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Abstract  

Human individuality is likely underpinned by the constitution of functional brain 

networks that ensure consistency of each person’s cognitive and behavioral profile. 

These functional networks should, in principle, be detectable by non-invasive 

neurophysiology. We use a method that enables the detection of dominant frequencies 

of the interaction between every pair of brain areas at every temporal segment of the 

recording period, the dominant coupling modes (DoCM). We apply this method to brain 

oscillations, measured with magnetoencephalography (MEG) at rest in two 

independent datasets, and show that the spatio-temporal evolution of DoCMs 

constitutes an individualized brain fingerprint. Based on this successful fingerprinting 

we suggest that DoCMs are important targets for the investigation of neural correlates 

of individual psychological parameters and can provide mechanistic insight into the 

underlying neurophysiological processes, as well as their disturbance in brain 

diseases. 

Keywords: EEG, MEG, resting-state, individual fingerprint, time-varying network 

analysis, chronnectomics,  dominant coupling modes, signal processing 
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Introduction  

Despite over 30 years of functional neuroimaging in humans, the correlates of 

individuality in the brain have not been elucidated up to now. A likely reason is that 

human neuroscience studies generally aggregate data across a group of subjects to 

reveal commonalities in brain activity and connectivity patterns or to obtain salient 

differences between patient and control groups, whereas the heterogeneity within 

each group is typically ignored. 

However, even among neurologically healthy people, both brain structure (Amunts 

et al., 2000; Mangin et al., 2004; Bürgel et al., 2006) and function (Rypma and 

D’Esposito, 1999; Newman et al., 2003; Grabner et al., 2007) are highly variable. 

Functionally, inter-subject variability was found to be high both for functional activation 

during cognitive tasks (Rypma and D’Esposito, 1999; Newman et al., 2003; Grabner 

et al., 2007)   and for the intrinsic functional organization of the brain at rest (Mueller 

et al., 2013). For example, monozygotic twins only share a small variance in their local 

structural connectome (Van Essen et al., 2013), allowing for a considerable amount of 

variability even between genetically identical individuals. Conversely, within 

individuals, structural and functional connectivity measures seem to be very stable 

over time(Barch et al., 2013; Yeh et al., 2016), even across several months(Finn et 

al., 2015; Powell et al., 2017). Brain connectomics is therefore an attractive tool to 

investigate the brain signatures of individual differences (Dimitriadis and Salis, 2017). 

The motivation behind the idea of ‘brain fingerprinting’ with neuroimaging signals is 

not mainly to identify the identity of individuals. The general motivation of brain 

fingerprinting is to capture individually specific features of the brain, and ultimately to 

achieve a mechanistic interpretation that can contribute to a new understanding of the 

biological basis of personality, characteristic biological features of individuals, and 

other individual traits using neuroimaging (Liu et al., 2019). The identification of the 

‘brain-fingerprinting’ subnetwork with the use of a neuroimaging modality will moreover 

enhance our understanding of brain networks that are likely to be particularly 

vulnerable to perturbations leading to cognitive, behavioral, and psychopathological 

abnormalities (Kanai and Rees, 2011; van den Heuvel and Sporns, 2013; Finn and 

Todd Constable, 2016). 

https://sciwheel.com/work/citation?ids=12007736,3264027,2924041&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=12007736,3264027,2924041&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=382978,878523,291994&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=382978,878523,291994&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=382978,878523,291994&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=382978,878523,291994&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=795539&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=795539&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1343608&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=845025,3301347&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6846928,832405&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6846928,832405&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11300614&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6005257&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=282706,382909,5999011&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=282706,382909,5999011&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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Brain fingerprinting has been studied with electroencephalography (EEG) 

(Dimitriadis and Salis, 2017), functional magnetic resonance imaging (fMRI) (Finn et 

al., 2015; Liu et al., 2018), diffusion MRI (dMRI) (Yeh et al., 2016), and 

magnetoencephalography (MEG) (da Silva Castanheira et al., 2021; Sareen et al., 

2021). MEG arguably has the highest sensitivity to spatio-temporal fluctuations in fine-

grained activity among the non-invasive neuroimaging techniques. Compared to fMRI 

(Abrol et al., 2017), MEG is a more direct measure of functional connectivity that can 

uncover the dominant coupling modes of brain networks and the multi-scale 

frequency-dependent interactions across space and time (Engel et al., 2013). 

 Brain rhythms that can be detected with MEG range from the infraslow (<0.01 Hz) 

to ultrafast frequencies (200-600 Hz) and include at least ten interactive oscillation 

classes each one with a specific frequency width ranging from the slow 4 (< 0.01 Hz) 

up to ultra-fast ( 200 – 600 Hz)(Buzsáki et al., 2013). These brain rhythms often 

interact in the same brain state either within the same or across different structures, in 

a multiplex way that supports within-frequencies and between-frequencies coupling 

modes (cross-frequency coupling) (Khazipov et al., 2004; Engel et al., 2013). We thus 

propose that, for a comprehensive evaluation of network integration and its individual 

specificity, both phase-to-phase (within frequency) and phase-to-amplitude cross-

frequency coupling mechanisms need to be analyzed (Engel et al., 2013; 

Siebenhühner et al., 2016), which is the approach taken in the present study. 

Our goal was to investigate if the multiplexity of brain communication at MEG 

resting-state and in healthy individuals explored under our dominant coupling model 

(DoCM) model (Dimitriadis 2022; Dimitriadis 2021; Dimitriadis 2018) can be served as 

a personalized brain signature. For that purpose, we trained our proposed analytic 

pipeline in a test-retest study and we validated the outcome of this repeat cohort in a 

larger MEG cohort (N=183) with an unknown number of common subjects between 

the two for the experimenter (SID). 

   

 

 

 

https://sciwheel.com/work/citation?ids=11300614&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4725599,832405&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=4725599,832405&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=3301347&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11772914,12007802&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11772914,12007802&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5998973&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=796515&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=83084&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=796515,139415&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=796515,3457218&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=796515,3457218&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=14247045,9563461,8372007&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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2. Materials and Methods 

2.1 Subjects 

2.1.1 Repeat Scan Cohort (exp. 1) 

40 healthy subjects ( age 22.85 ± 3.74 years, 15 women and 25 men) underwent two 

resting-state MEG sessions (eyes open) over 2 consecutive weeks. For each 

participant, scans were scheduled on the same day of the week and the same time of 

the day. This is a test-retest study performed in CUBRIC Neuroimaging Centre with 

main aim to evaluate the repeatability of various measurements that can be extracted 

from MEG resting-state recordings.  The study was approved by the Ethics Committee 

of the School of Psychology at Cardiff University, and participants provided informed 

consent. 

  

2.1.2 Validation Cohort (exp. 2) 

 The second validation cohort consists of MEG resting-state recordings from N=183 

subjects (64 males and 124 females:124 with mean age of 24.79 and std 5.68). This 

large cohort is a collection of multimodal neuroimaging datasets performed in CUBRIC 

Neuroimaging Centre from a healthy population. The multimodal neuroimaging 

protocol of the repeat scan cohort is the same with the validation cohort. The study 

was approved by the Ethics Committee of the School of Psychology at Cardiff 

University, and participants provided informed consent. 22 subjects of the first cohort 

were also in this second cohort. This partial overlap provided an additional challenge 

to the classification procedure. 

These data were provided to SID by the study PIs (DEL and KS) without prior 

information as to whether there were any common subjects between the MEG repeat 

scan study and the normative database 
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The recruitment of participants in both cohorts was inclusive to all persons 

without limitations by 1) sex or gender, 2) race or ethnicity, or 3) age other than as 

scientifically justified and as specified in enrollment inclusion and exclusion criteria.  

