
Citation: Gkikas, D.C.; Theodoridis,

P.K.; Theodoridis, T.; Gkikas, M.C.

Finding Good Attribute Subsets for

Improved Decision Trees Using a

Genetic Algorithm Wrapper; a

Supervised Learning Application in

the Food Business Sector for Wine

Type Classification. Informatics 2023,

10, 63. https://doi.org/10.3390/

informatics10030063

Academic Editors: Phuong

T. Nguyen and Vito Walter Anelli

Received: 13 April 2023

Revised: 24 June 2023

Accepted: 3 July 2023

Published: 21 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 informatics

Article

Finding Good Attribute Subsets for Improved Decision
Trees Using a Genetic Algorithm Wrapper; a Supervised
Learning Application in the Food Business Sector for Wine
Type Classification
Dimitris C. Gkikas 1,* , Prokopis K. Theodoridis 2 , Theodoros Theodoridis 3 and Marios C. Gkikas 4

1 Department of International & European Economic Studies, School of Economic Sciences,
Athens University of Economics and Business, 76 Patision Str., 10434 Athens, Greece

2 School of Social Sciences, Hellenic Open University, Patras Campus, 18 Aristotelous Str., 26335 Patras, Greece
3 School of Science Engineering and Environment, University of Salford, The Crescent, Salford M5 4WT, UK
4 Department of Management Science and Technology, School of Economics and Business, University of Patras,

1 M. Alexandrou Str., Koukouli, 26334 Patras, Greece
* Correspondence: dgkikas@aueb.gr

Abstract: This study aims to provide a method that will assist decision makers in managing large
datasets, eliminating the decision risk and highlighting significant subsets of data with certain weight.
Thus, binary decision tree (BDT) and genetic algorithm (GA) methods are combined using a wrapping
technique. The BDT algorithm is used to classify data in a tree structure, while the GA is used to
identify the best attribute combinations from a set of possible combinations, referred to as generations.
The study seeks to address the problem of overfitting that may occur when classifying large datasets
by reducing the number of attributes used in classification. Using the GA, the number of selected
attributes is minimized, reducing the risk of overfitting. The algorithm produces many attribute sets
that are classified using the BDT algorithm and are assigned a fitness number based on their accuracy.
The fittest set of attributes, or chromosomes, as well as the BDTs, are then selected for further analysis.
The training process uses the data of a chemical analysis of wines grown in the same region but
derived from three different cultivars. The results demonstrate the effectiveness of this innovative
approach in defining certain ingredients and weights of wine’s origin.

Keywords: feature selection; decision trees; genetic algorithm; GA wrapper; supervised learning;
machine learning; data mining; decision making; artificial intelligence

1. Introduction

As an essential preprocessing stage for machine learning, feature selection endeavors
to identify significant predictors from a feature-rich dataset with high dimensionality. The
primary objective is to enhance prediction accuracy by selecting the most representative
features. This study presents an innovative strategy that integrates binary decision trees
and genetic algorithms to effectively handle extensive datasets and support informed
decision making. The purpose of this algorithm is to use a GA as classifier system to find an
optimized tree structure along with an optimal terminal set of a BDT, and to promote and
select the elitist as a solution, which will enable the classification of datasets by undergoing
a training, validation, and testing phase, along with an ensemble method that combines
multiple BDT structures to improve classification performance.

This approach utilizes binary decision trees (BDTs) for classification purposes and
genetic algorithms (GAs) for selecting the most optimal attributes, thus minimizing the
likelihood of overfitting. The experimental application of this methodology to wine chem-
ical analysis yields promising outcomes. The combination of binary decision trees and
genetic algorithms offers a novel solution for managing significant subsets of wine data

Informatics 2023, 10, 63. https://doi.org/10.3390/informatics10030063 https://www.mdpi.com/journal/informatics

https://doi.org/10.3390/informatics10030063
https://doi.org/10.3390/informatics10030063
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/informatics
https://www.mdpi.com
https://orcid.org/0000-0002-6522-2128
https://orcid.org/0000-0002-8133-4509
https://doi.org/10.3390/informatics10030063
https://www.mdpi.com/journal/informatics
https://www.mdpi.com/article/10.3390/informatics10030063?type=check_update&version=1

Informatics 2023, 10, 63 2 of 30

with assigned weights using a machine learning model through a multi-disciplinary ap-
proach, testing it on real-world chemical substance data, and refining it. It also offers
valuable insights for future work with a human-centric perspective. To achieve this, ma-
chine learning classification utilizing an optimization method is employed to gather valid
information from this specific field of interest. The identification of wine types necessitates
an understanding of how respondents’ answers correspond to three distinct classes: 1, 2,
and 3. The outcomes reveal subsets of attributes that effectively replace the initial attribute
set, achieving high accuracy/fitness levels (above 80%) with varying numbers of attributes
based on the class. It is important to clarify that this study encompasses two distinct
decision-making processes. The first relates to the chemical substances which identify the
wine’s origin, while the second pertains to the core analysis conducted using machine
learning to generate results minimizing the risk of decision.

AI-supervised learning is employed to analyze wine data and predict the factors
influencing a wine’s type. The data is extracted from the Institute of Pharmaceutical and
Food Analysis and Technologies in Italy. The primary objective of this study is to ex-
amine, process, classify, and evaluate datasets to generate reliable insights regarding the
chemical substances which are responsible for determining a wine’s origin. Thirteen con-
tinuous variables—Alcohol, Malic Acid, Ash, Alkalinity of Ash, Magnesium, Total Phenols,
Flavonoids, Nonflavonoid Phenols, Proanthocyanins, Color Intensity, Hue, OD280/OD315
of Diluted Wines, and Proline—refer to the chemical substances that classify a wine’s
type [1].

This study addresses the challenge of hybrid data classification by introducing an
optimization population-based metaheuristic method that combines two distinct methods
and a programming technique into a unified entity. The BDT algorithm is used for data
classification, while the GA algorithm is used for optimization, and the wrapping technique
facilitates communication and data exchange between the two methods. This model uses
BDTs to efficiently handle, categorize, and extract insights from raw data, resulting in
precise subsets of data instead of using the entire set of features. It is tested in different
conditions, including various numbers and types of features, record numbers, and industry
contexts. The goal is to generate optimal feature subsets that reduce processing time and
improve prediction accuracy. The algorithm’s logic is explained, and the best attribute
subsets are presented using graphs and histograms.

While the proposed machine learning model integrating a GA wrapper with BDTs
demonstrates promising results in classifying the wine substances that affect the wine’s
origin, it is important to acknowledge certain limitations and consider further avenues
for exploration. The current study focused on a specific dataset from the wine industry,
limiting the generalizability of the findings to other domains. Future research could
expand the scope by incorporating diverse datasets from various industries to assess the
model’s applicability and performance in different contexts. Following, the wine industry
is known for its dynamic nature, characterized by evolving production techniques and
regional variations. To enhance the practicality and relevance of the model, it would
be valuable to explore its adaptability to these dynamic factors. Investigating how the
model can effectively capture and adapt to changes in winemaking practices, as well as
variations in regional characteristics, could provide deeper insights into its robustness and
generalizability. In addition to improving the model’s practical application, the study could
further investigate the interpretability and explainability of the model’s decision-making
process. While the accuracy and performance of the model are crucial, understanding
the underlying factors and features that contribute to its predictions is equally important.
By incorporating interpretability techniques, researchers and domain experts can gain
insights into which wine substances play a dominant role in determining the wine’s origin,
facilitating the validation and acceptance of the model in real-world scenarios.

Informatics 2023, 10, 63 3 of 30

2. Related Work

The current research attempt discusses the use of hybrid machine learning in wine
data. Thus, the field of study combines the machine learning model implementation stages
and its contribution to the wine industry. The literature review part refers to both machine
learning and wine decision making.

Referring to the cases where machine learning was introduced in a wine field of study,
there are a series of publications that verify its use. To begin with, research was conducted
aiming to use a large generic wine dataset to classify and highlight the differences in wines
around the world. A world wine dataset, the X-Wines dataset, was created, including data
from user reviews and ratings for recommendation systems, machine learning and data
mining, and general purposes, opening the way to researchers and students to use it freely.
Using evaluation metrics, this project involved data collection, dataset description, training,
verification, and validation, and results measurement [2].

Another significant approach [3] referred to a machine learning application in wine
quality prediction. The excellence of New Zealand Pinot noir wine led a team of researchers
to use machine learning algorithms to predict wine quality by using synthetic and avail-
able experimental data collected from different regions of New Zealand. An Adaptive
Boosting (AdaBoost) classifier showed 100% accuracy when trained and evaluated without
feature selection, with feature selection (XGB), and with essential variables (features found
important in at least three feature selection methods) [3].

Another study [4] examined the performance of different machine learning models,
namely Ridge Regression (RR), Support Vector Machine (SVM), Gradient Boosting Re-
gressor (GBR), and multi-layer Artificial Neural Network (ANN), was compared for the
prediction of wine quality. An analysis of multiple parameters that determine wine quality
was conducted. It was observed that the performance of GBR surpassed that of all other
models, with mean squared error (MSE), correlation coefficient (R), and mean absolute
percentage error (MAPE) values of 0.3741, 0.6057, and 0.0873, respectively. This work
demonstrates how statistical analysis can be utilized to identify the key components that
primarily influence wine quality prior to production. This information can be valuable for
wine manufacturers in controlling quality before the wine production process [4].

Regarding the application of machine learning methods to the wine industry, there
is a series of significant research attempts which verifies that the proper use of advanced
statistics can mitigate the decision error and provide valid information on wine products.
Previous research [5,6] has shown that GAs and BDTs have been utilized together in
various optimization and classification tasks in recent decades, as evidenced by the existing
literature. The GA wrapper, also used for user authentication through keystroke dynamics,
involves analyzing a person’s typing pattern to determine whether to grant or deny access.
This was achieved by creating a timing vector that consists of keystroke duration and
interval times. However, deciding which features to use in a classifier was a common
feature selection issue. One potential solution was a genetic-algorithm-based wrapper
approach, which not only resolves the problem but also generates a pool of effective
classifiers that can be used as an ensemble. The preliminary experiments demonstrate
that this approach outperforms both the two-phase ensemble selection approach and the
prediction-based diversity term approach [5,6] (pp. 654–660).

Another study [7] focused on the development of an automated algorithm for feature
subset selection in unlabeled data, where two key issues were identified: the identification
of the appropriate number of clusters in conjunction with feature selection, and the normal-
ization of feature selection criteria bias with respect to dimensionality. Thus, the Feature
Subset Selection using Expectation-Maximization (EM) clustering (FSSEM) approach and
the evaluation of candidate feature subsets using scatter separability and maximum likeli-
hood criteria were developed. Proofs were provided on the biases of these feature criteria
concerning dimensionality, and a cross-projection normalization scheme to mitigate these
biases was proposed. The results show the necessity of feature selection and the importance
of addressing these issues, as well as the efficacy of this proposed solution [7].

Informatics 2023, 10, 63 4 of 30

Another study [8] introduced a novel wrapper feature selection algorithm, referred to
as the hybrid genetic algorithm (GA) and extreme learning machine (ELM)-based feature
selection algorithm (HGEFS) for classification problems. This approach employed GA to
wrap ELM and search for optimal subsets in the extensive feature space. The selected sub-
sets were then utilized for ensemble construction to enhance the final prediction accuracy.
To prevent GA from being stuck in local optima, an efficient and innovative mechanism was
proposed specifically designed for feature selection issues to maintain the GA’s diversity.
To evaluate the quality of each subset fairly and efficiently, a modified ELM known as the
error-minimized extreme learning machine (EM-ELM) was adopted, which automatically
determines the appropriate network architecture for each feature subset. Moreover, EM-
ELM exhibits excellent generalization capability and extreme learning speed, enabling the
execution of wrapper feature selection procedures affordably. In other words, the feature
subset and classifier parameters were optimized simultaneously. After concluding the GA’s
search process, a subset of EM-ELMs from the obtained population based on a specific
ranking and selection strategy was selected to improve the prediction accuracy and achieve
a stable outcome. To evaluate HGEFS’s performance, empirical comparisons were carried
out on various feature selection methods and HGEFS using benchmark data sets. The
outcomes demonstrate that HGEFS was a valuable approach for feature selection problems
and consistently outperformed other algorithms in comparison [8].

