the triangle using left and right
arrow keys on a keyboard and performance is measured as time until failure.
Participants played the game for 5 trials of duration 5 minutes, separated by a
rest interval of varying length (5 conditions, ranging from 3 seconds of rest to 1
day). The last trial was a retention test, separated from the preceding trial by
one day across all conditions. Analyses revealed a small but significant overall ef-
fect of distributing practice on acquisition performance (η2 = .127, p <.001) and
a marginally significant effect on retention performance (η2 = .108, p = 0.44).
Additional pairwise comparisons showed that practice with no gap resulted in
significantly inferior acquisition compared to most conditions. However, the ef-
fect on acquisition did not differ significantly between groups with rest intervals,
and pairwise differences in retention were not significant at all.

Expanding on this work, Piller et al. (2020) tested whether the effects of spaced
practice are present in a game more complex than Super Hexagon, as well as to
test differences in acquisition arising from types of break taken. The researchers
developed a 2D side-scrolling platformer called SpeedRunners, in which players
controlled an avatar with the ability to run, jump, and swing with a grappling
hook to run laps around a circular obstacle course. Performance was measured
as average lap time as well as total distance travelled. Participants played 20
minutes of SpeedRunners split into four 5-minute sessions. Participants in a
spaced practice group had breaks of 2 minutes in between sessions, while those in
the continuous practice group had 3-second breaks. Participants also returned for
a 5-minute test of retention one week after the 20-minute training block. Analyses
did not support a positive overall affect of spaced practice on acquisition, but did
reveal a small effect of spaced practice on retention performance (η2 = 0.093, p
= 0.042 for average lap time; η2 = 0.087, p = 0.046 for distance travelled).

2.1.3 Contributions of studies using behavioural telemetry
from action games

What do these studies of skill learning in digital games reveal about distributed
practice? The reported data are generally in line with previous experiments
showing that the cramming of practice into relatively short time frames tends
to produce depressed performance following a training period. More specifically,
players who distributed their game play sessions over longer time windows ex-
hibited higher performance in subsequent game play sessions, and in some cases
during the "training" period itself. In sum, this body of work answers the question
as to whether or not practice spacing affects performance, and perhaps learning,
in games. Unsurprisingly, it does. Unfortunately, comparing it to previous labo-
ratory experiments of psychomotor tasks is difficult for several reasons.
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For one, the majority of these studies were observational in nature, and opera-
tionalisations of practice distribution consequently diverged from previous (ex-
perimental) approaches. Where in earlier studies practice distribution referred to
the amount of time elapsed between individual practice trials or sessions, work-
ing definitions in the present studies included the time gap between first and last
recorded game instance (Stafford & Dewar, 2014) or game session (Stafford et al.,
2017), as well as the number of game instances recorded within a week (Huang
et al., 2013, 2017). Thus, the possible conflation of practice distribution with
practice frequency is a concern. In some cases, data visualisation lacked support-
ing inferential statistics, making the interpretation of effect significance and size
impossible (Agarwal et al., 2017; Huang et al., 2013, 2017). Finally, interpret-
ing players’ performance dynamics in commercial games is less straightforward
than in laboratory tasks, as performance in the former is typically described by
proprietary scoring systems. Taken together, while evincing that the effects of
practice distribution persist in complex psychomotor tasks such as action games,
the difficulties described above prohibit additional commentary, for instance on
the conditions under which the effects might be strongest.

Despite these drawbacks, the studies summarised above highlight several advan-
tages associated with the interrogation of longitudinal, observational data sets.
Traditional laboratory experiments of skill acquisition are difficult: Although an
observational approach sacrifices experimental control, a sufficiently large data
set permits the subsampling of "participants" that meet multiple conditions of
interest (e.g., practice at various levels of spacing), and enables the study of skill
acquisition over far longer periods than is ordinarily practical (e.g., months). Such
data also make it possible to compare the relative impacts of different factors on
the dependent variable of interest. For example, Stafford and Haasnoot Stafford
& Haasnoot (2017) made an argument for the relevance of distributed practice by
demonstrating that the effect of spacing was comparable to tripling the practice
amount. In light of these features, the capacity to test theory-led hypotheses
using large observational data sets of game performance seems promising.

2.1.4 Aims of the present work

In the current study we extended this line of enquiry to a popular commercial ac-
tion game, with the aim of generalising work on distributed practice that has been
conducted using artificial tasks created by researchers, to a non-artificial, ecolog-
ically valid environment with which researchers have not interfered. We analysed
a large body of observational performance data to investigate the effects of dis-
tributed practice on performance, mirroring operationalisations of practice distri-
bution adopted in recent studies, and extending previous work by using machine
learning techniques to investigate how the timing of breaks influences performance
gains. In conducting iterative work of this nature, we tested the generalisability
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of the distributed practice effect in a non-laboratory context comprising millions
of stakeholders (e.g., amateur to professional action game players) with a vested
interested in fast and efficient acquisition of skill.

2.2 Materials and Methods

We used a Python 3.8 (Van Rossum & Drake, 2009) environment to prepro-
cess and analyse data, with additional packages for data munging, analysis, and
visualisation including Pandas (pandas development team, 2020; Wes McKin-
ney, 2010), NumPy (Van Der Walt et al., 2011), and SciPy (Virtanen et al.,
2020). We used the Pingouin (Vallat, 2018) and statsmodels (Seabold & Perk-
told, 2010) packages for all statistical analyses. All analysis code are publicly
available at (https://github.com/ozvar/lol_practice_distribution), together with
additional documentation detailing all required software dependencies.

2.2.1 Task environment

Our study focuses on League of Legends, a subgenre of action game referred to
as Multiplayer Online Battle Arenas (MOBAs). League of Legends is one of the
most popular competitive online games (esports) in the world, having previously
recorded a monthly player base of 67 million players, many of which participate
annually in international tournaments (Segal, 2014). Like other MOBAs, League
of Legends is a team-based invasion game that involves a high degree of team
coordination and fast-paced action as two teams of five seek to destroy the op-
posing team’s headquarters entity, located on the opposite corner of a 2.5D game
arena. Each player uses a keyboard and mouse to control a single game entity
(a "champion") selected at the start of each game out of a pool of 150, each
with a different set of synergistic combat abilities (e.g., boosting the attributes of
friendly champions, immobilising opposing champions). Players must use their
abilities to eliminate opponent champions (reanimated after a scaling delay) and
computer-controlled entities, as well as to support teammates, in order to reach
the win condition of destroying the opposing team’s "Nexus". Over the course
of the game, each player accumulates "gold" and "experience points" (XP) in
proportion to their successful participation in combat with enemies and contest
over intermediary map objectives. These resources can be used to strategically
modify the abilities and attributes of champions as the game progresses, in order
to best adapt to the current game state. The combination of decision making
involved in champion selection, modification, and combat, together with the fine
motor skills necessary to effectively control champions, makes League of Legends
a complex game that is hard to master.
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Previous studies have used League of Legends as an environment to study lon-
gitudinal skill acquisition (Aung et al., 2018), model the relationship between
engagement and individual performance in team-based games (Sapienza et al.,
2018), and investigate teamwork at different temporal resolutions (Kim et al.,
2016, 2017; Sangster et al., 2016). Moreover, as the participation of many play-
ers in esports is driven partly by a commitment to skill mastery (Seo, 2016), we
anticipate these results to be of interest to relevant stakeholders such as play-
ers and professional esports teams, in addition to researchers interested in skill
acquisition.

2.2.2 Measures

Whenever players queue online for a match, Riot’s servers attempt to balance
the teams to ensure a fair game. This balancing is strongly weighted by each
player’s Match Making Rating (MMR), a relative skill score calculated using a
method broadly similar to those used in Destiny and Halo Reach. That is, a
player’s rating updates following each match based on the relative skill level of
opponents, with wins resulting in an increase and losses a decrease (Laserface,
2022). While MMR is kept hidden from players, it is used to predict a player’s
ranking in different public tiers and divisions. A player’s ranking is visible to
other players and determines the skill bracket within which they may play, as
well as tournaments that they may qualify for. Thus, while MMR is reflective of
skill, individual changes in MMR from match to match may not directly reflect on
the performance of any individual player, as MMR is primarily governed by the
ratio of wins to losses (Laserface, 2022; Rio, 2021), and the likelihood of a win is
dependent on more than the contribution of any single player (e.g., performance
of teammates and opponents). For this reason, we concentrated our analyses
on post-match statistics that describe the performance of an individual at each
match. These included the the amount of gold per minute (GPM) earned in a
match, and the ratio of kills and assists scored against opposing champions to the
number of deaths experienced by the player’s own champion (KDA), calculated
using the formula (kills + assists) / max(1, deaths). While metrics like this can
be impacted by the role that their chosen champion may fill (e.g., Demediuk
et al., 2019) (e.g., support roles typically earn less gold than the "carry" role),
we judged these to be the best available to work with, and had no expectation
of systematic bias as players play a variety of roles across their trajectory. As
League of Legends developer Riot Games keeps the MMR algorithm confidential,
we normalised all values of MMR across the data and analyses reported here.
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Table 2.1: Raw data columns available in a single row of the data set analysed in
this study.

Column Description

Account ID Unique anonymised numeric identifier of
player account

Platform ID Identifier of server the match was played on

Game ID Unique numeric identifier of match

Neutral Creep Number of neutral AI entities killed

Enemy Creep Number of opponent AI entities killed

Win Boolean indicator of match result

Timestamp Unix timestamp indicating when the match
was logged

Date Date on which the match was played

Hour Hour at which the match was played

Gold Earned Total amount of Gold earned by the player

Damage Dealt Total damage dealt by the player to
opponents

Time Dead Total time in seconds the player champion
spent dead

Time Played Total time in seconds played in the match

Kills Total kills scored on opponent champions

Deaths Total number of times the player champion
was killed

Assists Total number of times the player assisted in
scoring a kill

Rating Normalised MMR of the player before the
match

Position Role of the player champion

2.2.3 Data and preprocessing

League of Legends developers Riot Games digitally log all match events and sum-
mary statistics, and make a subset of all global game logs available to access
through a public Application Programming Interface (API). Presently, we anal-
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yse a large data set of game logs describing the longitudinal performance trajec-
tories of League of Legends players across matches. Our data closely resemble
that which is available through the API, but were provided to us by Riot Games
and therefore differ in that they additionally contain a record of player MMR
at each match, which is ordinarily not publicly available. The data comprise all
ranked matches played by a random sample of 482,415 new League of Legends
accounts over the course of a competitive season, dating from 21 January 2016 to
November 2016. All analyses were in compliance with the terms and conditions
for data usage made clear to us by Riot Games. All matches correspond to the
default "Solo/Duo Queue" ranked mode of play, with five players on each team.
Each row in the data lists a single match for a single given player, containing a
unique player identification number, unix timestamp, and various performance
and outcome variables (see Table 1 for an overview of the raw data). Impor-
tantly, these were newly created accounts that had not previously been registered
with any competitive League of Legends play prior to the start of this season.
New player accounts are initialised at the same MMR value when they first enter
ranked play, and therefore nominally appear to be of equal skill at the start of
their trajectories. However, as the data set lacks records of unranked matches
that may have been played in order to unlock the ranked game mode, we are
limited in our knowledge of differences arising from prior experience. Addition-
ally, as all account IDs are anonymised, we cannot associate each ID with a single
unique player, and acknowledge hereby another source of potential bias, although
we do not expect it to be systematic.

We took several steps to ensure the quality of the data prior to analysis. These
preprocessing steps were focused on ensuring data quality for an initial window
of 100 matches, as visualisation indicated that this was the period in which most
players appeared to reach asymptotic performance. We first dropped all players
who had not played a minimum of 100 games over the course of the season,
and any players with missing values in any of their first 100 match records. We
dropped any players who had a non-default initial MMR value, as well as players
with records in multiple servers, as these observations violate our assumption of
equal starting experience. These inconsistencies can occur when a player migrates
from one server to another, and would have confounded our assumption that all
accounts in the sample started with similar experience. We also dropped any
players with matches that lasted less than 900 seconds within the first 100 matches
we sampled, as this is indicative of a match which has been abandoned by one
or more players, and thus does not reflect a match experience that is on equal
terms with all others in the sample. Finally, we removed any players with games
in which they were likely completely inactive (i.e., matches in which they scored
0 Kills, Assists, Deaths, and Creep Kills). In addition to dropping players that
did not meet analysis requirements, we performed several linear combinations of
columns from the raw data to generate additional variables of interest: KDA,
GPM, and the time gap between the end of one match and the start of the next.
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We retained a total of 162,417 players following preprocessing and a corresponding
16,241,700 rows worth of data (at 100 matches per player).

2.3 Results

To assess general changes in performance as a function of experience, we first plot-
ted the trajectory of GPM and KDA against matches played for all players in the
sample (Fig 2.1). The trajectories of average GPM and KDA per match displayed
a sharp initial climb with decelerating gains. This is in line with previous studies
that have found good fit between the power or exponential function and averaged
performance, demonstrating the diminishing returns of sustained experience on
performance across a range of domains (e.g., Gaschler et al., 2014; Heathcote
et al., 2000; Haider & Frensch, 2002). We also plotted the averaged MMR tra-
jectory of all players in the sample which, in contrast, sharply decreased before
showing a gradual rise towards later matches (S1 Fig). We attributed this initial
rating drop to our sample being composed exclusively of new accounts. Specif-
ically, we expected new players to suffer more losses against the relatively more
experienced majority (unobserved in the sample) towards the start of the season,
where the matchmaking algorithm has begun to calibrate for fair matches. This
intuition is supported by the trajectory of loss percentage, which descends to 50%
as the average rating of the sample stabilises (plotted together with MMR).

Figure 2.1: Trajectories of mean GPM (left panel), and KDA (right panel) of all
players against match. Shaded regions indicate 95% confidence intervals.

We assessed the effects of spacing on acquisition performance first by subsampling
and comparing groups of players with different patterns of spacing. We concen-
trated these analyses on the first 100 matches, as player performance appeared to
asymptote towards the end of this window, and we were predominantly interested
in acquisition effects. Similar to Stafford et al. (2017), spacing was operationalised
as the gap in days between the 1st and 95th game. After visualising the frequency
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distribution of time in days elapsed between the first and 95 match for each player
(S2 Fig), we subsampled three groups of players that were sufficiently discrete
in terms of their break schedules, and that were adequately sized for statistical
analysis: players that took between 136-150 days, 76-90 days, or up to 15 days
to play their first 95 matches. Visualising the impact of gap size on mean per-
formance over the final five (96th to 100th) matches, we initially observed that
while players who spaced their first 95 matches over a greater range had higher
acquisition, players who massed their matches in a shorter range initialised at
much higher initial performance (close to the maximum observed performance).
Due to the negative correlation between this time range and initial GPM (Pear-
son’s r = -0.295, 95% CI [-0.30, -0.29]), we suspected our spacing measure to
be confounded by initial performance, potentially explained by a combination of
play intensity and other factors related to ability.

In order to control for initial levels of absolute performance, we subsampled play-
ers who scored a mean GPM of between 315 and 385 (an interval centered on the
median of mean initial GPM; 350 ± 25) over their first five matches, resulting
in a subsample of size n = 52,440. Analogously, we replotted KDA trajectories
after subsampling players with a mean KDA of between 1.64 and 2.24 (median
initial KDA 1.94 ± 0.19), resulting in a subsample of size n = 17125. Figure
2.2 shows the mean GPM and KDA trajectories of players who took between
136-150 days, 76-90 days, or up to 15 days respectively to play their first 95 rated
matches. Players who clustered their matches the most exhibited a faster initial
climb in initial, but lower performance overall by the end of their trajectory. Al-
though we produced an analogous plot for mean trajecotires of MMR (S3 Fig),
we neglected to conduct further (statistical) analyses of this metric due to the
aforementioned opaqueness of the MMR algorithm and the ubiquitous downward
trend in MMR across our entire sample, which we believe lent itself poorly to a
study of learning.

Players with the largest time range between their 1st and 95th match achieved
an average GPM in their final five matches that was 6.91 points higher (95%
CI [3.74, 10.07], n = 1236, M = 399.71, SD = 49.65) compared to those with
the smallest time range (i.e., 1-15 days; n = 2790, M = 392.81, SD = 46.18).
This was statistically significant following a t-test at t(4024) = 4.28, p <0.001,
albeit for a small effect size (Cohen’s d = 0.146). For the subsample matched
on initial-KDA, players in the former (n = 373, M = 3.76, SD = 2.18) achieved
a KDA 0.49 points higher (95% CI [0.28, 0.71]) points higher that those in the
latter spacing group (n = 1159, M = 3.27, SD = 1.74) This difference was also
statistically significant [t(1530) = 4.45, p <0.001, d = 0.265].

By binning players using our spacing measure, we produced a snapshot of the
effects of practice distribution on performance. To produce a fuller account of
this relationship using the entire range of our practice distribution variable, we
linearly regressed spacing on both GPM and KDA (Fig 2.3). We report regression
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Figure 2.2: Trajectories of mean GPM (left panel) and KDA (right panel) against
match for players with different patterns of match spacing. Data in
the figure are a subsample of players who initiate at a similar range of
GPM and KDA (approximately surrounding the original sample median).
Shaded regions indicate 95% confidence intervals.

slopes and supporting statistics for both variables in Table 2. We report White’s
heteroscedasticity-consistent standard errors (White, 1980) due to nonconstant
variance in our residuals.