2.2 MEG-MRI Recordings 

 Whole-head MEG recordings were made using a 275-channel CTF radial 

gradiometer system. An additional 29 reference channels were recorded for noise 

cancellation purposes and the primary sensors were analyzed as synthetic third-order 

gradiometers. Two or three of the 275 channels were turned off due to excessive 

sensor noise (depending on time of acquisition). Subjects were seated upright in the 

magnetically shielded room. To achieve MRI/MEG co-registration, fiduciary markers 

were placed at fixed distances from three anatomical landmarks identifiable in the 

subject’s anatomical MRI, and their locations were verified afterward using high-

resolution digital photographs. Head localization was performed before and after each 

recording, and a trigger was sent to the acquisition computer at relevant stimulus 

events. 

All datasets were either acquired at or down-sampled to 600 Hz, and filtered 

with a 1-Hz high-pass and a 200-Hz lowpass filter. The data were first whitened and 

reduced in dimensionality using principal component analysis with a threshold set to 

95% of the total variance. The statistical values of kurtosis, Rényi entropy, and 

skewness of each independent component were used to eliminate ocular, muscle, and 

cardiac artifacts. We estimated those metrics in a dynamic fashion adopting a sliding 

window mode of width 2 sec with no overlapping leading to a number of 30x5 = 150 

temporal segments. Specifically, a component was deemed artifactual if more than 

20% of the total number of temporal segments (more than 30) showed all the metric 

values  after normalization to zero-mean and unit-variance outside the range of [-2, 

+2]. The artifact-free multichannel MEG resting-state recordings were then entered 

into the beamforming analysis (see next section). 

Subjects further underwent an MRI session in which a T1- weighted 1-mm 

anatomical scan was acquired, using an inversion recovery spoiled gradient echo 

acquisition. Both MRI and MEG recordings in both cohorts have been collected on the 

same day following a common multimodal neuroimaging protocol. 
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2.3 Beamforming 

An atlas-based beamformer approach was adopted to project MEG data from the 

sensor level to source space independently for each brain rhythm. The frequency 

bands studied were: δ (1- 4 Hz), θ (4-8 Hz), α1 (8-10 Hz), α2 (10-13 Hz), β1 (13-20 Hz), 

β2 (20-30 Hz), γ1 (30-45 Hz), γ2 (55-90 Hz). First, the coregistered MRI was spatially 

normalized to a template MRI using SPM8 (Weiskopf et al. 2011). The AAL atlas was 

used to anatomically label the voxels, for each participant and session, in this template 

space. The 90 cortical regions of interest (ROIs) were used for further analysis, as is 

common in recent studies (Hillebrand et al. 2016). Next, neuronal activity in the atlas-

labeled voxels was reconstructed using the LCMV source localization algorithm as 

implemented in Fieldtrip (Oostenveld et al. 2011) . The MEG lead field was based on 

a VC model created using the boundary element method (BEM). 

The beamformer sequentially reconstructs the activity for each voxel in a 

predefined grid covering the entire brain (spacing 6 mm) by weighting the contribution 

of each MEG sensor to a voxel’s time series – a procedure that creates the spatial 

filters that can then project sensor activity to the cortical activity. Each ROI in the atlas 

contains many voxels, and the numbers of voxels per ROI differ. To obtain a single 

representative time series for every ROI, we defined a functional-centroid ROI 

representative by functionally interpolating activity from the voxel time series, within 

each ROI, in a weighted fashion. Specifically, we estimated a functional connectivity 

map between every pair of source time series within each of the AALs ROIs (eq.1) 

using correlation (eq.2). We then estimated the connectivity strength of each voxel 

within the ROI by summing its connectivity values to other voxels within the same ROI 

(eq.3) and finally we normalized each strength by the sum of strengths (eq.4) to 

estimate a set of weights within the ROI that sum to a value of 1. Finally, we multiplied 

each voxel time series with their respective weights and we summed across them to 

get a representative time series for each ROI (eq.5). The whole procedure was applied 

independently to every quasi-stable temporal segment derived by the settings of 

temporal window and stepping criterion. 

The following equations 1-5 demonstrated the steps for this functional interpolation. 

  

https://sciwheel.com/work/citation?ids=7850403&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2506844&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=375848&pre=&suf=&sa=0
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𝑅𝑂𝐼𝑚𝑎𝑝 ∈ 𝑅𝑣𝑜𝑥𝑒𝑙𝑠 𝑥 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , 𝑣𝑜𝑥𝑒𝑙𝑠 ∈ 𝑛𝑜 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙 𝑡𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑒𝑎𝑐ℎ 𝑅𝑂𝐼 (1)  
𝑆𝑉𝑜𝑥𝑒𝑙𝑠 = ∑ ∑ 𝑎𝑏𝑠(𝑐𝑜𝑟𝑟(𝑅𝑂𝐼𝑘𝑚𝑎𝑝(𝑡), 𝑐𝑜𝑟𝑟 (𝑅𝑂𝐼𝑙𝑚𝑎𝑝(𝑡))), 𝑆𝑉𝑜𝑥𝑒𝑙𝑠  𝑉𝑜𝑥𝑒𝑙𝑠

𝑙=𝑘+1
𝑉𝑜𝑥𝑒𝑙𝑠

𝑘=1∈ 𝑅𝑂𝐼 𝑋 𝑅𝑂𝐼  (2)     
 

  𝑆𝑆𝑘 = ∑ 𝑐𝑜𝑟𝑟(𝑘, : ), 𝑆𝑆 ∈ 1 𝑥 𝑅𝑂𝐼  (3)𝑉𝑜𝑥𝑒𝑙𝑠
𝑘=1  

𝑊𝑘 = 𝑆𝑆𝑘∑ 𝑆𝑆𝑘𝑉𝑜𝑥𝑒𝑙𝑠𝑘=1   (4)  
𝑅𝑂𝐼𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = ∑ 𝑅𝑂𝐼𝑘𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 ∗ 𝑊𝑘   (5)𝑉𝑜𝑥𝑒𝑙𝑠

𝑘=1  

 

 

2.3.1 MEG Dynamic Source Connectivity Analysis 

A dynamic connectivity analysis, based on a sliding-window approach, was applied 

to eight conventionally-defined frequency bands: δ (0.5–4 Hz); θ (4–8 Hz); α1 (8–10 

Hz); α2 (10–13 Hz); β1 (13–20 Hz), β2 (20–30 Hz), γ1 (30–45 Hz) and γ2 (55–90 Hz). 

Band-limited brain activity was derived by applying a third-order Βutterworth filter (in 

zero-phase mode). We quantified the brain source network, employing two types of 

interactions and adopting properly defined connectivity estimators: a) intra-frequency 

phase coupling within each of the eight frequencies was estimated using the imaginary 

part of the phase locking value (iPLV, (Dimitriadis and Salis 2017; Dimitriadis et al. 

2017) ); b) cross-frequency coupling (CFC), namely phase-to-amplitude coupling 

(PAC) between 15 possible pairs of frequencies was defined with the PAC estimator 

(Dimitriadis and Salis 2017).The strength of the connections estimated with the two 

adopted connectivity estimators (iPLV/PAC) ranged from 0 to 1. The derived quantities 

are tabulated in a 90 x 90 matrix, called hereafter the “functional connectivity graph” 

(FCG), in which each element conveys the strength of iPLV/PAC for each pair of 

cortical sources. The aforementioned procedure produced 8+28=36 FCGs for each 

participant, in each sliding window. To further clarify the total amount of coupling 

modes, we estimated 8 within-frequency coupling modes (one per frequency), and 

https://sciwheel.com/work/citation?ids=11300614,6713512&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11300614,6713512&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11300614&pre=&suf=&sa=0
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8*7/2 = 28 cross-frequency coupling modes per pair of ROIs and per sliding mode.  

