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Highlights 

� Contamination by glyphosate and its main metabolite compound can endanger key soil biota.

� Glyphosate and aminomethylphosphonic acid levels in soil show low risk to human health.

� Further efforts should be made to quantify soil pesticide levels globally.

� Further scientific efforts for environmental protection are specially needed in developing countries.

Abstract

The study presents a literature review of glyphosate (GLY) occurrence and its breakdown product, 

aminomethylphosphonic acid (AMPA), in soils worldwide, but with a specific focus on South America. In 

addition, an ecological risk approach based on the ecotoxicological endpoints for key soil biota (e.g., 

collembolans, and earthworms) assessed the impact of GLY and AMPA on these organisms. A generic 

probabilistic model for human health risk was also calculated for the different world regions. For what reports the 

risk for edaphic species and the level of pollution under the worst-case scenario, the South American continent 

was identified as the region of most concern. Nonetheless, other areas may also be in danger, but no risk could be 

calculated due to the lack of data. Since tropical countries are the top food exporters worldwide, the results 

obtained in this study must be carefully examined for their implications on a global scale. Some of the factors 

behind the high levels of these two chemicals in soils are debated (e.g., permissive protection policies, the 

extensive use of genetically modified crops), and some possible guidelines are presented that include, for example, 

further environmental characterisation and management of pesticide residues. The present review integrates data 

that can be used as a base by policymakers and decision-makers to develop and implement environmental policies.

Keywords: Herbicides, Human health assessment, Soil contamination, Environmental risk assessment.

Abbreviations

ABS – dermal absorption factor; ABSGI – fraction absorbed in the gastrointestinal tract; ADDi – average daily 

dose by i exposure route pathway; AF – assessment factor; AMPA – aminomethylphosphonic acid; AT – average 

life span of an adult; BCF – bioconcentration factor; BW – bodyweight of the individual adult; CF – conversion 

factor; Csoil – concentration of the pollutant on soil; DAF – dermal adhesion factor; ED – exposure duration; EF 

– exposure frequency; ERA – ecological risk assessment; GLY – glyphosate; GMO – genetically modified 

organism; HI – hazard index of non-cancer; HRA – human risk assessment; ILCR – incremental lifetime 

carcinogenic risk; IRi – ingestion or inhalation rate by i exposure route pathway; MEC – measured environmental 

concentration; PEF – particle emission factor; PNEC – predicated no-effect environmental concentration; RfDi – 

daily maximum permissible values by i exposure route pathways; RQ – risk quotient; SA – surface area of the 

skin that contact with the soil; SDG – Sustainable Development Goals; SFi – slope factor by i exposure route 

pathway.
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1 Introduction

Anthropogenic practices have altered three-quarters of the Earth’s surface, with more than a third dedicated 

exclusively to crop and/or livestock production (IPBES, 2019). Despite being a huge percentage of land use, food 

production does not necessarily link it to a negative factor or problem to focus on. The incorrect use and 

management of these areas are, in fact, the main concerns and the problem that needs to be addressed. Land misuse 

is, directly and indirectly, the main factor that accelerates biodiversity loss (IPBES, 2019), connected with other 

factors such as the misuse of pesticides in agricultural practices. Despite the increasing research focused on using 

alternative sustainable practices that can integrate and increase ecosystems’ health, there is still no general 

solution. At the same time, decreasing pesticide use would also lower possible threats to non-target organisms, as 

already widely reported in the literature (e.g., Domínguez et al., 2016; Ferreira et al., 2015). Some public policies 

to reduce the application of pesticides, such as the EU Farm to Fork Strategy (Directive 2009/128/EC), have 

already been adopted to tackle this problem. The latest numbers of pesticide use (Table 1 - Food and Agriculture 

Organization of the United Nations, 2018) show what may be even the start of a reduction in herbicide use in 

Europe, with a 1% reduction in the past ten years. Nonetheless, even with these public policies, it is expected that 

the use of pesticides will continue to occur in the following years and may even increase, at least when looking 

into low and middle-income countries (LMICs). Such increase may be the main reason for many possible 

environmental impacts and human health problems, all resulting from the excessive use and misuse of these 

chemicals, but also due to their highly persistent in the environment or hazardousness. The annual use of pesticides 

for agricultural purposes worldwide is > 2.5 million tons, with China, the United States (US), Brazil, and 

Argentina as the countries that most use these substances. N-[phosphomethyl]-glycine (C3H8NO5P - GLY) based 

herbicides are the best-selling products worldwide due to their low cost, broad-spectrum mechanism, 

effectiveness, the requirement for a large number of genetically modified organisms (GMO) and the application 

of those products as desiccants (Duke and Powles, 2009). GLY represents the largest export in China, the most 

used agricultural land in the US, and the most widely used in tropical countries, responsible for a considerable 

food export (Jennings and Li, 2017). 

