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Abstract

It is known that every monoidal bicategory has an associated braided monoidal category
of scalars. In this thesis we show that every monoidal bicategory, which is closed both
monoidally and compositionally, can be enriched over the monoidal 2-category of scalar-
enriched categories. This enrichment provides a number of key insights into the relationship
between linear algebra and category theory.

The enrichment replaces every set of 2-cells with a scalar, and we show that this replace-
ment can be given in terms of the cotrace, first defined by Day and Street in the context of
profunctors. This is analogous to the construction of the Frobenius inner product between
linear maps, which is constructed in terms of the trace of linear maps. In linear algebra it
is also possible to define the trace in terms of the Frobenius inner product. We show that
the cotrace can be defined in terms of the enrichment, and in doing so we prove that the
cotrace is an enriched version of the ‘categorical trace’ studied by Ganter and Kapranov,
and Bartlett. Thus, we unify the concept of a categorical trace with the concept of a cotrace.

Finally, we study the relationship between the trace and the cotrace for compact closed
bicategories. We show that the trace and cotrace have a structured relationship and share
many of the properties of the linear trace including – but not limited to – dual invariance
and linearity. Motivating examples are given throughout. We also introduce a decorated
string diagram language to simplify some of the proofs.
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Introduction

In this thesis we will investigate how ideas from linear algebra have strong analogues in the
theory of bicategories. In particular, we will focus on the role of scalars and the role of
traces.

A bicategory consists of objects, 1-cells between objects, and, between any pair of 1-cells,
a set of 2-cells. The category of inner product spaces has objects and 1-cells between them.
But its closed structure gives us an extra piece of data. Between any pair of 1-cells there is
a scalar. This scalar is given by taking the Frobenius inner product

⟨f, g⟩ = Tr(f† ◦ g)

where Tr denotes the trace and (−)† denotes the adjoint linear map. In this thesis we show
that an analogous construction exists in any bicategory equipped with appropriate closed
structures. That is to say, between any two 1-cells we can place a scalar and this scalar is
defined in terms of a functor with trace-like properties.

This result has several consequences. Firstly, it highlights a canonical enrichment that
gives many well-known bicategories their extra structure.

Secondly, it unifies the cotrace as defined by Day and Street [19, def. 8], with the ‘cat-
egorical trace’ as defined by Ganter and Kapranov [23, def. 3.1] and the ‘2-trace’ as defined
by Bartlett [7, def. 7.8] for 2-Hilbert spaces.

Finally, it provides a theoretical underpinning for Willerton’s [65], [66] observation that
the 2-trace seems to be somehow dual to the usual notion of trace. Willerton pointed out
that, if we extend the definitions of trace and 2-trace to the context of a bicategory with
duals, these two different traces always appear to give opposing results. For example, in
the bicategory of profunctors the trace gives a coend, but the 2-trace gives an end; in the
bicategory of bimodules, the trace gives coinvariants, but the 2-trace gives invariants. The
problem with this observation was that the trace is a scalar – that is, a map from the unit
object to itself – whereas the 2-trace is a set of 2-cells. It was only after adding appropriate
structure to the set that this ostensible duality made sense. Attempting to solve this problem
gave life to this thesis, and the canonical scalar enrichment means that the trace and the
enriched 2-trace – what Day and Street call the cotrace – live in the same category and can
therefore be compared formally.

It should be noted here that there has been a lot of previous work in the literature on
traces in bicategories, with some interesting applications in topology. Ponto [56] defined
traces in bicategories with shadows, and later expanded the theory of shadows and traces
alongside Shulman [57]. This work is somewhat distinct from our own. Ponto’s definition
of a bicategorical trace relies on the bicategory coming equipped with a shadow structure,
which is analogous to a symmetry structure for a monoidal category. The trace in this setting
is an invariant of endo-2-cells. Our trace and cotrace do not require a shadow structure and
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are invariants of endo-1-cells. Interestingly, however, it would appear that the trace and
cotrace do, in fact, provide shadow-like structures for the bicategory, but we do not explore
that avenue in this thesis.

Let us explain how this scalar enrichment works. A scalar, in the context of linear
algebra, is just a complex number. But we can also think of a scalar as a linear endomorphism
on C. This means that we can define set of scalars in a monoidal category to be morphisms
from the unit object to itself. What’s more, Kelly and Laplaza [39, prop. 6.1] pointed
out that the set of scalars in a monoidal category automatically comes equipped with the
structure of a commutative monoid, and that this commutative monoid then acts on every
hom-set in the category. One way to view this scalar action is as follows. Let M be a
monoidal category, let B be an object in M and let s : I → I be a scalar. We can ‘spread’
the scalar at B by taking the composite

B
∼−→ I ⊗B s⊗B−−−→ I ⊗B ∼−→ B

and then the action of scalars on the set M (A,B) is given by postcomposition with the
spread of s. In the particular case of finite dimensional Hilbert spaces, which form a closed
category, this spread can be thought of as a linear morphism

Spr: C→ FDHilb(B,B)

which has a linear adjoint. That linear adjoint is the trace.
In a monoidal bicategory B a similar principle exists. The category of scalars B(I, I) is

automatically equipped with a braided monoidal structure and acts on every hom-category.
The action is given in terms of a functor that we call the spread functor

Spr◦ : B(I, I)→ B(B,B).

Here we use the ◦ superscript to indicate that the spread functor is dual in some sense to
another functor that we call the cospread functor, and to indicate that the spread functor
is defined in terms of composition in the bicategory.

It can be easily shown that if the bicategory is right-monoidal-closed, and left-composition-
closed, then the spread functor has a right adjoint. We call this right adjoint the cotrace
functor,

Tr
◦
: B(B,B)→ B(I, I)

since it coincides with the cotrace as defined by Day and Street [19, def. 8].
Here we use the overline and ◦ superscript to indicate that the cotrace functor is dual in

some sense to the trace functor, and to indicate that the cotrace functor is defined in terms
of lifts in the bicategory.

In our definition of the cotrace functor we have already assumed that the bicategory
is left-composition-closed. That is to say, we have assumed that it has all lifts. Given
f, g : A→ B this means that we can always take the lift f ⊸ g in the following diagram.

B A A
f f⊸g

g

In particular that means that given f, g : A→ B we can always construct a scalar ‘between
them’ by taking the cotrace of the lift,

Tr
◦
(f ⊸ g).
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In fact, this construction makes the action of scalars into a closed action. A result of Gordon
and Power [26, thm. 3.7] shows that closed actions give rise to enriched categories, and this
leads us to our main theorem.

Theorem 5.3.6. Every left-composition-closed, right-monoidal-closed bicategory B is the
underlying bicategory of a B(I, I)-Cat-enriched bicategory.

Note that, by construction, the 2-hom-object B(A,B)(f, g) is given by taking the cotrace
of the lift of g through f . In the particular case that f has a right adjoint f†, this means
that this 2-hom-object is given by

Tr
◦
(f† ◦ g)

analogous to the definition of Frobenius inner product.
Whilst the Frobenius inner product can be defined in terms of the trace, we can also

define the trace in terms of the Frobenius inner product. If the Frobenius inner product
had already been defined from first principles, the trace of E : A→ A could be defined as

Tr(E) := ⟨id, E⟩.

Similarly, we see that the cotrace can be defined in terms of the enrichment. For an endo-
1-cell f : A→ A we have that

B(A,A)(id, f) = Tr
◦
(id ⊸ f) ∼= Tr

◦
(f).

This then unifies the cotrace with another trace-like construction. In studying categorical
representation theory two sets of authors – Ganter and Kapranov [23, def. 3.1], and Bart-
lett [7, def. 7.8] – have previously defined the trace of an endo-1-cell as being the hom-set

B(A,A)(id, f).

Ganter and Kapranov refer to this as the ‘categorical trace’, whereas Bartlett refers to this
as the ‘2-trace’. In many contexts this hom-set comes with extra structure, but the scalar
enrichment above proves that this extra structure is guaranteed, and that the 2-trace is the
underlying set of the cotrace.

One categorical definition of trace that we have failed to address so far is the trace that
can be defined in a compact-closed category. A compact-closed category, first defined by
Kelly [37, p. 102], is a symmetric monoidal category where every object has duals. That is,
every A has an associated A∗ and coevaluation and evaluation maps

coev : I → A⊗A∗ and ev : A∗ ⊗A→ I,

which in the string diagram language are written as caps and cups

A A∗
A∗ A

which satisfy the zigzag identities for adjunctions. Given an endomorphism E : A → A in
the category of finite dimensional vector spaces, we can define the trace to be the composite

I
coev−−−→ A⊗A∗ E⊗A∗

−−−−→ A⊗A∗ ∼−→ A∗ ⊗A ev−→ I

3



which is given by the following string diagram.

EE

Of course, in compact-closed bicategories – first defined by Day and Street [19, def. 6] – it
is also possible to define a trace, and in this context the trace gives a functor

Tr◦ : B(A,A)→ B(I, I).

In the bicategory of profunctors, for example, the trace takes in a profunctor P : A −7−→ A
and returns the end of that profunctor. Rather interestingly, the cotrace gives the dual
notion, the coend.

Not only does the cotrace provide a conceptual dual to the trace in many other examples,
but we also see that in the case of bicategories, the two traces actually have remarkably
similar definitions and interact nicely. They are both, for example, linear in an appropriate
sense.

In the first chapter we give some useful definitions and propositions relating to bicat-
egories. In particular, we cover composition-closedness, which is the first piece of structure
necessary for scalar enrichment, and we give the definition of the 2-trace – also known as
the ‘categorical trace’ – which we will later see is the unenriched version of the cotrace. We
also take a look at some motivating examples and what the 2-trace gives in each of these
cases.

In the second chapter we cover pseudofunctors and pseudonatural transformations, and
introduce an adaptation of the usual string diagram language which, in our opinion, makes
proving some basic propositions much easier. We also cover some of the more technical
details of bicategories including the coherence theorem and pseudoadjunctions.

In the third chapter we cover monoidal bicategories in detail. We give a proof, using
our adapted string diagram language, that the monoidal category of scalars associated to a
monoidal bicategory comes equipped with a braid. We also give a short account of monoidal-
closed bicategories. This is the second piece of structure necessary for defining the cotrace.

In the fourth chapter we deal with categorical representations. This whole chapter hinges
on what Garner calls the fundamental theorem of enriched category theory, first proved by
Gordon and Street [26, thm. 3.7] and later reproved by Janelidze and Kelly [33, sec. 6].
Given a monoidal category V , a V -representation is a category equipped with an oplaxly
associative and unital action of V . By this we mean that there is a functor

⊙ : V × C → C

which comes equipped with associator and unitor natural transformations satisfying certain
coherence conditions. Analogously to the case for monoidal categories if, for every C ∈ C ,
the functor (−)⊙C has a right adjoint, we call the representation closed. The fundamental
theorem then says that a closed V -representation is the ‘same thing’ as a copowered V -
category. In order to prove our enrichment theorem in the following chapter, we give a
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slight variation on this result. We show that there is a 2-functor from the 2-category of all
closed representations to the 2-category of all enriched categories.

In the fifth chapter we give our main theorem: the scalar enrichment of a monoidal bic-
ategory. We begin by giving a short account of enriched bicategories and their underlying
bicategories. We then go on to define the spread functor and the cotrace functor and show
that they form an adjoint pair. These functors are then used to show that each B(A,B)
is a closed B(I, I)-representation and this, in essence, gives us our scalar enrichment. The
following section shows that all of the additional data of bicategories – composition, identit-
ies, associators, unitors – is compatible with the representation structure. The consequence
of this is that, not only are each of the hom-categories enriched, but B is the underlying
bicategory of a B(I, I)-Cat-bicategory.

In the final chapter we look at more structured monoidal categories, starting with
braided, moving on to symmetric and finishing with compact-closed. We give some basic
propositions about compact-closed bicategories and take a look at the trace for compact-
closed bicategories. We compare composition-closed compact-closed bicategories to dagger
compact categories, to give some explanation as to why there is no cotrace for linear algebra
– the answer being that the cotrace and trace seem to coincide. We look at each of the
main properties of the trace – linearity, dual invariance, cyclicity, tensor preservation – and
show that analogous properties hold for both the cotrace and the trace. Finally, we study
the codimension and dimension of objects in the bicategory and show that they always give
a monoid-module pair.
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Chapter 1

Bicategories

In this introductory chapter we give an account of the basic definitions and properties of a
bicategory, with a particular focus on certain motivating examples. We also give an account
of the 2-trace and what it produces in each of our examples.

The first section includes definitions of key structures internal to a bicategory, such as
adjoint equivalences. These will be important later on as we develop external structures for
bicategories, such as a monoidal products.

The following section focuses on a motivating definition for the thesis: the 2-trace. We
give background and analogies with linear algebra that justify the definition, but show
through examples that the 2-trace seems to be missing some structure.

In the final section we provide some of the basic theory of closed bicategories. Later on
we will use the closed structure to define the cotrace functor, and it is this cotrace functor
which ultimately gives us a canonical enrichment, providing the 2-trace with the structure
that it otherwise lacks.

1.1 Definitions and Examples

A bicategory is a particular type of weak 2-category. By this we mean that a bicategory has
objects, morphisms between objects and 2-cells between morphisms – and that 2-cells can
be composed unitally and associatively – but composition of the morphisms is associative
and unital only up to isomorphism.

Definition 1.1.1. A bicategory B consists of:

� a collection of 0-cells, or objects, which, by abuse of notation, we denote B;

� for every pair of objects A,B ∈ B a category B(A,B), called the hom-category,
the objects of which are called 1-cells, and denoted f : A→ B, and the morphisms of
which are called 2-cells and denoted φ : f ⇒ g;

� for every triple of objects A,B,C ∈ B a functor

◦ : B(B,C)×B(A,B)→ B(A,C)

called the composition functor;
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� for every object A a 1-cell id : A→ A called the identity 1-cell;

� for every triple of 1-cells f : A→ B, g : B → C, h : C → D a natural isomorphism

α̊f,g,h : (h ◦ g) ◦ f ⇒ h ◦ (g ◦ f);

called the composition associator;

� for every 1-cell f : A→ B natural isomorphisms

λ̊ : idX ◦ f ⇒ f and ρ̊ : f ◦ idX ⇒ f ;

called the composition unitors1.

The composition associator must satisfy the pentagon equation, given by the commutativity
of the following diagram.

(k ◦ h) ◦ (g ◦ f)

((k ◦ h) ◦ g) ◦ f k ◦ (h ◦ (g ◦ f))

(k ◦ (h ◦ g)) ◦ f k ◦ ((h ◦ g) ◦ f)

α̊k,h,g◦fα̊k◦h,g,f

α̊k,g,h◦f

α̊k,h◦g,f

k◦α̊h,g,f

The composition associators and unitors must satisfy the triangle equation given by the
commutativity of the following diagram,

(g ◦ idB) ◦ f g ◦ (idB ◦ f)

g ◦ f
ρ̊◦ιf

α̊f,idB,g

ιg◦λ̊

for all f : A→ B, g : B → C, where ιf and ιg are identity 2-cells.

Notation. In a given bicategory B, unless stated otherwise, we will use the following
notational conventions for the various cells and composites in B:

� capital letters will represent the objects A ∈ B;

� lower case letters will represent the 1-cells f ∈ B(A,B) and will typically be written
f : A→ B;

1It is not standard here to decorate our natural isomorphisms with ◦, and typically these natural iso-
morphisms are referred to simply as associators and unitors. Here we include the ◦ decoration and use the
names ‘composition associator’ and ‘composition unitor’ in order to distinguish these natural isomorphisms
from the associator and unitor for the tensor product in a monoidal bicategory.
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� lower case Greek letters will represent the 2-cells α ∈ B(X,Y )(f, g), and will typically
be written α : f ⇒ g;

� the composite of two 2-cells, α : f ⇒ g and β : g ⇒ h will be referred to as the
vertical composition and written β · α : f ⇒ h;

� the composite of two 1-cells f : X → Y and g : Y → Z will be referred to as the
horizontal composite and written g ◦ f : X → Z;

� the horizontal composite of two 2-cells α : f ⇒ g and β : h ⇒ k, will be written
β ◦ α : h ◦ f ⇒ g ◦ k;

� we will write idX : X → X for the identity 1-cell;

� we will write ιf : f ⇒ f for the identity 2-cell.

Definition 1.1.2. We call a bicategory a 2-category if all of the composition unitors and
associators are identity 2-cells.

Throughout the thesis there will be several key examples of bicategory that we keep
referring back to.

Example 1.1.3. The bicategory Rel whose objects are sets, whose 1-cells are relations, and
where there is a unique 2-cell R⇒ S if and only R ⊆ S. Horizontal composition is given by
the usual composition of relations. That is, given R : A→ B and S : B → C we have

S ◦R = {(a, c) | ∃b ∈ B such that (a, b) ∈ R and (b, c) ∈ S}.

Example 1.1.4. For some commutative ring R, the bicategory BimR, whose objects are
R-algebras, whose 1-cells A → B are A-B-bimodules, and whose 2-cells are bimodule ho-
momorphisms. Horizontal composition is given by tensoring bimodules.

There is also a ‘locally derived’ version of this bicategory.

Example 1.1.5. For some commutative ring R, the bicategory DBimR whose objects are
R-algebras and whose hom-categories are given by the derived categories of bimodules.
Horizontal composition is given by the derived tensor product – sometimes called the total
tensor product – of chain complexes of modules. See for example Weibel’s [64, thm. 10.6.3]
textbook.

Example 1.1.6. For some cosmos V – that is a complete, cocomplete, closed symmetrical
monoidal category – the bicategory V - Prof whose objects are V -categories, whose 1-cells
are profunctors, and whose 2-cells are V -natural transformations. Horizontal composition
of two profunctors, P : A −7−→ B and Q : B −7−→ C is given by a chosen coend

B∈B»
Q(−, B)⊗ P (B,−).

Note that the above examples are all of a similar flavour. In fact, the first two examples
are special cases of the fourth. Every set can be thought of as a discrete preorder. Every
preorder can be thought of as a category enriched over the category of truth values (F → T )
with monoidal product given by logical conjunction. Thus, the bicategory Rel can be viewed
as the full sub-bicategory of (F → T )-Prof, consisting of just the discrete categories.
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Every algebra can be thought of as a one-object category enriched over the category of
R-modules. Thus, the bicategory BimR can be identified with the full sub-bicategory of
(R-Mod)-Prof consisting of just one-object categories.

Example 1.1.7. Given any category with pullbacks, C , we can construct Span(C ) whose
objects are those of C , whose 1-cells are spans, and whose 2-cells α : f ⇒ g are maps in C
such that the following diagram commutes.

S

A B

T

fBfA

α

gA gB

The horizontal composition of two spans is given by taking a particular choice of pullback.

It typically helps to keep the bicategory Span(Set) in mind. Note also that this can be
thought of as the sub-bicategory of Set-Prof consisting of only the discrete categories. This
follows from the fact that every span A← S → B can be thought of as a map S → A× B
and the fact that there is an equivalence between the slice category Set /(A × B) and the
functor category Cat(A×B, Set).
Example 1.1.8. Given a topological space T we can construct a bicategory Path(T ) whose
objects are the points of T , whose 1-cells are paths between points and whose 2-cells are
homotopy classes of homotopies between paths. Horizontal composition is given by concat-
enation of paths.

As with monoidal categories, a major theme of bicategories is the idea of coherence. The
term ‘coherence’ was originally used by Mac Lane [49, p. 33] in reference to the fact that
any ‘structural’ isomorphism in a monoidal category is unique. Suppose that we have a two
composite 1-cells, f and g, and suppose that γ : f ⇒ g is an isomorphism composed entirely
of associators and unitors. Coherence is the idea that any other isomorphism from f to g
composed of associators and unitors should be equal to γ. The following useful results are
sometimes referred to as ‘coherence results’ in the spirit of the above.

Proposition 1.1.9. In a bicategory A the following diagrams commute for all objects
A,B,C and all morphisms f : A→ B, g : B → C.

(idC ◦ g) ◦ f idC ◦ (g ◦ f)

g ◦ f

α̊

λ̊◦ι λ̊

(g ◦ f) ◦ idA g ◦ (f ◦ idA)

g ◦ f

α̊

ρ̊ ι◦ρ̊

idA ◦ idA idA

λ̊

ρ̊
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Proof. When Mac Lane [49, p. 42] gave the first coherence results for monoidal categories,
the analogues of these commuting diagrams were given as axioms for monoidal categories.
Theorems 6 and 7 of Kelly’s [40] response to this paper prove that they follow from the other
axioms. The arguments in Kelly’s paper are identical to the arguments for bicategories.

In Section 2.4 we include the strictification theorem for bicategories that shows coherence
does in fact hold.

In the last chapter we will investigate how bicategories with extra structure relate to
categories. It will be useful then, to have a way to turn a bicategory into a category.

Proposition 1.1.10. For every bicategory B there is a category, B0, called the 2-skeleton
of B, whose objects are those of B and whose morphisms are isomorphism classes of those
in B.

Proof. We must show that B0 is a category by defining a unital and associative composition.
We define this composition in the only possible way:

[g] ◦ [f ] := [g ◦ f ] .

To see that this is well-defined, note that if f ′ ∼= f and g′ ∼= g then g′ ◦ f ′ ∼= g ◦ f by
horizontal composition of 2-cells. This composition is unital and associative by the fact that
the composition unitors and associators are isomorphisms.

Remark. This isn’t the ‘underlying’ category – in fact an underlying category does not
necessarily exist, since the composition of 1-cells isn’t strictly associative. We call this the
2-skeleton since the hom-set of the 2-skeleton is the underlying set of the skeleton of the
hom-category.

We will often use string diagrams to describe 2-cells, which we read from right to left
and top to bottom. To simplify these diagrams we will omit the composition associators
and unitors. One way to view this is that the string diagrams provide proof schema –
associator and unitors can be inserted wherever necessary to provide the full proof. But
the strictification theorem in Section 2.4 guarantees that any proof given using these string
diagrams is a valid proof in a bicategory. The following definitions and propositions will be
useful in later chapters.

Definition 1.1.11. Let f : A → B and g : B → A be 1-cells in a bicategory. We say that
(f, g, η, ϵ) defines an adjunction between A and B, if η and ϵ are 2-cells

η : idA ⇒ g ◦ f and ϵ : f ◦ g ⇒ idB ,

such that, when drawn as caps and cups

g f

f g

11



the zigzag identities hold.

f

f

=

f

f

g

g

=

g

g

We call ϵ the unit and η the counit. If there exist η and ϵ such that (f, g, η, ϵ) defines an
adjunction we write f ⊣ g, and say that f is left adjoint to g and that g is right adjoint
to f .

As with functors, a right or left adjoint is essentially unique.

Proposition 1.1.12. If g and g′ are both right adjoint to f then there is a canonical
isomorphism g ∼= g′.

Sketch proof. This canonical isomorphism is given by the diagram below, where the cap on
the left is the unit for the adjunction between f and g′, and the cup on the right is the
counit for the adjunction between f and g.

g

g′

Details of the proof can be found in Johnson and Yau’s [34, lem. 6.1.6] book.

Definition 1.1.13. Let f : A → B and g : B → A be 1-cells in a bicategory. We say that
(f, g, η, ϵ) defines an equivalence between A and B, if η and ϵ are isomorphisms

η : idA ⇒ g ◦ f and ϵ : f ◦ g ⇒ idB .

We call η the unit and ϵ the counit. If there is an equivalence between A and B we say
that A and B are equivalent, and that f and g give an equivalence between A and B.
In the case that η and ϵ are also the unit and counit of an adjunction f ⊣ g we say that
(f, g, η, ϵ) defines an adjoint equivalence.

If we draw η and ϵ−1 as caps, and η−1 and ϵ as cups

g f f g

g f f g

12



then (f, g, η, ϵ) defines an equivalence if and only if the following identities hold.

f g

f g

=

f g

f g

g f

g f

=

g f

g f

=

id

id

Proposition 1.1.14. If (f, g, η, ϵ) defines an adjoint equivalence then so does (g, f, ϵ−1, η−1).
In particular if f and g give an adjoint equivalence between A and B then f is left and right
adjoint to g.

Sketch proof. The fact that (g, f, ϵ−1, η−1) gives an equivalence follows immediately from
the fact that ϵ and η are isomorphisms. To prove that this is an adjoint equivalence we need
to show the zigzag identities. For g this follows from the equalities between the following
diagrams.

g

g

=

g

g

=

g

g

=

g

g

The first equality is by the zigzag identities for f and g and the following equalities follow
from the fact that ϵ−1 ◦ ϵ = ιf◦g and η−1 ◦ η = ιid. The proof of the zigzag identity for f
follows similarly.

Proposition 1.1.15. If (f, g, η, ϵ) is an equivalence then there is an ϵ′ such that (f, g, η, ϵ′)
is an adjoint equivalence.

13



Sketch Proof. We simply define ϵ′ to be the following 2-cell.

g f

For more details, see for example, Johnson and Yau’s [34, prop. 6.2.4] book.

Suppose that we have a sequence of 1-cells, f1, ..., fn, and a sequence of 1-cells, g1, ..., gm,
and a 2-cell between them.

f1. . .fn

φφ

gm . . . g1

If each of f1, ..., fn and g1, ..., gm are adjoint equivalences we have another 2-cell given by
the following diagram.

g•m. . .g•1

φ•φ•

f•1 . . . f•m

:=

g•m. . .g•1

. . .. . .. . .

φφ

. . . . . .

f•1 . . . f•n

14



This might be thought of as the 2-cell φ rotated 180 degrees. Of course, if φ has an inverse
then we can draw the inverse as in the following diagram.

g1. . .gm

φ−1φ−1

fn . . . f1

This might be thought of as the 2-cell φ reflected in the horizontal axis. If each of f1, ..., fn
and g1, ..., gm are adjoint equivalences and φ is invertible then we can both reflect and rotate
a 2-cell to get a new 2-cell (φ•)−1 = (φ−1)• that we denote φ⊖, as in the following diagram.

f•n. . .f•1

φ⊖φ⊖

g•1 . . . g•m

This might be thought of as the 2-cell φ reflected in the vertical axis.
Since we will be working with monoidal bicategories in later chapters, it is worth spelling

out what we mean by a cartesian product of bicategories.

Definition 1.1.16. Given bicategories A and B we define the cartesian product of A
and B, to be the bicategory, A ×B, whose

� objects are pairs (A,B) for A ∈ A and B ∈ B;

� hom-categories are given by

(A ×B)((A,B), (A′, B′)) := A (A,A′)×B(B,B′);

� composition functor is given by

A (A
′
,A

′′
) × B(B

′
, B

′′
)

× A (A,A
′
) × A (B,B

′
)

A (A,A
′
) × A (A,A

′
)

× B(B
′
, B

′′
) × B(B,B

′
)

A (A,A′′) × B(B,B′′);
∼ (◦,◦)

� identity 1-cells are given by (id, id) ∈ B(A,A)×B(B,B);

� composition associator, composition left unitor, and composition right unitor are given
by

(α̊, α̊), (̊λ, λ̊) and (ρ̊, ρ̊).

In other words, objects are pairs of objects, 1-cells are pairs of 1-cells, 2-cells are pairs
of 2-cells and composition is given pairwise.
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1.2 The 2-Trace

Adjunctions are ubiquitous in category theory, and arguably form the foundation of the
theory itself. But in true category theory style, the definition of an adjunction is lifted
from elsewhere in mathematics – namely linear algebra. Two linear maps, F : V ⇄ W :G,
between Hilbert spaces are adjoint whenever

⟨Fv,w⟩W = ⟨v,Gw⟩V

for all v ∈ V , w ∈ W , where ⟨−,−⟩ denotes the inner product on each space. Of course,
two functors F : A ⇄ B :G are adjoint whenever

B(FA,B) ∼= A (A,GB)

naturally for all A ∈ A , B ∈ B. Clearly these two definitions are formally similar. But this
analogy runs much deeper. To understand the analogy we firstly need to understand some
facts about Cauchy complete categories.

Definition 1.2.1. Given a V -category D , a V -functor F : D → C and a copresheaf
W : D → V , the weighted limit limW F , if it exists, is an object limW F such that there
is a natural isomorphism

C (c, limW F ) ∼= [D ,V ] (W,C (c, F (−))).

Given a V -category D , a functor F : D → C and a presheaf W : Dop → V , the weighted
colimit colimW F , if it exists, is an object colimW F such that there is a natural isomorphism

C (colimW F, c) ∼= [Dop,V ] (W,C (F (−), c)).

Definition 1.2.2. A conical limit is a limit weighted by the copresheaf which is constant
at the unit. In the case that V is the category of sets, conical limits are the usual limits of
category theory.

A conical colimit is a colimit weighted by the presheaf which is constant at the unit
of V . In the case that V is the category of sets, conical limits are the usual colimits of
category theory.

Definition 1.2.3. A weighted limit or colimit is called absolute if it is preserved by every
functor.

This definition of a Cauchy complete category is different, but equivalent, to the one
initially suggested by Lawvere. Lawvere [44, p. 138] famously showed that every metric
space can be thought of as an enriched category. In the same paper Lawvere [44, p. 163]
also proved that a metric space X is Cauchy complete (in the sense of metric spaces) if and
only if the profunctors

X(x,−) : X −7−→ ∗ and X(−, x) : ∗ −7−→ X

form an adjoint pair.
A proof of Street [62] shows that any limit, limW F , weighted by a presheafW : C → Set

is absolute if and only if the profunctorW : C −7−→ ∗ has a right adjoint,W . Note that in such

a case limW F ∼= colimW F , and so this shows that absolute weighted limits and absolute
weighted limits colimits coincide.
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Definition 1.2.4. A category is called Cauchy complete if it has all absolute weighted
limits and colimits. That is to say, it has any limit weighted by a presheaf which has a right
adjoint as a profunctor.

In our analogy these absolute weighted (co)limits will play the role of weighted sums.
Note that this is slightly at odds to the usual analogy which compares limits to products
and colimits to sums.

To highlight their similarities, given an indexing set I and a weighting function f : I → C
we will write

∑f
i∈I xi :=

∑
i∈I f(i) · xi. We will write f for the pointwise conjugate of f .

Consider the natural isomorphism between C and the Hilbert space of linear endomorphisms
from C to itself, Hilb(C,C). Every λ ∈ C has an adjoint given by its complex conjugate,
λ. So we will write W for the profunctor right adjoint to W . The idea behind this analogy
explained by Figure 1.1.

Hilbert space V Cauchy complete category C

Scalar c ∈ C S ∈ Set

0-cell Point x Object A

Weighted sum
Weighted sum Absolute weighted (co)limit∑F

i∈I xi limW
i∈I Ai

Sum size Finite Small

1-cell ⟨x, y⟩V ∈ C C (A,B) ∈ Set

Sesquilinearity

∑g
j∈J

∑f
i∈I⟨vj , wi⟩V limV

j∈J lim
W
i∈I C (Aj , Bi)

= ⟨∑g
j∈J vj ,

∑f
i∈I wi⟩V ∼= C (limV

j∈J Aj , lim
W
i∈I Bi)

Map Linear Map Functor

Binary operator Sesquilinear form Profunctor

Figure 1.1: The analogy between Hilbert spaces and Cauchy complete categories

We tend to work simply with categories rather than Cauchy complete categories, since
they occur more ‘naturally’ but note that every category has a unique Cauchy completion,
we take the subcategory of [C op,Set] consisting only of presheaves that have adjoints in
the bicategory of profunctors. See for example, Borceux and Dejean’s [10, sec. 4] survey
on Cauchy complete categories. Similarly, we could work with an appropriate notion of
‘partial vector space’ since any such space would be uniquely completable, but such objects
are somehow much less natural than vector spaces.

Remark. Every Hilbert space has a natural metric structure induced by the inner product,
and by definition the space is Cauchy complete. So every Hilbert space can be thought of
as an enriched Cauchy complete category. Unfortunately this does not formalise the above
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analogy. Absolute weighted limits in metric spaces correspond directly to Cauchy limits,
and have nothing to do with sums. In fact, it seems unlikely – at least to this author – that
there is any way to recast inner products as enriched homs, or sums as absolute weighted
limits.

There is more to be said about this analogy than is immediately apparent. In both
cases we also have a form of generalised weighted sum. In the case of Hilbert spaces we can
take certain infinite weighted sums. These are not preserved by arbitrary linear maps, but a
linear map that preserves all infinite sums is exactly a continuous linear map, or equivalently
a bounded linear map. And it is known that the bounded linear maps are exactly those
with adjoints (see, for example, Debnat and Mikusiński’s [20, thm. 1.5.7] book).

In the case of categories we can take certain non-absolute weighted limits and weighted
colimits. These are not preserved by arbitrary functors but rather by functors which have
an adjoint.

It is worth noting that weighted sums in Hilbert spaces are generated by two separate
processes: unweighted sums of vectors, and scalar products. This corresponds to the fact
that, in an enriched category every weighted limit can be expressed using a combination
of conical limits and particular weighted limits called powers. This can be found in, for
example, Kelly’s [38, thm. 3.73] monograph. Thus, we can think of conical limits – or
conical colimits – as being unweighted sums, and powers – or copowers – as being scalar
products.

Delving deeper into linear algebra and category theory yields further comparisons, between
the Riesz representation theorem and Freyd’s representability theorem for example. But we
are particularly interested in the case of ‘small’ categories and Hilbert spaces. For categories
‘small’ means small as in set-sized. For Hilbert spaces ‘small’ means finite dimensional.

The category of finite dimensional Hilbert spaces, FDHilb can be given a lot of extra
structure. It can be given the structure of a compact-closed category, or that of a dagger
category. For now, we’re interested in the closed monoidal structure on FDHilb. The finite
dimensional Hilbert space of linear maps from V to W has inner product given by

⟨F,G⟩ := Tr(F ◦G)
where G is the adjoint of G. One consequence of this is that we can describe the trace of a
linear endomorphism E : A→ A, or more generally a sesquilinear form, as the inner product

⟨id, E⟩.
By analogy then, the 2-trace, as introduced by Ganter and Kapranov [23, def. 3.1], and
Bartlett [7, def. 7.8] is defined as follows.

Definition 1.2.5. Given an endomorphism E : A→ A in some bicategory B, the 2-trace
is given by the set of 2-cells

B(A,A)(id, F ).

Note that this is distinct from the usual categorification of a trace, which relies on
the compact-closed structure and duals. In Section 6.2 will see how these two different
perspectives on the trace interact. Most of the following examples are due to Willerton [66].

Example 1.2.6. In Rel, the identity relation on a set A is given by the equality, or diagonal,
relation

∆A = {(a, a) | a ∈ A} ⊂ A×A,
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so the 2-trace of an endo-relation R : A→ A is ∗ if R is reflexive and ∅ otherwise.

Example 1.2.7. The identity bimodule on an algebra A is given by A equipped with the
bimodule structure given by the algebra multiplication. The 2-trace of an A-A-bimodule
M is the set of bimodule maps from A to M . This is in natural bijection with the set of
invariants, or what might be called the centre, of M :

{m ∈M | ∀a ∈ A am = ma}.

To see this, note that given a bimodule map f : A→M we know that a · f(1) = f(a · 1) =
f(a) = f(1 · a) = f(1) · a and so f(1) gives an invariant. Similarly, if m is invariant then
fm(a) := m · a = a ·m gives a bimodule map.

Example 1.2.8. The identity bimodule on an algebra A is given by A equipped with
bimodule structure given by the algebra multiplication. The 2-trace of a DG-bimoduleM is
then, by definition, given by the (underlying set of) Ext•(A,M). Cartan and Eilenberg [15,
ch. IX] proved that this coincides with Hochschild [31] cohomology whenever k is a field.

Example 1.2.9. The identity profunctor on a category A is given by the Hom profunctor
A (−,−). The 2-trace of a profunctor P : A −7−→ A is the set of natural transformations from
A (−,−) to P , given by the end

»

A∈A

V (A (A,−), P (−, A)).

