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Abstract

Monitoring palm tree seedlings and plantlings presents a formidable challenge because of

the microscopic size of these organisms and the absence of distinguishing morphological

characteristics. There is a demand for technical approaches that can provide restoration

specialists with palm tree seedling monitoring systems that are high-resolution, quick, and

environmentally friendly. It is possible that counting plantlings and identifying them down to

the genus level will be an extremely time-consuming and challenging task. It has been dem-

onstrated that convolutional neural networks, or CNNs, are effective in many aspects of

image recognition; however, the performance of CNNs differs depending on the application.

The performance of the existing CNN-based models for monitoring and predicting plantlings

growth could be further improved. To achieve this, a novel Gap Layer modified CNN archi-

tecture (GL-CNN) has been proposed with an IoT effective monitoring system and UAV

technology. The UAV is employed for capturing plantlings images and the IoT model is uti-

lized for obtaining the ground truth information of the plantlings health. The proposed model

is trained to predict the successful and poor seedling growth for a given set of palm tree

plantling images. The proposed GL-CNN architecture is novel in terms of defined convolu-

tion layers and the gap layer designed for output classification. There are two 64×3 conv lay-

ers, two 128×3 conv layers, two 256×3 conv layers and one 512×3 conv layer for processing

of input image. The output obtained from the gap layer is modulated using the ReLU classi-

fier for determining the seedling classification. To evaluate the proposed system, a new

dataset of palm tree plantlings was collected in real time using UAV technology. This dataset

consists of images of palm tree plantlings. The evaluation results showed that the proposed

GL-CNN model performed better than the existing CNN architectures with an average accu-

racy of 95.96%.
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1 Introduction

A seedling is a plant grown from the grain it came from. The embryo inside the seed is made

up of a small root and a shoot simultaneously [1]. Before any other part of the plant grows

from the seed, the root grows. As the plant grows, its roots start to pull water from the soil.

This makes the plant stick to the ground. The shoot grows from the seed in the end [2]. After

that, the root will start to take water into itself. The palm tree’s benefit expanded when growers

recognized the tree’s salt and drought tolerance, as well as its role in fighting desertification

[3]. The tree has the potential to reduce both the temperature of the atmosphere and the level

of pollutants produced by industrial activity. The palm tree’s health prediction system with

symmetrical design has introduced a new aspect to its consequences for future environmental

betterment [4]. For smart farming, the users need a reliable source of information about how

things are going now. So, automated monitoring and growth interpretation of palm tree seed-

lings gives farmers a new way to manage their resources that is based on technology instead of

the old way they did it in the past. The monitoring and growth prediction method also explains

how plants grow and how healthy they are. This is especially helpful for tracking how old

plants are and how often they die so that they can be used to grow palm trees in the future [5].

It is important to obtain reliable detection for palm trees in huge regions because of the eco-

nomic gain and detrimental environmental consequences. Such precise observations would

enhance plantation planning, oil palm productivity, and decrease personnel and fertilizer use

by allowing for more precise monitoring of the plantations’ growth and more intelligent con-

trol of the farms’ operations [6].

Technology like the Internet of Things (IoT) and Unmanned Aerial Vehicles (UAV) could

have a significant effect on agronomic crops and plants [7, 8]. Due to the common occurrence

of plant illness, manual disease detection is a critical task in the agricultural sector. The failure

to take the necessary precautions, however, has real-world consequences for plants, diminish-

ing crop quality, quantity, and efficiency. Finding a way to automatically detect plant infec-

tions is helpful since it cuts down on the amount of manual inspection work required for

large-scale production farms.

ML has been widely used to evaluate large quantities of agricultural data, such as crop type

prognosis from Landsat images, agricultural production, irrigation requirements, insect, and

epidemic attacks, and weed recognition [9]. This method is used to increase harvests of corn,

grapes, soybeans, wheat, chili peppers, paddy, and, most notably, palm oil by automating sev-

eral tasks, including tree counting and crop growth assessment [10]. Numerous research on

useful resources and ML methods for the palm oil sector was undertaken. Research has investi-

gated the use of remote sensing, breeding, and technology to keep tabs on palm oil farms [11].

Bioenergy manufacturing technologies for dealing with fruits and palm oil waste have been

evaluated in another research [12]. Researchers [13, 14] explored the use of ML to identify

proximal image-based nutritional deficiencies in palm oil trees. Predicting agricultural yields,

such as palm oil, has been studied extensively, and so has the application of ML features in

automated fruit grading via image processing [15]. However, most of the existing research did

not perform a comprehensive literature search.

Deep learning is a subset of machine learning that has grabbed the interest of working in

agricultural sectors. Deep learning has recently been a prevalent approach to overcoming

issues in computer vision, natural language processing, and video processing [16]. The poten-

tial to comprehend complex data is a substantial advantage of deep learning. Conventional sta-

tistics and machine-learning approaches can have substantial issues when attempting to

extract usable information from data, but deep learning mitigates this necessity. One potential

area of study is the use of Deep Learning algorithms for the automated extraction of high-
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abstraction data representations (features). These algorithms build a hierarchical structure for

learning and representing data, with each layer defining the next one up in terms of the fea-

tures it learned from the previous one [17].

Daily, farms generate millions of data sets on various topics, including heat, sediment,

water consumption, weather conditions, and more. This data is utilized in real-time with the

assistance of artificial intelligence and deep learning models to gain insights such as the opti-

mal time to sow seeds, crop selection, hybrid seed selection for increased yields, and several

other similar topics [18]. The term "precision agriculture" refers to accurate and reliable har-

vesting; this has been made possible by using deep learning systems. With the assistance of DL

technology, problems such as nutrient deficiencies, plant diseases, and pest infestations can all

be identified. Using DL methods, we can pinpoint the exact location of weeds and determine

the most effective herbicide to use in that specific area. By doing this, we save revenue and

lessen our reliance on herbicides [19]. The growth of crops is a critical feature in the agricul-

tural yields of farming. In practice, some plantlings never arise from the grave or develop prop-

erly. This will inevitably lead to a reduction in productivity [20]. Seed germination monitoring

seems to be a difficult task.