Figure 2.3: Scatter plots of GPM and KDA against time range in days between first
and 95th game respectively, with line of best fit. Axis plots show distri-
butions of respective axis variables.

2.3.1 Time Gap Clustering

One issue with operationalising practice distribution as the time range between
two matches, is that different schedules of practice may coexist within identical
time ranges. For instance, a player with a consistent schedule of 1-2 matches per
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Table 2.2: Linear regressions of time delta in days between 1st and 95th match on
average GPM and KDA between the 96th and 100th match.

B Std.
Err.

β T p R2 95% CI

GPM 0.0849 0.005 0.0727 16.045 <0.001 0.005 [0.075, 0.095]

KDA 0.0025 <0.001 0.0568 7.396 <0.001 0.003 [0.002, 0.003]

day could be grouped with a player who played 10 matches per day followed by a
handful of matches after a 10 week break. To explore whether our spacing groups
reflected the differences in practice distribution that we were interested in, as op-
posed to some other systematic and unanticipated differences in play schedules,
we conducted an alternative analysis to the rule-based slicing performed above
by clustering our original sample of 162,417 players by their time series of time
gaps between matches. First, we leveraged the Uniform Manifold Approximation
and Projection (UMAP) algorithm (McInnes et al., 2018) to perform a visual in-
spection of how different players distributed their matches over time. The UMAP
algorithm is a non-linear dimensionality reduction technique based on manifold
learning. Given a high dimensional data-set, UMAP first infers its topological
structure and then using stochastic gradient descent attempts to structurally re-
produce it in a lower dimensional space (two or three for visualization purposes).
In our case, the original data-set was represented by an N ×T matrix of between
matches time gaps, with N = 162, 417 being the number of considered players
and T = 95 the number of matches in the observation period. We chose this
range to align with the previous step of our analysis, allowing a window of five
final matches with which to analyse the effects of different spacing patterns on
final performance. The transformation performed by UMAP generated an N×D
matrix with D = 2 being the number of target dimensions. In this 2D repre-
sentation, players with a similar pattern of inter-matches temporal gaps were
represented closer in space while players with a dissimilar spacing profile were
represented as far apart. The topological structure of the original data-set was
inferred by computing the euclidean distance in a local neighborhood of 1000
points, while the dimensionality reduction was achieved by running the optimiza-
tion part of the algorithm for 1000 iterations. The remaining parameters were
left at their default value as provided by the python library used for our analysis
(i.e., UMAP-learn (McInnes et al., 2018)). The generated 2D representation can
be observed in Figure 2.4.

As we can observe form Figure 2.4, a number of naturally occurring groups ap-
pear to emerge (i.e., the areas where the density of dots increases), suggesting
the existence of different profiles of play distribution. In order to formally eval-
uate whether differences in naturally occurring spacing patterns truly exist, we
decided to run a clustering analysis. This was done to test the consistency of
the individuated profiles arising from clustering. We describe and report here
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Figure 2.4: The left panel shows the two-dimensional projection of the ob-
served 95 inter-match gaps in hours as generated by UMAP for
the entire sample. The y and x axes represent the two dimensions
individuated by UMAP. As opposed to Principal Component Analysis
their associated values should be interpreted as coordinates on a plane
rather than indicators of the magnitude of the two components. Each
dot represents the history of inter-matches gaps for a single player while
distance between dots indicates the degree of similarity between different
patterns of spacing. The right panel shows the average evolution
of inter-match gap in hours for the entire sample. The y axis indi-
cates the time in hours elapsed since the previous match while the x axis
indicates the order of the match. The solid line indicates the mean value
while the shaded region shows the 95% confidence interval. The dotted
red line separates the observation period (i.e., the first 95 matches) from
the evaluation period (i.e., the last 5 matches).

the results derived from a combination of recurrent autoencoder and mini-batch
K-means.

Recurrent Autoencoder and K-Means Autoencoders are a specific type of
artificial neural network (ANN), which given an input x attempt to produce a
copy of the same (Goodfellow et al., 2016). This is done by simultaneously learn-
ing the parameters of a function h = f(x) (called encoder), mapping the original
input to a latent representation h, and of a second function x̂ = g(h) (called
decoder), generating a copy x̂ from the same latent representation (Goodfellow
et al., 2016). Learning occurs through stochastic gradient descent, minimizing
a reconstruction loss that measures the mismatch between x and x̂. Once the
training process is terminated the latent representation h can be extracted, and
should carry meaningful properties of the original input. In this sense, the op-
erations performed by the encoder function can be seen as a form of automatic
feature extraction.
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In order to force the autoencoder to produce an h with interesting characteristics,
a series of constraints are usually applied during the learning process. In our case
we adopted a combination of denoising and undercompleteness strategies. The
first corrupts the input (usually through random gaussian noise) forcing the au-
toencoder to learn a representation capable of undoing the noise, while the second
requires the dimensionality of h to be much smaller than that of the original input
(Goodfellow et al., 2016). Since we were dealing with time-series data, we param-
eterized the encoder and decoder functions using two recurrent neural networks
(RNN), a specific type of ANN able to capture temporal dynamics (Goodfellow
et al., 2016). The first RNN tasked to generated h, was composed of two Long
Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) layers respec-
tively with 60 and 30 hidden units. The second RNN, used to reconstruct the
corrupted input was a single LSTM layer with 60 hidden units. The autoencoder
minimized the Mean Absolute Error (MAE) between the reconstructed and origi-
nal inputs and used the Adaptive Moment Estimation (Adam) optimizer (Kingma
& Ba, 2014) for gradient descent. Training was carried out by passing random
batches of 512 inputs and monitoring the reduction in MAE on a 20% held-out
subset of the original data. Training was terminated once the reconstruction loss
stopped decreasing in the held-out subset by a minimum of δ = 0.0001 for more
than 15 consecutive epochs. At this point, we proceeded to generate features
from the original input passing a N × T × 1 tensor of between matches gaps
through all the operations carried out by the encoder function. This generated
an N × h matrix, with h = 30 being the dimensionality of the last layer of the
encoder, which other than offering a more compact representation of the original
input (making it easier to perform a cluster analysis) should have also distilled
its most salient characteristics.

Finally, in order to obtain different spacing profiles we applied Mini Batch K-
Means (a more scalable version of K-Means) (Sculley, 2010) to the representation
generated by the encoder. We selected the number of centroids k by generating
an elbow plot after running the algorithm for a range of 2 to 10 k, with 2000
random initializations for a maximum of 3000 iterations each, passing the inputs
in random batches of 512 elements. Following the methodology proposed by
Satopa et al. (Satopaa et al., 2011), the optimal k = 4 was found by individuating
the point of maximum curvature in the aforementioned elbow plot (S4 Fig). In
order to derive interpretable profiles from the individuated cluster, we averaged
the time series of between-match time gaps (along with GPM and KDA) over the
labels provided by the Mini Batch K-Means. The autoencoder was realized using
tensorflow’s high level API keras (Abadi et al., 2015; Chollet et al., 2015), while
the Mini Batch K-Means implementation we employed was the one provided by
the library scikit-learn (Pedregosa et al., 2011). Results of this clustering analysis
can be seen in Figure 2.5 and Figure 2.6.

Looking at Figure 2.5 we can see how the location and extension of the clusters
on the 2D reduction provided by UMAP tells us when, for how long and how
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intensely the players in those clusters spaced their matches on average. Interest-
ingly, the areas of high density in this representation seem to identify groups of
players taking a single long break at specific points during our observation period.
With the exception of a single period characterised by longer breaks (more hours)
between matches, players appear to maintain a consistent play schedule. Follow-
ing the representation in the right panel of Figure 2.5 we can see that clusters 1
and 3 represent the extremes of a continuum going from a relatively early versus
late rest period. Clusters also differed on the intensity of this rest period, with
spacing cluster 3 exhibiting the longest breaks during the shortest rest period,
followed by the most consistent streak of play.

Figure 2.5: The left panel shows the two-dimensional projection of the ob-
served 95 inter-match gaps in hours as generated by UMAP
for each spacing cluster across the entire sample. The y and x
axes represent the two dimensions individuated by UMAP. As opposed
to Principal Component Analysis their associated values should be inter-
preted as coordinates on a plane rather than indicators of the magnitude
of the two components. Each dot represents the history of inter-match
gaps in hours for a single player while distance between dots indicates
the degree of similarity between different patterns of spacing. The right
panel shows the average evolution of inter-match gap in hours
for players in each spacing cluster. The y axis indicates the time in
hours elapsed since the previous match while the x axis indicates the order
of the match. The solid line indicates the mean value while the shaded
region shows the 95% confidence interval. The dotted red line separates
the observation period (i.e., the first 95 matches) from the evaluation
period (i.e., the last 5 matches).

Tabulating the joint frequencies of players across each of the clusters and original
categories (Table 3) showed that players in a given spacing category do not display
uniform membership to a single spacing cluster, supporting our intuition that
operationalising practice distribution as a time range may mask differences in
underlying play schedules.

58



2.3 Results

Table 2.3: Joint frequencies of players in spacing group as defined by k-means cluster
(rows) versus time in days delta between 1st and 95th match (columns).

1-15 Days 76-90 Days 136-150
Days

K-means
cluster 1

7701 3477 914

K-means
cluster 2

1644 4120 1102

K-means
cluster 3

583 2093 523

K-means
cluster 4

2014 3430 1006

Figure 2.6: Trajectories of mean GPM (left panel) and KDA (Right panel) against
match for players in our 4 autoencoder clusters. Data in the figure are
a subsample of players who intiate at a similar range of GPM and KDA
(approximately surrounding the original sample median). Shaded regions
indicate 95% confidence intervals.

Figure 2.6 displays the typical averaged trajectories of GPM and KDA for play-
ers in each cluster. Compared to the analysis of groups sliced by time range,
there were no large differences between spacing clusters in final GPM or KDA.
We conducted one-way ANOVAs to test these differences in mean final perfor-
mance (average GPM and KDA over the last 5 matches). This was significant
for both GPM [F(3, 162413) = 517.93, p <0.001] and KDA, [F(3, 162413) =
439.87, p <0.001] but for negligible effect sizes (η2 <0.01). Additionally, we con-
ducted pairwise comparisons (Holm-Bonferroni corrected t-tests) in GPM and
KDA between each pair of clusters. We identified significant differences in GPM
between clusters 1 and 2 [t(31839) = 5.45, p <0.001, d = 0.061], clusters 1 and
3 [t(24758) = 3.65, p <0.001, d = 0.051], as well as clusters 3 and 4 [t(30911) =
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4.23, p <0.001, d = 0.049], but only negligible effect sizes. Clusters 1 and 3 were
also significantly difference in mean final KDA [t(8195) = 3.05, p <0.001, d =
0.075], but again with a negligible effect size.

2.4 Discussion

Analysing a large data set drawn from League of Legends - one of the world’s
most popular competitive online games - we extended recent work on the dis-
tributed practice effect (Stafford & Dewar, 2014; Stafford et al., 2017; Stafford &
Haasnoot, 2017; Huang et al., 2013, 2017) in an ecologically valid and complex
perceptual-motor skill environment. Players in our data set showed monotonic
gains in measures of absolute performance (GPM, KDA), which tapered off after
approximately 100 matches. After matching players on initial ability and sub-
sampling groups defined by the amount of time elapsed between their 1st and
95th game, we found that players who spaced practice the most showed initially
depressed gains but superior final performance, albeit for a small effect size, and
only for a large time range of spacing. These effect sizes were in line with those
previously reported in action video games (Stafford & Dewar, 2014; Stafford et al.,
2017; Johanson et al., 2019). In a second analysis, we applied clustering tech-
niques to identify and analyse differences in the timing of practice spacing in our
data set, and tested whether the "when" of practice distribution has an effect on
performance. Our analyses indicated that, for this task environment, only the
total amount of rest is what matters, and not the timing of these rest periods.
Practically speaking, our results suggest that by their 100th match, a player who
maximised spacing would be earning on average 228 gold more and scoring a
KDA of 0.49 higher per match than a player who crammed their matches, given
the typical match lasted roughly 33 minutes in our sample. Although highly sig-
nificant, our effects are limited by large spread around our group means. This
observation echoes concerns raised in recent research, namely, that analyses of
aggregated data sacrifice the ability to accurately describe dynamics of the indi-
vidual (Charness, 2017).

For the sake of completeness, we also reported players’ trajectories of MMR,
a relative measure of performance calculated by a proprietary algorithm that
is heavily weighted by match outcome (i.e., win versus loss; (Herbrich et al.,
2007; Laserface, 2022; Rio, 2021)). A full description of the MMR algorithm
is kept hidden from the public, making MMR significantly more opaque than
GPM or KDA as a measure of performance. Moreover, although MMR is partly
dependent on match outcome, the probability of winning a match is dependent
on many factors (including the behaviour of teammates and opponents), and is
itself the subject of many efforts in prediction. For these reasons we neglected
to conduct further statistical analyses of MMR, and instead concentrated our
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efforts on GPM and KDA, which we believe to provide a clearer perspective on
individual performance from match to match.

The size of our effects (Cohen’s d = 0.146 for GPM; 0.265 for KDA) are in keeping
with other studies of digital games that reported on the distributed practice effect.
For example, Stafford and colleagues reported a small effect size of distributed
practice on subsequent performance in Axon (Cohen’s d = 0.11; (Stafford &
Dewar, 2014)), a small correlation of distributed practice on the slope of perfor-
mance in Destiny (Pearson’s r = 0.18; (Stafford et al., 2017)), while Johanson and
colleagues (Johanson et al., 2019) reported a small effect of distributed practice
on acquisition (η2 = .127, p <.001) as well as a marginally significant effect on
retention (η2 = .108, p = 0.44). Importantly, it is also consistent with early meta-
analytic work that observed smaller effect sizes in studies involving motor tasks of
lower overall complexity (Donovan & Radosevich, 1999). Despite efforts to mimic
related work, we are cautious to make direct comparisons between the effects re-
ported here and similar studies due to differences in elements of study design,
such as the length of our training window and our operationalisation of practice
distribution, as well as the exploratory nature of our design. An explanation as
to why practice distribution is less beneficial for more complex tasks presumably
depends on a fuller understanding of the mechanisms underlying memory consol-
idation and the effects of extended inactivity on subsequent recall. Ultimately
this is a question for future experimental work that investigates the effects of
distributed practice while directly manipulating levels of task complexity.

Our initial results appeared to be confounded by pre-existing differences in game-
play habits. Similar to Stafford and colleagues (Stafford et al., 2017), the dis-
tribution of practice was significantly related to the intercept of performance in
our sample, but to a more extreme degree. Specifically, players who clustered
their matches in relatively shorter time windows initiated at much higher lev-
els of absolute performance. Plausibly, we were observing in our "groupers" a
category of player characterised by intense, frequent play. Such players may be
more motivated to engage with the game, and would potentially have accrued a
commensurately higher amount of experience during the early initiation period of
the game where only unranked matches can be played. We attempted to control
for this confound by running our analysis on a subsample of players matched on
initial performance, but acknowledge that lingering effects of this confound may
nonetheless impact our reported statistics.

Similarly, as our sample consisted only of ranked matches, we were agnostic to
any experience that players may have acquired in unranked matches that were
played between the ranked matches recorded in our data set. A related concern
is that players we found to have spaced their matches the most may have played
more matches generally than players in our massed practice group, having had
more opportunities to play unranked matches during breaks from the ranked
game mode. However, we contend that our observations are inconsistent with this
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hypothesis, as we would then have expected the players that spaced their matches
the most to have a more accelerated learning trajectory than what is observed
in Figure 2.2, reflecting the additional practice hours that they accumulated.
Nevertheless, we suggest it is important for related future work to eliminate any
such ambiguity by ensuring that the entire history of player experience is visible
when curating the data. In this regard, it may be also be worthwhile to record
players’ past experience with other digital games. In their analysis of gameplay
patterns in Halo Reach, Huang et al. (2013) reported separate rating trajectories
for players that had previous experience in various related games, such as previous
iterations of the Halo series, or other FPS games. This showed that differences in
prior experience resulted in differences in current rating. Thus, we suggest that
future work could deliver more precise results by capturing pre-existing differences
in game experience, for instance through an additional survey component.

Previous work that has leveraged game telemetry data to study distributed prac-
tice in games has made use of data slicing techniques to isolate play schedules
of interest (Stafford & Dewar, 2014; Stafford et al., 2017; Stafford & Haasnoot,
2017; Agarwal et al., 2017). As an extension to this approach, we used machine
learning to cluster players by their time series of gap between matches. In doing
so we aimed to reveal naturally occurring play schedules in our data set and inves-
tigate whether these underlying patterns have any bearing on effects arising from
our data slicing procedures. Our results showed that players in the same spacing
group, defined by the time delta between two matches, may diverge consider-
ably in their underlying play schedules, as identified by our time series clustering.
Specifically, players across different spacing clusters differed in the timing of an
extended "rest" period, characterised by less frequent gameplay. This suggests
that operationalising practice distribution as a time delta between two matches
may not be as straightforward an analogue to classical operationalisations as one
would have hoped. Nonetheless, players across these spacing clusters did not differ
significantly in their final performance, suggesting that it is indeed the amount of
time spent on breaks is positively correlated with acquisition, but not necessarily
the timing of these breaks.