This procedure produces 36 coupling modes per pair of ROIs and per sliding mode. 

    We adopted a sliding-window of 1 sec moving every 100msec to capture, in 

more detail, possible transitions of dominant intrinsic coupling modes between 

consecutive windows (see sections 5-6 for the optimization strategy of the width of the 

temporal window and the stepping criterion). The whole approach led to 2991 [(300 

secs – 1)/0.1 +1] time-varying FCGs for each participant and session. For each 

participant and for each connectivity estimator, 4D dynamic functional connectivity 

graphs were derived, each with dimension: (modes:8+28) x 2991 (temporal segments) 

x 90 (ROIs) x 90 (ROIs). Table 1 summarizes the derived dynamic graphs and their 

dimension for each subject (see also Fig.1).  Our methodology has already been 

demonstrated and validated in several functional neuroimaging studies (Dimitriadis 

and Salis 2017; Dimitriadis 2018; Dimitriadis 2021) 

 

Table 1. Dimensions and information tabulated in the dynamic functional connectivity 

graphs 

  Dimensions Directed Within 

Frequencies 

Between 

Frequencies 

iPLV 8x2991x90x90   ✓   

PAC 28x2991x90x90 ✓   ✓ 

  

 

 

 

https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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2.3.2 Surrogate MEG Source Connectivity Analysis 

To estimate the statistical significance of the iPLV/PAC-interactions, which were 

estimated within frequencies and for every pair of frequencies, between all 90 sensors, 

and at each successive sliding window, we employed surrogate data (Dimitriadis 

2021). Surrogate data analyses determined: (a) if a given PAC value differed from 

what would be expected by chance alone, and (b) if a given non-zero PAC indicated 

coupling that was, at least statistically, non-spurious. 

Significant iPLV values were determined after calculating iPLV for rs = 10.000 

surrogates for each connection derived by selecting a random time-point from the 

amplitude time series of one of the sources and then exchanging the order of the two 

segments that were created (Dimitriadis and Salis 2017; Dimitriadis 2018; Dimitriadis 

2021). Similarly, significant PAC values were determined after calculating PAC for rs 

= 10.000 surrogates for each connection derived by selecting a random time-point 

from the amplitude time series (high-frequency) and then exchanging the two ordered 

segments. 

For every time window, sensor-pair, and pair of frequencies, we tested the null 

hypothesis H0 that the observed PAC value came from the same distribution as the 

distribution of surrogate PAC-values. Ten thousand surrogate time-series ϕsLF(t) were 

generated by cutting at a single point at a random location and exchanging the two 

resulting time courses (Aru et al. 2015) . Repeating this procedure produced a set of 

surrogates with minimal distortion of the original phase dynamics and impact on the 

non-stationarity of brain activity as compared to either merely shuffling the time series 

or cutting and rebuilding the time series in more than one time point. With this 

aforementioned approach, the non-stationarity of the brain activity as captured from 

the source time series is less affected compared to circularly permuted phase time 

series (low-frequency) for PAC relative to amplitude series (high-frequency for PAC) 

and the phase of the time series for iPLV. This procedure ensures that the observed 

and surrogate indices share the same statistical properties. The amplitude distribution 

and Fourier spectra of original time series and surrogate time series are identical, the 

autocorrelation functions, the means and standard deviations of amplitude 

distributions are also identical.   

https://sciwheel.com/work/citation?ids=9563461&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9563461&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=648284&pre=&suf=&sa=0
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 For each subject and condition, the surrogate PAC (sPAC) was computed. We then 

determined a one-sided p-value expressing the likelihood that the observed PAC value 

could belong to the surrogate distribution, and corresponded to the proportion of 

“surrogate”’ PACs which was higher than the observed PAC value (Dimitriadis and 

Salis 2017; Dimitriadis 2018; Dimitriadis 2021). PAC values associated with 

statistically significant p-values were considered unlikely to reflect signals not entailing 

PAC coupling. 

 Similarly, for each subject and condition, the surrogate iPLV (siPLV) was computed. 

We determined a one-sided p-value expressing the likelihood that the observed iPLV 

value could belong to the surrogate distribution, and corresponded to the proportion 

of “surrogate”’ iPLVs which was higher than the observed iPLV value (13, 56, 57). iPLV 

values associated with statistically significant p-values were considered unlikely to 

reflect signals not entailing iPLV coupling. 

After obtaining a p-value per pair of MEG sources at every temporal segment and 

for each of 36 intra and inter-frequency coupling modes, we corrected for multiple 

comparisons (p < 0.001 ; Bonferroni correction, p’ < p/36). The False Discovery Rate 

(FDR) method (Benjamini Y, Hochberg Y, 1995 ; Dimitriadis and Salis 2017; 

Dimitriadis 2018; Dimitriadis 2021) was employed to control for multiple comparisons 

across the whole network based on the identified DoCM with the expected proportion 

of false positives set to q ≤ 0.01. Finally, the PAC mode that characterized a specific 

pair of frequencies was determined based on the highest, statistically significant PAC 

value from surrogates. Then, we compared the Bonferroni corrected p-values for both 

{i,j} and {j,i} pairs of brain areas and we assigned to every pair of ROIs the type and 

strength of functional coupling corresponding to the lowest p-value or in the case of 

equal p-value, the one with the highest functional strength. We analyzed the resulting 

dynamic functional connectivity graphs as undirected. 

The aforementioned statistical test is important to detect the dominant intrinsic 

coupling mode between every pair of sources across each temporal segment. In that 

case, our method assigned to every pair of ROIs, the preferred type of interaction 

https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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which can be from any of the 36 different coupling modes (8 intra-frequency and 28 

cross-frequency pairs ; see Fig.1.B). 

The proposed integration model assumes that if two brain areas are communicating 

then this should be realized via a preferred dominant coupling mode. In Fig.2, we 

illustrated an example of how this model worked for a pair of sources in two 

consecutive temporal segments. From 36 potential coupling modes finally we 

concluded to a dominant coupling mode (either intra or cross-frequency coupling) or 

none. 

The detection of the dominant coupling mode per pair of MEG sources is given in 

Fig.2.B. Practically, the statistical surrogate analysis can lead to three conditions : a) 

only one frequency or frequency pair met the statistical thresholding criterion, b) In the 

case of two frequencies or frequency pairs both exceeding the statistical threshold, 

the one with the highest iPLV/PAC value was identified as the characteristic iPLV/PAC 

mode for this pair of sensors at that particular time window and c) If none of the within 

frequency or cross-frequency pairs exceed the statistical threshold, a value of zero 

was assigned to this pair of sensors so there is no identified characteristic coupling 

mode. The selection of the maximum iPLV/PAC value in the b) condition can be 

adopted as a solution in the case of more than one surviving frequency and/or 

frequency pair since both iPLV/PAC are quantified based on the same formula. Finally, 

for each participant the resulting TViPLV/PAC profiles constituted a 4D array of size [36 

(frequencies and pairs of frequencies) × 2991 (temporal segments) × 90 (sources) × 

90 (sources)]. The identity of prominent frequencies or frequency pairs for every pair 

of sources) at each time window was finally stored in a second 4D array of size [36 × 

2991 × 90 × 90]. In the latter array significant iPLV/PAC interactions were indicated by 

a value of 1, with zeros indicating non-significant iPLV/PAC interactions.  The 

procedure of statistical and topological filtering is demonstrated in Fig.1.C. DoCM has 

been already established in our previous studies (Dimitriadis and Salis 2017; 

Dimitriadis 2018; Dimitriadis 2021). 

https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11300614,8372007,9563461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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Fig.1. Construction of integrated dynamic functional connectivity graphs 

(iDFCG)  

(A) We constructed one DFCG per coupling mode for both within-frequency 

coupling and cross-frequency coupling modes (36 in total). Similarly, we 

constructed 10.000 surrogates DFCG per coupling mode, and assigned a p-value 

per each of the 36 coupling modes for every pair of ROIs within a temporal 

segment. An example of the first three temporal segments from the first subject of 

the first cohort is illustrated in (B). From this process, we can untangle if two brain 

regions are functionally connected and if so, which is the preferred dominant 

coupling mode. The outcome of the surrogate analysis is an iDFCG that preserves 

both the weight and the dominant type of interaction. 

