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Abstract: Artificial neural networks (ANNs) ability to learn, correct errors, and transform a large
amount of raw data into beneficial medical decisions for treatment and care has increased in pop-
ularity for enhanced patient safety and quality of care. Therefore, this paper reviews the critical
role of ANNs in providing valuable insights for patients’ healthcare decisions and efficient disease
diagnosis. We study different types of ANNs in the existing literature that advance ANNs’ adaptation
for complex applications. Specifically, we investigate ANNs’ advances for predicting viral, cancer,
skin, and COVID-19 diseases. Furthermore, we propose a deep convolutional neural network (CNN)
model called ConXNet, based on chest radiography images, to improve the detection accuracy of
COVID-19 disease. ConXNet is trained and tested using a chest radiography image dataset obtained
from Kaggle, achieving more than 97% accuracy and 98% precision, which is better than other existing
state-of-the-art models, such as DeTraC, U-Net, COVID MTNet, and COVID-Net, having 93.1%,
94.10%, 84.76%, and 90% accuracy and 94%, 95%, 85%, and 92% precision, respectively. The results
show that the ConXNet model performed significantly well for a relatively large dataset compared
with the aforementioned models. Moreover, the ConXNet model reduces the time complexity by
using dropout layers and batch normalization techniques. Finally, we highlight future research direc-
tions and challenges, such as the complexity of the algorithms, insufficient available data, privacy and
security, and integration of biosensing with ANNs. These research directions require considerable
attention for improving the scope of ANNs for medical diagnostic and treatment applications.

Keywords: artificial neural networks; convolutional neural networks; healthcare; infectious diseases

1. Introduction

Artificial intelligence (AI) is revolutionizing the world with its endless applications.
The platforms built on AI are prevalent, accelerating the pace of developing life-saving
drugs and reducing operations costs. Artificial neural networks (ANN) are the building
blocks of AI technologies, which simulate the human brain’s analyzing and processing
abilities to solve complex problems. The unique characteristics of ANN (such as efficient
data handling, low complexity, reduced computation, and storage requirements) have
enormous potential for a wide range of disciplines, including medical sciences [1] (espe-
cially in the areas of cardiology [2], radiology [3], oncology [4], urology [5]), veterinary [6],
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stock exchange [7], law enforcement department [8], ecology [9], human resource manage-
ment [10], signal processing with blind separation [11], and cybersecurity [12]. The ANNs
are mainly based on mathematical models inspired by biological nervous systems, such as
the brain’s route information. They work similarly to an adaptive system, which updates
its configuration in the learning phase and can be modelled for a specific application,
such as data classification and pattern categorization. A neural network generally consists
of three layers (i.e., input layer, hidden layer, and output layer). Based on these layers,
ANN can be categorized into a single-layer feed-forward neural network (FFNN) [13], a
multilayer feed-forward network [14], a single node with its feedback, and a recurrent
multilayer network [15].

The massive potential of various types of ANN models in the healthcare domain must
be addressed. Recent literature [16,17] has extensively studied the potential of ANN for
the treatment and diagnosis of a wide range of infectious diseases, such as diarrhea [18],
tuberculosis [19], dengue [20], COVID-19 [21,22], and childhood blindness [23]. State-of-
the-art schemes generally considered accuracy and complexity as the primary performance
metrics to examine the performance of ANN.

The development of ANNs has revolutionized disease detection and diagnosis, offer-
ing numerous benefits over traditional approaches, having the capability to analyze large
volumes of data, extract meaningful patterns, and provide accurate predictions. In the
context of COVID-19, the rapid and precise identification of infected individuals is crucial
for effective control and mitigation. In particular, those applied to radiography images
can play a vital role in automating the analysis process and reducing the workload of
healthcare professionals.

Therefore, in this paper, we have proposed a ConXNet model that can effectively
classify COVID-19 cases from typical cases, providing timely and reliable support for
diagnosis with the potential to transform healthcare practices, enabling efficient online
monitoring and enhancing the overall quality of patient care. By highlighting the role of the
ConXNet model in disease detection and emphasizing the specific application to COVID-19,
our research contributes to the ongoing efforts in combating the pandemic and improving
healthcare outcomes. The main contributions of our presented review are summarized
as follows.

• First, we present a critical review of state-of-the-art ANN models that have contributed
to the detection and diagnosis of various diseases, including skin diseases, retinal
diseases, and COVID-19. While numerous studies are available on using ANNs
in the medical field, a comprehensive review of these techniques is crucial to un-
derstand their current and future potential clearly. Therefore, this paper aims to
offer a comprehensive and concise overview of recent advancements in ANNs for
medical applications.

• Second, our work focuses explicitly on detecting and diagnosing COVID-19 using
convolutional neural network (CNN) models. We provide an in-depth analysis of
existing CNN models designed for COVID-19 detection, discussing their contributions
and limitations.

• Then, we propose a novel deep learning model called ConXNet, which has been
trained and tested using different datasets to improve the accuracy of COVID-19
detection by up to 98%. This contribution is significant as it offers an innovative
approach to enhance the detection capabilities of AI-based models in the context of a
global health crisis.

• Finally, we highlight the gaps that require attention in the future to improve ANN-
based disease diagnosis and treatment. These future research challenges include
algorithm complexity, inadequate available data, security and privacy concerns, and
biosensing integration with ANNs.

The rest of the paper is organized as follows: Section 2 thoroughly discusses the
literature background. The background of ANN is discussed in Section 3. Section 4 provides
a comprehensive study of existing CNN models designed for COVID-19. Section 5 describes
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our proposed ConXNet model, including the details of datasets and obtained results for
COVID-19 detection. Section 6 reviews existing CNN models for various diseases. Section 7
provides the Discussion, Opportunities, and Open Issues; Section 8 highlights challenges
and future research directions. Finally, Section 9 summarizes the findings of the presented
reviews and provides future work directions.

2. Background and Related work

In recent years, numerous studies have focused on applying artificial intelligence (AI)
techniques for combating the COVID-19 pandemic. In [24], the authors shed light on the
opportunities, challenges, and prospects of explainable AI in fighting the pandemic. Their
work emphasizes the potential of explainable AI techniques and how they can contribute
to addressing the challenges posed by the pandemic. Similarly, [25] presents a scoping
review of the challenges and opportunities of deep learning for cough-based COVID-19
diagnosis. By examining existing literature on deep learning approaches for diagnosing
COVID-19 through cough analysis, they identify the challenges and discuss the potential
of these techniques in improving diagnostic capabilities.

Researchers have explored various deep learning approaches for COVID-19 detection
as AI evolves. In [26], the authors surveyed the detection of COVID-19 using deep learning
techniques, providing insights into the different approaches employed and evaluating their
cost-effectiveness. Furthermore, [27] presents a survey focusing on deep convolutional neu-
ral networks (CNNs) for detecting COVID-19 using medical images. Its review highlights
the state-of-the-art deep learning models for COVID-19 detection through medical imaging,
discussing their strengths, limitations, and potential applications in clinical practice.

For example, the authors in [28] investigated the effectiveness of ANN in detecting
skin cancer. Their findings highlighted the exceptional performance of various neural
network models, specifically the VGG-16 convolutional neural network (CNN). Notably,
CNN achieved an accuracy of 87.6%. Moreover, the ability of advanced convolutional
neural networks to distinguish between serious and benign skin cancers is examined
in this study. In [29]; the authors performed an extensive study on neural networks for
lung cancer detection and concluded that neural network techniques exhibit an excellent
classification rate. However, they often require a significant amount of training time. In
another work in [30], the authors studied a convolutional neural network, followed by
a Pix2pix generative adversarial network (GAN) proposed for image enhancement, and
the model successfully detected breast cancer with an accuracy of 78.52%. Although the
limitations on the enormous volumes of annotated data may be reduced or even eliminated
with the help of GANs, there are still some difficulties, such as the need for a more accurate
feature extraction, which may have a significant impact on the practical implementation of
ANN-based image processing techniques in digital pathology.

Furthermore, in [31], the authors focused on using convolutional neural networks
(CNNs) for detecting malaria infection, a widely spread parasitic infectious disease. The
importance of early detection in combating malaria was emphasized due to the limitations
and errors associated with current techniques, such as manual microscopic examination
and rapid diagnostic tests. Based on a custom CNN with three convolutional layers,
the proposed model offers a faster and cost-effective method for distinguishing between
healthy and infected blood samples, thus improving parasite (Plasmodium) detection. The
proposed model achieved an accuracy of 96.71%. Similarly, in [32], the authors provided
a comprehensive review of surveys and recent techniques in brain tumour classification,
including preprocessing, feature extraction, and classification steps. The use of convolu-
tional neural network models, transfer learning, and data augmentation, along with their
achievements and limitations, is explored. The overview also highlights the importance of
personalized and smart healthcare and suggests future research directions for improved
brain tumor classification.