By identifying and attempting to control for confounds in our data, we high-
light both a weakness and a corresponding strength of telemetry-based big data
analysis. The use of observational data in behavioural science sacrifices total
control of participant behaviour. In our case, the absence of experimental control
restricted our ability to compare groups of players with homogenous time gaps
between each of their play sessions, as has been done in laboratory studies of
distributed practice (Magill & Anderson, 2017). Our solution, similar to other
studies that have used game telemetry (e.g., Stafford & Dewar, 2014; Stafford
et al., 2017; Stafford & Haasnoot, 2017) was to use a proxy for intersession time
interval, namely the time gap between the first and last match. Although time
between first and last match is likely related to time between individual trials,
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we acknowledge that use of this alternative operationalisation limits our ability
to generalise from laboratory work to a non-artificial environment.

An additional consequence of using observational data is susceptibility to the
effects of both known and unknown nuisance variables that may systematically
skew results in unpredictable ways. Presently we attempted to filter out po-
tential confounds, such as players that migrated server (accumulating additional
"hidden" experience), or players whose records contained matches with abnormal
participation (i.e., complete inactivity). In doing so we dropped approximately
two thirds of our data, but were nonetheless left with a sample size that offered
ample statistical power. However, despite our attempts to isolate our variables
of interest, we remain cognizant of the potential for additional confounding vari-
ables. These may include the presence of multiple players using the same League
of Legends account, or the existence of highly experienced players who create new
accounts to enjoy lower levels of ranked play ("smurfs").

2.4.1 Optimising training for MOBAs

Additional work is required before the relevance of our work for competitive
players can be made clear. For a training window of 100 matches, we observed
significant gains in GPM and KDA for players that distributed their practice over
a range of 136-150 days (a rate lower than a match a day). Regression analyses
further suggested modest improvements to these performance measures by the
end of the 100 match window for each day added to the time window of play.
While these gains appear large enough to make a impact in a match, the measures
taken to achieve may be impractical for some. A player invested in consistent
improvement of performance will likely require a high volume of daily practice
comprising different training foci. Practical considerations notwithstanding, there
is also the matter of preference. Clearly, many League of Legends players are un-
likely to desire a temporary reduction in play frequency to maximise performance
at some future time point. Indeed, in a classical study of distributed practice with
postal workers, Baddeley and Longman reported lower preference for spaced than
clustered practice (Baddeley & Longman, 1978).

As opposed to the mere spacing of practice, what is likely to be of practical
relevance is the interleaving of practice of different skill components. Research
on skill acquisition distinguishes between blocked practice, that is, a sequence
of practice where trials on one task are done consecutively before moving onto
the next task, from random practice, in which practice of different tasks are
interleaved. Studies of motor learning have shown the latter to produce superior
learning in certain contexts (Schmidt & Lee, 2019, Chapter 10). Random practice
can be viewed as the distributed practice of multiple skill components in a training
schedule and is thus intrinsically related to practice distribution as has been
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presently examined. Although an investigation of such interleaved practice was
not within the scope of the present study, future work on skill acquisition in digital
gains may uncover applicable insights into practice and performance by turning
its attention to the interleaving of skill components within a training schedule.

2.4.2 Conclusion

Research on motor learning has demonstrated that taking breaks between practice
sessions, as opposed to massing them in relatively short time windows, benefits
ultimate performance (Lee & Genovese, 1988; Donovan & Radosevich, 1999). By
analysing an observational, longitudinal data set describing player performance
in a massive, commercially successful video game, we showed that the distributed
practice effect is relevant in an ecologically valid context comprising stakeholders
with a vested interested in improving their skills. Although data sets such as
ours afford strong statistical power and the ability to filter through observations
that meet desired experimental conditions, they are also complicated by noise
and potential confounds. As a solution, we propose that researchers seeking to
use telemetry data adopt a hybrid approach, collecting demographic information
on players before tracking their play records through game APIs. In doing so,
interested researchers may control for variables related to initial performance,
such as age or cognitive ability (Kokkinakis et al., 2017), and account for sources
of data pollution such as players generating data on multiple accounts.
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3 Tetris as an experimental
platform for cognitive science

3.1 Introduction

In the previous chapter we demonstrated the capability of using a commercial
game to test theories of cognition in a naturalistic setting. Using a large, obser-
vational data set drawn from the world’s most popular commercial online game,
we showed that distributing play sessions over longer time spans results in greater
net performance gains as opposed to clustering the same number of sessions in a
shorter span of time. These effects were in line with an established literature on
the distributed practice effect (Lee & Genovese, 1988; Donovan & Radosevich,
1999).

Although we successfully extended previous findings to this setting, adopting this
approach also exposed several restrictions in the use of telemetry data obtained
from a commercial digital game. Firstly, game developers are not as interested
in generating data sets conducive to cognitive science as cognitive scientists are.
Hence, the measures available through data telemetry can be superficial. In our
case, we had access to gross measures describing the overall performance of indi-
viduals at the end of each game, but no measures describing granular aspects of
performance, such as control inputs or communication with other players at each
minute or second. Thus, although this data set had the capacity to summarise
average longitudinal trends in performance, it was less capable of yielding insights
into the dynamics of performance during gameplay.

An additional caveat of this game was related to its complexity. Although this
was covered in the previous chapter, we reiterate that League of Legends is a
game played by two competing teams of five players, where each player controls
a single avatar selected from a roster of over a hundred possible avatars, each
differing in control inputs, as well as tactical and strategic possibilities. These
elements introduce a high degree of variance from session to session, making it
harder to detect signals relating to underlying behavioural or cognitive variables
of interest to this thesis. In this chapter, we focus on addressing the limitations to
research imposed by methodological approaches that rely on commercial games
and telemetry data. We investigate the viability of using a particular commercial
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game, in this case Tetris, that has been adapted for the laboratory, thus possess-
ing both the desirable qualities of a commercial game and some of the essential
qualities of a laboratory task.

3.1.1 What makes a good research game?

As discussed in Chapter 1, games of many different varieties have previously been
used for research purposes. These purposes have included both games as a treat-
ment (e.g., investigating the effects of playing games on cognition), and games as
a lens into the human mind. In line with the overarching aim of this thesis, we
concentrate in this section on the latter. That is, we consider the question, what
makes a game suitable for studying cognition in relation to complex skills?

One aspect of games that makes them interesting research tools, is that they
allow cognitive scientists to test theories in domains that simulate the complexity
of real world tasks. While games can load on many cognitive factors simultane-
ously, many laboratory tasks typically isolate singular constructs of interest. For
instance, the Towers of London task has been used extensively to study problem-
solving (Berg & Byrd, 2002; Bull et al., 2004; Ward & Allport, 1997), while simple
and choice response time tasks have been used to study reaction times (Deary
et al., 2010; Heitz, 2014). In contrast, many competitive online games such as
MOBAs tap into several such constructs simultaneously. For example, success in
games such as League of Legends requires both sound strategic decision-making
in addition to motor skill execution. Such a combination of multiple and po-
tentially interacting variables in a single task environment can allow researchers
to investigate an expanded territory of questions, such as how plateaus in one
skill component can bottleneck progress in overall performance, and how learn-
ers may optimally schedule practice of individual skill components to accelerate
learning.

Naturally, complexity is not always a desirable quality in a laboratory task. As il-
lustrated in the previous chapter, too much complexity may reduce signal-to-noise
ratio. Additionally, complexity is only beneficial to researchers insofar as task el-
ements that contribute to said complexity are appropriately measured. Thus,
while League of Legends may serve as an example of a complex game, it may not
serve as an example of an appropriately complex research task, given that proxy
measures of motor execution or planning (e.g., moment-to-moment control inputs
and communication) are not always readily accessible to researchers. We argue
that the complexity of games can emulate the behavioural richness of real-world
tasks, but too much complexity may be detrimental for the research. Moreover,
elements that make a task complex must be logged at a level of granularity suf-
ficient to study pertinent research questions.
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Another advantageous quality of games is that they enable the study of human
behaviour in an intrinsically motivating environment (Baldassarre et al., 2014).
Recruiting willing participants for laboratory experiments is not a trivial endeav-
our, and much less so if the same participants are to be studied over multiple
sessions. Moreover, classical experimental paradigms often rely on unengaging
tasks that require participants to be briefed with detailed instructions. Games
bypass these issues entirely as they are intuitive and engaging by design, prompt-
ing players to return to the same game time and time again. As has been demon-
strated by our own and by previous research (e.g., Sangster et al., 2016; Huang
et al., 2013, 2017; Stafford & Dewar, 2014; Stafford et al., 2017), this can result
in longitudinal data sets with sample sizes that are unprecedented in cognitive
research.

3.1.2 Previous games for research

One way of profiting from the desirable qualities of games in research while
avoiding some of the pitfalls of relying on data from commercial games, is for
researchers to develop their own games. We have previously discussed Space
Fortress as an example of a game developed explicitly for the study of learning
and training strategies. While Space Fortress satisfies the criteria of complexity
and granular logging of behavioural measures, its original version was not intro-
duced online nor widely received, limiting its potential as a generator of large
data sets as in other examples.

An alternative approach is for researchers to collaborate with developers to cre-
ate or modify games that are designed to be engaging while also being capable of
addressing relevant research objectives. For example, working with the developer
of Little Alchemy 2, a simple game in which players combine various inventory
elements to explore a sprawling tree of object combinations, Braendle and col-
leagues (Brändle et al., 2021, 2022) collected a data set of 29,493 players to study
individuals’ exploration strategies. After concluding that players explore with
the aim of maximising additional object combinations, they moved to a labo-
ratory setting by creating two versions of the game: one copy and one version
with a simpler semantic structure. In doing so, the authors were able to replicate
and extend their findings, showing that players resort to simpler strategies in the
absence of rich semantic information.

Another example is Sea Hero Quest: a mobile game resulting from the collabora-
tion between an independent game company and Alzheimer Research UK, that
was developed with the purpose of collecting data to study human navigation.
The launch of Sea Hero Quest resulted in a data set comprising virtual-navigation
behaviour from 4 million participants across 195 countries. These data have been
used to study various aspects of spatial navigation, including the impact of age
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and Alzheimer’s disease on navigation ability (Coughlan et al., 2019), the rela-
tionship between virtual navigation and real-world navigation (Coutrot et al.,
2022), and the differences in navigation ability between different populations and
cultures (Coutrot et al., 2018). These studies show the capacity of tailor-made
online games to produce insights into cognition as well as benchmark specific
elements of cognitive function.

3.1.3 Aims of the present work

Where opportunities are not present for researchers to work with game design-
ers, it remains possible to convert existing commercial games to a laboratory
format by programming clones that log actions and game events. Recent ex-
amples include a replica of Super Hexagon created using the Unity game engine
to study practice scheduling effects (Johanson et al., 2019), and generalisation
of tic-tac-toe (where participants must connect four tokens in a row instead of
three) created to study problem-solving (van Opheusden et al., 2021).

The aim of this chapter is to explore the viability of one such commercial game
adapted for the laboratory as a platform for cognitive research: Tetris. Tetris is
a popular game that is easy to comprehend, but deceptively hard to master. It
demands multiple cognitive faculties to work in synchrony, including planning,
decision-making, mental rotation, and motor control, satisfying our criterion of
task complexity. Moreover, recent development of a laboratory adaptation of
Tetris has demonstrated the feasibility of the granular, real-time logging of game
events and participant behaviour throughout gameplay. Using a shared data set
from an experiment conducted using this task, we conducted exploratory analyses
with the following aims:

1. To identify measures that capture cognitive variables germane to the study
of psychomotor skills

2. To test whether these measures are capable of distinguishing between good
and bad performances (or players)

3. To test the capability of these measures to characterise the moment-to-
moment performance within sessions of gameplay

3.2 Methods

As in the previous chapter, we used a Python 3.8 (Van Rossum & Drake, 2009)
environment for all preprocessing and analysis. Data munging and preprocess-
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ing were performed using pandas (pandas development team, 2020) and (Van
Der Walt et al., 2011) and we used matplotlib and seaborn for visualisation. Ad-
ditional packages for corresponding analysis techniques are detailed below under
Results. All analysis pipelines and supporting software are publicly available at
https://github.com/ozvar/tetris_osf_exploration, together with details regard-
ing requisite software dependencies.

3.2.1 Task environment

Although it will certainly be familiar to most readers, Tetris is a classic tile-
matching puzzle video game in which players manipulate an infinite succession of
falling geometric shapes called "tetrominoes" (or "zoids") to fit them together in
a rectangular playfield. The objective of the game is to create as many complete
horizontal lines as possible. Lines without gaps are cleared from the playfield,
scoring points and clearing up space for more blocks to be placed. Every 10 line
clears increases the game difficulty, increasing the speed at which the blocks fall
and making it more challenging to maintain a solvable pile structure. Importantly,
the game ends once the tetrominoes are stacked to the top of the playfield and
cannot be stacked any higher.

Players control the drop destination of tetrominoes by moving them laterally
(translations), by rotating them, or by accelerating their downward movement
speed. Players also have information about the next incoming tetromino, allow-
ing them to plan their pile structure as they manipulate the current tetromino.
Players can score bonus points for clearing more than one line simultaneously,
with maximum bonus points awarded for the "tetris" maneuver, requiring four
simultaneous line clears. Executing these moves under increasing time pressure
requires a combination of forward planning, rapid decision-making and efficient
execution of chained control inputs.

Tetris is a popular game that is played internationally in tournaments that are
viewed by thousands of people (Sweet, 2021). While Tetris has been used in previ-
ous cognitive research, these studies have typically used the game as a treatment
condition, or as a task for studying individual differences in spatial ability. In
recent years, the development of Meta-T (Lindstedt & Gray, 2015), a laboratory
adaptation of Tetris that collects high fidelity behavioural data, has demonstrated
that Tetris is capable of much more as an experimental paradigm. It is designed
specifically for use in cognitive science experiments, and it includes features that
allow researchers to control and manipulate various aspects of the game.

Firstly, Meta-T allows researchers to configure features of the task to meet be-
spoke experimental criteria, such as game difficulty, visual cues, or the size and
shape of blocks. These modifications make it possible to investigate different as-
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pects of cognition, such as attention, working memory, and visuospatial ability,
under controlled laboratory conditions. Secondly, Meta-T includes features that
allow for the collection of data on player performance, such as the number of
lines completed, the number of blocks placed, and the time taken to complete the
game. These data can analysed to investigate the relationship between cognitive
factors and game performance. Theoretically, the fidelity of game logs in Meta-T
enable full recreation of a participant’s interaction with Meta-T within a full ses-
sion of gameplay (Lindstedt & Gray, 2019) These factors, together with its use
in several studies of cognition and expertise, demonstrate its potential as tool for
researchers interested in conducting cognitive research using a task that is both
engaging and, given its popularity, representative of psychomotor performance in
real-world settings.

3.2.2 Measures

We used a secondary data set made public by Lindstedt and colleagues through
the Open Science Framework (https://osf.io/78ebg/). We describe the data set
here following the original experimenters’ (Lindstedt & Gray, 2019) reports as
well as our own examination of its contents. The data comprise one hour of
Meta-T performance from each of 240 participants, collected under laboratory
conditions. Meta-T was configured to resemble "Classic Tetris" (and verified as
a faithful representation thereof by a software expert affiliated with the Classic
Tetris World Championship). Each participant was seated in front of a computer
and instructed to play 50 minutes of Meta-T with a provided Nintendo Enter-
tainment System controller. Players repeatedly played successive games of Tetris
until 50 minutes had elapsed restarting games upon failure.

The data set comprise three log files, each detailing all 240 participants’ task
engagement at three different levels of time: one describing behaviour at the
time of each button input, one describing behaviour in the time spanning the
appearance to dropping of each tetromino, and one summarising behaviour at
the level of the entire match. We concentrated our analyses on logs of tetromino
drops at each match, as these provided the highest density of measures across
all log files. As mentioned previously, Meta-T captures a wealth of information
throughout gameplay. Each row in the episodic log file details over 60 variables
for the current tetromino drop, including:

1. Features summarising the session (e.g., participant ID, game number, times-
tamp),

2. Game state features relating to the tetromino (current and next tetromino,
current tetromino position),
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3. Game state features describing the pile (e.g., height, circumference, number
of unplayable cells)

4. Motor execution features (e.g., number of control inputs, latency before and
between actions),

5. Features describing tetromino placement (e.g., number of lines cleared, land-
ing height).

We refer the reader to Lindstedt and colleagues (Lindstedt & Gray, 2019) for
an exhaustive list of all variables that are logged by the Meta-T. In the next
section, we describe the variables we chose to concentrate our analysis on, which
were principally those describing the pile structure and those describing motor
execution.

3.3 Results

3.3.1 Principal component analysis

Our first aim was to reduce the data set into a subset of variables relating to
orthogonal aspects of performance in Tetris. To this end, we performed an ex-
ploratory principal component analysis (PCA) using the sklearn package (Pe-
dregosa et al., 2011). We first inspected the data for extreme outliers and other
anomalies, removing two players from the data set who never made it past level
0 during gameplay. We then subset the data, removing all variables describing
the session (e.g., participant ID, time stamp) or game-state (e.g., current tetro-
mino, tetromino orientation), effectively retaining only those variables relating
to performance for dimensionality reduction (see Table 6.1 for a list of variables
retained for PCA). PCA was then performed on this trimmed data set, initially
with an unconstrained number of components. To identify the optimal number of
components to retain, we produced a line plot of the amount of variance explained
by each successive component (Figure 3.1). Identifying the point of maximum
curvature in this plot indicated four components as being the optimal number
to retain, as adding more would have had a limited impact on the explained
variance.