By the Yoneda lemma this is equal to the underlying set of
»

A∈A

P (A,A).

Example 1.2.10. The identity span is given by the span A
id←− A

id−→ A. The 2-trace of a

span A
f←− S g−→ A is given by the set of maps α : A→ S such that

f ◦ α = g ◦ α = id.

In other words, it is the set of “mutual sections” of the span.

Example 1.2.11. The identity path at a point x in a topological space T is given by the
constant loop. Then in Path(T ), given a loop p at x, the 2-trace is the set of homotopy
classes of homotopies from the constant loop to the path p. In particular this is non-empty
if and only if p is nullhomotopic.

It may be obvious from these examples that the 2-trace seems to lack some structure. In
the first three cases it always happens to be that the 2-trace is the set underlying some other
object: an R-module in the first case, a chain complex of R-modules in the second case, and
a natural transformation object in V in the third case. This is because our 2-trace lands in
the category of sets, but, like the linear trace, it ought to be a scalar for our bicategory. We
give an account of scalars in Section 3.3. In Section 5.3 we will show that the 2-trace can
always be replaced by a scalar called the cotrace. Furthermore, much as the linear trace
gives rise to the Frobenius inner product, the cotrace gives rise to an enrichment of the
bicategory in its category of scalars.
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1.3 Closed bicategories

In classical category theory adjoint functors are often thought of as a sort of ‘weak inverse’,
and they underpin a lot of theory about algebraic structures. In this section we focus on a
concept even weaker than adjoints – Kan extensions.

Typically, discussions of Kan extensions focus on functors, and such Kan extensions of
functors are ubiquitous. As Mac Lane [50, p. 248] remarks in Categories for the Working
Mathematician: ‘the notion of Kan extensions subsumes all the other fundamental concepts
of category theory’. But Kan extensions can be defined in any arbitrary bicategory. They
will play an integral role in the scalar enrichment of our bicategories.

Definition 1.3.1. Let B be a bicategory and let f : A → B and g : A → C be 1-cells.
Then the right extension of g along f , if it exists, consists of a 1-cell g › f called the
extension and a 2-cell η called the evaluation map

C B A

g

η

g›f f

such that for any other 1-cell h : B → C and 2-cell γ : g ◦ h ⇒ f there is a unique 2-cell
! : h⇒ g › f such that the following two diagrams are equal.

C B A

g

γ

h f
= C B A

g

h

η
g›f f

!

.

Remark. We opt to use the lollipop, ›, notation rather than any other notation for a
number of reasons. Firstly it is one of the notations used for closed structures on monoidal
categories, and as we are about to see extensions are a generalisation of that concept.
Secondly the round end of the lollipop can be thought of like an arrowhead, indicating that
g › f extends from f to g. Finally, the round end of the lollipop resembles the composition
circle. This is useful for remembering that the evaluation map is given by (g › f) ◦ f ⇒ f ,
since the ◦ always occurs on the opposite side to the ◦ at the end of the lollipop. Note also
that the name of g › f reads circle-side first, it is the extension of g along f .

Remark. When dealing with extensions we will often opt to use pasting diagrams, rather
than string diagrams. This is because generally speaking extensions, unlike adjoints, do
not immediately lend themselves to a string diagram language. However, Baez and Stay [5,
p. 30] have developed a string diagram language of clasps and bubbles for closed monoidal
categories that would work equally well here.

One example of extensions outside the 2-category of categories is extensions of pro-
functors. Given a functor F : I → A and a profunctor W : I −7−→ V , the weighted limit
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limW F : V → A exists if and only if the following extension of profunctors

V A I

p
W

η

p
W›A (F−,−) A (F−,−)

p

exists and is representable, in which case W › A (F−,−) = A (−, limW F−). This simply
follows from the definition of a weighted limit and the description of Kan extensions in the
bicategory of profunctors given below.

As well as right extensions we also have left extensions. These are ‘vertically dual’ to
right extensions, in that a left extension in A is a right extension in A co. We also have the
notion of a right lift, that is ‘horizontally dual’, given by taking a right extension in A op.

Definition 1.3.2. Let B be a bicategory and let f : B → C and g : A→ C be 1-cells. Then
the right lift of g through f , if it exists, consists of a 1-cell f ⊸ g called the lift and a
2-cell η called the evaluation map

C B A

g

η

f f⊸g

such that for any other 1-cell h : A → B and 2-cell γ : g ◦ h ⇒ f there is a unique 2-cell
! : h⇒ g › f such that the following two diagrams are equal.

C B A

g

γ

f h = C B A

g

η
f f⊸g

!

.

Remark. Once again the lollipop acts like an arrowhead indicating that the lift goes from
f to g, and once again the circles occur on opposite sides of the line in the evaluation map
f ◦ f ⊸ g ⇒ f . Similarly to extension we read this starting from the circle: f ⊸ g denotes
a lift of g through f . In order to avoid confusion between extensions and lifts a useful
mnemonic might be to note › looks more like a lower-case ‘e’ than ⊸, and so › denotes
an extension.

In this thesis we focus almost exclusively on right lifts and extensions. As such, any
reference to a “lift” may be assumed to be a reference to a right lift, and any reference to
an “extension” may be assumed to be a reference to a right extension. In addition, whilst
Kan extensions seem to occur more in ‘nature’ than Kan lifts, it is right lifts that seem to
make the most sense in our applications. But it is worth noting that, conceptually, lifts are
just extensions and by duality any results about lifts have an analogue for extensions.

It is well known that Kan extensions of functors and adjoint functors are intrinsically
linked. If every right Kan extension along some functor F exists, then precomposition with
F has a right adjoint. Similarly, if F has a right adjoint G then G ◦ H is the right Kan
extension of H along F for any H. This is true inside any arbitrary bicategory.
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Proposition 1.3.3. Let B be a bicategory, let X, A and B be objects in B. If g : A→ C
is a 1-cell such that f ⊸ g exists for all f : B → C, then there is a functor

−⊸ g : B(B,C)op → B(A,B).

If f : B → C is a 1-cell such that f ⊸ g exists for all g : X → B, then there is a functor

f ⊸ − : B(A,C)→ B(A,B).

Furthermore, the functor f ⊸ − is right adjoint to the post-composition functor

f ◦ − : B(A,B)→ B(X,B).

Proof. The argument is exactly the same as the argument given for Kan extensions of
functors. See, for example, Riehl’s [59, prop. 6.1.5] book.

Clearly then, lifts are just a multi-object version of right closed structures for monoidal
categories.

Corollary 1.3.4. If f : B → C is a 1-cell with a right adjoint f† : C → B then for any
g : A→ B the lift of g through f exists and f ⊸ g = f† ◦ g. In particular there is a natural
isomorphism f ⊸ id ∼= f†.

Definition 1.3.5. A bicategory is called left-closed, or left-composition-closed if it has
all right lifts and right-closed, or right-composition-closed, if it has all right extensions.
A bicategory that is both left- and right-closed is called composition-closed, or simply
closed.

Remark. We use the phrase “composition-closed” here to distinguish this closed structure
from the monoidal-closed structure which will feature in later chapters.

Example 1.3.6. The bicategory Rel is composition-closed. Given a relation R ⊆ B × C
and a relation S ⊆ A× C the lift of S through R is given by

R⊸ S = {(a, b) | ∀c ∈ C, bRc⇒ aSc} = {(a, b) | ∀c ∈ C, ¬bRc ∨ aSc}.

Remark. Note that for all sets A and B there is a functor

(−)c : Rel(A,B)→ Rel(A,B)op

that takes every relation R to its complement (A × B) \ R. The category Rel(A,B) has a
monoidal structure given by taking unions and this complement functor gives Rel(A,B) the
structure of a star-autonomous category. We also have a functor

(−)T : Rel(A,B)→ Rel(B,A)

which takes a relation to its transpose. We can then give R ⊸ S in terms of these two
functors and the composition:

R⊸ S = {(a, b) | ∀c ∈ C ¬bRc ∨ aSc}
= {(a, b) | ∀c ∈ C ¬(bRc ∧ ¬aSc)}
= {(a, b) | ¬ ∃c ∈ C bRc ∧ ¬aSc}
= (R ◦ (STc))Tc.
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This is a closed structure similar to the closed structure for asymmetric star-autonomous
categories, in the sense of Barr [6]. In other words, the closed structure is given in terms
of a contravariant endofunctor, and the composition. Note that the relation STc is given
by taking S ⊸ (∆A)c, the lift of the anti-diagonal relation through S. So the composition-
closed structure for Rel seems particularly structured, in that it is given by taking a kind
of ‘horizontal dual’, (−)T and a kind of ‘vertical dual’ (−)c.
Example 1.3.7. The bicategory BimR is composition-closed. Given a B-C-bimodule M
and an A-C-bimodule N the set of right C-module homomorphisms HomC(M,N) can be
given an A-B-bimodule structure by

(a · f · b)(m) = a · f(b ·m)

and this defines the right lift M ⊸ N . The right extension is defined similarly.

Example 1.3.8. The bicategory DBimR is composition-closed. This follows from the de-
rived tensor-hom adjunction

RHom(A⊗L B,C) ∼= RHom(A,RHom(B,C)).

See, for example, Weibel’s [64, thm. 10.8.7] textbook.

Example 1.3.9. The bicategory V -Prof is composition-closed. Given profunctors P : B −7−→
C and Q : A −7−→ C the right lift is given by the coend

P ⊸ Q ∼=
»

C∈C

V (P (−, C), Q(−, C))

and the right extension is given similarly.

Remark. When V is star-autonomous, the composition for V -Prof also resembles the closed
structure for star-autonomous monoidal categories. Given P : B −7−→ C and Q : A −7−→ C the
lift P ⊸ Q is given by»

c∈C

V (P (−, C), Q(−, C)) ∼=
»

c∈C

(P (−, C)⊗Q(−, C)∗)∗

∼=

 c∈C»
P (−, C)⊗Q(−, C)∗

∗

∼= (P ◦Q∗)∗

and in particular, Q∗ is given by taking the lift Q∗ ⊸ Hom∗, where Hom∗ is the composite

A ⊗A op Homop

−−−−→ V op (−)∗−−−→ V .

This is a generalisation of the case for Rel, since the category F → T is star-autonomous
with duals given by logical negation.

Example 1.3.10. Day [18, prop. 4.1] proved that Span(C ) is composition-closed if and
only if for every x ∈ C the slice category, C /x, is cartesian closed.

Example 1.3.11. The bicategory Path(T ) is composition-closed for any topological space
T . Let p be a path from x to y, then the reverse path p is left and right adjoint to p.
This follows from the fact that p ◦ p and p ◦ p are both contractible and so p and p give an
equivalence.
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Chapter 2

Pseudofunctors and
Pseudonatural Transformations

There are several notions of a morphism between two bicategories. In this thesis we will
be interested in the strong, but not strict, morphisms. These are pseudofunctors, where
composition and identities are preserved up to invertible 2-cells. Between pseudofunctors
live pseudonatural transformations and between pseudonatural transformations live modi-
fications.

Trying to understand pseudofunctors, pseudonatural transformation and modifications
via pasting diagrams can often be confusing and unintuitive. Since they form a tricategory
they can be understood using surface diagrams, but 3-dimensional diagrams don’t work
particularly well on 2-dimensional paper. Instead, we develop a compromise approach. We
encode the 3-dimensional data as colourings of strings.

The first section is dedicated to defining pseudofunctors and pseudonatural transforma-
tions. We first give accounts of these via pasting diagrams before giving a decorated string
diagram language to that allows us to interpret the axioms geometrically. The string dia-
gram language represents pseudonaturality as a colour-changing braid.

The second section gives an account of whiskering for pseudonatural transformations.
Whiskering of pseudonatural transformations has an impact on the colour changing of the
braid. We also give a short proof that the usual braid equations, sometimes known as the
Yang-Baxter equations, hold for our colour-changing braids.

The third section focuses on adjunctions internal to bicategories, and adjoint pairs of
pseudonatural transformations. We show, using the decorated string diagram language,
that a pair of pseudonatural transformations are adjoint if and only if their components are
adjoint.

The fourth section gives the definition of pseudoadjunctions between bicategories, as well
as some technical discussion about the necessity of coherence axioms.

The fifth and final section gives the definition of a biequivalence and the strictification
theorem, which says that a bicategory is essentially the same thing as a 2-category. This
gives a rigorous justification for the omission of associators and unitors from our diagrams.
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2.1 Decorated String Diagrams

We begin with a definition of pseudofunctor, given in terms of pasting diagrams. This will
ultimately be reinterpreted to give the foundation of our string diagram language.

Definition 2.1.1. A pseudofunctor F : B → C between two bicategories consists of

� a function
F : obj(B)→ obj(C );

� for every pair of objects A,B ∈ B a functor

FA,B : B(X,Y )→ C (F (X), F (Y ));

� for every object X an invertible 2-cell called the identitor

FX : idF (X) ⇒ FX,X(idX);

� for every triple of objects X,Y, Z an invertible 2-cell, natural in f and g, called the
compositor

FX,Y,Z : FY,Z(g) ◦ FX,Y (f)⇒ FX,Z(g ◦ f).

We will drop subscripts where they are clear from context. The above data adheres to the
following axioms: the identitor diagrams commute

F (f) ◦ idF (X) F (f)

F (f) ◦ F (idX) F (f ◦ idX)

λ̊

ιF (f)◦FX

F

F (̊λ)

idF (Y ) ◦ F (f) F

F (idY ) ◦ F (f) F (idY ◦ f)

ρ̊

FY ◦ιF (f)

F

F (ρ̊)

and the compositor diagram commutes

(F (h) ◦ F (g)) ◦ F (f) F (h) ◦ (F (g) ◦ F (f))

F (h ◦ g) ◦ F (f) F (h) ◦ F (g ◦ f)

F ((h ◦ g) ◦ f) F (h ◦ (g ◦ f))

α̊

F◦ιF (f) ιF (h)◦F

F F

F (α̊)

In order to keep track of pseudofunctors while working with string diagrams, we introduce
new notational convention, inspired by the functorial boxes introduced by Melliés [54]. This
notational convention will rely on highlighting strings with various colours. The decision
to use colours was made to avoid certain confusing ambiguities, but we realise that this
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may prove challenging for colour-blind readers. Due to size constraints, patterns could not
be used in place of colours, however, in the interest of accessibility we have opted to use
a palette based on the recommendation of Bang Wong [68], and the interactive simulation
tool provided by David Nichols [55]. The colours of this palette should be distinguishable
for the majority of colour-blind readers.

Suppose that F : A → B is a pseudofunctor; f : A→ B and g : A→ B are 1-cells in A ;
and γ : f ⇒ g is a 2-cell in A . We firstly assign a colour to our functor: let’s say F is this
colour. The idea is that the functor “wraps” strings, which represent 1-cells, and beads,
which represent 2-cells, in that colour.

f

γγ

g

:=

Ff

FγFγ

Fg

Note that this is compatible with the more traditional string diagram notation: we simply
think of the identity functor as being the same as the background colour.

Suppose instead that we have a 2-cell ξ in B, and it happens to be the case that the
source of ξ is Ff and the target of ξ is Fg, but ξ isn’t necessarily in the image of F . We
wrap the string in the colour but leave the bead unwrapped.

f

ξξ

g

:=

Ff

ξξ

Fg

This indicates that the functor is applied to f and g but not to ξ. The identitor has an
obvious expression in this language.

id
:=

id

FXFX

The compositor can be written in two difference ways.

g f

g ◦ f

:=

Fg Ff

FX,Y,ZFX,Y,Z

F (g ◦ f)

g f

g f

:=

Fg Ff

FX,Y,ZFX,Y,Z

F (g ◦ f)
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Then for any 1-cells f : A → B, f ′ : A → B, g : B → C, g′ : B → C; and any 2-cells
α : f ⇒ f ′ and β : g → g′, naturality of the compositor can be expressed by the following
equality.

g f

ββ αα

g ◦ f

=

g f

β ◦ αβ ◦ α

g ◦ f

The unitor axioms can also be expressed by the following equalities.

f

f

=

f

f

=

f

f

Using the proximity of strings to indicate bracketing, and using a change in proximity to
denote the associator, we can write the compositor axiom as follows.

h g f

h g f

=

h g f

h g f

Or leaving the associator to be implicit we can instead write the following.

h g f

h ◦ g ◦ f

=

h g f

h ◦ g ◦ f

Definition 2.1.2. Suppose we have two pseudofunctors F : A → B and G : B → C then
we can compose them to get G◦F : A → C as follows. Firstly we compose their respective
functions on objects to get

G ◦ F : obj(A )→ obj(C );
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next we compose the respective 1-cell functors to get

(G ◦ F )X , Y : A (X,Y )→ C (G ◦ F (X), G ◦ F (Y ));

now we construct the identitor for G ◦ F as the composite

idGFX
GFX−−−→ G(idFX)

GFX−−−→ GF idX ;

and we construct the compositor for G ◦ F as the composite

GY,Z(FY,Z(g)) ◦G(FX,Y (f))
GFX,FY,FZ−−−−−−−→ G(FY,Z(g) ◦ FX,Y (f))

G(FX,Y,Z)−−−−−−−→ G(F (g ◦ f)).
To convey a composite functor in our string diagram language we firstly wrap strings and

beads in F and then wrap the whole thing in G. For example, given a functor F : A → B
in this colour; a functor G : B → C in this colour; a pair of 1-cells f, g : A → B in A ; and
a 2-cell γ : f ⇒ g in A , the following two diagrams denote the same 2-cell.

f

γγ

g

:=

Ff

F (γ)F (γ)

Fg

Remark. Composing pseudofunctors is not strictly associative. Suppose that we had a
functor H : C → D . We choose the following convention.

f

γγ

g

:=

(H ◦ (G ◦ F ))(f)

(H ◦ (G ◦ F ))(γ)(H ◦ (G ◦ F ))(γ)

(H ◦ (G ◦ F ))(g)

Whilst we could use changes in the proximity of the wrappings to denote (H◦G)◦F , we have
no need to here and doing so would greatly increase the size of our diagrams. In fact, one
consequence of the coherence theorem that we see later is that we can treat pseudofunctors
as if associativity holds on the nose.

The identitor and compositor for G ◦ F can be expressed by the following diagrams.

id

:=

id

g f

g ◦ f

:=

g f

g f

:=

g f

g f
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Definition 2.1.3. Given two pseudofunctors F,G : B → C , a pseudonatural transform-
ation n : F ⇒ G consists of:

� a family of 1-cells (nA : FA→ GA)A indexed by the objects of A

� a family of invertible 2-cells, 
FA FB

GA GB

F (f)

nA nf
nB

G(f)


f

called naturalisors, indexed by the 1-cells of A ;

such that for every f : A → B, g : B → C, f ′ : A → B and γ : f ⇒ f ′ the following
composites are equal.

FA FC

GA GC

nA

F (g◦f)

ng◦f nC

G(g◦f)

=

FA FB FC

GA GB GC

nA

F (f)

nf nB

F (g)

ng nC

F (g◦f)

G(f) G(g)

G(g◦f)

∼=

∼=

FA FB

FA FB

GA GB

F (f)

F (f ′)

F (γ)

nA nf′ nB

G(f ′)

=

FA FB

GA GB

GA GB

F (f)

nA nf nB

G(f)

G(f ′)

G(γ)

FA FA

GA GA

GA GA

F (idA)

nA nidA nA

G(idA)

idGA

GA

=

FA FA

FA FA

GA GA

F (idA)

idFA

FA

nA nA

∼

nA

∼

idGA
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Pseudonatural transformations also fit into our string diagram language. Suppose we
have two pseudofunctors F,G : A → B, and we assign F this colour and G this colour. We
draw a pseudonatural transformation n : F ⇒ G as a dashed string highlighted on the right
by the colours for F and highlighted on the left by the colours for G.

n

n

:=

n−

n−

:=

nA

nA

For any given 1-cell f , the naturalisor is drawn as a braid, with F (f) passing underneath
n. The wrapping around a 1-cell f changes from the colour of F to the colour of G as it
passes underneath.

n f

nf

:=

nB Ff

nfnf

nAGf

nf

n f

:=

nAGf

n−1
fn
−1
f

nB Ff

Note then that only a string wrapped in this colour can pass underneath a dashed line of
this colour. Given any 2-cell, γ : f ⇒ g, in A the naturalisor axioms are then given by the
following equalities.

n g f

g ◦ f n

=

n g f

g ◦ f n

n f

γγ

f ′ n

=

n f

γγ

f ′ n
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n id

n

=

n id

n

Drawing the naturalisor as a braid is not a new concept: previous authors have given similar
accounts. However, including the colour wrappings helps to make clear when a particular
braiding is valid.

Intuitively anything wrapped in the right-hand colour can pass underneath the braid and
be dyed the left-hand colour. This is true from any direction, as proven by the following
three propositions.

Proposition 2.1.4. Each of the following equalities is equivalent to the first naturalisor
axiom.

nfg

g ◦ fn

=

nfg

g ◦ fn

n g ◦ f

fg n

=

n g ◦ f

fg n

ng ◦ f

fgn

=

ng ◦ f

fgn
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Proof. Each of these equivalences essentially follows from the fact that every 2-cell in the
axiom has an inverse. For example, suppose that the first naturalisor axiom holds. Then
the first equality above must hold by the following string of equalities:

nfg

g ◦ fn

=

nfg

g ◦ fn

=

nfg

g ◦ fn

=

nfg

g ◦ fn

where the first equality holds by the fact that we are adding the identity 2-cell, the second
equality holds by the first naturalisor axiom, and the third equality holds since we are
removing the identity 2-cell. The other proofs follow in a similar fashion.

Proposition 2.1.5. The following equality is equivalent to the second naturalisor axiom.

nf

γγ

f ′n

=

nf

γγ

f ′n

Proof. The proof follows similarly to the above proposition.

Proposition 2.1.6. Each of the following equalities is equivalent to the third naturalisor
axiom.

nid

n

=

nid

n
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n

nid

=

n

nid

n

n id

=

n

n id

Proof. Again, this follows similarly to the above.

As with natural transformations, the pointwise composite of pseudonatural transforma-
tions yields another pseudonatural transformation. Suppose we have pseudofunctors

F ,G,H : A → B

and pseudonatural transformations, n : F ⇒ G, m : G ⇒ H. We can define the naturalisor
for mA ◦ nA as follows,

m n f

(m ◦ n)f(m ◦ n)f

m nf

:=

m n f

m nf

and clearly all of the necessary axioms hold since they hold for the two individual braidings.
This also means that the decorations for pseudonatural transformations are compatible with
composition, in that it makes perfect sense to draw the following diagram for the identity
2-cell from m ◦ n to m ◦ n.

m n

m ◦ n

Definition 2.1.7. Given a pair of pseudofunctors F : A → B and G : A → B and a pair
of pseudonatural transformations n : F ⇒ G and m : F ⇒ G, a modification µ : F ⇛ G
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consists of a collection of 2-cells (µA : nA ⇒ mA)A indexed by the objects of A such that
for any f : A→ B in A the following composite 2-cells are equal.

FA FA FB

GA GA GB

F (f)

nAmA

G(f)

nB
nFµA =

FA FB FB

GA GB GB

nBmB

F (f)

G(f)

mA
mF µB

Suppose that F is this colour and G is this colour. We will draw modifications as
beads with dashed lines, highlighted by the colours of their source and target pseudonatural
transformations.

n

µ

m

:=

n

µAµA

m

:=

nA

µAµA

mA

This means that we can write the modification axiom in the following way.

n f

µ

f m

=

n f

µ

f m

Intuitively, we can “slide” a modification over a braid because of the protective bubble
around it, but we can’t necessarily do this with an arbitrary 2-cell. As with sliding under
the braid, this is true in any direction.

Proposition 2.1.8. The following equality is equivalent to the modification axiom.

nf

µ

fm

=

nf

µ

fm

Proof. This proof follows analogously to the above propositions.

Like pseudonatural transformations modifications behave well with respect to compos-
ition. Suppose that n,m, l : F ⇒ G are pseudonatural transformations, µ : n ⇛ m and
ν : m ⇛ l. If we take the pointwise, vertical composite of two modifications we have the
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following equalities, and so ν · µ also defines a modification.

n f

νA · µAνA · µA

f l

=

n f

µ

ν

f l

=

n f

µ

ν

f l

=

n f

νA · µAνA · µA

f m

Similarly, suppose that n, n′ : F ⇒ G and that m,m′ : G ⇒ H are pseudonatural trans-
formations, and that µ : n ⇛ n′, ν : m ⇛ m′ are modifications. The pointwise horizontal
composite of µ and ν also gives a modification since the following equalities hold.

n f

νA ◦ µAνA ◦ µA

f m

=

n′ n f

ν µ

f mm′

=

n′ n f

ν µ

f mm′

=

n f

νA ◦ µAνA ◦ µA

f m

Remark. Given any monoidal category we can construct a braided monoidal category
called the monoidal centre – sometimes referred to as the Drinfeld centre – independently
discovered by Joyal and Street [36, def. 3], and Drinfeld. Drinfeld realised the centre as a
special case of Majid’s [52, ex. 3.4] duals for functored monoidal categories. Another way
to define the monoidal centre is to first think of a monoidal category M as a one-object
bicategory, and then take the category of pseudonatural transformations from the identity
on M to itself:

Bicat(M ,M )(id, id).

One advantage of the decorated string diagram notation is that it makes immediately
clear how the monoidal centre is braided.

For the sake of illustration we first consider the centre of a monoid. Let M be a monoid
viewed as a category. Now consider the set Cat(M ,M )(Id, Id), of natural transformations
from the identity functor to itself, which has a canonical monoid structure given by com-
position. Every natural transformation (nA)A∈M is a family of morphisms in M , indexed
by the objects of M such that for every f the following diagram commutes.

A B

A B

f

nA nB

f
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However, since we know that M has exactly one object, each natural transformation is
simply a map n∗ in M such that the following diagram commutes for every f ,

∗ ∗

∗ ∗

f

n∗ n∗

f

and so, in other words, n∗, is a natural transformation if and only if it is a member of the
centre of M . Now consider the bicategorical equivalent of this statement. Let M be a
monoidal category viewed as a one-object bicategory, and consider the category

Bicat(M ,M )(id, id)

whose objects are pseudonatural transformations from the identity pseudofunctor to the
identity pseudofunctor, and whose morphisms are modifications. This category has a ca-
nonical monoidal structure given by composing the natural transformations. We can imme-
diately see that this category is braided monoidal, since all objects and morphisms are of
the forms given below.

n

n

n

µ

m

Since the only wrapping is the transparent wrapping of the identity functor, every string can
braid over every other string. And since every morphism is a modification, any morphism
can pass over or under any braid. In other words, the braiding for this monoidal structure
is just given by the naturalisor for each pseudonatural transformation.

It is worth noting that modifications interact well with inverses.

Proposition 2.1.9. Suppose that F,G : A → B are pseudofunctors, n,m : F ⇒ G are
pseudonatural transformations, and µ : n ⇛ m is a modification from n to m. If, for
every A ∈ A , the 2-cell µA has an inverse, then the A -indexed family (µ−1

A )A∈A defines a
modification µ−1 : m⇛ n.

Proof. The proof of this follows similarly to the proof of Proposition 2.1.4.

Finally, we should also note that our modifications often have composites of natural
transformations as their sources and targets. In the interest of saving space we introduce
the following definition for modifications ν : m ◦ n⇛ m′ ◦ n′,

nm

µ

m′ n′

:=

nm

µ

m′ n′
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and similarly for composites of arbitrary numbers of pseudonatural transformations.

2.2 Whiskering

As with natural transformations we can compose pseudonatural transformations not just
with other pseudonatural transformations, but also with pseudofunctors. This is sometimes
known as whiskering.

Definition 2.2.1. Let F,G : A → B andH,K : B → C be pseudofunctors, and let n : F ⇒
G and m : H ⇒ K be pseudonatural transformations.

The left, or outer, whiskering of H with n is the pseudonatural transformation whose
1-cells and naturalisors are given by

(H(nA))A∈A and (H(nf ))(f : A→B)∈A .

The right, or inner, whiskering of F with m is the pseudonatural transformation
whose 1-cells and naturalisors are given by

(mFA)A∈A and (mFf )(f : A→B)∈A .

Let’s assign these functors the following colours: F , G, H, and K. Then the 1-cells of
an outer whiskering have two obvious diagrammatic representations.

n

n

=

Hn

Hn

In the left-hand diagram we view Hn as a pseudonatural transformation n : F ⇒ G with
H applied. In the right-hand diagram we view Hn as a pseudonatural transformation
Hn : H ◦ F ⇒ H ◦ G in its own right. This means that the naturalisors also have two
diagrammatic representations.

n f

nf

:=

Hn f

Hnf

In the left diagram, we simply depict the naturalisor for Hn as a braid where everything is
wrapped in the colour of H. On the right-hand side we depict the naturalisor for Hn as a
braid that changes the H ◦ F wrapping to the H ◦G wrapping.
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Analogously the 1-cells of an inner whiskering have two diagrammatic representations.

m

m

:=

mF−

mF−

The naturalisors also have two diagrammatic representations.

m f

mf

:=

mF− f

mF−f

Given a whiskering of a pseudonatural transformation with a pseudofunctor, it will often
be useful to consider both diagrammatic representations in the same diagram. To indicate
a change of perspective we will change the colouring on the string by way of a black box.
For example, we might draw the following diagram.

m

Fm

Note how the outer colour changes from a solid line to a dashed line. Of course the diagram
above simply represents the identity 2-cell from Fm to Fm, but explicitly changing per-
spective in this way can be helpful in certain proofs and constructions. For other changes
of perspective we will also use this same black box. For example in the following diagram
we change our perspective, forgetting that FmA is a component in a pseudonatural trans-
formation and changing it to be a plain old 1-cell.

Fm

FmA
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There is also special case for whiskering that is slightly more complicated. That is when
we have a pseudonatural transformation passing over another pseudonatural transforma-
tion. For example, suppose we want to pass mFA over the top of H(nA). Since m is a
pseudonatural transformation, and nA is a 1-cell, we have a 2-cell in the following diagram,

HFA HGA

KFA KGA

H(nA)

mFA mGAmnA

K(nA)

and since this 2-cell is a naturalisor, it adheres to all of the braiding axioms. But notice
that on the right we have mGA and on the left we have mFA, so our inner whiskering has
changed. This is due to a sort of interchange law. We have swapped the outer whiskering
of n by the properties of m and swapped the inner whiskering of m by the properties of n.
If we write this out in our graphical language we get the following braid.

m n

n m

These special braids have some interesting properties. For a start they adhere to a multi-
object (or multi-coloured) version of the braid relations, the relations that govern the Yang-
Baxter equations.

Proposition 2.2.2. Given any pseudofunctors F ,G : A → B and H,K : B → C ; any
pseudonatural transformations n : F ⇒ H and m : H ⇒ K; and any morphism f : A → B
in A , we have the following equality.

m n f

mnf

=

m n f

mnf

Proof. This is a simple application of the braiding laws that follows from viewing the braid-

40



ing of n over f as the 2-cell H(nf ).

m n f

mnf

=

m n f

nfnf

mnf

=

m n f

nfnf

mnf

=

m n f

mnf

Another way of interpreting this proposition is that braiding a pseudonatural transform-
ation over another pseudonatural transformation yields a modification.

2.3 Adjunctions

If every morphism in a natural transformation has an inverse, then the natural transform-
ation itself has an inverse. In this section we prove that the same holds for adjoint pseud-
onatural transformations.

Proposition 2.3.1. Let F,G : A → B be pseudofunctors, and let n : F ⇒ G be a pseud-
onatural transformation.

� If nA has a left adjoint nLA for every object A ∈ A , then there is a pseudonatural
transformation nL : G⇒ F whose 1-cells are given by are (nLA)A∈A .

� If nA has a right adjoint nRA for every object A ∈ A then there is a pseudonatural
transformation nR : G⇒ F whose 1-cells are given by (nRA)A∈A .

Proof. To prove this we need, for every 1-cell f in A , to be able to define a 2-cell nLf and

nRf such that the pseudonatural transformation axioms hold. The definitions of these 2-cells
are given by Figure 2.1. To prove that these 2-cells adhere to the naturalisor axioms we
appeal to Proposition 2.1.4, Proposition 2.1.5 and Proposition 2.1.6.

The above result allows us to include cups and caps in our decorated string diagram
language. If l : F ⇒ G is left adjoint to r : G⇒ F it makes perfect sense to colour cups and
caps in the following way.

r l

G

F

l r

G

F

Our aim now is to prove that these pointwise adjoints give adjoints in the bicategory of
pseudonatural transformations and modifications. To do this we need to show that the
pointwise cups and caps give modifications. This is proven by the following sequence of
propositions.
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(nLf )
−1 :=

f nLA

G

F

fnLA

nRf :=

fnRA

G

F

f nRA

Figure 2.1: Definition of (nLf )
−1 and (nRf ).

Proposition 2.3.2. Let F ,G : A → B be pseudofunctors, and let l : F ⇒ G and r : G⇒ F
be pseudonatural transformations such that l is the left adjoint of r. Then for any 1-cell
f : A→ B in A we have the following equalities.

r f l

f

=

r f l

f

f

l rf

=

f

l rf

Proof. We have the following two equalities, firstly by definition and then by the yanking
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condition.

r f l

f

=

r f l

=

r f l

f

The case for caps follows similarly.

One result of this proposition is that we can unambiguously define the following crossing
diagrams.

r f l

f

:=

f

l rf

=

f

l rf

f

l f r

:=

f

l rf

=

f

l rf

This result also lets us prove that a cup or a cap can be pulled over a string.

Proposition 2.3.3. Let F ,G : A → B be pseudofunctors, and let l : F ⇒ G and r : G⇒ F
be pseudonatural transformations such that l is the left adjoint of r. Then for any 1-cell
f : A→ B in A we have the following equalities.

f r l

=

f r l
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r l f

=

r l f

f

f rl

=

f

frl

f

frl

=

f

f rl

Proof. To prove the first equality note that the following holds by definition and then can-
cellation.

f r l

=

f r l

=

f r l

The proofs of the other equalities are analogous.

Corollary 2.3.4. Let A and B be bicategories, and Bicat(A ,B) be the bicategory whose
objects are pseudofunctors, whose 1-cells are pseudonatural transformations and whose 2-
cells are modifications. A pseudonatural transformation n : F ⇒ G has a left adjoint in
Bicat(A ,B) if and only if nA has a left adjoint for every A ∈ A .
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Proof. This follows from the fact that the cup and cap above form modifications.

2.4 Biequivalences and Strictification

In this section we explore the strictification theorem, which essentially allows us to ignore
composition associators and unitors in bicategories. This justifies their omission in string
diagrams and will simplify certain proofs later on. First we need some notion of what it
means for two bicategories to be the same.

Definition 2.4.1. A biequivalence between bicategories A and B is a pseudofunctor
F : A → B that is

� essentially surjective: for every B ∈ B there is an A ∈ A with F (A) equivalent to B;

� a local equivalence: the hom-functor F : A (A,B)→ B(FA,FB) is an equivalence for
all A,B ∈ A .

We say that two bicategories are biequivalent if there is a biequivalence between them.

This definition is often easier to work with but, as with equivalences of categories, there is
an alternative definition in terms of pseudo-inverses, see for example Johnson and Yau’s [34,
def. 6.2.10, thm 7.4.1] monograph on bicategories. It follows from this alternative definition
that biequivalence of bicategories defines an equivalence relation. Now that we have a notion
of what it means for two bicategories to be the same in a weak sense, we can express the
strictification theorem for bicategories.

Theorem 2.4.2. Every bicategory is biequivalent to a 2-category.

The proof of this essentially follows from an argument given by Mac Lane and Paré [51,
p. 61], which itself is a refinement and generalisation of Mac Lane’s [49, thm. 5.1] own
coherence theorem for monoidal categories. However, it seems to have been Power [58,
p. 172] who first wrote this result in terms of a biequivalence. Gordon, Power and Street [25,
thm. 1.4] also pointed out that this follows as an immediate consequence of the Yoneda
lemma for bicategories.