Although pesticides are mainly applied in the fields, they reach far more than the targeted crops through 

water and wind transport. Environmental conditions may influence pesticide drift during spraying, in which 

droplet size, velocity and rate of liquid/air in the spray nozzles play important roles (Al Heidary et al., 2014; Gil 

and Sinfort, 2005; Miranda-Fuentes et al., 2018). The microbial community quickly degrades GLY in soils until 

its total mineralisation (la Cecilia and Maggi, 2018). Glyphosate degradation may occur through the 

aminomethylphosphonic acid (CH6NO3P – AMPA) or sarcosine pathways (Aslam et al., 2023). In contrast to the 

metabolites resulting from the sarcosine pathway that are easily oxidised, AMPA is the primary metabolite of 

GLY and has a longer half-life in soils than the precursor molecule (Aslam et al., 2023).  According to EFSA 

(2015), GLY has a low to very high persistence (DT50 = 2.8 – 500.3 days), and AMPA has a moderate to high 

persistence in lab studies (DT50 = 38.98 to 300.71 days) and high to very high persistence is field studies (DT50 = 

288.4 to > 374.9 days) being reported in some studies with a DT50 up to 958 days (Primost et al., 2017). GLY and 

AMPA are practically non-volatile, and their mobility depends on their physicochemical properties such as 

octanol-water coefficient, electric charge and functional groups (Gimsing et al., 2007; Okada et al., 2016; Sheals 

et al., 2002); soil properties such as clay content, pH and cation exchange capacity (Aparicio et al., 2018; Erban 
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et al., 2018a; Gerónimo et al., 2018; Imfeld et al., 2013; Lupi et al., 2015; Soracco et al., 2018); microbial activity 

(Araújo et al., 2003; Giesy et al., 2000); or even wind and water erosion (Bento et al., 2019, 2017; Ernst et al., 

2018; Mendez et al., 2017; Yang et al., 2015). According to Silva et al. (2018), in sites contaminated with low 

GLY or AMPA concentrations (< 0.5 mg/kg soil), wind erosion can remove and transport up to 1.9 g soil/ha/year, 

while water erosion can remove and transport up to 9.7 g soil/ha/year. As for sites with higher concentrations (> 

0.5 mg/kg soil), wind erosion can remove and transport up to 3 g soil/ha/year, while water erosion can remove 

and transport up to 47.7 g soil/ha/year. 

The high public interest and comments on the draft assessment of glyphosate by EFSA and ECHA (please 

see https://www.efsa.europa.eu/en/news/glyphosate-consultations-over-400-submissions-collected) confirmed 

this subject as a hot topic to the public that requests a high level of transparency on the evaluation of active 

substances. As a result of the request for additional information, EFSA is conducting a re-assessment, which is 

expected to be completed by July 2023 (EFSA, 2023). As GLY and AMPA contamination can negatively impact 

ecosystems, biodiversity (Gill et al., 2018), and human health (van Bruggen et al., 2021, 2018), the present study 

aims to: i) review the concentrations of GLY and AMPA reported in soils at a global scale, with a specific focus 

on South America; ii) estimate the risk for key functional soil biota; and iii) the risk for human health.

Table 1: Global pesticide use. Pesticide use worldwide summarised from FAOSTAT database of Food and 

Agriculture Organization of the United Nations (https://www.fao.org/faostat/en/#home – FAO, 2023). The colour 

scheme shows reductions in pesticide consumption in green, increases in red and similar consumption in white. 

The darkest the colour, the higher the decrease/increase magnitude.

2000 2010 2020 Δ 2010-2020 (%) Δ 2000-2020 (%)

Region
Pesticide 

(Mt)

Herbicide 

(Mt)

Pesticide 

(Mt)

Herbicide 

(Mt)

Pesticide

(Mt)

Herbicide 

(Mt)
Pesticide Herbicide Pesticide Herbicide

Global Use 2.047 0.853 2.603 1.318 2.661 1.397 2% 6% 30% 64%

Africa 0.064 0.015 0.085 0.027 0.106 0.034 25% 27% 66% 128%

Asia 0.604 0.197 0.740 0.284 0.659 0.235 -11% -17% 9% 19%

Central America 0.064 0.024 0.106 0.039 0.090 0.032 -15% -17% 41% 35%

Europe 0.450 0.165 0.452 0.180 0.468 0.178 4% -1% 4% 8%

North America 0.470 0.228 0.436 0.275 0.487 0.315 12% 15% 4% 38%

Oceania 0.038 0.026 0.049 0.032 0.070 0.047 45% 46% 86% 85%

South America: 0.350 0.195 0.728 0.477 0.770 0.551 6% 16% 120% 182%

– Argentina 0.084 0.070 0.236 0.217 0.241 0.230 2% 6% 187% 230%

– Bolivia 0.004 0.002 0.013 0.007 0.019 0.012 49% 71% 412% 474%

– Brazil 0.140 0.082 0.343 0.190 0.377 0.234 10% 24% 169% 186%

– Chile 0.014 0.003 0.010 0.002 0.010 0.002 0% 0% -31% -43%

– Colombia 0.076 0.027 0.049 0.018 0.037 0.029 -24% 66% -52% 8%

– Equador 0.018 0.004 0.032 0.014 0.034 0.012 8% -18% 90% 185%

– Guyana 0.000 0.000 0.000 0.000 0.000 0.000 117% 87% 58% 53%

– Paraguay 0.004 0.002 0.021 0.013 0.020 0.011 -4% -15% 475% 368%

– Peru 0.002 0.000 0.006 0.002 0.011 0.004 71% 98% 371% 827%

– Suriname 0.000 0.000 0.000 0.000 0.000 0.000 -21% 109% 115% 139%

– Uruguay 0.004 0.002 0.015 0.012 0.016 0.014 10% 14% 351% 484%
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– Venezuela 0.004 0.001 0.004 0.001 0.004 0.001
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Figure 1: Diagram of the methodology used to include/exclude records to be used in this review. * Criterion 1: 

records must include the measurement of GLY and/or AMPA in field samples. Criterion 2: records related to the 

study of GLY and/or AMPA degradation and other kinetic parameters that result from the direct contamination 

of field samples or studies that involve the direct contamination of soil in the field (e.g. micro- or mesocosms) are 

excluded. Criterion 3: records that include the study of GLY and/or AMPA concentrations from field samples that 

accurately describe how samples were stored and preserved prior to analysis. Criterion 4: records must detail that 

the last application of GLY has been made at least three months prior to the quantification. Criterion 5: records 

with improperly described methodology, written in another language (e.g. record has a double abstract in English 

and Chinese), among others, were excluded.