The four principal components that we chose to retain explained a combined
total of 53% of variance in the data set. Table (3.1) displays the PCA loadings,
describing the correlation between each variable and principal component (only
correlations past 0.20 are displayed). We take a moment here to interpret each
component in detail.
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1 2 3 4
mean_ht 0.2960
row_trans 0.2890
weighted_cells 0.2890
max_ht 0.2870
landing_height 0.2850
pit_rows 0.2790
pit_depth 0.2730
col_trans 0.2710
pits 0.2710
lumped_pits 0.2670
min_ht 0.2530 -0.2080
wells 0.3810
deep_wells 0.3800
max_well 0.3720
cuml_wells 0.3690
jaggedness 0.3220
max_diffs 0.2770
cd_1 0.2110
cd_9 -0.2090
min_rots_diff 0.4440
rots 0.4420 -0.2230
min_trans_diff 0.3980
drop_lat 0.3730
trans 0.3670 -0.2460
prop_u_drops -0.2590
avg_lat 0.5070
initial_lat 0.4560
d_max_ht 0.3550
matches -0.3690
cd_2
cd_3
cd_4
cd_5
cd_6
cd_7
cd_8
pattern_div
resp_lat

Table 3.1: Table of PCA loadings. Column headers display the number of each
component ordered by descending amount of variance explained. Cells
show the correlations past 0.20 between variables (labelled in the row
headers) and the respective components.
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Figure 3.1: Scree plot of PCA. Points in the line show the variance explained by
each successive principal component, where components are ordered from
most to least variance explained. The vertical dashed line indicates the
point of maximum curvature in the line, corresponding to our choice of
number of components to be generated for our analysis.

The first component was predominantly positively correlated with variables de-
scribing the height of the player’s pile, including the mean, max, and minimum
height of the pile across all ten columns. It was also correlated with variables
describing the number and depth of rows with pits (i.e., empty cells that are ren-
dered unplayable by obstructing tetrominoes). A tall pile in general may indicate
a player preparing for simultaneous or sequential line clears for combo points.
However, a combination of unplayable cells and a tall pile is more indicative of
a disorderly tetris pile that prohibits line clears on rows where pits are present.
We refer to this component henceforth as disarray, viewed as an index of pile
difficulty and extant pressure in the game environment.

In contrast to disarray, the second component was negatively correlated with the
minimum height of the pile, and positively correlated with wells (i.e., low-height
columns flanked on one or both sides by higher columns). Wells provide options
for fitting particular shapes of tetrominoes, and deeper wells provide options
for clearing multiple lines at once, and in particular enable the coveted "tetris"
maneuver whereby four lines are cleared at once by inserting a line block into a
well that is four cells deep. This component was positively correlated with the
number and depth of wells, as well as other variables indicating large differences
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between the tallest and shortest column (e.g., "jaggedness", "max_diffs"), which
is suggestive of players planning simultaneous line clears for bonus points. We
refer to this second component as well preparation to reflect this strategic decision-
making and planning element in players’ behaviour.

The third component appeared to be an index of the efficiency of participants’
control inputs. For each tetromino, there is a minimum number of translations
and rotations required for the tetromino to reach its final destination. Meta-T
records unnecessary translation and rotation inputs in excess of these minima us-
ing the "min_rots_diff" and "min_trans_diff" variables. Both of these variables,
as well as those tracking total number of translations and rotations, and finally
"drop_lat", which tracks the total time elapsed between tetromino appearance
and drop, were positively correlated with this third component. To reflect this
inefficiency in motor execution, we termed this component action inefficiency.

The fourth and final component appeared to relate to lagged and sloppy tetromino
drops, being positively correlated with the latency to first input, average latency
across all inputs for the current drop, and correlated with indices of poor fit
between the tetromino and the pile. We viewed this variable as tapping into
executive function such as short-term planning and working memory, and refer
to it as decision-action latency henceforth.

Taken together, our PCA captured four components that we believe captures
distinct aspects of Tetris, each of which may act as proxy measures of cognitive-
behavioural aspects of psychomotor performance. Our results also resemble di-
mensionality reduction performed by Lindstedt and colleagues, who retained three
orthogonal components in their analysis using the same data set (Lindstedt &
Gray, 2019). We retained one component describing (sub)optimality of the game
state, one component describing strategic planning in relation to pile structure,
and two components that potentially tap into aspects of executive function, such
as working memory and planning.

To put the results of our PCA into the context of task performance, we visu-
alised the averaged trajectories of each of these components across the first 50
tetromino drops of two example games from the sample (Figure 3.2). We chose
to visualise 50 drops as over half the sample had played at least this many tetro-
minoes in every one of their games. Evident in this visualisation is that disarray
appears to monotonically increase across both games, likely relating to increase
in pile complexity as the game goes on. Well preparation also appears to trend
upwards, as would be expected from players attempting to play strategically in
the face of incoming tetrominoes. The final two components appear to be statis-
tically stationary, fluctuating without any visible periodicity within these first 50
episodes.
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Figure 3.2: Averaged component score trajectories across two exemplar
games. The top and bottom panels show mean disarray, well prepa-
ration, action efficiency, and decision-action latency from the first and
fifth game across the entire sample (including only those participants who
played at least five games) respectively. Shaded regions show 95% confi-
dence intervals of the mean.

3.3.2 Distinguishing top from bottom scorers

If these measures are meaningful, we would expect them to to distinguish between
good and bad performances, or between heterogeneous groups that exist within
our sample, such as top scoring players versus bottom scoring players. To the
latter idea, we first split players into a top and bottom scoring group by sorting
players based on their average score on their first few games, and then taking
the top and bottom quintiles respectively for each group. We then visualised, for
each group separately, the averaged trajectory of each component over the first
50 episodes of the first game played (Figure 3.3).
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It is evident across every panel that top scoring players differ significantly in
mean respective component score across time. As a reminder, participants are
exposed to identical tetromino sequences for each successive game that is played.
Thus, it is striking that while the peaks and troughs in action inefficiency and
decision-action latency appear similar between top and bottom scorers, the top
scorers appear to be more efficient and quick in their gameplay at almost every
tetromino drop in the game. Moreover, while disarray in both groups appears to
trend upwards, the upward trend is much more aggressive in bottom scorers than
in the top scoring group. Conversely, bottom scoring appears trend downwards
in their well preparation while top scoring players appear to trend upwards.

Figure 3.3: Comparison of moment-to-moment performance between top
and bottom scorers. Each panel depicts the mean trajectory of the re-
spective performance component for bottom (red line) versus top scorers
(grey line) for the first 50 tetromino drops from game 1. From top left
going clockwise to the bottom left panel, the subplots show trajectories
for mean disarray, well preparation, decision-action latency and action
inefficiency respectively. Shaded regions depict 95% confidence intervals
of the mean.

We tested the statistical significance of visible trends in our plots by conduct-
ing a mixed ANOVA of each performance component, with scoring decile as
the between subjects factor, and tetromino drop as the within-subjects factor.
Between-subjects effects for disarray [F(1, 34) = 81.93, p < 0.001, partial η2 =
0.71], well preparation [F(1, 34) = 10.90, p = 0.002 , partial η2 = 0.2427], action
inefficiency [F(1, 34) = 26.38, p < 0.001, partial η2 = 0.44], and decision-action
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latency [F(1, 34) = 21.75, p < 0.001, partial η2 = 0.39] were all statistically
significant.

Additionally, interaction effects between scoring decile and tetromino drop were
statistically significant for disarray [F(49, 1666) = 36.79, p < 0.001, partial η2
= 0.52], well preparation [F(49, 1666) = 3.84, p < 0.001, partial η2 = 0.11], and
action inefficiency [F(49, 1666) = 1.42, p = 0.30, partial η2 = 0.04], but not for
decision-action latency [F(49, 1666) = 1.09, p = 0.31], suggesting that between-
groups differences in the former three components grew statistically significantly
more pronounced as games went on.

3.3.3 Relating skill components to overall score across
games

Another question we asked was whether these components relate meaningfully
to overall performance, as captured by post-game points score. We also consid-
ered whether the significance of this relationship spanned multiple games. As
previous research on psychomotor performance using digital games has suggested
that performance windows spanning as few as a player’s first 10 games can be
predictive of a player’s ultimate skill level (Aung et al., 2018), we decided to test
whether component performance in the sample’s first game is predictive of overall
score in the final game. To do so, we first performed a linear regression of final
score each on mean component score in the first game. As scatter plots of the
residuals indicated non-constant mean and variance, we repeated these regression
analyses after box-cox transforming our dependent variable in order to satisfy the
assumptions of OLS regression (i.e., score in the final game, which had a heavily
right-skewed distribution). The results of these regression analyses are visualised
in Figure 3.4, and statistical results are presented in Table 3.2.

All of these regressions were statistically significant. Unsurprisingly, mean well
preparation in the first game was the only variable to be positively predictive
of score in the final game, with all other three components having a negative
relationship with the final score. In particular, disarray and action inefficiency
had the strongest linear relationship with final score, each accounting for 8% of the
total variance in our dependent variable. In sum, our exploratory analysis of skill
components in Meta-T confirmed that our principal components meaningfully
related to performance in Tetris, both being capable of distinguishing between
expert and novice performance within isolated performance sessions, as well as of
explaining a significant portion of statistical variance in participants’ final overall
tetris scores.
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Figure 3.4: Scatter plots of OLS regressions of score on performance com-
ponent.

3.3.4 Hidden Markov models of skill components

Our results thus far indicate that our decomposed skill components provide a
meaningful window into aspects of Tetris performance. However, although par-
ticipants within respective scoring groups appeared to possess similar skill lev-
els, comparing the trajectories of individuals’ component scores with each other
across games indicated marked differences in how they performed the same task.
One approach to making sense of such variations in performance is to model
patterns of behaviour as influenced by unobservable psychological states, such as
periods of extreme concentration, "flow" (Csikszentmihalyi, 1991), or conversely,
periods of inattention. Can we identify such states in Tetris gameplay, such as
states of duress characterised by erratic button pressing, or a performant state
where participants plan effectively and input controls efficiently? We explored
an approach to modelling this possibility in an unsupervised fashion by fitting
a hidden Markov model using the hmm_learn (HMMLEARN., 2022) package in
Python.

Hidden markov models represent sequences of observations in terms of an under-
lying "hidden" layer of discrete states. The model is used to infer the most likely
sequence of states given the observations, and depending on the use case may also
serve to generate sequences of observations given the inferred states, with a view
towards predicting how the modelled system might behave next. The analytic
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B Std.
Err.

T p R2 95% CI

Disarray -0.15 0.04 -4.29 <0.001 0.08 [-0.22, -0.08]

Well
preparation

0.16 0.04 3.72 <0.001 0.06 [0.08, 0.25]

Action
inefficiency

-0.38 0.09 -4.37 <0.001 0.08 [-0.56, -0.21]

Decision-action
latency

-0.23 0.07 -3.04 <0.005 0.04 [-0.37, -0.08]

Table 3.2: Linear regressions of overall score in final game on mean disarray, well
preparation, action inefficiency, and decision-action latency in the first
game.

pipeline for using a hidden Markov model typically involves three main steps:
model definition, parameter estimation, and decoding.

1. In the model definition step, the structure of the HMM is defined, including
the number of hidden states, the transition probabilities between states, and
the observation probabilities for each state.

2. Parameters of the model are then estimated from a training data set.
This involves application of the Expectation-Maximization (EM) algorithm,
which works by alternating between estimating the expected values of the
hidden states given the observations (the expectation step) and updating
the parameters of the model to maximize the likelihood of the observed
data (the maximization step).

3. Estimated parameters are then used to infer the most likely sequence of
hidden states given the input data. This is typically done using the forward-
backward algorithm, which works by computing the forward probabilities
of the model (the probability of each state given the observed data up
to a certain point) and the backward probabilities (the probability of the
observed data after a certain point given the state). These two sets of
probabilities are then combined to produce a probability distribution of
states at any point in the observation sequence.

We hypothesised the presence of three latent states that could influence perfor-
mance in Meta-T. A default engaged state, where participants exhibited close-to-
average performance (as indicated by their component scores). A hyper-engaged
state, where participants were expected to perform more effectively and score
a greater number of points than in the other states. We anticipated that this
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state would arise from board configurations that presented opportunities for line
clears. And finally, we expected to observe a suboptimal performance state char-
acterised by inefficient and clumsy play, potentially arising from unfocused, inat-
tentive play, as participants wrestled with difficult pile structures close to the top
of the playfield. In line with these expectations, we fit a three-state HMM to a
combined sequence of our four component scores. At this exploratory stage, we
were interested in describing performance at a sample-wide level. For this reason,
we fit our model to the concatenated sequence of observations spanning all games
and players.

HMMs can model both discrete and continuous observations. Presently, as we
sought to identify latent states influencing our observed sequences of performance
components at each tetromino drop (i.e., modelling continuous observations), we
assumed each component as being described by a normally distributed random
variable at each time step. We therefore fit a three-state Gaussian HMM to our
four sample-wide sequences of performance components, fitting with a diagonal
covariance matrix and stopping the algorithm after 200 iterations. HMMs are
generative models and will infer a state sequence no matter what the inputs are.
To improve our confidence that our model was producing meaningfully inter-
pretable output, we created a "null" model by fitting an HMM with identical
parameters to a randomly shuffled sequence of observations.

We start our presentation of the HMM results by discussing the transition matrix.
Figure 3.5 displays the sample-wide probability of participants switching from
one state to another, with cells on the diagonal displaying the self-affinity or
"stickiness" of states. We can observe that participants are likely to remain in
states that they enter (as opposed to switching rapidly between them) given the
high probabilities on the diagonal. State 3 is the state least likely to be occupied
through consecutive drops at 91% - 5% less likely than the other two states. To
further overview the occupancy rates of our states, we decoded the state that was
occupied at each tetromino drop using the Viterbi algorithm, and then visualised
the amount of time each state was occupied as a fraction of the total amount
of time spent across all tetromino drops (Figure 3.6). State 2 accounts for the
highest fractional occupancy across the data set ∼50%, followed by State 3 and
State 1 at ∼26% and ∼24% respectively.

After exploring the temporal dynamics of the states, we sought to describe the
behavioural signatures of each state. For each state, we explored the average
performance profile of all participants in the sample, as described by the score
distributions of each principal component. We computed the mean score of each
principal component across all instances of each state (Table 3.3) and visualised
the distributions of component scores to provide an overview of both central
tendency and spread (Figure 3.7). We describe these trends here.
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Figure 3.5: HMM state transition matrix. The figure shows the inferred tran-
sition matrix of the model, describing the probability of participants
switching from one state (y axis) to the next (x axis).

State 1 State 1 appears to be characterised by relatively high disarray and
decision-action latency, while well preparation and action inefficiency are rela-
tively low. This was also the state with the lowest fractional occupancy, account-
ing for ∼24% of state occupancies across all tetromino drops. We interpret State
1 as an inattentive state that participants sporadically enter as they struggle to
keep manage a dangerously tall and messy pile.

State 2 In contrast, State 2 was characterised by low disarray and decision-
action latency, while well preparation and action inefficiency were close to the
average. The fact that participants spent the most amount of time in State 2,
with the highest fractional occupancy at ∼50%. This leads us to view State 2 as
the default state of engagement in this data set, characterised by usual, attentive
gameplay, as well as uneventful pile structures and relatively short delays in
between actions.

State 3 Finally, State 3 was characterised by the highest well preparation and
action inefficiency on average. This state also had relatively low fractional oc-
cupancy at ∼26%, We interpreted this state as the opportunity or point scoring
state, in which participants rushed to capitalise on pile structures adequately
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Figure 3.6: Bar chart of state fractional occupancies. Each bar shows the frac-
tional occupancy of the respective state, defined as the fraction of total
time on task spent in that state across the entire data set.

prepared for line clears or the Tetris maneuver. However, we interpret this state
with some degree of caution due to the large spread in component scores across
instances of State 3.

3.4 Discussion

In this chapter, we investigated the viability of using Tetris as a platform for
cognitive research by analysing a secondary data set of gameplay logs recorded in
Meta-T; a bespoke version of Tetris adapted by Lindstedt and colleagues for the
laboratory (Lindstedt & Gray, 2015, 2019). We started with a data set containing
over 60 task features comprising second-by-second game-state and behavioural
logs of Meta-T gameplay from each of 240 participants. We first performed a
PCA to reduce the data to a subset of four principal components, each describing
a unique aspect of Tetris performance and explaining a combined total of 53%
of the variance in the data set. We then showed that these features provide
meaningful insights into Tetris performance, demonstrating that they differentiate
between players of different skill levels, and that component scores in participants’
first game have a significant linear relationship with overall score in participants’
final game. Finally, using HMMs, we explored a novel methodological approach
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to analysing moment-to-moment performance by modelling our time series of
performance components as observations influenced by unobservable latent states.
Taken together, we argue that Meta-T is a resourceful vehicle for the study of
psychomotor performance, given breadth and depth at which it logs complex
behaviour through time.

State 1 State 2 State 3

Disarray 3.4389 -2.4919 1.0584

Well preparation -1.7641 -0.3752 2.7927

Action inefficiency -0.0942 -0.0068 0.1224

Decision-action latency 0.0687 -0.0754 0.0727

Table 3.3: Mean disarray, well preparation, action inefficiency, and decision-action
latency in each latent state.

Figure 3.7: Violin plot of principal component distributions across states.
Each "violin" depicts the distribution of the corresponding performance
component across all tetromino drops within occurrences of a given state.
The black bar in the center of the violin is a box plot, with the center
showing the median observed value in the distribution. The coloured
portion of the violin shows the kernel density estimate of the distribution.
The tails of the violin extending beyond the inner box plot show the range
of extreme outliers.