It is worth noting that, although there is a standard method to construct such a 2-
category, Lack [42, ex. 1.5] has pointed out that “naturally occurring bicategories tend to
be biequivalent to naturally occurring 2-categories”.

Example 2.4.3. Carboni and Johnstone [13, lem. 4.8] showed that the bicategory of pro-
functors Prof is biequivalent to the sub-2-category of Cat consisting of presheaf categories
and cocontinuous functors between them. This essentially follows from the fact that a
profunctor

P : Bop ×A → Set

can be curried to give a functor

P : A → [Bop,Set]

and the left Kan extension of P along the Yoneda embedding is the unique cocontinuous
extension of A to [A op,Set]. The same construction works for V -Prof, so long as V is a
cosmos.
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Example 2.4.4. Lack [42, ex. 1.5] pointed out that the bicategory of spans over some cat-
egory with pullbacks is equivalent to the sub-2-category of Cat consisting of slice categories
of C , C /C, and functors between them

C /C
f∗
−→ C /S

g!−→ C /D

where f∗ is the pullback functor for some f : S → C, and g! is the postcomposition functor
for g : S → D. The correspondence is given by identifying the functor g! ◦ f∗ with the span

C
f←− S g−→ D.

Strictification gives us a formal grounding for omitting identities and associators from
our string diagrams: it simply doesn’t matter where we put them.

2.5 Pseudoadjunctions

In this section we explore a particular bicategorical analogue for the notion of adjoint. As
pointed out by Gray [27, ch. 6] there are many, many ways to construct something resembling
an adjunction between bicategories. Since we are working with pseudofunctors and not lax
functors, for our purposes we settle on a relatively strong definition.

Definition 2.5.1. Given two pseudofunctors L : A → B and R : B → A , we say that L
is left pseudoadjoint to R if there are functors

EA,B : B(LA,B) ⇄ A (A,RB) :IA,B

natural in both A and B, that form an equivalence. When L is left pseudoadjoint to R we
say that R is right pseudoadjoint to L and that L and R form a pseudoadjunction.

Note that, pseudoadjunctions are sometimes referred to as biadjunctions. It is worth
being explicit about what this means, and we will express this definition in two ways. The
first way is more succinct. Firstly note that we have functors

B(L−,−) : A op ×B → Cat and A (−, R−) : A op ×B → Cat .

Then L being left pseudoadjoint to R means that there are a pair of pseudonatural equival-
ences in the bicategory Cat, expressed by the following diagrams.

E

E

I

I

The second way to understand this definition is less succinct but perhaps more familiar, since
it deals with 1-cells and 2-cells in A and B. Assigning L this colour and R this colour, L
being left pseudoadjoint to R means that there are pseudonatural transformations, called
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the unit and counit expressed by the following diagrams,

e

e

i

i

such that the following pairs of whiskerings form pseudonatural adjoint equivalences.

Ri

Ri

eR

eR

iL

iL

Le

Le

To seasoned category theorists this definition may seem näıve. It seems as though we’ve
simply replaced the word “isomorphism” with “adjoint equivalence”, and typically in higher
category theory that isn’t enough. We usually also need coherence diagrams.

As pointed out by Verity [63, lem. 1.3.9] the case of pseudoadjoints is unusual in that
the coherence diagrams come for free. By Proposition 1.1.15 we can always upgrade our
equivalence of categories

EA,B : B(LA,B) ⇄ A (A,RB) :IA,B

to an adjoint equivalence of categories. When E and I form an adjoint equivalence, the as-
sociated unit e and counit i have two coherence conditions, sometimes called the swallowtail
conditions. For strict 2-functors the first of these conditions is given by Figure 2.2, and the
second is given by a similar equality for i. Since the swallowtail conditions aren’t strictly
necessary for pseudofunctors we make no use of them in this thesis.

Lemma 2.5.2. If G and G′ are both right pseudoadjoint to F then there is a pseudonatural
adjoint equivalence from G′ to G.

Proof. This follows as a consequence of the bicategorical Yoneda lemma that can be found,
for example, in Johnson and Yau’s [34, lem. 8.3.12] book on bicategories, and is given as a
result in Verity’s [63, lem. 1.3.9] thesis. However, we give the sketch of a more constructive
approach here. Let e and i be the unit and counit for the F,G pseudoadjunction and let
e′, i′ be the unit and counit for the F,G′ adjunction. Then the 1-cells of the equivalence are
given by

G′ eG′−−→ GFG′ G(i′)−−−→ G

and

G
e′G−−→ G′FG

G′(i)−−−→ G′.

The proof is essentially the same as the proof that right adjoint 1-cells are unique up to
isomorphism, but equalities are replaced with naturalisors. To be explicit, we have a 2-cell
given by the pasting diagram in Figure 2.3, or equivalently the string diagram in Figure 2.4.
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e

Gi

eG

iF

Fe

e

=

e

e

Figure 2.2: A string diagram depiction of one of the swallowtail conditions.

This 2-cell is just a composite of naturalisors and the equivalence conditions for the units and
counits. The 2-cell giving the isomorphism between the identity and the reverse composite
is given similarly. Of course here we are treating pseudofunctors as if they compose strictly
associatively, and so this particular ‘proof’ technically only holds for 2-functors.
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G′ GFG′ G′

G′FG′ G′FGFG′ GFG′

G′FG′

G′

eG′

e′G

G(i′)

e′
GFG′ e′G

G′FeG′

∼=

G′FG(i′)

G′(iFG′ )

G′(i)

G(i′)

∼= ∼=

∼=
∼=

Figure 2.3

ei′e′i

G′
G

F

Figure 2.4
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Chapter 3

Monoidal Bicategories

The aim of this thesis is to show that bicategories with certain closed structures have a
canonical enrichment over their monoidal category of scalars. To understand scalars we
must first understand monoidal bicategories.

In the first section we give the definition of a monoidal bicategory and give a monoidal
structure for each of our motivating examples.

In the second section we focus on the role of the interchangerator. This is a 2-cell that
follows from the existence of the compositor for the tensor pseudofunctor. Much of this
section is dedicated to the braid-like properties of the interchangerator.

In the third section we reprove a known result: the fact that the monoidal category of
scalars is braided monoidal. We prove this using our decorated string diagram language,
and without appealing to any results that strictify the monoidal structure. This follows
from the braid-like nature of the interchangerator.

In the fourth section we give an account of semi-strictification for bicategories, a result
which shows that every monoidal bicategory is equivalent to one where all of the 1-cell and
2-cell data that define the monoidal bicategory, except the interchangerator, are degenerate.

In the final section we give the definition of a right-monoidal-closed bicategory and give
a closed structure for each of our motivating examples. This monoidal-closed structure is
the second type of closed structure that our bicategories require in order to be equipped
with a cotrace functor.

3.1 Definitions and Examples

Definition 3.1.1. A monoidal bicategory is a bicategory B equipped with a pseudo-
functor ⊗ : B×B → B, a unit object I ∈ B along with pseudonatural adjoint equivalences:

� the associator aA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C);

� the left unitor lA : I ⊗A→ A;

� the right unitor rA : A⊗ I → A;

as well as coherence modifications:
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� the 2-associator whose components are given by the following diagram;

αA,B,C ⊗D αA,(B⊗C),D A⊗ αB,C,D
αA,B,C,DαA,B,C,D

α(A⊗B),C,D αA,B,(C⊗D)

� the left, middle and right 2-unitors whose components are given by the following
diagrams.

lA ⊗B

λA,BλA,B

lA⊗B aI,A,B

r•A ⊗BaA,I,BA⊗ lB
µA,BµA,B

rA⊗B

ρA,BρA,B

A⊗ rB aA,B,I

These coherence 2-cells adhere to their own coherence axioms, which we choose to omit here
but can be found in, for example, Stay’s [61, def. 4.4] paper on compact-closed bicategories.

Remark. Note that we did not use any coloured strings for our modifications above but
instead defined them by their components. This is because, as we point out in Proposi-
tion 3.1.8, a binary pseudofunctor such as −⊗− can be thought of as a collection of unary
pseudofunctors A⊗− and −⊗A for each object A ∈ B. For example, depending on the con-
text, the 1-cell aA,B,C : (A⊗B)⊗C → A⊗ (B⊗C) might be thought of as a pseudonatural
transformation

a−,B,C : (−⊗ C) ◦ (−⊗B)⇒ −⊗ (B ⊗ C),
or a pseudonatural transformation

aA,B,− : (A⊗B)⊗− ⇒ (A⊗−) ◦ (B ⊗−)

Different perspectives are useful in different arguments, and so we choose the decorations
for our diagrams depending on the context.

We do not include the coherence axioms here since they are lengthy and complicated,
and we never appeal to them directly. To understand what the axioms achieve consider
the following. Suppose that we have five objects A,B,C,D,E in M and we tensor them
together to get (((A ⊗ B) ⊗ C) ⊗ D) ⊗ E. There are two distinct ways in which we can
use a string of associators to re-bracket and end up with A⊗ (B ⊗ (C ⊗ (D ⊗ E))). These
two distinct strings, or paths, are naturally isomorphic, or homotopic, via a composite of
2-associators. However, a priori, there are also two distinct composites of 2-associators. One
axiom asserts that these two composites of 2-associators are identical, thus forcing the two
paths of associators to be uniquely isomorphic. The other axioms give similar assertions but
with regard to composites of 2-unitors.

Example 3.1.2. The bicategory Rel has a monoidal bicategory structure where the tensor
product is the cartesian product of sets.

Example 3.1.3. The bicategory BimR has a monoidal bicategory structure where the
tensor product is given by taking the tensor product of R-algebras. The unit is given by R.

52



Example 3.1.4. The bicategory DBimR has a monoidal bicategory structure where the
tensor product is given by taking the tensor product of R-algebras. The unit is given by R.

Example 3.1.5. The bicategory V -Prof has a monoidal bicategory structure where the
tensor product is given by taking the tensor product of categories. The unit is given by the
one object category ∗ with hom-object I ∈ V .

Example 3.1.6. If C has finite limits then Span(C ) has a monoidal bicategory structure
where the tensor product is given by taking the product of objects in C .

Example 3.1.7. If M is a topological monoid then Path(M) has a monoidal bicategory
structure given by taking the monoidal product of points in M .

Remark. Recall that in Section 2.4 we gave two examples of ‘naturally strictifiable’ bicat-
egories. These two examples were motivating examples for an observation, made by Lack [42,
ex. 1.5], that many bicategories seem to be naturally strictifiable. Interestingly, the natural
strictification for both of these examples arises from what might be called the ‘3-trace’. For
every monoidal bicategory there is a pseudofunctor

B
B(I,−)−−−−−→ Cat .

We can think of B as a one-object tricategory where the unit is the identity 1-cell. Thus,
the pseudofunctor above is defined analogously to the 2-trace defined in Section 1.2. For
profunctors and spans the natural strictification is given by this pseudofunctor.

Firstly consider the bicategory V -Prof, where the unit object is given by the point
V -category ∗. Given a category A , then we have that

V - Prof(∗,A ) ∼= V -Cat(A op,V )

i.e. A is taken to the presheaf category on A . For a profunctor P : A −7−→ B, the functor
V - Prof(∗, P ) is given by postcomposition by P . Consider a presheaf F : A op → V . It
is known that F is some weighted colimit of representables F ∼= colimW A (−, A). The
postcomposition applied to F , V - Prof(∗, P )(F ), is then given by

A∈A»
colimW A (−, A)⊗ P (A,−) ∼= colimW

A∈A»
A (−, A)⊗ P (A,−) ∼= colimW P (A,−)

and so V -Prof(∗, P ) is the cocontinuous extension of P : A→ [Bop,V ].
Now let us turn to the case for spans. Here the unit object is given by the terminal

object ∗, and the category Span(C )(∗, C) is isomorphic to the slice category C /C. Given a
span

S

C D

f g

the functor Span(C )(∗, S) is postcomposition with S, which corresponds to first pulling
back along f and then composing with g. In other words, Span(C )(∗, S) is given by the
composite

C /C
f∗
−→ C /S

g!−→ C /D.
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As with monoidal categories, it will often be useful to think of the tensor product of a
monoidal category A as a collection of unary pseudofunctors, indexed by the objects of A .

Proposition 3.1.8. Let F : A ×B → C be a pseudofunctor. For every A ∈ A there is a
pseudofunctor

F (A,−) : B → C

whose definition on 1-cells and 2-cells is given by the following diagram,

f

γγ

F (A,−)

g

:=

(idA, f)

(ι, γ)(ι, γ)

F (−,−)

(idA, g)

and whose compositor and identitor are defined by the following two diagrams.

fg

F (A,−)

g ◦ f

:=

(idA, f)(idA, g)

(̊λ, ι)(̊λ, ι)

F (−,−)

(idA, g ◦ f)

id

F (A,−)

:= id

F (−,−)

For every B ∈ B there is a pseudofunctor

F (−, B) : A → C

54



whose definition on 1-cells and 2-cells is given by the following diagram,

f

γγ

F (−, B)

g

:=

f

(γ, ι)(γ, ι)

F (−,−)

g

and whose compositor and identitor are defined by the following two diagrams.

fg

F (−, B)

g ◦ f

:=

(f, idB)(g, idB)

(ι, λ̊)(ι, λ̊)

F (−,−)

(g ◦ f, idB)

id

F (−, B)

:= id

F (−,−)

Proof. The proof follows from the axioms of pseudofunctors, and the naturality of the com-
positor.

Then, by induction, we can fix any variable in a pseudonatural transformation to get a
new pseudonatural transformation.

Proposition 3.1.9. Suppose that F,G : A1× ...×An → B are pseudofunctors and n : F ⇒
G a pseudonatural transformation. Then for any i and any A ∈ Ai,

n−,...,A,...,− : F (−, ..., A, ...,−)⇒ G(−, ..., A, ...,−)

is a pseudonatural transformation.

Proof. This follows previous proposition by induction.

3.2 The Interchangerator

The definition of a monoidal bicategory is a clear generalisation of the definition of a mon-
oidal category. This view does, however, obfuscate a rather fundamental property. In the
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same way that bicategories can be thought of as ‘multi-object monoidal categories’, monoidal
bicategories might be thought of as ‘multi-object braided monoidal categories’. In particular
a one-object monoidal bicategory is the same thing as a braided monoidal category. This is
due to the presence of an invertible 2-cell that we call the interchangerator.

Definition 3.2.1. Let B be a monoidal bicategory and let f : A0 → A1 and g : B0 → B1 be
1-cells and, by an abuse of notation, let A denote idA for any object A. The interchanger-
ator is an invertible 2-cell in the diagram below,

A0 ⊗B0 A1 ⊗B0

A0 ⊗B1 A1 ⊗B1

f⊗B0

A0⊗g A1⊗gχf,g

f⊗B1

that is given by the following composite.

(g,A1) (B0, f)

χf,gχf,g

⊗

(B1, f) (g,A0)

:=

(g,A1) (B0, f)

(ρ̊, λ̊)(ρ̊, λ̊)

(̊λ
−1
, ρ̊−1)(̊λ

−1
, ρ̊−1)

⊗

(B1, f) (g,A0)

Note that here before the braid, on the left we right-tensor f by the source of the 1-cell g,
and on the right we left-tensor g by the target of the 1-cell f . After the braid we right-tensor
f by the target of the 1-cell g, and we left-tensor g by the source of the 1-cell f .

There is something slightly subtle going on here. In light of strictification from the
previous section it may seem that this interchangerator might as well be thought of as an
identity 2-cell. The unitors are essentially identity 2-cells. But the join and split are not
inverses since they are indexed differently from one another. Using the labelling convention
from Definition 2.1.1, the join is given by

⊗(B1,A1),(B0,A1),(B0,A0) : ⊗ (g,A1) ◦ ⊗(B0, f)⇒ ⊗(g ◦B0, A1 ◦ f),

but the split is given by

⊗−1
(B1,A1),(B1,A0),(B0,A0)

: ⊗ (g ◦B0, A1 ◦ f)⇒ ⊗(B1, f) ◦ ⊗(g,A0).

Consider for a second a monoidal category. In a monoidal category we have the interchange
law. There is a sense in which this law is a sort of multi-object commutativity condition.
It says that, so long as f and g are in different ‘lanes’, ‘do f then g’ is the same thing as
‘do g then f ’. The interchangerator plays a similar role, and we will show that it adheres
to braid-like conditions.
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Proposition 3.2.2. The interchangerator is invertible.

Proof. This follows from the fact that ⊗ is a pseudofunctor, and so the compositor is in-
vertible, as are the composition unitors.

Proposition 3.2.3. The interchangerator is natural in f and g.

Proof. Naturality says that, given any γ : f ⇒ f ′ and δ : g ⇒ g′, the equality in Figure 3.1
holds. But this simply follows from the naturality of the compositor, the naturality of the
unitors, and then the naturality of the compositor again.

(g,A1) (B0, f)

(ιB0
, γ)(ιB0
, γ)(δ, ιA1

)(δ, ιA1
)

(ρ̊, λ̊)(ρ̊, λ̊)

(̊λ
−1
, ρ̊−1)(̊λ

−1
, ρ̊−1)

⊗

(B1, f
′) (g′, A0)

=

(g,A1) (B0, f)

(ρ̊, λ̊)(ρ̊, λ̊)

(̊λ
−1
, ρ̊−1)(̊λ

−1
, ρ̊−1)

(ιB1
, γ)(ιB1
, γ) (δ, ιA0

)(δ, ιA0
)

⊗

(B1, f
′) (g′, A0)

Figure 3.1: Naturality for the interchangerator.

Proposition 3.2.4. Given a pseudofunctor F : A → B, and maps f : A → B, g : B → C
and h : C → D in A , the following 2-cells are equal.

h ◦ g f

F

h g ◦ f

=

h ◦ g f

α̊̊α

F

h g ◦ f

Note that here that on the left we omit the associator for B, but on the right we include
the associator for A with the pseudofunctor applied.
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Proof. Consider the associator diagram for pseudofunctors. By inverting the appropriate
2-cells we get the commuting diagram below.

F (h) ◦ (F (g) ◦ F (f)) (F (h) ◦ F (g)) ◦ F (f)

F (h) ◦ F (g ◦ f) F (h ◦ g) ◦ F (f)

F (h ◦ (g ◦ f)) F ((h ◦ g) ◦ f)

α̊

F◦ιF (f)ιF (h)◦F−1

F

F (α̊)

F−1

The string diagram on the left is the composite around the top of the diagram and the string
diagram on the right is the composite around the bottom of the diagram.

Lemma 3.2.5. Let A be a monoidal bicategory. For every quadruple of 1-cells f : A0 → A1,
g : A1 → A2, h : B0 → B1 and k : B1 → B2 in A the interchangerator adheres to the
following generalised braid equations.

(h,A2) (B0, g) (B0, f)

χχ

χχ

(B1, f)(B1, g) (h,A0)

⊗

=

(h,A2) (B0, g) (B0, f)

(ρ̊, ι)(ρ̊, ι)

χχ

(̊λ, ι)(̊λ, ι)

(B1, f)(B1, g) (h,A0)

⊗
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(k,A1) (h,A1) (B0, f)

χχ

χχ

(B2, f) (h,A0)(k,A0)

⊗

=

(k,A1) (h,A1) (B0, f)

(ι, ρ̊)(ι, ρ̊)

χχ

(ι, λ̊)(ι, λ̊)

(B2, f) (h,A0)(k,A0)

⊗

Proof. We only show that the first generalised braid equality holds, the proof of the second
is analogous. By definition, we know that the left-hand side of the equation is equal to
Figure 3.2. By the above proposition, and the fact that (α̊, α̊) is the associator for A ×A ,
we know that Figure 3.2 and Figure 3.3 are equal.

Using naturality of the compositor we can move every 2-cell to the middle, so Figure 3.3
equals Figure 3.4. By Proposition 1.1.9, as well as the unitor axiom, we can compose the
three middle 2-cells, so we know that Figure 3.4 is equal to Figure 3.5.

Next, we can use the compositor axiom for pseudofunctors to swap which side the first
join and the final split are on, and so Figure 3.5 is equal to Figure 3.6. Then we can use the
unitor axiom and Proposition 1.1.9 to compose associators with unitors, so we know that
Figure 3.6 is equal to Figure 3.7.

Finally, splitting the first and final centre 2-cells, and using the compositor axiom we
have that Figure 3.7 is equal to Figure 3.8. Now rearranging our composites we have that
Figure 3.8 is equal to Figure 3.9. And Figure 3.9 is equal to the right-hand side of the
equation by definition.
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(h,A2) (B0, g) (B0, f)

(ρ̊, λ̊)(ρ̊, λ̊)

(̊λ
−1
, ρ̊−1)(̊λ

−1
, ρ̊−1)

(ρ̊, λ̊)(ρ̊, λ̊)

(̊λ
−1
, ρ̊−1)(̊λ

−1
, ρ̊−1)

⊗

(B1, f)(B1, g) (h,A0)

Figure 3.2

(h,A2) (B0, g) (B0, f)

(ρ̊, λ̊)(ρ̊, λ̊)

(̊λ
−1
, ρ̊−1)(̊λ

−1
, ρ̊−1)

(α̊, α̊)(α̊, α̊)

(ρ̊, λ̊)(ρ̊, λ̊)

(̊λ
−1
, ρ̊−1)(̊λ

−1
, ρ̊−1)

(B1, f)(B1, g) (h,A0)

⊗

Figure 3.3
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(h,A2) (B0, g) (B0, f)

(ρ̊ ◦ ι, λ̊ ◦ ι)(ρ̊ ◦ ι, λ̊ ◦ ι)

(̊λ
−1 ◦ ι, ρ̊−1 ◦ ι)(̊λ
−1 ◦ ι, ρ̊−1 ◦ ι)

(α̊, α̊)(α̊, α̊)

(ι ◦ ρ̊, ι ◦ λ̊)(ι ◦ ρ̊, ι ◦ λ̊)

(ι ◦ λ̊−1
, ι ◦ ρ̊−1)(ι ◦ λ̊−1
, ι ◦ ρ̊−1)

(B1, f)(B1, g) (h,A0)

⊗

Figure 3.4

(h,A2) (B0, g) (B0, f)

(ρ̊ ◦ ι, λ̊ ◦ ι)(ρ̊ ◦ ι, λ̊ ◦ ι)

(̊λ−1 · ρ̊, ι)(̊λ−1 · ρ̊, ι)

(ι ◦ λ̊−1
, ι ◦ ρ̊−1)(ι ◦ λ̊−1
, ι ◦ ρ̊−1)

(B1, f)(B1, g) (h,A0)

⊗

Figure 3.5
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(h,A2) (B0, g) (B0, f)

(α̊−1, α̊−1)(α̊−1, α̊−1)

(ρ̊ ◦ ι, λ̊ ◦ ι)(ρ̊ ◦ ι, λ̊ ◦ ι)

(̊λ−1 · ρ̊, ι)(̊λ−1 · ρ̊, ι)

(ι ◦ λ̊−1
, ι ◦ ρ̊−1)(ι ◦ λ̊−1
, ι ◦ ρ̊−1)

(α̊−1, α̊−1)(α̊−1, α̊−1)

(B1, f)(B1, g) (h,A0)

⊗

Figure 3.6

(h,A2) (B0, g) (B0, f)

(ι ◦ λ̊, λ̊)(ι ◦ λ̊, λ̊)

(̊λ−1 · ρ̊, ι)(̊λ−1 · ρ̊, ι)

(ρ̊−1 ◦ ι, ρ̊)(ρ̊−1 ◦ ι, ρ̊)

(B1, f)(B1, g) (h,A0)

⊗

Figure 3.7
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(h,A2) (B0, g) (B0, f)

λ̊ ◦ ιλ̊ ◦ ι

(ι, λ̊)(ι, λ̊)

(̊λ−1 · ρ̊, ι)(̊λ−1 · ρ̊, ι)

(ι, ρ̊−1)(ι, ρ̊−1)

(ρ̊−1, ι)(ρ̊−1, ι)

(B1, f)(B1, g) (h,A0)

⊗

Figure 3.8

(h,A2) (B0, g) (B0, f)

λ̊ ◦ ιλ̊ ◦ ι

(ρ̊, λ̊)(ρ̊, λ̊)

(̊λ−1ρ̊−1(̊λ−1ρ̊−1

(ρ̊−1, ι)(ρ̊−1, ι)

(B1, f)(B1, g) (h,A0)

⊗

Figure 3.9
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3.3 Scalars

There is a classical result in the theory of monoidal categories, seemingly first proved by
Kelly and Laplaza [39, prop. 6.1], which tells us that every monoidal category gives rise to
a commutative monoid. Given a monoidal category, A , we define the monoid of scalars
in A to be given by the endomorphisms at the unit, A (I, I), equipped with composition.
To understand this nomenclature note that in the category of Hilbert spaces this monoid is
isomorphic to C equipped with multiplication.

The result of Kelly and Laplaza says that the monoid of scalars is always commutative,
and the proof of this is a very straightforward application of the Eckmann-Hilton argument.
Every pair of scalars f, g : I → I can be composed in two ways. We can multiply horizontally

I ∼= I ⊗ I f⊗g−−−→ I ⊗ I ∼= I,

or vertically

I
f−→ I

g−→ I.

But the functoriality of the tensor product guarantees that

(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g),

and so, by the Eckmann-Hilton argument, the two multiplications agree and are commut-
ative.

Monoidal bicategories also have scalars, but the collection of scalars now form a monoidal
category. Let B be a monoidal bicategory, then we define the monoidal category of scalars to
be the category B(I, I) with tensor product given by composition. In the previous section
we saw how monoidal bicategories carry a sort of multi-object braid in the form of the
interchangerator. In this section we see that the interchangerator gives rise to an actual
braid structure on the monoidal category of scalars. One way to prove this is to repeat the
strategy for the lower dimensional case. This would involve using a 2-dimensional version of
the Eckmann-Hilton argument. Such a strategy does work, and this 2-dimensional version
of the Eckmann-Hilton argument can be found in Braided Monoidal Categories by Joyal
and Street [35, prop. 3]. We will also see later that this fact follows almost immediately
from a semi-strictification result as proved by Gordon, Power and Street [25, cor. 8.7]. Here
we prove that the braiding exists directly, using the string diagram language developed in
the previous chapter.

Definition 3.3.1. Given a monoidal bicategory B, the monoidal category of scalars
for B is the category B(I, I) equipped with the tensor product given by composition.

Example 3.3.2. The category of scalars for Rel consists of the two sets ∗ and ∅. This
monoidal category is monoidally equivalent to the category of boolean truth values (F → T )
equipped with logical conjunction.

Example 3.3.3. The category of scalars for BimR is the category of R-R-bimodules. But
since R is commutative, this is just R-Mod with the usual tensor product.

Example 3.3.4. The category of scalars for DBimR is the category of chain complexes of
R-Modules. When R is a field, this is equivalent to the category of graded vector spaces.
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Example 3.3.5. The bicategory V -Prof has the category

Prof(∗, ∗) ∼= Func(∗,V ) ∼= V

as its category of scalars. The composition of profunctors from ∗ to ∗ is just given by the
tensor for V .

Example 3.3.6. If C has finite limits then the scalar category associated to the bicategory
Span(C ) consists of spans ∗ ← A → ∗, and since maps to ∗ are unique, this means the
category of scalars is just the category C . Pulling back A→ ∗ ← B just gives the product
A×B and so the monoidal structure is given by taking products.

Example 3.3.7. If M is a topological monoid then the scalars for Path(M) are loops at
the unit e and the monoidal category structure comes from concatenation of loops. Then
the category of scalars is the monoidal category whose skeleton is the fundamental group of
M .

In a monoidal category it is possible to prove that the left and right unitor agree at the

unit. That is to say I ⊗ I l−→ I is equal to I ⊗ I r−→ I. In a monoidal bicategory we can
construct an invertible 2-cell that encodes this data. The following construction is given as
a string diagram by Garner and Shulman [24, lem. 2.1], but here we give the construction
using our decorated string diagram language.

Proposition 3.3.8. In every monoidal bicategory there is an invertible 2-cell θ : lI ⇒ rI .

Proof. Firstly note that there is an invertible modification in the diagram below,

I ⊗A A

I ⊗ (A⊗ I) (I ⊗A)⊗ I A⊗ I

lA

r•I⊗A θ0

aI,A,I lA⊗I

rA

given by the following composite.

l

r r•

λ

I ⊗−
−⊗ I

r r•I⊗−l−⊗I aI,−,I
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There are also invertible modifications in the following two diagrams,

I ⊗ (I ⊗B) I ⊗ lB

lI⊗B

I⊗lB

θl C ⊗ I (C ⊗ I)⊗ I

r•C⊗I

r•C⊗I

θr

given by the following two composites

l

I ⊗−

l

r•

−⊗ I

r•

Taking each of these modifications at their I’th component, and composing with the I’th
component of the middle unitor µ, we have an invertible 2-cell, that we call θ, given below.

lI

(θ0)I(θ0)I

(θl)I(θl)I (θr)I(θr)I

µI,IµI,I

rI

We now define the scalar braid morphism as follows. Firstly let −⊗− be this colour, let
I ⊗− be this colour and let −⊗ I be this colour. Note that when we are composing scalars
we can draw the interchangerator as in the diagram below.

g f

χχ

gf

=

(I, g) (f, I)

χχ

(I, g)(f, I)

66



Then the braid for scalars is defined by the following diagram.

Xf,g :=

g f

θθ

χχθ−1θ−1 θ⊖θ⊖

θ•θ•

f g

Remark. Note that this particular example highlights why colouring pseudofunctors can
be helpful. Without the colourings we see that X is given by Figure 3.10. This diagram
breaks geometric intuition. It appears as though there is a contractible loop on top of two
separate strings. Once we contract the loop we’re just left with χ. But this makes no sense,
since there is not an interchangerator morphism from g ◦ f to itself.

Proposition 3.3.9. Let F ,G : A → B be pseudofunctors, and let n : F ⇒ G be a pseudo-
invertible natural transformation. Then the following equality holds.

n• f n

n• nf

=

n• f n

n• nf

Proof. The left-hand side of the equation is equal to the following diagram by Proposi-
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g f

θθ

g ⊗ I I ⊗ f

χχθ−1θ−1 θ⊖θ⊖

f ⊗ I I ⊗ g

θ•θ•

f g

Figure 3.10: A confusing way to define the braid
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tion 2.3.2.

n• f n

n• nf

But this diagram is equal to the right-hand side of the equation by the definition of a
pseudo-invertible 1-cell, and the invertibility of the naturalisor.

Lemma 3.3.10. The family of 2-cells (Xf,g) is a braiding for the monoidal category of
scalars.

Proof. We must show that X is invertible, natural and satisfies the braid equations. Invert-
ibility simply follows from the fact that X is a composite of invertible 2-cells. Naturality
follows from the axioms of natural transformations and the fact that χf,g is natural in f
and g.

We only show that one of the braid equations hold. The other follows analogously.
Firstly note that by the above proposition, and by the following two equalities

θθ

r l•

= θ•θ•

r l•

l r•

θ•θ• =

l r•

θθ

we know that Figure 3.11 and Figure 3.12 are equal. Now by Lemma 3.2.5 we know that
Figure 3.12 is equal to Figure 3.13. By Proposition 3.1.8 and the axioms of natural trans-
formations we know that Figure 3.13 is equal to Figure 3.14. Thus, the braid equation
holds.

This is fortunate for us. Our ultimate aim is to show that every left-composition-closed,
right-monoidal-closed bicategory can be enriched over B(I, I)-Cat. Note that in V -Cat the
tensor product is given by A ⊗ B whose objects are pairs of objects (A,B) and whose
hom-objects are given by

(A ⊗B)((A,B), (A′, B′)) := A (A,A′)⊗B(B,B′).

But note then that this definition only makes sense when V is braided. The source of the
composition morphism must be

A (A′, A′′)⊗B(B′, B′′)⊗A (A,A′)⊗B(B,B′)

and so without braiding the centre two hom-objects there is no canonical choice of compos-
ition.
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h g f

θθ

χχθ−1θ−1 θ•θ•

θ⊖θ⊖

θθ

χχθ−1θ−1 θ•θ•

θ⊖θ⊖

fg h

Figure 3.11

h g f

θθ

χχθ−1θ−1

χχ θ•θ•

θ⊖θ⊖

fg h

Figure 3.12
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h g f

θθ

θ−1θ−1 χχ θ•θ•

θ⊖θ⊖

fg h

Figure 3.13

h g f

θθ

θ−1θ−1 χχ θ•θ•

θ⊖θ⊖

fg h

Figure 3.14
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3.4 Semi-Strictification

In the previous chapter we saw how every bicategory can be thought of as a 2-category, and
so composition unitors and composition associators can really be thought of as equalities.
Something similar holds for monoidal bicategories – all the tensor unitors and tensor associ-
ators might as well be equalities – but crucially the interchangerator is not degenerate. This
gives us a sort of semi-strictification result. It turns out that every monoidal bicategory can
be thought of as a Gray monoid.

Definition 3.4.1. A Gray monoid, M , is a 2-category equipped with a unit object I, and
for every object A ∈M , a left-tensor 2-functor LA : M →M and a right-tensor 2-functor
RA : M →M such that

� tensors of objects are unambiguous: LA(B) = RB(A);

� tensoring is unital: LI = RI and they are both the identity pseudofunctor;

� tensoring is associative: LLA(B) = LA◦LB , RRA(B) = RB◦RA, RB◦LA = LA◦RB .
We often write A ⊗ − for LA and − ⊗ A for RA. By the above axioms, for any pair of
sequences, (A1, ..., An) and (B1, ..., Bm), of objects in M we have an unambiguous 2-functor

A1 ⊗ ...⊗Am ⊗ (−)⊗B1 ⊗ ...⊗Bm : M →M .

Additionally, for all objects, A and B, and all arrows, f : A0 → A1 and g : B0 → B1, M
comes equipped with an invertible 2-cell, χg,f , called the interchangerator given by the
following diagram.

g ⊗A1 B0 ⊗ f

χg,fχg,f

g ⊗A0B1 ⊗ f

The interchangerator is unital in the sense of the following equalities.

B ⊗ f

χid,fχid,f

B ⊗ f

=

B ⊗ f

B ⊗ f

g ⊗A

χg,idχg,id

g ⊗A

=

g ⊗A

g ⊗A

(3.1)

The interchangerator is natural in both variables, in the sense that, given φ : f → f ′ and
ψ : g → g′ the following composites are equal.

g ⊗A1 B0 ⊗ f

ψ ⊗A1ψ ⊗A1 B0 ⊗ φB0 ⊗ φ

χχ

B1 ⊗ f ′ g′ ⊗A0

=

g ⊗A1 B0 ⊗ f

χχ

ψ ⊗A0ψ ⊗A0B1 ⊗ φB1 ⊗ φ

B1 ⊗ f ′ g′ ⊗A0

(3.2)
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That is compatible with associativity in the sense that, given any object A, the following
equalities hold.