The approach of using multiple classifiers to solve a problem, known as an ensemble,
has been found to be highly effective for classification tasks. One of the fundamental
requirements for creating an effective ensemble was to ensure both diversity and accu-
racy. In this study, a new ensemble creation technique that utilized GA wrapper feature
selection was introduced. These experimental results on real-world datasets demonstrated
that the proposed method was promising when the training data size was restricted [9]
(pp. 111–116).

A different study [9] employed a GA hybrid to pinpoint a subset of attributes that were
most relevant to the classification task. The optimization process was composed of two
stages. During the outer optimization stage, a wrapper method was employed to conduct
a global search for the most optimal subset of features. In this stage, the GA employs the
mutual information between the predictive labels of a trained classifier and the true classes
as the fitness function. The inner optimization stage involves a filter approach to perform
local search. In this stage, an enhanced estimation of the conditional mutual information
was utilized as an independent measure for feature ranking, taking into account not only the
relevance of the candidate features to the output classes but also their redundancy with the
already-selected features. The inner and outer optimization stages work together to achieve
high global predictive accuracy as well as high local search efficiency. The experimental
results demonstrate that the method achieves parsimonious feature selection and excellent
classification accuracy across various benchmark data sets [10] (pp. 1825–1844).

The concept of feature set partitioning expands on the task of feature selection by
breaking down the feature set into groups of features that were collectively valuable, rather
than pinpointing one individual set of features that was valuable. One research paper
introduced a fresh approach to feature set partitioning that relied on a GA. Additionally,
a new encoding schema was suggested, and its characteristics were explored. The study
investigated the effectiveness of utilizing a Vapnik-Chervonenkis dimension bound to
assess the fitness function of multiple tree classifiers that were oblivious. To evaluate the
new algorithm, it was applied to various datasets, and the outcomes indicate that the
proposed algorithm outperforms other methods [11] (pp. 1676–1700).

“Comparison of Naive Bayes and Decision Tree on Feature Selection Using Genetic
Algorithm for Classification Problem” stands out as the most significant work in demon-
strating the effectiveness of combining DTs and GAs. That study specifically addressed the
challenge of identifying optimal attribute classifications through the utilization of a GA
and wrapping technique. The focus was on handling large datasets and determining the
attributes that have an impact on result quality by considering factors such as irrelevance,

Informatics 2023, 10, 63 5 of 30

correlation, and overlap. The study employed a combination of a DT and Naïve Bayes
theorem as the most suitable models for the task. Initially, the DT was integrated with the
GA wrapper, resulting in the GADT, which provided classification results. Subsequently,
the Naïve Bayes model was also combined with the GA wrapper, leading to GANB for
classification optimization. The research team thoroughly discussed how both NB and
DT models address the classification problem by leveraging the GA’s ability to identify
the best attribute subsets. The performance of each model was comparable, although
the comparative analysis revealed that GADT slightly outperformed GANB in terms of
accuracy [12].

During the financial crisis of 2007, an alternative method for selecting features was
employed in credit scoring modeling. Credit scoring modeling aims to accurately assess
the credit risk of applicants using customer data from banks. This particular method was
utilized to identify credit risks within the banking sector, eliminating irrelevant credit risk
features and enhancing the accuracy of the classifier. The approach involved a two-stage
process, combining a hybrid feature selection filter approach with multiple population ge-
netic algorithms (MPGA). In the first stage, three filter wrapper approaches were employed
to gather information for the MPGA. The second stage utilized the characteristics of MPGA
to identify the optimal subset of features. A comparison was conducted among the hybrid
approach based on the filter approach and MPGA (referred to as HMPGA), MPGA alone,
and standard GA. The results demonstrated that HMPGA, MPGA, and GA outperformed
the three filter approaches. Furthermore, it was established that HMPGA yielded superior
results compared to both MPGA and GA [13].

In various industries, including medicine and healthcare, two predominant machine
learning approaches have emerged: supervised learning and transfer learning. These
methodologies heavily rely on vast manually labeled datasets to train increasingly sophisti-
cated models. However, this reliance on labeled data leads to an abundance of un-labeled
data that remains untapped in both public and private data repositories. Addressing this
issue, self-supervised learning (SSL) emerged as a promising field within machine learning,
capable of harnessing the potential of unlabeled data. Unlike other machine learning
paradigms, SSL algorithms generate artificial supervisory signals from unlabeled data
and employ these signals for pretraining algorithms. One study dealt with two primary
objectives. Firstly, it aimed to provide a comprehensive definition of SSL, categorizing SSL
algorithms into four distinct subsets and conducting an in-depth analysis of the latest ad-
vancements published within each subset from 2014 to 2020. Secondly, the review focused
on surveying recent SSL algorithms specifically in the healthcare domain. This endeavor
aimed to equip medical professionals with a clearer understanding of how SSL could be
integrated into their research efforts, with the ultimate goal of leveraging the untapped
potential of unlabeled data [14].

This article [15] presents a multicriteria programming model aimed at optimizing the
completion time of homework assignments by school students in both in-class and online
teaching modes. The study defined twelve criteria that influence the effectiveness of school
exercises, five of which pertain to the exercises themselves and the remaining seven to
the conditions under which the exercises are completed. The proposed solution involves
designing a neural network that outputs influence on the target function and employs
three optimization techniques—backtracking search optimization algorithm (BSA), particle
swarm optimization algorithm (PSO), and genetic algorithm (GA)—to search for optimal
values. The article suggests representing the optimal completion time of homework as a
Pareto set [15].

The problem of feature subset selection involves selecting a relevant subset of features
for a learning algorithm to focus on, while disregarding the others. To achieve the best
performance possible with a specific learning algorithm on a given training set, it is impor-
tant for a feature subset selection method to consider how the algorithm and training set
interact. Another study examined the relationship between optimal feature subset selection
and relevance. The proposed wrapper method searched for an optimal feature subset

Informatics 2023, 10, 63 6 of 30

tailored to a specific algorithm and domain. The strengths and weaknesses of the wrapper
approach were analyzed, and several improved designs were presented. The wrapper
approach was compared to induction without feature subset selection and to Relief, which
is a filter-based approach to feature subset selection [16].

In many real-world applications of classification learning, irrelevant features are often
present, posing a challenge for machine learning algorithms. Nearest-neighbor classification
algorithms have shown high predictive accuracy in many cases but are not immune to
the negative effects of irrelevant features. A new classification algorithm, called VFI5, has
been proposed to address this issue. In this study, the authors compared the performance
of the nearest-neighbor classifier and the VFI5 algorithm in the presence of irrelevant
features. The comparison was conducted on both artificially generated and real-world
data sets obtained from the UCI repository. The results show that the VFI5 algorithm
achieves comparable accuracy to the nearest-neighbor classifier while being more robust to
irrelevant features [17].

2.1. Research Objectives

The current study was developed to generate more accurate predictions using a GA
wrapper for optimal feature selection in decision trees. This model utilizes two distinct
methods and a programming technique to create precise subgroups of data, rather than rely-
ing on the complete set of features. It combines BDT data classification and GA optimization
algorithms to select optimal data features and communicate through wrapping.

The application is capable of analyzing, handling, categorizing, optimizing, and
extracting new knowledge from raw data. The application was tested under different
feature types and numbers, record numbers, industry contexts, and fields. The objective
was to generate an optimal subset of features that reduce processing time while increasing
prediction accuracy. The algorithm’s rationale is elaborated, and the best attribute subsets
are displayed in performance charts, histograms, and tree graphs. This study is pioneering
in its combination of GA with classification algorithms, as such collaborations are rare.
In order to ascertain whether the new model can surpass GAs and BDTs, it is necessary
to undertake multiple stages, such as presenting, explaining, training, validating, testing,
and evaluating the model. The empirical investigation comprises three phases, with the
first focusing on the design and analysis of the GA wrapper. The second phase refers to
the GA wrapper development and its advantages, while the third phase examines the its
performance using multiple datasets for training, validation, testing, and visualization, and
generation of average fitness, best fitness, best chromosome gene sequence, and optimal
and dominant BDTs. The AI-supervised learning was applied on wine data to predict the
factors which affect wine’s different cultivars. The generated results indicate subsets of
attributes which replace the initial entire set of attributes, achieving high accuracy/fitness,
which consist of different numbers of attributes per class. The study has three main research
objectives, each consisting of multiple stages to examine the GA wrapper model design,
implementation, and performance (Table 1).

RO1 focuses on the GA wrapper model design and consists of two stages: RO1.1
defines the GA wrapper analysis, while RO1.2 defines the GA wrapper design. RO2
examines the GA wrapper model implementation and consists of five stages: GA wrapper
development (RO2.1), GA wrapper training (RO2.2), GA wrapper validation (RO2.3),
GA wrapper testing (RO2.4), and GA wrapper representation (RO2.5). RO3 focuses on
examining the GA wrapper model’s performance on various datasets and generating a set
of decision-making rules. This objective consists of ten stages: GA wrapper to new data
(RO3.1), calculating class errors (RO3.2), calculating generation fitness (RO3.3), calculating
best fitness (RO3.4), calculating optimal BDTs (RO3.5), visualizing dominant BDTs (RO3.6),
calculating the best chromosome’s gene sequence (RO3.7), graphically representing the
generations’ fitness (RO3.8), calculating and representing the average chromosome’s gene
frequencies (RO3.9), and generating rules for wine origin (RO3.10) (Table 1).

Informatics 2023, 10, 63 7 of 30

Table 1. GA Wrapper Development Research Objectives.

No Research Objective (RO) Sub-Objectives

1 GA Wrapper Model Design
1. Define the GA Wrapper Analysis

2. Define The GA Wrapper Design

2
GA Wrapper Model

Implementation

1. Genetic Algorithm Development

2. Genetic Algorithm Training

3. Genetic Algorithm Validation

4. Genetic Algorithm Testing

5. Genetic Algorithm Representation

3 GA Wrapper Model
Performance

1. GA Wrapper on New Data

2. Calculate Class Errors

3. Calculate Generations Fitness

4. Calculate Best Fitness

5. Calculate Optimal BDTs

6. Visualize Dominant BDTs

7. Calculate Best Chromosome’s Gene
Sequence

8. Represent Generations’ Fitness
Graphical

9. Calculate and Represent Average
Chromosome’s Gene Frequencies

10. Generate Rules for Wine Cultivars

3. Research Methodology
3.1. Research Scope

A GA wrapper is a metaheuristic optimization algorithm that is used to optimize the
hyperparameters of a machine learning model. It works by using the principles of natural
selection and genetics to iteratively search for the optimal set of hyperparameters. The GA
wrapper starts by randomly generating a set of initial hyperparameters for the machine
learning model. These hyperparameters are then evaluated based on a fitness function that
measures how well the model performs on a validation set. Then, the GA wrapper uses
the principles of natural selection to select the best-performing hyperparameters for repro-
duction. These hyperparameters are then used to generate a new set of hyperparameters
through the application of genetic operators, such as crossover and mutation. The process
of selection, reproduction, and mutation is repeated for multiple generations, with each
generation producing a new set of hyperparameters that are evaluated using the fitness
function. Over time, the GA wrapper converges on a set of hyperparameters that optimize
the performance of the machine learning model on the validation set. In summary, a GA
wrapper is a powerful optimization technique that can be used to efficiently search for the
optimal set of hyperparameters for a machine learning model.