It is reassuring that our own independent attempt at dimensionality reduction
echoed original analyses of this data set by Lindstedt and colleagues (2019). Our
application of PCA to a trimmed subset of 39 task features yielded four orthog-
onal components of performance: overall disarray of the Tetris pile, preparation
of wells in the pile for simultaneous clearing of lines, motor execution inefficiency,
and decision-action latency. In comparison, Lindstedt and colleagues identified
a trio of performance features that captured pile disarray, pile preparation, and
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a joint component capturing both action-latency and motor execution efficiency.
As argued by these previous authors, we reiterate that these performance com-
ponents likely tap into distinct aspects of cognition and behaviour. For instance,
the well preparation and disarray components may be characterised as indices
of planning, while action inefficiency may capture motor coordination and men-
tal rotation ability. Finally decision action-latency and disarray tap into rapid
decision-making and situation assessment respectively. In sum, we believe that
Tetris is a task that captures distinct aspects of cognition, each of which can be
captured through a reliable automated logging system that measures behaviour
as the task is engaged with. Future work could seek to verify the relationship
between these performance components and purported cognitive factors by cor-
relating each of these measures with validated measures of cognition.

We tested whether the characteristics of these components differ across players
of different skill levels. In general, we found that top scoring players exhibit less
disarray and accrue it at a slower rate than bottom scoring players throughout
gameplay. Conversely, top scoring players demonstrated a superior ability to
prepare wells for "tetris" maneuvers and simultaneous line clears. They also ex-
hibited less decision-action latency and action inefficiency on average throughout
gameplay as compared to lower scoring players. Given that Meta-T records com-
ponent scores at each tetromino drop, Meta-T grants researchers the ability to
record moment-to-moment dynamics of overall performance, but also components
of skill that demonstrably distinguish between good and bad performances. We
have previously argued that task complexity and richness of data are advanta-
geous qualities of games previously used to produce insights into human cognition,
such as Space Fortress (Mane & Donchin, 1989; Donchin, 1995). We show here
that Meta-T also possesses these qualities, in addition to being a familiar and
engaging game that has the potential to attract large populations of players.

Previous work has shown that performance in a complex video game is sufficient to
predict ultimate skill level in a sample of new learners (Aung et al., 2018; Stafford
& Dewar, 2014). Although the prior skill level of our participants is unknown,
our analyses showed similar trends. By regressing overall score in participants’
final game on the average of each component score in participants’ first game, we
showed that component scores not only statistically significantly relate to overall
performance, but are also indices of participants’ global skill level. These results
are similar to those of Lindstedt and colleagues (2019), who found behavioural
components measured in level-1 gameplay to be predictive of participants’ overall
scores. Because Meta-T granularly measures components of skill that contribute
to overall performance, longitudinal experiments into skill learning that involve
Meta-T could have the potential to pinpoint factors underlying learning plateaus.
For example, having identified points in a learning curve where learning appears to
be halted, researchers can proceed to interrogate behavioural data to see whether
these plateaus correlate with deficiencies in skill components such as planning
or motor execution (e.g., Gray & Lindstedt, 2017). In contrast, conventional
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psychomotor tasks that output univariate measures might not allow this level of
analysis and hypothesis generation.

In addition to providing evidence for the validity of Meta-T as a suitable research
platform, we explored a novel method for segmenting behavioural time series into
state-like epochs with distinct behavioural characteristics. We used a three-state
unsupervised HMM to model our time series of PCA-derived performance com-
ponents as a time series of observed behaviour that is influenced by a discrete
sequence of unobservable states. In the present data set, each of these states
manifested a different average behavioural signature in the sample. One state
was characterised by lagged decision-making and disorderly pile structure. An-
other state was characterised by relatively smooth inputs and decision-making
with uneventful pile structures. Finally, the third state was characterised by
high well preparation (planning the pile for point scoring) and erratic control
points. We believe that this approach to analysing multivariate behavioural time
series affords researchers several opportunities. Departing from the assumption
that behaviourally rich time series are important for the study of skill acquisi-
tion, segmenting complex sequential observations in this could allow researchers
to investigate the factors that influence variation in performance by pinpointing
individual or groups of epochs with particular behavioural signatures, and interro-
gating the data to generate novel hypotheses. For instance, future research might
ask what cognitive or neural dynamics are present during states of suboptimal
or optimal performance, although such an approach would require simultaneous
recording of gaze behaviour or brain activity using appropriate measurement tech-
niques. Another question one might ask is whether players’ fractional occupancy
of states changes as they gain experience in the game: as players improve, do
they transition to inattentive states less or occupy performant states more often,
and do expert players transition between states less often? Future work involving
longitudinal measurement and HMMs could address these questions using the
approach demonstrated here.

3.4.1 Limitations and future work

A caveat of our initial behavioural analysis is that we restricted our analysis
window to the first 50 tetromino drops of games in order to use the entirety
of the player sample. However, this limited our scope to easier levels of Tetris,
and equally interesting may be analyses that focus on later levels of Tetris that
are more cognitively demanding. Furthermore, it is also possible that grouping
the entire sample together for our HMM resulted in a less precise model than a
separate model for experts and novices. This may be the reason why we observed
such high variance in our component scores for State 3. Thus, although variation
in participant skill level may have increased the generalisability of our exploratory
model, follow-up work could model high versus low skilled players separately, and
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even model a data set featuring Tetris from a specific difficulty band (e.g., only
level-1 or level-9).

Might other games provide a better window into specific aspects of cognition.
Tetris is a game that might lend itself well to studying specific cognitive abilities,
but it is restricted to these abilities specifically. As a single player game, Tetris
cannot allow researchers to investigate teamwork or communication, for which
team games such as MOBAs (e.g. League of Legends) are more appropriate,
nor can it be used to study game theoretical constructs, for which games like
Diplomacy might serve well. Nevertheless, given it’s popularity and accessible
nature, future work could benefit from using Tetris (and in particular Meta-T)
for a range of studies that could otherwise be difficult to recruit for (e.g., longitu-
dinal studies). For example, while this study focused on states that arise during
gameplay, parallel work could shed light on state transitions immediately before
and after gameplay across multiple sessions. These benefits could be compounded
by translating Meta-T to a format that is deployable online, permitting the type
of mass recruitment that we alluded to previously.

3.4.2 Conclusion

Despite their growing usage in cognitive research, many games produce
information-poor data sets that are inadequate for the studying of complex
psychomotor skills. In this study, we analysed a behaviourally rich archival data
set of Tetris gameplay, obtained via the Meta-T research platform. Using PCA
and inferential statistical techniques, we showed that Meta-T has the capacity to
produce granular data sets that can describe distinct cognitive-behavioural as-
pects of performance through time, and that these variables distinguish between
players of different skill levels. Further, we took a novel approach to analysing
moment-to-moment variations in sequential performance episodes by applying an
unsupervised HMM to participants’ time series of tetromino drops. In doing so,
we demonstrated a way in which researchers can segment complex behavioural
time series data into epochs that may open a window into the cognitive dynamics
that shape moment-to-moment psychomotor performance. We conclude that
Meta-T is more than adequate as a platform for studying cognition, presenting
many opportunities for novel research into psychomotor performance and skill
learning.
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4.1 Introduction

Thus far, this thesis has endeavoured to demonstrate that digital games are a
promising paradigm for research into human cognition. To reiterate some ex-
amples, researchers have recently used telemetry data recorded in commercial
games to investigate theories of motor chunking (Thompson et al., 2017, 2019),
ageing (Thompson et al., 2014; Kokkinakis et al., 2017), and sleep consolidation
(Stafford & Haasnoot, 2017), among some examples of problem domains. On the
other end of the methodological spectrum, games that have been tailor-made for
laboratory research have been used to further our understanding of neural plas-
ticity (Lee et al., 2012; Voss et al., 2012), skill transfer effects (Anderson et al.,
2011; Boot et al., 2010), and have been used to test cognitive architectures that
model human learning as a whole (Anderson et al., 2019).

One problem associated with games in research is the use of total or end-game
scores to compare the aggregated performance of groups of individuals. We have
described numerous studies of game telemetry data, including our own work in
Chapter 2, that for various reasons have relied on univariate scores describing
performance in the chosen task (e.g., Stafford & Dewar, 2014; Stafford et al.,
2017; Huang et al., 2013, 2017; Johanson et al., 2019; Aung et al., 2018). Un-
fortunately for investigators interested in sterile research environments, games
are frequently complex and designed to be engaging, often meaning that play-
ers encounter variations of problem spaces across separate interactions with a
given game. Although summary scores are sufficient for many types of research
questions, exclusive use of such scores may make more detailed analyses of perfor-
mance difficult, as they may mask underlying factors that can vary across trials
and sessions, for instance, changes in player behaviour as a response to novel
situations in the game. A proposed solution is that researchers look past total
scores by interrogating variables describing components of performance, such as
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patterns of players’ control inputs and decisions (Towne et al., 2014; Gobet, 2017;
Stafford & Vaci, 2022). This is a particular advantage afforded by digital games
as experimental tasks, as their programming often allows researchers to extract
high-density behavioural data describing multiple aspects of performance. In the
previous Chapter, we demonstrated this affordance by introducing a laboratory
version of Tetris (Meta-T; Lindstedt & Gray, 2015) that produces fine-grained
behavioural data describing moment-to-moment performance.

A related, broader problem, and one that is potentially exacerbated by the vari-
ability in problem spaces inherent in digital games, is that individuals may al-
ternate between periods of good and bad performance within single sessions of
play despite proficiency in the game. In behavioural neuroscience, trial-to-trial
variability is present even in low-level psychophysics tasks. These confound-
ing behavioural observations have often been the subject of modelling efforts,
whereby researchers seek to explain fluctuations in observed behaviour in terms
of changes in latent cognitive factors, such as noise in perceptual systems or
shifts in attention (van Maanen et al., 2011; Renart & Machens, 2014). In re-
cent years, novel applications of unsupervised learning techniques have allowed
researchers to statistically relate trial-to-trial variability to these unobservable
cognitive factors, typically modelled as discrete shifts in internal states (Chen,
2015; Calhoun et al., 2019; Ashwood et al., 2022). Inspired by these approaches,
the aim of this study is to address the two problems described above through
the identification of latent perceptual states in the context of human psychomo-
tor performance. More specifically, using simultaneous, high-density behavioural
and magnetoencephalography (MEG) recordings of participants playing Meta-T
(Lindstedt & Gray, 2015), a laboratory version of Tetris, we show that the dy-
namics of psychomotor performance can be modelled as observations influenced
by latent perceptual states, which we relate to neural markers of attention.

4.1.1 Detecting latent states

A convenience assumption that is made in many cognitive experiments involv-
ing sequential measurements, is that data are independent and identically dis-
tributed samples from a shared distribution. We can consider an alternative and
arguably more realistic perspective by assuming that multiple processes with dis-
tinct mechanisms contribute to recurring sequences of observations in a given
data set (Kunkel et al., 2020). By treating these temporally recurring patterns
in time series as being influenced by distinct, unobservable processes, we can
segment continuous data into patterns of observations based on inferences about
underlying latent states. For example, in the context of digital games, differences
in patterns of performance may arise from players consciously adopting different
behavioural strategies (Harwell et al., 2018), or from players shifting attention
between different aspects of skill (Lim & Yen, 2004). Modelling the dynamics
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of moment-to-moment performance in this way can allow us to make sense of
fluctuations in individuals’ performance that are typically dismissed as noise, but
may actually be important sources of information.

Previous studies adopting this modelling framework have shown that brain
states during waking behaviour shape the dynamics of cortical activity, stimulus-
response and task performance in different animals and in recent cases have been
able to describe behaviour with striking accuracy (Vidaurre et al., 2019; Eyjolfs-
dottir et al., 2017; Wiltschko et al., 2015; Calhoun et al., 2019). For instance,
researchers investigating the acoustic courtship behaviours of fruit flies were able
to precisely predict distinct patterns of song behaviour by statistically inferring
latent states from flies’ movement data, capturing 84.6% of all remaining song pat-
terning information that previous models lacking a latent state component could
not explain (Calhoun et al., 2019). Accurate segmentation of the latent state
sequence allowed detailed description of the flies’ sensorimotor-strategies corre-
sponding to each state and, following an optogenetics component of the study,
identification of the neurons responsible for switching between states. Similarly,
latent state models of rodent decision-making can accurately predict choice strate-
gies corresponding to states of optimal engagement versus bias (Roy et al., 2021;
Ashwood et al., 2022), permitting reliable detection of blocks of trials with het-
erogeneous error-rates, as opposed to previous models that would assume errors
are scattered throughout all trials in a session with equal probability.

While varying in scope and problem domain, common to some of these studies is
their use of hidden Markov Models (HMM), which model observable processes in
terms of an underlying sequence of unobservable (i.e., hidden) states that tran-
sition with fixed probabilities. Roughly speaking, the typical modelling pipeline
involves specification of the number of states that are assumed to influence the
process as well as the probabilities of the model initializating at each state, fol-
lowing which the parameters of the model are estimated via maximum likelihood
estimation. As described previously, successful validation of HMMs in cognitive
task environments allows post-hoc relation of observable behavioural dynamics
to underlying brain states, resulting in rich-descriptions of moment-to-moment
performance and cognition. These can exist at the group but also the individual
level, for instance by analysing how much time individual participants spend in
each state and how often they transition between states (Vidaurre et al., 2018).

Depending on the objectives of modelling, the specification of the states can take
on different forms. In the examples outlined above, researchers specified a dis-
tinct generalized linear model (GLM) for each state that acted as a psychometric
function mapping stimulus to sensorimotor response (Calhoun et al., 2019; Ash-
wood et al., 2022). This approach paired the HMM with a previously tested
GLM with proven application in tasks with discrete outputs. A similar usage
tested stagelike models of human skill acquisition by pairing each latent state
(i.e., stage of learning) with a different speedup function describing participants’

89



4 Identifying latent perceptual states using behavioural and neural
recordings during Tetris play

response latencies in a novel arithmetic task (Tenison & Anderson, 2016). Other
investigations of latent states in humans have included the identification of brain
states during wakeful rest or motor task performance by fitting HMMs to elec-
trophysiological time series (Vidaurre et al., 2018, 2019; Karapanagiotidis et al.,
2020). As such, studies have demonstrated that HMMs provide a flexible and
task-agnostic framework for segmenting behavioural or neural time series into
meaningful state-dependent epochs.

4.1.2 Neural correlates of internal states

Thus far, we have highlighted how trial-to-trial variability in psychomotor data
obtained through digital games (and in psychological data sets in general) remains
unaccounted for in many studies, despite the burgeoning use of digital games as
paradigms to investigate psychomotor learning and other aspects of cognition.
We have also provided an overview of how sequence classification of high-density
behavioural or neural time series, in particular through the use of HMMs, can
help researchers to make sense of trial-to-trial variability across various task envi-
ronments by identifying latent states that subjects shift between as they engage
in a task. Accordingly, we continue by considering how latent state identifica-
tion through this approach may be applied to high-density psychomotor data. In
particular, we ask the question: what might states identified through such means
represent in terms of their underlying neural and cognitive dynamics?

One aspect of neural activity that can inform us about internal states is endoge-
nous rhythms. These refer to the cyclical patterns of neural oscillations that
occur naturally in the brain (independent of external stimuli) as neurons settle
into stable firing rates. Endogenous rhythms can be observed at various levels
of neural organization, from individual neurons to large-scale networks, and can
be characterized by their frequency, amplitude, and phase. Some examples in-
clude oscillations in the alpha (8-12Hz), gamma (25-80Hz), and theta (4-8Hz)
frequency bands, which have been linked to various cognitive functions such as
attention (de Vries et al., 2021; Foster et al., 2017; Bagherzadeh et al., 2020),
learning (Popescu et al., 2009; Li et al., 2021), and memory (Osipova et al., 2006;
Nyhus & Curran, 2010). While endogenous rhythms are also associated with
coordination and communication between different brain regions (Palva & Palva,
2011), we focus presently on the cognitive correlates of rhythms within individual
brain regions.

The alpha rhythm was the first human brain rhythm to be detected in the hu-
man brain, and is easily measurable across the cortex using electrophysiological
methods (Berger, 1929). Despite ongoing conflicts regarding the underlying mech-
anisms, there is a well-established relationship between occipital alpha and visual
spatial attention (Foster & Awh, 2019; Peylo et al., 2021). More specifically, direc-
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tion of the attentional "spotlight" from one location in the visual field to another
in the absence of eye movement has been shown to correlate with modulations in
the amplitude of alpha rhythm in both the parietal and primary occipital cortices
(Yamagishi et al., 2003; Sauseng et al., 2005). Alpha can be robustly detected
in occipital regions, where it is thought to be associated with visual attention
through the suppression of task irrelevant information (Pfurtscheller, 2003; Foxe
& Snyder, 2011). Additionally, studies have demonstrated that neural activity
in this area is modulated by attention even when visual stimuli are not present
(Heinemann et al., 2009; Sundberg et al., 2012).