Moreover, in [33], the authors discussed various ML algorithms, such as naïve Bayes,
classification and regression tree (CART), decision tree (DT), and support vector machine
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(SVM), for different diseases, such as lung cancer, breast cancer, and skin diseases. In [34],
the authors present a comparative study on data mining techniques for breast cancer
prediction, including naïve Bayes, back-propagated neural networks, and decision tree
algorithms. In [35], the authors investigated the effectiveness of numerous nature-inspired
computing techniques, such as genetic algorithms [36], ant colony optimization [37], par-
ticle swarm optimization [38], and artificial bee colony [39], for diagnosing various crit-
ical human disorders. They concluded that nature-inspired computing techniques have
high accuracy for disease detection and diagnosis. However, the survey lacks a detailed
comparison with state-of-the-art schemes required to investigate the efficiency of nature-
inspired techniques for real-world problems. Similarly, in [40], the authors extensively
discuss hybrid models(i.e., neural networks combined with other classical methods or
metaheuristic approaches) to outline selecting a well-suited ANN model for epidemic
forecasts. Reference [41] shows that hybrid neural networks depict enhanced performance
for epidemic forecasts.

Besides other infectious disease detections, recently, ANNs have been explored for
COVID-19 detection. For instance, in [42], the authors highlight the role of AI, particularly
in diagnosing and treating COVID-19. Moreover, it highlights that disease detection and
diagnosis, virological research, drug and vaccine development, epidemic and transmission
prediction, medical image analysis, and drug discovery are the primary areas that integrate
AI to fight against COVID-19. Furthermore, the authors in [43] illustrated computer vision’s
role in combating the COVID-19 pandemic. They considered three types of visionary
images for COVID-19 detection: computed tomography (CT) scans, X-ray imagery, and
ultrasound imaging.

In addition to image-based diagnostics, researchers have investigated other modal-
ities for COVID-19 detection. In [44], the authors propose a hybrid deep-fused learning
approach to segregate infectious diseases, including COVID-19. Their study explores the
combination of multiple data modalities to improve the accuracy of disease segregation. On
the other hand, in [45], the authors introduce Epi-DNNs, which are deep neural networks
informed by epidemiological priors. By integrating epidemiological priors into the neural
network models, they aim to enhance the modelling of COVID-19 dynamics and improve
forecasting capabilities.

Furthermore, the utilization of non-image-based approaches has also gained attention.
In [46], the authors proposes a deep transfer learning-based CNN model for COVID-19
detection using computed tomography (CT) scan images. Their research focuses on im-
proving the accuracy of COVID-19 detection through the application of transfer learning
techniques in CT image analysis. Additionally, in [47], the authors investigated the diagno-
sis of COVID-19 from blood parameters using a CNN. Their study explores the potential
of CNN models to analyze blood parameters and detect COVID-19, contributing to the
development of non-image-based diagnostic approaches.

Our proposed work makes significant contributions in the context of this existing
literature. We comprehensively review artificial neural network (ANN) models applied in
medical domains, explicitly focusing on CNN models for COVID-19 detection. We propose
a novel CNN model called ConXNet, which outperforms existing models in accuracy. Our
work aims to bridge the gap between theory and practice, addressing the challenges and
opportunities in COVID-19 detection. By incorporating insights from the literature and
developing an innovative model, our research contributes to the ongoing efforts to combat
the pandemic. It provides valuable insights for AI-driven disease detection and diagnosis.

3. Review of Artificial Neural Networks (ANNs)

Recently, neural networks have gained particular importance due to their diverse
applications. Research and scientific communities are optimistic regarding the potential of
ANN. The core property of an ANN is its capability of learning. There are three types of
learning: (1) Supervised learning, which is accomplished in the existence of an observer.
In this type of learning, a supervisor or observer is compulsory for error minimization.
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(2) Unsupervised learning is accomplished without an observer’s help, and the network
itself discovers features, categories, patterns, or symmetries from the input data and
associations for the input data over the output. (3) Reinforcement learning is used to train
machine learning models. It enables an agent to learn through the consequences of actions
in a specific environment.

Hence, many neural networks are developed and categorized over time based on their
learning characteristics. In the following, we extensively discuss different types of neural
networks to comprehend the background of ANN.

3.1. Perceptron

The perceptron model, proposed by Minsky and Papert in the 1950s, is one of the
modest and ancient models of the neuron. Perceptron is the most minor component of
a neural network that performs particular calculations to identify features in the input
data [48]. The perceptron is a supervised learning algorithm that can easily classify the
data into two categories by a hyperplane; therefore, it is also called a binary classifier. The
perceptron algorithm has gained significant attention recently due to its use in establishing
logic gates, such as AND, OR, or NAND.

Figure 1 shows a simple perceptron as an example with a layer of input nodes (layer 1)
and a layer of output nodes (layer 2). Every perceptron layer is fully connected, but no
links occur among nodes in the same layer. When layer 1 directs a signal to layer 2, the
related weights on the links are applied, and each acceptance node on layer 2 sums up
the received values. If the sum surpasses a given threshold, that node, in turn, directs an
output signal.

Figure 1. Perceptron architecture.

The outputs are summed through all the inputs (a[i]) received by a node (j) in the
output layer. The weighted sum is then combined with an activation function ( f ) to provide
an output that can be either binary or continuous. Moreover, this weighted sum can be
improved by including a bias value denoted as ’b.’ Then, the output of each node is given by

Sj = f (
n

∑
i=0

aiwij + b). (1)

in (1), if Sj > θ, then xj = 1; otherwise, xj = 0, where θ is the threshold. The perceptron’s
output can be "trained" to match the desired output by adjusting the weights on the
connections between layers. The amount of the correction is determined by multiplying
the difference between the actual output (x[j]) and target (t[j]) values by a learning rate
constant (C). If the nodes’ output (a[i]) is 1, that connection weight is adjusted, and if it
sends 0, it has no bearing on the output, and subsequently, there is no need for adjustment.
Thus, the process weight adjustment is as follows:

wij
new = wij

old + C(tj − xj)ai, (2)
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where C is the learning rate. This training procedure is repeated until the network perfor-
mance reaches a maximum threshold [49].

3.2. Multilayer Perceptron

In MLP, every node is associated with all neurons in the subsequent layer, making
it a fully connected neural network. Input and output layers exist with many hidden
layers (i.e., at least three or more layers) with bidirectional propagation (i.e., forward and
backwards). In forward propagation, inputs are multiplied with weights and sent to the
activation function, and in backpropagation, the weights are adjusted to reduce the loss [50].
Figure 2 shows a simple presentation of MLP, consisting of an input layer, a hidden layer,
and an output layer. Except for the input nodes, each node is a neuron that uses a nonlinear
activation function.

Figure 2. A simple presentation of MLP.

3.3. Feed-Forward Neural Network (FFNN)

FFNN [51] is the most basic neural network used for different applications, including
computer vision, natural language processing, and speech recognition. In FFNN, data
propagate only in one direction, passing through neural nodes and exiting through output
nodes. FFNN comprises input and output layers; hidden layers may exist. The weights are
static in FFNN, and an activation function is used by inputs multiplied by weights to learn
the value of parameter θ. In addition, the design of FFNN requires considering several
crucial factors, including an optimizer, cost function, and output units. FFNN in Figure 3
shows an input passed through one or more hidden layers unidirectionally, and weights
are multiplied by inputs to minimize the error using an optimizer.

Figure 3. FFNN architecture.

3.4. Convolutional Neural Network (CNN)

Initially, CNN was only restricted to image processing, requiring large datasets. How-
ever, the success of AlexNet in the 2012 ImageNet challenge showed that the time has come
to revisit CNNs, as large datasets available [52,53]. A CNN comprises a three-dimensional
set of neurons instead of the typical two-dimensional array. The first layer is called a
convolutional layer, where every neuron only routes the information from a minor part
of the layer. The convolutional layer uses ReLU as an activation function, followed by
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softmax. The first layer is followed by a pooling layer, where the convolution layer’s output
drives to a fully connected neural network for classification. The CNNs show promis-
ing results in image and video recognition, semantic parsing, and paraphrase detection.
Figure 4 visualizes a CNN model that first extracts all the features of the input image using
the convolution operation and then uses the pooling layer to extract the most prominent
features to pass through to the other convolutional layer for linearity. Later, the flattened
layer shapes the input data for producing an output.

Figure 4. A simple presentation of CNN.