A⊗ (g ⊗A1) A⊗ (B0 ⊗ f)

A⊗ χg,fA⊗ χg,f

A⊗ (B1 ⊗ f) A⊗ (A0 ⊗ g)

=

(A⊗ g)⊗A1 (A⊗B0)⊗ f

χA⊗g,fχA⊗g,f

(A⊗B1)⊗ f (A⊗A0)⊗ g

(3.3)

(g ⊗A1)⊗B (B0 ⊗ f)⊗B

χg,f ⊗Bχg,f ⊗B

(B1 ⊗ f)⊗B (A0 ⊗ g)⊗B

=

g ⊗ (A1 ⊗B) B0 ⊗ (f ⊗B)

χg,f⊗Bχg,f⊗B

(B1 ⊗ f)⊗B (A0 ⊗ g)⊗B

(3.4)

And finally, that adheres to the generalised braid laws, in the sense that, given 1-cells
f : A0 → A1, g : A1 → A2, h : B0 → B1 and k : B1 → B2 the following composites are equal.

h⊗A2 B0 ⊗ g B0 ⊗ f

χχ

χχ

B1 ⊗ fB1 ⊗ g h⊗A0

=

h⊗A2 B0 ⊗ g B0 ⊗ f

χχ

B1 ⊗ fB1 ⊗ g h⊗A0

(3.5)

k ⊗A1 h⊗A1 B0 ⊗ f

χχ

χχ

k ⊗A0 h⊗A0B0 ⊗ f

=

k ⊗A1 h⊗A1 B0 ⊗ f

χχ

k ⊗A0 h⊗A0B0 ⊗ f

(3.6)

Remark. Note that the definition of a Gray monoid as given by Day and Street [19, def. 1]
has a small error. It claims that χf,g is the identity 2-cell if f and g are both identity 1-cells.
Of course, this should hold if f or g are the identity.

From the data of a Gray-monoid we can define a single pseudofunctor

⊗ : M ×M →M

where
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� given objects A,B ∈M , we define A⊗B := A⊗B;

� given 1-cells f : A0 → A1 and g : B0 → B1 we define f⊗g := (g ⊗A1) ◦ (B0 ⊗ f);

� given 2-cells φ : f ⇒ f ′ and ψ : g ⇒ g′, where f, f ′ : A0 → A1 and g, g′ : B0 → B1 we
define ψ ⊗ φ := (ψ ⊗A1) ◦ (B0 ⊗ φ);

� given 1-cells, f : A0 → A1, f
′ : A1 → A2, g : B0 → B1, g

′ : B1 → B2 we define the
compositor to be the following 2-cell.

g ⊗ fg′ ⊗ f ′

g′ ⊗A2

B1 ⊗ f ′ g ⊗A1

B0 ⊗ fχf ′,gχf ′,g

g ⊗A2 B0 ⊗ f ′

(g′ ◦ g)⊗ (f ′ ◦ f)

This gives every Gray monoid the structure of a monoidal bicategory where the unitors and
associator are identity 1-cells. It is worth noting however, that this is not unique or even
canonical. We chose, for example, to define f⊗g as (A1 ⊗ g) ◦ (f ⊗ B0), but we could just
have easily defined it to be (f ⊗B0)⊗ (A1 ⊗ g). This too defines a monoidal bicategory.

Gordon, Power and Street [25, cor. 8.7] proved that every monoidal bicategory is essen-
tially a Gray monoid.

Theorem 3.4.2. Every monoidal bicategory is monoidally biequivalent to a Gray monoid.

As a result of this theorem we will prove certain results for Gray monoids rather than
monoidal bicategories, but the proof for monoidal bicategories can always be recovered.
This will greatly simplify certain diagrams that would otherwise be unreasonably large.

3.5 Closed Monoidal Bicategories

We’ve already seen that bicategories can be closed with respect to their composition. But
just like monoidal categories, monoidal bicategories can also be closed with respect to their
monoidal product. The definition of a monoidal-closed bicategory is deceptively simple.
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Definition 3.5.1. A right-monoidal-closed bicategory, A is a monoidal bicategory A
equipped with a pseudofunctor [−,−] : A op ×A → A such that for any A ∈ A there is a
pseudoadjunction

−⊗A : A ⇄ A : [A,−] .

Remark. Note that bicategories with this structure are often referred to as right closed
monoidal. However, since we are interested in bicategories that are closed compositionally
and monoidally, we reorder the adjectives and introduce hyphens to remove any potential
ambiguities. For the sake of consistency we also apply this convention to categories.

Example 3.5.2. The bicategory Rel is right-monoidal-closed with [A,B] given by B × A.
The unit and counit for the pseudoadjunction are relations

R : B → B × (A×A) and S : (B ×A)×A→ B

which are given by the permuted diagonal relations.

Example 3.5.3. The bicategory BimR is right-monoidal-closed with [A,B] given by B ⊗
Aop. The existence of the unit and counit for the pseudoadjunction follows from the fact
that an A-B-bimodule is a left A ⊗ Bop module and a right Aop ⊗ B module. We need
bimodules

U : B → (B ⊗A)⊗Aop and E : (B ⊗Aop)⊗A→ B

which are given by the identity bimodule for B ⊗ A, thought of as a B-((B ⊗ A) ⊗ Aop)
bimodule, and the identity bimodule for B ⊗ Aop, thought of as a ((B ⊗ Aop) ⊗ A)-B
bimodule.

Example 3.5.4. The bicategory DBimR is a right-monoidal-closed with [A,B] given by
A⊗Bop. The unit and counit are constructed analogously to the above.

Example 3.5.5. The bicategory V -Prof is right-monoidal-closed with [A ,B] given by
B ⊗A op. The unit and counit are given by the identity profunctor

Hom: B ⊗A −7−→ B ⊗A

thought of as profunctors

Hom: B −7−→ (B ⊗A )⊗A op and Hom: (B ⊗A op)⊗A −7−→ B.

Example 3.5.6. If C has all limits then the bicategory Span(C ) is right-monoidal-closed
with [A,B] = B ×A. The unit and counit are given by spans

B ×A

B B ×A×A

pB id×∆ and

B ×A

B ×A×A B

pB∆×id

where ∆ is the diagonal map, and where we’ve ignored associators to save space.

Example 3.5.7. If G is a topological group then Path(G) is a right-monoidal-closed bicat-
egory with [x, y] = yx−1. The unit and counit are the identity paths since [x, yx] = yxx−1 =
y and [x, y]x = yx−1x = y.
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Notice that in all of the examples given above, the closed structure is given in relation to
the tensor product. This is because the examples we are interested in constitute compact-
closed bicategories, which we study in Section 6.2. Right-monoidal-closed bicategories have
many similar properties to right-monoidal-closed categories. One particular feature we will
make heavy use of is the ability to replace a given 1-cell with its ‘name’.

Proposition 3.5.8. In a right-monoidal-closed bicategory B, for every A,B ∈ B there is
a pseudonatural adjoint equivalence

ÐÐ⇀
(−) : B(A,B) ⇄ B(I, [A,B]) :

↼ÐÐ
(−).

We call
Ð⇀
f the name of f and

↼Ð
g the realisation of g.

Proof. Let E and U be the adjoint equivalences associated to the adjunction given by the

closed structure. Then the name functor,
ÐÐ⇀
(−), is defined by the composite

B(A,B)
B(l,B)−−−−→ B(I ⊗A,B)

E−→ B(I, [A,B])

and the realisation functor
↼ÐÐ
(−) is defined by the composite

B(I, [A,B])
U−→ B(I ⊗A,B)

B(l•,B)−−−−−→ B(A,B).

These composites give an adjoint equivalence since l and l• give an adjoint equivalence and
so do E and U .

Definition 3.5.9. If a bicategory is both right-monoidal-closed and composition-closed
then we will refer to it as a monoidal-closed composition-closed bicategory.
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Chapter 4

Monoidal Actions

Let’s take a break from monoidal bicategories for a while to consider good, old-fashioned
monoidal categories. In the next chapter we will prove one of our main results: every left-
composition-closed, right-monoidal-closed bicategory B can be enriched in B(I, I)-Cat. We
haven’t yet given an account of what an enriched bicategory actually is, but in this case it
involves replacing every category B(A,B) with a B(I, I)-category, replacing the composi-
tion and identity functors with B(I, I)-functors and replacing the unitors and associators
with B(I, I)-natural transformations.

Given some braided monoidal V , working with V -categories can often be unwieldy,
especially when definitions are given indirectly. The aim of this chapter is to simplify this
process by working with categories acted on by V , called V -representations, instead of
V -categories. If a monoidal category V is like a higher-dimensional monoid, then a V -
representation is like a higher dimensional V -set. Representations of this kind seem to
have been first suggested by Bénabou [8, def. 2.3] but, as with all good definitions, have
been rediscovered independently many times. They also go by several different names, one
that seems to have gained traction in the applied category theory community is “actegory”
coined by McCrudden [53, sec. 3].

As proved by Gordon and Power [26, thm. 3.7], closed, strong V -representations are the
‘same thing’ as copowered V -categories via a 2-equivalence of 2-categories

V -Repstrcl
∼−→ V -Catcop.

The idea, then, is that, given a bicategory B, we firstly show that every hom-category
B(A,B) is a closed B(I, I)-representation. We then show that all of the data of B – the
composition, the identities, the associators and unitors – are all compatible with the repres-
entation structure. Then we use the above 2-functor to change the base from representations
to enriched categories.

In reality this does not work, the reason being that enrichment requires a monoidal
structure for V -Rep. Whilst V -Rep has an obvious tensor product, the tensor of two closed
V -representations may not be closed.

If we were enriching over monoidal categories this would be easily rectifiable. We could
instead define a multicategory structure on V -Repcl – induced by the tensor product on
V -Rep – and then enrich over the multicategory, in the sense of Lambek [43, p. 106]. If
we showed that the functor above could be given a multifunctor structure then this would
give a base-change functor from closed representations to enriched categories. We are,
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however, trying to enrich bicategories over monoidal bicategories. A similar approach to the
above is likely possible using Leinster’s highly abstract machinery of enriched generalised
multicategories [45]. We instead use a more direct approach.

Firstly we show that there is an enriching 2-functor from all closed representations to
all enriched categories:

(−) : Repcl → EnCat.

We then introduce two monoidal 2-categories: the 2-category of closed V -iterated represent-
ations includes all categories with a V n action for some n ∈ N; the 2-category of V -iterated
categories includes all categories enriched over V n for some n ∈ N. These 2-categories are
intended to behave similarly to the free monoidal 2-categories on V -Repcl and V -Cat, and
the restriction of the enriching 2-functor to these 2-categories is monoidal. Finally, we intro-
duce the ‘collapsing 2-functor’ which sends every V n-category to its associated V -category
via the tensor product for V , and show that this 2-functor is monoidal. As a result, when
we enrich in the next chapter, it suffices to show that our enriching data is all given in terms
of V -iterated representations, before collapsing this data to V -categories.

4.1 Categorical Representations

Given a monoid M , we can define an M -set to be a set on which M acts associatively and
unitally. Given a monoidal category V , we can define a V -representation to be a category
on which V acts oplaxly associatively and oplaxly unitally. In this sense the definition of a
V -representation is a categorification of the definition of an M -set.

Definition 4.1.1. Let V be a monoidal category. A category C acted on by V , or a
V -representation, is a category C equipped with a functor

⊙ : V × C → C

and natural transformations – the associator a, and the unitor u – whose components are

a : (V ⊗W )⊙ C → V ⊙ (W ⊙ C) and u : I ⊙ C → C.

These natural transformations adhere to coherence conditions given by the following com-
muting diagrams.

((U ⊗ V )⊗W )⊙A (U ⊗ (V ⊗W ))⊙A U ⊙ ((V ⊗W )⊙A)

(U ⊗ V )⊙ (W ⊙A) (U ⊙ (V ⊙ (W ⊙A)))

α⊙A

a

a

U⊙a
a

(I ⊗ U)⊙A I ⊙ (U ⊙A)

U ⊙A
λ⊙A

a

u

(U ⊗ I)⊙A U ⊙ (I ⊙A)

U ⊙A.
ρ⊙A

a

U⊙u

We call a representation strong if the associator and unitor are isomorphisms.
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Remark. We describe the action as oplaxly associative and unital because, as pointed out
to the author by Leinster [47], if we curry the action to get a functor

⊙̂ : V → [C ,C ]

then it is easy to see that ⊙ is an action if and only if ⊙̂ is an oplax functor.

Remark. For the sake of space and readability we will quite often drop bracketing for
actions. For example, we might write

V ⊗W ⊙ C or V ⊙W ⊙ C

since the meaning is unambiguous.

Example 4.1.2. Any monoidal category V is a V -representation where the action is given
by the tensor product.

Example 4.1.3. If B is a bicategory, then for any pair of objects A and B, (B(B,B), ◦)
forms a monoidal category and B(A,B) is a B(B,B)-representation via post-composition.
The associator and unitor for the representation are just given by the composition unitor
and associator.

Example 4.1.4. If B is a bicategory, then for any pair of objects A and B, (B(A,A), ; )
forms a monoidal category, where (f ; g) := (g◦f), and B(A,B) is a B(B,B)-representation
via pre-composition. The associator and unitor for the representation are just given by the
composition unitor and associator.

If we have an N -Set, A, and a monoid homomorphism, f : M → N , then we can equip
A with an M -Set structure, called the pullback action. Something similar holds for oplax
monoidal functors and V -representations.

Proposition 4.1.5. Let C be a W -representation. If F : V → W is an oplax monoidal
functor then there is a V -representation CF whose underlying category is C , and whose
action is given by F (V )⊙C C for all C ∈ C and V ∈ V .

Proof. This is an immediate consequence of the above remark. If we think of our action as
being an oplax functor

⊙̂ : W → [C ,C ]

then the composite ⊙̂ ◦ F will also be an oplax functor.

If a V -representation is a higher-dimensional M -set, then the next definition might be
thought of as a higher-dimensional torsor, as observed by Willerton [67]. Not only is there
an action of the monoidal category on each C ∈ C , but between any C,D ∈ C there lies an
object in V .

Definition 4.1.6. We call a V -representation C closed if, for every A ∈ C there is a
functor ⟨A,−⟩ : C → V such that ⟨A,−⟩ is right-adjoint to −⊙A.

A representation being closed does not guarantee that its pullback will be, unless the
pullback is along a functor with a right adjoint.

Proposition 4.1.7. Let C be a closed W -representation. If F : V → W is an oplax mon-
oidal functor with a right adjoint G, then CF is closed with the closed structure given by
G ◦ ⟨C,−⟩ for all C ∈ C .
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Proof. This follows from the sequence of natural isomorphisms

C (F (V )⊙ C,D) ∼= C (F (V ), ⟨C,D⟩) ∼= C (V,G(⟨C,D⟩)),

induced by the adjunction given by the closed structure, and the fact that G is right adjoint
to F .

It is known that a monoidal-closed category can be enriched over itself. The following
theorem generalises this idea to closed representations.

Theorem 4.1.8. If C is a closed strong V -representation then there is a V -enriched cat-
egory C whose underlying category is C , such that C (A,B) = ⟨A,B⟩ for all A,B ∈ C . Fur-
thermore, C is copowered over V and the underlying category of any copowered V -category
is a V -representation.

The above theorem is a corollary of a result due to Gordon and Power [26, thm. 3.7] but
was also later proved more explicitly in the appendix of a paper by Janelidze and Kelly [33,
sec. 6]. We will make heavy use of this result, so it is worth giving the constructions from
the proof.

Sketch Proof. Given a V -representation the enriched composition for C is defined as the
adjunct to

⟨B,C⟩ ⊗ ⟨A,B⟩ ⊙A a−→ ⟨B,C⟩ ⊙ ⟨A,B⟩ ⊙A ⟨B,C⟩⊗ϵ−−−−−→ ⟨B,C⟩ ⊙B ϵ−→ C

and the enriched identity for C is defined as the adjunct

I ⊙ C u−→ C.

Proving the axioms hold is a case of taking the adjuncts of the diagrams which give the
axioms for representations, and showing that these adjuncts correspond to the axioms of an
enriched category.

Remark. This theorem tells us that closed strong representations correspond to enriched
categories with copowers. However, the proof also shows that all closed representations give
rise to an enriched category, but the resulting enriched category is copowered if and only if
the representation is strong.

Definition 4.1.9. Let C be a V -representation, and let D be a W -representation. A linear
functor consists of a functor F : C → D , a lax monoidal functor (G,n, i) : V → W and a
natural transformation

m : G(−)⊙ F (−)→ F (−⊙−)
such that the following associativity and unitality diagrams both commute.

G(V )⊗G(W )⊙ F (C) G(V ⊗W )⊙ F (C)

G(V )⊙G(W )⊙ F (C) F (V ⊗W ⊙ C)

G(V )⊙ F (W ⊙ C) F (V ⊙W ⊙ C)

n⊙F (C)

a m

G(V )⊙m F (a)

m
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I ⊙ F (C) G(I)⊙ F (C)

F (C) F (I ⊙ C)
u

i⊙F (C)

m

F (u)

The composite of two linear functors (F,G,m) : A → B and (F ′, G′,m′) : B → C is given
by the functor F ◦ F ′, the lax monoidal functor G ◦ G′ and the composite natural trans-
formation

G′G(V )⊙ F ′F (C)
m′
−−→ F ′(G(V )⊙ F (C)) F ′(m)−−−−→ F ′F (V ⊙ C).

We call F a V -linear functor if G is the identity.

Elsewhere in the literature, for example Capucci and Gavronić’s [12, p. 28] survey, linear
functors are made up of strong monoidal functors. Given that the representations in this
thesis can be defined as oplax monoidal functors, and that oplax functors induce pullback
representations, it may seem odd that the definition above includes a lax monoidal functor
instead. This is because oplax functors are the ‘wrong’ choice for closed representations. We
want to think of closed representations as enriched categories, and base changes of enriched
categories only exist for lax monoidal functors. Another justification for using lax, rather
than oplax monoidal functors, is internal modules.

Definition 4.1.10. Let A be a V representation, and let (v, µ, ι) define a monoid in V . A

v-module internal to A is an object k ∈ A equipped with a morphism v ⊙ k ν−→ k, called
the action morphism, such that the following associativity and unitality diagrams both
commute.

v ⊗ v ⊙ k v ⊙ v ⊙ k v ⊙ k

v ⊙ k k

µ

a v⊙ν

ν

ν

I ⊙ k v ⊙ k

k

ι⊙k

u ν

Example 4.1.11. Any module internal to a monoidal category is a module in the sense
above, where the monoidal category acts on itself via the tensor product.

The above definition and the following lemma are both instances of what Baez and
Dolan [3, p. 156] call the ‘microcosm principle’. The idea being that if we take some sort
of algebraic structure that can be defined on sets, and categorify it, then we can define
that same algebraic structure internal to the categorification. What’s more, any structure
preserving functor will preserve the internal algebraic structure.

Lemma 4.1.12. Let A be a V -representation and B be a W -representation. If (V, µ, ι) is
a monoid in V , (K, ν) is a V -module in A , and

(F,G,m) : A → B

is a linear functor, then F (K) is a G(V ) module with action map given by the composite

G(V )⊙ F (K)
m−→ F (V ⊙K)

µ−→ F (K).
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Proof. Recall that if G : V → W is a lax monoidal functor, and (V, µ, ι) defines a monoid
in V , then G(V ) defines a monoid in W with multiplication map

G(V )⊗G(V )
n−→ G(V ⊗ V )

G(µ)−−−→ G(V )

and unit map

I
i−→ G(I)

G(ι)−−−→ G(V ).

Then we must prove that F (K) and the action map satisfy the unitality and associativity
axioms. To see that unitality holds, notice that the internal polygons of the following
diagram commute by the unitality axiom for F , the naturality of m and the unitality for K.

I ⊙ F (K) G(I)⊙ F (K) G(V )⊙ F (K)

F (I ⊙K) F (V ⊙K)

F (K)u

i⊙F (K) G(ι)⊙F (K)

m m

F (ι⊙K)

F (u)
F (ν)

But the outer morphisms of this diagram give the unitality diagram for F (ν) ◦ m. To
see that associativity holds, notice that the interior rectangles of Figure 4.1 commute, by
associativity for F , naturality of m and the associativity of ν. But the outer morphisms
of this diagram give the associativity diagram for F (ν) ◦m. Thus, the associativity axiom
holds, and so F (K) is a G(V ) module with action morphism F (ν) ◦m.

As well as linear functors, we also have a notion of linear natural transformation.

Definition 4.1.13. Given a V -representation A , a W -representation B and linear functors

(F,G,m), (F ′, G′,m′) : A → B

a linear natural transformation (ν, µ) : (F,G,m) ⇒ (F ′, G′,m′) consists of a natural
transformation ν : F ⇒ F ′ and a monoidal natural transformation µ : G⇒ G′ such that the
following diagram commutes for all V ∈ V and A ∈ A .

G(V )⊙ F (A) G′(V )⊙ F ′(A)

F (V ⊙A) F ′(V ⊙A)

µ⊙ν

m m′

ν

Both vertical and horizontal composition of linear natural transformations are given component-
wise. We call ν a V -linear natural transformation if µ is id : Id→ Id.
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Figure 4.1
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Definition 4.1.14. These definitions give rise to a number of useful 2-categories:

� For every monoidal V we denote by V -Rep the 2-category of all V -representations,
V -linear functors and V -linear natural transformations.

� For every right-monoidal-closed V we denote by V -Repcl the 2-category of all closed
V -representations, V -linear functors and V -linear natural transformations.

� We denote by Repcl the 2-category of all closed representations over right-closed cat-
egories, linear functors and linear natural transformations.

Remark. As mentioned above our 2-category Rep differs from other categories of represent-
ations (or actegories) since our 1-cells use lax monoidal functors. In, for example, Capucci
and Gavranović’s review, their 2-category of all actegories uses strong monoidal functors.
This is because they first define a 2-functor

(−)-Rep: MonCatcoopstr → 2-Cat

using Proposition 4.1.5 to send every strong monoidal functor G : V → W to a pullback
functor

G∗ : W -Rep→ V -Rep.

Then they use the bicategorical Grothendieck construction of Carrasco, Cegarra and Garzón [14,
def. 7.2] to define a 2-category of all representations.

Using this construction it would also be possible to define a category of all representations
where the 1-cells contain oplax monoidal functors. However, for a lax monoidal functor
G : V → W there is no pullback functor

G∗ : W → V .

Thus, there is no 2-functor and no 2-categorical Grothendieck construction.

It is worth mentioning here the stronger version of the fundamental theorem of enriched
category theory, Theorem 4.1.8, proved by Gordon and Power [26, thm. 3.7].

Theorem 4.1.15. Let V be a right-monoidal-closed category and let V -Catcop be the 2-
category of copowered V -categories, V -functors and V -natural transformations. Then there
is an equivalence of 2-categories between V -Repcl and V -Catcop.

Remark. In its original form this result was given for actions of bicategories and categories
enriched over bicategories. These are not to be confused with the enriched bicategories in
the next chapter, which are enriched over monoidal bicategories.

4.2 Enrichment via Actions

The theorem above gives slightly more categorical weight to the claim that copowered V -
categories are ‘the same thing as’ strong, closed V -representations. Unfortunately for our
purposes this is not sufficient. Let B be a left-composition-closed, right-monoidal-closed
bicategory. In the next chapter our first aim will be to show that, for all A,B ∈ B,
B(A,B) can be replaced by a scalar-enriched category B(A,B). We will show that the
category of scalars, B(I, I), acts on B(A,B) and that this action is closed. However, our
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second aim will be to show that we can replace the horizontal composition functor with an
enriched functor. This would mean equipping the composition functor

◦ : B(B,C)×B(A,B)→ B(A,C)

with a B(I, I)-linear functor structure. The problem here is that there is no obvious choice
of closed action by B(I, I) on B(B,C)×B(A,B). There is, however, an obvious choice of
closed action by B(I, I)×B(I, I). And there is also a monoidal functor

◦ : B(I, I)×B(I, I)→ B(I, I).

This allows us to exploit the fact that any monoidal functor gives rise to a base change for
enriched categories. In this section we give a 2-functor

(−) : Repcl → EnCat

from the 2-category of all closed representations over right-monoidal-closed categories, to
the 2-category of all enriched categories.

Remark. As mentioned in the previous section, if we define our linear functors to be those
with an oplax monoidal component, we can show that Repcl is the result of a bicategorical
Grothendieck construction. We can similarly construct the category of all enriched categories
via a bicategorical Grothendieck construction: we take the 2-functor

(−)-Cat : MonCatlax → 2-Cat

which sends every V to the 2-category V -Cat, every lax monoidal functor F : V → W
to its associated base-change functor (−)F : V -Cat → W -Cat, and every monoidal natural
transformation µ : F → G to a pseudonatural transformation, made up of functors µ : CF →
CG which are the identity on objects and whose associated morphisms are given by

µ : F (C (A,B))→ G(C (A,B)).

This hints at a 2-functor arising from these Grothendieck constructions. There is, how-
ever, a variance issue: note that the sources of each of the 2-functors do not agree

(−)-Repcl : MonCatcoopoplax → 2-Cat and (−)-Cat : MonCatlax → 2-Cat.

However, the right adjoint of every oplax monoidal functor can be given the structure of a
lax monoidal functor. So consider, instead, the 2-category ClMonCatLAdj whose objects are
right-monoidal-closed categories, whose 1-cells A→ B are given by pairs

(L : A→ B,R : B → A)

where L is oplax monoidal and R is the lax monoidal functor right adjoint to L. Consider
also the 2-category ClMonCatRAdj whose objects are right-monoidal-closed categories, whose
1-cells A→ B are given by pairs

(R : A→ B,L : B → A)

where R is lax monoidal and L is the oplax monoidal functor left adjoint to R. We have a
2-equivalence

ClMonCatcoopLAdj ∼ ClMonCatRAdj .
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It seems likely then, using the theorem above and Proposition 4.1.7, that we could define a
pseudonatural adjoint equivalence in the following diagram.

ClMonCatRAdj ClMonCatcoopLAdj

2-Cat 2-Cat.

∼

(−)cop-Cat (−)-Repcl
∼=

Presumably this would induce a 2-functor between the two associated bicategorical Grothen-
dieck constructions. However, we instead define our 2-functor directly, since we would like
to work with linear functors where the lax monoidal functor component does not necessarily
have an adjoint.

Definition 4.2.1. We define the 2-category of all enriched categories, EnCat, as follows.

� The objects of EnCat are pairs (C ,V ) where V is a braided, right-monoidal-closed
category, and C is a V -enriched category.

� The 1-cells of EnCat are pairs (F,G) : (C ,V ) → (D ,W ) where G : V → W is a lax
monoidal functor, F : CG → D is an enriched functor, and where (−)G denotes the
base-change 2-functor associated to G.

� The 2-cells of EnCat are given by pairs of the following form:

(C ,V ) (D ,W )

(F,G)

(F ′,G′)

(ν,µ)

where µ : G ⇒ G′ is a monoidal natural transformation, and where ν is a W -natural
transformation in the following diagram.

CG CG′ D

F

µ

ν

F ′

Here µ is the functor which is the identity on objects and has associated functor
morphism µ : G(C (A,B))→ G′(C (A,B)) for all objects A and B in C .

Composition is defined by the following rules.

� The composite of 1-cells,

(B,U )
(F,G)−−−→ (C ,V )

(F ′,G′)−−−−−→ (D ,W ),

is given by

(BG)G′
FG′−−→ CG′

F−→ D

in W -Cat.
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� The vertical composite of 2-cells in the following diagram

(C ,V ) (D ,W )

(F,G)

(F ′,G′)

(F ′′,G′′)

(ν,µ)

(ν′,µ′)

is given by the following composite in W -Cat.

CG CG′ D

CG′′

µ

F

ν

µ′

F ′

ν′

F ′′

� The left whiskering in the following diagram

(B,U ) (C ,V ) (D ,W )
(F,G)

(F ′,G′)

(F ′′,G′′)

(ν,µ)

is given by the following left whiskering in W -Cat.

(BG)G′ CG′ CG′′ D
FG′

F ′

µ

ν

F ′′

� The right whiskering in the following diagram

(B,U ) (C ,V ) (D ,W )

(F,G)

(F ′,G′)

(ν,µ)
(F ′′,G′′)
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is given by the following right whiskering in W -Cat.

(BG)G′′ (BG′)G′′ CG′′ D

FG′′

µ
G′′

νG′′

F ′
G′′

F ′′

The following result is a generalisation of the fact that if F : A → B is a lax mon-
oidal functor between monoidal-closed categories, then F is lax closed. That is to say that
whenever F is lax monoidal, there are natural transformations

F ([A,B])→ [(FA,FA)] and I → F (I)

which adhere to certain coherence axioms. The proof follows similarly.

Lemma 4.2.2. If C is a closed V -representation, D is a closed W -representation and
(F,G,m) : C → D is a linear functor between them, then F is the underlying functor of a
W -functor F : CG → D , where CG is the W -enriched category given by base-change under
G.

Proof. In order to save space, let ⟨A,B⟩ be denoted by BA for both the closed structure in
C and the closed structure in D . Additionally, let η and ϵ be the unit and counit of the
adjunction that gives the right closed structure. We define F to be equal to F on objects.
Since F preserves actions we have a map

G(BA)⊙ FA m−→ F (BA ⊙A) F (ϵ)−−−→ FB.

The adjunct of this map gives a map F : G(BA)→ FBFA which will be functor morphism
associated to our enriched functor. We firstly show that the diagram for identities, Fig-
ure 4.2, commutes. Since F is action preserving we already know that Figure 4.3 commutes,
and we will show that the adjunct of Figure 4.3 is Figure 4.2.

I

G(CC)

FCFC

id

id

F

Figure 4.2

I ⊙ F (C) G(I)⊙ F (C)

F (C) F (I ⊙ C)
u

i⊙F (C)

m

F (u)

Figure 4.3

Firstly note that the adjunct of u is I
ϵ−→ (I ⊙ FC)FC

(u⊙FC)FC

−−−−−−−→ FCFC which is,
by definition, the enriched identity map for FC. So the adjunct of the left-hand side of
Figure 4.3 is the left-hand side of Figure 4.2.
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Now consider the right-hand side of Figure 4.3. The adjunct of the right-hand side is
equal to the composite

I
η−→ (I ⊙ FC)FC (i⊙FC)FC

−−−−−−−→ (GI ⊙ FC)FC mFC

−−−→ (F (I ⊙ C))FC FuFC

−−−−→ FCFC ,

which is the right-hand path in Figure 4.4, where we have omitted certain functors on
morphisms for the sake of readability.

I (I ⊙ FC)FC

GI (GI ⊙ FC)FC F (I ⊙ C)FC

G((I ⊙ C)C) (G((I ⊙ C)C)⊙ FC)FC (F ((I ⊙ C)C ⊙ C))FC (F (I ⊙ C))FC

G(CC) (G(CC)⊙ FC)FC (F (CC ⊙ C))FC FCFC

η

i i

η

m

η η

u u

ϵ

u u

η m ϵ

Figure 4.4

The leftmost rectangle of Figure 4.4 commutes by naturality of η, the middle rectangle
commutes by naturality of m, the rightmost rectangle commutes by naturality of ϵ, and the
triangle commutes by the zigzag identity for adjunctions. But the leftmost path is id and
the bottom path is F . Thus, the adjunct of Figure 4.3 is Figure 4.2, and since Figure 4.3
commutes so does Figure 4.2.

Now we need to show that the composition square, Figure 4.5, commutes, where ◦ denotes
the enriched composition morphism. Since F is linear we already know that Figure 4.6
commutes. We will show that the adjunct of Figure 4.6 is Figure 4.5. Recall that, by
definition, the composition morphism in the enriched category CG is given by

G(CB)⊗G(BA) n−→ G(CB ⊗BA) G(η)−−−→ G((CB ⊗BA ⊙A)A) G((a)A)−−−−−→

G((CB ⊙BA ⊙A)) G((CB⊙ϵ)A)−−−−−−−−→ G((CB ⊙B)A)
G(ϵA)−−−−→ G(CA).

Then the right-hand side of Figure 4.5 is adjunct to the left-hand path of Figure 4.7. But
Figure 4.7 commutes by naturality of m, ϵ and the zigzag laws for identities. Thus, the
adjunct of the right-hand path of Figure 4.5 is the right-hand path of Figure 4.6.

G(BA)⊗G(CB) G(CA)

FBFA ⊗ FCFB FCFA

F⊗F

◦

F

◦

Figure 4.5

89



G(CB)⊗G(BA)⊙ FA G(CB ⊗BA)⊙ FA

G(CB)⊙G(BA)⊙ FA F (CB ⊗BA ⊙A)

G(CB)⊙ F ((BA)⊙A) F (CB ⊙BA ⊙A)

F (CB ⊙BA ⊙A) F (CB ⊙B)

F (CB ⊙B) F (C)

n⊙FA

a m

G(CB)⊙m F (a)

m F (CB⊙ϵ)

F (CB⊙ϵ) F (ϵ)

F (ϵ)

Figure 4.6

G(CB)⊗G(BA)⊙ FA

G(CB ⊗BA)⊙ FA F (CB ⊗BA ⊙A)

G((CB ⊗BA ⊙A)A)⊙ FA F ((CB ⊗BA ⊙A)A ⊙A) F (CB ⊗BA ⊙A)

G((CB ⊙BA ⊙A)A)⊙ FA F ((CB ⊙BA ⊙A)A ⊙A) F (CB ⊙BA ⊙A)

G((CB ⊙B)A)⊙ FA F ((CB ⊙B)A ⊙A) F (CB ⊙B)

G(CA)⊙ FA F (CA ⊙A) FC

n

m

η η

a

ϵ

a a

ϵ ϵ ϵ

ϵ ϵ ϵ

m ϵ

Figure 4.7
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Now we show that the left-hand path of Figure 4.5 is adjunct to the left-hand path of
Figure 4.6. Recall that the composition morphism in the enriched category D is given by
the adjunct of

CB ⊗BA ⊙A a−→ CB ⊙BA ⊙A CB⊙ϵ−−−−→ CB ⊙B ϵ−→ C.

Then the left-hand side of Figure 4.5 is the adjunct of the left-hand side of Figure 4.9.
But Figure 4.9 commutes by naturality of a and ϵ, and the zigzag identities for ad-

junctions. Thus, the adjunct of the left-hand path of Figure 4.6 is the left-hand path of
Figure 4.5. Hence, the adjunct of Figure 4.6 is Figure 4.5 and the latter commutes since the
former does.

Finally, to prove that the underlying functor, F 0, of F is F we need to show that for
every f : A→ B, F 0(f) = F (f). Note that by definition F 0(f) is given by the adjunct of

I
i−→ G(I)

G(η)−−−→ G((I ⊙A)A) G(uA)−−−−→ G(AA)
G(fA)−−−−→ G(BA)

F−→ FBFA,

which is the bottom path in Figure 4.8. On the other hand, F (f) is given by the adjunct of

I
i−→ GI

η−→ (GI ⊙ FA)FA (F (m))FA

−−−−−−→ (F (I ⊙A))FA (F (u))FA

−−−−−−→ FAFA
(Ff)FA

−−−−−→ FBFA,

which is the top path in Figure 4.8. But the rectangles in Figure 4.8 commute by the
naturality of η, m and ϵ. The triangle commutes by the zigzag laws for adjunctions. Thus,
F 0 = F and we are done.

I

GI (GI ⊙ FA)FA (F (I ⊙A))FA

G((I ⊙A)A) (G((I ⊙A)A))FA ⊙ FA (F ((I ⊙A)A ⊙A))FA (F (I ⊙A))FA

G(AA) (G(AA)⊙ FA)FA (F (AA ⊙A))FA FAFA

G(BA) (G(BA)⊙ FA)FA (F (BA ⊙A))FA FBFA

i

η

η

m

η η

u u u

ϵ

u

f f f f

η m ϵ

Figure 4.8
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Lemma 4.2.3. If (C ,V ) and (D ,W ) are closed representations over right-monoidal-closed
categories, and we have a linear natural transformation

(C ,V ) (D ,W )

(F,G,m)

(F ′,G′,m′)

(µ,ν)

then ν is the underlying natural transformation of an enriched natural transformation

CG CG′ D

F

µ

ν

F ′

where µ is the enriched functor that is the identity on objects and has functor morphism

G(C (A,B))
µ−→ G′(C (A,B)).

Proof. We will prove that the adjunct of ν, that is to say the map I → F ′AFA, gives
ν. In order to show that ν defines an enriched natural transformation we must show that
Figure 4.10 commutes. Since (ν, µ) defines a linear natural transformation we already know
that Figure 4.11 commutes. We will show that Figure 4.10 is the adjunct of Figure 4.11.