4.1.3 Aims of the present work

Crucially, the approach described here depends on high-density input data, such
as pupillometry and movement in addition to task outcome. In contrast, many
studies of human performance that use commercial games are limited to analyses
of outcome scores, such as match wins or number of points scored in a round.
We bridged this gap by using a previously tested version of a commercial game
(Tetris) that has been adapted for use in the laboratory. This version of Tetris
records control inputs at every stage of the game, and outputs logs of variables
that are of interest to cognitive researchers, such as response latency and motor
efficiency. Our aim was to identify latent states (e.g., states of high versus low
engagement), to characterise recurring patterns of performance during engage-
ment with our task. Using MEG, we then investigated cortical activity relating
to attention in each state.

4.2 Methods

4.2.1 Participants

15 healthy, right-handed participants were recruited through the York Neuroimag-
ing Centre (YNiC) participant pool. All participants provided informed consent,
and the study was approved by the York Neuroimaging Centre ethics committee.
All participants were familiar with playing Tetris, and provided a self-report of
their proficiency on a 5 point Likert scale (M=3.08 , SD=1.04), as well as their
proficiency in digital games in general (M=3.38, SD=1.19). Data from 2 partic-
ipants were excluded from analysis due to poor MEG data quality, resulting in a
final sample of n=13 participants (4 female, Mage =33, SDage=11.31).
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4.2.2 Behavioural data acquisition

Participants played a pygame implementation of "Classic Tetris" called Meta-T
(Figure 4.1), developed by Lindstedt and colleagues for the purpose of study-
ing human expertise and learning (Lindstedt & Gray, 2015). Meta-T is a near-
identical representation of the original NES Tetris, with the exception of minor
visual differences relating to the use of Python as the development language. Im-
portantly, Meta-T possesses several additional features that make it suitable for
cognitive science, and has been used as a task environment in several published
studies on human and machine expertise (Lindstedt & Gray, 2013; Sibert et al.,
2017; Sibert & Gray, 2018; Lindstedt & Gray, 2019). Firstly, Meta-T outputs
several data files at the end of each session that, in addition to detailing the par-
ticipant’s ID and other session-specific information, include a log of post-game
summary statistics for each game, a log of game-state (e.g., pile structure) and
behavioural (e.g., action latencies) information describing performance for each
"episode" of play (i.e., the time between a tetromino appearing to the time at
which it is placed), as well as a complete log containing key-press information
at the millisecond level (See Lindstedt and Gray 2015 for an exhaustive descrip-
tion of logged variables). Secondly, researchers can modify game parameters such
as the screen size, game length, or difficulty curve, by editing the default con-
figuration file. In doing so, researchers can constrain participant behaviour to
bespoke experimental conditions according to the requirements of their research
question.

For the present study, we configured Meta-T to run in a full-screen environment
without in-game music. We also fixed the set of numerical seeds determining the
tetromino sequence in each game, such that each subsequent game had a different
sequence of tetrominoes, but the variations in tetromino sequence were the same
across all participants. Games had an indefinite length (i.e., players played each
game until loss) and all other options were left at the default values for Classic
Tetris. The original stimulus code was further adapted to accommodate a fibre
optic response interface (Cambridge Research Systems 905 package) connecting
between the stimulus computer and MEG scanner, which allowed participants
to use a non-electronic, non-magnetic five button response pad to play Meta-
T without adding additional noise to the scans. We configured Meta-T to send
triggers to the MEG record via this interface upon the occurrence of salient events.
These included button inputs, tetromino appearances and drops, line clears, as
well as game start and game end.

4.2.3 Magnetoencephalograpy (MEG)

MEG scanning was conducted using a 4D Neuroimaging Magnes WH3600 scanner
(248 channels + 23 reference channels) at YNiC and data were recorded at a
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Figure 4.1: Depiction of Meta-T user interface. The left side of the screen
shows the current board, including the tetromino that is currently being
controlled above it. The top right side of the screen shows the next
tetromino that will be played after the current one is dropped. The
player is also presented with the current game number, their current
score, number of cleared lines, and the current level. Image taken from
Lindstedt and Gray (2019).

sampling rate of 500 Hz. Prior to scanning, five feducial head-coils were attached
to each participant’s head with hypoallergenic tape. Facial landmarks (nasion,
left and right preauricular) and head shape were then recorded using a Polhemus
Tastrak 3D digitizer. To assess head movement inside the scanner helmet, we
measured the position of the head-coils before and after every scan, and then
compared these measurements to the spatial relation between head-coils recorded
outside of the scanner. Movement < 0.5cm was our acceptance threshold for head
movement, beyond which we reran our coil-on-head (CoH) scan to confirm any
discrepancies in coil position and to subsequently recalculate coil positions using
non-displaced coils.

After being briefed and prepared for scanning, each participant was given some
time to practice playing Meta-T in the scanner until they reported feeling well-
adjusted to the button inputs, during which time the data acquisition software
was configured for scanning. Participants played Meta-T in a seated position
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(a) (b)

Figure 4.2: Partial depiction of MEG-MRI co-registration process. The left
panel shows the 3D rendering of the participant’s cortex following import
of their preprocessed MRI data into the Brainstorm analysis environment.
The right panel shows the alignment of the participant’s digitized head
surface with their 3D head model.

and were instructed to play until they lost, while keeping their head as still as
possible. Each scan was initiated five seconds before the start of each game
and scan duration varied for each participant depending on their performance
across games (i.e., better performance resulted in longer games). As described
above, each scan and concurrent game was preceded and followed by a CoH scan,
allowing us to assess head movement while the participant took a short break.
Each participant typically played two or three games, resulting in an average
acquisition duration of M = 7.84 minutes per game (SD = 2.88) and an average
total acquisition duration of M = 21.55 minutes per participant (SD = 4.54).

4.2.4 Structural magnetic resonance imaging

To estimate the neural sources of our MEG recordings, MEG data were co-
registered with high resolution structural MRI images. T1-weighted structural
MRI scans were acquired for each participant using a Siemens Prisma 3T MRI
scanner, and the Freesurfer pipeline (Dale et al., 1999; Fischl et al., 2004) was
used to perform image segmentation and cortical reconstruction. Head surfaces
digitized during MEG preparation were then aligned with reconstructed MRI im-
ages based on the aforementioned fiducial landmarks. We provide an example
of 3D rendering of a participant’s cortex as well as a depiction of the alignment
process (Figure 4.2).
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4.2.5 Analysis

Dimensionality reduction of behavioural data

We concentrated our behavioural analyses on episodic logs describing behaviour
and game-state at the level of each tetromino drop, as these logs provided the
greatest breadth of information relating to moment-to-moment performance. For
each game that was played, Meta-T produced one such log file as a .tsv spread-
sheet. Each row in these files corresponded to one tetromino drop, describing
the input behaviours from the moment the tetromino appeared to when it was
dropped, changes to the game-state following the tetromino drop, as well as sum-
mary variables describing participant and session related information.

We first sought to reduce our behavioural data set into a more manageable and
interpretable subset of variables whilst retaining the available information relat-
ing to performance. To do so, we referred to the PCA we performed in Chapter 3
(using the sklearn library (Pedregosa et al., 2011)) on an archival data set of 240
Meta-T players collected by Lindstedt and colleagues (Lindstedt & Gray, 2019),
which contained analogous logs to those produced by our own protocol. We re-
stricted the PCA to variables that related directly to participants’ performance,
that is, we excluded variables that describe session and game-state variables de-
scribing events independent of participant behaviour (e.g., labels for the current
or next tetromino).

As described in Chapter 3, after inspecting an elbow plot of proportion variance
explained against the number of components in the model, we reduced our data
set to four components based on the point of maximum curvature in our visual-
isation. We provided meaningful labels to each of these components, similar to
Lindstedt and colleagues 2019, according to the unique aspect of Tetris perfor-
mance captured by each one. Together these components explained up to 53.3%
of the variance in Meta-T performance. We describe each of these components
below.

1. Disarray. Players that fail to clear lines as their tetris pile increases in size
are prone to developing an unfavourable tetris pile. Disarray captures this
deficiency in pile structure, and is associated with unplayable holes and
jaggedness of the pile, as well as overall pile height.

2. Well preparation. Achieving a high score in Tetris requires capitalising
on opportunities to score bonus points, typically by clearing multiple lines
with a single tetromino. Well preparation relates to the forward planning
required to achieve multiple line clears, such as by reserving a single, deep
well and maintaining a neat pile structure.
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3. Action inefficiency. Action inefficiency captures inputs (e.g., rotations,
translations) that are made in excess of the minimum number of inputs
required to place a tetromino at its final destination. This may relate to
poor motor execution and planning.

4. Decision-action latency. This component corresponded to the initial lag and
average lag between actions associated with each tetromino placement. It
also corresponded to the local quality of placement for each tetromino (i.e.,
the reduction in pile height caused by placement and amount of contact
with tetrominoes in the pile). Taken together we view this component as
capturing both the speed and quality of decision-making as it relates to
identifying optimal tetromino placement.

We used the PCA performed in Chapter 3 to derive performance components from
the behavioural data collected in the current chapter . Specifically, we computed
performance components by scaling each row of the current behavioural data by
the weights of each component from the previous PCA, producing for each par-
ticipant an additional time series of four components relating to the aspects of
Tetris performance described above. In contrast to Chapter 3, we used the math-
ematical difference of dissaray in lieu of the raw dissaray value. The reason for
this is that while raw disarray provides a status description of the current board
configuration, the difference of disarray is a more direct reflection of participants’
moment-to-moment interactions with the game (assuming that a participant is
indeed providing inputs to the game), as it is measure of the net change in dis-
array at the moment of each tetromino drop. We believe that this measure is
therefore more appropriate for an analysis of moment-to-moment performance.
After after projecting the previous PCA onto the current behavioural data, the
scores of each component were then standardised to permit comparison between
components with different scales. Figure 4.3 depicts the score distribution of each
performance component across all tetromino drops in the sample.

Hidden Markov Models

We used the Python hmmlearn package (an open source module with an API sim-
ilar to scikit-learn; hmmlearn, 2022), to fit a three state HMM to the time series
of PCA-derived performance variables, where each array in the time series de-
scribes participant performance at the current tetromino drop. We chose a three
state model assuming three modes of engagement with Meta-T: a default state
where participants were engaged and attentive, a performant state where partic-
ipants were both engaged and playing optimally, and a "panic" state involving
suboptimal moves and blunders, potentially relating to inattention.

Our model was fit to our data at the group-level (as in Karapanagiotidis et al.,
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Figure 4.3: Distributions of component score at each tetromino drop for
each component. From top left going clockwise to bottom left, the
plots show histograms of z-scored well preparation, action inefficiency,
decision-action latency, and change in disarray respectively.

2020) by concatenating the data across all of our participants and games. We fit
a Gaussian HMM, as our the observations were assumed to be well-described by
a Gaussian distribution (see Figure 4.3), which was confirmed using the Shapiro-
Wilks test for normality. The model was fit with a diagonal covariance matrix
and a 200 iteration upper bound for training, ensuring that the Expectation Max-
imisation (EM) algorithm stopped either after 200 iterations or on convergence to
a maximally likely solution before reaching the iteration limit. As an additional
check of model robustness, we compared the log-likelihood of our true model to
a randomised chancel model that we produced by fitting an HMM with identical
parameters to a randomly shuffled time series of our observations. We observed
a consistently higher model fit in our true model as compared to our chance
model.

MEG data pre-processing

Analysis and pre-processing of MEG was performed in MatLab using Brainstorm
(Tadel et al., 2019). Data were first band-pass filtered between 1 and 40 Hz
using a finite impulse response filter. We performed an Independent Component
Analysis (using the infomax algorithm; Bell & Sejnowski, 1995) to reduce the
MEG data and proceeded to identify and reject components capturing periodic

97



4 Identifying latent perceptual states using behavioural and neural
recordings during Tetris play

physiological artefacts such as blinks and heartbeats. Raw time series for each
scan were then inspected manually in epochs of 50 seconds, and any periods
contaminated by additional artefacts were manually removed.

After co-registering the MEG data from each scan with the corresponding par-
ticipant’s structural MRI data, we used the minimum-norm imaging function in
Brainstorm to estimate the amplitude of sources across the cortical surface via
minimum-norm estimation (Hämäläinen & Ilmoniemi, 1994). To extract source
time series for each state, we first aligned the time series of the behavioural and
MEG recordings, before segmenting the behavioural time series into bins of one
second in length. For each bin, we then extracted the time series of squared
amplitudes from regions of interest (ROIs) for each bin and state. ROIs were
parcellated using the Brodman atlas (Amunts, 2018) as instantiated by Brain-
storm. Specifically, we opted to use parcellations of the occipital cortex to fa-
cilitate testing of our primary hypothesis regarding occipital alpha, as well as
from the motor cortex due to the high amount of motor control present in Tetris
gameplay. We maintained a uniform length of one second for each bin to ensure
that fourier transforms of each bin, computed with the Fast Fourier Transform
algorithm (FFT), were equal in length. Finally, we obtained a measure of the
mean amplitude for frequency bands across each state, by computing the root-
mean square (RMS) of amplitude across frequencies for all bins for each given
state, and each participant. Specifically, we computed the RMS of alpha rhythm
(8-12Hz) in V1, and RMS of mu rhythm (8-13Hz) in M1 across each HMM state
for each participant.

4.3 Results

4.3.1 SVM decoding

To assess data quality, we checked that we were able to distinguish between
neural responses to button presses executed with the left versus right thumb
(i.e., the buttons used to translate the tetromino left and right respectively),
as this would provide us with confidence that our MEG and behavioural data
were both adequately synchronised and contained meaningful information. For
each participant, we trained a linear Support Vector Machine using the libsvm
library (Chang & Lin, 2011) to decode left versus right translation inputs using
the MEG time series extracted from -400ms to 400ms relative to each button
press. To improve computational efficiency and signal-to-noise ratio, trials from
each class (i.e., left versus right translation) were randomly assigned to 5 folds.
Trials in each fold were then subaveraged, yielding a total of 5 subaveraged trials
per class. Decoding was then performed on the 5 subaveraged trials following a
leave-one-out cross-validation procedure, and the process was iterated 50 times.
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Classification accuracy was averaged across the 50 iterations for each millsecond
across the trial time range, and plotted for each participant (Figure 4.4). We
attained a classification accuracy of 100% for every participant approximately
0.1 seconds the response.

Figure 4.4: SVM decoding of left versus right button inputs for participant
R3154. The top left two panels show the averaged 244 channel MEG
time series from -400ms to 400ms for left and right translation inputs
respectively. The bottom left two panels show corresponding heat
maps of cortical source estimates in picoAmpere at 0.085 seconds after
the input was registered by Meta-T. The right most panel shows the
averaged percentage accuracy of the classifier at each millisecond of the
MEG time series. The red vertical dotted line on each line plot shows
the time point corresponding to the presented cortical activity.

4.3.2 Hidden Markov Model analysis

State temporal dynamics

We evaluated our three state HMM using a range of metrics describing both the
temporal dynamics of the states as well as Meta-T related performance across each
state. The central output of the model is the transition matrix, which describes
the probability of participants switching between each pair of states from one
tetromino drop to the next. Our transition matrix showed that switches between
some pairs of states are more probable than others (Figure 4.5). In particular,
the probability of switches from State 1 to State 1 and State 3 to State 3 were
high (0.69 and 0.79 respectively) showing that participants have an affinity to
remain in these states once they enter them. The probability of switching from
State 1 to State 2 was also relatively high, while the switches from State 2 to
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State 2 or State 3 were relatively low (0.2 and 0.13 respectively), suggesting that
State 2 was a transient state that participants switched to mostly from State 1
but seldom remained in.

Figure 4.5: Overview of three state HMM temporal dynamics. The top left
panel shows the inferred transition matrix of the model, describing the
probability of switching between each pair of states. The top right
panel shows the fractional occupancy for each state, defined as the frac-
tion of total time spent in that state. The bottom panel shows the
distribution of maximum fractional occupancy across acquisitions in the
sample. That is, for each data acquisition in the sample, the maximum
fractional occupancy represents the fraction of total time spent in the
state that the participant occupied for the most amount of time for that
acquisition.

To glean further information about the temporal dynamics of our model, we used
the Viterbi algorithm to predict the optimal state sequence of our model, and
then computed the fractional occupancy of each state, that is, the fraction of
total time that is spent by our sample in each state, both in the data set as a
whole as well as in each individual game (Figure 4.5). Previous applications of
HMMs to the analysis of human brain dynamics have evaluated HMM validity by
examining how state occupancy is distributed across participants. An effective
HMM would be expected to output state sequences that show participants occu-
pying multiple states without huge discrepancies in state occupancy (suggestive

100



4.3 Results

of single states overwhelming entire participants or recordings). One statistic
that reflects this requirement is the maximum fractional occupancy, that is, the
fraction of time taken by the state that occupies the most amount of time in a
given data acquisition or participant.

To examine this criterion, we visualised our transition matrix together with a bar
chart depicting fractional occupancy in each state, as well as a histogram of max-
imum fractional occupancy across all data acquisitions. In our case, the majority
of games had maximum fractional occupancy below 0.6 (mean fractional occu-
pancy was 0.54), demonstrating that our participants’ time was shared across all
states in our model. Our plot showed that a little over half of all time (∼52%) on
task was spent in State 1, making this the dominant state throughout task per-
formance. This was followed by State 3, accounting for ∼28% of state occupancy,
and State 2 with ∼20%.