2.2 Geocomputation

All data analyses were performed by statistical computing in R software version 4.1.2 (R Core Team – 

http://www.R-project.org/). The maximum concentrations of GLY and AMPA were plotted on static maps for 

spatial distribution visualisation using geocomputing scripts. The “readxl” package was used to read the data 

frame (Wickham and Bryan, 2019). The background polygons were obtained from “ggplot2” package (Wickham, 

2016) and also was used to add a shapefile layer containing the referenced data points. Cartographic elements 

(north symbol) were defined using “ggspatial” package (Dunnington, 2021), and the coordinate reference system 

was based on the World Geodetic System of 1984 (WGS84) using “sf” package (Pebesma, 2018).

2.3 Ecological Risk Assessment (ERA)
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GLY and AMPA were incorporated into the Ecological Risk Assessment (ERA) based on the ratio between 

exposure and hazard factors. The ERA is based on the equations previously described by ECETOC (2004), Peake 

et al. (2016), and Pérez et al. (2021), and derived as follows (Eq. 1):

(Eq. 1)  𝑅𝑄 =  
𝑀𝐸𝐶𝑃𝑁𝐸𝐶

where RQ is the risk quotient (toxicity unit), MEC is the measured environmental concentration (mg/kg soil), and 

PNEC represents the predicated no-effect environmental concentration (mg/kg soil). The PNEC was derived as 

follows (Eq. 2):

(Eq. 2) 𝑃𝑁𝐸𝐶 =  
𝐿𝐶50𝐴𝐹

where LC50 represents the concentration that will kill 50% of the sample population (mg/kg soil). The LC50 values 

for earthworms (Aporrectodea caliginosa, Eisenia andrei, and Eisenia fetida), and springtail (Folsomia candida) 

were obtained from European Food Safety and Authority peer reviews (EFSA, 2015) and ECOTOX 

Knowledgebase (EPA, 2021). Since no toxicity data was available for AMPA, the LC50 values of the parental 

compound (GLY) were multiplied by a value of 20x based on the AMPA/GLY ratio for LC50 values of aquatic 

organisms described on the EFSA and ECOTOX databases. Although these calculations present some uncertainty, 

as the toxicity of AMPA may not be 20x higher than the toxicity of GLY, similar conservative criteria were used 

in previous studies (Pérez et al., 2021; Vašíčková et al., 2019). Additionally, this conservative criterion would 

represent a worst-case scenario. The ecotoxicological endpoints dataset is presented in Table S1 (Supplementary 

Data - SD). The AF represents an assessment factor (AF = 50, without a unit of measure) and was applied to 

reduce uncertainties about the accuracy, model errors, lack of toxicity data, and inherent variability between 

laboratory exposure and field conditions (Vašíčková et al., 2019). The RQ approach was classified as low 

ecological risk (RQ < 0.1), moderate ecological risk (0.1 < RQ < 1.0), and high ecological risk (RQ > 1.0), 

according to Pérez et al. (2021). 

2.4 Human Risk Assessment (HRA)

The Human Risk Assessment (HRA) was developed according to the Exposure Factors Handbook (EPA, 

2011) and Generic Exposure Routes Assumptions document (Michigan, 2014). The HRA was estimated from 

generic characteristics of adults. Table S2 (SD) presents details of the human lifestyle and physiological and 

behavioural parameters. A probabilistic risk model was used to estimate carcinogenic incidence based on the 

average daily dose by i exposure routes [ADDi – mg/(kg/day)], being the soil ingestion (ADDsoil), food ingestion 

(ADDfood), dermal contact (ADDderm), and dust inhalation (ADDinh) expressed as follows (Eq. 3 to Eq. 6):

(Eq. 3) 𝐴𝐷𝐷𝑠𝑜𝑖𝑙 =
𝐶𝑠𝑜𝑖𝑙 ×  𝐼𝑅𝑠𝑜𝑖𝑙 ×  𝐸𝐷 ×  𝐸𝐹 × 𝐶𝐹𝐵𝑊 ×  𝐴𝑇

(Eq. 4) 𝐴𝐷𝐷𝑓𝑜𝑜𝑑 =
𝐶𝑠𝑜𝑖𝑙 ×  𝐵𝐶𝐹 ×  𝐼𝑅𝑣𝑒𝑔𝑒𝑡 ×  𝐸𝐷 ×  𝐸𝐹𝐵𝑊 ×  𝐴𝑇
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(Eq. 5) 𝐴𝐷𝐷𝑑𝑒𝑟𝑚 =
𝐶𝑠𝑜𝑖𝑙 ×  𝑆𝐴 ×  𝐷𝐴𝐹 ×  𝐴𝐵𝑆 ×  𝐸𝐷 ×  𝐸𝐹 × 𝐶𝐹𝐵𝑊 ×  𝐴𝑇