G(BA) G(BA)⊗ I F ′BF
′A ⊗ F ′AFA

I ⊗G(BA) F ′BFB ⊗ FBFA F ′BFA

r−1

l−1

(F ′◦µ)⊗ν

◦

ν⊗F ◦

Figure 4.10

G(BA)⊙ FA G′(BA)⊙ F ′A

F (BA ⊙A) F ′(BA)

F ′(BA ⊙A) F ′(A)

ν⊙µ

m m′

ν F ′(ϵ)

F ′(ϵ)

Figure 4.11

Firstly note that the right-hand side of Figure 4.11 is adjunct to the topmost path in
Figure 4.12 which commutes for the following reasons.
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The top right pentagon commutes because of the unit axiom for representations; the
triangles commute because of the zigzag identity for adjunctions; the squares commute
because of the naturality of η, a and ϵ; and the outer globules commute by definition.

Thus, the top right path of Figure 4.11 is adjunct to the top right path of Figure 4.10.
An analogous commutative diagram proves that the bottom left path of Figure 4.11 is ad-
junct to the bottom left path of Figure 4.10. Thus, Figure 4.11 is adjunct to Figure 4.10,
and since Figure 4.11 commutes, so does Figure 4.10. Thus, ν defines an enriched nat-
ural transformation. The fact that the underlying natural transformation of ν is ν follows
immediately from the definition of ν.

We now have an assignment (−) : Repcl → EnCat. The fact that this assignment pre-
serves identities follows immediately from the definition. All that remains is to prove that
this assignment preserves composition. For the sake of readability, all referenced commut-
ative diagrams can be found at the end of the section.

Proposition 4.2.4. Let B be a U -representation, C be a V -representation and D be a
W -representation. If (F,G,m) : B → C and (F ′, G′,m′) : C → D are both linear functors,
then F ′ ◦ F = F ′ ◦ FG′ where FG′ is F after the base change induced by G′.

Proof. By definition F ′ ◦ F and F ′ ◦ FG′ agree on objects. Thus, it suffices to prove that
their underlying associated functor morphisms are equal. The functor morphism for FG′ is
given by the top most path Figure 4.13, and the functor morphism for F ′ is given by the
right-hand path. The functor morphism for F ′ ◦ F is given by the left-hand and bottom
path. But the rectangles in the diagram commute by naturality of η, m′ and ϵ, and the
triangle commutes by the zigzag identity for adjunctions. Thus, the functor morphisms for
F ′ ◦ FG′ and F ′ ◦ F are equal.

We now move on to the composition of linear natural transformations, beginning with
vertical composition.

Lemma 4.2.5. Let C be a closed V -representation and D be a closed W -representation.
For every pair of linear natural transformations

(C ,V ) (D ,W )

(F,G,m)

(F ′,G′,m′)

(F ′′,G′′,m′′)

(ν,µ)

(ν′,µ′)

we have that the enriched natural transformation

CG CG′ D

F

µ′·µ

ν′·ν

F ′′
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is equal to the following vertical composite in W -Cat.

CG CG′ D

CG′′

µ

F

ν

µ′

F ′

ν′

F ′′

Proof. By definition of the whiskering of enriched natural transformations, we know that
(µ ◦ ν′) is given by components

I
ν′

µ(A)−−−−→ F ′′(µA)F
′(µA)

but since µ is the identity on objects this means that (µ ◦ ν′) is given by

I
ν′

A−−→ F ′′AF
′A.

Then note that, by definition, the composite (µ ◦ ν′) · (ν) is given by

I
l−1

−−→ I ⊗ I ν⊗ν′
−−−→ F ′′F ′A ⊗ F ′AFA

◦−→ F ′′FA

in W , which is the top right-hand path in Figure 4.14. This diagram commutes by naturality,
the zigzag identities of adjunctions and the unit axioms of W -representations. But the
bottom leftmost path is, by the naturality of u, equal to

I
η−→ (I ⊙ FA)FA u−→ FAFA

ν′·ν−−→ F ′′AFA

which is by definition ν′ · ν, completing the proof.

Lemma 4.2.6. Let B be a closed U -representation, let C be a closed V -representation
and let D be a closed W -representation where U , V and W are all right-closed. For every
linear natural transformation given by the whiskering

(B,U ) (C ,V ) (D ,W )
(F,G,m)

(F ′,G′,m′)

(F ′′,G′′,m′′)

(ν,µ)

we have that the enriched natural transformation

BG′◦G BG′′◦G D

F ′◦F

µ◦G

ν◦F

F ′′◦F
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is equal to the enriched natural transformation given by the following whiskering in W -Cat.

(BG)G′ CG′ CG′′ D
FG′

F ′

µ

ν

F ′′

Proof. Firstly note that BG′◦G = (BG)G′ . Now note that by definition ν ◦ F is given by
the composite

I
η−→ I ⊙ F ′FAF

′FA u−→ F ′FAF
′FA νF−−→ F ′′FAF

′FA

but by the definition of left whiskering in W -Cat we know that ν ◦ FG is given by

I
νF−−→ F ′′FAF

′FA

which is, by definition, the composite above. Thus, the two natural transformations are
equal.

Lemma 4.2.7. Let B be a closed U -representation, let C be a closed V -representation
and let D be a closed W -representation where U , V and W are all right-closed. For every
linear natural transformation given by the whiskering

(B,U ) (C ,V ) (D ,W )

(F,G)

(F ′,G′)

(ν,µ)
(F ′′,G′′)

we have that the enriched natural transformation

BG′′◦G BG′′◦G′ D

F ′′◦F

G′′◦µ

F ′′◦ν

F ′′◦F ′

is equal to the enriched natural transformation given by the following whiskering in W -Cat.

(BG)G′′ (BG′)G′′ CG′′ D

FG′′

µ
G′′

νG′′

F ′
G′′

F ′′

Proof. Note that, by definition, the composite F ′′ ◦ νG′′ is given by

I
i−→ G′(I)

G′(ν)−−−→ G′(F ′AFA)
G′(F ′′)−−−−−→ G′(F ′′F ′AF

′′FA),
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which is the right-hand path in Figure 4.15. This diagram commutes by naturality, the
zigzag identities for adjunctions and the unitor axioms for representations. But the bottom
leftmost path of Figure 4.15 is, by definition, F ′′ ◦ ν. Hence, the two natural transformations
are equal.

Thus, we have shown that the assignment given by (−) preserves all composition, and
so it gives a 2-functor. Furthermore, by construction the assignment preserves underlying
categories, functors, and natural transformations. Thus, we have the following theorem.

Theorem 4.2.8. There is a 2-functor, called the enriching 2-functor, (−) : Repcl → EnCat
such that the following diagram commutes

Repcl

Cat

EnCat

(−)

(−)0

(−)0

Proof. The first two lemmata of the section give a way to define the 2-functor. The remaining
lemmata prove that this definition does, in fact, preserve vertical and horizontal composition.
The diagram commutes by definition of the enrichment.

4.3 The Base Change 2-Functor

The aim of this chapter is to provide the necessary machinery to enrich a bicategory in the
monoidal 2-category of V -categories. In order to do this we want to first enrich over closed
V -representations and then use a monoidal 2-functor to change the base to V -categories.
Unfortunately this is not possible, since the product of two closed V -representations is not
necessarily closed, and so V -Repcl does not have a monoidal structure. If we forget the
2-categorical data, then V -Repcl has a multicategory structure induced by the monoidal
structure of V -Rep.

A result of Hermida [30, thm. 7.2] tells us that there is a 2-adjunction

F : MultiCat ⇄ MonCat :U.

Note that enriching in the multicategory U(V -Cat) is the same thing as enriching in V -Cat.
Thus, we could first enrich in the multicategory -RepV cl and then use the enriching 2-functor
to construct a multifunctor,

V -Repcl
(−)
−−→ U(V -Cat),

to change our base of enrichment. Alternatively, if we wanted to avoid enriching over
multicategories then we could instead construct the adjunct of this multifunctor. Explicitly
we could construct the monoidal functor

F (V -Repcl)
F (−)
−−−→ FU(V -Cat)

ϵ−→ V -Cat

where ϵ is the counit of the 2-adjunction above. In this section we construct monoidal 2-
categories that behave similarly to F (V -Repcl) and FU(V -Cat), we show that the enriching
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2-functor induces a monoidal 2-functor between them, and we give a ‘collapsing’ monoidal 2-
functor analogous to the counit above. These 2-categories and 2-functors give the machinery
necessary for the next chapter.

The following monoidal 2-category is slightly larger than the free monoidal category,
F (V -Repcl), in that it contains additional objects and 1-cells, but is easier to describe for
our purposes.

In what follows we will invoke Mac Lane’s coherence theorem and treat V as a strict,
unbiased monoidal category, so that V n is identified with any

p∏
i=1

V ni

such that
∑p
i=1 ni = n. Note also that we include 0 in the natural numbers, V 0 is given by

the terminal category, ∗, and ⊗0 : ∗ → V is given by the functor that picks out the unit.

Definition 4.3.1. The 2-category, V -Rep×cl , of closed V -iterated representations, is
the 2-category described as follows.

� The objects are given by pairs (A , n), where n is a natural number and A is a closed
V n-representation.

� The 1-cells (A , n)→ (B, p) are given by linear functors

(F,G,m) : (A ,V n)→ (B,V p)

where G is of the form

V n
∏p

i=1 ⊗ni

−−−−−−→ V p

and where
∑p
i=1 ni = n.

� The 2-cells are given by linear natural transformations where the monoidal natural
transformation is a coherence isomorphism.

This 2-category has a monoidal structure described as follows.

� The tensor product of objects (A , n) and (B, p) is given by

(A , n)⊗ (B, p) := (A ×B, n+ p),

where the action on A ×B is given by

(V n+p)× (A ×B)
∼−→ (V n ×A )× (V p ×B)

⊙A ×⊙B−−−−−−→ A ×B,

and the closed structure of A ×B is given by

(A ×B)op × (A ×B)
∼−→ (A op ×A )× (Bop ×B)

⟨−,−⟩×⟨−,−⟩−−−−−−−−−→ V n × V p ∼−→ V n+p.

� The tensor product of 1-cells

(F,G,m) : (A , n)→ (B, p) and (F ′, G′,m′) : (A ′, n′)→ (B′, p′)

is given by
(F,G,m)× (F ′, G′,m′) := (F × F ′, G×G′,m×m′),

where we have identified V n × V n′
with V n+n′

for the sake of brevity.
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� The tensor product of 2-cells is given by the cartesian product.

� The unitors and associators are given by the unitors and associators for categories.

� The 2-unitors and 2-associators are identities.

We can then define the monoidal 2-category of V -iterated categories analogously.

Definition 4.3.2. The 2-category, V -Cat×, of V -iterated categories is the 2-category
described as follows.

� The objects are given by pairs (A , n), where n is a natural number and A is a V n-
category.

� The 1-cells (A , n)→ (B, p) are given by enriched functors

(F,G) : (A ,V n)→ (B,V p)

where G is of the form

V n
∏p

i=1 ⊗ni

−−−−−−→ V p

and where
∑p
i=1 ni = n.

� The 2-cells are given by enriched natural transformations where the monoidal natural
transformation is a coherence isomorphism.

This 2-category has a monoidal structure described as follows.

� The tensor product of objects (A , n) and (B, p) is given by

(A , n)⊗ (B, p) := (A ⊗B, n+ p)

� The tensor product of 1-cells

(F,G) : (A , n)→ (B, p) and (F ′, G′) : (A ′, n′)→ (B′, p′)

is given by
(F,G)× (F ′, G′) := (F × F ′, G×G′),

where we have identified V n × V n′
with V n+n′

for the sake of brevity.

� The tensor product of 2-cells is given by the cartesian product.

� The unitors and associators are given by the unitors and associators for categories.

� The 2-unitors and 2-associators are identities.

In order to translate between closed V -iterated representations and V -iterated categories
we need to use monoidal 2-functors. A definition of monoidal 2-functors can be found
in Day and Street’s [19, def. 2] Monoidal bicategories and Hopf algebroids. Given Gray
monoids A and B, a monoidal 2-functor F : A → B comes equipped with a pseudonatural
transformation

m : F (−)⊗ F (−)⇒ F (−⊗−)
as well as several coherence modifications. We don’t give an account of these since the
monoidal 2-functors we are interested in adhere to the same coherence laws as monoidal
functors. In other words, the coherence modifications are identities.
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Lemma 4.3.3. There is a monoidal 2-functor, (−) : V -Rep×cl → V -Cat×, that we also call
the enriching 2-functor, which takes every closed representation to its associated enriched
category.

Proof. The construction of this 2-functor is completely analogous to the construction of the
2-functor in Theorem 4.2.8. Note that the monoidal structure is entirely given by identity
functors: the unit in V -Rep×cl is ∗ with trivial action and closed structure given by the
unit. The enriching functor takes this to the one-object category with hom-object given
by I, which is the unit in V -Cat. Note also that, by construction, the following diagram
commutes.

V -Rep×cl × V -Rep×cl V -Cat× × V -Cat×

V -Rep×cl V -Cat×

⊗

(−)×(−)

(−)

⊗

Thus we can take both coherence maps to be the identity functors. Coherence modifications
are given by identity natural transformations.

Definition 4.3.4. We define the collapsing 2-functor, C : V -Cat× → V -Cat, to be the
2-functor where:

� every object (A , n) is sent to the V -category A⊗n ;

� every 1-cell (F,G) : (A , n)→ (B, p) is sent to the map

A⊗n
c−→ (AG)⊗p

F⊗p−−−→ B⊗p ,

where here c denotes the functor which is the identity on objects and has hom-
morphism given by a coherence map;

� every enriched natural transformation, (ν, µ),

(A , n) (B, p)

(F,G,m)

(F ′,G′,m′)

(µ,ν)

is sent to the enriched natural transformation in the following diagram.

A⊗n (AG)⊗p (AG′)⊗p B⊗pc

c′

=

F⊗p

µ⊗p

ν

F ′
⊗p
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Lemma 4.3.5. The collapsing 2-functor has a strong monoidal structure.

Proof. To define the strong monoidal structure we need coherence 1-cells. Firstly, this means
that we must define an invertible pseudonatural V -functor

M : C(−)⊗ C(−)→ C(−⊗−).

Note that on objects, C(A , n)⊗C(B, p) is equal to C(A ⊗B, n+p). If A is a V n category
then A (A,A′) is of the form (A (A,A′)1, ....,A (A,A′)n) where each A (A,A′)i is in V . Now
suppose that A is a V n-category and B is a V p-category. Letting

Xi :=

{
A (A,A′)i if i ≤ n,
B(B,B′)i otherwise,

we know that

(C(A , n)⊗ C(B, p))((A,A′), (B,B′)) = (⊗ni=1Xi)⊗ (⊗pj=n+1Xi).

On the other hand, we have

C((A , n)⊗ (B, p))((A,A′), (B,B′)) = ⊗n+mi=1 Xi.

But there is a coherence natural isomorphism in V ,

µ : (⊗ni=1Xi)⊗ (⊗mj=n+1Xj)
∼−→ ⊗mi=1Xi,

so we define M to be the identity-on-objects functor with underlying functor morphism µ.
We know that M is invertible since µ is. The naturalisors for M are identity 2-cells. This
follows from the fact that µ is natural.

Note that the collapse of the unit V -iterated category, C((∗, 0)), is just the one-object
V -category with hom-object give by I. This is the unit of V -Cat, and we can take the
second coherence 1-cell to be the identity.

The rest of the structure for a strong monoidal functor consists of coherence modifica-
tions. Since M is the identity on objects, and µ satisfies coherence laws by construction,
these modifications are all identities.
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Chapter 5

The Cotrace and Scalar
Enrichment

In this chapter we show one of the main results of the thesis. If B is a left-composition-closed
right-monoidal-closed bicategory, then B is naturally enriched over the monoidal bicategory
of scalar enriched categories, B(I, I)-Cat. What this means is that every hom-category in
B can be enriched over B(I, I), that horizontal composition and identities can be given the
structure of enriched functors, and that the associator and unitors for composition can be
given the structure of enriched natural transformations.

In the first section we give the definition of enriched bicategories and their underlying
bicategories. The concept of a bicategory enriched over a monoidal bicategory seems to
have been first introduced by Hoffnung [32, def. 6] in his thesis, but has subsequently been
reintroduced by Garner and Shulman [24, sec. 2].

In the second section we define the scalar spread functor and show that this induces an
action by B(I, I) on all hom-categories. We show that this functor has a right adjoint which
we call the cotrace, and that this right adjoint turns our action into a closed action.

In the final section we show that the composition and identity functors can be given
the structure of linear functors, and that the composition unitors and associators can be
given the structure of linear natural transformations. This, combined with the closed action
of B(I, I) on the hom-categories is enough to prove our main theorem, after which we
see how the scalar enrichment works for each of our motivating examples. We show that
this enrichment is given by the cotrace in the same way that the Frobenius inner product
is given by the trace. We also show that in the context of this enrichment, the cotrace
is the enriched version of the 2-trace given in Section 1.2, and we prove that a lot of the
structure of bicategories, such as the composition-closed structure, remains in the associated
scalar-enriched bicategory.

5.1 Enriched Bicategories

In this section we give a brief account of enriched bicategories, a concept which is core to
our main theorem.

Definition 5.1.1. Let V be a monoidal bicategory. A bicategory B enriched in V consists
of
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� a collection of objects obj(B) which, by abuse of notation, we denote B;

� for every pair of objects, A,B ∈ B, an object, B(A,B) ∈ V , which we call the
hom-object;

as well as a horizontal category structure:

� for every object, A ∈ B, a 1-cell,
⋄
id : I → B(A,A), called the enriched identity 1-cell;

� for every triple of objects, A,B,C ∈ B, a 1-cell,

⋄A,B,C : B(B,C)⊗B(A,B)→ B(A,C),

called enriched horizontal composition;

and finally natural isomorphisms that encode the associativity and unitality of composition:

� for every quadruple of objects, A, B, C, D, an invertible 2-cell called the enriched
composition associator, given below;

αB(C,D)⊗ ⋄A,B,C⋄A,C,D

⋄
α
⋄
α

⋄B,C,D ⊗B(A,B)⋄A,B,D

� for every pair of objects A and B, a pair of natural isomorphisms called the left
enriched unitor and the right enriched unitor, given below;

⋄
idB ⊗B(A,B)⋄

⋄
λ
⋄
λ

l

B(A,B)⊗
⋄
idA⋄

⋄
ρ
⋄
ρ

r

such that Figure 5.1 is equal to Figure 5.2, and Figure 5.3 is equal to Figure 5.4.

Remark. Note that, as mentioned previously, this is distinct from the notion of a category
enriched over a bicategory. When enriching over a bicategory, we treat the bicategory as
a generalised (or multi-object) monoidal category. By this we mean that if A is enriched
over a bicategory B, then A (A,B) is a 1-cell in B and composition in A is given by a
2-cell in B. This is a one-dimensional construction in the sense that if A is enriched over
a bicategory then it has an underlying category.

This chapter deals with enriched bicategories, which are enriched over monoidal bicat-
egories. By this we mean that if A is enriched over a bicategory B, then A (A,B) is an
object in B and composition is given by a 1-cell in B. This is a two-dimensional construc-
tion in the sense that if A is enriched over a monoidal bicategory then it has an underlying
bicategory.

108



(⋄ ⊗ B(B,C)) ⊗ B(A,B)⋄ ⊗ B(A,B)⋄

⋄
α−1 ⊗ B(A,B)
⋄
α−1 ⊗ B(A,B)

a⊗ B(A,B)

(B(D,E) ⊗ ⋄) ⊗ B(A,B)

⋄ ⊗ B(A,B)

⋄
α−1⋄
α−1

aB(D,E) ⊗ ⋄

aB(D,E) ⊗ (⋄ ⊗ B(A,B))

B(D,E) ⊗ ⋄
α−1B(D,E) ⊗ ⋄
α−1

B(D,C) ⊗ a

αα

⋄ B(D,E) ⊗ ⋄ B(D,E) ⊗ (B(C,D) ⊗ ⋄) a a

Figure 5.1
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(⋄ ⊗ B(B,C)) ⊗ B(A,B)⋄ ⊗ B(A,B)⋄

⋄
α−1⋄
α−1

⋄ (B(D,E) ⊗ B(C,D)) ⊗ ⋄ a

⋄ ⊗ B(A,C)

⋄
α−1⋄
α−1

aa⋄ B(D,E) ⊗ (B(C,D) ⊗ ⋄)B(D,E) ⊗ ⋄

Figure 5.2
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r• ⊗ B(A,B)(B(B,C) ⊗
⋄
id) ⊗ B(A,B)⋄ ⊗ B(A,B)⋄

⋄
α−1⋄
α−1

aB(B,C) ⊗ ⋄

B(B,C) ⊗
⋄
λB(B,C) ⊗
⋄
λ

B(B,C) ⊗ l

µµ

⋄

Figure 5.3

r• ⊗ B(A,B)(B(B,C) ⊗
⋄
id) ⊗ B(A,B)⋄ ⊗ B(A,B)⋄

⋄
ρ⊗ B(A,B)
⋄
ρ⊗ B(A,B)

⋄

Figure 5.4
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Example 5.1.2. Just as every category is a category enriched over the category of sets,
every bicategory is a bicategory enriched over the 2-category of categories. In this case, the
first axiom corresponds to the commutativity of the following pentagon;

(k ◦ h) ◦ (g ◦ f)

((k ◦ h) ◦ g) ◦ f k ◦ (h ◦ (g ◦ f))

(k ◦ (h ◦ g)) ◦ f k ◦ ((h ◦ g) ◦ f)

α̊k,h,g◦fα̊k◦h,g,f

α̊k,g,h◦f

α̊k,h◦g,f

k◦α̊h,g,f

and the second axiom corresponds to the commutativity of the following triangle.

(g ◦ idB) ◦ f g ◦ (idB ◦ f)

g ◦ f
ρ̊◦ιf

α̊f,idB,g

ιg◦λ̊

Definition 5.1.3. The underlying bicategory B0 of a V -bicategory B is a bicategory
with

� the same objects as B;

� hom-categories given by V (I,B(A,B)) for A,B ∈ B;

� identities given by
⋄
id ∈ V (I,B(A,A));

� composition given by the following functor;

V (I,B(B,C))× V (I,B(A,B))

V (I ⊗ I,B(B,C)⊗B(A,B))

V (I,B(B,C)⊗B(A,B))

V (I,B(A,C))

⊗

l•

⋄

and associator and unitor modifications constructed similarly.
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5.2 Scalar Actions and the Cotrace

In 1980 Kelly and Laplaza [39, prop. 6.1] pointed out that for every monoidal category, M ,
the commutative monoid of scalars M (I, I) acts on every hom-set via the composite

A
ρ−1

−−→ A⊗ I f⊗s−−→ B ⊗ I ρ−→ B.

An analogous construction holds for scalars in monoidal bicategories. We show that, for any
B ∈ A , there is a monoidal functor called the spread functor

Spr◦ : (B(I, I), ◦)→ (B(B,B), ◦).

Since B(B,B) acts on B(A,B) by post-composition, B(I, I) must also act on B(A,B).
Next we show that this functor has a right adjoint, called the cotrace functor. Since we have
left-composition-closedness, the action of B(I, I) on B(A,B) is closed via the composition-
closed structure and the cotrace functor. Thus, we can enrich each hom-category B(A,B)
over B(I, I).

Definition 5.2.1. In any monoidal-closed, composition-closed bicategory B, for any A ∈ B
there is a functor, called the spread,

Spr◦A : B(I, I)→ B(A,A)

where Spr◦A(s) is given by the following composite

A
l•−→ I ⊗A s⊗A−−−→ I ⊗A l−→ A.

Remark. We call this the spread for two reasons. Firstly, in the case of finite dimensional
Hilbert spaces, the spread takes in a map s : C→ C and returns the map s · (−) : A→ A. If
s is thought of as linearly distorting C, then s⊙ (−) ‘spreads’ this distortion evenly across
every dimension.

Secondly, in the case of finite dimensional Hilbert spaces, the spread is the map that
is linearly adjoint to the trace map, and we are about to see that our spread is adjoint to
what we will define as the cotrace functor. It is often convenient to think of an adjoint
as a conceptual inverse. In English, a trace is a small, concentrated remnant left behind,
indicating the prior presence of something larger. Thus, taking the trace is indicative of
taking a small amount, representative of something much larger. To spread is to take a
concentrated mass and distribute it over a large area. In this sense, we argue that taking a
spread is somehow conceptually inverse to the idea of taking a trace.

Remark. Note, also, the inclusion of the composition circle in the symbol Spr◦. This is
used to distinguish this functor from the cospread functor that we will define later.

Proposition 5.2.2. The spread functor can be given the structure of a strong monoidal
functor.

Proof. The associated multiplication natural isomorphism is given by Figure 5.5 whilst the
associated unit natural isomorphism is given by Figure 5.6. The fact that these adhere
to the monoidal axioms follows immediately from the axioms of pseudofunctors and string
diagrams.
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l t l• l s l•

−⊗A
I ⊗−

l t ◦ s l•

Figure 5.5

I ⊗−

l l•

Figure 5.6

Corollary 5.2.3. For every pair of objects A,B in a left-composition-closed right-monoidal-
closed bicategory the category B(A,B) can be given the structure of a B(I, I)-representation,
where, for every scalar, s, and every f : A→ B, we define the action to be

s⊙ f := Spr◦B(s) ◦ f.

Proof. This follows from the fact that postcomposition gives an action, that oplax monoidal
functors give restricted representations, and that the spread functor is strong (and therefore
oplax) monoidal.

Example 5.2.4. In the bicategory Rel the monoidal category of scalars can be thought of
as truth values. The spread of ∗, thought of as ‘true’, is the identity and the spread of ∅,
thought of as ‘false’, is the empty relation. Thus,

s⊙R =

{
R if s = ∗
∅ if s = ∅.

Example 5.2.5. In the bicategory BimR the monoidal category of scalars is given by R-
Mod. The spread of an R-module M gives the A-A-bimodule M ⊗A. The action is defined
as

a′ · (m⊗ a) · a′′ = m⊗ (a′ · a · a′′).
Then for an A-B-bimodule N , M ⊙N is given by M ⊗N , where the action is defined as

a · (m⊗ n) · b = m⊗ (a · n · b).
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Example 5.2.6. In the bicategory DBim the monoidal category of scalars is given by chain
complexes in R-Mod. The action of chain complexes of R-modules is defined similarly to
the above but with the derived tensor.

Example 5.2.7. In the bicategory V -Prof the monoidal category of scalars is given by V .
The spread of v ∈ V at some category C is the constant profunctor v : C −7−→ C given by the
functor

v : C op ⊗ C → V ,

and so for some profunctor Q : C −7−→ D the action is defined by

v ⊙Q(C,D) = Q(C,D)⊗ v.

Example 5.2.8. If C has finite limits then the spread of C ∈ C is given by the span

C ×A

A A

pA pA

where pA is the projection map. Then by properties of limits, given a span S = A
f←− S g−→ B

we have that the span C ⊙ S is given by

C × S

S

A B

pS

f g

Example 5.2.9. Given a topological monoid M , scalars in Path(M) are loops at e. Given
a loop p at e, the scalar spread of p at x is the loop x · p. This then acts on paths x to y by
concatenation.

It will be useful to have a number of different perspectives on this action, and the next
two propositions show that two of the other obvious ways to define an action of B(I, I) on
B(A,A) are essentially the same as this one.

Lemma 5.2.10. The B(I, I)-representation B(A,B), where, for a scalar, s, and a 1-cell
f : A→ B, the action is given by

s⊙ f := Spr◦B(s) ◦ f,

is isomorphic as a B(I, I)-representation to the B(I, I)-representation B(A,B) with action
given by

s⊙ f := f ◦ Spr◦A (s).

Proof. In order to prove this we will show that there are linear functors given by

(id, id,m) : B(A,B) ⇄ B(A,B) : (id, id,m−1),
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and so we just need to prove that there is a natural isomorphism

m : Spr◦B(s) ◦ f ⇒ f ◦ Spr◦A(s)

which adheres to the axioms of linear functors. Using semi-strictification and treating B as
a Gray monoid, m is defined as the interchangerator,

s⊗B I ⊗ f

χχ

s⊗AI ⊗ f

and the axioms of linear functors hold as a direct consequence of the axioms for the inter-
changerator. Specifically the associativity diagram commutes because of Equation (3.4) and
the unitality diagram commutes because of Equation (3.1).

Recall the name and realisation functors defined in Proposition 3.5.8.

Lemma 5.2.11. The B(I, I)-representation B(A,B), where, for a scalar, s, and a 1-cell
f : A→ B, the action is given by

s⊙ f := Spr◦B(s) ◦ f,

is equivalent, as a B(I, I)-representation, to the B(I, I)-representation B(I, [A,B]) with
action given by

s⊙ g :=
Ð⇀
g ◦ s,

for g : I → [A,B].

Proof. To show the second equivalence holds we need to show that the name and realisation
functors can each be equipped with a B(I, I)-linear functor structure

(
ÐÐ⇀
(−),m) : B(A,B) ⇄ B(I, [A,B]) : (

↼ÐÐ
(−),m′)

that give an equivalence between B(A,B) with action given by s ⊙ f := f ◦ Spr◦A(s) and

B(I, [A,B]). In order to define m note that the 2-cell in Figure 5.7 has
ÐÐÐÐÐÐÐ⇀
f ◦ Spr◦A(s) as

its source, and
Ð⇀
f ◦ s as its target. Let us once again treat B as a Gray monoid. Then,

Figure 5.7 can be simplified to give the diagram below.

f s η

[A,−]
−⊗A
I ⊗−

f sη
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f l s l• l η

[A,−]
−⊗A
I ⊗−

f l sη

Figure 5.7

The fact that this defines a linear functor follows from the axioms of pseudonatural trans-

formations. To define m′ note that, given g : I → [A,B] and s : I → I,
↼ÐÐ
g ◦ s is given by the

composite

A = I ⊗A s⊗A−−−→ I ⊗A g⊗A−−−→ [A,B]⊗A ϵ−→ B,

which is equal to
↼Ð
g ◦ Spr◦A(s). Thus, we can let m′ be the identity, and m′ immediately

adheres to the linear functor axioms.
All that remains is to show the natural transformations which give the equivalence are

also B(I, I)-linear. That means we need to show that, for f : A → B and g : I → [A,B],
the following two diagrams commute.

↼ÐÐ⇀
f ◦ Spr◦A(s) f ◦ Spr◦A(s)

↼ÐÐÐÐ⇀
f ◦ s

↼ÐÐÐÐÐÐÐ
ÐÐÐÐÐÐÐ⇀
f ◦ Spr◦A(s)

∼

m

∼

Ð⇀↼Ð
g ◦ s g ◦ s

ÐÐÐÐÐÐÐÐ⇀
↼Ð
g ◦ Spr◦A(s)

ÐÐ⇀
↼ÐÐ
g ◦ s

∼

m ∼

The first diagram commutes because the top morphism is given by Figure 5.8 and the
bottom morphism is given by Figure 5.9, which are equal by the properties of pseudonatural
transformations. The second diagram commutes by a similar application of pseudonatural
transformation axioms.

One advantage of these other perspectives is that it makes clear the fact that B(A,B)
has a closed action by scalars.

Proposition 5.2.12. For every A ∈ B the spread functor has a right adjoint

Tr
◦
A : B(A,A)→ B(I, I),

that we call the cotrace functor, given by the composite

B(A,A)
ÐÐ⇀
(−)−−→ B(I, [A,A])

ÐÐ⇀
idA⊸(−)−−−−−−→ B(I, I).
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ϵI⊗B [A, I ⊗ f ]⊗A ηI ⊗A s⊗A

f s

Figure 5.8

ϵI⊗B [A, I ⊗ f ]⊗A ηI ⊗A s⊗A

f s

Figure 5.9
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Proof. By Lemma 5.2.11 we have natural isomorphisms

B(A,A)(Spr◦(s), f) ∼= B(A,A)(id ◦ Spr◦(s), f)

∼= B(A,A)

(↼ÐÐÐÐÐ⇀
idA ◦ s, f

)
∼= B(I, [A,A])

(Ð⇀
idA ◦ s,

Ð⇀
f
)

∼= B(I, I)
(
s,
Ð⇀
idA ⊸ Ð⇀

f
)

and so the functor
Ð⇀
idA ⊸

ÐÐ⇀
(−) is right adjoint to the spread functor.

We call this functor the cotrace functor since it gives the cotrace as defined by Day
and Street [19, def. 8]. The choice of notation Tr

◦
is to highlight that the cotrace functor

is constructed using a lift, and to distinguish this functor from the trace functor that we
define later.

Example 5.2.13. In the bicategory Rel, given a relation R : A → A, its name
Ð⇀
R is given

by ∗ ×R ⊆ ∗ × (A×A). Lifting the name of R through
Ð⇀
id then gives the relation

Ð⇀
id ⊸ Ð⇀

R = {(∗, ∗) | ∀(a, a′) ∈ A×A a = a′ ⇒ R(a, a′)} =
{
∗ if R is reflexive;

∅ otherwise

Example 5.2.14. In the bicategory BimR, given an A-A bimodule, M ,
Ð⇀
M is the bimodule

M thought of as a right A⊗Aop module and
Ð⇀
id is A thought of a right A⊗Aop bimodule.

The lift of these gives
Ð⇀
id ⊸ Ð⇀

M = HomA⊗Aop(A,M)

which is the R-R-bimodule, or rather the R-module, of homomorphisms from A toM . Then,
as with the 2-trace, there is an isomorphism between the cotrace of M and the invariants,
or centre, of M .

Example 5.2.15. In the bicategory DBimR, when R is a field, the cotrace of a differential
graded A-A-bimodule M is given by the Hochschild cohomology of A with coefficients in
M . This follows from the fact that the cotrace of M is given by RHom(A,M) whose
n’th component is ExtnA⊗Aop(A,M). As shown by Cartan and Eilenberg[15, ch. IX] this is
equivalent to the definition of the Hochschild cohomology of A with coefficients in M .

Example 5.2.16. In the bicategory V -Prof, given a profunctor P : A −7−→ A the names of
P and id are the profunctors

Ð⇀
P : ∗ −7−→ A ⊗A op and

ÐÐ⇀
Hom: ∗ −7−→ A ⊗A op

which are isomorphic to P and Hom as functors. This means that the cotrace is given by

ÐÐ⇀
Hom ⊸ Ð⇀

P =

»

(A,A′)∈A op⊗A

V (Hom(A,A′), P (A,A′)) =
»

A∈A

P (A,A)

where the second equality follows from the Yoneda lemma for enriched categories.
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Example 5.2.17. In Span(Set) the cotrace is identical to the 2-trace: it is the set of ‘mutual
sections’ of the span.

Example 5.2.18. In the bicategory Path(G) for a topological group G, the name of a path
p : x→ y is the path p · y−1. Thus, if p is a loop at x then the cotrace of p is just the loop
p · x−1.

It should be clear from the examples that in each case the underlying set of the cotrace
is the 2-trace. The following results explain why this is the case.

Lemma 5.2.19. In a left-composition-closed, right-monoidal-closed bicategory B, every
hom-category B(A,B) has the structure of a closed B(I, I)-representation. The action is
given by the functor

B(I, I)×B(A,B)
Spr◦(−)◦−−−−−−−−→ B(A,B)

and the closed structure is given by the functor

B(A,B)×B(A,B)
Tr

◦
((−)⊸(−))−−−−−−−−−→ B(I, I).

Proof. This follows from the fact that B(B,B) acts on B(A,B) by composition, the fact
that this action is closed via taking right lifts and the following three results: Proposi-
tion 5.2.2, which says that the spread functor is strong monoidal; Proposition 5.2.12, which
says that the cotrace functor is right adjoint to the spread functor; and Proposition 4.1.7,
which says that oplax monoidal functors with right adjoints preserve closed representa-
tions.