3.2. Method Overview

The study initially started with the goal of extracting wine type predictions to provide
fast and accurate suggestions. The significance of this application lies in the fact that
although DTs are commonly employed for classification tasks, they encounter difficulties
in representing data [18–20]. To address this issue, the proposed method employs a GA

Informatics 2023, 10, 63 8 of 30

wrapper to identify the attributes that play a significant role in the classification process.
This method involves the use of two interconnected algorithms: the GA, which is an
optimization algorithm, and the BDT, which is a non-pruned classification algorithm. These
algorithms work together in a parallel data processing framework. The GA selects the best
attributes from a dataset for the BDT algorithm, presented in a tree structure, achieving
comparable accuracy to fully developed BDTs [16,21]. The GA finds and selects the best
combinations of attributes to be classified by the BDT. For each combination of attributes,
the BDT classifies it and returns a fitness number to the genetic algorithm, which defines
the quality of that combination. This process is repeated several times, and the GA returns
to the BDT algorithm a combination of attributes that is represented in a tree structure.
The wrapping method handles the communication between the BDT and GA and makes
it seem like they are executing simultaneously. The utilization of parallel processing on
data guarantees the prevention of overfitting, showcasing the optimal set of attributes or
genes through tree form representation that depicts the classification accuracy for training,
validation, and testing data [22,23].

3.3. Information Gain

The Shannon function is an essential component of the decision tree algorithm, as it
helps to determine the usefulness of each attribute in terms of the amount of information
it can provide in bits. This function is analogous to the fitness function used in genetic
algorithms, which evaluates the overall health of a chromosome. The Shannon function
takes into account the existing knowledge about the attribute and evaluates its consistency
with that knowledge. When an attribute provides a large amount of information, the value
returned by the Shannon function will be lower. This function calculates the amount of
information gained from splitting a dataset based on a particular attribute [24].

The amount of information gained is measured in bits, and the mathematical formula
used to calculate the Shannon function is as follows:

I(P(u1), . . . , P(un)) =
n

∑
i=1
−P(ui) log2P(ui) (1)

where I(P(u1), . . . , P(un)) represents the amount of information gained by splitting the
dataset based on attributes, P(u1), . . . , P(un), and P(u) represents the proportion of the
dataset belonging to each class after the split, and P(ui) is the probability of the possible
answer (ui).

Remainder (A) =
u

∑
i=1

pi + ni
p + n

I
(

pi
pi + ni

,
ni

pi + ni

)
(2)

Gain (A) = I
(

pi
pi + ni

,
ni

pi + ni

)
− Remainder (A) (3)

In addition to the Shannon function, other measures such as the Gini index and the
Chi-squared test can also be used to evaluate the information gain of attributes. These
measures take into account different aspects of the data, and the selection of the most
appropriate measure largely depends on the specific problem at hand. Overall, the selection
of an appropriate measure for evaluating information gain is crucial for building accurate
decision trees that can effectively classify and predict outcomes (Table 2) [24].

3.4. GA Wrapper Fitness Model

The evaluation of chromosome fitness and its mechanical implementation is a crucial
aspect of this study. In essence, the fitness number and accuracy are interchangeable terms
used to describe the same numerical value. The chromosome undergoes a classification
process via a decision tree, with the accuracy of each chromosome being determined and
subsequently returned to the genetic algorithm. At the conclusion of each generation, the
overall fitness number is determined.

Informatics 2023, 10, 63 9 of 30

Table 2. Binary Decision Tree Pseudocode.

1. Function Decision_Tree(Atts,default,examples);
2. Atts←− Attributes;
3. Default←− default_typical_class;
4. Examples←− Examples;
5. best_att←− 0;
6. AttsValue[i]←− Atts[1 . . . N];
7. Subset[i]←− 0;
8. subTree←− 0;
9. Create Node StartNode;
10. If Examples have the same classification thendo
11. return classification;
12. If Examples is empty thendo
13. return Default classification;

a. best_Att←− Find_best_Att(Atts,examples)
b. StartNode←− best_att;
c. For any AttsV(i) of Atts do
d. Examples(i)←− Best AttsValue[i] from Examples;
e. If subTree is not empty do
f. then

i. new_atts←− atts-best_att;
ii. subTree←− create_Decision_Tree(subTree,new_atts);
iii. attach subtree as child of StartNode;

g. else

i. create leaf node K;
ii. K←− default;
iii. attach K as child of StartNode;

14. return StartNode;

Each chromosome is composed of 14 genes, and an additional 2 genes are allocated for
classification purposes, given the potential for instances to be classified into multiple classes.
The number of genes may vary due to the nature of the experimental datasets. The accuracy
calculation process is carried out for each instance of the dataset, with the binary decision
trees (BDTs) being responsible for settling on the terminals of each calculation [20,24].

The BDTs are made up of predicates and arithmetic symbols that perform the necessary
calculations to determine the index of the cell of each instance. The index value serves as
an indication of how close the classification made is to the actual class.

Occasionally, an instance may be assigned to multiple classes. Additional votes are
given to the BDTs that accurately classify instances, and those with the highest vote count
are considered to have played a more significant role in the classification process. The
accuracy of the classification process is determined by dividing the number of correctly
classified examples by the total number of classified examples. This value serves as the
fitness function of the chromosome, which is stored in an array until all instances are
classified. The training, validation, and testing data all undergo the same classification
procedure, with the maximum and average fitness of the chromosomes being calculated
for the population of the last generation only. The validation and testing data have almost
the same classification accuracy/fitness (Figure 1) [24,25].

3.5. GA Wrapper Model Design

To define the role and design of the first level of this application, information system
diagrams are utilized. These diagrams explain how information flows between functions
and depict the procedures that contribute to the application’s development. In this work,
flowcharts and sequence diagrams are deemed crucial to acquaint the reader with the
model. The flowchart, abstract dataflow diagram, and sequence diagram illustrate the
background processes. The flowchart displays the fundamental functions of the study,

Informatics 2023, 10, 63 10 of 30

including processes, functions, and messages exchanged among different parts. The article
explains the functioning of the genetic algorithm and its connection to binary decision trees.
The wrapping method, which is an integral component of the implementation, cannot be
demonstrated independently of the complete application (Figure 2) [26,27].

3.6. GA Wrapper Analysis

To define the role and design of the first level of the application, information system
diagrams are utilized. These diagrams illustrate how information flows across functions
and indicate the procedures that contribute to the development. Specifically, in this work,
flowcharts and sequence diagrams are deemed essential for introducing the model to read-
ers. The flowchart, abstract dataflow diagram, and sequence diagram describe the backstage
processes, showing the basic functions, processes, functions, and messages that are sent
among different parts of the study. They explain how the genetic algorithm (GA) works and
how BDTs are associated with it. The wrapping method is part of the implementation and
cannot be demonstrated separately from the entire application (Figures 2 and 3) [26,27].

To create the population of chromosomes for the first generation, the GA reads the
dataset attributes and randomly generates chromosomes. Some chromosomes may contain
duplicate attributes. The production of subsequent generations involves the implementa-
tion of the tournament selection method, mutation, crossover, and selection of the fittest
method (Figure 4) [26,27].

Informatics 2023, 10, x FOR PEER REVIEW 10 of 31

procedure, with the maximum and average fitness of the chromosomes being calculated

for the population of the last generation only. The validation and testing data have almost

the same classification accuracy/fitness (Figure 1) [24,25].

Figure 1. GA wrapper model. This figure demonstrates the overall wrapping classification and data

exchange procedure of the binary decision trees and the genetic algorithm.

3.5. GA Wrapper Model Design

To define the role and design of the first level of this application, information system

diagrams are utilized. These diagrams explain how information flows between functions

and depict the procedures that contribute to the application’s development. In this work,

flowcharts and sequence diagrams are deemed crucial to acquaint the reader with the

model. The flowchart, abstract dataflow diagram, and sequence diagram illustrate the

background processes. The flowchart displays the fundamental functions of the study,

including processes, functions, and messages exchanged among different parts. The arti-

cle explains the functioning of the genetic algorithm and its connection to binary decision

trees. The wrapping method, which is an integral component of the implementation, can-

not be demonstrated independently of the complete application (Figure 2) [26,27].

Figure 1. GA wrapper model. This figure demonstrates the overall wrapping classification and data
exchange procedure of the binary decision trees and the genetic algorithm.

Informatics 2023, 10, 63 11 of 30Informatics 2023, 10, x FOR PEER REVIEW 11 of 31

Figure 2. Flowchart for the genetic algorithm wrapper.

3.6. GA Wrapper Analysis

To define the role and design of the first level of the application, information system

diagrams are utilized. These diagrams illustrate how information flows across functions

and indicate the procedures that contribute to the development. Specifically, in this work,

flowcharts and sequence diagrams are deemed essential for introducing the model to

readers. The flowchart, abstract dataflow diagram, and sequence diagram describe the

backstage processes, showing the basic functions, processes, functions, and messages that

are sent among different parts of the study. They explain how the genetic algorithm (GA)

works and how BDTs are associated with it. The wrapping method is part of the imple-

mentation and cannot be demonstrated separately from the entire application (Figures 2

and 3) [26,27].

Figure 2. Flowchart for the genetic algorithm wrapper.

Informatics 2023, 10, x FOR PEER REVIEW 12 of 31

Figure 3. Sequence diagram for binary decision tree and genetic algorithm communication.

To create the population of chromosomes for the first generation, the GA reads the

dataset attributes and randomly generates chromosomes. Some chromosomes may con-

tain duplicate attributes. The production of subsequent generations involves the imple-

mentation of the tournament selection method, mutation, crossover, and selection of the

fittest method (Figure 4) [26,27].

Figure 3. Sequence diagram for binary decision tree and genetic algorithm communication.

Informatics 2023, 10, 63 12 of 30Informatics 2023, 10, x FOR PEER REVIEW 13 of 31

Figure 4. Dataflow diagram for the GA Wrapper generic procedures.

The tournament variable is related to the tournament selection process that was de-

scribed earlier. When utilizing the tournament selection approach, the algorithm ran-

domly picks a certain number of chromosomes from the entire population during the in-

itial phase. The number of chromosomes is determined by the user assigning a number to

the tournament variable (e.g., tournament = 4). From this set of chromosomes, the GA

chooses the one with the highest fitness score, which remains in the first generation, and

the tournament is run again until a set of 100 chromosomes is complete for the 1st gener-

ation. In this work, tournament selection is used instead of roulette selection. Once two

chromosomes or genes are selected from the first two runs, the mutation or crossover pro-

cesses may occur to generate two new chromosomes (Figure 4) [26,27].

The likelihood of a gene being modified during the genetic algorithm’s operation is

determined by the gene_prob variable, which is fixed at 0.3. If the random number gener-

ated by the algorithm is lower than the gene_prob value, the gene will be subject to evo-

lution. The operator_prob variable is responsible for generating random numbers to de-

termine whether the genes of the first two selected chromosomes will undergo mutation

or crossover. If the randomly generated number is less than 0.4, either mutation or cross-

over will occur. There is a 40% chance of crossover happening and a 60% chance of muta-

tion taking place.

The best chromosome resulting from these procedures is stored in an array. Once the

array is filled with 100 evolved or unevolved chromosomes, the second generation is cre-

ated. Subsequent generations are created in the same way as the second. The user can

change the operator_prob and gene_prob variables, as well as the population and gener-

ation variables, which respectively determine the size of the chromosome population for

each generation and the number of generations. Initially, the plan for the BDT algorithm

was to develop the application based on the original DT theory that uses mathematical

formulas such as the Shannon function.

Figure 4. Dataflow diagram for the GA Wrapper generic procedures.

The tournament variable is related to the tournament selection process that was de-
scribed earlier. When utilizing the tournament selection approach, the algorithm randomly
picks a certain number of chromosomes from the entire population during the initial phase.
The number of chromosomes is determined by the user assigning a number to the tourna-
ment variable (e.g., tournament = 4). From this set of chromosomes, the GA chooses the one
with the highest fitness score, which remains in the first generation, and the tournament is
run again until a set of 100 chromosomes is complete for the 1st generation. In this work,
tournament selection is used instead of roulette selection. Once two chromosomes or genes
are selected from the first two runs, the mutation or crossover processes may occur to
generate two new chromosomes (Figure 4) [26,27].