3.5. Radial Basis Function Neural Networks

The radial basis function (RBF) network comprises an input vector, followed by a layer
of RBF neurons and an output layer with one node per class. Classification is accomplished
by assessing the input’s resemblance to data points from the training set, where each neuron
stores a prototype, one of the samples from the training set. When a novel input vector (the
n-dimensional vector that you are trying to classify) needs to be organised, every neuron
computes the Euclidean distance between the input and its prototype [54,55]. Figure 5
shows the simple architecture of RBF comprising an input layer, a hidden layer (consisting
of several RBF nonlinear activation units), and an output layer.

Figure 5. Architecture of RBF.

3.6. Recurrent Neural Networks (RNNs)

RNN is one of the most potent and robust state-of-the-art algorithms derived from
FFNN for modelling sequence data [56]. RNN differs from other algorithms due to its
internal memory and ability to process the sequence data lacking in different algorithms.
Furthermore, RNN trains the model based on the current input and previous learning
experience, offering more precise predictions.

Therefore, RNNs have promising applications in speech recognition, text summariza-
tion, prediction problems, face detection, music composition, and language processing [57].
Figure 6 shows a simple RNN architecture consisting of an input layer, one or more hidden
layers, and an output layer.
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Figure 6. Architecture of RNN.

3.6.1. Long Short-Term Memory (LSTM) Networks

LSTM is a type of RNN that comprises a “memory cell” that can preserve information
in memory for long periods. A set of gates is used to regulate when information arrives in
the memory of a cell. There are three types of gates, i.e., input gate, output gate, and forget
gate. The input gate selects how much information from the last example will be reserved
in memory; the output gate controls the amount of data delivered to the next layer, and
forget gates regulate the tearing rate of memory keeping. This planning lets them learn
longer-term reliance [58]. Figure 7 shows the architecture of LSTM consisting of three gates,
i.e., forget gate, remember gate, and output gate, deciding the data sequence. In LSTM,
the tanh activation function controls the values that flow across the network, whereas the
sigmoid activation function (σ) is used at the gates as a gating function.

Figure 7. Architecture of LSTM.

3.6.2. Gated Recurrent Unit (GRU) Networks

The recurrent neural network (RNN) architecture, known as a “gated recurrent unit
(GRU)”, is intended to capture long-term dependencies in a sequential input efficiently. It
was developed to improve the standard RNN model, solving issues including the vanishing
gradient problem. Moreover, LSTM has three gates—input, output, and forget; GRU’s
bag only has two gates—reset and update. A GRU may learn to selectively update and
preserve information over time by employing the update and reset gates, which enables it
to capture long-term dependencies more efficiently than a conventional RNN [59]. GRUs
are extensively used in several sequential data tasks, including machine translation, speech
recognition, and natural language processing.

3.7. Sequence-to-Sequence Models

A sequence-to-sequence model comprises two RNNs with additional encoder and
decoder modules. The encoder is used for the input data, and the decoder delivers the
output. The encoder and decoder work in parallel using the same or different parame-
ters [60]. Contrary to the actual RNN, this model only applies when the input data’s length
and output data’s size are equal. These models are primarily used in chatbots, machine



Bioengineering 2023, 10, 850 9 of 28

translation, and question-answering systems, despite having similar help and curbs to
the RNN. The layout of the sequence-to-sequence model, consisting of an encoder and a
decoder, is shown in Figure 8. An encoder and a decoder are independent essential neural
network models integrated into a massive network to create an output representation
sequence. The encoder and decoder comprise two RNNs that act as an encoder and a
decoder pair. The encoder receives an input of variable length and maps it to a fixed-length
vector, then sends it to the decoder that maps the fixed-length vector back to a variable
length as a target sequence to produce an output. This process is accomplished by utilizing
the RNN network inside the encoder and decoder.

Figure 8. Architecture of sequence-to-sequence model.

3.8. Modular Neural Network

Another type of neural network is a modular neural network consisting of numerous
dissimilar networks that can function self-sufficiently to complete various subtasks [61].
During the computation process, the different networks do not cooperate or signal each
other to work independently to achieve the output. Thus, a large and complex computa-
tional procedure is performed faster by breaking it down into self-governing components.
Modular neural networks are efficient and can conduct independent training [62]. Figure 9
shows the architecture of a modular neural network working on the principle of divide and
conquer to split significant problems down into smaller manageable parts called modules
to produce a single output for each using a module network. All the modules are trained
independently, and then the production of each module is stored in a new NN model
denoted as getting network in Figure 9 to produce an output.

Figure 9. Architecture of modular neural network.

4. CNN Models for COVID-19 Detection

In the previous section, we presented various neural networks. This section highlights
the role of CNN in early predicting infectious diseases, especially COVID-19. Since the
COVID-19 outbreak in China in December 2019, the global population and economy have
been affected badly. To alleviate the spread of COVID-19, timely detection was essential to
quarantine infected patients. The primary screening technique used to detect COVID-19
was polymerase chain reaction (PCR) testing; however, it is costly and can fall short of
supply [63]. Therefore, an alternative screening method, such as a radiography examination,
is used to detect COVID-19, which indicates that people affected with COVID-19 have
irregularities in their chests, especially in the lungs. However, specialist radiologists are
required to analyze such radiography images, and they might only sometimes be available.
Therefore, there is an urgent need for an automated system that can analyze radiography
images and lessen the workload of radiologists. In this case, neural-network-based X-ray
screening is assumed to be a promising technique to test COVID-19 in asymptomatic
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patients [64,65]. The leading interest in developing neural-network-based techniques
for COVID-19 detection led to the development of many state-of-the-art neural network
models to enhance COVID-19 detection accuracy [11,66–68]. Therefore, we provide a
comprehensive review of existing neural network models to investigate the working of
existing models in terms of their achievements and limitations provided in Table 1.

4.1. Decompose, Transfer, and Compose (DeTraC)

In [69], the authors present a deep CNN model (DeTraC) that indexes COVID-19 chest
X-ray images. DeTraC can compact any abnormalities in the image dataset using a class
decomposition mechanism. The DeTraC model consists of three phases. In the first phase,
a backbone pre-trained CNN model of DeTraC is trained to fetch the deep local features of
every image. In the second phase, a sophisticated gradient descent optimization process is
used for training. In the last phase, the class composition layer is utilized to improve the
final classification of images. The DeTraC model is trained and tested using a combination
of two datasets (80 chest X-ray (CXR) images for regular patients and 116 for COVID-19
patients). The experimental results in [70] show that the DeTraC model exhibits a good
accuracy of 93.1% (with a sensitivity of 100%) for identifying COVID-19 X-ray images from
normal and severe acute respiratory syndrome cases. However, the small dataset (size)
used for training and testing the model degraded its performance in complex scenarios.

4.2. COVID-Net

Recently, Want et al. used COVID-Net, a deep CNN model, to classify chest X-ray
images into regular and COVID-19-infected patients [71]. To build COVID-Net, the human-
driven principled network design prototyping is integrated with machine-driven design
consideration to make a personalized network design for recognizing COVID-19 cases
from chest radiography images. The authors of [72] used the COVIDx dataset, which
comprises 13,975 chest radiography images, to train the proposed COVID-Net model.
In [73], a built-in ResNet50 CNN model was first trained and tested on the COVIDx dataset,
which achieved a test accuracy of 90.6%. Furthermore, the proposed COVID-Net model
was then introduced and tested on the COVIDx dataset, which attained a test accuracy of
93.3%, indicating better performance than ResNet50 on the same dataset. The accuracy of
COVID-Net can further be improved by different data augmentation techniques, utilizing
network layers, and increasing the dataset size.

4.3. Coro-Net

The authors in [74] propose another deep CNN model, Coro-Net, to detect COVID-
19 infection from chest X-ray images automatically. The foundation of Coro-Net is on
Xception architecture, which is pre-trained on ImageNet and then trained on a combined
dataset prepared using two publicly available datasets. The dataset used to train Coro-Net
comprises 1300 images with an overall accuracy of 89.6%. Although Coro-Net shows
promising results on a small dataset, its efficiency can be increased using a large dataset
and minimum data preprocessing.

4.4. OptCoNet

The authors in [75] propose an optimized CNN for an automatic diagnosis of COVID-
19 (OptCoNet). The OptCoNet building blocks have enhanced feature extraction and
classification modules, and it uses a grey wolf optimizer (GWO) algorithm to optimize the
hyperparameters to train the CNN layers. OptCoNet is trained using the datasets collected
from two open-source repositories, comprising 2700 images with 900 COVID-19-infected
patients’ images and 1800 non-COVID-19 images. The results show that OptCoNet has
promising results with an average accuracy of 97.78%. Nevertheless, the limited dataset
used to train OptCoNet may lead to the inefficiency of the model.