 

 

 

2.3.4 Dynamic Reconfiguration of Dominant Coupling Modes 

          The outcome of this novel approach is demonstrated in Fig.1 and Fig.2. The 

colored lines illustrate the fluctuation of the preferred coupling modes for three pairs 

of MEG sources from participant 1 (Fig.3.A). The color codes the strength of the iPLV/ 

PAC connectivity estimator while the y-axis refers to one of the 36 possible coupling 

modes. The colored 2D matrices are called comodulograms and summarize the 

probability distribution of each coupling mode for a single pair of MEG ROIs (Fig.3.B). 

Fig.3.A illustrates the core of our methodology that explains how we integrate the 

dominant coupling modes into a single dynamic functional connectivity graph. The 

main outcome of this model is a sequence of dominant coupling modes between every 

pair of neuromagnetic sources across experimental time. Dominant coupling modes 
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can be seen as the basic letters of neural transmission that can form a ‘word’ for neural 

information exchange between two sources. 

 

Fig.2. Determining Dominant Intrinsic Coupling Modes (DoCM). 

A. Schematic illustration of the approach employed to identify the DoCM between 

two AAL atlas ROIs (Left superior frontal gyrus, Right superior frontal gyrus) for 

two consecutive 1s sliding time windows (t1, t2) during the resting-state MEG 

recording. In this example, the functional interdependence between band-passed 

signals from the two sensors was indexed by imaginary Phase Locking (iPLV). In 

this manner iPLV was computed between the two sensors either for same-

frequency oscillations (e.g., δ to δ) or between different frequencies (e.g., δ to θ) 

(PICM:Potential Intrinsic Coupling Modes). Statistical filtering, using surrogate data 

for reference, was employed to assess whether each iPLV value was significantly 

different from chance. During t1 the DoCM reflected significant phase locking 

between δ and α2 oscillations (indicated by red rectangles) whereas during t2 the 

dominant interaction was found between δ and θ oscillations.  

B. Burst of DoCM between Left superior frontal gyrus and Right superior frontal 

gyrus. This packeting can be thought to group the ‘letters’ contained in the DoCM 
series to form a neural “word.”, representing a possible integration of many DoCMs.  

 

We illustrate the dynamic reconfiguration of dominant coupling modes, across 

experimental time, for four pairs of sources from a single subject. Εach subplot in 

Fig.2A illustrates the richness of information in neuromagnetic source connectivity time 
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series in terms of the fluctuations of dominant coupling modes over and above mere 

coupling strength. 

In Fig.3, we showed the first 2 secs out of 300 secs for four pairs of sources. Our 

DoCM model untangled the dominant coupling mode per pair of brain areas at every 

snapshot of the dynamic connectivity analysis. These sequences of DoCM were used 

to construct the comodulograms that tabulate the probability distribution of DoCM 

across experimental time per every pair of brain areas (see Fig.3, right column).   

 

 

 

 

 

 

Fig.3.Dynamic reconfiguration of dominant coupling modes for four pairs of 

ROIs. A) right Frontal-Superior-Orbital - right Parietal-Superior, B) Left Frontal-

Middle - right Parietal –Inferior, C) left Frontal-Middle - right Frontal-Middle, and 

D) left Temporal Superior – left Frontal Superior for subject 1. 

A. In the left subplot, color represents the strength of iPLV coupling while the 

height of the fluctuated time series (y-axis) codes the dominant intrinsic coupling 
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mode (DoCM) over 36 possible options (8 for intra-frequency and 28 for cross-

frequency coupling). 

B.    The 2D matrix is a comodulogram that tabulates the probability distribution 

(PD) of each dominant coupling mode across the time series presented in A. For 

each time series, we plotted the comodulograms which tabulate the probability 

distribution of dominant coupling modes across intra (main diagonal) and cross-

frequency coupling (off-diagonal). The total sum of the probability distribution is 

equal to 1. The horizontal axis refers to the modulating frequencies while the 

vertical axis refers to the modulated frequencies. From the comodulograms, one 

can understand that the basic modulators of intrinsic activity are mainly  δ , θ, α1, 

and α2 brain rhythms. 

  

 

  

3. Modelling the Dynamic Reconfiguration of Dominant Coupling Modes via 

Markovian Models (MM) (Exp. 1) 

  We modeled the time series that describes the temporal evolution of the 

dominant coupling mode per pair of sources with a discrete Hidden Markovian Model 

(dHMM) (Fig.2. and Fig.3). For every time series called hereafter DoCM ts, we can 

estimate the probability distribution (PD) of DoCM.  PD is a vector of size 36 that 

quantifies the PD of DoCM across experimental time which equals 2991 temporal 

segments. We estimated PD for every pair of sources. 

For every DoCMts, a dHMM was used to model each DoCMts using the using the 

Expectation Maximization algorithm (Baum-Welch method). With this approach, for 

every DoCMts and independently for each subject, we searched for the best model 

described by the transition matrix, the priors, and the observation matrix by minimizing 

the log-likelihood between the original system and the one modeled via the dHMM. 

For that purpose, dHMMs were trained using the Baum-Welch algorithm (for further 

details see section 1 in the sup.material). 

We optimized the number of states for each DoCM by minimizing the error 

between the trained HMM and the original data. This leads to 90*(90-1)/2=4005 

training sets for each subject and scan sessions. Each subject is a separate class 
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k=40 and our goal is to detect the subset of MEG source pairs that can accurately 

detect each subject compared to the rest. 

         The procedure of brain fingerprinting based on the estimation of probability 

distribution (PD) of dominant coupling modes over the DoCM ts to increase recognition 

accuracy can be summarized as follows: 

The following steps were repeated separately for each DoCM ts. 

1.  PD is a vector of size 28 that quantifies the probability distribution of DoCM 

across experimental time which equals 2991 temporal segments. 

2.  In our case, we estimated PD across 6 epochs over every time series of size 

2991 temporal segments {1-500,501-1000,1001-1500,1501-2000,2001-

2500,2501-2991} and between every pair of sources. The outcome of this 

preprocessing step is a feature matrix of size (FM): 6 (epochs) x 28 (no of dominant 

coupling modes). 

3.  We trained one dHMM model over every FM related to a pair of sources 

(n=4005) per subject (k=40) independently per subject from the first scan session 

4.  To classify an incoming sequence of DoCM, we computed the log-likelihood 

that every k model gives to the test sequence derived from the second session. if 

the k'th model is the most likely, then declare the class of the sequence to be class 

k 

5.  We followed the aforementioned procedure for every 4005 time series and 

explicitly for every 4005 PD matrices.  

6.  From this procedure, DoCMts were ranked according to their discriminative 

power (performance) to separate participants from the remainder of the sample.  