State performance dynamics

Together these visualisations inform us about how participants transition between
and how frequently they occupy states as they play Meta-T, but they do not tell
us how behaviour and cognition varies across states. To investigate the dynamics
of our performance components across states we started by visualising the time
series of observed performance components for individual participants and games
in parallel to the time series of posterior probabilities; a secondary output of
our model that describes the probability of each of the three states being active
given our observations for any given participant and game (Figure 4.6). By
plotting these two time series in parallel, it becomes possible to visually relate
patterns of performance to particular states in any given segment of our data.
For instance, looking at a game from participant R3154, it is apparent that when
well preparation is high, pile disarray is reduced. This pattern appears when
the participant enters State 2 which, consistent with our interpretation of the
transition matrix, appears to be a transient state with relatively short dwell
times. The inverse is the case during State 3, which is associated with low well
preparation and increases in pile disarray. It is also apparent that the participant’s
motor executions are most efficient during State 1, as is evident from dips in action
inefficiency following transitions to this state.

State 1. Interpreting performance dynamics across states by visualising indi-
vidual matches is helpful but not entirely straightforward. To assist in the inter-
pretation of state-performance dynamics across the entire sample, we visualised
the distributions of our components across each of our states (Figure 4.7). On
average, State 1 is characterised by relatively quick decision-making and efficient
motor execution, as well as slightly under-average well preparation and slight in-
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Figure 4.6: Time series of posterior probabilities and observed performance
in an example game. The top panel shows the time series of state
posterior probabilities, describing the inferred probability of each state
being active given the data, across all tetromino drops. The bottom
panel shows the time series of all four performance components, dis-
played as z-scores, across all tetromino drops.

creases to pile disarray at each tetromino drop. In line with State 1 being the
most occupied state across the data set, we view State 1 as the default "engaged"
state, corresponding to usual, attentive Tetris gameplay.

State 2. On the other hand, State 2 is characterised by high well preparation,
reductions to pile disarray, and high motor inefficiency and decision-action la-
tency. Additionally, given that dwell times in State 2 appear to be short, we
interpreted State 2 as a transient "opportunity" state, during which the partici-
pant is prepared to either score significant points through line clears, or fumble
and compromise the established pile structure. We pursued this idea by calcu-
lating the percentage of tetromino drops in State 2 that resulted in at least one
line clear. This number was 97%, confirming our initial intuition. The remaining
3% of State 2 drops that did not result in a line clear were distributed across
11 players in the sample, indicating that this state does not exclusively capture
cleared lines, but rather pile structure conducive to line clears that most players
in the sample occasionally failed to take advantage of.

State 3. Finally, and in contrast to State 2, State 3 was characterised by the
lowest well preparation, increases to pile disarray, as well as relatively high motor
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inefficiency and high but extremely variable decision-action latency. We inter-
preted State 3 by considering these trends in tandem with aforementioned tem-
poral dynamics. That is, instances of State 3 showed higher dwell times than
State 2, and transitions to State 3 were over twice as likely from State 2 than
from State 1. Taken together, we interpreted State 3 as a "hyper-engaged" state
characterised by poor motor execution and planning, during which participants
attempt to resolve difficult pile structures that likely arise from sudden and sig-
nificant changes to structure that may occur in State 2.

Figure 4.7: Violin plot of performance component distributions across
states. Each "violin" depicts the distribution of the corresponding per-
formance component across all tetromino drops within occurrences of a
given state. The black bar in the center of the violin is a box plot, with
the center showing the median observed value in the distribution. The
coloured portion of the violin shows the kernel density estimate of the
distribution. The tails of the violin extending beyond the inner box plot
show the range of extreme outliers.

Endogenous rhythms across states

We investigated whether our states were neurally distinct by comparing the aver-
aged amplitude of activity within frequency bands and regions of interest between
our states. Specifically, after computing the fourier transform of bins across each
state, we aggregated neural activity within states for each participant by com-
puting the RMS of frequency bands corresponding to endogenous rhythms of
interest. Principal among these rhythms was the occipital alpha rhythm, which
has previously been linked to attention. We also compared mu band activity in
the primary motor cortex across states.

103



4 Identifying latent perceptual states using behavioural and neural
recordings during Tetris play

Figure 4.8: Distributions of RMS cortical amplitudes across our regions of
interest. From top left going clockwise to bottom left, the plots show
histograms of RMS alpha in the left primary visual cortex, RMS alpha in
the righ primary visual cortex, RMS mu in the left primary motor cortex,
and RMS mu in the right primary motor cortex.

We first conducted a one-way repeated measures ANOVA to test for within-
participants differences in V1 RMS alpha between states. For each ANOVA,
we entered HMM state as the within-group factor, and values of RMS alpha
across the aforementioned bins as observations. Interestingly, V1 RMS alpha and
M1 RMS mu were different between the left and right hemispheres (see Figure
for distributions of the respective observations). For this reason, we conducted
separated statistical analyses for each hemisphere of occipital cortex and motor
cortex. These tests were significant for both left V1 [F(2, 24) = 3.6317, p = 0.0419]
and right V1 [F(2, 24) = 4.2665, p = 0.0260]. Both tests yielded small effect sizes
(η2 = 0.0024 and η2 = 0.0046 respectively). We also conducted one-way repeated
measures ANOVAs to test for within-participants differences in M1 RMS mu
between states. Differences in neither left M1 [F(2, 24) = 0.7357, p = 0.4896] nor
right M1 [F(2, 24) = 0.8488, p = 0.4404] were statistically significant.

Post-hoc differences for within-participants differences in occipital alpha across
states showed significant differences in alpha activity in the left primary visual
cortex between states 1 and 3 (p = 0.0374, Cohen’s d = -0.1036), as well as
significant differences in the right primary visual cortex between states 1 and 2
(p = 0.0194, Cohen’s d = 0.0835) and states 2 and 3 (p = 0.0436, Cohen’s d =
-0.1585). These results suggest that, in addition to our states displaying distinct
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patterns of alpha activity, participants manifest the highest levels of alpha in
State 3, followed by State 1.

4.4 Discussion

Drawing on recent advances in behavioural neuroscience, we used an HMM to
identify hidden states in multivariate psychomotor data obtained from an eco-
logically valid task, showing that humans shift between latent states during psy-
chomotor performance that differ in behavioural and neural characteristics. Our
task was a laboratory version of Tetris that logs granular performance metrics
through time, and was performed in an MEG scanner. We identified three states
with unique temporal and behavioural dynamics: 1) a default "engaged" state in
which participants spent the most amount of time, characterised by averagely-
difficult structure of the Tetris pile, quick decision-making and efficient motor ex-
ecution, 2) an "opportunity" state with the lowest occupancy and shortest dwell
times, characterised by points scoring and high well preparation, but poor motor
execution and decision-making speed, and 3) a "hyper-engaged" state with the
second highest fractional occupancy, where participants contended with difficult
pile structures, often with poor motor execution and decision-making speed. In
addition to highlighting differences in performance, we showed that states differ
in their neural signatures by comparing the amplitudes of endogenous rhythms
between states. Comparisons of neural activity between our three states revealed
statistically significant differences in amplitudes of occipital alpha-band activity,
a signal associated with attentional state, indicating that differences in cogni-
tion acros states may relate to attention. Taken together, our findings show that
humans switch between behaviourally and neurally distinct states as they en-
gage in complex psychomotor performance. We show that the dynamics of these
state transitions can be captured using synchronised behavioural and neural mea-
surements, and subsequently modelled using unsupervised learning techniques to
describe the relationship between latent states and performance.

Previous latent state models of behaviour have concentrated on animal behaviour
in relatively well-studied task environments, such as courtship behaviours in fruit
flies (Calhoun et al., 2019), visual detection in mice (Chen, 2015; Roy et al., 2021;
Ashwood et al., 2022), or swim bouts in larval zebrafish (Sharma et al., 2018).
These paradigms lend themselves well to models of latent states as the resultant
observations are intuitively discretisable. Additionally, many of these studies are
high in ecological validity, modelling behaviours that would be natural to observe
in an animal’s usual behavioural repertoire. In comparison, the application of
sequence classification techniques to identify latent states in humans has pre-
dominantly involved artificial tasks (e.g., motion coherence task Ashwood et al.,
2022) or resting-state FMRI (e.g. Vidaurre et al., 2018, 2019; Karapanagiotidis
et al., 2020). In the present work, we used a laboratory adaptation of a highly
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popular and commercially successful digital game, paralleling growing interest in
the use of naturalistic stimuli within the domain of cognitive neuroscience (e.g.
Sonkusare et al., 2019; Reggente et al., 2018). Specifically, participants played
a laboratory adaptation of Tetris (Lindstedt & Gray, 2013, 2015) that collects
numerous cognitive-behavioural variables relating to game state, motor execu-
tion, and motor planning. Our analysis included a feature engineering compo-
nent whereby behavioural measurements were decomposed into four performance
components based on data obtained by an independent laboratory using the same
task (Lindstedt & Gray, 2019). Thus, using a tried and tested version of a digital
game explicitly tailored for laboratory research, we add to a growing body of
literature that uses digital games for research in cognitive neuroscience (e.g. Voss
et al., 2012; Bavelier et al., 2012; Boot, 2015; Zhang et al., 2015).

Many studies of cognition that use digital games, in particular commercial digital
games, analyse univariate measures of performance such as end of match summary
metrics (e.g., win/loss, points scored), or time-bound measures of performance
(e.g., points scored per minute). We show here that the analysis of multivari-
ate behavioural time series can generate inferences and research questions that
may be difficult to access with summary metrics alone. Relatedly, and partly as a
consequence of this limitation, studies of digital games that involve repeated mea-
sures often aggregate data within and across sessions of engagement. Previous
work has advised against this on theoretical (e.g. Towne et al., 2014; Gobet, 2017;
Stafford & Vaci, 2022) as well as empirical grounds, demonstrating how certain
insights into individual differences (e.g. Harwell et al., 2018) or skill acquisition
(e.g. Towne et al., 2016; Rahman & Gray, 2020) can only be achieved after disag-
gregating data and considering behaviour in a more detailed fashion. Although
this study involved detailed analysis of behaviour through time, we are guilty of
the sin of aggregation as we too considered our sample as a single homogenous
group, despite variation in players’ average scores indicating a heterogeneity in
skill level.

One related implication for our analysis is that phases of gameplay that are more
demanding for less skilled players may may place lower demands on best players
in the sample. Having concatenated all observations to produce our input time
series for model fitting, our model would not have accounted for the potential
effects of variation in skill. This is an important consideration, given previous ev-
idence highlighting that variables discriminating between less versus more skilled
players are not the same across skill brackets (Thompson et al., 2013). In parallel
research involving animal subjects, this issue is either resolved through extensive
training, or it is completely bypassed by observing naturally ingrained behaviours.
Presently, we made efforts to recruit participants who reported proficiency with
Tetris, but we were unable to control for how proficient they were. Addition-
ally, we realised during data collection that many participants were familiar with
modern versions of Tetris with nuanced differences that confounded their initial
experiences for the game. For instance, our configuration of Meta-T emulates
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Classic Tetris and therefore lacks visual guidelines indicating each tetromino’s
destination, and prohibits rotating tetrominoes at the very edge of the well; both
of these are mechanics that some of our more experienced participants reported
relying on in their usual recreational gameplay. We acknowledge that these issues
are likely to have introduced noise to our model.

Compared to previous latent state models of low-level psychophysical phenom-
ena, we opted for a complex behavioural environment that is high in ecological
validity. In doing so, we acknowledge our position in the trade-off between simple
behavioural data suitable for predictive modelling versus rich behavioural data
that makes prediction much more difficult. Given the nature of our input data
(i.e., our time series of performance components), our model infers parameters
that describe the temporal dynamics of our states, and generates emission prob-
abilities describing In the case of our Gaussian HMM, the emission probability
parameters of each state were the mean and standard deviation parameters de-
scribing the Guassian probability density function of each performance component
in the respective state. In short, our model describes the expected distribution of
each performance component across states, but this is a far cry from predicting
how and where participants drop their tetrominoes at each epoch. This is in
contrast to aforementioned alternatives such as the GLM-HMM validated their
model, in part, by evaluating the fit of each state’s corresponding psychometric
curve.

The validity of our model is supported somewhat by the correspondence between
the behavioural characterisations of our states and the underlying neural sig-
natures of each state. That is, in a model that failed to distinguish between
cognitively meaningful states, we would expect to observe no differences in neu-
ral signatures associated with cognition. Instead, comparisons of neural activity
across our inferred states revealed statistically significant differences in occipital
alpha, a signal that has been previously linked to attention. In particular, post-
hoc tests revealed elevated occipital alpha in State 3 as compared to State 1,
and higher occipital alpha in State 1 as compared to State 2. Given the existing
association between occipital alpha and attention, this result is consistent with
our analysis of performance, which was suggestive of increased attentional de-
mand in State 3 due to the presence of difficult pile structures and large variance
in participants’ decision-making latency. However, although it is likely that our
model is detecting shifts in attention, it is difficult to infer precisely what aspects
of the task are being attended to across different states, as we did not manipulate
attention as previous experiments investigating performance and attention have
done (e.g. Cohen & Maunsell, 2009; Mitchell et al., 2009).

It is also possible that attention shifts continuously, and not discretely as assumed
by our model. Ashwood and colleagues (2022) found superior model fit in their
discrete model as compared to a model with continuous latent states (Roy et al.,
2021), albeit in the context of a different task. Additionally, these authors found
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that a two-state discrete model fit human data from a motion coherence task
better than a three-state model. We are open to the possibility that models with
different assumptions may describe performance in the present context better
than our three-state guassian HMM, for instance a two-state, engaged versus
disengaged model. However, this is a question for future work.

4.4.1 Limitations

A limitation of our study is that, in contrast to previous latent state models
of behaviour, we did not have adequate time to train our participants on the
task. Ours was a complex psychomotor task requiring both rapid perceptual
decision-making and skilled motor inputs. Although we recruited participants
who all indicated ample prior experience with Tetris, as mentioned before, we are
nonetheless conscious of large variation in participant skill, as well as noise arising
from unfamiliarity with our specific configuration of Meta-T, the controller, and
the scanner environment in which the task was performed. In addition, we note
the absence of a "ground truth" model with which to validate our model. Instead,
we compared the log-likelihood of our model to a randomised chance model, which
indicated superior fit of the true model. However, we acknowledge as a limitation
that due to the nature of our input data and the type of HMM that we used, the
predictive capacity of our model is restricted.

4.4.2 Conclusion

Recent work has demonstrated that, in the context of repeated trials within ses-
sions of behaviour, animals and humans shift between discrete behavioural strate-
gies during performance. Using simultaneous behavioural and neural recordings
of participants playing a laboratory version of Tetris, a popular commercial dig-
ital game, we extend previous work by capturing shifts in latent states during
performance in an ecologically valid task. Individuals in our sample shifted be-
tween three states, each with unique performance characteristics during gameplay.
Further, MEG analysis revealed significant differences in occipital alpha across
states, suggesting that one neural marker of internal state may be the amplitude
of endogenous rhythms, and that in the context of psychomotor performance
a cognitive marker of internal state may be attention. Our results show that
analysing sessions of data by averaging summary statistics alone may mask a
wealth of information describing the dynamics of performance and cognition. We
demonstrate how these dynamics can be captured by fitting unsupervised HMMs
to high-density time series data.
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The aim of this thesis was to answer the question "How can digital games be used
as experimental paradigms for the study of psychomotor performance and skill
acquisition". Understanding this question would have profound implications for
the fields of psychology, neuroscience and game analytics.

We investigated this question first by analysing a large, observational data set
drawn from a commercial digital game (Chapter 2). This dataset allowed us to
examine the influence of practise spacing on learning. We chose this approach
because there is a large existing literature base on learning and spacing but most
studies are performed with relatively small numbers of subjects (n<100) and
relatively infrequent measurements (typically less than a dozen measurements per
person). Here we had access to a dataset with well-defined, objective outcome
measures (in-game performance metrics such as KDA and MMR) which were
measured at a fine temporal scale (summary metrics were provided for each game).
Importantly, we had a very large number of subjects (n=162,417). Our summary
data were therefore able to provide excellent approximations to those of the overall
population. The results of this analysis are summarised below.

To address the limitations of this ’big data’ approach, we then switched our
focus to a laboratory adaptation of a different commercial digital game: Tetris.
Our goal here was to explicitly identify neuronal and behavioural correlates of
cognitive ’state switches’ during long periods of gameplay. We first (Chapter 3)
analysed an archival behavioural data set to validate previous research and test a
multivariate method of estimating instantaneous cognitive state (hidden Markov
model analysis). We then (Chapter 4) analysed data from our own experiment
involving the collection of simultaneous high density behavioural and source-
imaged magnetoencephalography neuroimaging data.

We discuss the major findings of each experimental chapter below, and conclude
with a discussion of relevant future directions.
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5.1 Chapter 2

In Chapter 2, we analysed a large observational data set describing League of
Legends performance globally and longitudinally. This dataset was first used
to examine the relationship between learning rate and final performance (Aung
et al., 2018) but no fine-grained analysis of the relationship between practise
spacing and overall performance had been performed previously. By comparing
the practice trajectories of players that clustered versus distributed their first
100 ranked games, we found that spacing (as opposed to clustering) practice
sessions is positively correlated with final achieved performance, extending an
established literature on practice scheduling (e.g. Donovan & Radosevich, 1999;
Lee & Genovese, 1988).