Bioengineering 2023, 10, 850 11 of 28

4.5. COVID-MTNet

In [76], the authors present a deep learning neural network model called COVID-
MTNet that uses multitask deep learning to detect COVID-19 from X-ray images. COVID-
MTNet uses multiple models for different tasks, such as the classification model for COVID-
19 detection and the segmentation model for region of interest (ROI) detection. Furthermore,
the recurrent, residual neural network (RRCNN) model performs the COVID-19 detection
task, and the NABLA-N network executes the infected region segmentation from X-ray and
CT images. The dataset used to train the model comprises 5216 image samples. COVID-
MTNet has shown 87.26% testing accuracy, which indicates good efficiency and reliability.
However, data samples may be increased to validate the model’s robustness and accuracy.

4.6. CovNet30

Another CNN-based model for automatically diagnosing COVID-19 from chest X-ray
images is presented in [77]. During the training, several submodels are obtained from
the Visual Geometry Group, composed of 19 layers, 16 convolutional layers, 3 fully con-
nected layers, 5 MaxPooling layers, and 1 softmax layer to build a 30-layered CNN model
(CovNet30), and the resulting submodels are arranged together using logistic regression.
The CovNet30 model categorizes chest X-ray images into COVID-19, regular, and pneu-
monia classes and uses the COVID-19 CXR dataset to train the model. Their COVID-19
CXR dataset consists of 2764 chest X-ray images collected from three open-source data
repositories, and it has achieved an accuracy of 92.74% for the classification of X-ray images.

4.7. COVIDPEN

In [78], the authors propose a COVID-19 detection technique called COVIDPEN,
which uses chest X-rays and CT scans. COVIDPEN utilizes a transfer learning technique
to identify COVID-19 patients. The dataset used to train the model comprises 746 image
samples. COVIDPEN achieved an accuracy of 96% on the chest X-ray image dataset for
the detection of COVID-19. Nevertheless, COVIDPEN also shows 96% accuracy only for a
small dataset.

4.8. PDCOVIDNet

Another CNN model, Parallel-Dilated COVIDNet (PDCOVIDNet), is proposed in [79]
for COVID-19 identification from chest X-ray images. PDCOVIDNet is trained on a dataset
comprising 2905 chest X-ray images (COVID-19 cases and healthy controls). The proposed
model achieved an average accuracy of 96.58%, indicating the high reliability of PDCOVID-
Net. However, the dataset used to train and test the model is very small, and PDCOVIDNet
will likely exhibit degradation in robustness and efficiency for larger datasets.

4.9. U-Net

In [80], a novel deep learning model was trained on chest X-ray images using U-
Net architecture to detect COVID-19. The dataset used to evaluate the model comprises
1000 chest X-ray images comprising 552 normal images, while 448 are COVID-19 affected.
Moreover, U-Net has achieved an overall accuracy of 94.10%. However, it shows poor
performance for larger real-time datasets.

4.10. CapsNet

The authors in [81] present a novel ANN called CapsNet for identifying COVID-19
disease using chest X-ray images with capsule networks. Capsule networks preserve objects’
spots and possessions in the image and model their relationships orderly to overcome the
pooling layer issues of feature extraction (i.e., missing small features during feature passing
to the next layer). Unfortunately, CapsNet also used a small dataset of 1050 images to train
the model, and its performance may degrade for a larger dataset.
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Table 1. CNN models for COVID-19 detection.

Ref. Model Dataset Image Type Accuracy Comments

[66]
DeTraC deep
convolutional
neural network

80 negative
105 positive

Chest X-ray
images 93.1%

This model produces a significant performance
on chest radiography images. However, dataset
samples are too small to make perception
for its performance over a large dataset
in an ideal condition.

[74] Coro-Net deep
neural network

310 negative
330 positive

Chest X-ray
images 90%

The number of samples is not
up to the mark to judge the model
performance in a real-time environment.
Although accuracy seems good,
there are many chances of model
overfitting in this case.

[75]
OptCoNet optimized
convolutional
neural network

1800 negative
900 positive

Chest X-ray
images 97.78%

This model achieved significant accuracy. However,
the dataset is average in size and cannot be
considered ideal for complying
the model for real-time analysis and
set as an example.

[76]
COVID MTNet
deep learning
model

1341 negative
3875 positive

Chest X-ray
and CT
images

84.76%

The number of positive samples
is relatively higher than the negative,
, which may lead to an unusual behaviour model.
Moreover, the model achieved an
average accuracy, which may have high chances for
underfitting of the model.

[79] PDCOVIDNet
parallel-dilated CNN

1341 negative
1564 Positive

Chest X-ray
images 96.58% The model achieved good accuracy

on an average size of the dataset.

[80]
U-Net
a novel deep
learning model

552 negative
448 positive

Chest X-ray
images 94.10%

This model acquires high
accuracy on a small dataset,
which needs to be better for a reliable
model, and results may mislead in
critical situations.

[81]
CapsNet
a novel
ANN model

1050 negative
231 positive

Chest X-ray
images 97.24%

Again the model achieved higher
accuracy on a small dataset. Consequently,
model overfitting can be expected.

[82]
COVID-Net deep
convolutional
neural network

13,604 negative
2972 positive

Chest X-ray
images 92.4%

This model seems quite promising
with good accuracy results and
a significant number of samples. However,
a large set of negative samples
can influence the results.

[83]
CovNet30
30-layered
CNN model

1139 negative
1625 Positive

Chest X-ray
images 92.74%

The model achieves good accuracy, but
the number of samples is smaller
compared with the performance of
other state-of-the-art models
trained on a large number of samples.

[84]
COVIDPEN pruned
efficiently
net-based model

180 negative
566 positive

Chest X-ray
and CT
images

96%

Due to the significantly small dataset
size, despite achieving high accuracy,
the reliability of the results is
compromised.

[85]

EMCNet CNN
and ensemble of
machine learning
classifiers

2300 negative
2300 positive

Chest X-ray
images 98.91%

The model performed significantly
well on a balanced dataset and produced
high-accuracy results. However,
increasing the data size may lead
to a slight performance decrease.

[86]
Four-layered CNN
model for analyzing
CT images

3250 negative
5776 positive

Chest X-ray
and CT
images

97.8%

The model performed significantly
well on a relatively large dataset.
However, time and space complexity
may vary over time, and several
training hyperparameters are also high, which may
cause the slow performance of a model in
the future with more large datasets.

ConXNet
proposed CNN
model

10,192 negative
3616 Positive

Chest X-ray
images 97.8%

A proposed model in the paper
acquires a significantly good accuracy
on a relatively large dataset as compared with
other models. Some of the models
also achieved good results close
to the proposed model.
However, this model is trained
on a fewer number of hyperparameters
by using different techniques, such as
batch processing and dropout layers,
to overcome overfitting of the model as well.
Therefore, the results of the model
are reliable but can be improved in
the future with more samples.
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5. Proposed ConXNet Model for COVID-19 Detection

In the previous section, we examined various CNN models for COVID-19 detection.
We introduce our new ConXNet model, which offers enhanced accuracy and precision.
This model has been trained on diverse datasets of chest X-ray images. The following
section presents this novel ConXNet model for COVID-19 detection.

5.1. Dataset

As mentioned earlier, we have used several datasets to evaluate the performance of
the ConXNet model. The dataset comprises 13,808 chest X-ray images with 3616 COVID-19
data and 10,192 average or non-COVID-19 data [87]. Furthermore, to ensure a robust
evaluation of our proposed model, we conducted testing using diverse and representative
datasets obtained from publicly available sources. These datasets encompass a wide range
of authentic clinical scenarios to reflect the challenges encountered in medical imaging.
Specifically, we gathered a comprehensive collection of 2473 chest X-ray (CXR) images from
the podcast dataset, which provides a rich and diverse set of patient cases. In addition, we
incorporated 183 CXR images obtained from a renowned German medical school, further
enhancing the applicability of our evaluation. To further expand the scope and diversity
of our assessment, we incorporated 559 CXR images sourced from Kaggle, a popular
platform for data science competitions. These images were selected to encompass various
pathologies and variations encountered in routine clinical practice. Lastly, we augmented
our dataset with an additional 400 CXR images obtained from a reliable source on GitHub.
This inclusion allows us to address a more comprehensive array of clinical scenarios
and strengthen the validity of the evaluation. By leveraging these diverse and authentic
datasets [88–94], we aimed to thoroughly assess the performance and generalizability of
our proposed model, ensuring its reliability and applicability.

