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RESEARCH PAPER
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ABSTRACT

Acute stress responses include release of defensive volatiles from herbivore-attacked plants. Here we used 
two closely related monocot species, rice as a representative C3 plant, and sorghum as a representative C4 
plant, and compared their basal and stress-induced headspace volatile organic compounds (VOCs). 
Although both plants emitted similar types of constitutive and induced VOCs, in agreement with the 
close phylogenetic relationship of the species, several mono- and sesquiterpenes have been significantly 
less abundant in headspace of sorghum relative to rice. Furthermore, in spite of generally lower VOC 
levels, some compounds, such as the green leaf volatile (Z)-3-hexenyl acetate and homoterpene DMNT, 
remained relatively high in the sorghum headspace, suggesting that a separate mechanism for dispersal 
of these compounds may have evolved in this plant. Finally, a variable amount of several VOCs among 
three sorghum cultivars of different geographical origins suggested that release of VOCs could be used as 
a valuable resource for the increase of sorghum resistance against herbivores.

ONE SENTENCE SUMMARY

This paper shows how genetically related plants with similar volatile toolboxes define their own species 
identity in the ecological space.
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Introduction

During coevolution with insects, plants developed a complex 
arsenal of defense mechanisms against antagonistic 
herbivores.1,2 One of these defenses is synthesizing and releas-
ing a complex bouquet of volatile organic compounds (here-
after called VOCs) in response to insect attack.3,4 An important 
subset of plant VOCs is induced by herbivory and therefore 
termed as herbivory-induced plant volatiles (HIPVs). The 
VOCs, and HIPVs in particular, play exceedingly important 
roles as infochemicals in the interactions between plants and 
insects.5 Whereas herbivorous insects make use of plant vola-
tiles to locate host plants as food,6 the success of natural 
enemies in locating their host (parasitoids) or prey (predators) 
also depends on these signals.7

While details on biosynthesis and release of VOCs have 
already been investigated in multiple dicots,8–10 relatively less 
is known about the volatile emissions from monocot plant 
species.11 In addition, the efficacy and potential differences in 
volatile emissions from C3 and C4 monocotyledonous plants 
have not yet been directly addressed. The best studied indivi-
dual monocot models to date include maize (C4 plant; Zea 
mays L.),12 and rice (C3 plant; Oryza sativa L.);13 however, 
additional studies are needed to expand the knowledge of 

monocot VOCs. For example, sorghum (C4 plant; Sorghum 

bicolor L.) is the fifth most important cereal, which is, however, 

quite susceptible to herbivores in the field.14,15 In our previous 

reports, sorghum suffered up to 6% total leaf damage in the 

field,16 while Nipponbare model rice had only about 1% of total 

leaf damage.17 Such observations put in question the relative 

effectiveness of sorghum defense barriers against insect herbi-

vores, which may, in part, be due to limited and/or impaired 

release of defense-related VOCs from sorghum plants. In par-

ticular, as volatile bouquets of sorghum and rice are reportedly 

quite similar,13,18 the amounts at which the volatiles are 

released to headspace need to be addressed. Direct comparative 

studies using sorghum and rice are therefore useful to gain 

more information, and possibly design novel methods for the 

improvement of sorghum resistance against herbivores.
In the initial working hypothesis, we proposed that differ-

ential life strategies and core metabolic systems (C3 vs. C4) 
might be modulating individual VOCs in rice and sorghum, 
which in turn, is affecting the intensity of indirect defenses, and 
causes differential damage of plants in the field. In order to test 
the first installment of this hypothesis, volatile entrainment was 
conducted before and after the plants were treated with artifi-
cial infestation of generalist herbivore, Loreyi armyworm 
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(Mythimna loreyi Duponchel), and the collected VOCs of sor-
ghum and rice, respectively, were analyzed by GC-MS. Our 
results provide evidence that both plant species displayed 
a surprisingly large quantitative differences in headspace 
VOC composition, particularly mono- and sesquiterpenes, 
which were generally lower in sorghum compared to rice. 
Further, to explore the underpinning molecular mechanism 
involved in the VOC emissions in three sorghum varieties, 
we examined the expression of a set of sorghum volatile 
genes involved in terpene biosynthesis. Our findings open 
additional avenues for exploiting the defense traits of monocot 
plants against insect herbivores,19 as well as open questions 
about the possible differences among various C3 and C4 plant 
species in the emissions of VOCs.