7.  This procedure was repeated iteratively with the main scope of aggregating the 

most important DoCMts such as to increase the classification accuracy. Then, we 

added the 2nd DoCMts, and we used the sum of log-likelihood from the 2 time series 

as a way to declare the class k of both sequences and so forth. This procedure 

was followed till reaching a plateau for the identification accuracy. 
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8.  76 connections succeeded to discriminate every subject over the rest and the 

related topology is given in Fig.6A-D. Fig.4 illustrates how the integration of the 

selected edges improved the classification performance (CP) of brain 

fingerprinting. 

9.  Fig.7 illustrates the sum of log-likelihood outcome using the 76 training dHMM 

models from every subject, related to each of the 76 selected DoCM ts  from the first 

scan session, with the 76 testing sequences of DoCM ts for every k-1 subject. 

  

 

 

Fig.4. Step-wise classification performance (CP) of the brain-fingerprinting for the 76 

selected edges. 

  

 

4.Flexibility Index (FI) based on the Dynamic Reconfiguration of Dominant 

Intrinsic Coupling Modes (DoCM)   

A novel Flexibility Index (FI) based on the Dynamic Reconfiguration of DoCM has been 

applied to the 1st cohort. FI is based on the concept that variability of connectivity 

patterns (that is, more frequent switches between DoCM), captures the brain’s 

flexibility. 
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We briefly describe its definition in the following section 

The outcome of statistical filtering was two 3D matrices per subject and condition 

each one with dimensions: 2991 (temporal segments) x 90 (sources) x 90 (sources). 

The first one keeps the weights of the survived functional connections while the second 

tabulates with an integer the dominant coupling mode. 

From the second 3D matrix, we can estimate the stability of functional connections 

across time in terms of the DoCM. This estimator is called flexibility index (FI) and 

encounters for each pair of MEG sources how many times a DoCM changes between 

two consecutive temporal segments. FI is defined as follows: 
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Where T=2991 and Sources=90. 

We have proposed this FI as a novel temporal variability measure that may be a 

suitable indicator of the flexibility of a brain region, and could potentially be used to 

predict the outcome of learning or to demonstrate changes due to disorders. Our 

recent fMRI-based dynamic functional connectivity study ( Parmigiano et al., 2017 ; 

Dimitriadis 2021 ; Sorrentino et al., 2021) has shown that FI predicts memory. 

  

5. Optimization of Parameters for the Sliding Window Approach 

The basic parameters of a time-varying approach based on a sliding window are the 

width of the sliding window and the stepping criterion that defines the moving of the 

window to the next temporal segment. We optimized the basic parameters of the 

sliding-window time-varying approach {width of time-window, stepping criterion} based 

on the reliability of flexibility index (FI) using the dataset from the 1st cohort. The 

objective criterion was to increase the correlation of network-wise FI between the two 

sessions. This is a significant criterion since in our study we mixed all the different 

coupling modes into a single dynamic functional brain network. With this procedure, 

we decided to identify a repeatable frequency of temporal changes of dominant 

https://sciwheel.com/work/citation?ids=9563461&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9563461&pre=&suf=&sa=0
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coupling modes across the network, as a way to optimize the sliding window and the 

stepping criterion but without bias the selection on the connection level. Additionally, 

the coupling strength of every coupling mode would change by changing the width of 

the temporal window and also the stepping criterion. However, in our approach, we 

care about the repeatability of the frequency of temporal changes of dominant coupling 

modes across the network and not on their coupling strength. 

We employed a large set of settings for the width of temporal window {0.5, 0.75 

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3} sec and stepping criterion 

{50,100,150,200,250,300,350,400,450,500} msec. This procedure yielded a width of 

1 sec and a stepping criterion of 100 ms as best settings, based on the optimized 

reliability of FI (Fig.6). 

Fig.5 illustrates the correlation of FI across sessions 1 and 2 for the 40 subjects. 

The intra-class correlation coefficient is 0.89, the R2 is 0.7 and the correlation 

coefficient is 0.8569. 

 

Fig.5. Reliability of FI across the repeat MEG resting-state cohort 

 

6. External Validation of the Identification Process in a Second Cohort (Exp. 2) 

To validate our identification scheme, we repeated the whole preprocessing 

analysis in the 2nd cohort of N=183 subjects.  Our goal was to blindly identify the 

participants that were common to both cohorts (1st cohort of 40 repeat scans and the 

2nd cohort of N=183 subjects). Author SID did not know how many participants from 

the test-retest study participated in the population study. The main goal of this external 
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blind identification step was to identify the correct number and identity of subjects from 

the 1st cohort that have a 3rd scan in the 2nd cohort. 

For that reason, we have to extract a decision-making scheme from the sum of 

log-likelihood as derived by using the 76 training dHMM models from every subject, 

related to each of the 76 selected DoCMts  from the first scan session, with the testing 

sequences for every k-1 subject (step 9 previous section). Fig.6E illustrates the 

similarity matrix that encapsulates each pair-wise sum of log-likelihood. Based on the 

similarity matrix shown in Fig.6E, we estimated the threshold values important for the 

external validation task. We estimated the threshold1 574.01±15.51 from the off-

diagonal values and the threshold2 1754.90± 116.55 from the diagonal values from 

Fig.6E. Both thresholds are important to identify the unknown number of subjects from 

the first test-retest study that participated in the second large cohort. 

         The 76 trained dHMM models for every DoCMts derived from the first scan 

session and applied independently per subject were used for testing every set of 76 

DoCMts from the second population cohort of 183 subjects. Applying the threshold as 

derived from the similarity matrix (Fig.7E) and it was stated above, we decided if a 

subject from the 1st study participated also in the 2nd cohort. Fig.7F illustrates the 

similarity matrix that tabulates the sum of log-likelihood between every pair of subjects 

between the two studies. The performance of cross-experiment identification with the 

relevant sum of log-likelihood estimated between the two cohorts is shown in Fig.7. 

Fig.8 illustrates the Differentiability scores, for each of the original 40 participants, 

when matching is attempted in cohort 2 (N=183). 

7. Validation of the DoCM across alternative scenarios 

 In order to strengthen the outcome of our research approach based on DoCM, 

we applied the following experiments answering the following questions: 

1. Does the set of 76 connections showed in Fig.6B is unique across 

surrogate sets of 76 connections across the total set of 4.005?  

To answer to this type of question, we randomly selected 1.000 random sets of 76 

connections sampling the complete set of 4.005 possible pairs, and presenting the 

outcome of this approach following the same procedure.  
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2. Does the power spectrum could show similar performance with the 

semantic information of DoCM? 

 

We employed Welch’s method to derive power spectrum density (PSD) 

estimates for each ROI, using time windows of 2 s with 50% overlap sled over all ROI 

representative time-series. The resulting frequency range of PSDs was 0–90 Hz, with 

a frequency resolution of 0.5 Hz. The following procedure under the brain 

fingerprinting framework has been realized independently for each of the eight 

studying frequency bands. We created a PSD profile from every subject and scan 

session by concatenating the ROI-based PSD profile into a single vector of features. 

We used the absolute value of Pearson’s correlation coefficient to quantify the 

correlation between every PSD profile of every subject from scan session 1 with the 

same PSD profile of all the subjects from scan session 2. This procedure should be 

run exhaustively between every subjects’ PSD profile from scan session 1 with every 

subjects’ PSD profile from scan session 2 producing a correlation vector of size [1 x 

40 (subjects)]. The index of the column featuring the largest absolute correlation 

coefficient determined the predicted (anonymous) identity of the individual in the 

second session cohort. Thus, if a given individual’s PSD from a single ROI from the 

first dataset were most correlated to the PSD of the same ROI from their second 

dataset, the individual would be correctly differentiated. This procedure will produce a 

binary vector of size [1 x 40] with 1s where an individual was correctly differentiated 

from the rest of the cohort, and 0s where is not correctly classified. By summing the 

columns of this vector and dividing by the total amount of subjects (here 40), we can 

access the classification performance of PSD.   