5.2. ConXNet Architecture

The ConXNet model consists of four blocks, where each block comprises a convo-
lutional layer (Conv), rectified linear unit (ReLU) (operating as an activation function),
batch normalization, and MaxPooling layer. Figure 10 represents a detailed architecture
of the proposed ConXNet model. X-ray images are fed to the first Conv layer as an input
to extract the features (edges, soft edges, blur) from the given input. Once the features
are removed, the Conv layer produces a filter matrix called a feature map as an output.
After applying different filters on the input image, ReLU is used for nonlinear operations
so that the model can learn non-negative linear values. Later on, the rectified feature map
is passed through the MaxPooling layer to fetch the most prominent element. Furthermore,
batch normalization techniques are applied to prevent the model from overfitting. Once all
the convolutional operations are performed, the output is flattened before being sent to the
fully connected dense layer to produce the final output. The last, output layer classifies
COVID-19 or normal X-ray images from our data.

Figure 10. Proposed ConXNet model for COVID-19 detection.
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5.3. Experimental Results

We have implemented the CNN model in a 64-bit Windows 10 operating system using
Python 3.6. The tensor flow framework builds and trains the proposed model using Keras
as the back end. The flowchart provided in Figure 11 deliberately explains the overall
flow diagram of our proposed model. Before fitting the model, similar images from both
classes are selected, such as 3500 for COVID images and 3500 for typical images. A total of
7000 images are used (according to the machine compatibility) for training and evaluation
of the proposed method model. Furthermore, the dataset is split into 70% (4900) images for
training and 30% (2100) images for testing purposes.

Additionally, the model is compiled using binary cross-entropy (BCE) as a loss function
for binary classification. Epochs of 100 and batch sizes 32 are used to fit the model, while
0.001 is used as a preliminary learning rate value. Finally, the Adam optimizer reduces the
error rate and automatically tunes the learning rate. It is an efficient variant of gradient
descent that prevents the model from hand-tuning the learning rate and does it by itself
more quickly and efficiently. The results show that this CNN model achieves an overall
accuracy of 97.8%, significantly promising for large datasets. Moreover, we have also
evaluated the performance of the proposed model by carrying out a real-world evaluation
test. In the following, we discuss the results of our test.

Figure 11. Flowchart of the proposed algorithm.
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5.3.1. Obtained Results for “COVID-19_Radiography_Dataset”

To effectively observe the performance of the proposed model, the dataset is divided
into training and testing with a ratio of 70% and 30%, respectively. The Tensorflow frame-
work builds and trains the proposed model using Keras as the back end. The model is
compiled using binary cross-entropy and accuracy performance metrics. Furthermore,
learning is first initialized to 0.001 preliminaries to train the model, while 100 epochs are
used with 32 batch sizes. Moreover, the error rate is optimized using the Adam optimizer
for authentic learning. Finally, three more common performance measures (accuracy, preci-
sion, and F1-score) are used to observe the proposed model’s efficiency. It is observed that
the model achieved a significant accuracy score of 97.8% with precision and an F1-score of
97.93% and 97.92%, respectively. Table 2 summarizes the results produced by the proposed
ConXNet model.

Table 2. Performance measures of ConXNet model.

Epochs Accuracy Precision F1-Measure

100 97.8% 97.93% 97.92%

5.3.2. Testing of the Proposed Scheme

After training and testing the proposed model on COVID-19_Radiography_Dataset,
we also tested the proposed scheme to evaluate the efficiency and accuracy of the model
on unseen data selected from the test dataset. The real-world evaluation experiment gives
random images as input to classify whether the images belong to COVID-positive or
negative patients. The chest X-ray image is passed to the network as input, and then the
image is preprocessed to match the target size input for the proposed model. Moreover,
the proposed model predicts the probabilities of the given image, whether it belongs to the
COVID class or normal class, with an approximate predicted percentage. The heat map
effect is used to visualize the area in the image affected by the disease. These experiments
give us a valuable view to evaluate the efficiency of the proposed model in the real world.
Figure 12a Illustrates an original X-ray image of a COVID-19 patient, and Figure 12b shows
the results after detecting images with heat map highlights of infected regions. Meanwhile,
Figure 12c illustrates the original image of the typical patient, and Figure 12d shows after
evaluation of the results. To facilitate the reproducibility of our work, and we have made the
complete code and trained model available online (https://github.com/azeemchaudhary/
CovidXNet/blob/main/Covid_Detection_Model.ipynb (20 May 2023)).

(a) (b) (c) (d)

Figure 12. Images used to evaluate the model accuracy with their outputs (a). Original image of
COVID-19 patient (b). Heat map view of COVID-infected region. (c) Original image of the normal
patient (d). Heat map view of the normal image.

6. CNN Models for Detection of Other Diseases

CNN models play a crucial role in Alzheimer’s, cancer, and retinal diseases by ana-
lyzing medical images and extracting patterns for accurate diagnosis and treatment. In

https://github.com/azeemchaudhary/CovidXNet/blob/main/Covid_Detection_Model.ipynb
https://github.com/azeemchaudhary/CovidXNet/blob/main/Covid_Detection_Model.ipynb
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Alzheimer’s, CNN models analyze brain imaging data to identify abnormalities, track
disease progression, and predict outcomes. For cancer, CNN models aid in tumor detection,
classification, and staging. In retinal diseases, CNN models diagnose conditions such as di-
abetic retinopathy and age-related macular degeneration by analyzing retinal images. With
their ability to learn complex patterns, CNN models significantly contribute to improving
medical imaging analysis, enabling informed decision-making by healthcare professionals
and enhancing patient outcomes. This section briefly discusses the role of CNN models
in these diseases to highlight their global impact, diagnostic challenges, the complexity of
medical images, and research significance, as accurate diagnosis is crucial for these diseases,
which profoundly impact health.

6.1. Alzheimer’s Disease Detection

Several studies have investigated using CNN to improve Alzheimer’s disease detec-
tion and diagnosis. For instance, in [95], the authors propose an automated and reliable
deep learning model for detecting and identifying Alzheimer’s disease using magnetic
resonance imaging (MRI) and positron emission tomography (PET) that achieved 94.48%
average accuracy. In another work [96], an ensemble deep CNN model was developed
to detect Alzheimer’s disease using the Open Access Series of Imaging Studies (OASIS)
dataset that acquired 93.18% accuracy. In [97], a CNN model developed for Alzheimer’s
disease detection uses a brain imaging structured dataset comprising brain MRI images that
achieved 96% accuracy, indicating excellent efficiency compared with other state-of-the-art
models. In [98], a four-way CNN-based classifier was used that attains 98.8% accuracy by
classifying four classes, including Alzheimer’s disease, mild cognitive impairment, late
mild cognitive impairment, and no disease using the ADNI dataset. Recently, Alzheimer’s
disease has been detected by introducing transfer learning from a dataset of 2D images to
3D CNNs to enable early diagnosis of Alzheimer’s disease using MRI imaging datasets [99].

6.2. Cancer Detection

Deep learning methods, such as CNN, can extract hierarchical features from image
data without manual selection and are successfully applied in cancer tissue detection. For
example, early breast cancer detection, diagnosis, and treatment are possible due to a
computer-aided diagnostic (CAD) system based on mammograms analyzed by CNN-based
classifiers. In [100], a CAD approach based on in-depth features detected breast cancer
using a mammogram image dataset, achieving 81.75% accuracy. In [101], a novel CNN-
based model detected lung cancer using computed tomography (CT) scan images and
achieved 86.6% accuracy. In [102], a novel CNN-based model is proposed for detecting
prostate cancer using the diffusion-weighted magnetic resonance imaging (DWI) dataset,
which acquired 84% accuracy. In [103], a fully convolutional network (FCN) was introduced
to detect liver cancer using CT scan images, achieving 86% accuracy using a threefold
cross-validation technique.

Besides breast cancer detection, CNN has also shown great potential for brain tumor
detection, the most frequent and severe type of cancer with a life expectancy of only a
few months in the most advanced stages. Therefore, treatment planning for brain tumors
is essential in improving patients’ quality of life. In [104], a CNN classification model
is proposed for automatic brain tumor detection using brain MRI image datasets. The
experimental results show that the proposed model acquired 97.5% accuracy. Another CNN
model presented in [105] classifies images for brain tumor detection and achieves 97.87%
accuracy. The CNN model presented in [106] performs the classification and segmentation
of brain tumors using the MRI image dataset and achieves 94.6% accuracy. In [107], a
CNN-based model extracted brain cancers from MRI images with an overall accuracy of
96%. A CNN model for detecting benign tumors was recently introduced in [108] that was
trained and tested using BraTS2013 and WBA datasets and delivered 96–99% accuracy.
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6.3. Retinal Disease Detection

Optical coherence tomography (OCT) imaging makes accurate and reliable diagnoses
of retinal disorders, which is critical for clinical relevance. In [109], the authors introduced
a novel CNN model for accurate detection and classification into normal, drusen macular
degeneration, and diabetic macular edema using an optical coherence tomography (OCT)
imaging dataset. Moreover, the Kuan filter is used to input OCT pictures first to reduce
intrinsic speckle noise. Furthermore, hyperparameter optimization techniques are used
to optimize the CNN network, and K-fold validation is performed to ensure complete
utilization of the dataset. As a result, the presented model achieved 95.7% accuracy.
Another CNN model presented in [110] accurately detects retinal blood vessels. Recently,
in [111], the CNN-based approach localizes, identifies, and quantifies abnormal features in
the eye retina using the OCT image dataset and achieves an accuracy of 95.8%. In [112],
OCT imaging of the retinas was analyzed using three different CNN models comprising
five, seven, and nine layers to identify the various retinal layers, extract usable information,
detect new aberrations, and predict several eye abnormalities. Furthermore, the CNN
model recently developed in [113] classifies retinal disease using OCT images and achieves
98.73% accuracy. Table 3 summarizes the contributions of the CNN models for other
diseases’ detection.