(Eq. 6) 𝐴𝐷𝐷𝑖𝑛ℎ =
𝐶𝑠𝑜𝑖𝑙 ×  𝐼𝑅𝑎𝑖𝑟 ×  𝐸𝐷 ×  𝐸𝐹𝑃𝐸𝐹 ×  𝐵𝑊 ×  𝐴𝑇

where Csoil is the concentration of the pollutant on soil (mg/kg soil); IRsoil represents the daily soil ingest rate 

(mg/day); ED is the exposure duration (year); EF is the exposure frequency (day/year); CF is the conversion factor 

(kg/mg); BW is the body weight of the individual adult (kg); AT is the average lifespan of an adult (day); BCF is 

the bioconcentration factor (without a unit of measure); IRveget is the daily vegetable ingestion rate (kg/day); SA is 

the surface area of the skin that contact with the soil (cm2/day); DAF is the soil dermal adhesion factor (mg/cm2); 

ABS is the dermal absorption factor (without a unit of measure); IRair is the air inhalation rate (m3/day); and PEF 

is the particle emission factor (m3/kg). 

A carcinogenic slope factor (SF) was added to the equations to define the upper confidence limit on the 

increased risk from i exposure route. The incremental lifetime carcinogenic risk (ILCR) was calculated using the 

estimated ADDi multiplied by the SFi as follows (Eq. 7):

(Eq. 7) 𝐼𝐿𝐶𝑅 =  ∑(𝐴𝐷𝐷𝑖 × 𝑆𝐹𝑖)
where SFi includes oral slope factor [SFo, – mg/(kg/day)], dermal slope factor of dermal contact [SFabs, – 

mg/(kg/day)], and the inhalation unit risk (IUR – mg/m3). Details of the parameters used to estimate the risk to 

human health are available in Table S2 (SD). The ILCR < 1 x 10-6 considers the risk to the human population 

acceptable, while ILCR > 1 x 10-4 indicates the high probability of risk over a lifetime. The non-cancer risk (hazard 

index - HI) was estimated using equation 8 (Eq. 8):

(Eq. 8) 𝐻𝐼 =  ∑𝐴𝐷𝐷𝑖𝑆𝐹𝑖
where RfD [RfDi – mg/(kg/day)] is defined as the daily maximum permissible values for the GLY of the two (i) 

exposure pathways, including reference dose for ingestion (RfDo), and dermal contact (RfDabs = RfDo x ABSGI). 

ABSGI is the fraction of GLY absorbed in the gastrointestinal tract. The daily maximum reference dose for the 

inhalation exposure pathway could not be calculated due to the properties of the GLY (e.g. polarity and octanol-

water partition coefficient), resulting in very low vapour pressure and low volatility. An HI lower than unity (HI 

< 1) reflects a no non-cancer risk. 

3 Results and Discussion

3.1 Soil pollution

GLY and AMPA residues found in different soil matrixes (e.g. urban, agricultural and secondary forests) 

were plotted on a global map (Figure 2). GLY was detected at levels ranging from 2 x 10-4 to 66.38 mg/kg soil, 

while AMPA was detected at 2.5 x 10-3 to 38.94 mg/kg soil. Overall, three-quarters (73%) of GLY and more than 

two-thirds (68%) of AMPA concentrations found in soil were quantified up to 1 mg/kg soil, with four studies for 
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GLY (Mercado and Mactal, 2021; Newton et al., 1994, 1984; Samson-Brais et al., 2022), and four studies for 

AMPA (Ernst et al., 2018; Mercado and Mactal, 2021; Napoli et al., 2016; Newton et al., 1994) showing values 

< LOD or < LOQ. No data was available for the African and the Oceanian continent. Four studies were found for 

North America (Newton et al., 1994, 1984; Samson-Brais et al., 2022; Tush et al., 2018), and only three for Asia 

(Gunarathna et al., 2018; Jing et al., 2021; Mercado and Mactal, 2021). A possible explanation for the lack of/low 

data for the African and Asian continents may be related, to a certain extent, to the lack of financial and 

infrastructural resources in the research institutions of these continents, as the majority are included in the list of 

low middle-income countries (LMICs – https://data.worldbank.org/country/XN). Nonetheless, these regions also 

include many countries with higher resources to monitor soil pesticide concentrations. Collecting this type of data 

is extremely important, especially when looking at the increase of 25% in the use of pesticides in Africa in the 

past ten years (Table 1). The lack of data in Africa may be mainly related to outdated information, the lack of 

registration of pesticide use (e.g. Nigeria does not have any data available) or even the inconsistent registration of 

data bringing a lot of uncertainty to the available data (e.g. South Africa - Fuhrimann et al., 2022). Other factors 

that may explain the lack of data may be related to challenges with chemical analyses in local laboratories (e.g., 

lack of specialised equipment) or lack of knowledge that concerns pesticide analysis techniques. Finally, there is 

also a critical gap in recording herbicide levels in soil compared with extensive reports of other types of pesticides 

(Paré et al., 2014; Ssebugere et al., 2010). Most African governments have encouraged pesticide use in the last 

decades, and these changes resulted in even less government monitoring. Therefore, inadequate regulatory policies 

result in the importation of banned pesticides (Sharma et al., 2019). The African market is unregulated, so the 

registered compounds account only for 8% of the total. Additionally, 38% of pesticides have incomplete labels, 

and 6% are unlabelled (van der Valk, 2003). 