The likelihood of a gene being modified during the genetic algorithm’s operation
is determined by the gene_prob variable, which is fixed at 0.3. If the random number
generated by the algorithm is lower than the gene_prob value, the gene will be subject to
evolution. The operator_prob variable is responsible for generating random numbers to
determine whether the genes of the first two selected chromosomes will undergo mutation
or crossover. If the randomly generated number is less than 0.4, either mutation or crossover
will occur. There is a 40% chance of crossover happening and a 60% chance of mutation
taking place.

The best chromosome resulting from these procedures is stored in an array. Once
the array is filled with 100 evolved or unevolved chromosomes, the second generation
is created. Subsequent generations are created in the same way as the second. The user
can change the operator_prob and gene_prob variables, as well as the population and
generation variables, which respectively determine the size of the chromosome population
for each generation and the number of generations. Initially, the plan for the BDT algorithm
was to develop the application based on the original DT theory that uses mathematical
formulas such as the Shannon function.

Informatics 2023, 10, 63 13 of 30

However, an alternative approach was taken instead of the standard DT algorithm,
using a type of DTs known as binary DTs. These DTs are also referred to as ensemble
full BDTs, and they are completely symmetrical trees with all their nodes reaching the
terminals. The depth of the tree is set to 4 and there is a variable named max_dt in the code,
which determines the number of DTs created and involved in the classification process.
Although the sizes of the trees are fixed, the user has the ability to adjust the number of
DTs generated; for instance, setting max_dt to 10 would result in the creation of 10 BDTs,
all of which contribute to the classification (Figure 4) [26].

The datasets are divided into three parts, namely the training set, the validation set,
and the testing set. The objective of utilizing a training set is to instruct the model, while
the purpose of the validation set is to authenticate the learned examples of the training set.
Upon completion of the model training, the validation set performs a re-evaluation of all
the outcomes using new data. Subsequently, the testing set, a separate portion of the data,
is leveraged to authenticate only the top-performing result after all the verified outcomes
have been evaluated for accuracy. Typically, the dataset is divided into the training set
(50%), the validation set (20%), and the testing set (30%) of all the examples [26–28].

3.7. GA Wrapper Implementation

The GA wrapper’s development comprises four distinct sections that perform specific
and essential functions within the algorithm. Although these sections exist as separate
source code files, they communicate with each other consistently. These four sections
are known as Language, BDT, GA, and Data. The source code for each section contains
comments that provide information on the Method, Purpose, Parameters, Return, and
Notes, or they may be placed alongside code lines [24].

The Language Class is responsible for embedding function and terminal sets, which the
GA utilizes to create trees during the evolutionary process. The two significant operators
are arithmetic, which computes results between two integers, and conditional, which
compares two integers and returns the one validated by a conditional statement. A mix
operator is employed to choose between the two operators based on whether the previous
operation returned an invalid result. The Language part is in charge of controlling the
operators that create BDTs based on the evolution functions of mutation or crossover [24].

The BDT Class generates BDTs of a specific/chosen depth, with default sizes ranging
from 1 to 4, using fixed structures but variable terminals identified as the leaves of the trees.
The BDTs are constructed using tree nodes that are joint branches holding a functional
operator (logical, conditional, or arithmetic). The terminals and nodes are initialized by
randomly selecting a component from a predefined set. A BDT is a mathematical expression
stored in an ArrayList, and it can be evaluated by calculating this expression and obtaining
an arithmetic result as the output. The BDT construction part sets the constructor class,
generates a random BDT with depth D, loads a previously generated random BDT with
depth D, evaluates the tree for the level D, calculates the BDT stats for the current level D,
creates a depth D tree, and loads the depth D tree. This procedure repeatedly runs for all
the four classification depth levels [24].

The GA Class employs an advanced version of the genetic algorithm that enhances the
assessment process of chromosomes and BDTs. It incorporates an ensemble voting scheme,
where fitness performance votes aid in selecting a small number of trees to contribute
to the final classification process. The fitness evaluation process includes three phases:
training, evaluation, and testing, during which an ensemble of tree models is selected to
improve classification estimates. The genetic algorithm takes charge of initializing the
chromosome population, selecting chromosomes using tournament selection, selecting
the most elite individual from the population, selecting a BDT based on the minimum
classification error, obtaining the tree index with the highest votes, counting the votes for
each DT, and estimating training, validation, and testing fitness [24].

The Data Class is an auxiliary class that manages files and datasets, with data struc-
tures corresponding to training, validation, and testing stored in ArrayLists. The GA

Informatics 2023, 10, 63 14 of 30

algorithm can use these structures to create tree individuals for classification. Other respon-
sibilities of the GA Class include duplicating a chromosome, conducting point mutation
and point x-over operations, printing chromosomes, populations, and statistics relating to
the algorithm’s overall performance, as well as calculating evolutionary process statistics,
chromosome and attribute selection statistics, and BDT statistics [24] (Table 3).

Table 3. GA wrapper pseudocode.

//Cross-over probability←− 40%
//Mutation Probability←− 60%
//Tournament Selection←− 4
//Gene Probability←− 0.3
Init GA()
G←− 100//Generations
P←− 500//Population size
OP←− 0.4//Operator probability
Init elitist[], parent[], offspring[], newPop[], pop[]

for g = 0 to G
elitist = getTrainingElitist(pop)
for b = 0 to P//Breeding loop
for s = 0 to 2
parent[s]←− copy(select(pop))
offspring←− (getRandDouble() < OP)? crossOver(parent):mutate(parent)
newPop[b]←− (getTrainingFitness(offspring[0]) > getTrainingFitness(offspring[1]))? offspring[0]:
offspring[1]

pop[getRandInt(P)]←− elitist;
pop←− newPop;

It is essential to mention the significance of the following additional functions: get-
TrainingElitist(), getTrainingFitness(), select(), crossover(), and mutate() before stating the
GA algorithm.

3.8. GA Wrapper Chromosome Tree Representation

The decision tree with the highest number of votes is selected and categorized into
one of three types: the dominant training tree, which classifies the training data; the
dominant validation tree, which classifies the validation data from the last population;
and the dominant testing tree, which classifies the testing data from the last population
(Figure 5).

Informatics 2023, 10, x FOR PEER REVIEW 15 of 31

algorithm can use these structures to create tree individuals for classification. Other re-

sponsibilities of the GA Class include duplicating a chromosome, conducting point mu-

tation and point x-over operations, printing chromosomes, populations, and statistics re-

lating to the algorithm’s overall performance, as well as calculating evolutionary process

statistics, chromosome and attribute selection statistics, and BDT statistics [24] (Table 3).

It is essential to mention the significance of the following additional functions: get-

TrainingElitist(), getTrainingFitness(), select(), crossover(), and mutate() before stating the

GA algorithm.

Table 3. GA wrapper pseudocode.

//Cross-over probability 40%

//Mutation Probability 60%

//Tournament Selection 4

//Gene Probability 0.3

Init GA()

G 100//Generations

P 500//Population size

OP 0.4//Operator probability

Init elitist[], parent[], offspring[], newPop[], pop[]

for g = 0 to G

 elitist = getTrainingElitist(pop)

 for b = 0 to P//Breeding loop

 for s = 0 to 2

 parent[s] copy(select(pop))

 offspring (getRandDouble() < OP)? crossOver(parent):mutate(parent)

 newPop[b] (getTrainingFitness(offspring[0]) > getTrainingFitness(off-

spring[1]))? offspring[0]: offspring[1]

 pop[getRandInt(P)] elitist;

 pop newPop;

3.8. GA Wrapper Chromosome Tree Representation

The decision tree with the highest number of votes is selected and categorized into

one of three types: the dominant training tree, which classifies the training data; the dom-

inant validation tree, which classifies the validation data from the last population; and the

dominant testing tree, which classifies the testing data from the last population (Figure 5).

Figure 5. Optimal feature/chromosome representation. The gene positions are indicated with black
color and the gene class numbers are indicated with red color.

Informatics 2023, 10, 63 15 of 30

Every instance of the data set goes and settle on the terminals of each binary tree. The
binary tree consists of predicates and arithmetic symbols (/, +, −, *, =, <, >) which make
calculations. The tree calculates the index of the cell of every instance and produces a
number. This number reveals how close is the classification which have been made to the
real class.

3.9. Dataset

The examination procedures utilize a variety of datasets sourced from the UCI Machine
Learning Repository and surveys. The primary aim is to assess the performance of the
GA-DT wrapping method using UCI repository training data. To accomplish this, the
Wine dataset was extracted from the UCI machine learning repository and employed in
the experiments. The Wine dataset contains chemical analysis data for 13 ingredients that
help identify the source of the wines. The data was obtained from a chemical analysis
of wines grown in the same Italian region but originating from three different varieties
(classes). The dataset characteristics are multivariate, the number of instances is 178, the
attribute characteristics refer to integer and real numbers, the number of attributes is 13,
the associated tasks refer to the classification process, and there are no missing values. The
investigation involved measuring the levels of 13 distinct components present in three wine
varieties, namely Alcohol, Malic Acid, Ash, Alkalinity of Ash, Magnesium, Total Phenols,
Flavonoids, Non-flavonoid Phenols, Proanthocyanins, Color Intensity, Hue, OD280/OD315
of Diluted Wines, and Proline. From a classification standpoint, this information presents a
properly structured problem with clearly defined classes (Table 4 and ??) [1,29,30].

Table 4. Wine dataset features.

Features Description

Title of Database Wine recognition data
Updated 21 September 1998 by C. Blake
Attribute 13

Attributes Values Continuous
Missing Attribute Values None

Class 1 59
Class 2 71
Class 3 48
Alcohol 1st

Malic Acid 2nd
Ash 3rd

Alkalinity of Ash 4th
Magnesium 5th

Total Phenols 6th
Flavonoids 7th

Nonflavonoid Phenols 8th
Proanthocyanins 9th
Color Intensity 10th

Hue 11th
OD280/OD315 of Diluted Wines 12th

Proline 13th

4. Results

To assess the performance of this application, a series of tests were conducted, and
their statistical analysis provides crucial information for evaluating the wrapping method.
Before delving into these tests, it is important to explain the code parameters, which can
be modified by the user. The current settings include fifty generations per algorithm run,
a hundred chromosomes generated per generation, four chromosomes per tournament
selection to produce one, and ten DTs for classification. The tests consist of twenty runs,
with an average runtime of three minutes and thirty seconds per run. The chromosomes
are categorized into three classes, and each class yields similar results. As a result, seven

Informatics 2023, 10, 63 16 of 30

out of the twenty runs are selected for analysis, which accounts for almost one-third of the
results. The best chromosome outcomes are presented in the analysis.

4.1. Class Segmentation

This part of the results shows the each of the attributes in which class belongs. Oc-
casionally, there is a chromosome classified in more than one class. That is the reason for
using two more spaces in the chromosome array: to prevent the phenomenon of not having
more array cells available in case they would be needed during the classification of the
instances. Table 5 an example of one of the classified chromosomes. To have the aggregates
percentages of all the classes, additional statistics should be kept.

Table 5. Best chromosome classification for the 7th run.