Additionally, deep learning has been implemented to crop cultivation to cut production

costs and hence increase agricultural productivity. Oil palm plants were classified using a slid-

ing window algorithm using a high-resolution satellite photo [21]. They trained and improved

the convolutional neural networks (CNN) system using data from a manual count. Then,

using the feature extraction technique [22], all observations were estimated on images. Their

study’s findings indicated the ability to discriminate between damaged and healthy plants [23].

Deep learning can be used in a number of tried-and-true ways, such as with recurrent neural

networks (RNNs), long short-term memory networks (LSTMs), and CNN among others. Even

though RNNs and LSTMs have a lot in common and are often used to analyse and predict

time series problems, RNNs can be taught to do tasks that require long-term memory. Even

though RNNs and LSTMs share a lot, this is the case. On the other hand, the most common

type of deep neural network used for computer vision and finding objects is the CNN [24].

From the literature, it was found that there are many ML studies [10–14] and DL studies

[39–43] have been proposed for finding and counting oil palm trees, to estimate yields, moni-

tor crops, and identify nutritional deficiencies etc. However, comprehensive (monitoring

growth and counting the healthy and unhealthy plantlings of palm tree with high accuracy)

study on palm tree plantlings is yet to be researched. In this study, a novel Gap Layer modified

CNN architecture (GL-CNN) model is proposed to streamline palm tree seedling growth pre-

diction with high accuracy. The images of the plantlings are captured using UAV drone tech-

nology. The ground truth of plantlings’ health is obtained using IoT technology. The

plantlings are tracked during their growth using a drone, and the temperature and humidity

are assessed using a grove sensor (DHT11) which is connected to the GND of the raspberry pi.

Their progress is observed in plantlings to predict healthy growth.

The major contributions of the research paper are as follows.

• A novel architecture (GL-CNN) has been proposed for the CNN in terms of defined conv

layers and the gap layer. There are two 64×3 conv layers, two 128×3 conv layers, two 256×3

conv layers, and one 5123 conv layer for processing the 128×3 input image of palm tree seed-

ling. The output layer receives the processed information from the conv layers and fine

tunes them. To determine the classification of plantlings, the output from the gap layer is

modified using the SoftMax classifier.

• The novel GL-CNN architecture using drone imagery has been proposed for health and

growth prediction for palm tree plantlings.
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• A new dataset of palm plantlings has been collected and used to train and evaluate the pro-

posed GL-CNN architecture. The light conditions have been considered while collecting this

dataset and drone imagery technology has been used. A collection of 257 images of individ-

ual oil palm tree plantlings classified as healthy, or sick were used as training data. In-depth

analysis and comparison of existing studies, feature set evaluation, and critical analysis of

ML-based palm oil prediction systems. It is shown that modern deep neural networks are a

much more accurate approach for predicting plantlings growth than the conventional

machine learning approaches, and specified designed CNNs such as the GL-CNN proposed

in this paper can achieve a very high accuracy.

The layout of the paper is organized as follows. The following section offers an analysis of

the associated literature. The third section offers a holistic clarification of the proposed work’s

technique. Section 4 gives experiments of the program’s design. Section 5 outlines the research

outcome and discusses the proposed framework. Section 6 defines the results and their com-

parison with previous methods. Lastly, in the final phase of the research, there is a summary

and guidelines for some further investigation.

2 Literature review

Monitoring is essential to restore the environment, but it can be hard to do on a large scale,

especially when plants are just getting started. Seeds and seedlings are especially vulnerable

parts of a plant’s life cycle, but they are tiny and do not have any distinguishing features. This

makes it hard to keep track of them [25]. This makes it hard to keep an eye on seeds and

young plants. There is a need for technical approaches that can give people who do restoration

work plant-based monitoring systems that are high-resolution, quick, and scalable in the past,

keeping track of seedlings required expensive field surveys where they had to be identified,

and counted while still on the ground [26]. Machine learning and deep learning architectures

are two of the newest technologies that offer improvements in ecological monitoring. They

could help plants do better in many ways. Capturing the images is a tedious task in disease

classification. Many notable works have been done. The researchers in [27–29] simulated a 3D

environment and deployed a virtual pinhole camera anywhere in the three-dimensional space

surrounding the internal logistics system. In addition, they used multi-view geometry among

virtual cameras to get a better look at the trajectories. As a result, they were able to conduct

many well-controlled experiments and collect a massive dataset of thrown object trajectories,

which we used to successfully train a bidirectional long short-term memory (LSTM) deep neu-

ral network. Successful real-time trajectory prediction using a trained neural network has been

achieved.