The intensive use of pesticides in agriculture is increasing rapidly in developing countries. Its use for 

controlling and eradicating malaria is common in several countries, including Asia (Kunstadter, 2007; 

Schreinemachers and Tipraqsa, 2012). Asia is the second-highest region that applies all commercialised pesticides 

worldwide (Table 1). Here, China and Japan represent the largest producers and consumers of pesticides globally 

(Zhang, 2018; Zhang et al., 2011). 

Although the Australian region has the resources to characterise pesticides in soil, no data could be found. 

This may be related to the fact that most scientific resources focus on quantifying pesticides in food and water 

(e.g., Okada et al., 2020). Furthermore, other factors can result in low GLY concentrations, such as poor soils with 

high ultraviolet radiation (Papagiannaki et al., 2020). The Australian Academy of Science and Technological 

Engineering conducted the last major pesticide review in Australia in 2002 (Radcliffe, 2002), approximately 20 

years ago. Although the document can be seen as a pervasive collection of data with great value, it can now be 

considered outdated. According to the models presented by Tang et al. (2021), the Australian region's pesticide 

levels are low compared to other high-income countries. Nonetheless, Wightwick and Allinson (2007) highlight 

that this region's pesticide risk to humans and the environment has received relatively little attention.

In European soils, 14 studies showed GLY and AMPA in soils (Börjesson and Torstensson, 2000; Carretta 

et al., 2021; Erban et al., 2018b; Geissen et al., 2021; Ibáñez et al., 2005; Karanasios et al., 2018; Karasali et al., 

2019; Laitinen et al., 2006; Napoli et al., 2016; Pelosi et al., 2022; Silva et al., 2018; Tauchnitz et al., 2020; Veiga 

et al., 2001; Vlassa et al., 2022). European countries show many different political interests with a broad public 

discussion on the use of pesticides, regulation and data availability. It was reported that the United Kingdom, 
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Denmark, the Netherlands, Germany and Sweden had a very strong political and public interest in lowering the 

application of pesticides. On the other hand, Finland and Latvia had no specific regulations for lowering pesticide 

usage (Kristoffersen et al., 2008), until recently (Finland: 2018 - Reg. No. 3406/00.03.02/2018; Latvia: 2020 - 

Cabinet Order No 27 of 22 January 2020) when they approved new herbicides reduction strategies enforced by 

the EU. Despite the increase in total pesticide use in the past ten years, the pesticide application rate in Finland 

and Latvia is low compared to other European countries, which may be related to the region's climate (FAO, 

2023). A few European countries, including Denmark, France, Austria and the Netherlands, reduced pesticide 

usage, while others like Germany, Greece, Ireland, Czech Republic, Spain and Portugal increased it. In general, 

the local government authorities are making political efforts to improve the efficiency of pesticide regulation and 

environmental protection. Nonetheless, EU countries have approved the implementation of legislation on pesticide 

use, such as Directive No. 2009/128/EC, Regulation (EC) No. 1107/2009, and Regulation (EC) No. 396/2005. A 

review of the presence of pesticides in European soils has been previously performed by Silva et al. (2018), and 

more information can be found on it. Nonetheless, it is important to emphasise that GLY and AMPA were found 

in 15 European countries, mainly with levels < 1 mg/kg soil. Higher levels of GLY were mainly found in the 

Netherlands and Mediterranean countries (Greece, Portugal and Spain). Identically, these countries have also 

identified higher levels of AMPA along with Italy. 

In North America, herbicides are the most prominent and widely used chemical pesticides (Canada, 2019). 

Herbicide usage has increased in croplands and the wildlands (EPA, 2008). GLY is the most active ingredient that 

harms the herbs and grasses in croplands and poses a potential threat to the surrounding native vegetation (Wagner 

et al., 2017). Therefore, future studies on identifying soil pollution are also needed in the region. GLY is widely 

sprayed in the US, the leading global GMO producer (> 71.5 million hectares - ISAAA, 2019). Thus, GLY-

tolerant GMOs account for about 56% of global GLY use (Benbrook, 2016). Furthermore, GLY is widely applied 

as a desiccant in no-tillage systems in the region, representing more than 40 million hectares in the US. 

Agricultural use of GLY in the US increased after the GMO adoption in 1996, which increased more than ten 

times between 1996 and 2017 and has steadily grown to the present day (Rifet et al., 2018). The US has a robust 

political framework for the use, sales, application and regulation of GLY, with data available in databases from 

agencies such as the Department of Agriculture (USDA – https://www.usda.gov/), Environmental Protection 

Agency (EPA – https://cfpub.epa.gov/ecotox/), National Agricultural Statistics Service (NASS – 

https://www.nass.usda.gov/), Natural Resources Conservation Service and Department of Agriculture and 

Geological Survey (NRCS and USRG – https://www.nrcs.usda.gov/). However, despite the study conducted by 

Battaglin et al. (2014) in various regions in the US, there are still not enough studies that seek to monitor herbicide 

residues in the soil (Benbrook, 2016).

The present review identified GLY and AMPA in 16 studies for South American soils (Alonso et al., 2018; 

Aparicio et al., 2018, 2013; Bento et al., 2019; Bernasconi et al., 2021; Botero-Coy et al., 2013; da Silva et al., 

2021; Lupi et al., 2019; Okada et al., 2018, 2016; Pérez et al., 2021; Peruzzo et al., 2008; Primost et al., 2017; 

Ramirez Haberkon et al., 2021a, 2021b; Soracco et al., 2018). The high-level contamination identified in the 

present review in the region is in accordance with the models proposed in a previous study (Maggi et al., 2020). 