Table 3. Summary of the contributions of CNN models for other diseases’ detection.

Diseases Ref. Model Dataset Accuracy

Alzheimer

[114] Deep CNN for Alzheimer’s disease detection Total 615 MRI scan images 94.48%

[115] An ensemble of deep CNN OASIS dataset comprises 416 MRI scan images 93.18%

[116] CNN for classification of Alzheimer’s disease ADNI dataset comprises a total of 1455 MRI
scan images 96%

[117] A Deep CNN based multiclass
classification of Alzheimer’s disease Dataset comprises of total 355 MRI scans images 98.8%

Cancer

[118] Breast cancer detection using extreme learning machine
based on feature fusion with CNN deep features Total 400 mammography images 81.75%

[119] Lung cancer detection and class-
ification with 3D CNN

Kaggle Data Science Bowl (DSB) comprises a
total of 1397 MRI scan images 86.6%

[120] Prostate cancer detection using
deep CNN

Diffusion-weighted magnetic resonance imaging
dataset comprises a total of 427 images 84%

[121] Fully CNN for liver segmentation and lesions detection Dataset comprises of total 88 CT scan images 86%

[122] Brain tumor classification using CNN Radiopaedia and brain tumor image segmentation
benchmark 2015 datasets are used 97.5%

[123] Brain tumor detection using CNN BRATS dataset comprises 217 MRI images 97.87%

[124] Brain tumor classification and segmentation using faster
R-CNN A total of 218 MRI images are used 94.6%

[125] Brain tumor classification in magnetic resonance images
using deep learning and wavelet transform MRI image dataset 96%

[126] Deriving tumor detection models using CNN from MRI
of human brain scans BraTS2013 dataset and WBA dataset are used 96-99%

Retinal

[127] Deep CNN framework for retinal disease diagnosis OCT image dataset containing a total of 12,000 images 95.7%

[111] Detection of retinal abnormalities using CNN Dataset comprises a total of 1110 fundus images 95.8%

[112] DL-CNN-based approach diagnosis of retinal diseases OCT image dataset comprises a total of 84,495 images 96.5%

[113] Retinal disease classification using CNN algorithm OCT image dataset comprises a total of 108,312 images 98.73%

7. Discussion, Opportunities, and Open Issues
7.1. Discussion

Applying ANNs and deep learning in COVID-19 detection has shown remarkable
potential in improving diagnostics and patient care. These models have demonstrated
high accuracy and speed in analyzing medical images, allowing for rapid identification
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of COVID-19 cases. However, it is crucial to acknowledge the limitations and challenges
associated with these techniques. The interpretability of deep learning models remains
a significant concern, as their decision-making process is often considered a “black box”.
Efforts should be focused on developing explainable AI approaches that provide insights
into the features and patterns driving the model’s predictions. This would enhance the
trust and acceptance of AI-based systems in clinical practice.

Another critical aspect is the ethical use of AI in healthcare. Privacy concerns, data
security, and potential biases in AI algorithms must be carefully addressed. Healthcare
professionals and AI experts should collaborate to develop guidelines and regulations that
ensure patient privacy, informed consent, and appropriate deployment of AI technologies.
Transparency and accountability in AI decision-making processes are essential for building
public trust and ensuring equitable access to healthcare services. It is also crucial to
mitigate biases in training data that could result in COVID-19 and other disease detection
and treatment disparities.

Collaboration between interdisciplinary teams is vital to advancing the field of AI in
COVID-19 detection. Close cooperation between clinicians, researchers, data scientists,
and policymakers is necessary to leverage the potential of AI in a responsible and effective
manner. Combining clinical expertise with AI capabilities, we can develop models that
improve diagnostic accuracy and provide valuable clinical insights and decision support.
Multidisciplinary collaborations can also help address challenges, such as data sharing,
standardization of protocols, and validation of AI models across diverse healthcare settings.

7.2. Opportunities

The presented review and the proposed model in this paper can serve as a guideline
and framework for designing and implementing AI-based COVID-19 and other disease de-
tection systems. It provides a comprehensive overview of the various phases of developing
such systems and the key considerations and specifications for each phase. By following
the reference model, researchers and developers can ensure a systematic and structured
approach to the design and implementation process.

A critical aspect of the reference model is the inclusion of performance measures.
These measures provide a quantitative assessment of the effectiveness and reliability of
AI-based COVID-19 detection systems. Examples of performance measures may include
sensitivity, specificity, accuracy, precision, recall, and F1-score. By defining and evaluating
these measures, researchers can assess the performance of their models and compare them
with existing approaches, enabling a fair and objective evaluation.

7.2.1. Integration of AI with Internet of Healthcare Things (IoHT)

Integrating AI algorithms with the IoHT, such as wearable sensors and remote moni-
toring systems, presents real-time data collection and analysis opportunities. By leveraging
IoT data; AI models can continuously monitor COVID-19 patients, enabling early detection
of deterioration and timely intervention. This integration also opens avenues for person-
alized medicine and remote patient management, enhancing healthcare accessibility and
reducing the burden on healthcare systems. Integrating COVID detection technologies with
current technologies, such as the Internet of Healthcare Things (IoHT), presents numerous
research opportunities and challenges. One aspect to consider is the tradeoff between
learning cost and performance. Deep learning, while achieving good predictive scores, can
be computationally expensive. This raises questions about whether opting for weak learn-
ers with good features or complex learners with raw data is more beneficial. A potential
approach could involve leveraging learned features offline and using weak learners online
for real-time decision-making.

Additionally, latency is critical in disease detection systems, as timely data processing
is essential for accurate and efficient diagnosis. This calls for investigations into optimizing
the tradeoff between learning cost and latency. Techniques such as edge computing can be
explored, where data preprocessing and initial feature extraction are performed at the edge
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devices, reducing the need for transmitting large amounts of data to the cloud. This can
help mitigate latency issues and improve real-time decision-making.

In the context of communications, the issue of latency and data processing delays
becomes even more relevant. Integrating COVID detection systems with communication
networks requires careful consideration of network architecture, protocols, and transmis-
sion capabilities. Techniques such as edge caching and distributed processing can be
explored to minimize latency and improve the overall system performance.

7.2.2. Federated Learning for Privacy-Preserving Analysis

Federated learning allows collaborative model training on distributed data sources
while preserving privacy. This approach can be beneficial in COVID-19, where data privacy
is crucial. Researchers can leverage data from multiple institutions without compromising
patient privacy by developing federated learning frameworks. This collective analysis can
lead to improved models with enhanced generalizability and robustness.

7.2.3. Integration of AI in Telemedicine Platforms

Telemedicine has witnessed significant growth during the COVID-19 pandemic. In-
tegrating AI capabilities into telemedicine platforms can enhance remote diagnostics and
triaging. AI models can assist healthcare providers in making accurate and timely de-
cisions based on patient data and medical images. Combining telemedicine and AI can
extend healthcare services to remote areas, improving access to quality care and reducing
healthcare disparities.

7.3. Open Issues

Research, collaboration, and ethical considerations are needed in AI-based COVID-19
detection. Addressing these issues will improve the accuracy and interpretability of AI
models and ensure their responsible integration into healthcare systems. By focusing on
standardization, interpretability, ethics, and practical integration, we can unlock the full
potential of AI in combating the COVID-19 pandemic and future healthcare challenges.

7.3.1. Standardization of Evaluation Metrics and Benchmark Datasets

To enable fair comparisons and promote reproducibility, it is crucial to establish stan-
dardized evaluation metrics and benchmark datasets for COVID-19 detection models. Con-
sensus on evaluation protocols, such as sensitivity, specificity, and area under the receiver
operating characteristic curve (AUC-ROC), will facilitate meaningful comparisons of differ-
ent AI models. Additionally, developing diverse and representative benchmark datasets
will ensure the generalizability of models across other populations and imaging modalities.