2.1 Machine learning for plantlings monitoring

The researchers of [30] applied random forest, an artificial neural strategy, to discern between

healthy and damaged plants, and Contour of Focused Gradients was used to gather picture

characteristics, and their method scored a recognition rate of 92. They deployed ML algo-

rithms and computer vision technologies to evaluate and diagnose early vegetative infections

in this report [31]. In their study [32], they collected a plant leaf image and evaluated it to

assess the plant’s overall health. They deployed SVM and ANN approaches to spot phytopatho-

gens. SVM, backpropagation, and region of interest are the technologies utilized in these publi-

cations. SVM worked well as an outcome of these experiments, including image processing

processes. They implemented K-means clustering for image extraction and SVM for the cate-

gorization of paddy leaf spots. They acquired a trained accuracy of data of 92% and testing
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completeness of data of 74 basis points. Linear interpolation and characterization concepts are

presented in this work [33]. The main objective of these methodologies is to forecast or effec-

tively detect input information by using instances. The authors of [34] devised an uncompli-

cated and straightforward system for evaluating good and diseased tomato leaves. The

database included 200 pictures captured with a camcorder. Although the performance gained

with the supervised learning approach was satisfied, the decision tree has some limitations—

for example, if noisy data is employed, overfitting might arise. The authors of [35] applied ran-

dom forest, an artificial neural algorithm, to discern between healthy and sick leaves, and His-

togram of Oriented Gradient (HOG) to retrieve image features, and their approach attained

92% of overall accuracy. This paper [36] presented an evaluation of the effect of distinct proce-

dures that are simulated to foretell the damaged proliferation of a lettuce sprout. On the testing

data, the highest-rated functioning network-Alexnet seems to have a high value of 94%, with a

minimum error of 0.17. Using machine learning techniques, the researchers were able to ana-

lyze the seedling monitoring successfully but the accuracy rate of prediction is much lower.

Moreover, no work is done on palm tree seedling monitoring using machine learning tech-

niques. In [37] research, a revolutionary AI system is suggested for categorizing different kinds

of fruits. To begin, they used a 2D fractional Fourier entropy grid based on rotation angles to

extract information from pictures of fruit. The data was then classified using a five-layer

stacked sparse autoencoder. With a dataset containing 18 types of fruit, the proposed tech-

nique obtained a micro-averaged F1 score of 95.08% across 10 separate runs.

2.2 Deep learning based plantlings monitoring

Deep learning architectures have demonstrated exceptional performance in forecasting plant

health monitoring and classification of diseases. In [38] a framework was suggested to identify

and classify the disease based on the expulsion Chroma proportion of the in-undated location

of paddy plant via wavelet transform, and then a Naïve Bayesian predictor was adhered to

eventually label the ailments into three disease labels named leaf spots menace, grain detona-

tion, and brown spot, with an exactness of 89 basis points. This work conducted a detailed

evaluation of the diagnosis of diseases in apples and leaves of tomatoes applying CNN

approaches. The system was built on a green leaf image dataset containing more than 3000 pic-

tures and obtained an average accuracy of 87%.

Changing climate has posed a danger to food land; severe temperatures and humidity, as well

as other osmotic stress, all add value to the evolutionary biology of ailment and herbicides on

crops. In [39], authors employed an image processing technique to identify plant illness. They

used a dataset of nearly 500 pictures of the healthy and unhealthy plants in which a convolution

neural network is used to detect; a semi-supervised method and a supervised algorithm are uti-

lized. In [40], Wani, J.A. et al. used a pre-trained Inception-v3 system, nine major Convolutional

networks were possible to perceive pathologies in foliar shots spanning a few groups and deter-

mine vegetation and developmental periods of infestations by tracking the number of leaflets of

some diverse species diversity. There might not be a great deal of research on cabbage prognosis.

If an Inception Network is redesigned, caution is advised to verify that the computational

improvements are not squandered. As a result of the uncertainties about the new network’s effi-

cacy, customizing Inception architecture for numerous use cases has become a challenge.

The authors in [41] used a deep CNN architecture, to classify the fruit leaf-disease associa-

tion. They created a dataset from a real-world setting, consisting of 14,181 photos with 10 dif-

ferent labels. Datasets in colour, monochrome, and grayscale are used to test various

hypotheses. The AlexNet and SqueezeNet convolutional neural network models were used to

train these datasets, with the identical hyper-parameter settings. The results of the trials show
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that both models achieve nearly identical identification accuracies of 86.8% and 86.6% on col-

our photos, respectively, indicating that colour images are useful for categorization.

The article [42] describes ways for classifying plant plantlings using a collection of 4,275

photos of roughly 960 distinct plant families to 12 species at various developmental stages.

They implemented an image classification method using a standard Convolutional Neural

Network (CNN), and the system attained an accuracy of roughly 93%. The researchers in [43]

suggested a novel Faster RCNN framework-based automatic identification approach for

hydroponic lettuce plantlings. Their approach employed the High-Resolution Network

(HRNet) as the backhaul for extracting features, resulting in dependable and high—dimension

expressions. They classified healthier plantlings from unhealthy plantlings with a 94% accu-

racy. The researchers in [44] used a CNN architecture accompanied by an LSTM-based deep

neural system to identify seedling growth. This paper presents a comprehensive visual synthe-

sis and machine learning pathway for classifying three distinct phases of seed germination.

With a multiclass labelling dataset, the CNN-based LSTM model achieved 90% accuracy.

According to the aforementioned studies, the overwhelming amount of palm tree seed

mapping studies employ conventional data mining algorithms, such as principal component

analysis, supervised classification, spectroscopic measures and binarization analysis, blended

per-pixel classification, probabilistic reasoning, and DT principle-based entity image recogni-

tion. Moreover, the conventional machine learning approaches are less accurate but have

wider applications, whereas deep learning is more accurate but has not reached to the same

level of adoption like ML ones. Also, there are ramifications and an increased computational

cost if CNN is used to forecast palm tree seed development. Furthermore, no studies have

been dedicated to using deep learning techniques for prediction of palm tree seedling growth.

Predicting the production of tree crops like oil palms is extremely difficult. To comprehend

and lessen the effects of these dangers, we need extensive and multifaceted data sets. Typical

approaches can’t be used to draw a diagram of their interconnections because they deal with

unpredictable and dependent parts. Critical restrictions of productivity at the tree and field

sectors can be better understood with the help of modern analytics, which must be combined

with the very heterogeneous datasets. Therefore, the work in this paper develops a novel

GL-CNN architecture along with UAV and IoT technology for palm tree seedling monitoring.