In their study, although the range of concentrations falls within 0.1 – 10 mg/kg of soil, the area is considered a 

hotspot compared with its vicinity. The South American continent is a vast area of food production that, in its 

majority, is exported to wealthier countries. The extensive agricultural practices for food production in those 
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countries are associated with a great demand for pesticides. Their use results in high soil contamination rates that 

can be worsened with the expansion of GMO fields and no-tillage management (CETESB, 2018; ISAAA, 2019). 

Within South American countries, Argentina has a significant amount of information regarding pesticide levels. 

Still, such data is scarce for other countries. The lack of such information is of great concern for many different 

reasons. For example, only one study related to GLY or AMPA occurrence in soils was found for Colombia 

(Botero-Coy et al., 2013) despite the high agricultural practices related to a high increase in the cultivated area 

and the 66% increase in the consumption of herbicides in the past ten years. Similarly, Equator and Peru, in the 

past twenty years, have increased the consumption of herbicides by 98% and 827%, respectively, with no studies 

reporting GLY and AMPA levels (FAO, 2023). In addition to all the previously mentioned constraints, South 

American countries have an ongoing increase in the number of pesticides approved for agriculture and public 

health welfare through the control of disease transmission vectors (MAPA, 2022), as recently occurred in Brazil. 

In this country, the average number of new approvals between 2000 and 2015 was approximately 122/year, 

whereas, in 2022, the number reached 562/year (MAPA, 2022). Although Brazilian legislation requires a periodic 

review of the pesticides registered and approved for use (Brazilian Law No. 7802/1989 and Decree No. 

4074/2002), these laws are not enforced. Furthermore, Brazil is also preparing other legislation less restrictive on 

this issue (e.g. PL 1459/2022). In addition to the non-enforcement of laws, Brazil has regulatory values for 

pesticide levels in food and water much higher than other regions (Bombardi, 2017). For example, GLY levels in 

soybean can be 200x higher than those accepted by EU legislation (10 mg/kg BR vs 0.05 mg/kg EU). Similarly, 

GLY levels in Brazilian waters can be 5000x higher than in EU waters (0.5 mg/L BR vs 0.0001 mg/L EU – 

Bombardi, 2017). Again, the urgency for the development of new environmental policies is highlighted by the 

lack of limits for pesticide levels in soils, and the existence of reference levels for pesticides that are now fully 

banned (e.g., DDT – Regulation No. 420/2009 of the Brazilian National Council for the Environment). These 

regulations flow towards the opposite direction of the guidelines established by the United Nations Sustainable 

Development Goals (SDG): food security and sustainable agriculture (SDG 2); sustainable consumption and 

products patterns (SDG 12); and protect, restore and promote sustainable use of soil ecosystem, reduce land 

degradation and biodiversity loss (SDG 15). In the EU, high efforts are being made in the European Farm to fork 

strategy on the sustainable use of pesticides (Directive 2009/128/EC). The strategy that claims to be at the heart 

of the European Green Deal aims a transition to sustainable food systems. This strategy aims, among other points 

(e.g. have a neutral/positive environmental impact or the mitigation of climate changes), a transition to organic 

farming and a reduction in pesticide use. In this sense similar stratergies should be applied worldwide.
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Figure 2: Global map of GLY and AMPA in soils. Spatial distribution of glyphosate (GLY) and 

aminomethylphosphonic acid (AMPA).

3.2  Risk to Terrestrial Ecosystems 

The RQ for soil was calculated for two groups of species: springtails (Collembola) and earthworms 

(Annelida). The RQ for GLY and AMPA are presented in Figure 3. GLY’s RQ could not be calculated for Africa 

and Oceania due to the nonexistence of records. Similarly, due to the low or nonexistent number of records, 

AMPA’s RQ values for Asia, Africa and Oceania were not calculated. When comparing both species as expected, 

springtails show high percentages of moderate and high ecological risk values in most continents. For the 

springtails and specifically for GLY, the percentage of high ecological risk is between 67% and 93%, with no 

cases of low ecological risk scenarios. As for the AMPA RQ, the scenario is better. Still, the percentage of low 
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ecological risk exists only for Europe and South America, with 4% and 14%, respectively. As for earthworms, the 

risk scenarios are much better, with GLY showing moderate and high ecological risk scenarios between 43% and 

67%. These RQ scores contradicts the study of Maggi et al. (2020) which proposes a model that estimates 

glyphosate residue in soils and suggests no acute impact on earthworms. The RQ for AMPA shows low ecological 

risk scenarios of at least 86%. When looking into both groups' RQ results, as expected, earthworms show better-

surviving scenarios than springtails. Although the nature of the results is not new, it renews the discussion 

regarding the role of the most sensitive species in ecosystems and the impact of their possible absence. Despite 

these alarming results (at least for springtails), it is essential to highlight that RQ values are calculated based on 

the highest amount of GLY and AMPA concentrations found in soils, not their bioavailable concentrations. As 

so, ecotoxicological tests are crucial to gather information regarding the bioavailability of these chemicals and 

thus to achieve a more comprehensive assessment of these soils (Niemeyer et al., 2017; Niva et al., 2016). It is 

also important to stress the need to improve ecotoxicological tests. The use of standardised soil with characteristics 

common to European and North American soils; the use of species that do not occur worldwide (or at least are 

uncommon); and the use of controlled conditions that do not reflect most of the areas of the globe, has been 

highlighted as a problem that needs to be addressed (Daam et al., 2019; Niva et al., 2016). Another important 

highlight is that the RQ has been based only on mortality values. However, the adverse effects can be observed at 

lower doses and different levels (e.g., Buch et al., 2013; Domínguez et al., 2016; Ferreira et al., 2015). These 

effects can then compromise the population’s dynamics, decreasing reproduction and increasing mortality 

(O’Brien, 2017; Zhou et al., 2018). However, there are some inconsistencies in the literature about the toxicity of 

GLY. Some studies reported that the negative effects observed in the commercial formulation are contrary to the 

active ingredients usually used in ecotoxicological tests (Meftaul et al., 2020). In this sense, further studies are 

needed to address the chronic effects of the commercial formulation versus the active ingredient by itself.