 

3. Does the static connectivity network could show similar performance with 

the semantic information of DoCM? 

 

We constructed static frequency-dependent functional brain networks of size 

[90 (ROIs) x 90 (ROIs)] per subject and scan session. Similarly, as in the PSD analysis, 

we vectorised the upper triangular of the brain networks producing a vector of features 

of size 4.005 which the possible pair-wise connections between every possible pair of 
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the 90 ROIs (90x89/2 = 4.005 pairs). We followed the same brain fingerprinting 

framework as described above.  This procedure has been realized independently for 

each of the eight studying frequency bands. 

 

4. Does the strength of dynamic connectivity network could show similar 

performance with the semantic information of DoCM? 

 

In our approach, we kept and analysed with dHMM method, the semantic 

information tabulated in 3D matrices of size The outcome of DoCM was two 3D 

matrices per subject and condition each one with dimensions: 2991 (temporal 

segments) x 90 (sources) x 90 (sources). The first one keeps the weights of the 

survived functional connections while the second tabulates with an integer the 

dominant coupling mode. Here, we will use the first 3D matric that tabulates the 

functional coupling strength of the dominant coupling modes as a way to test its brain 

fingerprinting validity versus the proposed approach. The 2nd and 3rd dimension of the 

3D matrix that refers to a snapshot of the dynamic functional connectivity graph was 

vectorised as in the static approach transforming the 3D matrix into a 2D matrix of size 

[2991 x 4.005]. We followed the same brain fingerprinting framework as described 

above but we adopted the Euclidean distance as a proper distance metric to measure 

the similarity of two 2D matrices.  

Results 

Stage. 1: Identification of a neuromagnetic fingerprint from the Dynamic 

Reconfiguration of Dominant Coupling Modes 

In the first stage, analysis of a test-retest dataset, we first performed a 2D grid search 

using the whole-brain connectivity matrix, with no a priori restriction over specific 

subnetworks. Τhe Differentiability Score for the test-retest dataset was 4.3 ±0.4 while 

the differentiation accuracy was 100% (Fig.6E) for the 40 subjects. Fig.6E illustrates 

the sum of log-likelihood outcome using the 76 training dHMM models from every 

subject related to each of the 76 selected DoCMts from the first MEG session with the 

76 sequences of DoCMts from the second MEG session for each subject. The in-

diagonal of this matrix showed a high concordance between the two MEG sessions 

for every subject and a low likelihood between every pair of subjects (off-diagonal) 

supporting the absolute accuracy of the classification. Based on the similarity matrix 
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shown in Fig.6E, we estimated the threshold values important for the external 

validation task. We estimated the threshold1 574.01±15.51 from the off-diagonal 

values and the threshold2 1754.90± 116.55 from the diagonal values from Fig.6E. Both 

thresholds constituted the range of sum(LogLikelihood) values that are important to 

identify the subjects from the first test-retest study that participated in the second large 

cohort. 

 

 

  

Figure 6. Results of the Two stage analysis procedure. The Upper panel (Stage 1) shows the 

identification training using 40 participants with repeat resting-state MEG data. The Lower 

panel (Stage 2) shows the blind matching, or non-matching, of these 40 people to an 

independent dataset of 183 people. (A) and (B) show the nodes and connections that were 

identified as being important DoCM network features for the initial training. In (A) these are 

plotted on a 3D template brain representation, while in (B) the same connections are shown 

on a circular representation of the 90 AAL atlas regions. In (C) the distribution of the 76 

connections identified as part of the multi-parametric brain fingerprinting approach to the five 

sub-networks is shown. Each color encodes the total number (NC) of the identified 76 pairs 

within and between the five sub-networks (DMN:Default Mode Network, FP:Fronto-Parietal, 

O:Occipital, CO:Cingulo-Opercular, SM:Sensory Motor). In (D) the classification performance 

of each of the same sub-networks is shown. Each color encodes the classification 

performance (CP) of the 76 connections integrated within and between the five networks. (E) 

shows the performance of the matching procedure as a similarity matrix illustrating the 

summation of log-likelihood across 76 training discrete Hidden Markov Models (dHMM) 

models from the first dataset of each subject (x- axis) and from the second dataset of each 
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subject (y- axis).  (F) shows the performance of the independent matching test as a similarity 

matrix, showing the sum of log-likelihoods across 76 training dHMM models from every subject 

of the test-retest study and each set of 76 tested sequences of every subject from the 

population study. Yellow pixels in this matrix represent the successful identification of subjects 

from the first test-retest study that indeed participated in the second study. 

 

Subnetwork Identification based on the Dynamic Reconfiguration of Dominant 

Coupling Modes 

We ranked all the pairs of anatomical modes according to their discriminative power 

and then integrated step-wise the pairs if they improved the discrimination accuracy 

further. The topology of these connections is given in Figure 6A and Figure 6B. The 

distribution of these pairs within and between the five brain networks can be seen in 

Fig.6C, D. Major contributions were located within the cingulo-opercular network (CO: 

8 connections) and between the default-mode network (DMN) and the CO (DMN-CO: 

7 connections) and the sensorimotor (SM) network (DMN-SM: 6 connections). Βased 

on the probability distribution of the selected 76 time-series between pairs of ROIs, we 

revealed that the major frequency contributors both within and cross-frequency 

coupling modes were in descending order α1, δ, α2, and θ,. 

After training optimization, we achieved 100% identification of the independent second 

MEG measurement of the 40 participants of the repeat cohort using 76 pairs of 

anatomical nodes from (90*89/2 = 4005) possible connections. 

  

Quantifying edgewise contribution to brain identification 

To quantify the extent to which the 76 pairs contributed to the fingerprinting of the forty 

subjects, we repeated the same classification procedure by integrating the 

connections either within or between the five brain networks. The dynamic 

reconfiguration of DoCM for every pair of connections that group together in the same 

brain network was used as a unique pool of features. We did not average the evolution 

of DoCM for pairs grouped within the same network or between the networks. A pair 

can connect two brain areas that are both located on the same brain network (5 total 

cases) or each brain area is located in different brain networks. This gives 5*(5-1)/2=10 

pair-wise combinations of the brain networks and one configuration for each brain 
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network giving us a total number of 15 runs. We repeated the same classification 

identification methodology independently for the 15 in total cases. We finally, ranked 

the performance of the 15 cases to reveal the highest contribution from each one.  

Fig.6D illustrates the classification performance of the identification for each of the 15 

cases. The best performance for individual discrimination was achieved at 57.5% (23 

out of 40 subjects;) for the pair of DMN-CO and by the within-FP DOCM with 57.5% 

(23 out of 40 subjects), the DoCM within the CO subnetwork with 50% (20 out of 40 

subjects), the DoCM within the DMN subnetwork with 42.5% (17 out of 40 subjects) 

and DoCM of the DMN-FP integration with 37.5% (15 out of 40 subjects),  O with 

22.5% ( 9 out of 40 subjects) and SM with 25% (10 out of 40 subjects) contribute the 

least to individual subject identification. 