3 Proposed GL-CNN model

In bioremediation, the germination rate, seedling sprouting, and initial establishment stages is

responsible for 90% seed death rate, which are regarded as the most critical bottleneck [45].

Conventional assessments of seedling growth can be hard in locations where the scope of seed-

based ecological restoration efforts has greatly expanded. In various seedling ecosystems, clas-

sifying and predicting seedling health to the specific level can be laborious and time-consum-

ing [46]. Consequently, there is a growing demand for technological approaches that provide

restorative practitioners with high-resolution, quick, and affordable seedling health monitor-

ing solutions. However, recent advancements in software platform, wireless sensors, and com-

puter vision may allow for significant time and expense reductions in plant seedling

monitoring. Many agronomic applications make use of wireless sensor networks, such as

remote monitoring of environmental and soil conditions for estimating crop viability. Using

environmental parameters such as temperature, moisture, temperature, relative humidity, sali-

nization, and soil conductance as inputs, WSN-based applications can calculate calculates an

anticipated irrigation schedule for agricultural areas [47].

Manually detecting crop diseases and pests, using statistical calculations to forecast the

amount and estimate the production and loss of crops. These were time-consuming processes
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and prone to human error [48]. With the use of data analytics and machine learning, we can

extract the most relevant insights from agricultural data and improve precision in farming.

Vector models, neural network, regression techniques, fuzzy logic, RNN and CNN are some of

the most popular and relevant machine learning techniques used in weather-based crop moni-

toring [49].

Digital mounted cameras on lightweight unmanned aircraft systems can capture images of

the plantlings. Object-detection algorithms like CNN can then be applied to the acquired

imagery to assess the growth of plant plantlings. But still the attempt of palm tree seedling

monitoring is not yet done in any research. Hence in this study, we design a novel GL-CNN

architecture for efficient monitoring and prediction of palm tree seedling health with UAV for

image collection and IoT technology for ground truth estimation as shown in Fig 1.

Monitoring is an essential component of efforts to restore the environment, but doing so

on a large scale can be difficult, especially in the early stages when plants are still establishing

themselves. Even though they are minuscule and devoid of distinguishing characteristics,

seeds and seedlings are the most vulnerable stages of a plant’s life cycle [34]. Nonetheless, these

phases are crucial to the plant’s development. This makes it challenging to keep track of them.

This makes it challenging to keep a close eye on the seeds and young plants. Restoration pro-

fessionals require technical approaches that can provide them with high-resolution, rapid, and

scalable plant-based monitoring systems [21]. Conventional approaches to plantlings’ health

tracking have made use of remote sensing tools like proximity sensing devices, spectrometry,

machine vision systems, mapping techniques, and drones. There are still some partial difficul-

ties with these technologies that prevent them from being widely used for tailored and long-

term plantlings monitoring [17]. These methods are not suitable for precise monitoring of

Fig 1. Schematic workflow of proposed GL-CNN-based model.

https://doi.org/10.1371/journal.pone.0289963.g001
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plant growth, or the prolonged tracking of the plant’s growth. They do not have high spatial or

temporal resolution and they can only perform discontinued measurements. In the past, track-

ing seedlings required conducting costly and time-consuming field surveys during which seed-

lings had to be located, named, and counted while still in the soil [10]. Machine learning and

deep learning architectures are the newest technologies that improve ecological monitoring.

To accomplish this, Fig 2 shows that the relatively more minor dimension is stretched to 256,

and then the following image is filtered to generate 128*128 images. The filters used are 3x3

kernel size with 64, 128, 256,512 filters at each convolution layer inside every stage.

Table 1 denotes the layered structure schematics implemented in our proposed GL-CNN

architecture. It comprises of the components and configuration of our proposed architecture.

Fig 2. Proposed GL-CNN architecture.

https://doi.org/10.1371/journal.pone.0289963.g002

Table 1. GL-CNN configurations.

COMPONENTS CONFIGURATION

IMAGE INPUT(DATA) 128*128*3
CONVOLUTION(conv1) 64*64*3

ReLU (relu1) ReLU

CONVOLUTION(conv2) 64*64*3
ReLU (relu2) ReLU

MAX POOLING(POOL1) Max pooling2D, Dropout = 0.25

CONVOLUTION(conv3) 128*128*3
ReLU (relu3) ReLU

CONVOLUTION(conv4) 128*128*3
ReLU (relu4) ReLU

MAX POOLING(POOL2) Max pooling2D, Dropout = 0.25

CONVOLUTION(conv5) 256*256*3
ReLU (relu5) ReLU

CONVOLUTION(conv6) 256*256*3
ReLU (relu6) ReLU

MAX POOLING(POOL3) Max pooling2D, Dropout = 0.25

CONVOLUTION(conv7) 512*512*3
ReLU (relu7) ReLU

GLOBAL AVERAGE POOLING2D Global Average pooling layer

SOFTMAX SOFTMAX(CLASSIFIER)

LOSS CATEGORICAL_CROSSENTROPY

OPTIMIZER ADAM

https://doi.org/10.1371/journal.pone.0289963.t001
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To retrieve relevant attributes from images, several Convolutional Kernels are utilized. The

convolutional layer is a core part of the deep neural network. The gradient attributes are com-

prised of a set of trainable particles that have a modest dynamic range but stretch across the

whole depth of the embedding layer. A single convolutional layer often has several kernels of

the same size. In contrast, the Convolutional Layer begins with 64 kernels of various sizes, with

the aspect ratio of the kernels typically being the same, and the profundity is almost the same

as the multitude of channels [50].