Previous studies have demonstrated similar effects across various commercial
games, also using a combination of large telemetry data sets with data slicing
techniques (e.g. Stafford & Dewar, 2014; Stafford et al., 2017; Huang et al., 2017;
Stafford & Haasnoot, 2017). However, these studies, as well as our own, opera-
tionalised practice spacing as the amount of time elapsed between the first and
last game. This conceivably allows for a range of different practice schedules to
exist within the same group of players. To iterate on this approach, we used
time series clustering techniques to identify prominent clusters of practice sched-
ules that existed within the data, and compared these to our rule-based grouping
of practice schedules. This data driven approach revealed that players typically
adopt a consistent rhythm of game playing, taking one large break from playing
at some point within their 100 games. Interestingly, although players could be
clustered reliably depending on the timing of this break, final achieved perfor-
mance did not depend on the timing of this break, but only the total amount of
time taken away from the game.

Although the ability to perform analysis on hundreds of thousands or even mil-
lions of subjects is attractive, the downside of using anonymous telemetry data
is that we do not have a deep understanding of each subject. In particular, we
cannot measure or control even simple factors like age, sex or environment. We
also cannot measure physiological correlates of behaviour which are critical for
understanding the neuronal basis of cognitive function. One possibility to resolve
these issues is to recruit participants online, controlling for demographic and cog-
nitive variables, and then to trace longitudinal performance trajectories through
publicly accessible game APIs using participants’ game IDs. The availability
of wearable, commercial physiological measurement system (for example, smart
watches or low-channel count EEG systems) raises the possibility of including si-
multaneous measurements of heart rate, breathing and even neuronal activity as
well as sleep statistics and estimates of circadian rhythm phase and reliability.

Combining cognitive and longitudinal behavioural data in this way, at scale, could
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allow us to test the models of talent identification and skill acquisition that have
been proposed in previous studies (e.g. Den Hartigh et al., 2016; Gagné, 2004;
Simonton, 2014), and improve our understanding of how cognitive ability interacts
with sustained behaviour to produce ultimate performance. While the data that
we analysed were curated by the developer of League of Legends (and therefore
contained important data such as MMR that are typically hidden from public
view), we can imagine researchers scraping game data through available public
APIs, generating even larger data sets that are open sourced.

Additionally, while the analysis in Chapter 2 only tested for the presence of the
distributed practice effect, larger and more controlled data sets may allow us
to identify the optimal amount and timing of breaks for individuals looking to
maximise their skill acquisition rates. This would have a direct impact on the huge
population of stakeholders in the video game community (e.g., professional esports
bodies, coaches, players). But in addition, it may have translational value for
adjacent domains such as sport psychology and even for the more general learning
literature. As has been noted previously, the link between in-game performance
and cognitive function suggests that the analysis of large populations of gamers
may also have clinical value in the form of cognitive epidemiology (e.g., Kokkinakis
et al., 2017) at a national or international level. Finally, the analysis of remote
game telemetry data present great opportunities for citizen science. It already
appears that publicly-available data have led to a small "cottage industry" in data
analytics in some game communities with relatively sophisticated analytic and
visualisation techniques becoming available to individual players wishing to study
and improve their own play (e.g., Cavadenti et al., 2016; Phy, 2023; Dotabuff,
2023).

Although the analysis of large observational data sets presents numerous advan-
tages (e.g., Goldstone & Lupyan, 2016), the ability to acquire these data sets
is currently limited to the availability of (commercial) games with large popu-
lations of players. Previous research has suggested that games must be "man-
ageably complex" (Gray, 2017) to enable studies to reveal deeper insights about
the mechanisms of skill acquisition. As we have seen, games such as SF are suc-
cessful in this regard as they are complex, but also produce behavioural metrics
describing moment-to-moment progress across elements that contribute to this
complexity (e.g., navigation, damaging mines, damaging the fortress). In con-
trast, our League of Legends data set (which resembles publicly available data
through the API) was limited to post-match summary statistics describing various
aspects of performance (e.g., damage dealt, gold earned). Without the ability to
trace moment-to-moment performance, viable research questions are restricted to
particular time scales, which may in turn restrict our potential to reveal deeper
insights about skill acquisition. Moreover, League of Legends is a team game
requiring coordination with 4 team members competing against 5 other players
that are affected by their own intra-team dynamics. This likely introduces a large
amount of noise, further obscuring the results of studies in this area.
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5.2 Chapter 3

To understand the link between performance and cognition in more detail, in the
final experimental chapters (Chapters 2, 3) we switched to a lab-based paradigm
in which we could study subjects in person. The timescale of study in Chapter 2
was days to weeks but here we asked whether we could identify behavioural cor-
relates of changes at the scale of seconds to minutes. These changes are typically
ascribed to spontaneous variations in cognitive state - In chapter 3 we applied a
variant of this technique to multivariate behavioural data acquired while subjects
played Tetris.

In Chapter 3, we assessed the extent to which Tetris can be used to study cogni-
tion, and to address some of the limitations of the previous chapter. Tetris is less
complex than many commercial online games, but it is demonstrably engaging
and has in recent years seen a resurgence as a popular online game in its own
right (O’Callaghan, 2018; Tarantola, 2020; Sweet, 2021). While the commercial
version of Tetris has previously been used to assay cognitive ability, recent studies
have developed and deployed a laboratory adaptation of the game (i.e., Meta-T;
Lindstedt & Gray, 2015) for use as an experimental platform to study cognition.
In contrast to our League of Legends data set, this version of Tetris produces de-
scribing behaviour (e.g., key-presses) and game-state (e.g., pile structure) at the
level of milliseconds. These studies have produced important insights into aspects
of Tetris performance (Lindstedt & Gray, 2019), as well as models of decision-
making (Sibert et al., 2017; Sibert & Gray, 2018) and reaction time variability in
expert players (Denga, 2021).

We analysed a secondary data set describing the performance of 240 partici-
pants that played 50 minutes of Tetris in laboratory conditions. Using PCA, we
first decomposed the data set to produce four orthogonal components describing
separate aspects of Tetris performance. We then confirmed that these compo-
nents meaningfully describe performance in the sample, first by comparing the
trajectories of top and bottom scoring players on these components, and then
by regressing ultimate performance on performance components measured in the
first game. Thus, given the ability of Tetris to reliably trace multiple orthogonal
behavioural variables through time, we find that Tetris is comparable to SF in its
ability to enable detailed investigations of cognition. Tetris further improves on
this ability as it is a commercially successful game that is inherently engaging,
potentially allowing researchers to scale up its use via online deployment and
mass recruitment of participants.

Across all of our visualisations of performance trajectories in both chapters 1 and
2, we consistently observed fluctuations in performance both at the individual and
group level. While these types of fluctuations in time series are often dismissed as
statistical noise, a significant body of work has ascribed these variations to spon-
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taneous variations in cognitive state and in particular the tendency of individual
subjects to move in and out of states of ’engagement’ and ’flow’. Recent work
in this area has applied a combination of hidden Markov models (HMMs) and
general linear models to study these spontaneous switches in animals performing
simple psychophysical tasks or stereotypical mating behaviours (e.g. Ashwood
et al., 2022).

We applied a variant of this technique to the multivariate behavioural data set
analysed in the present chapter, which resulted in a model of Tetris performance
characterised by three states with unique behavioural signatures. Our analysis
allows for a deep dive into the behavioural and temporal characteristics of each
state. For instance, one state was characterised by high well preparation and
points scoring, but short state durations. Another was characterised by high
action latencies and sub-optimal decision-making, but also relatively long state
durations. Additionally, our modelling approach allows us to estimate how often
different participants enter different states and when they do so.

Taken together, we find that Tetris is a useful platform for investigations of cogni-
tion. Using Tetris in the laboratory allows recording of multivariate behavioural
data and detailed analysis of multiple aspects of performance. While commercial
versions of Tetris have limited game modes that produce random sequences of
tetrominoes, the adaptation of Tetris we used presently allows the researcher to
precisely specify what stimuli are produced. For instance, the experimenter can
configure Tetris to produce predictable sequences of tetrominoes, fix the game
difficulty, provide visual cues that show players where tetrominoes will land, and
modify many other variables to curate experimental conditions of interest.

While further experimental work is required to validate latent state model of
Tetris performance, as a proof of concept we demonstrate how complex be-
havioural time series can be segmented into discrete states that may tap transient
aspects of cognition, such as states of flow (Csikszentmihalyi, 1991) or anxiety.
In the current chapter, we investigated states that individuals may shift between
during behaviour, but equally interesting may be states that arise before and after
periods of performance. For example, combining neuroimaging techniques with
latent state models of this variety, it could be possible to identify states that are
associated with memory consolidation and skill acquisition. Additionally, state
models can be applied to time scales comprising weeks rather than individual
games (e.g., Tenison & Anderson, 2017), allowing researchers to test stagelike
models of skill acquisition, or may assist in the periodising of training schedules
by identifying periods of poor performance or stress.
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5.3 Chapter 4

Changes in cognitive state must arise in the brain. The ultimate goal of this
thesis was to link analysis of video game data to direct measurements of neuronal
activity recorded during the execution of complex psychomotor skill. In Chap-
ter 4 we achieved this by combining the HMM analysis described in Chapter 3
with state-of-the-art high-density, source imaged MEG measurements of neuronal
activity in video game players at millisecond resolution. HMM techniques have
been used previously to analyze human resting state MEG data (Karapanagiotidis
et al., 2020; Vidaurre et al., 2018, e.g.,) but to our knowledge this is the first time
that they have been applied to subjects performing an active, non-time-locked
cognitive task, and in particular one with high ecological validity.

This was an ambitious project that pioneered an analysis pipeline that has ana-
logues in ongoing work using high-density electrophysiological and behavioural
measurements in rodents and humans (Ashwood et al., 2022; Roy et al., 2021; Vi-
daurre et al., 2019). For simplicity, we chose to analyze a single frequency-domain
measure (alpha-band power) measured over multiple MEG sensors because alpha
power is well-known to correlate broadly with cognitive engagement (Yamagishi
et al., 2003; Sauseng et al., 2005; Foster & Awh, 2019; Peylo et al., 2021, e.g.,).
We asked, simply, whether the behavioural states identified using the multivariate
HMM methods from Chapter 3 had a neurophysiological correlate in alpha band
power.

Our data indicated that they do. This was tested by synchronising our be-
havioural and neural time series, and then comparing occipital alpha band power
between estimates of latent states conditioned on the time series of Tetris per-
formance components that were engineered in Chapter 3. This analysis therefore
linked HMM estimates of cognitive state derived from multivariate behavioural
data with a direct measure of neuronal activity. Higher alpha band power was
identified in the state characterised by difficult structure and suboptimal motor
execution. As well as raising important scientific questions about the significance
of endogenous alpha rhythms and their potential relation to flow (Csikszentmiha-
lyi, 1991) and disengagement state, this work provides an important link between
two different measurement methods.

There are a wide range of additional analyses that we could apply to our existing
data and an even wider range of experimental questions that we would like to
address using this approach in the future. Using the existing dataset, we could
examine the link between other frequency bands (or combinations of frequency
bands and cortical locations) and behaviour. As well as studying the neuronal
correlates of ongoing cognitive states, we are also interested in the neuronal corre-
lates of state switches: can we predict changes in state switch before they happen
from some feature of the neuronal data? In addition, it is well-understood that

114



5.4 Conclusion

a key feature of brain function is communication between different areas (e.g.,
Sporns et al., 2005; van den Heuvel et al., 2009). This is sometimes measured us-
ing a ’connectivity’ metric (most simply, as the correlation of response amplitudes
between two areas measured over some time period). The high temporal reso-
lution of MEG means that such connectivity metrics are particularly appealing
and we plan to examine changes in ongoing neuronal connectivity as a function
of behaviour. It would also be possible to extract HMM states directly from the
MEG data as outlined in Vidaurre et al. (2018). If cognition and behaviour are
linked, a natural prediction would be that the statistics of these latent neuronal
states match those derived from behaviour.

Future work could also benefit from advancements in MEG technology such as
Optically Pumped Magnetometers (OPM; Tierney et al., 2019). These are wear-
able alternatives to static, cryogenic MEG systems, and can be placed within
millimeters of the subject’s scalp, resulting in a three- to five-fold improvement
in measurement sensitivity (Seymour et al., 2021). The ability for the subject
to move in tandem with the measurement device also enables the study of other
complex (non-) video game tasks that might require more movement, such as
games played with the mouse and keyboard, without producing the motion ar-
tifacts that would arise in traditional MEG systems. These opportunities push
the cutting edge of what is currently available in the context of neuroimaging
experiments.

5.4 Conclusion

In this thesis, we make significant strides in understanding the relationship be-
tween video game performance and cognition by leveraging advances in data sci-
ence, cognitive neuroscience, and psychology. The primary contributions of this
work lie in the development and application of novel methods to analyze complex
video game data and elucidate underlying cognitive and neural activity. These
methods include clustering techniques for determining player practice schedules,
PCA for decomposing performance components, and HMMs for studying sponta-
neous changes in cognitive states. The use of these analytical techniques enabled
the examination of behavioural and neural correlates of performance in both com-
mercial and lab-based games, with a particular focus on Tetris as an experimental
platform.

The results of this thesis have important implications for current and future re-
search. The identification of latent cognitive states in Tetris players and their
relation to ongoing neural activity measured by MEG provides a valuable link
between cognitive and neurophysiological measures. This line of inquiry paves
the way for investigations into other frequency bands, neuronal connectivity, and
the prediction of state switches based on neuronal data. Future research could
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also benefit from technological advancements such as Optically Pumped Mag-
netometers (OPMs) for improved sensitivity and wearable alternatives to static
MEG systems, as well as the incorporation of additional measurement modalities
such as eye tracking and heart rate monitoring.

Moreover, the study of complex tasks like video games offers the potential to
explore a wide range of cognitive and behavioral phenomena, including memory
consolidation, skill acquisition, and stage-like models of learning. Researchers
could consider applying these methods to other games, requiring more move-
ment or diverse cognitive demands, which would enable a broader understanding
of cognitive processes and their neural correlates. In addition to the scientific
contributions, the findings of this thesis have practical implications for the de-
velopment of personalized learning experiences and training schedules based on
individual performance and cognitive state fluctuations. By identifying periods of
poor performance or stress, tailored interventions could be designed to maximize
learning outcomes and promote well-being.

Overall, this thesis represents a step forward in our understanding of the com-
plex interplay between video game performance, cognition, and neural activity.
Furthermore, the integration of synchronised behavioural and neuroimaging data
open up exciting new avenues for research, with the potential to advance our
knowledge of human cognition and inform the design of effective training in-
terventions. We show that fine-grained video game telemetry can be obtained
from a variety of sources as well as from a large fraction of the entire world’s
population. By showing that these telemetry data are unambiguously linked to
well-established effects from the skill acquisition literature as well as ongoing
changes in neuronal activity, we provide strong support to the idea that video
game data is a way of investigating cognitive function at a global scale.
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6 Appendix B

6.1 Table of variables used in Principal
Component Analysis

Variable label Description

rots Rotations: The number of zoid-rotations per-
formed in an episode.

trans Translations: The number of times the zoid was
moved left or right– translated– in an episode.

prop_u_drops Proportion of user drops: The proportion of
top-to-bottom movement that was intentionally
dropped by the player in an episode.

min_rots_diff Minimum rotations difference: The difference be-
tween the number of rotations used and the num-
ber needed to achieve the zoid’s final position.

min_trans_diff Minimum translations difference: The difference
between the number of translations used and the
number needed to achieve the zoid’s final posi-
tion.

initial_lat Initial latency: Time elapsed in milliseconds
from the start of the episode until the first key-
press.

drop_lat Drop latency: Time elapsed in milliseconds from
the start of the episode until the player first drops
the zoid.

avg_lat Average latency: The mean time between all key-
presses in an episode.
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resp_lat Response latency: The time from the start of
the episode in milliseconds until either the zoid
is first dropped or the zoid is locked into its final
position.

mean_ht Mean height: The mean height among all 10
columns in the pile.

max_ht Maximum height: The maximum height among
all 10 columns in the pile.

min_ht Minimum height: The minimum height among
all 10 columns in the pile.

cd_1 - cd_9 Column difference (0, 1)–(8, 9): 9 features rep-
resenting the difference in height between each
successive pair of columns.

max_diffs Maximum difference: Maximum difference in
heights among cd_1 through cd_9.

pits Pits: The number of empty cells in the pile that
are covered from above.

pit_depth Pit depth: The sum of all pits weighted by the
number of filled cells above them in a column.

pit_rows Pit rows: The number of rows containing pits.

lumped_pits Lumped pits: A measure of pits considering all
adjacent groups of pits to be identical.

wells Wells: The number of empty, uncovered cells
with a filled cell on either side.

deep_wells Deep wells: The number of consecutive well seg-
ments of depth 3 or more.

cuml_wells Cumulative wells: Weighing each segment of the
well heavier as it goes deeper.

max_well Maximum well: The depth of the deepest well.

jaggedness Jaggedness: The perimeter of the top of the pile.

col_trans Column transitions: The number of times a cell
changes from open to closed along columns.

row_trans Row transitions: The number of times a cell
changes from open to closed along rows.
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pa row_trans Row Transitions: Number of times a cell changes
from open to closed along rows.

pattern_div Pattern Diversity: Measure comparing the pat-
tern of empty and filled cells in each column, and
the same for each row.

weighted_cells Weighted Cells: Count of the total number of
filled cells in all columns, each weighted by its
own height.

landing_height Landing Height: Height of the bottom of the
zoid’s final position.

matches Matches: Number of edges of the zoid in its final
position that border a filled cell.

d_max_ht Delta Maximum Height: Change in the
max_height score after placing the zoid and
clearing any filled lines.

d_pits Delta Pits: Change in the pits score after placing
the zoid and clearing any filled line
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