 

Stage. 2: Testing the Neuromagnetic Brain Fingerprinting Approach in a 

Second Population Study 

To further validate our approach of brain fingerprinting in a second dataset (external 

validation), we applied the same framework, using the same subnetwork of 76 

connections, to MEG resting state datasets from 183 subjects who had participated in 

a multi-modal study in CUBRIC as part of the creation of a large normative 

neuroimaging database  (Buzsáki and Wang 2012). With this approach, we replicate 

the same methodology and also the relevance of the nodes highlighted in the previous 

stage. We succeeded to recover both the number (N=22) and the identity of all 

subjects from our cohort of forty (exp. 1) who were involved also in this second study 

(Figure 6F). Yellow pixels in this 2D similarity matrix correctly identify the 22 subjects 

who also took part in the second study. Fig.7 illustrates the performance of this cross-

experiment identification. In Fig.7, we showed the sum(LogLikelihood) of each of the 

40 subjects from the first cohort matched to the 183 subjects from the second cohort. 

For 22 out of the 40 participants, a single sum(LogLikelihood) is seen that exceeds a 

value of 1400 that supports the absolute differentiation accuracy of 100%. For 

unsuccessful matches a uniform distribution between 100 and 1000 can be seen, while 

in contrast, successful matches show a clear separation in having values above 1400. 

Fig.8 illustrates the Differentiability scores for both the identified and not identified 

subjects of the test-retest dataset.  For those 22 participants present in the second 

https://sciwheel.com/work/citation?ids=276383&pre=&suf=&sa=0
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cohort, the mean score is 4.7 +/- 0.5 (Fig.8). For those 18 participants unpresented in 

the second cohort, the score is 1.7+/-0.1 (Fig.8). 

 

Figure 7. Performance of cross-experiment identification. For each of the 40 participants in 

Cohort 1, the sum(LogLikelihood) is plotted for each match to the 183 people in the second 

cohort. For 18 of the participants, this is a distribution of values between 100-1000, 

representing no match i.e. the algorithm has correctly estimated that these 18 people were 

not in the second cohort. For 22 of the 40 participants, a single sum(LogLikelihood) is seen 

that exceeds a value of 1400. This represents a successful match between Cohort 1 and 

Cohort 2.  

 



28 
 

 

Figure 8. Differentiability scores (da Silva Castanheira et al., 2021 (19)), for each of the 

original 40 participants, when matching is attempted in cohort 2 (N=183). For those 22 

participants present in the second cohort, the mean score is 4.7 +/- 0.5. For those 18 

participants not present in the second cohort, the score is 1.7+/-0.1 

 

Brain Fingerprinting with surrogates of 76-tuples of DoCM profiles 

 The average performance of randomly selected 1.000 random sets of 76 

connections across the 4.005 possible pairs was 9.43%±3.62 for the repeat scan 

cohort (dataset 1), and 4.54%±3.12 for the validation cohort (dataset 2). 

Brain Fingerprinting with PSD, static and dynamic functional connectivity 

network (dFCN) profiles 

 The performance of PSD approach in both repeat and validation cohort is 

showed in the first row of Table 2. The highest performance was achieved in the repeat 

cohort in the γ sub-bands. Similarly, the performance of the static functional 

connectivity approach in both cohorts is tabulated in the second row of Table 2. 

Interestingly, the highest performance was achieved for the repeat cohort in γ sub-



29 
 

bands. Finally, the performance of the dFCN was 75.00 for the repeat cohort and 77.27 

for the validation cohort. 

 

 

Table 2. Performance of power spectrum, static and dynamic functional connectivity 

network in both repeat and validation cohort. 

 

 δ θ α1 α2 β1 β2 γ1 γ2 

Spectral: 
Repeat Cohort  
 
Validation 
Cohort 
 

 
42.50 
 
 
27.27 

 
55.00 
 
 
31.82 

 
52.50 
 
 
36.36 

 
55.00 
 
 
36.36 

 
57.50 
 
 
40.91 

 
52.50 
 
 
45.45 

 
67.50 
 
 
40.91 

 
65.00 
 
 
45.45 

Static 
Connectome: 
Repeat Cohort  
 
Validation 
Cohort 
 

 
47.50 
 
 
31.82 

 
57.50 
 
 
36.36 

 
55.00 
 
 
45.45 

 
57.50 
 
 
50.00 

 
62.50 
 
 
63.64 

 
57.50 
 
 
59.09 

 
70.00 
 
 
68.18 

 
72.50 
 
 
72.73 

 

 

Discussion  

In the present study, we show that an individual’s neural dynamics measured 

with MEG, formalized as a profile of the reconfiguration of dominant coupling modes 

between brain nodes, constitutes a reliable and unique neurophysiological ‘fingerprint’. 

We demonstrate that this novel signal processing approach allows the identification of 

an individual from a group of subjects only based on the fluctuations of dominant 

coupling modes of a subnetwork of 76 connections. We validated the identification 

accuracy strategy based on the DoCM in a second dataset of N=183 subjects by 

accurately identifying the subjects of the 1st scan cohort who participated in the second 

experiment. 

To further validate the importance of the DoCM model, we followed specific 

experiments. We first showed that the set of 76 pairs selected via our approach is a 

unique set and no other set of randomly selected 76 pairs out of 4.005 can produce 

similar results. The PSD and the frequency-dependent static functional connectivity 
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network profiles both showed a low performance in both cohorts across the frequency 

bands. Importantly, the dynamic functional connectivity network profile which tabulates 

the weights of the DoCM showed the highest performance reaching 75.00 for the 

repeat cohort and 77.27 for the validation cohort. These findings showed that the 

semantic information of DoCM that was modelled via the dHMM  succeeded the 

absolute performance (100) in the validation cohort. 

The intra-individual consistency of functional brain networks has been 

highlighted in the resting-state with both static (Colclough et al., 2016)  and dynamic 

approaches (Abrol et al., 2017; Dimitriadis et al., 2018). However, our study was the 

first that explored the multiplexity of human brain dynamics by incorporating both 

within- and between-frequency coupling mechanisms into a single dynamic functional 

connectivity graph.   Whereas the majority of previous studies of intra-individual 

consistency analyzed functional connectivity only between predefined brain areas we 

took a whole-brain approach which captures the information flow between brain areas 

more comprehensively. The reliability of individual functional connectivity patterns of 

human brain dynamics is relevant to individual differences in cognition, personality, 

and behavior (Kanai and Rees, 2011; Hearne et al., 2016). Moreover, our results 

suggest that an individual’s dynamic dominant coupling mode profile might be used as 

a unique subject-specific descriptor of brain health. Our results underline the potential 

of MEG and oscillation-based dynamic connectivity to build novel oscillatory 

neuromarkers (van Pelt et al., 2012) that can eventually be used to personalize the 

diagnosis and treatment of mental and neurological disorders and hence improve the 

outcome of an intervention in clinical practice. For example, a recent study employed 

a large MEG dataset to explore if brief segments of frequency-dependent brain activity 

enable individual differentiation (da Silva Castanheira et al., 2021). They reported a 

high identification score of 98%. Another study adopted an open MEG dataset from 

the Human Connectome project where participants underwent three recording 

sessions within a single day (Sareen et al., 2021). The authors applied a static 

connectivity analysis adopting both phase and amplitude-based measures with and 

without spatial correction methods and in various frequency bands. They showed that 

all these factors influenced the MEG fingerprinting performance. The identification 

score of 98% was detected in phase-coupling methods, in central frequency bands 

https://sciwheel.com/work/citation?ids=8198922&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5998973,5861187&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=3911447,282706&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=382604&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11772914&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12007802&pre=&suf=&sa=0
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(alpha and beta), and in the visual, fronto-parietal, dorsal-attention, and default-mode 

networks (Sareen et al., 2021). 