7.3.2. Addressing the Challenges of Model Interpretability and Explainability

Enhancing the interpretability of AI models is vital for gaining the trust of healthcare
professionals and end users. Methods for interpreting and explaining deep learning models’
decisions, such as attention mechanisms, saliency mapping, and rule-based explanations,
must be further explored. By understanding the reasoning behind AI predictions, clinicians
can make more informed decisions and identify potential limitations or biases in the
models. Research efforts should focus on developing interpretable AI models that can
provide transparent and understandable insights.

7.3.3. Ethical Considerations in AI deployment

The ethical implications of AI in healthcare, including privacy, bias, and transparency,
must be addressed. Robust guidelines and regulations should be developed to ensure the
responsible use of AI technologies in COVID-19 detection. Ethical frameworks should
prioritize patient privacy, informed consent, and equitable access to healthcare resources.
Additionally, efforts should be made to address potential biases in training data that could
result in disparities in COVID-19 diagnosis and treatment. Discussions and collaborations
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between healthcare professionals, policymakers, and AI researchers are essential to develop
ethical guidelines that align with societal values.

7.3.4. Integration of AI Models into Clinical Workflows

Successful integration of AI models into clinical practice requires addressing practical
challenges. User-friendly interfaces, seamless integration with existing healthcare systems,
and validation of AI models in diverse clinical settings are crucial steps. Collaboration
between AI researchers and healthcare providers is essential to understand the clinical
needs and adapt AI technologies accordingly. Moreover, regulatory considerations and
compliance with healthcare standards must be considered to ensure AI’s safe and effec-
tive use in real-world healthcare environments. Ongoing research and collaboration are
needed to overcome these challenges and enable the practical deployment of AI models in
clinical workflows.

8. Future Research Directions

In this section, we discuss future research directions and challenges, including algo-
rithms complexity, inadequate available data, security and privacy issues, and biosensing
integration with ANNs that require considerable attention for enhancing the scope of
ANNs for medical treatment and diagnosis.

8.1. Complexity

The complexity of neural-network-based disease detection and diagnosis models de-
pends on the computational time and number of samples used to train the network. Since,
in medical imagining applications, the accurate detection of disease is more critical, the
analysis complexity (such as time and computational complexities) is compromised in most
cases [128]. However, in the future, neural-network-based disease detection applications
can introduce different methods to address the complex issue of preventing excessive
resource consumption without degrading accuracy. For example, 1D and 2D filters can
be used at the feature-extraction image-restoration layer with high-resolution images to
reduce the complexity [129]. Furthermore, data transformation techniques, including data
augmentation [130], variable standardization [131], and proper initialization of ANN [132],
can also play a significant role in reducing complexity since these techniques use limited
data samples to achieve better results without compromising on accuracy. Moreover, lim-
iting the number of neurons during model training [133], dropout layer technique [134],
network pruning techniques [135], normalization techniques, transfer learning techniques,
and brute-force exploration approach [136] can also be used to minimize complexity.

8.2. Algorithm Selection

Another challenging issue for neural-network-based infectious disease detection is the
selection of the proper algorithm. ANN algorithms are generally categorized as supervised
learning and unsupervised learning, compromising of various algorithms, including deci-
sion trees (DT) [137], naïve Bayes (NB) [138], support vector machine (SVM) [139], random
forest (RF) [140], k-nearest neighbour (KNN) [139], and k-means [141] for executing differ-
ent operations. Moreover, algorithm selection based on the dataset also plays an essential
role in achieving the desired results.

8.3. Deficient Training Data

In addition to algorithm selection, another major issue is obtaining valuable informa-
tion from the raw data. The ANNs are primarily applied to large datasets and composite
models that need extensive training to obtain the required training effects [142]. However,
acquiring adequate training data is challenging due to large data unavailability in numer-
ous domains, such as disease detection using image classification. Thus, the need for more
available data for training and evaluating the parameters in the neural networks results in
network inefficiency and overfitting. For instance, blood pressure measurements in most
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of the COVID-19 critical patients are erroneous and unstable, which limits the amount of
accurate data.

8.4. Privacy and Security

One of the key issues with using ANNs for infectious disease detection is privacy and
security concerns. Nevertheless, [143] introduced several methods to attain privacy from
the "trusted" authority, attackers, and involved entities. Recently, for COVID-19 location-
aware apps, a polling mechanism is used to ensure the privacy of the patient infected with
COVID-19 from the noninfected patient [144]. This allows noninfected patients to poll the
health authority frequently to check whether they have been in close contact with infected
patients. Moreover, privacy in the healthcare domain can also be achieved using private
messaging systems [145], private set intersection protocols [146], and memo verification
methods using cryptography [147]. However, these protocols are computationally intensive,
requiring a tradeoff between security and computational efficiency [148]. Therefore, in the
future low computational techniques, such as blockchain [149], cloud computing [150], and
deep belief neural networks (DBNN), [151] requires more focus to ensure the required level
of privacy and security.

8.5. Integration of Biosensing and ANN

The tremendous progress in nanotechnology over the past few years has also ad-
vanced the development of biosensors for medical applications [152,153]. Biosensors are
analytical tools that can observe cellular activity at the nanoscale and identify specific
biological strains at the cellular level [22,154]. To overcome the difficulties of intelligent
information identification in a biological medium for contagious disease detection, re-
search communities are concentrating on combining AI cognition techniques, such as
metaheuristic algorithms and ANN models with biosensing applications [155,156]. More-
over, ANN-integrated biosensing applications can also considerably increase the accuracy
and reliability of disease diagnosis as biosensors can generate time-series data that can be
trained and tested employing cutting-edge NNs [157].

9. Conclusions

This paper thoroughly reviewed the advances in infectious disease detection and
diagnostics by ANNs. The detailed discussions reveal that ANN’s ability to solve complex
problems has a huge potential to improve disease detection and diagnostic accuracy,
leading to advanced patient care and treatment. Besides reviewing the existing ANN-
based disease detection models, we propose a new model, ConXNet, which considerably
enhances the detection accuracy of COVID-19 patients with low hyperparameters and
lesser time complexity. The extensive testing and training of ConXNet using different
available datasets show that ConXNet can detect COVID-19 patients significantly well.
Finally, we presented the challenges linked to disease prediction using neural networks and
future directions. Because this work is mainly focused on the ANN-based disease detection
models, it will be interesting to investigate the potential of ANN for targeted drug delivery
and advanced surgical procedure in the future. Moreover, we also suggest testing different
evolving techniques, such as transfer learning and hybrid schemes, to enhance detection
accuracy and precision in medical diagnosis.
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DeTraC Decompose, Transfer, and Compose
DT decision tree
FNN feed-forward neural network
GRU gated recurrent unit
KNN k-nearest neighbor
LSTM long short-term memory
ML machine learning
MLP multilayer perceptron
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NN neural network
PCR polymerase chain reaction
PNN probabilistic neural networks
RBF radial basis function
ReLU rectified linear unit
RF random forest
RRCNN recurrent, residual neural network
ROI region of interest
RNN recurrent neural network
SVM support vector machine
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14. Pilarz, J.; Polishuk, I.; Chorążewski, M. Prediction of sound velocity for selected ionic liquids using a multilayer feed-forward
neural network. J. Mol. Liq. 2022, 347, 118376. [CrossRef]

15. Liu, Z.; Tahir, G.A.; Masuyama, N.; Kakudi, H.A.; Fu, Z.; Pasupa, K. Error-output recurrent multi-layer Kernel Reservoir Network
for electricity load time series forecasting. Eng. Appl. Artif. Intell. 2023, 117, 105611. [CrossRef]

16. Cheng, K.; Li, Z.; He, Y.; Guo, Q.; Lu, Y.; Gu, S.; Wu, H. Potential use of artificial intelligence in infectious disease: Take ChatGPT
as an example. Ann. Biomed. Eng. 2023, 51, 1130–1135. [CrossRef]

17. Mishra, S.; Kumar, R.; Tiwari, S.K.; Ranjan, P. Machine learning approaches in the diagnosis of infectious diseases: A review. Bull.
Electr. Eng. Inform. 2022, 11, 3509–3520. [CrossRef]

18. Ghaffari, M.; Monneret, A.; Hammon, H.; Post, C.; Müller, U.; Frieten, D.; Gerbert, C.; Dusel, G.; Koch, C. Deep convolutional
neural networks for the detection of diarrhea and respiratory disease in preweaning dairy calves using data from automated milk
feeders. J. Dairy Sci. 2022, 105, 9882–9895. [CrossRef]