Our results suggest a potentially harmful effect on ecosystems and their organisms in most of the revised 

literature for GLY and AMPA. Still, literature regarding the impact of GLY and AMPA on terrestrial organisms 

is scarce, as seen in Table 2. Overall, the RQ approach calculated in the present study showed the highest 

deleterious effect on non-target soil biota, thus highlighting the need for further environmental risk assessment 

and the use of this data for new policies. The RQ high values obtained for key functional organisms in this study 

may be a warning toward potential adverse effects on ecosystems. Nonetheless, the effects of GLY and AMPA 

on soil microbes (e.g. microbial activity, biomass, structure, diversity) have been reported in the literature, and 

their impact may be positive or negative (e.g. Bruggen et al., 2021).
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Figure 3: Ecological risk assessment (ERA) calculated in the present study. ERA is expressed by the risk 

quotient (RQ) approach for soil species (Annelida, Collembola) exposure to glyphosate (GLY) and 

aminomethylphosphonic acid (AMPA). Figures present the percentage of soils that fall into each category (low 

ecological risk – RQ < 0.1; moderate ecological risk – RQ [0.1 – 1.0]; high ecological risk – RQ > 1.0) and its 

corresponding percentage. 
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Table 2: Adverse responses of soil pollution in key functional species. GLY and/or AMPA effects or responses 

from ecotoxicological studies in key soil species at different levels of biological organisation. a (Kronberg et al., 

2018); b (Simões et al., 2018); c (Niemeyer et al., 2018); d (Santos et al., 2010); e (Hackenberger et al., 2018); f 

(Buch et al., 2013); g (Niemeyer et al., 2018); h (Domínguez et al., 2016); i (Santadino et al., 2014); j (Gaupp-

Berghausen et al., 2015); k (Niemeyer et al., 2018); l (Niemeyer et al., 2006); m (Santos et al., 2010). 

Taxon Group

Level of 

Biological 

Organization

Model Organism
Endpoints 

(effect / response)

Nematode below-cell Caenorhabditis elegans GLY formulation: oxidative stress (increase ROS 
production), antioxidant defence (catalase activation), 
genotoxicity (increased CAT gene expression) a

below-cell GLY formulation: genotoxicity (decreased CAT gene 
expression, increased SOD and Cyt C gene expression, 
inhibiting the expression of transcripts involved in fatty acid 
metabolism) b

organism GLY formulation: behaviour (avoidance) c

Collembola

organism and 
population

Folsomia candida

GLY formulation: behaviour (avoidance) and reproduction 
(decreased number of juveniles) d

below-cell Dendrobaena venata GLY formulation: neurotoxicity (AChE induction)
oxidative stress (lipid peroxidation) e

Eisenia andrei and
Pontoscolex corethrurus

GLY formulation: behaviour (avoidance) forganism

Eisenia andrei GLY formulation: behaviour (avoidance) g

organism and 
population

Eisenia fetida AMPA pure: body weight (biomass loss) and reproduction 
(increased number of cocoons and juveniles with weights 
decreased) h

Eisenia fetida GLY formulation: reproduction (increased number of 
cocoons with lower fertility), population dynamic (negative 
growth rate), development (lower survival of juveniles) i

Annelida

population

Lumbricus terrestris and
Aporrectodea caliginosa

GLY formulation: reproduction (reducing percentage of 
cocoons) j

Porcellio dillatatus GLY formulation: behaviour (avoidance) korganism and 
population

Cubaris marina GLY formulation: body weight (biomass loss) l

Isopoda

organism Porcellionides pruinosus GLY formulation: behaviour (avoidance) m

3.3 Risk to Human Health

A summary of the Human Risk Assessment is shown in Figure 4. For GLY, the ILCR index was not 

calculated for Africa and Oceania due to the nonexistence of records. Also, due to the low or nonexistent number 

of/low records, AMPA’s ILCR index for Asia, Africa and Oceania were not calculated. In this study, the ILCR 

calculated for human health from ADDi exposure routes indicated an insignificant risk (< 1 x10-06) between 33.3% 

and 65.2% for GLY, and for AMPA ~35% for Europe and South America, with North America showing an 

insignificant risk for all revised soils. Nonetheless, in the case of GLY, Europe and South America showed an 
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already concerning high probability of risk over a lifetime of 3.7% and 4.3%, respectively. According to ILCR, 

the ADDfood represents the main pathway of exposure. 

As for the non-cancer risk hazard index (HI), due to the physical-chemical properties of GLY (please see 

section 2.4), the inhalation unit risk (IUR) and the inhalation reference concentration (RfC) were considered zero. 