After the first two Convolutional layers have been added, the Overlapping Max Pooling

layer is added. After the third and fourth convolutional layers, there are layers of max pooling

that overlap, and the fifth convolutional layer is directly connected to the layer before it. After

the sixth convolutional layer, there is an Overlapping Max Pooling layer right after it. The final

layer in the implementation is the seventh and last convolutional layer. Consequently, a series

of one global average pooling is constructed. The GAP layers [51] output is projected into a

classifier called SoftMax. Bayes optimization tests [52] also confirmed that ReLU and dropout

have collaboration, which implies that using them together is optimal. To reduce the dropout

and overfitting problems on a global scale, Bayesian optimization (BO) is a statistical optimiza-

tion method. BO minimizes or maximizes the objective function using Bayes’ Theorem to

guide the search. When implemented for hyperparameter tuning, the ReLU objective function

becomes costly to evaluate. This can be eradicated by realizing the Bayes technique for parame-

ter tuning in ReLU. CNNs’ breakthrough is characterized by their potential to learn detailed

mid-level vision descriptions instead of low-level palm tree plantlings parameters, which are

prevalent in traditional image classifiers.

Convolution actions utilize 7-dimensional convolution layers and adaptable kernels or fil-

ters, with each kernel possessing an additional trainable partiality. The kernels are dragged

across the input in “strides” throughout these convolution actions” [53]. In general, the larger

the stride, the more the space kernels skip among each iteration. As a result, there were consid-

erably fewer convolutions, and the result size was halved. For each deployment of a specific

kernel, a multiplying operation is applied in between the input section and the kernel, with the

bias appended to the resultant. It generates extracted features with the convolution layer result.

Usually, features were channeled through a kernel function that provides data for the subse-

quent layer. The below Eq (1) is used to compute the output size of the feature map.

OutputSize ¼
ðN � F þ 2PÞ
ðSþ 1Þ

ð1Þ

where N denotes input size, F denotes kernel size, P denotes padding and S denotes stride.

3.1 GL-CNN processing layers

3.1.1 Overlapping-Max pooling 2D. Overlapping Max Pool layers are analogous to Max

Pool layers because perhaps the progressive windows for which the maxima are estimated to

overlap. We proposed an overlapping batch normalization of size 3*3 having strides 2 in this

research. Accumulating frames of 3*3 were adopted; with a factor of 2 inter panels. Being con-

trast to pre-pooling strips of size 2*2 with a stride of 2 yielding the same outcome parameters.

The continuous pooling feature leads to a 0.4 percent decline in the top-1 failure rate and a 0.3

percent reduction in the top-5 prediction error [54].

3.1.2 Normalization layer. Batch normalization is a recently developed approach that

quantifies a mean value from the distribution of the cumulative signal to a neuron across a

mini batch of the training phase, which would be used to equalize the summing inputs to those

neurons on every set of data [55].
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3.1.3 Global average pooling layer. Global Average Pooling is a pooling procedure that is

intended to replace ultimately linked layers in traditional CNNs. The working model of GAP

is shown in Fig 3. The 2D Global average pooling block accepts a matrix of dimension (input

length) x (input altitude) x (input channels) and computes the average of all values across the

entire (input size and shape) x (input length) matrix for each of the input channels. Rather

than superimposing ultimately linked layers on top of the wavelet coefficients, we aggregate

one by one and send the obtained vector right into the SoftMax layer [56].

Global average pooling has virtue over fully connected layers (FC) layers in that it promotes

correspondence amongst feature maps and subcategories, making it more ideal for the convo-

lution layout. As a corollary, the extracted features may be simply under-stood as category

optimism maps. Another perk of global average pooling is that there are no factors to tweak,

thus, fitting during this stratum is minimal. Global average pooling aggregates geometric

information, making it even more susceptible to source spatial changes. In conventional

CNNs, fully connected layers are typically replaced with a pooling technique called global aver-

age pooling. The idea of the final conv layer is to build a feature map for each class that has

been established through the classification process. To avoid the need for additional fully

linked layers on top of the feature maps, we simply average the maps and feed the resulting

vector into the softmax layer.

In addition to alleviating the overfitting issue, pooling enables the learning of invariant fea-

tures and serves as a regularizer. Equally as crucial is the fact that pooling approaches drasti-

cally cut down on both the computing cost and training time of networks.

3.1.4 Softmax. SoftMax is advantageous, and it is utilized in CNN for multi-classification.

When the SoftMax function is being used in a multi-classification network, it delivers the like-

lihood for every class, also with the target class, which holds the most significant possibility.

Since it turns the output of the neural network’s last layer into an effective probability distribu-

tion, it is often used to standardize the output of neural networks, which falls around zero and

one. It indicates the network output’s certain “probability” [57]. The soft max function σ(Z) is

defined by Eq 2 which is given below.

s Zj

� �
¼

eZj
PN

k¼1
eZk

ð2Þ

The palm tree plantlings growth prediction algorithm is presented below. The input to the

algorithm would be preprocessed images and the output will be in the form of values for health

and unhealthy growth. The ground truth value obtained through IoT module is compared

with predicted result for analyzing the efficacy of the proposed model.

Fig 3. GAP layer vs. FC layer.

https://doi.org/10.1371/journal.pone.0289963.g003
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Algorithm 1: Palm tree plantlings growth prediction algorithm
Input: Palm tree seedling dataset (Aceraceae) images; Training and
testing ratio, stopping criteria;
Output: Palm tree seedling dataset (Aceraceae) growth prediction, Pos-
itive and Negative polarities, F1-score, Accuracy rate, Precision rate
and Recall rate.
1. Dataset = Palm tree seedling dataset (Aceraceae) images
2. Train = Train GL-CNN model with the palm tree seedling (Aceraceae)
images dataset
3. GL-CNN model = Developed 7 convolutional layers, 3 Max pooling, 1
global average pooling 2D, 1 SoftMax
4. Analyze network (GL-CNN model)
5. Training Option:

Optimization Algorithm = rmsprop
Initial Learning Rate = 0.00001
Max Epochs = 250
Mini Batch Size = 3*3