19. An, L.; Peng, K.; Yang, X.; Huang, P.; Luo, Y.; Feng, P.; Wei, B. E-TBNet: Light Deep Neural Network for automatic detection of
tuberculosis with X-ray DR Imaging. Sensors 2022, 22, 821. [CrossRef]

20. Panja, M.; Chakraborty, T.; Nadim, S.S.; Ghosh, I.; Kumar, U.; Liu, N. An ensemble neural network approach to forecast Dengue
outbreak based on climatic condition. Chaos Solitons Fractals 2023, 167, 113124. [CrossRef]

21. Yang, L.; Wang, S.H.; Zhang, Y.D. EDNC: Ensemble deep neural network for COVID-19 recognition. Tomography 2022, 8, 869–890.
[CrossRef]

22. Bhatti, D.M.S.; Khalil, R.A.; Saeed, N.; Nam, H. Detection and Spatial Correlation Analysis of infectious Diseases using wireless
body area network under Imperfect wireless channel. Big Data 2022, 10, 54–64. [CrossRef]

23. Shen, Y.; Luo, Z.; Xu, M.; Liang, Z.; Fan, X.; Lu, X. Automated detection for Retinopathy of Prematurity with knowledge distilling
from multi-stream fusion network. Knowl.-Based Syst. 2023, 269, 110461. [CrossRef]

24. Abiodun, K.M.; Awotunde, J.B.; Aremu, D.R.; Adeniyi, E.A. Explainable AI for fighting COVID-19 pandemic: Opportunities,
challenges, and future prospects. In Computational Intelligence for COVID-19 and Future Pandemics: Emerging Applications and
Strategies; Springer: Singapore, 2022; pp. 315–332.

25. Ghrabli, S.; Elgendi, M.; Menon, C. Challenges and opportunities of deep learning for cough-based COVID-19 diagnosis: A
scoping review. Diagnostics 2022, 12, 2142. [CrossRef] [PubMed]

26. MV, M.K.; Atalla, S.; Almuraqab, N.; Moonesar, I.A. Detection of COVID-19 using deep learning techniques and cost-effectiveness
evaluation: A survey. Front. Artif. Intell. 2022, 5, 912022.

27. Khattab, R.; Abdelmaksoud, I.R.; Abdelrazek, S. Deep Convolutional Neural Networks for Detecting COVID-19 Using Medical
Images: A Survey. New Gener. Comput. 2023, 41, 343–400. [CrossRef]

28. Malo, D.C.; Rahman, M.M.; Mahbub, J.; Khan, M.M. Skin Cancer Detection using Convolutional Neural Network. In Proceedings
of the 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 26–29
January 2022; pp. 169–176.

29. Thaseen, M.; UmaMaheswaran, S.; Naik, D.A.; Aware, M.S.; Pundhir, P.; Pant, B. A Review of Using CNN Approach for Lung
Cancer Detection Through Machine Learning. In Proceedings of the 2022 2nd International Conference on Advance Computing
and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 28–29 April 2022; pp. 1236–1239. [CrossRef]

30. Aizaz, Z.; Khare, K.; Khursheed, A.; Tirmizi, A. Pix2Pix Generative adversarial Networks (GAN) for breast cancer detection.
In Proceedings of the 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies
(IMPACT), Aligarh, India, 26–27 November 2022; pp. 1–5. [CrossRef]

31. Ahmed, K.M.T.; Rahman, Z.; Shaikh, R.; Hossain, S.I. Malaria Parasite Detection Using CNN-Based Ensemble Technique on Blood
Smear Images. In Proceedings of the 2023 International Conference on Electrical, Computer and Communication Engineering
(ECCE), Chittagong, Bangladesh, 23–25 February 2023; pp. 1–4. [CrossRef]

32. Singh, Y.P.; Lobiyal, D.K. Brain Tumor Classification Using Deep Transfer Learning CNN Models. In Proceedings of the 2022 4th
International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 21–23 September 2022;
pp. 891–897. [CrossRef]

33. Kumar, Y.; Koul, A.; Singla, R.; Ijaz, M.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing
framework and future research agenda. J. Ambient. Intell. Humaniz. Comput. 2022, 14, 8459–8486. [CrossRef]

34. Mishra, A.; Khan, M.; Khan, W.; Khan, M.Z.; Srivastava, N.K. A Comparative Study on Data Mining Approach Using Machine
Learning Techniques: Prediction Perspective. In Pervasive Healthcare: A Compendium of Critical Factors for Success; Springer: Cham,
Switzerland, 2022; pp. 153–165.

http://dx.doi.org/10.1109/ACCESS.2020.3010342
http://dx.doi.org/10.1016/j.molliq.2021.118376
http://dx.doi.org/10.1016/j.engappai.2022.105611
http://dx.doi.org/10.1007/s10439-023-03203-3
http://dx.doi.org/10.11591/eei.v11i6.4225
http://dx.doi.org/10.3168/jds.2021-21547
http://dx.doi.org/10.3390/s22030821
http://dx.doi.org/10.1016/j.chaos.2023.113124
http://dx.doi.org/10.3390/tomography8020071
http://dx.doi.org/10.1089/big.2021.0187
http://dx.doi.org/10.1016/j.knosys.2023.110461
http://dx.doi.org/10.3390/diagnostics12092142
http://www.ncbi.nlm.nih.gov/pubmed/36140543
http://dx.doi.org/10.1007/s00354-023-00213-6
http://dx.doi.org/10.1109/ICACITE53722.2022.9823854
http://dx.doi.org/10.1109/IMPACT55510.2022.10029087
http://dx.doi.org/10.1109/ECCE57851.2023.10101524
http://dx.doi.org/10.1109/ICIRCA54612.2022.9985654
http://dx.doi.org/10.1007/s12652-021-03612-z


Bioengineering 2023, 10, 850 24 of 28

35. Kumar, S.; Singh, H. Antenna Array Pattern Synthesis Using Nature-Inspired Computational Techniques: A Review. Arch.
Comput. Methods Eng. 2023, 30, 3235–3269. [CrossRef]

36. Sharma, S.; Kumar, V. Application of genetic algorithms in healthcare: A review. In Next Generation Healthcare Informatics;
Springer: Singapore, 2022; pp. 75–86.

37. Qi, A.; Zhao, D.; Yu, F.; Heidari, A.A.; Wu, Z.; Cai, Z.; Alenezi, F.; Mansour, R.F.; Chen, H.; Chen, M. Directional mutation and
crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation. Comput. Biol. Med. 2022,
148, 105810. [CrossRef]

38. Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A
comprehensive survey. IEEE Access 2022, 10, 10031–10061. [CrossRef]

39. Kaya, E.; Gorkemli, B.; Akay, B.; Karaboga, D. A review on the studies employing artificial bee colony algorithm to solve
combinatorial optimization problems. Eng. Appl. Artif. Intell. 2022, 115, 105311. [CrossRef]

40. Mukhtar, M.; Oluwasanmi, A.; Yimen, N.; Qinxiu, Z.; Ukwuoma, C.C.; Ezurike, B.; Bamisile, O. Development and comparison of
two novel hybrid neural network models for hourly solar radiation prediction. Appl. Sci. 2022, 12, 1435. [CrossRef]

41. Li, C.; Changsheng, Z.; Liu, J.; Rong, Y. Application of neural-network hybrid models in estimating the infection functions of
nonlinear epidemic models. arXiv 2022, arXiv:2203.05018.

42. Floresta, G.; Zagni, C.; Gentile, D.; Patamia, V.; Rescifina, A. Artificial intelligence technologies for COVID-19 de novo drug
design. Int. J. Mol. Sci. 2022, 23, 3261. [CrossRef]

43. Li, H.; Zeng, N.; Wu, P.; Clawson, K. Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray
images via machine vision. Expert Syst. Appl. 2022, 207, 118029. [CrossRef]

44. Rasheed, J.; Alsubai, S. A Hybrid Deep Fused Learning Approach to Segregate Infectious Diseases. Comput. Mater. Contin. 2023,
74, 4239–4259. [CrossRef]

45. Ning, X.; Jia, L.; Wei, Y.; Li, X.A.; Chen, F. Epi-DNNs: Epidemiological priors informed deep neural networks for modeling
COVID-19 dynamics. Comput. Biol. Med. 2023, 158, 106693. [CrossRef]

46. Kathamuthu, N.D.; Subramaniam, S.; Le, Q.H.; Muthusamy, S.; Panchal, H.; Sundararajan, S.C.M.; Alrubaie, A.J.; Zahra, M.M.A.
A deep transfer learning-based convolution neural network model for COVID-19 detection using computed tomography scan
images for medical applications. Adv. Eng. Softw. 2023, 175, 103317. [CrossRef]
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