Materials and methods

Plant materials

Seeds of sorghum (Sorghum bicolor (L.) Moench) varieties 
(BTx623, NOG, and Epuripur) were germinated in Petri dishes 
on wet filter paper for one week, and then transferred to 100 cc 
plastic pots with moistened Tanemaki baido gardening substrate 
(Takii ®, Kyoto, Japan). Three sorghum cultivars used in the study 
are adapted to distinct geographic regions: BTx623 is a standard 
American inbred line;20 NOG is a landrace from Japan;21 and 
Epuripur is a recently selected cultivar for beer brewing in Uganda 
(Africa).22 Rice (Oryza sativa L.) seeds of japonica variety 
Nipponbare were germinated in nutrient-rich soil pellets Kumiai 
Ube Baido No.2 (MC Ferticom, Tokyo, Japan) in 7 × 7-well (L1.5 
× W1.5 × D2.5 cm) trays (L15 × W15 cm) standing in water 
maintained at approximately 1–2 cm depth level. Two weeks 
later, germinated plantlets were transferred to individual 100 cc 
pots with sterilized field soil mixed with Ube Baido in a 4:1 (v/v) 
ratio. Plants were maintained in the cultivation room at 14 h 
photoperiod, temperature 28 ± 3°C, and outdoor (window) irra-
diation supplemented with generic fluorescent lights (total light 
intensity 80–120 µmol m−2 s−1). Sorghum plants were watered 
every second day to keep soil moistened while rice pots were 
continuously maintained in plastic trays (L50 × W35 × D6 cm) 
filled with water at 4–5 cm depth level. Rice and sorghum plants at 
4 to 6-week age were used for artificial herbivory treatments, VOC 
collections, and RNA extractions.

Treatment mimics of the attack by M. loreyi armyworm 

larvae

Oral secretion (OS) from Loreyi armyworm Mythimna loreyi 
Duponchel (Lepidoptera: Noctuidae) was used for plant elicita-
tion as described for other insects in Alamgir et al.23 Typically, 
larvae were kept in the laboratory on a pinto bean-based artifi-
cial diet after neonates emerged from eggs laid on rice in the 
insect cage. The OS was collected from 4–5th larval instars that 
were feeding on rice leaves for 2–3 days prior to OS collection. 
Each larva was immobilized between fingertips and aggravated 
with a blunted micropipette tip to induce defensive regurgita-
tion. Regurgitate (OS) was collected using a vacuum device as 
described in Shinya et al.24 Concentrated OS was stored in 
closed plastic tubes at − 80°C. A layer of nitrogen gas was 

applied over the liquid surface before closing. Prior to experi-
ments, OS aliquots were thawed on ice, briefly centrifuged at 
maximum speed and supernatants were diluted 3-fold with 
deionized water before application on wounded leaves to 
mimic the plant responses induced by real M. loreyi attack 
(referred to as “artificial herbivory”). At 3PM, two youngest 
fully developed leaves of sorghum varieties (BTx623, NOG 
and Epuripur) either at the 4- or 6-week stage, and two young-
est fully developed leaves of 6-week-old rice (Nipponbare) were 
wounded with a fabric pattern wheel along the midvein, and 
fresh wounds were immediately treated with 15 µL diluted OS 
per leaf. VOCs were collected immediately after artificial her-
bivory treatment for 24 hours, except for diurnal experiments. 
In diurnal volatile collections, artificial herbivory was conducted 
in two steps, first by treating basal leaf parts with 15 µL diluted 
OS at 3PM, which was followed by upper leaf part treatments at 
5PM. Applying oral secretion in two space- and time-divided 
intervals was employed to simulate repeated herbivore 
attacks.25,26 VOCs were collected in 3-hour time intervals, start-
ing in the next day morning at 6AM, and continued for a 27- 
hour day/night period. The overnight rest period after treat-
ments was used to allow partial healing of wounds and thus 
collection of true diurnally-regulated VOCs, devoid of passively 
escaped volatiles via freshly open wounds.

Volatile collections

Trapping of headspace VOCs was carried out essentially as 
described in Sobhy et al.27 Pots with treated and untreated 
plants were inserted into a small Ziplock bag and sealed around 
stems to reduce the levels of nonspecific soil volatiles. Rice 
plants were supplied with 30 mL of water in each bag, while 
sorghum in wet soil was used without water. Two plants for 
each treatment were carefully inserted into an acrylic cylinder 
(H50 × i.d.15 cm) with a sealed top. Two ports in each cylinder 
were used for air circulation and VOC collection: the lateral 
port 15 cm from the base was used as an air inlet, and 
the second port on the top served as an air outlet. The inlet 
air partially purified with charcoal filter was pulled into cylin-
ders at approximately 0.75 L min−1 by suction force applied to 
outlet ports. Each outlet port was equipped with a custom-made 
10 cm glass trap (5 mm i.d.) packed with Porapak Q sorbent 
(200 mg, Supelco Analytical, Bellefonte, USA). Sorbent was held 
in place by two plugs of deactivated glass wool (Shimadzu, 
Japan). All collection cylinders (n = 12) were connected to single 
ULVAC DAP-12S 167 vacuum pump (ULVAC KIKO. Inc., 
Japan) adjusted to generate air flow of 10–15 L min−1. Before 
trapping, the basal part of each collection cylinder was sub-
merged in water to seal the whole system. VOCs were collected 
for 24 h using a single trap (total volatiles), or traps were 
replaced every 3 h for the collection of diurnal volatiles at 
specified times, resulting in a single or nine collection sample 
sets, respectively.