6. Load Dataset
7. Count each label in Dataset
8. Resize Dataset to [128*128*3]
9. Convolutional layer [64*64*3]
10. Max pooling2D, Dropout = 0.25

11. Split Dataset into [Training Data (80%), Testing Data (20%)]
12. Load GL-CNN model

13. Train GL-CNN model /*train the network with the Training
Option and Training Data */
14. Test Trained GL-CNN model /* using Testing Data */
15. Return Test Results

16. Test Results = Accuracy rate, Precision rate, Recall rate,
and F1-score
17. If Test Results = Satisfactory, then

(1) Save the Trained GL-CNN model and Test Results /* for transfer
learning purpose */

(2) End
18. Else
19. Adjust the Training Option through learning rate
20. Repeat the process until stopping criteria satisfied

3.2 Structural features of GL-CNN

3.2.1. ReLU non-linearity. GL-CNN proves, leveraging Rectified linear units which are a

nonlinearity function, the deep CNNs can indeed be developed much faster with the help of

saturating receptive fields like Tanh or Sigmoid [58]. The ReLU function is denoted in Eq 3.

FðxÞ ¼ ð0; xÞ ð3Þ

The plots of the two functions–tanh and ReLU–are depicted in Fig 4. The tanh function

inundates very elevated z values. The slope of the function approaches 0 in specific locations.

As a result, gradient descent may be slowed. However, for larger positive values of z, the gradi-

ent of the ReLU curve is not close to 0.

This allows the optimization to converge more quickly. The slope remains 0 for negative z

values; however, most neurons in a neural network normally have positive values. For the

same reason, ReLU wins over the sigmoid function [59]. This kind of architecture has millions

of parameters; a major issue arises in terms of over fitting. The major methods to reduce over-

fitting are Data Augmentation and Dropout.
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3.2.2. Data augmentation. A regularization approach is data augmentation (a way to pre-

vent overfitting). First, it employs random cropping of input images, as well as rotations and

flips, to train the network. Data augmentation is an approach to enhance the quantity of data

by adding significantly changed replicas of previously existing data or created from previously

existing data [60]. When retraining a machine learning model, it serves as a regularizer and

helps to minimize the computational burden.

Fig 5 depicts the randomly cropped images which appear to be highly similar, yet they are

not precisely the same. This informs the Neural Network that mild pixel movement does not

affect reality, but the image still signifies plantlings. It would not have been possible to employ

such an extensive network without data augmentation since it would have suffered from signif-

icant overfitting. For data augmentation, two operations (horizontal flipping and vertical flip-

ping) are performed at angles of 45 and 180 degrees for all the 51 images. This resulted

formation of 4 replicas for each image. The mathematical formula for image augmentation

using flipping method is given in Eq (4).

A ¼
Cos y � Sin y

Sin y Cos y

 !

ð4Þ

3.2.3. Dropout. A neuron leaves the network with a probability of 0.5 to 0.25 in dropout.

When a neuron goes, it has no influence on either forward or backward propagation. As a

result, each input is directed through new network architecture [61]. The learned weights

Fig 4. Activation analysis of tanh and ReLU.

https://doi.org/10.1371/journal.pone.0289963.g004

Fig 5. Data augmentation process.

https://doi.org/10.1371/journal.pone.0289963.g005
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parameters are more resilient and do not quickly get overfitted. During test results, there is no

attrition, and the entire network has been used. However, the outcome is inflated by a factor of

0.25 to compensate for neurons that were neglected while retraining.

4 Experimentation and results

4.1 Dataset collection

To evaluate the proposed method, a new data set of palm tree seedlings was created. Our data

set comprises pictures of palm tree seedlings that were captured with UAV technology. All the

image data we used in our experiment came from the nursery garden of V.M. Arockianatha-

puram in Tirunelveli City, Tamil Nadu, India (8˚41’51.4"N 77˚46’54.9"E), where it was taken

in December 2022. The average temperature for the year is 24.5 degrees Celsius. The nursery is

1,500 square meters and is lit by natural light. To keep the variety of palm tree seedling images,

it is essential to consider a range of vertical heights when gathering information about these

images. Also, pictures are taken both in the morning and in the afternoon. The pictures came

from the same group of palm tree seedlings that had been growing for ten days and were taken

in different kinds of light. After the images have been gathered, they are shrunk to 128x128

pixels. Fig 6 shows the specific images of the seedlings that were taken.

The dataset is created with 51 images initially. For the created dataset, data augmentation

results in the creation of 4 replicas for each image. The replicas are made with an angular shift

of 45 and 180 degrees through horizontal and vertical flipping. The images are subjected to

data augmentation, resulting in the creation of 255 images in the dataset. The training vs test-

ing ratio is realized as 80:20. In the dataset, 204 were put into the training set, and 51 were put

into the testing set. The utilized dataset is publicly available in the Kaggle repository at https://

www.kaggle.com/datasets/rajmohan89/palm-tree-plantlings-health-prediction.

Fig 6. Sample palm tree plantlings.

https://doi.org/10.1371/journal.pone.0289963.g006
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Every oil palm seedling has grown in different temperatures and humidity levels. And the

images are generated at different places where palm plantlings are germinated. Every plant has

some desirable temperature to grow and survive. The healthy palm seedling requires well-

drained topsoil and thrives in strongly alkaline conditions. The successful growth of plantlings

is satisfied only under the minimum temperature range between 22˚C to 24˚C (71.6˚F-

75.4˚F), the maximum temperature range between 20˚C to 33˚C (68˚F -91.4˚F), and the opti-

mal temperature ranges from 30˚C–32˚C (86˚F–89.6˚F). Ensure that the topsoil is consistently

saturated and when the upper region of soil is dry, water is supplied to the palms. Moreover,

screened sunshine is preferable for palm seed germination. A humidity level of approximately

60–80 percent is desirable. These are the factors that are included in this research.