Anatomic loci of distinguishing dynamic dominant coupling modes features 

Our data-driven approach, based on the treatment of the dynamic dominant 

coupling profile of each pair of brain areas as a Markovian Chain, revealed a small set 

of connections that accurately identify each individual over the whole set, with the main 

contributions coming from connectivity between the DMN and the CO and the FP, and 

within these three networks. The DMN-CO-FPN network thus creates a strong 

backbone for the unique characterization of the spatio-temporal profile of DoCM of 

each individual. 

The importance of the fronto-parietal network for individual functional 

connectivity profiles is consistent with the presumed individual specificity of high-order 

association networks that are most recent in evolutionary terms and demonstrate the 

highest inter-subject variability (Kanai and Rees, 2011; Cole et al., 2012; van Pelt et 

al., 2012). Nodes located in the fronto-parietal network (FPN) have been identified as 

flexible hubs that adjust to the requirements and demands of multi-task activity (Cole 

et al., 2014). Moreover, the complementary connections that start from the FPN  to 

other areas of the brain, such as the DMN, are consistent with the role of large-scale 

coordination of human brain activity (Smith et al., 2009; Martuzzi et al., 2010). 

        Previous studies in both structural and functional neuroimaging have linked 

the properties of the FPN  to the construct of fluid intelligence (Smith et al., 2009; Cole 

et al., 2014).  Moreover, abnormal functional connectivity in the FPN  has been linked 

to many neuropsychiatric diseases (Preusse et al., 2011; Sheffield et al., 2015; 

Tschentscher et al., 2017).  FPN and CON are hypothesized to support top-down 

control of executive functioning and for that reason can be seen as potential drivers of 

cognitive impairment in diseases such as schizophrenia (Uhlhaas and Singer, 2012; 

Cetin et al., 2016; Gross, 2019). The DMN-FPN-CON are thought to interact and 

together control attention, working memory, decision-making, and other higher-level 

cognitive operations (Cetin et al., 2016; Tschentscher et al., 2017). 

 Adding the time dimension into the analysis of brain connectomes yields 

“chronnectomes” based on network metrics that allow a dynamic view of functional 

https://sciwheel.com/work/citation?ids=12007802&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=282706,382604,83767&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=282706,382604,83767&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=717442&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=717442&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=296551,1113418&pre=&pre=&suf=&suf=&sa=0,0
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https://sciwheel.com/work/citation?ids=11773635,6254193,3028107&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=7035961,7667023,376439&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=7035961,7667023,376439&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=6254193,7035961&pre=&pre=&suf=&suf=&sa=0,0
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coupling modes. In the present study, we demonstrated that fluctuations of dominant 

coupling modes between brain networks are 'oscillatory fingerprints' of individualized 

chronnectomes in healthy individuals (Finn and Todd Constable, 2016; Horn et al., 

2017). Brain oscillations are amongst the neural phenotypes with the highest 

heritability (van Beijsterveldt and Boomsma, 1994; Begleiter and Porjesz, 2006). For 

this reason, brain rhythms have long been explored as potential endophenotypes of 

cognition and complex genetic disorders such as autism (David et al., 2016), 

schizophrenia and bipolar disorder (Başar et al., 2016), or Alzheimer’s disease (Pusil 

et al., 2019) but progress has been hampered by a lack of reliable, individually specific 

neuroelectric or neuromagnetic metrics. Our discovery of neuromagnetic fingerprints 

based on dominant coupling modes can thus become a signature of individual brain 

health and a marker for the progression of the disease and also a validated substrate 

for the design of novel personalized treatments (Finn and Todd Constable, 2016; 

Uhlhaas et al., 2017). 

MEG resting-state functional connectivity patterns are stable across life time 

within the subjects. A study took the advantage of this observation to explore the 

similarity of whole brain functional connectivity patterns to identify monozygotic twin 

pairs. They succeeded an identification rate of 75% showing large similarities in brain 

connectivity patterns between two genetically identical individuals even after 60 years 

of life or more (Demuru et al., 2017). Another study proposed the identifiability score 

and the general brain fingerprinting framework as a way to define clinical connectome 

fingerprints relevant to cognitive decline (Sorrentino et al., 2021). In another study, the 

authors proposed the clinical connectome fingerprint (CCF) approach where they 

showed a reduction of the identifiability score in the cohort with Parkinson’s disease is 

showed in beta band which was also proportional to the motor impairment (Lopez et 

al., 2023). The clinical utility of CCF was demonstrated by its ability to predict the 

individual motor impairment in patients affected by ALS (Romano et al., 2022). Another 

study explored the uniqueness of dynamic functional connectivity patterns across 

different temporal scales (van de Ville et al., 2021). 

Brain fingerprinting in the resting-state and the identification of personalized 

brain subnetworks can thus be highly relevant for understanding the biological basis 

of personality and cognitive traits. A recent study based on fMRI resting-state 

https://sciwheel.com/work/citation?ids=5999011,3792426&pre=&pre=&suf=&suf=&sa=0,0
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recordings and adopting a chronnectomic approach not only reported a high accuracy 

in identifying subjects, but also that the discriminative features predicted cognitive 

performance in domains such as fluid intelligence and executive function (Liu et al., 

2018). Another study reported that task-evoked brain activity estimated over brain 

regions defined by the resting-state networks explains the link between resting-state 

functional connectivity and cognitive task activations (Jiang et al., 2020). 

 

 

Methodological Considerations 

 It is important to mention here that our attempt was not to exhaustively explored 

how alternative graph construction scenarios can alter the final outcome of our 

research. We decided to investigate the multiplexity of resting-state brain oscillations 

in the phase domain. Similar analysis could be followed in the amplitude domain by 

adopting e.g. the correlation of the envelope (Colclough et al., 2016). In our study, we 

adopted a famous atlas, the AAL that is highly used in MEG studies and for that 

reason, many researchers can compare the findings with their own findings. We also 

adapted our approach to define the representative time series by weighting differently 

every voxel time series per ROI. However, there are alternative approaches on how 

one can define the representative time series. The first class is by collecting one voxel 

time series that A) is located in the centroid of the convex hull that orients the brain 

area (Centroid method) and B) also the one that encompass the maximum power 

spectrum (Power Spectrum method). The second class is by summarizing the activity 

from all the voxel time series A) by applying PCA on the voxel time-series and 

extracting the first principal component but with the drawback that the percentage of 

variance explained by the first principal component compared to the whole set of voxel 

time series could be different across the population or groups for specific ROIs, B) by 

getting the mean across the voxel time series which is a common technique mainly in 

fMRI (Mean method), C) by weighting every voxel time series according to its 

complementarity (Interpolation method - our approach). In our approach, the 

contribution of every voxel time series to the representative time series changes 

across experimental time and temporal segments. The definition of the representative 

https://sciwheel.com/work/citation?ids=4725599&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4725599&pre=&suf=&sa=0
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time series per ROI could affect the brain connectivity in both static (Dimitriadis et al., 

2018) and dynamic scenarios and also in the multiplex approach, but this is out of the 

scope of our study. 

 

Conclusion 

People can be identified through characteristic patterns of dynamic changes in 

functional connectivity during rest. This oscillatory fingerprint, derived from 

neuromagnetic data, was mainly driven by functional connectivity in and between 

fronto-parietal, default mode, and cingulo-opercular networks, highlighting the role of 

these networks in individual attributes such as intelligence and personality. Such 

individually specific patterns of neural dynamics can help unravel the neural 

mechanisms of stable individual traits such as personality features and intelligence 

and may in the future provide the basis for personalized diagnostics of changes in 

brain health. 
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