Corollary 5.2.20. In a left-composition-closed, right-monoidal-closed bicategory B, every
hom-category B(A,B) is the underlying category of a B(I, I)-category, B(A,B) whose
hom-objects are given by

B(A,B)(f, g) := Tr
◦
(f ⊸ g).

Proof. This is a direct consequence of the above lemma and Theorem 4.1.8.

In other words, between any two 1-cells we have a 2-cell-object that lives in the braided
monoidal category of scalars. What’s more, this 2-cell-object is analogous to the construction
of the Frobenius inner product.

Recall that the Frobenius inner product is defined in terms of the trace via

⟨f, g⟩ := Tr(f† ◦ g)

where f† denotes the linear adjoint to f . Suppose that f : A→ B and g : A→ B are 1-cells
in B, and suppose that f has a right adjoint f†. In such a case f ⊸ g is exactly f† ◦ g and
so the 2-cell-object is defined as

B(A,B)(f, g) = Tr
◦
(f† ◦ g).

In particular, we know that B(A,A)(id, f) ∼= Tr
◦
(id ⊸ f) ∼= Tr

◦
(f). This proves in terms

of enriched categories that the 2-trace is always the underlying set of the cotrace.
Whilst the cotrace gives a good conceptual basis for our enrichment, the above lemma

doesn’t make it particularly clear what these 2-cell-objects look like for a category theorist.
The next proposition gives us a different perspective.
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Proposition 5.2.21. Given 1-cells f : A→ B and g : A→ B in a left-composition-closed,
right-monoidal-closed bicategory there is an isomorphism, natural in both f and g,

Ð⇀
idA ⊸ ÐÐÐÐ⇀

f ⊸ g ∼= Ð⇀f ⊸ Ð⇀
g .

Proof. Let s be a scalar. By Lemma 5.2.11 we know that there is a sequence of natural
isomorphisms

B(I, I)
(
s,
Ð⇀
id ⊸ ÐÐÐÐ⇀

f ⊸ g
)
∼= B(I, [A,A])

(Ð⇀
id ◦ s,ÐÐÐÐ⇀f ⊸ g

)
∼= B(A,A)

(↼ÐÐÐ
Ð⇀
id ◦ s, f ⊸ g

)
∼= B(A,A) (id ◦ Spr◦(s), f ⊸ g)
∼= B(A,A) (Spr◦(s), f ⊸ g)
∼= B(A,B) (f ◦ Spr◦(s), g)
∼= B(I, [A,B])

(ÐÐÐÐÐÐÐ⇀
f ◦ Spr◦(s),Ð⇀g

)
∼= B(I, [A,B])

(Ð⇀
f ◦ s,Ð⇀g

)
∼= B(A,B)

(
s,
Ð⇀
f ⊸ Ð⇀

g
)

and so by the Yoneda lemma we know that
Ð⇀
f ⊸ Ð⇀

g ∼= Ð⇀idA ⊸ ÐÐÐÐ⇀
f ⊸ g.

In other words, given a pair of 1-cells, f, g : A → B, the scalar that lives between them
is the lift in the following diagram.

[A,B] I I
Ð⇀
f

Ð⇀
g

5.3 Scalar Enrichment

In the previous section we showed that in a left-composition-closed, right-monoidal-closed
bicategory every hom-category B(A,B) can be replaced by a B(I, I)-category B(A,B).
In this section we will show that all of B can be replaced by a B(I, I)-Cat-bicategory. In
other words, all of the other bicategorical data can be replaced by B(I, I)-functors and
B(I, I)-natural transformations. In order to achieve this we will show that each of these
components can be equipped with a linear structure, and by the results of the previous
chapter this immediately corresponds to an enriched structure.

We end the section by showing that most of the additional structure on B, such as the
composition-closed structure, is carried over to our enriched bicategory B.

Proposition 5.3.1. There is a linear functor from the (B(I, I) ×B(I, I))-representation
B(B,C)×B(A,C) to the B(I, I)-representation B(A,C), for which the associated functor
is composition,

◦ : B(B,C)×B(A,B)→ B(A,C),
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for which the associated monoidal functor is composition,

◦ : B(I, I)×B(I, I)→ B(I, I),

and for which the associated natural transformation is given by the diagram below for every
s, t ∈ B(I, I), every f ∈ B(A,B) and every g ∈ B(B,C).

l t s l• g f

χχ

−⊗B
I ⊗−

l•l l• lt sg f

Proof. We begin by proving that the first diagram of Definition 4.1.9 commutes. In order
to simplify the proof and save space we will prove this result using the semi-strictification
theorem for monoidal bicategories. That is, we will treat B as a Gray monoid. In this case
the natural transformation m reduces to the following 2-cell.

t⊗ C s⊗ C g f

I ⊗ g

χχ

I ⊗ g

fg st

In the first diagram of Definition 4.1.9 let V = (t′, s′), W = (t, s) and C = (g, f). Since n is
given by the braid in B(I, I), and since in a Gray monoid this is simply the interchangerator,
the left-hand path around the diagram is given by Figure 5.10, and the right-hand path
around the diagram is given by Figure 5.11.
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t′ ⊗ C s′ ⊗ C t⊗ C s⊗ C g f

χχ

I ⊗ ((t⊗ C) ◦ g)

χχ

t′ ⊗ C s′ ⊗Bt⊗ C s⊗Bg f

Figure 5.10

t′ ⊗ C s′ ⊗ C t⊗ C s⊗ C g f

χ⊗ Cχ⊗ C

χχ

t′ ⊗ C s′ ⊗Bt⊗ C s⊗Bg f

Figure 5.11

Note however, that by the axioms of a Gray monoid – Definition 3.4.1, namely (3.5),
(3.4) and (3.6) – Figure 5.12, Figure 5.13, Figure 5.14, and Figure 5.15 are equal. Thus,
Figure 5.10 is equal to Figure 5.11, and so the first axiom of linear functors holds. To
prove that the second diagram commutes note that the right-hand side of the diagram is
given by Figure 5.16 and the left-hand side of the diagram is given by Figure 5.17. These two
diagrams are equal by properties of adjoint equivalences and pseudonatural transformations.
Thus, both axioms of Definition 4.1.9 hold and so we are done.
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s′ ⊗ C t⊗ C s⊗ C g

χχ

I ⊗ ((t⊗ C) ◦ g)

χχ

s′ ⊗Bt⊗ C s⊗Bg

Figure 5.12

s′ ⊗ C I ⊗ (t⊗ C) s⊗ C g

χχχs′,t⊗Cχs′,t⊗C

χχ

s′ ⊗BI ⊗ (t⊗ C) s⊗Bg

Figure 5.13

(s′ ⊗ I)⊗ C (I ⊗ t)⊗ C s⊗ C g

χ⊗ Cχ⊗ C χχ

χχ

(s′ ⊗ I)⊗B(I ⊗ t)⊗ C s⊗Bg

Figure 5.14
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(s′ ⊗ I)⊗ C (I ⊗ t)⊗ C s⊗ C g

χ⊗ Cχ⊗ C

χχ

(s′ ⊗ I)⊗B(I ⊗ t)⊗ C s⊗Bg

Figure 5.15

l l• g f

fg

Figure 5.16

l l• g f

fg

Figure 5.17

125



Proposition 5.3.2. Let ∗ be the one-object, one-morphism category. There is a linear
functor from the trivial ∗-representation, ∗, to the B(I, I)-representation B(A,A) for which
the associated functor is the functor that picks out the identity,

idA : ∗ → B(A,A)

for which the associated monoidal functor is the functor that picks out the identity

idI : ∗ → B(I, I)

and for which the associated natural transformation is given by the diagram below for every
s, t ∈ B(I, I), every f ∈ B(A,B) and every g ∈ B(B,C).

l l•

I ⊗−

Proof. We firstly show that the first diagram of Definition 4.1.9 commutes. The path around
the right-hand side is given by the following diagram.

l l• l l•

I ⊗−

The path around the left-hand side is given by the following diagram.

l l• l l•

I ⊗−

But note that both of the above 2-cells are equal to the 2-cell below.

l l• l l•

I ⊗−
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Now consider the second diagram of Definition 4.1.9. Since we are treating composition
unitors as identity 2-cells, both the right-hand path and the left-hand path are given by the
diagram below.

l l•

I ⊗−

Thus, the diagram commutes and so (id, id,m) is a linear functor.

These linear functors will, of course, be transformed into the B(I, I)-functors necessary
for our bicategorical enrichment.

Proposition 5.3.3. There is a linear natural transformation whose natural transformation
component, and monoidal natural transformation component, are given by λ̊ in the following
two diagrams.

B(B,B)×B(A,B)

∗ ×B(A,B) B(A,B)

◦

∼

idB×B(A,B)

λ̊

B(I, I)×B(I, I)

∗ ×B(I, I) B(I, I)

◦

∼

idI×B(I,I)

λ̊

Proof. By appealing to strictification we may treat λ̊ as the identity 2-cell. Thus, the re-
striction of λ̊ to scalars is, trivially, monoidal and the diagram of Definition 4.1.13 commutes
trivially.

Proposition 5.3.4. There is a linear natural transformation whose natural transformation
component, and monoidal natural transformation component, are given by ρ̊ in the following
two diagrams.

B(A,B)×B(A,A)

B(A,B)× ∗ B(A,B)

◦

∼

B(A,B)×idA

ρ̊

B(I, I)×B(I, I)

B(I, I)× ∗ B(I, I)

◦

∼

B(I,I)×idI

ρ̊
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Proof. This follows for the same reasons as above.

Proposition 5.3.5. There is a linear natural transformation whose natural transformation
component, and monoidal natural transformation component, are given by α̊ in the following
two diagrams.

B(C,D)× (B(B,C)×B(A,B)) B(C,D)×B(A,C)

(B(C,D)×B(B,C))×B(A,B) B(A,C)

B(B,D)×B(A,B)

B(C,D)⊗◦

◦α

◦×B(A,B) ◦

α̊

B(I, I)× (B(I, I)×B(I, I)) B(I, I)×B(I, I)

(B(I, I)×B(I, I))×B(I, I) B(I, I)

B(I, I)×B(I, I)

B(I,I)⊗◦

◦α

◦×B(I,I) ◦

α̊

Proof. Again, this follows from strictification.

We now have all of the data necessary to enrich over the bicategory of closed represent-
ations, and we will use the constructed 2-functors in the last section to change the base of
our enrichment

Theorem 5.3.6. Every left-composition-closed, right-monoidal-closed bicategory B is the
underlying bicategory of a B(I, I)-Cat-enriched bicategory.

Proof. The five above propositions give all of the necessary data to enrich over the bicat-
egory of closed B(I, I)-iterated representations. To be explicit, we let B× be the V -Rep×cl-
bicategory where B×(A,B) is given by the V -representation defined in Lemma 5.2.19. We
define the enriched identity 1-cell to be

(id, id) : (∗, ∗)→ (B(A,A),B(I, I));

we define the enriched composition 1-cell to be

(◦, ◦) : (B(B,C)×B(A,B),B(I, I)×B(I, I))→ (B(A,C),B(I, I));

and the enriched unitors and enriched associator are given by the pointwise unitors and
associators. Clearly the underlying bicategory of B× is B, and note that, since the axioms
of enriched bicategories hold component-wise in Cat, they hold for B×.
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Now using Lemma 4.3.3 and Lemma 4.3.5 and Garner and Shulman’s [24, p. 13.2] base-
change trifunctor associated to a monoidal 2-functor, we can replace V -Rep×cl with V -Cat in
our enrichment to get the V -Cat-bicategory B. To see that the underlying bicategory of B
is B, firstly note that, as pointed out in Theorem 4.2.8, the enriching functor commutes with
the underlying category 2-functor. The collapsing 2-functor does not necessarily commute
with the underlying category 2-functor. However, for all A and B, B×(A,B) is a V -
representation, and the collapsing functor is the identity on V -categories.

Example 5.3.7. The enriched bicategory Rel has enrichment given by

Rel(A,B)(R,S) =

{
∗ if R ⊆ S
∅ otherwise.

In other words, single 2-cells are replaced by truth values.

Example 5.3.8. The enriched bicategory BimR has enrichment given by equipping the set
of bimodule homomorphisms with the usual R-module structure.

Example 5.3.9. The enriched bicategory DBim has enrichment given by replacing taking
the 2-cells between bimodules M and N to be the elements of the chain complex of R-
modules RHom(M,N).

Example 5.3.10. The enriched bicategory V -Prof has enrichment given by replacing the
sets of V -natural transformations between profunctors with V -natural transformation ob-
jects. Let P,Q : A −7−→ B be profunctors. By the Fubini theorem for ends, the scalar between
them is given by

»

A

»

B

V (P (A,B), Q(A,B)) ∼=
»

(A,B)

V (P (A,B), Q(A,B)) ∼= Nat(P,Q)

which can be found, for example, in Loregian’s [48, thm. 1.3.1] book.

Example 5.3.11. The scalars for the bicategory Span(Set) are given by Set and therefore
the enrichment must return the same bicategory. If C is some other category that is locally
cartesian closed with finite limits, then the enrichment can be recovered by taking the
natural strictification, where the objects of Span(C ) are thought of as slice categories, and
taking the natural transformation objects in C .

Example 5.3.12. The enriched bicategory Path(G), for a topological group G, has enrich-
ment given by replacing homotopy classes of homotopies with loops. Explicitly, if p, q : x→ y
are paths in the space, then the scalar between them is the loop that they create, with
basepoint shifted to be the unit. Explicitly, the hom-object between p and q is (p ; q) · x−1,
where the semicolon denotes concatenation of paths.

Now that we have the enrichment, we can define the enriched cotrace functor.

Definition 5.3.13. The enriched cotrace functor at an object A in a left-composition-
closed right-monoidal-closed bicategory is the functor

Tr
◦
:= B(A,A)(idA,−) : B(A,A)→ B(I, I)
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Recall that the 2-trace of an endomorphism E : A → A, as studied by Bartlett [7,
def. 7.8], and Ganter and Kapranov [23, def. 3.1], was given by B(A,A)(idA, E). The
cotrace functor above then gives an enriched version of the 2-trace. It is worth noting
that the 2-trace as defined by Bartlett was given specifically for the 2-category of 2-Hilbert
spaces, and has a Hilbert space structure. We conjecture that the 2-category of 2-Hilbert
spaces has a left-composition-closed right-monoidal-closed structure, and that its scalars are
given by Hilbert spaces, but we do not prove this.

Recall also that the enriched cotrace functor gives the cotrace in the sense of Day and
Street [19, def. 8]. In this way we unify the 2-trace.

Before we move on to compact-closed categories and traces, it is worth noting that the
enriched bicategory retains many of the properties of the original bicategory: for example,
local completeness and cocompleteness.

Proposition 5.3.14. If B is locally complete then so is B. If B is locally cocomplete then
so is B.

Proof. Note that for every A,B ∈ B, B(A,B) is powered and copowered, with power and
copower given by Spr◦(s) ◦ (−) and Spr◦(s) ⊸ (−) respectively. Since weighted limits are
composed of conical limits and powers – see for example, Kelly’s [38, thm. 3.73] monograph –
and weighted colimits are composed of conical limits and copowers, if all conical limits exist
in B(A,B) then all weighted limits exist in B(A,B) and similarly for weighted colimits.

We don’t give a definition here of what it means to be a monoidal-closed enriched bic-
ategory. As such, whilst it seems likely that the tensor and closed structures exist for B
we don’t give a proof that they do. But it is still useful to know that the tensor gives rise
to B(I, I)-functors between the hom-categories of B, and that the name and realisation
functors have enriched functor analogues.

Proposition 5.3.15. For every pair of objects A,B ∈ B there is an enriched functor

−⊗B : B(A,A)→ B(A⊗B,A⊗B)

that we call the enriched right tensor functor, whose underlying functor is the usual tensor
functor.

Proof. It suffices to show that there is a strong linear functor

B(A,A)→ B(A⊗B,A⊗B)

whose functor component is given by the usual −⊗B.
In order to do this we need to give a natural transformation

Spr◦A⊗B(s) ◦ (f ⊗B)
m−→ (Spr◦A(s) ◦ f)⊗B

in B(A,A) that satisfies the axioms of a linear functor.
To simplify things let’s treat B as a Gray monoid. Then we need a natural transforma-

tion
(s⊗A⊗B) ◦ (I ⊗ f ⊗B)

m−→ ((s⊗A) ◦ (I ⊗ f))⊗B
but in a Gray monoid the left and right-hand sides above are equal, so we can choose m to
be the identity 1-cell and the axioms hold trivially.
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Proposition 5.3.16. For every pair of objects A,B ∈ B, there is an equivalence defined
by a pair of enriched functors

ÐÐ⇀
(−) : B(A,B) ⇄ B(I, [A,B]) :

↼ÐÐ
(−)

that we call the enriched name and realisation functors, whose underlying functors are the
usual name and realisation functors.

Proof. In the proof of Lemma 5.2.11, we defined a B(I, I)-linear structure for the name
and realisation functors and showed they were equivalent as linear functors. Thus, by the
enriching 2-functor, they are the underlying functors of B(I, I)-functors. Since 2-functors
preserve equivalences, the enriched name and realisation functors give an equivalence.

Proposition 5.3.17. Let f : B → C be a 1-cell in B. Then for every A ∈ B there is an
enriched postcomposition functor

f ⋄ (−) : B(A,B)→ B(A,C)

whose underlying functor is f ◦(−), and for every D ∈ B there is an enriched precomposition
functor

(−) ⋄ f : B(C,D)→ B(B,D)

whose underlying functor is (−) ◦ f .

Proof. Since B is the underlying category of B we know that there is a B(I, I)-functor

f : ∗ → B(B,C)

f : ∗ → B(B,C)

that picks out the 1-cell f . Then we construct (−) ⋄ f as the composite

B(A,B)
∼−→ ∗ ⊗B(A,B)

f⊗B(A,B)−−−−−−−→ B(B,C)⊗B(A,B)
⋄−→ B(A,C)

whose underlying functor is f ◦ (−) since the underlying functor of enriched composition is
usual composition. A similar construction gives the enriched precomposition functor.

The enriched bicategory B is left-composition-closed, like B, in the sense that the post-
composition functor defined above has a right adjoint.

Lemma 5.3.18. Let B be a left-composition-closed, right-monoidal-closed bicategory. The
B(I, I)-Cat-bicategory B is left-composition-closed. That is to say, for every 1-cell f : A→
B there is a B(I, I)-adjunction

f ⋄ (−) : B(A,B) ⇄ B(A,C) :f −⋄ (−)

where ◦ denotes the enriched composition. Furthermore, f ⊸ (−) is the underlying functor
of the B(I, I)-functor f −⋄ (−).

Proof. We could give an indirect proof by constructing a linear functor from the usual lift
functor. However, in this case a direct approach is just as simple. Firstly, we define a
candidate for an enriched functor f −⋄ (−) and show that it is, in fact, an enriched functor.
We then show that this enriched functor is adjoint to enriched post-composition functor.
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Finally, by uniqueness of adjoints we have that the underlying functor must be the usual
lift functor.

We begin by defining a functor f −⋄ (−). On objects, we define f −⋄ (−) to be the same
as f ⊸ (−). To define the functor morphism we need to show that for any g : A → C and
h : A→ C there is a morphism in B(I, I)-Cat,

Tr
◦
(g ⊸ h)→ Tr

◦
((f ⊸ g) ⊸ (f ⊸ h)).

Since Tr
◦
is a functor, it suffices to know that there is a morphism

(g ⊸ h)
ζ−→ (f ⊸ g) ⊸ (f ⊸ h).

We define ζ is given as the adjunct to the canonical morphism

(f ⊸ g) ◦ (g ⊸ h)→ (f ⊸ h),

which is itself the adjunct of the map

f ◦ (f ⊸ g) ◦ (g ⊸ h)
ϵ◦(g⊸h)−−−−−→ g ◦ (g ⊸ h)

ϵ−→ h.

Here ϵ is the counit for the composition-lift adjunction. Thus, ζ is a candidate for the
functor morphism. We now need to show that ζ adheres to the axioms of enriched functors.

We firstly need to show that the functor preserves the enriched vertical composition.
This means we need to show that the following diagram commutes.

B(A,C)(h, k)

◦ B(A,C)(g, h)

B(A,B)(f −⋄ h, f −⋄ k)

◦ B(A,B)(f −⋄ g, f −⋄ h)

B(A,C)(g, k) B(A,B)(f −⋄ g, f −⋄ k)

f−⋄(−)◦f−⋄(−)

• •

f−⋄(−)

Figure 5.18

Firstly note how the enriched vertical composition is defined in the B(I, I)-category
B(A,C). By construction, given f, g, h : A → C we have that the functor morphism for
vertical composition

B(A,C)⊗B(A,C)→ B(A,C)

is given by a morphism

Tr
◦
(g ⊸ h) ◦ Tr◦(f ⊸ g)→ Tr

◦
(f ⊸ h)

which is the composite of three canonical morphisms in B(I, I). Firstly we have the braiding
in B(I, I) given by

Tr
◦
(g ⊸ h) ◦ Tr◦(f ⊸ g)

X−→ Tr
◦
(f ⊸ g) ◦ Tr◦(g ⊸ h).
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Secondly, note that the spread functor is strong monoidal and so the enriched cotrace
functor, being right adjoint to the spread functor, has a canonical lax monoidal structure.
This means there is a canonical natural transformation

Tr
◦
(f ⊸ g) ◦ Tr◦(g ⊸ h)

φ−→ Tr
◦
((f ⊸ g) ◦ (g ⊸ h)).

The third and final morphism is the canonical morphism

Tr
◦
((f ⊸ g) ◦ (g ⊸ h))

Tr
◦
(ξ)−−−−→ Tr

◦
(f ⊸ h),

and note that ξ is the adjunct of ζ.
Thus, to show that Figure 5.18 commutes we need to show that the following diagram

commutes.

Tr
◦
(h ⊸ k) ◦ Tr

◦
(g ⊸ h)

Tr
◦
((f ⊸h) ⊸ (f ⊸ k))

◦ Tr
◦
((f ⊸ g) ⊸ (f ⊸ h))

Tr
◦
(g ⊸ h) ◦ Tr

◦
(h ⊸ k)

Tr
◦
((f ⊸g) ⊸ (f ⊸ h))

◦ Tr
◦
((f ⊸ h) ⊸ (f ⊸ k))

Tr
◦
((g ⊸ h) ◦ (h ⊸ k))

Tr
◦
((f ⊸g) ⊸ (f ⊸ h)

◦ (f ⊸ h) ⊸ (f ⊸ k))

Tr
◦
(g ⊸ k) Tr

◦
((f ⊸ g) ⊸ (f ⊸ k))

X

f−⋄(−)◦f−⋄(−)

X

φ φ

ξ ξ

f−⋄(−)

However, due to the naturality of X and φ, and the fact that Tr
◦
is a functor, it suffices to

show that the following diagram commutes.

(g ⊸ h) ◦ (h⊸ k) ((f ⊸ g) ⊸ (f ⊸ h)) ◦ ((f ⊸ h) ⊸ (f ⊸ k))

(g ⊸ k) (f ⊸ g) ⊸ (f ⊸ k)

ζ

ξ ξ

ζ

But, since ξ is the adjunct of ζ, this diagram is the adjunct to the following diagram

(f ⊸ g) ◦ (g ⊸ h) ◦ (h⊸ k) (f ⊸ h) ◦ (h⊸ k)

(f ⊸ g) ◦ (g ⊸ k) f ⊸ k

ξ◦(h⊸k)

(f⊸g)◦ξ ξ

ξ

which commutes because of the naturality of ξ. Thus, Figure 5.18 commutes.
Next we need to show that the morphism preserves identities. In other words we need

to show that the following diagram commutes.
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∗ B(A,C)(g, g)

B(A,B)(f ⊸ g, f ⊸ g)

ι

ι ζ

Figure 5.19

Firstly note that the enriched identity morphism, by construction, is given by the fol-
lowing composite

id
ψ−→ Tr

◦
(id)

Tr
◦
(η)−−−−→ g ⊸ g,

where ψ is the unit map that gives Tr
◦
a lax monoidal structure, and η is the unit of the

composition-lift adjunction. Then we need to show that the diagram below commutes.

id Tr
◦
(id) Tr

◦
(g ⊸ g)

Tr
◦
((f ⊸ g) ⊸ (f ⊸ g))

ψ Tr
◦
(η)

Tr
◦
(η)

Tr
◦
(ζ)

Thus, it suffices to show that the following diagram commutes.

id g ⊸ g

(f ⊸ g) ⊸ (f ⊸ g)

η

η ζ

But this diagram commutes because the top right path is, by definition equal to the top
right path in the following diagram.

id g ⊸ g

(f ⊸ g) ⊸ (f ⊸ g) f ⊸ g ⊸ ((f ⊸ g) ◦ (g ⊸ g))

(f ⊸ g) ⊸ (f ⊸ g)

η

η

η

η

ζ

This diagram commutes by naturality and the zigzag identities for the composition-lift
adjunction. Thus, we know that Figure 5.19 commutes, and so our enriched lift functor
f −⋄ (−) is, in fact, a functor.

Now all that remains is to prove that the enriched lift functor f −⋄ (−) is adjoint to the
enriched post-composition functor f ⋄ (−). This means giving a natural isomorphism

Tr
◦
((g ◦ f) ⊸ h) ∼= Tr

◦
(f ⊸ (g ⊸ h))

and so it suffices to show that there is a natural isomorphism

(g ◦ f) ⊸ h ∼= f ⊸ (g ⊸ h).
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This follows from the Yoneda lemma and the fact that for any k : A→ A

B(A,A)(k, (g ◦ f) ⊸ h) ∼= B(A,C)(g ◦ f ◦ k, h)
∼= B(A,B)(f ◦ k, g ⊸ h)
∼= B(A,A)(k, f ⊸ (g ⊸ h)).

Thus, f ⋄ (−) is left adjoint to f −⋄ (−) in the category of B(I, I)-categories. Finally, since
the underlying functor of f ⋄ (−) is the usual postcomposition functor f ◦ (−), the forgetful
2-functor

(−)0 : B(I, I)-Cat→ Cat

preserves adjoints, and adjoints are unique up to isomorphism, we know that the underlying
functor of f −⋄ (−) is the usual lift functor f ⊸ (−).

Proposition 5.3.19. If f : B → C has a pseudoinverse f• then the enriched postcomposi-
tion functor f ⋄ (−) has a pseudoinverse f• ⋄ (−), and the enriched precomposition functor
(−) ⋄ f has a pseudoinverse (−) ⋄ f•.

Proof. Let f• be an adjoint pseudoinverse for f . We show that the functor f• ⋄ (f ⋄ (−))
is isomorphic to the identity functor. This is sufficient since f• being adjoint pseudoinverse
to f implies that f is adjoint pseudoinverse to f•.

Firstly note that since B is the underlying bicategory of B we know that ∗ f•◦f−−−→
B(B,B) is isomorphic to the functor

⋄
id which picks out the identity. Since the underlying

functor of the enriched composition functor (−) ⋄ (−) is the usual composition functor
(−) ◦ (−) there is an invertible 2-cell that gives an isomorphism in the diagram below.

∗ ∗ ⊗ ∗

B(B,B) B(C,B)⊗B(B,C)

∼

(f•◦f) f•⊗f

⋄

∼=

Since B is an enriched bicategory, we also have an isomorphism of functors

⋄
α−1 : (−) ⋄ ((−) ⋄ (−)) ∼

=⇒ ((−) ⋄ (−)) ⋄ (−).

Composing these isomorphisms we have the following isomorphism

f• ⋄ (f ⋄ (−)) ∼= (f• ⋄ f) ⋄ (−) ∼= (f• ◦ f) ⋄ (−) ∼= id ⋄ (−) ∼= id.

Hence, f ⋄ (−) and f• ⋄ (−) give an equivalence of B(I, I)-categories. The case for precom-
position is analogous.
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Chapter 6

Compact-Closed Bicategories
and the Two Traces

Up until now our discussions have focused on the concept of a cotrace. The prefix ‘co-’ here
indicates that the cotrace ought to be, in some sense, opposite to some other construction
that we can call the trace. This intuition is, of course, backed up by our examples. In
different contexts the cotrace gives the centre, the homology and the end, and all of these
have dual constructions – namely the abelianisation, the cohomology or the coend.

It turns out that this dual construction follows from the usual trace in category theory,
first defined by Dold and Puppe [21, def. 4.1], that can be defined in any compact-closed
category. A compact-closed category is a symmetric monoidal category with duals. That is
to say, A is compact-closed if every object A ∈ A comes equipped with an object A∗ and
morphisms

ev : A∗ ⊗A→ I and coev : I → A⊗A∗

that we draw as cups and caps such that the usual yanking identities for adjunctions hold.

A∗ A

A∗A

In other words, A is a one-object bicategory, equipped with a symmetry, such that every
1-cell comes equipped with a choice of right adjoint.

The motivating example of a compact-closed category is the category of finite dimensional
vector spaces. It turns out the trace of any endomorphism in this category can be defined
purely in terms of the compact-closed structure. Given any linear endomorphism E, the
trace is simply given by the following diagram:

EE
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where the braiding in this diagram represents the symmetry. In this chapter we will see how
the analogous definition for composition-closed compact-closed bicategories gives rise to a
functor called the trace functor. This functor is, in some sense, dual to the cotrace functor.

The first section begins with a review of two different types of commutativity on a
monoidal bicategory: braided and symmetric. We give two semi-strictification theorems by
Gurski, and prove, using our string diagram language, that the braid for scalars is symmetric
whenever the monoidal bicategory is braided.

The second section focuses on compact-closed bicategories. It is in this section that we
define the trace functor and its right adjoint, the cospread functor, and give some examples
of the trace functor in certain bicategories. We also show that these functors have scalar-
enriched counterparts that form an enriched adjunction.

The third section is dedicated to a comparison between dagger compact categories – a
category structure that captures the structure of finite dimensional Hilbert spaces – and
composition-closed compact-closed bicategories. We give a heuristic account of why the
trace for composition-closed compact-closed bicategories is ‘split’ into the trace and cotrace.

The fourth section gives an account of the properties that the trace and cotrace share
with the linear trace. This includes linearity, dual invariance, cyclicity, and preservation of
tensors. This also gives us some insight into how the trace and cotrace might be formally
dual.

The final section looks at the properties of the codimension and dimension of a given
object in the bicategory. The dimension of a finite dimensional Hilbert space A can be
given as the trace of the identity morphism at A. Defining dimension and codimension
analogously, it turns out that codimension and dimension form a monoid-module pair in
the monoidal category of scalars. We give an account of the structures that this gives rise
to for each of our motivating examples.

6.1 Braided and Symmetric Monoidal Bicategories

In this section we give an account of braided and symmetric monoidal bicategories and the
semi-strictification theorems of Gurski. In Section 3.3 we saw that the category of scalars is
always braided monoidal. In this section we will see that if a monoidal bicategory is braided,
then its monoidal category of scalars is symmetric.

Definition 6.1.1. A braided monoidal bicategory is a monoidal bicategory B equipped
with a pseudonatural adjoint equivalence, called the braid,

bA,B : A⊗B → B ⊗A

as well as two invertible modifications, called the left and right 2-braids, whose components
are given by the diagrams below.

aA,B,CbA,(B⊗C)aB,C,A

βA|B,CβA|B,C

B ⊗ bA,C aB,A,C bA,B ⊗ C
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aA,B,Cb•A,(B⊗C)aB,C,A

βA,B|CβA,B|C

B ⊗ b•A,C aB,A,C b•A,B ⊗ C

.

These are subject to coherence axioms that can be found, for example, in Stay’s [61, def. 4.5]
paper on compact-closed bicategories. We choose to omit these since we will not appeal to
them directly.

Remark. Note that if we think of the underlying bicategory as a Gray monoid, the above
invertible modifications reduce to the isomorphisms given below.

bA,(B⊗C)

βA|B,CβA|B,C

B ⊗ bA,C bA,B ⊗ C

b•A,(B⊗C)

βA,B|CβA,B|C

B ⊗ b•A,C b•A,B ⊗ C

In a braided monoidal category B we can show that for any A ∈ B the following diagram
commutes

A⊗ I I ⊗A

A
r

b

l

which corresponds to the identity axiom for pseudonatural transformations. An analogous
result for braided monoidal bicategories holds, but proving it is far from straightforward.

Proposition 6.1.2. In a braided monoidal bicategory B there is an invertible modification
that relates the unitors and the braid, given by the diagram below.

r

γ

l b−,I

I ⊗−
−⊗ I
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Proof. Firstly notice that there is a modification γ0 given by Figure 6.1. This can be used
to construct a modification γ1, given by Figure 6.3. Finally, we can wrap γ1 in naturalisors,
as in Figure 6.2, to construct the desired 2-cell. given in wrap γ1 in naturalisors as follows
to get γ.

Clearly, then, reasoning about braided monoidal bicategories is rather unwieldy. Luckily
Gurski gives a strictification result that vastly simplifies proofs.

Definition 6.1.3. A strict braided monoidal bicategory is a braided monoidal bic-
ategory such that the underlying monoidal bicategory is a Gray monoid, and any braid or
2-braid with a unit in its index is an identity map. To be clear:

� A = A⊗ I bA,I−−−→ I ⊗A = A and A = I ⊗A bI,A−−−→ A⊗ I = A are both the identity;

� for all A, B, and C, the 2-cells in the following diagrams are identities.

bI|B⊗C

βI|B,CβI|B,C

B ⊗ bI,C bI,B ⊗ C

b•I|B⊗C

βI,B|CβI,B|C

B ⊗ b•I,C b•I,B ⊗ C

bA,I⊗C

βA|I,CβA|I,C

I ⊗ bA,C bA,I ⊗ C

bA,I⊗C

βA,I|CβA,I|C

I ⊗ bA,C bA,I ⊗ C

bA,B⊗I

βA|B,IβA|B,I

B ⊗ bA,I bA,B ⊗ I

b•A,B⊗I

βA,B|IβA,B|I

B ⊗ b•A,I b•A,B ⊗ I

Theorem 6.1.4. Every braided monoidal category is braided monoidally biequivalent to a
strict braided monoidal category.

Proof. See Gurski’s [28, thm. 27] paper: Loop spaces, and coherence for monoidal and
braided monoidal bicategories.

140



bA,− l

bA,−l

−⊗A
A⊗−

−⊗ (I ⊗ I)
−⊗ I

Figure 6.1: γ0

r

r r•

γ1

l b−,I

I ⊗−
−⊗ I

Figure 6.2: γ2
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r− ⊗ I

µ−,I

b•−,I b−,I −⊗ lI a−,I,I r•− ⊗ I

γ0

lI ⊗− b−,(I⊗I)

λI,−

lI⊗− aI,I,−

l

β−1
−|I,I

I ⊗ b−,I aI,−,I

l−⊗I I ⊗ b•−,I

λ−1
−,I

l− ⊗ I b−,I ⊗ I

(I ⊗ I)⊗−
I ⊗−

−⊗ (I ⊗ I)
−⊗ I

Figure 6.3: γ1
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Baez and Dolan [2, sec. 5], in their periodic table of n-categories, conjectured that a
one-object braided monoidal bicategory ought to be a symmetric monoidal category. It
was then pointed out by Baez and Neuchl [4, sec. 5] that if a braided monoidal bicategory
could be strictified in the sense of Gurski above, then the conjecture would hold. In light of
Gurski’s strictification theorem we give an explicit proof of that conjecture using our string
diagram language.

Lemma 6.1.5. If B is a braided monoidal bicategory then the braiding for its category of
scalars is a symmetry.