As a result, the risk from inhalation (ADDinh) was also considered null. The high GLY and AMPA levels that put 

South America as a hotspot for soil contamination are of great concern. This region already shows a high HI (> 

1) for GLY and AMPA of 4.3% and 9.1% of the revised soils, respectively. In the same way for GLY, Europe 

already shows a high HI for 3.7% of the revised soils. It is also noteworthy to stress that the number of studies 

found for North America and Asia is low. As a result, one should look with some caution into their ILCR and HI 

results. Nonetheless, more restrictive legislation, similar to existing legislation, for example, in many North 

American or European countries, is crucial at least to maintain or decrease the current levels, as they may harm 

the environment and human populations. At the moment, the possible toxic effects of GLY on mammals are still 

under debate and different legislations, from partial ban application on field crops (e.g., France and Germany) to 

high permissive levels (e.g. Brazil). Nonetheless, based on the increased incidence of liver and kidney tumours, 

positive correlation with non-Hodgkin lymphoma, and evidence of genotoxicity, the International Agency for 

Research on Cancer has classified GLY as potentially carcinogenic (Bus, 2017; van Bruggen et al., 2018). 

Moreover, there are positive correlations between GLY use and an increased attention deficit hyperactivity 

disorder, abortions, Alzheimer's and Parkinson's diseases (van Bruggen et al., 2018). This classification is based, 

for example, on epidemiological in vitro studies (Agostini et al., 2019). For mammals (e.g., rats and rabbits), 

exposure to GLY has shown an increase in malignant lymphomas, skeletal and cardiac malformations, and 

delayed ossification  (EFSA, 2015). It is also important to highlight that the toxicity of the active ingredient by 

itself may be lower than the toxicity of commercial formulations that contain adjuvants such as the 

polyethoxylated tallow amine (POEA) that are incorporated to potentialise its effect (Meftaul et al., 2020; Tóth et 

al., 2020). Mesnage et al. (2015) reported more intensive toxic effects from GLY with adjuvants than isolated 

GLY. Despite these differences, many regulatory agencies have established toxicological parameters for human 

exposure based on the effects of GLY by itself (e.g. EFSA and EPA). 

For what reports AMPA’s toxicity, the available literature is still scarce. There is almost no evaluation 

within the different levels of the biological organisation except for mortality and reproduction of key species such 

as earthworms with a classification of low risk (EFSA, 2015). GLY and AMPA share a similar profile, and both 

compounds may be classified as no potential human carcinogens (Buekers et al., 2022; EFSA, 2015). Nonetheless, 

much data still needs to be gathered regarding the toxicological profile of AMPA which is currently critically 

required (Connolly et al., 2022). AMPA residues in soil, plants, or food can seep into streams and expose the 

general public. AMPA may cause oxidative stress (Benbrook, 2016), according to evidence from in vitro and 

animal studies mentioned by the International Agency for Research on Cancer (2014), and may be linked to breast 

cancer rates (Franke et al., 2021). Given that AMPA has already been found in the urine of persons who have not 

been exposed to it at work, frequently at a higher percentage than GLY, raising several other questions (Conrad 

et al., 2017; Mcguire et al., 2016; Mills et al., 2017). However, similar to the parent molecule, there are questions 

and ambiguities regarding the true carcinogenic risk of AMPA. It is also important to stress that AMPA can also 

result from the breakdown of phosphonate detergents, thus occurring at even higher levels than expected 

(Battaglin et al., 2014; Jaworska et al., 2002). Finally, because both substances co-exist in the soil (Buekers et al., 
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2022, 2021), the combined GLY+AMPA levels can increase significantly the toxicological effects and even lead 

to worse risk case scenarios (FAO, 2011).

Figure 4: Human risk assessment (HRA). Incremental lifetime carcinogenic risk (ILCR) and hazard index (HI) 

calculated for GLY and AMPA from different world regions (Asia, Europe, North and South America) for human 

health from the average daily dose by four exposure routes: soil intake, food intake, dermal contact, and inhalation. 

Figures present the percentage of soils that fall into each category and the corresponding percentage of soils with 

a high HI (>1). Table presents the average [minimum – maximum] for each index. AMPA’s ILCR and HI were 

not determined due to the low number of studies in the region (n=2).

4 Conclusion

Overall, the present study reviews the GLY and AMPA levels in soils across the globe, highlighting the 

lack of studies in different regions that may result from the lack of proper control or budget to perform such 

analyses (e.g. South Africa), or when the budget is not a constrain, by priorities (e.g., Australia). On the other 

side, even in cases where few studies are available, the levels of these two chemicals may pose serious concerns, 

with the worst contamination and highest risk occurring in tropical regions. South America has been defined as a 

hotspot of soil contamination due to pesticide spraying contents and biodiversity levels. Here is highlighted the 

need to improve the directive regulations, to collect more ecotoxicological data using model local soils, species 

and controlled parameters. Further efforts are needed to prioritise actions focused on environmental legislation 

and policymaking in the region. Along with these needs, it is also necessary to develop sustainable agricultural 

practices that reduce pesticide use and misuse. This can be achieved with, for example, initiatives such as the 

Farm to Fork. The overall interaction between new policies, higher interaction with the general public to 

disseminate more information on pesticides, and more toxicity and soil levels of GLY and AMPA around the 
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globe is crucial to maintain and to lower the risk to human health and ecosystems. There is still a conflict of 

opinions about the toxicity of GLY and AMPA, and it is not up to the authors of this paper to take a side, leaving 

the strong conclusions up to the reader. The need to continue to monitor and increase the number of studies 

regarding the occurrence of GLY and AMPA around the globe is critical. Further studies such as this review are 

required to help policymakers and Assessment Groups on the protection of ecosystems and human health.
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