Gene Gene Occurrence Class

0 1
Class[0] = 0.32558139534883723

Class[1] = 0.0
Class[2] = 0.0

3 2
Class[0] = 0.32558139534883723

Class[1] = 0.0
Class[2] = 7.946212766144101 × 10−175

4 1
Class[0] = 0.32936722552731207

Class[1] = 5.936939424814535 × 10−53

Class[2] = 9.23978228621407 × 10−177

6 1
Class[0] = 0.0038298514596199077

Class[1] = 6.903417935830854 × 10−55

Class[2] = 1.0743932890946594 × 10−178

8 1
Class[0] = 4.453315650720823 × 10−5

Class[1] = 8.027230157942853 × 10−57

Class[2] = 1.2492945222030923 × 10−180

9 1
Class[0] = 2.1585872418998667 × 10−10

Class[1] = 1.3138540684740537 × 10−33

Class[2] = 2.044778408520832 × 10−157

10 1
Class[0] = 1.8563850280338853 × 10−8

Class[1] = 1.1299144988876862 × 10−31

Class[2] = 1.7585094313279154 × 10−55

11 1
Class[0] = 1.5964911241091413 × 10−6

Class[1] = 9.717264690434101 × 10−30

Class[2] = 1.512318110942007 × 10−153

12 1
Class[0] = 1.3729823667338616 × 10−4

Class[1] = 8.356847633773327 × 10−28

Class[2] = 1.3005935754101261 × 10−151

13 1
Class[0] = 0.32558139534883723

Class[1] = 4.571263847550701 × 10−20

Class[2] = 7.114352985929144 × 10−144

14 3
Class[0] = 0.32936722552731207

Class[1] = 5.315423078547327 × 10−22

Class[2] = 8.272503472010632 × 10−146

15 1
Class[0] = 0.015457758436364094

Class[1] = 6.180724509938753 × 10−24

Class[2] = 9.619190083733293 × 10−148

Note: Numbers’ exponent of ten (E-###) are close to zero.

4.2. Generation Fitness

In Figure 6, the fitness of the generations is displayed, where each generation is
identified by a number. The average chromosomes fitness per generation is indicated by

Informatics 2023, 10, 63 17 of 30

Avg. Chromosome Fitness, and the fittest chromosome is shown under Best Chromosome
Fitness.

Informatics 2023, 10, x FOR PEER REVIEW 18 of 31

Note: Numbers’ exponent of ten (E-###) are close to zero.

4.2. Generation Fitness

In Figure 6, the fitness of the generations is displayed, where each generation is iden-

tified by a number. The average chromosomes fitness per generation is indicated by Avg.

Chromosome Fitness, and the fittest chromosome is shown under Best Chromosome Fit-

ness.

Figure 6. Best chromosome classification (7th run).

The classification problem is solved with a Training Fitness, Validation Fitness, and

Testing Fitness rate of 100%.

4.3. Optimal Decision Tree Figures, Tables, and Schemes

The most influential trees in the classification process are revealed. The training, val-

idation, and testing sets each have ten DTs, numbered from zero to nine, with each tree

receiving votes for every correct classification. The tree with the highest number of votes

is designated as the max points tree and is the one that will be used for representation.

Although the remaining trees also contribute to better classification, they are not visually

represented (Table 7).

Table 7. Optimal decision trees for wine classification.

Training Votes Validation Votes Testing Votes

Tree[0] = 10,449 Tree[0] = 3 Tree[0] = 0

Tree[1] = 0 Tree[1] = 0 Tree[1] = 0

Tree[2] = 263,411 Tree[2] = 225 Tree[2] = 33 max.no

Tree[3] = 1578 Tree[3] = 0 Tree[3] = 0

Tree[4] = 15,488 Tree[4] = 0 Tree[4] = 0

Tree[5] = 15,288 Tree[5] = 0 Tree[5] = 0

Tree[6] = 102,215 Tree[6] = 184 Tree[6] = 0

Tree[7] = 123,836 Tree[7] = 38 Tree[7] = 0

Tree[8] = 10,051 Tree[8] = 0 Tree[8] = 0

Tree[9] = 452,790 max. no. Tree[9] = 264 max. no. Tree[9] = 21

4.4. Dominant Decision Tree Visualization

The visualization of dominant decision trees involves three distinct types of decision

tree representations. These trees depict how attributes are classified and what

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Chromosome Fitness

Average Best

Figure 6. Best chromosome classification (7th run).

The classification problem is solved with a Training Fitness, Validation Fitness, and
Testing Fitness rate of 100%.

4.3. Optimal Decision Tree Figures, Tables, and Schemes

The most influential trees in the classification process are revealed. The training,
validation, and testing sets each have ten DTs, numbered from zero to nine, with each tree
receiving votes for every correct classification. The tree with the highest number of votes
is designated as the max points tree and is the one that will be used for representation.
Although the remaining trees also contribute to better classification, they are not visually
represented (Table 6).

Table 6. Optimal decision trees for wine classification.

Training Votes Validation Votes Testing Votes

Tree[0] = 10,449 Tree[0] = 3 Tree[0] = 0
Tree[1] = 0 Tree[1] = 0 Tree[1] = 0
Tree[2] = 263,411 Tree[2] = 225 Tree[2] = 33←−max. no
Tree[3] = 1578 Tree[3] = 0 Tree[3] = 0
Tree[4] = 15,488 Tree[4] = 0 Tree[4] = 0
Tree[5] = 15,288 Tree[5] = 0 Tree[5] = 0
Tree[6] = 102,215 Tree[6] = 184 Tree[6] = 0
Tree[7] = 123,836 Tree[7] = 38 Tree[7] = 0
Tree[8] = 10,051 Tree[8] = 0 Tree[8] = 0
Tree[9] = 452,790←− max. no. Tree[9] = 264←−max. no. Tree[9] = 21

4.4. Dominant Decision Tree Visualization

The visualization of dominant decision trees involves three distinct types of decision
tree representations. These trees depict how attributes are classified and what mathematical
equations are employed when a data instance reaches the tree’s terminals for calculating
a class number. The three types of trees are the training, validation, and testing decision
trees, with the training tree being different from the validation and testing trees. This is a
reasonable conclusion because validation data are closer to testing data and further from
training data. Each node in the tree is equipped with BDTs operators, which are primarily
used in genetic programming and are subject to change during mutation or crossover
functions. The binary tree consists of predicates and arithmetic symbols (/, +, −, *, =, <, >)
which make calculations (Figures 7–9).

Informatics 2023, 10, 63 18 of 30

Informatics 2023, 10, x FOR PEER REVIEW 19 of 31

mathematical equations are employed when a data instance reaches the tree’s terminals

for calculating a class number. The three types of trees are the training, validation, and

testing decision trees, with the training tree being different from the validation and testing

trees. This is a reasonable conclusion because validation data are closer to testing data and

further from training data. Each node in the tree is equipped with BDT operators, which

are primarily used in genetic programming and are subject to change during mutation or

crossover functions (Figures 7–9).

Figure 7. Dominant training BDT for wine classification.

Figure 8. Dominant validation BDT for wine classification.

Figure 7. Dominant training BDT for wine classification.

Informatics 2023, 10, x FOR PEER REVIEW 19 of 31

mathematical equations are employed when a data instance reaches the tree’s terminals

for calculating a class number. The three types of trees are the training, validation, and

testing decision trees, with the training tree being different from the validation and testing

trees. This is a reasonable conclusion because validation data are closer to testing data and

further from training data. Each node in the tree is equipped with BDT operators, which

are primarily used in genetic programming and are subject to change during mutation or

crossover functions (Figures 7–9).

Figure 7. Dominant training BDT for wine classification.

Figure 8. Dominant validation BDT for wine classification. Figure 8. Dominant validation BDT for wine classification.

Informatics 2023, 10, x FOR PEER REVIEW 20 of 31

Figure 9. Dominant testing BDT for wine classification.

4.5. Elitist Chromosome Sequence and Binary Decision Tree Representation

Figure 10 displays the optimal chromosome, which contains the genes (attributes)

that have contributed the most to the classification process:

• Wine Elitist Chromosome: (3)(12)(12)(15)(11)(12)(0)(9)(10)(6)(14)(2)(8)(2)(13)(4)—

100% Fitness.

After the 7th iteration, the top-performing test tree is revealed using the genetic

makeup of the final generation’s testing population. Table 8 displays the attribute values

and their frequencies, which indicate the importance of each attribute to achieve the high-

est classification accuracy. However, not all attributes are used in the classification pro-

cess, and the vacant gene positions are filled with the more frequently occurring ones.

Figure 10. Best chromosome testing BDT for wine.

Table 8. Best chromosome gene frequency for class gender.

Gene Position Gene Name (Feature/Attribute) Gene Variables Occurrences

0 Class 1, Class 2, Class 3 - 1

1 Alcohol Real 0

2 Malic Acid Real 2

Figure 9. Dominant testing BDT for wine classification.

Informatics 2023, 10, 63 19 of 30

4.5. Elitist Chromosome Sequence and Binary Decision Tree Representation

Figure 10 displays the optimal chromosome, which contains the genes (attributes) that
have contributed the most to the classification process:

• Wine Elitist Chromosome: (3)(12)(12)(15)(11)(12)(0)(9)(10)(6)(14)(2)(8)(2)(13)(4)—100%
Fitness.

After the 7th iteration, the top-performing test tree is revealed using the genetic
makeup of the final generation’s testing population. Table 7 displays the attribute values
and their frequencies, which indicate the importance of each attribute to achieve the highest
classification accuracy. However, not all attributes are used in the classification process,
and the vacant gene positions are filled with the more frequently occurring ones.

The class attribute has occurred once, and it indicates the selected class to which the
chromosome belongs. Also, the 14th gene occurs once, indicating additional classes to
which this chromosome may belong. It is obvious that certain ingredients like Alcohol, Mag-
nesium, and the Flavonoids have not been selected for the optimization and classification
processes (Table 7).

Informatics 2023, 10, x FOR PEER REVIEW 20 of 31

Figure 9. Dominant testing BDT for wine classification.

4.5. Elitist Chromosome Sequence and Binary Decision Tree Representation

Figure 10 displays the optimal chromosome, which contains the genes (attributes)

that have contributed the most to the classification process:

• Wine Elitist Chromosome: (3)(12)(12)(15)(11)(12)(0)(9)(10)(6)(14)(2)(8)(2)(13)(4)—

100% Fitness.

After the 7th iteration, the top-performing test tree is revealed using the genetic

makeup of the final generation’s testing population. Table 8 displays the attribute values

and their frequencies, which indicate the importance of each attribute to achieve the high-

est classification accuracy. However, not all attributes are used in the classification pro-

cess, and the vacant gene positions are filled with the more frequently occurring ones.

Figure 10. Best chromosome testing BDT for wine.

Table 8. Best chromosome gene frequency for class gender.

Gene Position Gene Name (Feature/Attribute) Gene Variables Occurrences

0 Class 1, Class 2, Class 3 - 1

1 Alcohol Real 0

2 Malic Acid Real 2

Figure 10. Best chromosome testing BDT for wine.

Table 7. Best chromosome gene frequency for class gender.

Gene Position Gene Name (Feature/Attribute) Gene Variables Occurrences

0 Class 1, Class 2, Class 3 - 1
1 Alcohol Real 0
2 Malic Acid Real 2
3 Ash Real 1
4 Alkalinity of Ash Real 1
5 Magnesium Real 0
6 Total Phenols Real 1
7 Flavonoids Real 0
8 Nonflavonoid Phenols Real 1
9 Proanthocyanins Real 1

10 Color Intensity Real 1
11 Hue Real 1
12 OD280/OD315 of Diluted Wines Real 3
13 Proline Integer 1
14 Additional Classes {1,2,3} - 1

Their occurrence remained at zero level. Additionally, ingredients like Ash, Alkalinity
of Ash, Total Phenols, Nonflavonoid Phenols, Proanthocyanins, Color Intensity, Hue, and

Informatics 2023, 10, 63 20 of 30

Proline have a minimum number of occurrences in the optimization and classification
processes (Table 7).

4.6. Average and Maximum Fitness Performance Per Run

The GA wrapper application’s average and maximum fitness values for each run are
shown in Figures 11–17. The blue line represents the average fitness of the generations’
chromosomes, while the red line represents the maximum fitness of each generation’s
chromosomes. These figures indicate that the GA wrapper’s performance improves as the
number of generations increases. The results suggest that the chromosomes’ maximum
and average fitness values increase as the model is trained. These calculations are part
of an evolutionary process. Figure 18 demonstrates the average fitness per run for a total
number of fifty generations. Each one of the seven runs is indicated with a different color,
including orange, blue, dark blue, purple, green, grey, and yellow. The average fitness of
all seven runs indicates the average generation fitness and is demonstrated using the black
line (Figures 11–18).