The plantlings are categorized into two classes depending on their growth and develop-

ment. The seedling is said to be poor if any black spot is formed in the tiny leaf due to lack of

nutrients if the temperatures and humidity levels are not optimal, and the leaf looks dried

yellowish. Fig 7 represents successful growth, and Fig 8 indicates poor growth (lack of nutri-

ents due to the unsuitable temperature). The IoT model is utilized to identify the ground truth

of the palm tree plantling health conditions. The UAV technology is used for capturing images

of the palm tree plantlings. The IoT kit (Fig 9) is a grove sensor (DHT11) in which the ground

is connected to the Raspberry Pi. This model was considered as it is based on long-term stabil-

ity and low power consumption. Connect this sensor to the respective ports using a cable that

connects both the grove sensor and the Raspberry pi. Moreover, the raspberry pi is connected

to the electrical supply using a small USB cable. This kit is utilized to measure the temperature

and the humidity level of the plantlings where they grow. The normal temperature range for

oil palm trees is 20˚C -33˚C. The humidity varies from 60-to 80 percent. And so, the measured

Fig 7. Healthy seedling growth.

https://doi.org/10.1371/journal.pone.0289963.g007
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Fig 8. Poor seedling growth.

https://doi.org/10.1371/journal.pone.0289963.g008

Fig 9. IoT monitoring module.

https://doi.org/10.1371/journal.pone.0289963.g009
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levels satisfy the original and are maintained at the proper temperature, then the plantlings

will have enough nutrients to grow successfully. If temperature and humidity levels are not sat-

isfied, it will make the seedling discolored and suffer from nutrient deficiency. They are detect-

ing the humidity and temperature level of the captured plantlings to find their growth

prediction. Fig 10 visualizes the preprocessed images of palm tree plantlings.

• STEP 1: DATA VISUALISATION: Although our training dataset encompasses a significant

collection of photos, we would commence by graphing the images that correspond through

the most categories. Successful growth refers to plantlings that have developed adequately

under certain temperatures and humidity. The plantlings with a black dot or any yellow pig-

ment due to the nutrient less are spotted and classified as having poor growth.

• STEP 2: DATA AUGMENTATION: More images were uploaded to the collection for data

augmentation, and each picture was flipped as we progressed through this cycle. We had

some additional images after using the data augmentation approach, with some images fall-

ing into the ‘Successful growth’ category and some may be falling into the ‘Failure’ category

under the ‘poor growth’ label.

• STEP 3: MODEL VERIFICATION: With 250 epochs, this phase strives to fit the pictures

from the training and validation datasets into the Framework. The use of the cross-validation

methodology eliminates data fitting problems. For epoch = 250, got a result with loss:

0.1149, accuracy: 0.9823, val_loss: 0.5312, val_accuracy: 0.9610. Our model takes 15 sec to

execute one epoch. Table 2 explains the training and testing values obtained for loss and

accuracy predictions in palm tree seedling prognosis.

• STEP 4: DATA CATEGORIZATION: In this case, n symbolizes the n-th instance, while

k2 {0, 1. . . K− 1} designates one certain class. Optimizing log-likelihood is just the same as

lowering categorical cross-entropy damage. It is expressed in Eq 5.

Fig 10. Preprocessed palm plantlings dataset images.

https://doi.org/10.1371/journal.pone.0289963.g010

Table 2. Accuracy and loss.

TEST LOSS: 0.156 TRAIN LOSS: 0.1149

TEST ACCURACY: 0.9610 TRAIN ACCURACY: 0.9823

https://doi.org/10.1371/journal.pone.0289963.t002
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N ¼ � log log p
yn

xðtÞn

� �

¼ �
XK

k¼0
n yn logðynÞk ð5Þ

where n ¼ k ¼ 0 or 1

Here log (yn) specifies an indicator function for the tag, and n = 2 in our scenario. The net

loss for our dataset is expressed by:
PK

k¼0
n yn. Assigning a cost to all the classifications com-

pensates for both the categorical cross-entropy reduction. This accentuates the minority class,

especially for unlabeled data. As an outcome, the design tries to reduce misperception of this

class. When the image returns with a classifier value of 0, the growth goes well. If the image is

returned with the value 1 for the classifier, it is marked as having poor growth, which means

that the attempt to grow failed.

4.2 Performance analysis

The entire approach of training and validation of the seedling growth prediction model

reported in this study was carried out on a single workstation. The Neural network is trained

using a graphics processing unit (GPU). A workstation with an i7 GPU from the 11th genera-

tion and 16 GB of RAM was used to test the proposed methods. The implementation was writ-

ten in Python 3.10.5 using Tensor and Keras libraries. This implementation realized 250

epochs, ReLU optimizer, and a learning rate of 0.0001. The proposed system produces the out-

come shown in Fig 11. The results indicate that the seedling growth is flourishing. The findings

reported in this part are from testing with the entire data set, which comprises both original

and augmented images.

A simpler architecture will increase prediction accuracy (as shown in Fig 12) and may be

more efficient in capturing the data structure than many of the larger versions employed in the

previous study [62]. Epoch sizes can enhance the accuracy up to a certain point, after which

the simulation moves into overfitting. Possessing a shallow one will lead to underfitting as

well.

Fig 11. Growth prediction.

https://doi.org/10.1371/journal.pone.0289963.g011
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As a result, the proposed CNN architecture seems to be simpler and provides better perfor-

mance, which is shown in Fig 12. MAE is an abbreviation for the Average of All Intrinsic

Losses. The framework was tested to establish the model’s loss and accuracy values. The mod-

el’s Mean Absolute Error (Fig 13) is really the arithmetic mean values of each standard error

above all repetitions of the testing data.