Proof. Recall that if we strictify our monoidal bicategory then the braiding for the scalars is
given by the interchangerator. Let T : B×B → B×B be the twist 2-functor that reorders
pairs of objects, 1-cells and 2-cells. Given f : A0 → A1 and g : B0 → B1 consider the 2-cell
in Figure 6.4. By definition this 2-cell is equal to the 2-cell given in Figure 6.5. Figure 6.5 is
equal to Figure 6.6 by naturality, which is equal to Figure 6.7 and Figure 6.8 by definition.
But if f and g are scalars, and we think of B as being strict braided monoidal, then we
know that b and b• are identity 1-cells. Thus, we know that χg,f = χ−1

f,g and so the braid
for scalars is a symmetry.

b• (g,A1) (B0, f) b

χg,fχg,f

(f,B1) (A0, g)

⊗ ◦ T

⊗

Figure 6.4

b• (g,A1) (B0, f) b

(g, f)

(f,B1) (A0, g)

⊗ ◦ T

⊗

Figure 6.5
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b• (g,A1) (B0, f) b

(f, g)

(f,B1) (A0, g)

⊗ ◦ T

⊗

Figure 6.6

b• (A1, g) (f,B0) b

(g, f)

(B1, f) (g,A0)

⊗ ◦ T

⊗

Figure 6.7

b• (A1, g) (f,B0) b

χ−1
g,fχ−1
g,f

(B1, f) (g,A0)

⊗ ◦ T

⊗

Figure 6.8
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Definition 6.1.6. A symmetric monoidal bicategory is a braided monoidal bicategory
equipped with an invertible modification called the syllepsis,

bA,B

σA,BσA,B

b•B,A

which is subject to coherence axioms that can be found, for example, in Stay’s [61, defs. 4.7,
4.8] paper on compact-closed bicategories. We choose to omit these, once again, since we
will not appeal to them directly.

Remark. Depending on which coherence axioms we include there is a weaker notion of a
monoidal bicategory with a commutativity structure. This is called a sylleptic monoidal
category, hence the name syllepsis. This is part of the story of the periodic table of
n-categories, but we will not make use of this definition here.

Remark. If a symmetric monoidal category is right-monoidal-closed then it is also left-
monoidal-closed, and so we simply refer to the category as monoidal-closed.

In a symmetric monoidal category the following two morphisms are equal.

A B C

A BC

=

A B C

A BC

The next proposition gives an analogue of this fact for symmetric monoidal bicategories,
and will be useful in our account of compact-closed bicategories.
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Proposition 6.1.7. In a symmetric monoidal bicategory, B, there is a modification with
components given by the diagram below.

bC⊗A,B bA⊗B,C

ββ

B ⊗ bA,C bA,B ⊗ C

Proof. The 2-cell is given by the composite in Figure 6.9, which is a modification since each
of its constituent 2-cells are modifications.

bC⊗A,B bA⊗B,C

β−1β−1 β−1β−1

bC,B ⊗ A C ⊗ bA,B bC,A ⊗ B A⊗ bB,C

ββ

bA,C⊗B

σσ

b•C,B ⊗ A bA,B⊗CbB,C ⊗ A

β−1β−1

B ⊗ bA,C bA,B ⊗ C

Figure 6.9

Definition 6.1.8. A symmetric monoidal bicategory is strict if it is strict as a braided
monoidal bicategory and the syllepsis is the identity.
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Gurski and Osorno have also given a strictification theorem for symmetric monoidal
bicategories.

Theorem 6.1.9. Every symmetric monoidal category is symmetric monoidally biequivalent
to a strict braided monoidal category.

Proof. See Gurksi and Osorno’s [29, thm. 1.13] paper: Infinite loop spaces, and coherence
for symmetric monoidal bicategories.

6.2 Compact-Closed Bicategories and the Trace

In this section we explore the properties of compact-closed bicategories with the ultimate
aim of defining the trace functor. Note here that, as with ‘monoidal-closed’, we hyphen-
ate ‘compact-closed’ to distinguish this closed structure from composition-closed structure.
Throughout this section we will apply semi-strictification to improve the readability of cer-
tain definitions and proofs.

Definition 6.2.1. Let B be a symmetric monoidal bicategory. A dual for an object A ∈ B
is an object A∗ equipped with a 1-cell

coevA : I → A⊗A∗

that we call coevaluation, and a 1-cell

evA : A∗ ⊗A→ I

that we call evaluation, such that − ⊗ A is left pseudoadjoint to − ⊗ A∗ with unit given
by −⊗ coevA and counit given by −⊗ evA.

To be explicit about what this means, if A is dual to A∗ then there are adjoint equival-
ences given by the following two pairs of 1-cells that we call the zigzag 1-cells.

−⊗A⊗ ev

−⊗A⊗ ev

−⊗ coev⊗A

−⊗ coev⊗A

−⊗ ev⊗A∗

−⊗ ev⊗A∗

−⊗A∗ ⊗ coev

−⊗A∗ ⊗ coev

Recall that the definition of pseudoadjunction we are working with here does not stipulate
any additional coherence conditions. Thus, this definition does not include the swallowtail
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diagrams that can be found in, for example, Stay’s [61, def. 4.11] account of compact-closed
bicategories. Again, as shown by Verity [63, lem. 1.3.9] this is essentially immaterial since
we can always replace the 2-cell counit or unit of the hom-equivalence

B(B ⊗A,C) ∼= B(B,C ⊗A∗)

so that it becomes an adjoint equivalence. This corresponds to changing either the cups or
the caps that show that evaluation and coevaluation are adjointly equivalent. If the cups
and caps give an adjoint equivalence between the hom-categories, then they adhere to the
swallowtail identities. In short, we can always choose our cups or caps in such a way as the
swallowtail identities hold. Thus, if A and A∗ are dual in the sense of the definition above,
then they are dual in the sense of Stay [61, def. 4.11].

Proposition 6.2.2. In every symmetric monoidal bicategory the unit object is self-dual.

Proof. This follows by taking coevaluation to be l• and evaluation to be l.

Proposition 6.2.3. Let A be an object in a symmetric monoidal bicategory. If A is dual
to both A′ and A∗ then there is a canonical equivalence between A′ and A∗.

Proof. This follows from the uniqueness of pseudoadjoints. Since −⊗A′ and −⊗A∗ are both
right pseudoadjoint to −⊗A, we know that there is a canonical equivalence B⊗A′ ∼= B⊗A∗

for all B ∈ B. In particular, there is a canonical equivalence I ⊗A′ ∼= I ⊗A∗.

Proposition 6.2.4. Let A be an object in a symmetric monoidal bicategory. If A is dual
to A∗ then A∗ is dual to A.

Proof. We will show that bA,A∗ ◦ coev and ev ◦ bA,A∗ give the coevaluation and evaluation
maps for A∗.

In order to prove this we need to show that our chosen coevaluation and evaluation maps
form the unit and counit for a pseudoadjunction between −⊗A∗ and −⊗A. In other words,
we need to check that the following functors

((−)⊗A) ◦ (B ⊗ bA∗,A) ◦ (B ⊗ coev) : B(B ⊗A∗, C)→ B(B,C ⊗A)

(C ⊗ ev) ◦ (C ⊗ bA∗,A) ◦ ((−)⊗A∗) : B(A,C ⊗A)→ B(B ⊗A∗, C)

form an equivalence. Note that if we compose the above functors we get the following
functors:

(C ⊗ ev) ◦ (C ⊗ bA,A∗) ◦ ((−)⊗A⊗A∗) ◦ (B ⊗ bA,A∗ ⊗A∗) ◦ (B ⊗ coev ⊗A∗); (6.1)

(C ⊗ ev ⊗A) ◦ (C ⊗ bA,A∗ ⊗A) ◦ ((−)⊗A∗ ⊗A) ◦ (B ⊗ bA,A∗) ◦ (B ⊗ coev). (6.2)

Thus, it suffices to show natural isomorphisms from (6.1) to the identity, and from (6.2)
to the identity. The first natural isomorphism is defined by 2-cell in Figure 6.10 where β
is the modification given by Proposition 6.1.7. The two bottom modifications follow from
strictification for braided monoidal bicategories.

The fact that this constitutes a natural transformation follows from the fact that the
2-cell is a modification.

The second natural isomorphism is given analogously. Thus, B⊗(b◦coev) and (ev◦b)⊗C
give a pseudoadjunction −⊗A∗ −⊗A, and so A∗ is dual to A whenever A is dual to A∗.
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B ⊗ coevA ⊗A∗B ⊗ bA,A∗ ⊗ A∗
f ⊗ A⊗ A∗C ⊗ bA,A∗C ⊗ ev

f ⊗ A∗ ⊗ A B ⊗ A∗ ⊗ bA,A∗

B ⊗ A∗ ⊗ ev

B ⊗ β

B ⊗ bA∗⊗A,A∗ B ⊗ bA⊗A∗,A∗

B ⊗ bI,A∗B ⊗ A∗ ⊗ coevB ⊗ ev⊗A∗B ⊗ bI,A∗

f

Figure 6.10

Corollary 6.2.5. Let A be an object in a symmetric monoidal bicategory. If A∗ is dual to
A, and A∗∗ is dual to A∗ then there is a natural equivalence from A to A∗∗.

Proof. In this case A and A∗∗ are both dual to A and so, by uniqueness of duals, they must
be equivalent.

Definition 6.2.6. A compact-closed bicategory is a symmetric monoidal bicategory in
which every object comes equipped with a choice of dual.

Note that this definition is given in terms of a structure, but we might as well define a
compact-closed bicategory as a symmetric monoidal bicategory in which every object has
a dual. Since duals are unique up to equivalence, any choice of duals would be equivalent.
For this reason, since I is self-dual, we will assume that the choice of dual for I is always
given by I∗ = I. This is a sort of partial strictification that will be convenient for discussing
the impact that duals have on scalars.

149



Proposition 6.2.7. In a compact-closed bicategory B there is a pseudofunctor, called the
dualising pseudofunctor,

(−)∗ : Bop → B

which takes every object to its chosen dual and has hom-functors given by

B(B,A)
A∗⊗−⊗B∗
−−−−−−−→ B(A∗ ⊗B ⊗B∗, A∗ ⊗A⊗B∗)

(ev⊗B∗)◦−◦(A∗⊗coev)−−−−−−−−−−−−−−−→ B(A∗, B∗).

Proof. We need to define the compositor and the identitor for the pseudofunctor. By defin-
ition of a dual, ev⊗A∗ is adjoint equivalent to coev⊗A∗, and A⊗ ev is adjoint equivalent
to coev ⊗A. Then the canonical 2-cell, defined by the diagram below, gives the identitor.

evA ⊗A∗ A∗ ⊗ id⊗A∗ A∗ ⊗ coevA

Now, given 1-cells f : B → A and g : C → B, the compositor for the dualising pseudofunctor
is defined by the following diagram.

ev ⊗ C∗ B∗ ⊗ g ⊗ C∗ B∗ ⊗ coev ev ⊗B∗ A∗ ⊗ f ⊗B∗ A∗ ⊗ coevB

ev coevA∗ ⊗ (g ◦ f)⊗ C∗

The fact that these 2-cells adhere to the axioms of pseudofunctors follows from the fact that
they are constructed from the tensor identitor and compositor and properties of adjoint
equivalences.

Remark. Note that the source of this pseudofunctor is Bop not Bcoop, so the dualising
pseudofunctor only flips 1-cells, not 2-cells.

The above definition is useful for showing that the dualising pseudofunctor is, in fact, a
pseudofunctor. But the associated hom-functor can be reinterpreted as composite of name
and realisation functors, and this interpretation will simplify working with duals.

Proposition 6.2.8. Let (−)∗ : B(B,A) → B(A∗, B∗) denote the hom-functor for the du-
alising pseudofunctor. There is an isomorphism, natural in A and B, between (−)∗ and the
following functor:

B(B,A)
ÐÐ⇀
(−)−−→ B(I, A⊗B∗)

↼ÐÐ
(−)−−→ B(A∗, B∗).
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Proof. This follows because the naming functor above is given by

B(B,A)
B∗⊗(−)−−−−−→ B(B∗ ⊗B,B∗ ⊗A) coev◦(−)−−−−−−→ B(I,B∗ ⊗A),

the realisation functor above is given by

B(I, A⊗B∗)
(−)⊗B−−−−→ B(B,A⊗B∗ ⊗B)

(A⊗ev)◦(−)−−−−−−−−→ B(B,A),

and the rest follows by pseudonaturality.

Corollary 6.2.9. The dualising pseudofunctor is a biequivalence.

Proof. This follows from the fact that both the name and realisation functors give equival-
ences.

Note that, in contrast to the various symmetry structures applied to monoidal bicat-
egories, a compact-closed structure on a bicategory will not guarantee any kind of duality
structure on the monoidal category of scalars.

Proposition 6.2.10. At the unit, the hom-functor for the dualising pseudofunctor

(−)∗ : B(I, I)→ B(I, I)

is naturally isomorphic to the identity functor.

Proof. This follows from the definition of (−)∗ and the fact that evaluation and coevaluation
for the unit are given by the left unitor and its adjoint pseudoinverse.

Proposition 6.2.11. A compact-closed bicategory is monoidal-closed with the monoidal-
closed structure given by −⊗A∗.

Proof. This follows from the definition of a dual.

In Section 3.5 we gave a number of examples of monoidal-closed bicategories. In fact, all
of our examples were compact-closed. The unit and counit maps given there can be used to
reverse-engineer the coevaluation and evaluation maps. Below we give an explicit account
of what the dualising pseudofunctor does to objects and 1-cells in each of our examples.

Example 6.2.12. The bicategory Rel is compact-closed. The dual of a set A is the same
set A. The dual of a relation R ⊂ A×B is the transpose relation RT .

Example 6.2.13. The bicategory BimR is compact-closed. The dual of an algebra A is
Aop, the opposite algebra. The dual of an A-B-bimodule is the same bimodule, thought of
as a Bop-Aop-bimodule.

Example 6.2.14. The bicategory DBimR is compact-closed. The dual of an algebra A is
Aop, the opposite algebra. The dual of a differential graded bimodule works similarly to the
above.

Example 6.2.15. The bicategory V -Prof is compact-closed. The dual of a category is A
is A op, the opposite category. A profunctor P : A −7−→ B is a functor

P : Bop ⊗A → V

and by symmetry in V this can be identified with a functor

P : A ⊗Bop → V

which gives a profunctor P : Bop −7−→ A op.
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Example 6.2.16. Given a category C with finite limits, the bicategory Span(C ) is compact-

closed. The dual of an object C is the same object C. The dual of a span A
f←− S

g−→ B is

the span B
g←− S f−→ A.

Example 6.2.17. Given a topological abelian group G, the bicategory Path(G) is compact-
closed. The dual of a point x is its inverse x−1. The dual of a path p : x → y is path
(y−1 · p · x−1) : y−1 → x−1.

Definition 6.2.18. A symmetric monoidal bicategory B is called coclosed if its opposite
bicategory is closed. That is to say, B comes equipped with a pseudofunctor

[−,−] : Bop ×B → B

such that for every A ∈ B, [A,−] is left pseudoadjoint to −⊗A.

Proposition 6.2.19. A compact-closed bicategory is coclosed with coclosed structure given
by −⊗A∗.

Proof. Since we know that A∗∗ is naturally isomorphic to A we have a sequence of isomorph-
isms B(B ⊗A∗, C) ∼= B(B,C ⊗A∗∗) ∼= B(B,C ⊗A) that give coclosedness.

It is worth noting here that we can use the name and realisation functors in the ‘opposite
direction’. Suppose that we have a 1-cell f : A⊗B∗ → I. Then the name of such a 1-cell is
given by

Ð⇀
f : A→ I ⊗B∗∗ ∼−→ B

and so given a 1-cell f : A→ B we can take the ‘realisation’ of f to be a map

↼Ð
f : A⊗B∗ → I

which is more of a ‘coname’ than a realisation, since it is the name functor for the coclosed
structure.

Now that we have given some basic properties of a compact-closed bicategory, we will
investigate how the compact-closed structure interacts with composition-closed structure.

Proposition 6.2.20. A left-composition-closed compact-closed bicategory is also right-composition-
closed with the right extension of g along f given by

(g › f) ∼= (g∗ ⊸ f∗)∗.

Proof. This follows from the following chain of adjoint natural isomorphisms

B(A,C)(h ◦ g, f) ∼= B(C,A)((h ◦ g)∗, f∗)
∼= B(C,A)(g∗ ◦ h∗, f∗)
∼= B(C,B)(h∗, g∗ ⊸ f∗)
∼= B(B,C)(h, (g∗ ⊸ f∗)∗),

since, recall, the dualising functor (−)∗ only reverses 1-cells.
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Remark. This means that if we have a left-composition-closed compact-closed bicategory
we can simply refer to it as composition-closed compact-closed.

It is worth noting here that, whilst a definition for compact-closed bicategory was yet to
be given formally, Betti andWalters [9, def. 5.6] suggested that the name closed bicategory
should refer to composition-closed compact-closed bicategory in which all hom-categories are
finitely complete and cocomplete.

Remark. In the next section we will see how this particular property relates to the notion
of dagger compactness.

A priori, right-composition-closedness has the potential to give another scalar enrich-
ment. We have shown that every left-composition-closed, right-monoidal-closed bicategory
can be enriched over the bicategory of scalar enriched categories. But by considering this
result on Bop we could just have easily shown the result for right-composition-closed, right-
monoidal-coclosed bicategories. Thus, a left-composition-closed compact-closed bicategory
might have two distinct scalar enrichments. Given 1-cells f, g : A → B the scalar between
them would then be the extension in the following diagram.

I I A⊗B∗
↼Ð
g›↼Ðf ↼Ð

f

↼Ð
g

It turns out that this just gives us the enrichment defined in the previous chapter.

Proposition 6.2.21. If B is a composition-closed compact-closed bicategory then for 1-cells
f, g : A→ B there are natural isomorphisms

↼Ð
g › ↼Ð

f ∼= B(A,B)(f, g).

Proof. Recall that (−)∗ : B(I, I) → B(I, I) is naturally isomorphic to the identity and so
for any scalar s we have

B(I, I)(s,
↼Ð
g › ↼Ð

f ) ∼= B(I, I)(s, ((
↼Ð
f )∗ ⊸ (

↼Ð
g )∗)∗)

∼= B(I, I)(s∗, (
↼Ð
f )∗ ⊸ (

↼Ð
g )∗)

∼= B(A⊗B∗, I)((
↼Ð
f )∗ ◦ s∗, (↼Ðg )∗)

∼= B(A⊗B∗, I)((s ◦↼Ðf )∗, (↼Ðg )∗)
∼= B(A⊗B∗, I)(s ◦↼Ðf ,↼Ðg ).

But now note that, since
↼ÐÐ
(−) is the name functor for Bop, by Lemma 5.2.11, we have natural

isomorphisms

B(A⊗B∗, I)(s ◦↼Ðf ,↼Ðg ) ∼= B(A⊗B∗, I)(
↼ÐÐÐÐÐÐÐ
f ◦ Spr◦(s),↼Ðg )

∼= B(A,B)(f ◦ Spr◦(s), g)
∼= B(A,B)(Spr◦(s), f ⊸ g)

∼= B(I, I)(s,Tr
◦
(f ⊸ g)).
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Thus, there is a natural isomorphism

B(I, I)(s,
↼Ð
g › ↼Ð

f ) ∼= B(I, I)(s,Tr
◦
(f ⊸ g))

which, by the Yoneda lemma, implies that there is a natural isomorphism

↼Ð
g › ↼Ð

f ∼= Tr
◦
(f ⊸ g).

Definition 6.2.22. The trace functor for an object A in a compact-closed bicategory B
is the functor

Tr◦ : B(A,A)→ B(I, I)

given by taking the composite

B(A,A)
ÐÐ⇀
(−)−−→ B(I, A⊗A∗)

((ev◦b)◦(−))−−−−−−−−→ B(I, I).

If we want to be explicit about how this functor acts on endomorphisms, the functor
takes in an endo-1-cell f : A→ A and returns the scalar given by the composite

I
coev−−−→ A⊗A∗ f⊗A∗

−−−−→ A⊗A∗ b−→ A∗ ⊗A ev−→ I.

Thus, if B is a compact-closed bicategory without any non-identity 2-cells, the trace func-
tor is just the usual trace function for compact-closed categories. Of course, by Proposi-
tion 5.3.16 and by Proposition 5.3.17 there is an enriched version of this functor.

Definition 6.2.23. The enriched trace functor for an object A in a compact-closed
bicategory B is the functor

Tr◦ : B(A,A)→ B(I, I)

given by taking the composite

B(A,A)
ÐÐ⇀
(−)−−→ B(I, A⊗A∗)

(ev◦b)⋄(−)−−−−−−−→ B(I, I).

Most of the following examples of traces in compact-closed bicategories are due to Willer-
ton [66].

Example 6.2.24. In the compact-closed bicategory Rel the trace of a relation R : A → A
is given by the relation

Tr(R) =

{
∗ if ∃a ∈ A aRa

∅ otherwise.

In other words, Tr(R) = ∗ if and only if Ac is not reflexive.

Example 6.2.25. In the compact-closed bicategory BimR the trace of an A-A-bimodule
M is given by the R-module of coinvariants, or the abelianisation, of the algebra. This is
the quotient R-module

M/⟨ma− am | m ∈M,a ∈ A⟩.
This follows from the fact that the trace can be thought of as the composite

R
Ð⇀
A−→ A⊗Aop

↼Ð
M−→ R
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which given as a tensor is
A⊗Aop⊗AM.

By definition of the tensor product we get the quotient described above.

Example 6.2.26. In the compact-closed bicategory DBimR, when R is a field, the trace
of a differential graded A-A-bimodule M is given by the Hochschild homology of A with
coefficients inM . This follows from the fact that the trace can be thought of as a composite

R
Ð⇀
A−→ A⊗Aop

↼Ð
M−→ R

which is given by the derived tensor

R⊗LA⊗Aop M.

This derived tensor has n’th component given by TorA⊗Aop

n (A,M). As shown by Cartan
and Eilenberg [15, ch. IX] this is equivalent to the definition of the Hochschild homology of
A with coefficients in M .

Example 6.2.27. In the compact-closed bicategory V -Prof the trace of a profunctor
P : A −7−→ A is the coend of P . This follows from the Fubini theorem for coends – see
for example Loregian’s [48, thm. 1.3.1] book – and the co-Yoneda lemma:

Tr(P ) ∼= ↼ÐP ◦Ð⇀id ∼=
(A,A′)∈A op⊗A»

Hom(A,A′)⊗ P (A,A′) ∼=
A» A′»

Hom(A,A′)⊗ P (A,A′)

∼=
A∈A»

P (A,A).

Example 6.2.28. Given a category C with finite limits, in the compact-closed bicategory

of spans Span(C ), the trace of a span A
f←− S g−→ A is given by the pullback in the following

diagram.

S ×A S S

S A.

⌜
f

g

If C is the category of sets then this trace is the set {(s, s′) ∈ S × S | f(s) = g(s′)}.
Example 6.2.29. If G is a topological group, in the compact-closed bicategory Path(G)
the trace of a loop p at x is given by the loop (p · x−1) : e→ e.

Remark. Comparing the above examples of trace to our examples of cotrace it seems
that there is some sort of duality between the two: cohomology vs homology, centre vs
abelianisation, ends vs coends. Formalising this isn’t exactly straightforward. For a start
we need some kind of context for this duality – some kind of category structure where the
two functors can be compared. Assuming that B(I, I) is complete and cocomplete we can
construct the functor category,

[B(A,A),B(I, I)]

and since both B(A,A) and B(I, I) are monoidal, this has a monoidal structure given by
Day [17, p. 19] convolution. This would seem to be the obvious choice of category in which
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to compare the two functors. But since B(A,A) is enriched over B(I, I), the unit for Day
convolution is B(id,−). This is, of course, the cotrace1. Thus, the trace and the cotrace
cannot be dual in this category, otherwise they would have to be isomorphic as functors.
In the final sections of this chapter we investigate how the trace and cotrace are related, in
order to find some formal explanation for this putative duality.

Clearly by Proposition 5.3.16 and by Proposition 5.3.17 the underlying functor of the
enriched trace functor is the trace functor. If our bicategory is composition-closed as well
as compact-closed then the trace, like the cotrace, has an adjoint.

Proposition 6.2.30. For every A ∈ B the enriched trace functor has a right adjoint

Spr
◦
A : B(I, I)→ B(A,A)

that we call the enriched cospread functor.

Proof. The enriched cospread functor is given by the composite

B(I, I)
(ev◦b)−⋄(−)−−−−−−−−→ B(I, A⊗A∗)

↼ÐÐ
(−)−−→ B(A,A)

and the fact that this is right adjoint to the trace follows from the fact that the enriched
name and realisation functors give an equivalence, whilst the enriched postcomposition and
lift functors give an adjunction.

Remark. Note that we now have two pairs of enriched functors that give adjoints. Firstly,
there is trace and cospread

Tr◦ : B(A,A) ⇄ :B(I, I) :Spr
◦
.

Secondly there is spread and cotrace

Spr◦ : B(I, I) ⇄ B(A,A) :Tr
◦
.

In order to remember names and symbols note that in both cases the functor whose name
starts with “co-” is the right adjoint, has a ⊸ over the top and is constructed using the lift
functor.

This immediately implies an underlying functor to the cospread functor, which is right
adjoint to the unenriched trace functor.

Corollary 6.2.31. The trace functor has a right adjoint that we call the cospread functor.

6.3 Dagger Compact Categories

In a composition-closed compact-closed bicategory we have a spread and a cospread, a trace
and a cotrace. It is here that our analogy with linear algebra breaks down somewhat. Linear
endomorphisms have a trace but no cotrace. This is because, in some sense, the trace and
the cotrace seem to coincide. Heuristically this seems to follow from the idea that weighted

1Thank you to Ciaran Cassidy for pointing out that the Day convolution of the trace and cotrace functors
is ‘probably not interesting’.
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limits and colimits both correspond to sums, and left and right adjoints both correspond to
linear adjoints.

To try and give some formal backing to this idea we will compare composition-closed
compact-closed bicategories to dagger compact categories. Dagger compact categories, in
some sense, completely describe the category of finite dimensional Hilbert spaces. It turns
out that the combination of a composition-closed structure and a compact-closed structure
gives something very similar to the structure of a dagger compact category, and under
certain conditions the trace and cotrace will coincide.

Definition 6.3.1. A dagger compact category is a compact-closed category C equipped
with a strict symmetric monoidal involutive functor

(−)† : C op → C

that is the identity on objects, such that for every object A ∈ C the following diagram
commutes.

I

A⊗A∗ A∗ ⊗A

ev† coev

b

(6.3)

Definition 6.3.2. If C is a dagger category – that is a category equipped with an identity-
on-objects involution (−)† : C op → C – then we call a morphism f : A → B in C unitary
if f† is the inverse of f .

Then we can spell out the definition of a dagger compact category in terms of unitary
morphisms.

Proposition 6.3.3. A dagger compact category is a compact-closed category equipped with
a dagger structure such that

(f ⊗ g)† = f† ⊗ g†,

the unitors, associator and braid are unitary, and (6.3) holds.

Proof. Suppose C is a dagger compact category as defined in Definition 6.3.1, then since
(−)† is strict symmetric monoidal, (f ⊗ g)† = f† ⊗ g†. Now note that the coherence maps
for C op are the inverses of those for C . But also note that since (−)† is strict symmetric
monoidal the associated coherence maps are identities. That means that the commutativity
of the coherence diagrams reduce to the commutativity of the following diagrams.

(A⊗B)⊗ C A⊗ (B ⊗ C)

a

(a−1)†

A⊗B B ⊗A

b

(b−1)†
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I ⊗A A

l

(l−1)†

A⊗ I A

r

(r−1)†

Thus, any dagger compact category as defined in Definition 6.3.1 is a dagger compact
category as defined in the proposition above.

The converse follows straightforwardly, since the stipulation that (f ⊗ g)† = f† ⊗ g†, as
well as the unitarity of the coherence maps, forces (−)† to be strict symmetric monoidal.

Categories with this precise structure seem to have first been defined by Abramsky
and Coecke [1, def. 7.1], under the name ‘strongly compact categories’, in the context of
quantum protocols. Prior to this Doplicher and Roberts [22, sec. 1] studied C∗-categories
with ‘conjugates’, which are dagger compact categories enriched over Banach spaces. Baez
and Dolan [2, p. 25] also previously referred to monoidal categories ‘with duals’, which
are like dagger compact categories, but where the operation (−)∗ is only defined on objects.
Selinger [60, thm. 2.2] proved that all dagger compact categories are, in some sense, described
by the category of finite dimensional Hilbert spaces. Formally speaking, Selinger developed a
string diagram language for dagger compact categories and showed that if a given statement
in that language holds in the category of finite dimensional Hilbert spaces, then it holds for
all dagger compact categories.

In a dagger compact category we refer to f† as the adjoint of f , since for finite dimensional
Hilbert spaces the dagger functor takes every linear map to its linear adjoint. Note that
adjoints and duals interact well.

Proposition 6.3.4. If C is a dagger compact category then the following diagram commutes

C C op

C op C

(−)†

(−)∗ (−)∗

(−)†

Proof. On objects these two functors clearly agree since they both take an object A to its
dual A∗. Thus, it suffices to show that (f†)∗ is equal to (f∗)† for all f : A→ B. Note that
f∗ is equal to

B∗ B∗⊗coevA−−−−−−−→ B∗ ⊗A⊗A∗ B∗⊗f⊗A∗
−−−−−−−→ B∗ ⊗B ⊗A∗ evB⊗A∗

−−−−−→ A∗

and so (f∗)† is equal to the top path in Figure 6.11. But the bottom path gives (f†)∗,
and we know that each of the internal polygons in Figure 6.11 commutes, either by the
commutativity of (6.3) or properties of the braid natural transformation.

There is a similarity here with Proposition 6.2.20 given above. Note that, in a bicategory,
if the right adjoint of f exists then it is given by f ⊸ id. Similarly, if the left adjoint of f
exists, then it is given by id › f . So f ⊸ id and id › f behave like ‘weak’ adjoints for f .

Corollary 6.3.5. If B is a composition-closed compact-closed bicategory and f has a weak
right adjoint f† then (f†)∗ is a weak left adjoint to f∗.
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There are, however, two key differences between a dagger compact category and a
composition-closed compact-closed bicategory that seem to explain the fact that dagger
compact categories have a unique trace. Firstly, in a dagger compact category we know
that the adjoint of evaluation is equal to coevaluation modulo braiding: b ◦ ev† ∼= coev,
or equivalently, (ev ◦ b)† ∼= coev. Secondly, in a dagger compact category there is a single
notion of adjoint. If f is ‘left’ adjoint to g then it is also ‘right’ adjoint to g. There is no
distinction.

Proposition 6.3.6. Let B be a composition-closed compact-closed bicategory B such that,
for every A, the composite

A⊗A∗ b−→ A∗ ⊗A evA−−→ I

is left adjoint to the coevaluation map. Then the spread functor is naturally isomorphic to
the cospread functor.

Proof. Note that by Lemma 5.2.11 it suffices to show that
↼ÐÐÐÐÐ
coev ◦ s is naturally isomorphic

to
↼ÐÐÐÐÐÐÐÐ
(ev ◦ b) ⊸ s but coev ◦ s is naturally isomorphic to (ev ◦ b) ⊸ s by the fact that ev ◦ b is

the left adjoint to the coevaluation map.

In cases where this holds, we have the following chain of adjunctions.

B(I, I) B(A,A)Spr

Tr◦

Tr
◦

⊣
⊣

Proposition 6.3.7. Let B be a composition-closed compact-closed bicategory B such that,
for every A, the composite

A⊗A∗ b−→ A∗ ⊗A evA−−→ I

is right adjoint to the coevaluation map. Then the cotrace functor is naturally isomorphic
to the trace functor.

Proof. This follows from the sequence of natural isomorphisms

Tr◦(f) ∼= ev ◦ b ◦ (f ⊗A∗) ◦ coev ∼= coev ⊸ ((f ⊗A∗) ◦ coev) ∼= Ð⇀id ⊸ Ð⇀
f ∼= Tr

◦
(f)

which are due to the definition of each of the traces, the assumption above and the definition
of the name functor.

In cases where this holds, we have the following chain of adjunctions.

B(A,A) B(I, I)Tr

Spr◦

Spr
◦

⊣
⊣
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Of course, if (ev ◦ b) is both left and right adjoint to the coevaluation map – as is formally
the case for dagger compact categories – then there is a single trace functor and a single
spread functor. On its own ev ◦ b being adjoint to coevaluation isn’t enough to collapse a
composition-closed compact-closed bicategory to a dagger compact category. We can reverse
1-cells by taking f ⊸ id, but this isn’t functorial: unless f and g have right adjoints, there
is no isomorphism

(g ◦ f) ⊸ id
∼
=⇒ (f ⊸ id) ◦ (g ⊸ id).

Proposition 6.3.8. Let B be a composition-closed compact-closed bicategory, such that
every f : A → B has unique ambi-adjoint f∨ and the adjoint to (ev ◦ b) is coevaluation.
Then the 2-skeleton of B has an induced dagger compact structure.

Proof. We firstly show that the 2-skeleton has a symmetric monoidal structure. We then
show that this monoidal structure is compact-closed. After that we show that the 2-skeleton
has a dagger structure, and finally we show that the dagger compact condition holds.

Let (A )0 denote the 2-skeleton of a bicategory A . Firstly note that given a pseudo-
functor F : C → D there is a functor F0 : C0 → D0 given by F0(A) = F (A) on objects and
F ([f ]) = [F (f)] on morphisms. This is well-defined since F preserves isomorphisms between
1-cells, and the compositor and identitor are isomorphisms. Secondly note that for any pair
of bicategories C and D , (C ×D)0 = C0×D0 since any invertible 2-cell in C ×D is given by
a pair of invertible 2-cells, one in C and one in D . Thus, we can define the tensor product
on B0 to be ⊗0.

Note that if f and f• give an equivalence then [f ◦ f•] = [id] and [f• ◦ f ] = [id]. Thus,
the unitors and associator for the tensor can be given by [l], [r] and [a]. The fact that the
2-associator and 2-unitors are isomorphisms means that the axioms of a monoidal category
hold. Hence, the 2-skeleton has a monoidal structure. Similarly, we have braid morphisms
[b] : A⊗B → B ⊗A with an inverse. The syllepsis and the 2-braids are both isomorphisms
and so [b] is self inverse and adheres to the braid conditions.

If A and A∗ are dual in B with chosen evaluation and coevaluation map. The isomorph-
ism classes of these adhere to the yanking conditions and so A and A∗ are dual in C . This
gives the compact-closed structure.

To prove that there is a dagger structure, we define the functor

(−)† : Bop
0 → B0

to be the functor that is the identity on objects and sends [f ] to [f∨]. This functor preserves
identities since id∨ is id and preserves composition since if g is adjoint to g, fv is adjoint to
f , then g∨ ◦ f∨ is adjoint to f ◦ g.

We now show that the dagger functor is strict symmetric monoidal. In order to do this,
we first characterise the unitary morphisms. A morphism [f ] is unitary in B0 if and only if

[f ◦ f∨] = [id] and [f∨ ◦ f ] = [id] ,

but this holds if and only if f and f∨ give an equivalence. So f∨ and f form an adjoint
equivalence. Similarly, if f and f• give an adjoint equivalence, then [f ]

†
= [f•] and we have

that

[f ◦ f∨] = [id] and [f∨ ◦ f ] = [id]
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and so f and f• are unitary. In particular the unitors and the associator are all unitary.
Since pseudofunctors preserve adjoints

([f ]⊗ [g])† = [(f ⊗ g)∨] = [f∨ ⊗ g∨] = [f ]
† ⊗ [g]

†
,

and thus the dagger functor is a strict symmetric monoidal functor.
Finally, we want to show that the diagram (6.3) commutes. In other words we need to

know that [b]◦ [ev]† = [coev] holds. But this follows from the fact that b◦ ev is ambi-adjoint
to coev.

Thus, we have shown that B0 has the structure of a dagger compact category.

Example 6.3.9. The 2-skeleton of Path(G), for G a topological group, is the groupoid
given by points in G and homotopy classes of paths between them. The dual of a point is
the inverse of that point. The dagger is given by reversing the paths.