Informatics 2023, 10, x FOR PEER REVIEW 21 of 31

3 Ash Real 1

4 Alkalinity of Ash Real 1

5 Magnesium Real 0

6 Total Phenols Real 1

7 Flavonoids Real 0

8 Nonflavonoid Phenols Real 1

9 Proanthocyanins Real 1

10 Color Intensity Real 1

11 Hue Real 1

12 OD280/OD315 of Diluted Wines Real 3

13 Proline Integer 1

14 Additional Classes {1,2,3} - 1

The class attribute has occurred once, and it indicates the selected class to which the

chromosome belongs. Also, the 14th gene occurs once, indicating additional classes to

which this chromosome may belong. It is obvious that certain ingredients like Alcohol,

Magnesium, and the Flavonoids have not been selected for the optimization and classifi-

cation processes (Table 8).

Their occurrence remained at zero level. Additionally, ingredients like Ash, Alkalin-

ity of Ash, Total Phenols, Nonflavonoid Phenols, Proanthocyanins, Color Intensity, Hue,

and Proline have a minimum number of occurrences in the optimization and classification

processes (Table 8).

4.6. Average and Maximum Fitness Performance per Run

The GA wrapper application’s average and maximum fitness values for each run are

shown in Figures 11–17. The blue line represents the average fitness of the generations’

chromosomes, while the red line represents the maximum fitness of each generation’s

chromosomes. These figures indicate that the GA wrapper’s performance improves as the

number of generations increases. The results suggest that the chromosomes’ maximum

and average fitness values increase as the model is trained. These calculations are part of

an evolutionary process. Figure 18 demonstrates the average fitness per run for a total

number of fifty generations. Each one of the seven runs is indicated with a different color,

including orange, blue, dark blue, purple, green, grey, and yellow. The average fitness of

all seven runs indicates the average generation fitness and is demonstrated using the black

line (Figures 11–18).

Figure 11. Best and average GA wrapper fitness run 1. Figure 11. Best and average GA wrapper fitness run 1.

Informatics 2023, 10, x FOR PEER REVIEW 22 of 31

Figure 12. Best and average GA wrapper fitness run 3.

Figure 13. Best and average GA wrapper fitness run 5.

Figure 14. Best and average GA wrapper fitness run 7.

Figure 12. Best and average GA wrapper fitness run 3.

Informatics 2023, 10, 63 21 of 30

Informatics 2023, 10, x FOR PEER REVIEW 22 of 31

Figure 12. Best and average GA wrapper fitness run 3.

Figure 13. Best and average GA wrapper fitness run 5.

Figure 14. Best and average GA wrapper fitness run 7.

Figure 13. Best and average GA wrapper fitness run 5.

Informatics 2023, 10, x FOR PEER REVIEW 22 of 31

Figure 12. Best and average GA wrapper fitness run 3.

Figure 13. Best and average GA wrapper fitness run 5.

Figure 14. Best and average GA wrapper fitness run 7. Figure 14. Best and average GA wrapper fitness run 7.

Informatics 2023, 10, x FOR PEER REVIEW 23 of 31

Figure 15. Best and average GA wrapper ritness run 9.

Figure 16. Best and average GA wrapper ritness run 14.

Figure 17. Best and average GA wrapper fitness run 17.

Figure 15. Best and average GA wrapper ritness run 9.

Informatics 2023, 10, 63 22 of 30

Informatics 2023, 10, x FOR PEER REVIEW 23 of 31

Figure 15. Best and average GA wrapper ritness run 9.

Figure 16. Best and average GA wrapper ritness run 14.

Figure 17. Best and average GA wrapper fitness run 17.

Figure 16. Best and average GA wrapper ritness run 14.

Informatics 2023, 10, x FOR PEER REVIEW 23 of 31

Figure 15. Best and average GA wrapper ritness run 9.

Figure 16. Best and average GA wrapper ritness run 14.

Figure 17. Best and average GA wrapper fitness run 17. Figure 17. Best and average GA wrapper fitness run 17.

Informatics 2023, 10, x FOR PEER REVIEW 24 of 31

Figure 18. GA wrapper average fitness.

4.7. Genes Frequency

In a genetic algorithm, a solution to a problem is represented as a string of genes. The

genes represent the parameters or features of the solution, and their values determine the

characteristics of the solution. The genes can be binary, integer, or real-valued, depending

on the problem. The frequency of a gene in a population of solutions refers to the number

of times that that gene appears in the population. Genes that appear more frequently are

more fit or desirable, as they contribute to better solutions. The occurrence of genes can

vary across generations due to the genetic procedures executed by the algorithm, includ-

ing mutation, selection, and crossover. Statistical evidence of the gene occurrence for a

specific set of seven runs of the algorithm on wine origin classes or types is presented in

Table 9. Table 9 displays details for each GA wrapper application run, such as the total

number of attributes and their position number, average gene occurrence, and the per-

centage of genes that contributed to the classification result. Additionally, Figure 19 pro-

vides a histogram depicting the frequency of genes.

Table 9. Average genes frequency from 7 runs for the wine origin dataset.

 Runs Genes Average Frequency of Occurrence

Gene 1st 2nd 3rd 4th 5th 6th 7th Avg. Occurrence Avg. Occurrence %

1 0 1 0 0 0 1 0 0.285714 2.35%

2 2 1 1 0 3 0 2 1.285714 10.58%

3 0 0 0 1 0 1 1 0.428571 3.52%

4 0 0 1 2 1 4 1 1.285714 10.58%

5 0 0 0 0 0 3 0 0.428571 3.52%

6 2 2 4 0 1 2 1 1.714286 14.11%

7 1 1 1 0 1 0 0 0.571429 4.70%

8 2 1 0 0 0 0 1 0.571429 4.70%

9 1 1 0 0 1 1 1 0.714286 5.88%

10 1 1 2 1 0 1 1 1 8.23%

11 0 2 2 0 0 0 1 0.714286 5.88%

12 1 2 0 4 4 0 3 2 16.47%

13 1 0 2 2 2 0 1 1.142857 9.41%

Figure 18. GA wrapper average fitness.

Informatics 2023, 10, 63 23 of 30

4.7. Genes Frequency

In a genetic algorithm, a solution to a problem is represented as a string of genes. The
genes represent the parameters or features of the solution, and their values determine the
characteristics of the solution. The genes can be binary, integer, or real-valued, depending
on the problem. The frequency of a gene in a population of solutions refers to the number
of times that that gene appears in the population. Genes that appear more frequently are
more fit or desirable, as they contribute to better solutions. The occurrence of genes can
vary across generations due to the genetic procedures executed by the algorithm, including
mutation, selection, and crossover. Statistical evidence of the gene occurrence for a specific
set of seven runs of the algorithm on wine origin classes or types is presented in Table 8.
Table 8 displays details for each GA wrapper application run, such as the total number of
attributes and their position number, average gene occurrence, and the percentage of genes
that contributed to the classification result. Additionally, Figure 19 provides a histogram
depicting the frequency of genes.

Table 8. Average genes frequency from 7 runs for the wine origin dataset.

Runs Genes Average Frequency of Occurrence

Gene 1st 2nd 3rd 4th 5th 6th 7th Avg. Occurrence Avg. Occurrence %

1 0 1 0 0 0 1 0 0.285714 2.35%
2 2 1 1 0 3 0 2 1.285714 10.58%
3 0 0 0 1 0 1 1 0.428571 3.52%
4 0 0 1 2 1 4 1 1.285714 10.58%
5 0 0 0 0 0 3 0 0.428571 3.52%
6 2 2 4 0 1 2 1 1.714286 14.11%
7 1 1 1 0 1 0 0 0.571429 4.70%
8 2 1 0 0 0 0 1 0.571429 4.70%
9 1 1 0 0 1 1 1 0.714286 5.88%
10 1 1 2 1 0 1 1 1 8.23%
11 0 2 2 0 0 0 1 0.714286 5.88%
12 1 2 0 4 4 0 3 2 16.47%
13 1 0 2 2 2 0 1 1.142857 9.41%

Informatics 2023, 10, x FOR PEER REVIEW 25 of 31

Figure 19. GA wrapper performance on wine data.

5. Discussion

5.1. GA Wrapper Model Design

In relation to RO1.1, concerning the design of the GA wrapper, it is worth noting that

Figures 1–4 provide diagrams that effectively illustrate the fundamental processes of the

new GA wrapper model. Figure 1 presents a general flowchart depicting the key compo-

nents of the GA wrapper’s communication with the BDT. Initially, data are imported into

the GA, and tournament selection is used to select the best chromosomes. A number gen-

erator randomly produces numbers, and if the number is less than 0.3, crossover or mu-

tation functions are enabled. Otherwise, the chromosome remains unchanged. Regardless

of the generated value, each chromosome is added to the breeding pool. The best chromo-

some is selected from the breeding pool and added to the new population for the next

generation. Each generation’s chromosome is then passed to the BDT for classification,

and the classification accuracy of each generated chromosome for all examples is calcu-

lated and stored as fitness in the GA for consideration in the next generation.

RO1.2 concerns the importance of accurately defining the procedures for analyzing

the model. Hence, Tables 2 and 3 demonstrate the BDT and GA wrapper pseudocodes to

provide a basic method of a logical approach to the final implementation. In the context

of designing the GA wrapper, Figures 1–3 provide a clear depiction of the GA wrapper’s

fundamental procedures. They demonstrate a generic flow chart depicting the basic com-

ponents of the GA wrapper when communicating with the BDT, along with a sequence

diagram.

In Figure 4, data are imported into the GA, and tournament selection is employed to

select the best chromosomes. A number generator is then used to produce random num-

bers, and if the number is less than 0.3, it enables the crossover of mutation functions.

Irrespective of the specific value generated, every chromosome is included in the breeding

pool, and the top-performing chromosome from the pool is picked and added to the suc-

ceeding generation’s population. Each generation’s chromosome is transferred to the BDT

for classification, and each generated chromosome is classified. The chromosome’s classi-

fication accuracy is assigned as fitness and stored in the GA for determining whether it

will be part of the next new generation. The GA sends each generation’s chromosome to

the BDT, and the BDT generates an accuracy (fitness), which is returned to the GA. The

GA calculates the average fitness for each generation, the best chromosome fitness, and

the average fitness for the training, validation, and testing sets. The GA then returns the

results to the BDT, where the BDT calculates the training, validation, and testing votes.

These diagrams provide sufficient data to consider the initial stage of the BDT and GA

wrapper method’s logic. The abstract data flow diagram in Figure 4 provides an overview

of the functions involved in the classification process through the optimization function.

It offers a review of how the wrapping method operates, proving that the current objective

0%

5%

10%

15%

20%

1 2 3 4 5 6 7 8 9 10 11 12 13

Gene Frequency

Gene Frequency

Figure 19. GA wrapper performance on wine data.

5. Discussion
5.1. GA Wrapper Model Design

In relation to RO1.1, concerning the design of the GA wrapper, it is worth noting
that Figures 1–4 provide diagrams that effectively illustrate the fundamental processes
of the new GA wrapper model. Figure 1 presents a general flowchart depicting the key
components of the GA wrapper’s communication with the BDT. Initially, data are imported

Informatics 2023, 10, 63 24 of 30

into the GA, and tournament selection is used to select the best chromosomes. A number
generator randomly produces numbers, and if the number is less than 0.3, crossover or
mutation functions are enabled. Otherwise, the chromosome remains unchanged. Regard-
less of the generated value, each chromosome is added to the breeding pool. The best
chromosome is selected from the breeding pool and added to the new population for the
next generation. Each generation’s chromosome is then passed to the BDT for classification,
and the classification accuracy of each generated chromosome for all examples is calculated
and stored as fitness in the GA for consideration in the next generation.

RO1.2 concerns the importance of accurately defining the procedures for analyzing
the model. Hence, Tables 2 and 3 demonstrate the BDT and GA wrapper pseudocodes to
provide a basic method of a logical approach to the final implementation. In the context of
designing the GA wrapper, Figures 1–3 provide a clear depiction of the GA wrapper’s funda-
mental procedures. They demonstrate a generic flow chart depicting the basic components
of the GA wrapper when communicating with the BDT, along with a sequence diagram.