Fig 12. Accuracy with 250 epochs.

https://doi.org/10.1371/journal.pone.0289963.g012

Fig 13. Mean absolute error over 250 epochs.

https://doi.org/10.1371/journal.pone.0289963.g013
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5 Discussions

The trained model was evaluated on each class autonomously. Every palm tree sampling image

from the validation data was inspected. The statistics are provided to showcase how many suc-

cessful versus poor development seedling pictures are reliably predicted from the overall of

each class. Using the Soft max activation function formula, the CNN output layer will estimate

the probability of each class. GL-CNN generates the i-th neuron with the peak power probabili-

ties score projection. Table 3 and Fig 14 exhibit the predictive accuracy of the phase for each

category. Experiments indicated that the proposed implemented system monitors growth and

consumes less inference speed and amount of memory than existing methods. We examined

the correctness of the prior techniques to the suggested one to further illustrate the new mod-

el’s success. The comparison is shown in the Fig 15. It outperforms the other models and

proves that the error rate is low compared to the traditional methods. Here, the value 0 denotes

healthy growth and value 1 denotes poor growth. Our method obtained an accuracy of 96.10

in predicting healthy growth and 95.83 in predicting poor growth.

After the training phase, we used a test set of 51 images of palm tree seedlings to test how

well the proposed model worked and how well it worked in general. This paper uses the accu-

racy rate A, the precision rate P, the recall rate R, and the F1 score to measure how well our

Table 3. Performance of GL-CNN vs ground truth.

Class Ground Truth GL-CNN Accuracy Precision Recall F1 Score

Healthy 231 222 96.10 0.967 0.924 0.987

Unhealthy 24 23 95.83 0.982 0.978 0.978

https://doi.org/10.1371/journal.pone.0289963.t003

Fig 14. Prediction accuracy.

https://doi.org/10.1371/journal.pone.0289963.g014
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model works. In Eqs 9, 10, and 11, the definitions of P, R, and F1 are provided.

P ¼
TP

TP þ FP
ð6Þ

R ¼
TP

TP þ FN
ð7Þ

F1 ¼
TP

TPþ 1

2
FPþ FNð Þ

ð8Þ

True Positives are denoted by TP, False Positives by FP, and False Negatives by FN. Further-

more, TP denotes the appropriate detection box, FP denotes the false detection box, and FN

denotes the missing detection box. The detection box is a simplified representation of plan-

tlings found in a specific image.

We compared our model to others, such as Resnet50 [39], Deep CNN [41], SVM [42], and

YOLO [43] to determine how accurately each could predict the growth of plant seedlings. The

performance of each model on the same test set is displayed in Table 4 and Fig 15, respectively,

after training several distinct detection frameworks until convergence.

Table 4 and Fig 15 depict the results of the suggested strategy, compared against five other

recent approaches. The existing methods attained a maximum of 94.87 accuracy value, 97.08

precision value, 95.21 recall value and 96.28 F1 value. Among the existing approaches,

Fig 15. Prediction performance analysis.

https://doi.org/10.1371/journal.pone.0289963.g015

Table 4. Performance of GL-CNN vs existing models.

Framework Accuracy Precision Recall F1 Score

Resnet50 [39] 94.87 96.54 94.09 95.30

Deep CNN [41] 90.08 88.15 87.11 87.75

SVM [42] 78.12 78.10 78.25 87.38

YOLO [43] 90 92 91 91.02

Proposed GL-CNN 95.96 97.45 95.10 96.36

https://doi.org/10.1371/journal.pone.0289963.t004
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Resnet50 predicted the growth of palm tree plantlings more efficiently than other frameworks.

In comparison with existing methods, the proposed technique achieved 95.96 accuracy value,

97.45 precision value, 95.10 recall value and 96.36 F1 score. GL-CNN is compared to other

CNNs, found that it outperforms the traditional methods which were implemented in previous

research.

6 Conclusion

Palms tree are one of the most important economic plants and with the developing technology,

their indigenous growth can be monitored. Plant growth predicting in a real-world environ-

ment requires high accuracy and robustness. Currently, UAVs are widely used in agriculture

as they can capture images with high spatial resolution. IoT technology has enables smart

monitoring of palm tree plantlings growth and their health prediction. Combining the advan-

tage of UAV, IoT and CNN model, we proposed a novel GL-CNN model for growth predic-

tion in palm tree plantlings. The GL-CNN has improved the prediction performance by

inducing normalizing layer, the global average pooling layer, and the depth of the pooling

layer filters. UAV was utilized for capturing high quality spectral images and IoT module is

used for obtaining the ground truth information of palm tree plantlings health. Using these

two technologies, a new dataset of 255 images of palm tree plantlings was collected and made

freely public for other researchers. The evaluation results, using this dataset, showed that the

GL-CNN model performs with an average accuracy of 95.96% for predicting the palm plan-

tlings growth. Comparing with related work including the original CNN, these results showed

to be the best.

The limitation of the proposed model relies on not considering the endogenous metabolites

within the palm tree plant, for growth prediction. Moreover, the IoT module is not supported

with electrochemical and optical sensors for analyzing the surface metabolites. Realizing these

parameters and sensors in the proposed model would enhance the growth prediction process.

In the future, it will be fascinating to expand the technique to a variety of agriculturally impor-

tant species to develop a library of trained networks. Also, we employed normal RGB photos

and not evaluated the plant seedling growth during the night. This may lead to overlooked

occurrences that would have shifted our evaluation of the plantlings’ phases of growth.

Machine vision cameras, which are inexpensive, could be utilized to gain accessibility to night

events. Additionally, Bayesian techniques, such as polynomial interpolation, could be used to

determine the amount of time required to obtain potentially missing data.
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