So it is the case that a small class of composition-closed compact-closed bicategories can
be reduced to dagger compact categories. Interestingly, sets and relations form a dagger
compact category where the dagger is given by taking the transpose relation. This can be
used to describe the composition-closed structure of the bicategory Rel, but the converse
does not seem to be the case: there is no relation Q : A → A such that R ⊸ Q is the
transpose of R.

Of course not all dagger compact categories arise in this way. Take, for example, the
dagger compact category of finite dimensional Hilbert spaces.

Let z : C → C in FDHilb. We know that z corresponds to a complex number, and we
also know that z† is given by the complex conjugate. Now suppose that FDHilb ∼= B0

for some composition-closed bicategory B with ambi-adjoints. We know that any non-zero
z : C→ C has an ambi-adjoint given by z, but we also know that z has an inverse. If z−1 is
the inverse of z then z−1 is ambi-adjoint to z and thus, by uniqueness of adjoints z−1 ∼= z
which is a contradiction, since complex conjugates do not give inverses.

Despite this, it is possible that there is a mutual generalisation of composition-closed
compact-closed bicategories and dagger compact categories which is enough to give trace
and cotrace structures. Just as dagger compact categories have ‘formal adjoints’, it may
well be possible to introduce the concept of compact-closed bicategories equipped with a
‘formal’ lift and extension structure, that is compatible with the dualising pseudofunctor.
A further discussion can be found in the afterword.

Remark. In Section 1.3 there was some discussion of how in the bicategories Rel and —
if V is star-autonomous – V -Prof, the composition-closed structure behaves in the same
way as a star-autonomous category. To be explicit, let us define a composition-autonomous
bicategory B to be a composition-closed bicategory such that for every A,B ∈ B there is
a functor

(−)∨ : B(A,B)→ B(B,A)

which is its own inverse, and for all f : B → C, g : A → C and h : B → D, the two closed
structures are given by

f ⊸ g ∼= (g∨ ◦ f)∨ and h› f ∼= (f ◦ h∨)∨.

Examples of such bicategories include star-autonomous categories, thought of as one-object
bicategories, as well as Rel and V -Prof when V is star-autonomous.
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Note that f ⊸ id∨ ∼= f∨ ∼= id∨ › f . For Rel and V -Prof it’s also the case that
f∗∨ ∼= f∨∗ for all f . This suggests something resembling a dagger compact structure. But
note that (−)∨ does not extend to a pseudofunctor: id∨ is not the identity in either of our
examples. Additionally, (f ⊗ g)∨ is not necessarily isomorphic to f∨⊗ g∨ – although in the
case of V -Prof, it is if V is compact-closed. It seems then that whilst Rel and V -Prof don’t
collapse to dagger compact categories, they are somehow closer to being dagger compact
than some of our other examples.

6.4 Properties of the Trace and Cotrace

In the previous section we shed some light on why it is the case that bicategories have traces
and cotraces, whereas in linear algebra there is a single trace that works analogously to
both. In this section we see what trace-like properties the cotrace and trace possess. For
compact-closed categories the trace is known to have certain properties already – such as
dual invariance, cyclicity, and tensor preservation – but with the inclusion of a composition-
closed structure we see further trace-like properties begin to emerge. To be specific the trace
has the following properties,

� the trace of a scalar is the scalar itself (this is a special case of the following);

� the trace is linear, Tr(
∑n
i=1 λifi) =

∑n
i=1 λiTr(fi);

� the trace is dual invariant, Tr(E∗) = Tr(E);

� the trace preserves adjoints, Tr(E†) = Tr(E)†, since the adjoint of a scalar is its
complex conjugate;

� the trace is cyclic, Tr(K ◦H) = Tr(H ◦K);

� the trace preserves tensors, Tr(F ⊗ E) = Tr(F ) · Tr(E).

We will show that the trace and cotrace share many analogous properties. We also try
to provide some intuition at to why the two traces always seem to give dual results. For
the remainder of this section we will be working in the context of a composition-closed
compact-closed bicategory B.

Proposition 6.4.1. Let s : I → I be a scalar in B. Then we have natural isomorphisms

Tr◦(s) ∼= s ∼= Tr
◦
(s).

Proof. To see that the trace preserves scalars, recall that I is self-dual with the left unitor
giving evaluation and coevaluation. Then both the trace of s and the scalar promotion of s
are given by

l ◦ (s⊗ I) ◦ l•.
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But note that there is a natural isomorphism given by the diagram below.

l s l•

θθ θ•θ•

s

−⊗ I
I ⊗−

So both Spr◦I and Tr◦I are naturally isomorphic to the identity functor. Thus, by the unique-

ness of adjoints both Tr
◦
I and Tr◦I are naturally isomorphic to the identity functor.

We next prove that the trace and cotrace are both, in some sense, linear. There are
two ways to view this. In our analogy between category theory and linear algebra we let
weighted limits and colimits play the role of weighted sums.

Lemma 6.4.2. The enriched trace preserves weighted colimits.

Proof. This follows from the fact that the enriched cotrace functor is a right adjoint. See
Kelly’s [38, sec. 3.2] monograph.

Lemma 6.4.3. The enriched cotrace preserves weighted limits.

Proof. This follows from the fact that the enriched trace functor is a left adjoint. See
Kelly’s [38, sec. 3.2] monograph.

In particular this means that the cotrace and trace functors preserve copowers and powers
respectively. Thus, the trace and cotrace preserve scalar multiplication in the following sense.

Corollary 6.4.4. For every scalar s and every endo-1-cell f : A → A there is a natural
isomorphism

Tr◦(Spr◦(s) ◦ f) ∼= s ◦ Tr◦(f).

Proof. This follows from the fact that the copower in B(A,A) is given by Spr◦(s)◦ (−).

Note that this makes the trace functor linear in the sense of B(I, I)-representations.

Corollary 6.4.5. For every scalar s and every endo-1-cell f : A → A there is a natural
isomorphism

Tr
◦
(Spr◦(s) ⊸ f) ∼= s⊸ Tr

◦
(f).

Proof. This follows from the fact that the power in B(A,A) is given by Spr◦(s) ⊸ (−).
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Thus, both the cotrace and the trace preserve scalar multiplication of a kind. There is
also a different notion of linear functor, Definition 4.1.9. Note that B(A,A) is a B(A,A)-
representation by precomposition, so the domain and codomain of the trace functor can
both be viewed as B(I, I)-representations.

Lemma 6.4.6. For every f, g : A→ A there is a 2-cell

m : Tr◦(g) ◦ Tr◦(f)⇒ Tr◦(g ◦ f),

natural in f and g, such that (Tr◦,Tr
◦
,m) : B(A,A)→ B(I, I) defines a linear functor.

Proof. Recall that Tr
◦
(f) ∼= (

Ð⇀
id ⊸ Ð⇀

f ) ∼= (coev ⊸ (f ⊗A∗) ◦ coev) and so if we expand the

composite Tr◦(g) ◦ Tr◦(f) we have

ev ◦ b ◦ (g ⊗A∗) ◦ coev ◦ (coev ⊸ (f ⊗A∗) ◦ coev).

In the interest of saving space, let c := coev and e := ev. Then we define m to be the 2-cell
in Figure 6.12, where ϵ is the counit for the composition-lift adjunction.

Before we show that this adheres to the axioms of a linear functor, it will be useful
to have an explicit description of the natural transformations that make the cotrace into
a lax monoidal functor. They are defined as follows. Firstly, we have the unit natural
transformation which is given by the unit for the composition-lift adjunction:

id
η−→ (c⊸ c).

Secondly, we have the multiplication transformation of Figure 6.13 which is defined as the
adjunct of the Figure 6.14.

In order to show that m adheres to the unit axiom for linear functors we must show that
Figure 6.15 is equal to Figure 6.16, but this follows from the zigzag identities for η and ϵ.

Now we must show that the associativity axiom holds. This means we must show that,
for a given h : A→ A, Figure 6.17 is equal to Figure 6.18. But this follows from the definition
of µ and the associativity of the compositor for the − ⊗ A∗ functor. Thus, (Tr◦,Tr

◦
,m)

defines a linear functor.

e b g ⊗A∗ c c⊸ (f ⊗A∗) ◦ c

ϵϵ

f ⊗A∗

e b (g ◦ f)⊗A∗ c

Figure 6.12
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c⊸ (f ⊗A∗) ◦ c c⊸ (h⊗A∗) ◦ c

µµ

c⊸ (((f ◦ h)⊗A∗) ◦ c)

Figure 6.13

c c⊸ (f ⊗A∗) ◦ c c⊸ (h⊗A∗) ◦ c

ϵϵ

f ⊗A∗ c

ϵϵ

g ⊗A∗

(f ◦ g)⊗A∗ c

Figure 6.14

e b g ⊗A∗ c

ηη

c⊸ c

ϵϵ

e b cg ⊗A∗

Figure 6.15
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e b g ⊗A∗ c

e b g ⊗A∗ c

Figure 6.16

e b g ⊗A∗ c c⊸ (f ⊗A∗) ◦ c c⊸ (h⊗A∗) ◦ c

µµ

ϵϵ

e b (g ◦ f ◦ h)⊗A∗ c

Figure 6.17

e b g ⊗A∗ c c⊸ (f ⊗A∗) ◦ c c⊸ (h⊗A∗) ◦ c

ϵϵ

ϵϵ

e b (g ◦ f ◦ h)⊗A∗ c

Figure 6.18
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This is a form of linearity, and it has some interesting consequences later in the chapter,
but it is somewhat at odds with the case for the trace of linear endomorphisms. Since the
trace for linear endomorphisms plays the role of both trace and cotrace, the analogous result
in FDHilb would be that there was a homomorphism of representations

(Tr,Tr): FDHilb(A,A)→ FDHilb(C,C),

where FDHilb(A,A) acts on itself via composition. In other words, given linear endomorph-
isms g and f the analogous result would be that Tr(g ◦ f) = Tr(g) ◦Tr(f), which is not the
case.

This goes to show that we cannot capture the trace of finite dimensional Hilbert spaces
using composition-closed compact-closed bicategories. What is true of finite dimensional
Hilbert spaces, however, is that FDHilb(A,A) is acted on by FDHilb(A,A) via addition.
We also know that Tr(F +G) = Tr(F ) + Tr(G) which means that the trace map

(Tr,Tr): FDHilb(A,A)→ FDHilb(C,C)

is a homomorphism of representations, but where the action is given by addition and not
composition.

The next property that we want to explore is the extent to which traces preserve duals
and adjoints. The case for duals is quite straightforward: both the trace and the cotrace
are dual invariant. In the case of compact-closed categories, the fact that the trace is dual
invariant follows straightforwardly from the string diagram language for compact-closed cat-
egories, where strings denote objects and beads denote 2-cells. Firstly, writing the evaluation
map and coevaluation map as cups and caps, the dual of a map f : A → A is given by the
following 2-cell,

B∗

ff

A∗

and so, by the zigzag identities have the following equalities of 2-cells.

ff

A∗A

=
ff

A∗A

= f∗f∗

A∗A
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Now, by, symmetry, we can also see that the following 2-cells are equal,

ff
=

f∗f∗

=
f∗f∗

and so we know that the trace of f is equal to the trace of its dual. Proving that this is the
case for the trace in a compact-closed bicategory is similar, but with natural isomorphisms
instead of equalities. In what follows we return to using string diagrams for bicategories, so
strings are 1-cells and beads are 2-cells.

Proposition 6.4.7. In a compact-closed bicategory, given any f : A→ A there is a natural
isomorphism, ζ, in the diagram below.

coevf ⊗A∗

ζζ

A⊗ f∗ coev

Proof. The natural isomorphism is given by Figure 6.19. Naturality follows from the fact
that caps and braids define modifications.

Lemma 6.4.8. For every 1-cell f : A→ A there is a natural isomorphism

Tr◦(f) ∼= Tr◦(f∗).

Proof. The transformation is given by Figure 6.20, where the natural isomorphisms ξ are
given by the fact that the coevaluation map for A∗ is b ◦ coevA – see the proof of Proposi-
tion 6.2.4 – and similarly for the evaluation map.

The case for the cotrace is comparatively straightforward.

Lemma 6.4.9. For every f : A→ A there is a natural transformation

Tr
◦
(f) ∼= Tr

◦
(f∗).

Proof. We know that there is a string of natural isomorphisms

Tr
◦
(f) ∼= B(id, f) ∼= B(id∗, f∗) ∼= B(id, f∗) ∼= Tr

◦
(f∗)

and so their composite gives the natural transformation above.
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coevf ⊗ A∗

coev ⊗ A⊗ A∗

A⊗ A∗ ⊗ f ⊗ A∗ A⊗ A∗ ⊗ coev coevA⊗ ev ⊗ A∗

Figure 6.19

coevAf ⊗ A∗bevA

ζζ

A⊗ f∗

ξξ ξξ

evA∗ coevA∗b f∗ ⊗ A

Figure 6.20
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We now move on to adjoints. For maps between finite dimensional Hilbert spaces, duals
and linear adjoints are essentially the same thing. If we choose a basis for A and B then
the adjoint f† : B → A of f : A→ B is given by the composite

B
∼−→ B∗ f∗

−→ A∗ ∼−→ A

and as a result the dual f∗ of f : A→ B can also be written in terms of its adjoint.
Recall that if a 1-cell f has a right adjoint then it is given by f ⊸ id. The converse isn’t

necessarily true – it is not the case that f ⊸ id is always adjoint to f – but nonetheless
lifting the identity through f gives an adjoint in some slightly more general sense.

Neither the cotrace nor the trace will, in general, preserve adjoints. But as a pair we
can measure to what extent they fail to preserve adjunctions.

Proposition 6.4.10. In any composition-closed compact-closed bicategory, for all 1-cells
f : A→ B and all scalars s : I → I there is a natural isomorphism

Tr
◦
(f ⊸ Spr

◦
(s)) ∼= Tr◦(f) ⊸ s.

Proof. By using the fact that the cotrace at I is isomorphic to the identity, and the fact
that the trace and cospread are B(I, I)-adjoint we have a string of isomorphisms

Tr◦(f) ⊸ s ∼= Tr
◦
(Tr◦(f) ⊸ s)

∼= B(I, I)(Tr◦(f), s)

∼= B(A,A)(f, Spr
◦
(s))

∼= Tr
◦
(f ⊸ Spr

◦
(s))

that proves the above claim.

If we wanted to make this look little more symmetric, since the spread of a scalar at I
is the scalar itself we can express the above proposition as

Tr
◦
(f ⊸ Spr

◦
(s)) ∼= Tr◦(f) ⊸ Spr◦(s).

This gives us a direct relationship between the cotrace and the trace and gives some sort
of idea of how they are dual. Note that in the particular case where we take s to be id we
have the following corollary.

Corollary 6.4.11. In any composition-closed compact-closed bicategory, for all f : A→ B
there is a natural isomorphism

Tr
◦
(f ⊸ Spr

◦
(id)) ∼= Tr◦(f) ⊸ id.

Thus, the extent to which the cotrace-trace pairing fails to preserve adjoints is, in some
sense, the extent to which the cospread fails to preserve the identity. If it is the case that
ev ◦ b is left adjoint to the coevaluation map, then the spread and cospread are isomorphic,
but the spread is strongly monoidal. Thus, Spr

◦
(idI) ∼= idA and so in that particular case

the trace and cotrace have a duality property in the sense that

Tr
◦
(f†) ∼= Tr◦(f)†
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where (−)† denotes the right adjoint. If, in addition, ev◦b is right adjoint to the coevaluation
map, then the cotrace and trace are isomorphic and so the unique trace preserves right
adjoints.

Recall that in Section 6.3 we pointed out that two of our examples are ‘composition-
autonomous’ in the sense that the closed structure is given in terms of functors

(−)∨ : B(A,B)→ B(B,A)

and composition. If our bicategory is composition-autonomous then a different kind of
duality is preserved.

Proposition 6.4.12. Suppose that B is a composition-autonomous compact-closed category
such that there is a natural isomorphism in the following diagram.

B(A,B) B(B,A)

B(I,B ⊗A∗) B(B ⊗A∗, I)

(−)∨

ÐÐ⇀
(−)

↼ÐÐ
(−)

(−)∨

∼=

Then, for all f : A→ A, there is a natural isomorphism

Tr
◦
(f∨) ∼= Tr◦(f)∨.

Proof. This follows from the string of isomorphisms

Ð⇀
id ⊸

Ð⇀
f∨ ∼= (

ÐÐ⇀
(f∨)∨ ◦Ð⇀id)∨ ∼= ↼Ðf ◦Ð⇀id ∼= Tr(f)∨

which follow from the supposition above and the definition of a composition-autonomous
category.

Example 6.4.13. In the bicategory Rel this corresponds to the fact that, given a relation
R : A→ A, there is an a ∈ A such that aRca if and only if R is not reflexive.

Example 6.4.14. In the bicategory V -Prof, for star-autonomous V , this corresponds to
the fact that, given a profunctor P : A −7−→ A we have the following natural isomorphism:

»

A∈A

(P (A,A))
∗ ∼=

A∈A»
P (A,A)

∗

.

Remark. Note that in these particular cases this means we can define our scalar enrichment
in terms of the trace, rather than the cotrace.

Next, we want to investigate the extent to which the trace and cotrace have the cyclicity
property. Like with dual invariance, the trace for compact-closed categories is cyclic, and
the argument for compact-closed bicategories is analogous. In the case of compact-closed
categories, for every f : A→ A the morphisms given by the diagrams below are equal,

A∗ A

ff =

A∗ A

f∗f∗
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similar to the case for coevaluation. This means that we have a sequence of equalities given
below.

ff

gg =

ff

gg

=

ff

g∗g∗

=

ff g∗g∗

=

gg

ff

Proposition 6.4.15. In a compact-closed bicategory, given any f : A→ A there is a natural
isomorphism, ζ, in the diagram below.

A∗ ⊗ ev A∗ ⊗ f

ζζ

f∗ ⊗AA∗ ⊗ ev

Proof. The construction of this isomorphism is analogous to Proposition 6.4.7.

Lemma 6.4.16. For every pair of 1-cells f : A → B and g : B → A there is a natural
isomorphism

Tr◦(f ◦ g) ∼= Tr◦(g ◦ f).

Proof. The isomorphism is given by Figure 6.21. Invertibility and naturality follow from
the fact that every 2-cell in the composite is invertible and natural.

Cyclicity does not necessarily hold for the cotrace. Consider, for example the bicategory
Span(Set). Let A be a set and let spans S : A→ ∗ and T : ∗ → A be given by the following
diagrams,

A

A ∗

!id and

A

∗ A

id!

where ∗ denotes the one-object set. Then T ◦ S is isomorphic to the span in the following
diagram,

A×A

A A

p2p1
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coevA(g ◦ f) ⊗ A∗
bevA

A∗ ⊗ g

ζζ

g∗ ⊗ A

A⊗ g∗

χχ

f ⊗ A∗ A⊗ g∗

ζζ

g ⊗ A∗

evA coevAb (f ◦ g) ⊗ A

Figure 6.21
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where p1 and p2 denote the projection functions. Thus, we know that

Tr
◦
(T ◦ S) ∼= Span(Set)(idA, T ◦ S) = {f : A→ A×A | p1 ◦ f = id = p2 ◦ f},

which is the singleton {∆} containing the diagonal map. On the other hand, S ◦ T is
isomorphic to the span in the following diagram.

A

∗ ∗
!!

Thus, we know that

Tr
◦
(T ◦ S) ∼= Span(Set)(idA, T ◦ S) = {f : ∗ → A | ! ◦ f = !},

which is in bijection with the set A. And so, as long as A has cardinality of more than 1,
the two cotraces do not agree.

However, the cotrace has a property that resembles cyclicity.

Lemma 6.4.17. For every pair of 1-cells f : A → B and g : B → A there is a natural
isomorphism

Tr
◦
(f ⊸ g) ∼= Tr

◦
(g › f).

Proof. This follows from the isomorphisms

B(id, f ⊸ g) ∼= B(f, g) ∼= B(g › f),

which follow from the definition of pseudoinverse.

In particular, if f : A→ B has left adjoint f† and right adjoint f† then for every g : B →
A, there is a natural isomorphism

Tr
◦
(f† ◦ g) ∼= Tr

◦
(g ◦ f†).

Remark. Interestingly, the fact that the trace has a cyclicity property gives it the structure
of a shadow functor. This means it can be used to define the trace of a 2-cell in the sense of
Ponto [56]. The cotrace does not have the structure of a shadow functor, but it does have
enough of a cyclicity property that it can still be used to define a Ponto trace.

Note that one consequence of cyclicity for the linear trace is that it is conjugate inde-
pendent. By this we mean that, for any g : B → A that has an inverse

Tr(g−1fg) ∼= Tr(f).

The same holds true for the cotrace.

Proposition 6.4.18. In any composition-closed compact-closed bicategory, for all f : A→
B and all g : B → A with pseudoinverse g•, there is a natural isomorphism

Tr
◦
(g• ◦ f ◦ g) ∼= Tr

◦
(f).
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Proof. This follows from the natural isomorphisms

B(id, g• ◦ f ◦ g) ∼= B(g ◦ g•, f) ∼= B(id, f).

The final trace-like property we will investigate is the preservation of the tensor product.
This line of inquiry was originally suggested to the author by Cranch [16]. Like the above
properties, tensor preservation holds strongly for the trace, but somewhat laxly for the
cotrace.

Lemma 6.4.19. If A∗ is dual to A, and B∗ is dual to B, then B∗ ⊗ A∗ is dual to A ⊗ B
with coevaluation given by

I
coevA−−−−→ A⊗A∗ A⊗coevB⊗A∗

−−−−−−−−−→ A⊗B ⊗B∗ ⊗A∗;

and evaluation given by

B∗ ⊗A∗ ⊗A⊗B B∗⊗evA⊗B−−−−−−−−→ B∗ ⊗B evB−−→ I.

Proof. To prove this we must prove that there are cups and caps giving an adjoint equi-
valence between the zigzag 1-cells. The first cup is given by Figure 6.22. The second cup
and the caps are defined analogously. The fact that the cups and caps adhere to the zigzag
identities follows from Proposition 3.3.9.

Lemma 6.4.20. For every pair of 1-cells e : A → A and f : B → B there is a natural
isomorphism

Tr◦(f) ◦ Tr◦(e) ∼= Tr◦(f ⊗ e).

Proof. The natural isomorphism is given by Figure 6.23.

Lemma 6.4.21. For every pair of 1-cells e : A → A and f : B → B there is a natural
transformation

Tr
◦
(f) ◦ Tr◦(e)→ Tr

◦
(f ⊗ e).

Proof. This follows from the fact that ⊗ gives an enriched pseudofunctor, and so there is a
natural map

B(B,B)(idB , f) ◦B(A,A)(idA, e)→ B(A⊗B,A⊗B)(idA ⊗ idB , e⊗ f)
∼= B(A⊗B,A⊗B)(idA⊗B , e⊗ f).
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((A⊗ coevB ⊗ A∗) ◦ coevA) ⊗ A⊗ BA⊗ B ⊗ (evB ◦ (B∗ ⊗ evA ⊗ B))

coevA ⊗ A⊗ BA⊗ coevB ⊗ A∗ ⊗ A⊗ BA⊗ B ⊗ B∗ ⊗ evA ⊗ BA⊗ B ⊗ evB

A⊗ evA ⊗ BA⊗ coevB ⊗ B

Figure 6.22
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coevAe⊗ A∗evA∗coevBf ⊗ B∗evB∗

evA ⊗ B ⊗ B∗ A⊗ A∗ ⊗ coevB

A⊗ bA∗,I A⊗ b•A∗,I

coevAf ⊗ e⊗ A∗ ⊗ B∗ A⊗ coevB ⊗ A∗evA∗ A⊗ evB∗ ⊗ A∗

Figure 6.23
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6.5 Dimension and Codimension

In this final section we use the trace and cotrace to give the definition of the dimension
and codimension of an object in a composition-closed compact-closed bicategory. In lin-
ear algebra we can define the dimension of a Hilbert space A as the trace of the identity
endomorphism on A:

Dim(A) = Tr(idA).

Taking a similar approach with the trace and cotrace we discover that the dimension and
codimension have a particularly structured relationship. It was Willerton [66] who first
observed that the 2-dimension of A has a monoid structure and that it acts on the dimension
of A. Here we give an enriched version of that observation. In all of the following results,
B is a compact-closed composition-closed bicategory.

Definition 6.5.1. Let A be an object in a composition-closed compact-closed bicategory
B. Then we define the dimension of A and the codimension of A to be given by

Dim◦(A) := Tr◦(idA) and Dim
◦
(A) := Tr

◦
(idA).

Proposition 6.5.2. For every object A, the codimension of A, B(A,A)(idA, idA), has a
monoid structure in the symmetric monoidal category of scalars, with multiplication given
by enriched composition and unit given by the underlying identity 2-cell

ι : idI → B(A,A)(idA, idA).

Proof. Associativity and unitality hold since they hold for the enriched composition.

Proposition 6.5.3. For every object A, the 1-cell idA has a monoid structure in the category
B(A,A) where the unit is given by the identity, and composition is given by either of the
left or right unitor. This induces a monoid structure on the codimension of A, since the
cotrace is a lax monoidal functor.

Proof. Unitality follows from the properties of identity 2-cells, associativity follows from the
triangle equation in the definition of a bicategory.

A classical result in category theory is the fact that any pair of adjunct functors

F : A ⇆ B :G

induces a monad structure for the functor G◦F . In other words, G◦F comes equipped with
the structure of a monoid object in the category of endofunctors on A . Less well known is
the concept of a codensity monad, first introduced by Kock [41, p. 3]. The codensity monad
is the monad structure that comes from taking the right Kan extension of F : A → B along
itself. Taking the right extension, or right lift, in a bicategory also gives a monoid object in
the category of endomorphisms.

Proposition 6.5.4. For every object A, the codimension of A,
Ð⇀
idA ⊸ Ð⇀

idA, has a monoid
structure in the symmetric monoidal category of scalars, where the unit is given by the
adjunct of the identity 2-cell

idA → idA

and composition is given by the adjunct of the evaluation map

Ð⇀
id ◦ (Ð⇀id ⊸ Ð⇀

id) ◦ (Ð⇀id ⊸ Ð⇀
id)

ϵ−→ Ð⇀id ◦ (Ð⇀id ⊸ Ð⇀
id)

ϵ−→ Ð⇀id.
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Proof. See, for example, Leinster’s [46, sec. 5] exposition, for an overview of how taking
a right Kan extension of a functor along itself gives rise to a monad structure. The same
argument holds for right extensions in a bicategory and, by duality, for right lifts as well.

Lemma 6.5.5. The three monoids given in the propositions above are all isomorphic.

Proof. To see that the first and second monoids are isomorphic note that the isomorphism
given in Proposition 5.2.21 gives an isomorphism between B(id, id) and Tr

◦
(idA). The fact

that this isomorphism is an isomorphism of monoids simply follows from the definition of
the enriched composition.

To see that the first and third monoids are isomorphic, firstly note that, by definition,

Tr
◦
(idA) =

Ð⇀
idA ⊸ Ð⇀

idA.

The lax multiplication for the cotrace is given by the adjunct of the following composite:

Ð⇀
id ◦ (Ð⇀id ⊸ Ð⇀

g ) ◦ (Ð⇀id ⊸ Ð⇀
f )

ϵ−→ Ð⇀g ◦ (Ð⇀id ⊸ Ð⇀
f )

∼−→ [A, g] ◦Ð⇀id ◦ (Ð⇀id ⊸ Ð⇀
f )

ϵ−→ [A, g] ◦Ð⇀f
∼−→ ÐÐ⇀g ◦ f.

Then the multiplication for the monoid defined in Proposition 6.5.3 is given by adjunct
of the top right map in Figure 6.24. But the diagram commutes by naturality and the
bottom left map defines the multiplication for the monoid in Proposition 6.5.4. Thus, the
two monoids are isomorphic.

Ð⇀
id ◦ (Ð⇀id ⊸ Ð⇀

id) ◦ (Ð⇀id ◦Ð⇀id) Ð⇀
id ◦ (Ð⇀id ⊸ Ð⇀

id) [A, id] ◦Ð⇀id ◦Ð⇀id ⊸ Ð⇀
id

[A, id] ◦Ð⇀id

Ð⇀
id

ϵ ρ̊−1

η

ϵ

ρ̊

Figure 6.24

Lemma 6.5.6. For every f : A→ A, the trace of f , Tr◦(f), is a right Dim
◦
(A)-module in

the symmetric monoidal category of scalars.

Proof. This follows from the fact that the identity is a monoid object in B(A,A), every
f : A→ A is an id-module, Lemma 4.1.12 which states that linear functors preserve modules,
and Lemma 6.4.6 which states that the trace and cotrace form a linear functor.

Corollary 6.5.7. The dimension of an object A is a right Dim
◦
(A)-module in the symmetric

monoidal category of scalars.
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Once again, the majority of the following examples are due to Willerton [66].

Example 6.5.8. In Rel the dimension and codimension are both just the point and so the
monoid and module structure are both trivial. If we take the cotrace of the empty relation
then this has a ∗-module structure where the action map is the unique map

∅× ∗ ∼= ∅→ ∅

Example 6.5.9. In BimR the dimension and codimension of an algebra are given by the
abelianisation of the algebra and the centre of the algebra. The monoid structure on the
centre is given by the algebra multiplication. The action of the centre on the abelianisation
is also given by the algebra multiplication.

Example 6.5.10. In DBimR the dimension and codimension of an algebra are the Hoch-
schild homology and the Hochschild cohomology of the algebra. The monoid structure on
cohomology is the cup product. The action of cohomology on homology is given by the cap
product.

Example 6.5.11. In V -Prof the cotrace of a profunctor P : A −7−→ A is given by taking the
end. The codimension of A , then, is given by the natural transformation object from the
identity functor to itself »

A∈A

A (A,A) = Nat(Id, Id).

The monoid structure is given by composition. To understand the dimension, let us focus
on the case where V is Set. The coend of the Hom profunctor is given by the quotient of
all endomorphisms

A∈A»
A (A,A) =

( ⊔
A∈A

A (A,A)

)
/ ∼

where (f : A→ A) ∼ (g : A′ → A′) if there exists some φ : A→ A′ or some ψ : A′ → A such
that one of the following squares commutes.

A A

A′ A′

f

φ φ

g

A′ A′

A A

g

ψ ψ

f

In the case the A is a monoid this is the centre of the monoid, so it is reasonable to think of
this as the cocentre of the category. The action of natural transformations on the cocentre
of the category is just given by pre- or post-composition: the two are equal by naturality.

Example 6.5.12. In Span(Set) the codimension of a set A is the set {idA}. The monoid
structure is trivial. The dimension of a set A is given by A itself. The action is also trivial.

Example 6.5.13. In Path(G), for a topological group G, the dimension and codimension
are both given by the constant loop at e, the unit. The monoid and module structures are
both given by the concatenation of loops.
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Further Work

In this afterword we consider some of the further directions that this work may take. The
first and most obvious line of work would be further examples. As mentioned earlier, one
candidate would be the bicategory of 2-Hilbert spaces. Another would be the bicategory
of ‘spaces’ and Fourier–Mukai kernels, as described by Căldăraru and Willerton [11], which
Willerton [66] has pointed out should also yield Hochschild homology and cohomology as
trace and cotrace.

There are also two questions that this thesis fails to answer in full. Firstly, can we truly
formalise the analogy between composition-closed compact-closed bicategories, and dagger
compact categories? Secondly, is there some sense in which the cotrace is formally dual to
the trace?

We have already given a partial answer to the first question – we have shown that not
every dagger compact category arises as the 2-skeleton of a composition-closed compact-
closed bicategory, and not every composition-closed compact-closed bicategory gives rise to
a dagger compact category. As such, it seems likely that, were a formal analogy to exist, it
would take the form of a mutual generalisation.

There are two potential hints as to what a mutual generalisation might look like. Firstly,
FDHilb failed to be the 2-skeleton of a composition-closed compact-closed bicategory on
account of the fact that, in category theory, inverses are a type of adjoint. This is not the
case in linear algebra, and it seems likely that any mutual generalisation would be forced to
replace lifts with some kind of formal structure like the dagger.

The second hint comes from the fact that there is a linear functor given by the pairing
of the trace with the cotrace, and that the trace is linear but with respect to a different
action. Composition-closed, compact-closed categories are defined in terms of a closed action
of B(I, I) on B(A,A) using composition. But perhaps we could define some structure
involving actions without necessarily enforcing that the actions are given by composition.
This might then allow for the formal lifts to be defined as adjoint, or at least related, to the
action.

To answer the second question we need a context in which the cotrace and trace can be
compared. We have already shown that the trace and cotrace are not dual in the context of
the functor category [B(A,A),B(I, I)], equipped with Day convolution. If they were, they
would have to be isomorphic since the cotrace is the monoidal unit.

In some sense the trace and cotrace are orthogonal, rather than dual. The trace arises
from the monoidal-closed and monoidal-coclosed structures, which are ‘horizontal’ in the
sense of being defined in terms of the tensor product. On the other hand the cotrace is
defined in terms of monoidal-closed and composition-closed structures, which are ‘vertical’
in the sense of being defined in terms of composition. Capturing this formally, or at least
more formally than we already have done, might prove difficult. That being said, the
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majority of our examples have stemmed from V -Prof. Note that if we have a profunctor
P : A −7−→ A then the trace of P is the cotrace of

P op : A ×A op → V op

which is a dualisation of P , but where P is thought of as a functor and not a profunctor.
This might suggest that we consider our examples not as composition-closed compact-closed
bicategories, but instead as compact-closed proarrow equipments in the sense of Wood [69].
This may give another way to compare the trace and cotrace. In the context of bicategories
the functor V - Prof(∗,−) takes categories to their presheaf categories, and profunctor to
cocontinuous functors. But note that V -Cat(∗,−) is isomorphic to the identity functor. If
we worked instead with enriched proarrow equipments, we might be able to replace this
with a double functor V - Prof(∗,−) which is the identity double functor. In other words, it
would send the 1-cells of V -Prof to profunctors, rather than functors.

If this were the case, it might then mean that we would have a way to turn 1-cells in an
arbitrary B into profunctors, rather than functors. Assuming this double functor preserved
the composition-closed and compact-closed structures, this might give us a way to view the
trace and cotrace as an end and a coend in all cases. Such a perspective would firstly give
an obvious duality between the trace and cotrace, but might also open the door to other
categorical analogues. For example, the profunctor associated to an endo-1-cell might be
seen to encode the ‘eigenvalues’ of that endo-1-cell.
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[51] S. Mac Lane and R. Paré, ‘Coherence for bicategories and indexed categories’, Journal
of Pure and Applied Algebra, vol. 37, pp. 59–80, 1985. doi:10.1016/0022- 4049(85)
90087-8 (cited on p. 45).

[52] S. Majid, ‘Representations, duals and quantum doubles of monoidal categories’, Pro-
ceedings of the Winter School ”Geometry and Physics”, Palermo, Italy, 1991, pp. 197–
206 (cited on p. 36).

[53] P. McCrudden, ‘Categories of representations of coalgebroids’, Advances in Mathem-
atics, vol. 154, no. 2, pp. 299–332, 2000. doi:10.1006/aima.2000.1926 (cited on p. 77).

[54] P.-A. Melliès, ‘Functorial boxes in string diagrams’, Proceedings of the International
Workshop on Computer Science Logic, Springer-Verlag, Szeged, Hungary, 2006, pp. 1–
30, isbn: 978-3-540-45458-8. doi:10.1007/11874683 1 (cited on p. 26).

[55] D. Nichols, Coloring for colorblindness. Available: https : / / davidmathlogic . com /
colorblind (visited on 5/3/2023) (cited on p. 27).

[56] K. Ponto, ‘Fixed point theory and trace for bicategories’, Astérisque, no. 333, 2010.
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