In Figure 4, data are imported into the GA, and tournament selection is employed
to select the best chromosomes. A number generator is then used to produce random
numbers, and if the number is less than 0.3, it enables the crossover of mutation functions.
Irrespective of the specific value generated, every chromosome is included in the breeding
pool, and the top-performing chromosome from the pool is picked and added to the
succeeding generation’s population. Each generation’s chromosome is transferred to the
BDT for classification, and each generated chromosome is classified. The chromosome’s
classification accuracy is assigned as fitness and stored in the GA for determining whether
it will be part of the next new generation. The GA sends each generation’s chromosome
to the BDT, and the BDT generates an accuracy (fitness), which is returned to the GA.
The GA calculates the average fitness for each generation, the best chromosome fitness,
and the average fitness for the training, validation, and testing sets. The GA then returns
the results to the BDT, where the BDT calculates the training, validation, and testing
votes. These diagrams provide sufficient data to consider the initial stage of the BDT
and GA wrapper method’s logic. The abstract data flow diagram in Figure 4 provides an
overview of the functions involved in the classification process through the optimization
function. It offers a review of how the wrapping method operates, proving that the current
objective is accomplished by conceptualizing the entire idea and presenting parameter
values. Furthermore, the possible options for variables, such as the quantity of generations,
chromosomes created in each generation, tournament selection, breeding methods, turns for
generating chromosomes, and selection of the most superior chromosome are also outlined.

Figure 5 illustrates the fundamental optimized structure of the binary decision trees,
which depicts the chromosome’s genes after undergoing an evolutionary process and the
operators involved in each level of classification. The nodes in the tree contain the operators
that impact the final outcome, while the leaves represent each gene’s position. Position
1 identifies the class of the chromosome, and positions 14 and 16 represent additional
classes that a chromosome may be classified into, if applicable.

In order for the reader to understand the basic steps of the algorithmic parts, it is
necessary to develop a GA wrapper (as referred to in RO2.1). This involves several stages,
including the Language, Binary Decision Trees, Genetic Algorithm, and Data code files, all
of which are presented in detail to fully explain the nature of the model. The Language
code manages communication between the BDTs and GAs, while the Data code handles
the data parameters used in tests. The BDT and GA code control the classification and
optimization calculation procedures and the graphical representation of results.

Section 2.1 clearly defines the training, validation, and testing stages of the GA wrapper
(as described in RO2.2, RO2.3, and RO2.4, respectively). Additionally, RO2.5 emphasizes the
importance of representing the GA wrapper results, which is demonstrated in Figure 5. This
figure shows the optimized binary decision tree form used to represent the chromosome’s
classified genes and the operators involved in each level of classification. The nodes
represent the operators that affect the final outcome, while the leaves indicate the position of

Informatics 2023, 10, 63 25 of 30

each gene. Position 1 represents the chromosome’s class, while positions 14 and 16 represent
additional classes in case a chromosome is classified in multiple classes. Moving on to
RO3.1, the GA wrapper was successfully applied to a new wine dataset extracted from the
UCI Machine Learning Repository. This dataset contains data for 13 wine ingredients that
determine the wine’s originality. The dataset was cleaned, preprocessed, processed, and
classified using the GA wrapper, producing significant results.

Finally, in RO3.2, the class errors for the GA wrapper were calculated and presented
in Table 5. These errors remained close to 0, indicating a low percentage of misclassified
examples.

5.2. Fitness

Regarding RO3.3, the calculated generation fitness shows an increase in average and
best fitness, and the average and the best generations’ fitness belongs to the last generation
(29th). The fitness which the GA wrapper succeeded for the Wine class is the Generation
(29) = 0.933 (1.000) with an average fitness of 93.3% and the best fitness of 100%.

The highest levels of Training Fitness, Validation Fitness, and Testing Fitness, all at
100%, were achieved in solving the Wine classification problem, as shown in Figure 6
of RO3.4.

5.3. Optimal Binary Decision Tree

The best decision trees are determined based on the number of votes obtained by each
of the 10 decision trees that take part in the classification. The decision trees that receive
the highest number of votes are the ones that are mostly involved in the classification
process. These findings confirm that an increased number of decision trees leads to an
improvement in the accuracy of the classification. The RO3.5 method determines the most
effective decision trees based on the number of votes they receive in a classification process
involving 10 decision trees. The decision trees with the highest number of votes have
played a more significant role in the classification process, which supports the use of this
method to improve classification accuracy. In the Wine dataset, the 10th tree (Tree[9])
received the most votes during training, with 452,790 votes. During validation, the same
tree received 264 votes. When it comes to testing, the 3rd tree (Tree[2]) received the highest
number of votes, with a total of 33 votes (Table 6).

5.4. Dominiant Binary Decision Tree

Figures 7–9, which are based on RO3.6, display the most prominent visual repre-
sentations of the decision trees (BDTs) that achieved the highest classification accuracies
during the training, validation, and testing phases. These figures also depict the sequence
of classification operations that occurred between nodes before reaching the BDT leaves
for each decision tree. The visual representations of the dominant BDTs illustrate their
structures that produced the maximum classification accuracies for the Wine dataset.

5.5. Elitist Chromosome Fitness

RO3.7 examines the best chromosome’s gene sequence and the BDT representation.
Figure 10 shows the elitist chromosome sequence including the mostly participated genes
(attributes) in the classification process. The Wine elitist chromosome (3)(12)(12)(15)(11)(12)
(0)(9)(10)(6)(14)(2)(8)(2)(13)(4) consists of genes with a succeeding fitness of 100%. Table 7
displays the occurrence of the most effective chromosome genes utilized in the classification
process for Wine. Each gene is assigned a weight based on its frequency in the chromosome.
The results indicate that Malic Acid appears twice as frequently as the other genes, while
OD280/OD315 of Diluted Wines appears three times. As a result, decision makers can
easily determine that specific ingredients have varying levels of importance in determining
the wine’s origin. Malic Acid and the OD280/OD315 of Diluted Wines have a significant
influence of 15.38% and 23.08%, as shown in Table 8.

Informatics 2023, 10, 63 26 of 30

5.6. Average Chromosome Gene Frequency for Class Wine

To address the fitness visualizations of the RO3.8 generations, Figures 11–17 present
a summary and demonstration of the GA wrapper application’s data that was exported
from the conducted tests to showcase its potential. The best and average generation fitness
achieved during the 7 test runs are illustrated in Figure 18. According to Table 8, the
occurrence of certain wine ingredients is capable of defining the wine type. Based on the
number of occurrences in the optimization process, these ingredients can have a substantial
impact in Wine type classification.

Regarding RO3.9, the genes that have the greatest impact on the classification process
are those with the highest average frequency:

1. Malic Acid—10.58% (second gene) occurring two times.
2. Alkalinity of Ash—10.58% (fourth gene) occurring one time.
3. Total Phenols—14.11% (sixth) occurring one time.
4. Color Intensity—8.23% (tenth gene) occurring one time.
5. OD280/OD315 of Diluted Wines—16.47% (twelfth gene) occurring two times.
6. Proline—9.42% (thirteenth gene) occurring one time.
7. Alcohol (first gene), Magnesium (fifth gene), and the Flavonoids (seventh gene) have

been excluded from the optimization and classification processes.

Having a wine type classification accuracy of 100% indicates that these attributes have
a serious impact in defining the origin of a wine type. These genes have the potential
to recommend alternative factors that can replace the original set of genes, enabling the
creation of new smaller subsets that enhance accuracy, decrease decision-making risk, and
eliminate overfitting. These findings confirm the original purpose of the research and
validate the effectiveness of the design approach.

In conclusion, the winery data analysis using a GA wrapper has yielded a set of rules
that show promising results. These findings have the potential to greatly influence decision
makers. To address RO3.10, the following set of rules could be proposed to introduce the
new insights and make a substantial impact on decision making:

1. Taking into consideration the probability operators’ values, the chromosome numbers,
and the generation numbers the GA wrapper configuration provides significant results.

2. According to the average gene sequence, a subset of 6 genes can accurately predict the
origin of the wine variety as if there was an entire population of 13 attributes.

3. The GA wrapper performs exceptionally well in small numeric datasets.
4. According to the best chromosome, there are two ingredients, Malic Acid and the

OD280/OD315 of Diluted Wines, which can identify the origin of a wine variety.

5.7. Dominant Decision Tree Visualization

Figures 11–17 demonstrate the average and the maximum generations’ fitness values
for each run of the GA wrapper application The blue line indicates the average fitness of
the chromosomes of the generations, and the red line indicates the maximum fitness of the
chromosomes of each one of the generations. These tests results reveal the performance
optimization of the GA wrapper as the number of generations increases. It is evident
from the following graphs that the highest and average fitness of the chromosomes rise
with the gradual training of the model. The calculations follow an evolutionary process.
Figure 18 demonstrates the average fitness per run for a total number of fifty generations.
Each one of the seven runs is indicated with an assorted color, including orange, blue, dark
blue, purple, green, grey, and yellow. The average fitness of all seven runs indicates the
average generation fitness and is demonstrated using the black line (Figure 18). Figure 19
demonstrates the average gene frequency from all the seven runs of the GA wrapper
application.

Informatics 2023, 10, 63 27 of 30

5.8. Research Contribution

In comparison to other related research attempts, i.e., the research regarding the X-
Wines dataset for recommender systems and machine learning [2], the machine learning
application in wine quality prediction [3], decision trees as feature selection methods to
characterize the novice panel’s perception of Pinot noir wines [4], and the prediction of
wine quality using machine learning algorithms [5] which have managed to predict with
high accuracy the quality and the origin of wine types, the current research has managed
to perform at a maximum classification accuracy of 100% in predicting a set of factors
which have certain weights which affect the wine cultivar (Figures 10 and 14). Those
similar research attempts relied on using k-nearest neighbors (k-NN) [1], deep learning
algorithms [1], SMOTE [2], random forest [2], XGBOOST [2], stochastiC gradient decision
classifier [2], ridge regression (RR) [3], support vector machine (SVM) [3], gradient boosting
regressor (GBR) [3], artificial neural network (ANNs) [4], decision trees [4], feature selection
methods [4], neighborhood component analysis (NCA) [4], scatter plots [4], and principal
component analysis (PCA) [4].

However, none of these works included a GA wrapper model to make predictions.
The factors that affect the wine’s cultivars for optimal prediction accuracy include

Malic Acid and the OD280/OD315 of Diluted Wines, which have a significant impact
of 15.38% and 23.08% (Table 8). The factors that affect the wine’s cultivars on average
include Malic Acid—10.58%, Alkalinity of Ash—10.58%, Total Phenols—14.11%, Color
Intensity—8.23%, OD280/OD315 of Diluted Wines—16.47%, and Proline—9.42%.

This study combines various concepts, methodologies, techniques, and tools to create a
promising study that bridges the gap between computer science and food business research
by utilizing new and practical artificial intelligence methods. The scientific domains
involved in this study include artificial intelligence, machine learning models, data mining
techniques, decision making, and food business data. These domains are integrated in a
way that lays the foundation for producing new knowledge. The chapters are intentionally
arranged to provide a cohesive structure, meaning, objectives, and goals.

The contribution of this paper is not only limited to the development of a pioneering
machine learning model that optimizes the decision-making process but also includes the
examination of related scientific fields. The paper provides a solid framework for potential
researchers to conduct their own experiments and generate results based on well-defined
steps. In addition to the main contributions, this study also yields new findings that
contribute to the overall effort. These new findings are highlighted as follows:

1. Combining computer science theory and chemistry decision making;
2. Providing examples of AI applications in the food business sector;
3. Conducting wine type classification analysis using chemical substances data;
4. Conducting performance evaluation for machine learning classification methods;
5. Examining a wine’s origin using machine learning classification methods;
6. Developing a ML method using classification and optimization methods;
7. Performing food segmentation analysis applying the GA wrapper on winery data.

5.9. Future Work

Expansion on the comparison study of machine learning methods could benefit from
the periodic evaluation of newly developed classification methods and integrating them
into the primary study or in combination with other optimization methods to enhance
decision-making capabilities across various disciplines.

Additionally, there are areas for improvement in the GA wrapper study to increase
its robustness. To effectively achieve these improvements, the study should allow for
testing of multiple classification algorithms rather than just a binary decision tree. An open-
access online user-friendly interface should also be developed to enable users to configure
nominal, numeric, and multivariate variables and generate graphical representations.

Informatics 2023, 10, 63 28 of 30

Finally, to validate the prediction power of the methodology and model used in the
wine origin classification analysis, it is recommended to test it with a wider range of winery
data. The improved model serves as a foundation for future advancements.

6. Conclusions

This research aims to demonstrate that the proper utilization of technology can lead to
remarkable results in terms of prosperity, progress, time efficiency, and risk-free decision-
making policies, thus bridging the gap between computer science and other disciplines.
The primary goal of this research is to assist decision-makers by creating an application that
can reduce the number of attributes and create optimal subsets of factors which affect an
outcome using machine learning algorithms and data. Furthermore, a hybrid GA wrapper
technique is proposed to achieve superior outcomes by preventing overfitting and integrat-
ing the outcomes of all prior stages to produce an optimized decision-making approach.

This study demonstrates the adaptability of artificial intelligence in business sector
issues, an area of computer science with potential applications in various fields. The GA
wrapper study successfully delivered accurate results, showcasing the complexity of data
management, classification, and evaluation methods. The goal of utilizing machine learning
techniques for improved production and marketing decision making using winery data
from online sources was achieved. Furthermore, the research identified specific variables
such as are associated with wine type classification, providing a roadmap for food business
decision making. These variables can be used to understand the core attitudes of the wine
ingredients, such as the importance of country of origin for a brand. Farmers, producers,
and marketing executives can focus on these variables to make low-risk decisions and be
more competitive.

However, the study faced certain limitations, and further research could expand the
platforms, industry sectors, and data sources to gain a more comprehensive understanding
of wine types. Despite the overwhelming amount of data available, algorithms are merely
tools, and humans remain the inventors and shapers of AI. Although AI is expected to
revolutionize the way transactions take place, it still requires more development. The
landscape of AI is influenced by daily smartphone use, competition, research, and the
desire for better human-centric solutions.

Author Contributions: Conceptualization, D.C.G.; Formal analysis, D.C.G. and M.C.G.; Investiga-
tion, D.C.G.; Methodology, D.C.G.; Software, D.C.G. and T.T.; Supervision, D.C.G., T.T. and P.K.T.;
Validation, D.C.G. and M.C.G.; Data curation, D.C.G. and M.C.G.; Writing—original draft, D.C.G.;
Writing—review and editing, D.C.G., T.T., P.K.T. and M.C.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository. The data presented
in this study are openly available in [UCI repository] https://doi.org/10.24432/C5PC7J, accessed on
12 April 2023.

Acknowledgments: Special thanks go to Paul D. Scott, from School of Computer Science and Elec-
tronic Engineering at University of Essex in UK, for conceptualizing and contributing the most to the
design and the implementation of the initial GA wrapper model.

Conflicts of Interest: The authors declare no conflict of interest.

https://doi.org/10.24432/C5PC7J

Informatics 2023, 10, 63 29 of 30

Abbreviations
The following abbreviations are used in this manuscript:
ANN Artificial Neural Network
BDTs Binary Decision Trees
BSA Backtracking Search Optimization Algorithm
DT Decision Trees
ELM Extreme Learning Machine
EM-ELM Error-Minimized Extreme Learning Machine
GA Genetic Algorithm
GADT Genetic Algorithm Decision Trees
GANB Genetic Algorithm Naïve Bayes
GBR Gradient Boosting Regressor
HGEFS Extreme Learning Machine-Based Feature Selection Algorithm
HMPGA Hybrid Multiple Population Genetic Algorithms
MAPE Mean Absolute Percentage Error
MPGA Multiple Population Genetic Algorithms
MSE Mean Squared Error
NN Neural Network
PSO Particle Swarm Optimization Algorithm
R Correlation Coefficient
RO Research Objective
RR Ridge Regression
SSL Self-Supervised Learning
SVM Support Vector Machine
UCI University of California, Irvine

References
1. Forina, M.; Leardi, R.; Armanino, C.; Lanteri, S. PARVUS: An Extendable Package of Programs for Data Exploration, Classification and

Correlation, Version 3.0; Institute of Pharmaceutical and Food Analysis and Technologies: Genoa, Italy, 1988. [CrossRef]
2. de Azambuja, R.X.; Morais, A.J.; Filipe, V. X-Wines: A Wine Dataset for Recommender Systems and Machine Learning. Big Data

Cogn. Comput. 2023, 7, 20. [CrossRef]
3. Bhardwaj, P.; Tiwari, P.; Olejar, K.; Parr, W.; Kulasiri, D. A machine learning application in wine quality prediction. Mach. Learn.

Appl. 2022, 8, 100261. [CrossRef]
4. Dahal, K.; Dahal, J.; Banjade, H.; Gaire, S. Prediction of Wine Quality Using Machine Learning Algorithms. Open J. Stat. 2021, 11,

278–289. [CrossRef]
5. Jingxian, A.; Kilmartin, P.A.; Young, B.R.; Deed, R.C.; Yu, W. Decision trees as feature selection methods to characterize the novice

panel’s perception of Pinot noir wines. Res. Sq. 2023. [CrossRef]
6. De Caigny, A.; Coussement, K.; De Bock, K.W. A New Hybrid Classification Algorithm for Customer Churn Prediction Based on

Logistic Regression and Decision Trees. Eur. J. Oper. Res. 2018, 269, 760–772. [CrossRef]
7. Dy, J.G.; Brodley, C. Feature Selection for Unsupervised Learning. J. Mach. Learn. Res. 2004, 5, 845–889.
8. Xue, X.; Yao, M.; Wu, Z. A Novel Ensemble-Based Wrapper Method for Feature Selection Using Extreme Learning Machine and

Genetic Algorithm. Knowl. Inf. Syst. 2018, 57, 389–412. [CrossRef]
9. Yu, E.; Cho, S. Ensemble based on GA wrapper feature selection. Comput. Ind. Eng. 2006, 51, 111–116. [CrossRef]
10. Huang, J.; Cai, Y.; Xu, X. A hybrid GA for feature selection wrapper based on mutual information. Pattern Recognit. Lett. 2007, 28,

1825–1844. [CrossRef]
11. Rokach, L. Genetic algorithm-based feature set partitioning for classification problems. Pattern Recognit. 2008, 41, 1676–1700.

[CrossRef]
12. Rahmadani, S.; Dongoran, A.; Zarlis, M.; Zakarias. Comparison of Naive Bayes and Decision Tree on Feature Selection

UsingGenetic Algorithm for Classification Problem. J. Phys. Conf. Ser. 2018, 978, 012087. [CrossRef]
13. Wang, D.; Zhang, Z.; Bai, R.; Mao, Y. A Hybrid System with Filter Approach and Multiple Population Genetic Algorithm

forFeature Selection in Credit scoring. J. Comput. Appl. Math. 2018, 329, 307–321. [CrossRef]
14. Chowdhury, A.; Rosenthal, J.; Waring, J.; Umeton, R. Applying Self-Supervised Learning to Medicine: Review of the State of the

Art and Medical Implementations. Informatics 2021, 8, 59. [CrossRef]
15. Dogadina, E.P.; Smirnov, M.V.; Osipov, A.V.; Suvorov, S.V. Evaluation of the Forms of Education of High School Students Using a

Hybrid Model Based on Various Optimization Methods and a Neural Network. Informatics 2021, 8, 46. [CrossRef]
16. Russel, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2003.
17. Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273–324. [CrossRef]

https://doi.org/10.24432/C5PC7J
https://doi.org/10.3390/bdcc7010020
https://doi.org/10.1016/j.mlwa.2022.100261
https://doi.org/10.4236/ojs.2021.112015
https://doi.org/10.21203/rs.3.rs-2650497/v1
https://doi.org/10.1016/j.ejor.2018.02.009
https://doi.org/10.1007/s10115-017-1131-4
https://doi.org/10.1016/j.cie.2006.07.004
https://doi.org/10.1016/j.patrec.2007.05.011
https://doi.org/10.1016/j.patcog.2007.10.013
https://doi.org/10.1088/1742-6596/978/1/012087
https://doi.org/10.1016/j.cam.2017.04.036
https://doi.org/10.3390/informatics8030059
https://doi.org/10.3390/informatics8030046
https://doi.org/10.1016/S0004-3702(97)00043-X

Informatics 2023, 10, 63 30 of 30

18. Güvenir, H.A. A classification learning algorithm robust to irrelevant features. In Artificial Intelligence: Methodology, Systems, and
Applications, Proceedings of the 8th International Conference, AIMSA’98, Sozopol, Bulgaria, 21–23 September 1998; Giunchiglia, F., Ed.;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1480. [CrossRef]

19. Kohavi, R. Wrappers for Performance Enhancement and Oblivious Decision Graphs. Ph.D. Thesis, Stanford University, Stanford,
CA, USA, 1996. Available online: http://robotics.stanford.edu/users/ronnyk/teza.pdf (accessed on 1 May 2023).

20. Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997.
21. Witten, I.; Frank, E.; Hall, M. Data Mining; Morgan Kaufmann Publishers: Burlington, MA, USA, 2011.
22. Quinlan, J. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
23. Quinlan, J. Simplifying decision trees. Int. J. Man Mach. Stud. 1987, 27, 221–234. [CrossRef]
24. Blockeel, H.; De Raedt, L. Top-down induction of first-order logical decision trees. Artif. Intell. 1998, 101, 285–297. [CrossRef]
25. Mitchell, M. An Introduction to Genetic Algorithms; The MIT Press: Cambridge, MA, USA, 1996.
26. Whitley, D. A Genetic Algorithm Tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
27. Hsu, W.H. Genetic wrappers for feature selection in decision trees induction and variable ordering in Bayesian network structure

learning. Inf. Sci. 2004, 163, 103–122. [CrossRef]
28. Davis, L. Handbook of Genetic Algorithms; Van Nostrand Reinhold: New York, NY, USA, 1991; p. 115.
29. Vlahavas, P.; Kefalas, N.; Vassiliades, F.; Kokkoras, I.; Sakellariou, E. Artificial Intelligence, 3rd ed.; Gartaganis Publications:

Thessaloniki, Greece, 2002; ISBN 960-7013-28-X.
30. Scott, P.D. Lecture Notes in Decision Trees Induction. Machine Learning and Data Mining; Computer Science and Electronic Engineering;

University of Essex: Colchester, UK, 1999.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/BFb0057452
http://robotics.stanford.edu/users/ronnyk/teza.pdf
https://doi.org/10.1007/BF00116251
https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.1016/S0004-3702(98)00034-4
https://doi.org/10.1007/BF00175354
https://doi.org/10.1016/j.ins.2003.03.019

	Introduction
	Related Work
	Research Objectives

	Research Methodology
	Research Scope
	Method Overview
	Information Gain
	GA Wrapper Fitness Model
	GA Wrapper Model Design
	GA Wrapper Analysis
	GA Wrapper Implementation
	GA Wrapper Chromosome Tree Representation
	Dataset

	Results
	Class Segmentation
	Generation Fitness
	Optimal Decision Tree Figures, Tables, and Schemes
	Dominant Decision Tree Visualization
	Elitist Chromosome Sequence and Binary Decision Tree Representation
	Average and Maximum Fitness Performance Per Run
	Genes Frequency

	Discussion
	GA Wrapper Model Design
	Fitness
	Optimal Binary Decision Tree
	Dominiant Binary Decision Tree
	Elitist Chromosome Fitness
	Average Chromosome Gene Frequency for Class Wine
	Dominant Decision Tree Visualization
	Research Contribution
	Future Work

	Conclusions
	References