Analysis of volatiles

Collected volatiles were eluted with 1 mL dichloromethane 
(DCM) after 400 ng tetralin (1,2,3,4-tetrahydronaphthalene, 
Nacalai Tesque, Japan) internal standard dissolved in 5 μL 
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DCM was applied to Porapak Q filter traps by glass microsyringe 
(Hamilton Company, Inc., Reno, USA). Samples in 1.5 mL glass 
vials with PTFE liner caps (Supelco Analytical, USA) were ana-
lyzed on Agilent 7891A GC/Agilent 240 MS equipped with a HP- 
5 MS column (5% Phenyl Methyl Silox, 30 m length x 0.25 mm 
inner diameter x 0.25 µm film thickness, Agilent Technologies, 
USA). One µL of Porapak Q eluate in DCM was introduced to 
GC in split mode (3:1) by autosampler (Agilent 7693A) via 
injector port held at 230°C. Helium was used as carrier gas at 
a flow rate of 1 mL min−1. The ion trap was held at 200°C, transfer 
line was 260°C, and emission current was 30 µAmps. GC oven 
was held at 40°C for 3 min, and then the temperature was 
increased by 5°C min−1 to 180°C, followed by 20°C min−1 ramp 
to 300°C, and 5 min holding time. MS data were collected in full 
scan mode narrowed to m/z 40–300 mass range. Peaks in chro-
matograms were analyzed by Agilent Workstation 7.0.2. 
Quantification of known compounds with standards was per-
formed by comparison of peak areas to external authentic stan-
dards applied to GC-MS in concentration range of 0.1–5 ng/μL. 
For compounds without authentic standards, quantification was 
performed relative to a near class compound, such as linalool for 
monoterpene calibrations, and β-caryophyllene for 
sesquiterpenes.

Gene expression

Transcript levels of sorghum genes were determined by quanti-
tative RT-PCR as described in Shinya et al.24 Total RNA was 
extracted from approximately 100 mg tissue by Trizol 
(Invitrogen, USA) and cDNA was synthesized with 
PrimeScript reverse transcriptase (Takara Bio Inc., Japan) after 
DNase treatment and purification of total RNA. Transcript levels 
were determined by THUNDERBIRD qPCR Mix on a CFX 
ConnectTM Real-Time System (Bio-Rad Laboratories, Inc., 
USA). The SbEF1α (Sb10g023360) housekeeping gene was used 
to normalize the relative transcript levels in sorghum based on 
our previous experience and use of OsEF1α (Os03g0177900) for 
normalization of rice genes.13 Gene-specific oligonucleotide pri-
mers for qRT-PCR are summarized in Table S3.

Statistical analysis

PCA analysis and clustering were conducted with default para-
meters in MetaboAnalyst ver. 5.0 tool (https://www.metaboana 
lyst.ca/).28 ANOVA test of variance followed by Tukey’s HSD was 
performed with multcompView package in R.29 The Student’s 
t-test was performed with Microsoft Excel. Prior to statistical 
analyses, normality of data was examined by Shapiro-Wilk test 
in OpenStat (http://statpages.info/miller/OpenStatMain.htm), 
and if data showed evidence against normality, values were log 
transformed before statistical tests.

Results

Profiling of sorghum and rice volatiles

In the laboratory, sorghum and rice show differential growth 
rates, which makes direct comparisons of headspace VOCs 
complicated. To address this issue, we compared standard 

rice cultivar Nipponbare and three sorghum varieties 
(BTx623, Epuripur, and NOG) when the plants attained (1) 
similar size, i.e., 6 week-old rice and 4 week-old sorghum 
plants, and when (2) plants reached the same age, i.e., 
when both rice and sorghums were 6-week old (Figure 1). 
At first, we focused on the VOC profiles released from the 
size-matched rice and BTx623, using untreated (control) and 
artificial herbivory-treated (WOS) plants. Both sorghum and 
rice emitted a qualitatively similar bouquet of VOCs, how-
ever, at the same time, it was noticeable that both species 
displayed large quantitative differences, despite the emitting 
plants were of similar size. While many rice terpenoids, 
represented by extracted ion trace m/z 93, could be easily 
found in headspace of rice, majority of sorghum peaks were 
much less intense (Figure 2). Based on the authentic standard 
co-injections, the monoterpenes α-pinene, myrcene, 
D-limonene and linalool, and the sesquiterpenes β- 
caryophyllene and β-farnesene were identified at expected 
retention times in headspace samples from rice and sorghum. 
In addition, a number of other less abundant tentatively- 
identified compounds was common in rice and sorghum, as 
revealed by the Agilent Workstation 7.0.2. peak integration 
(Table S1).

Figure 1. Visual comparison of sorghum and rice plants used in experiments. 
Sorghum and rice plants were potted in soil and grown in cultivation room for 4 
and 6 weeks (sorghum) or 6 weeks (rice). Upper panel shows that size of sorghum 
plants at 4 weeks is comparable to rice at 6 weeks (lower panel, left). Sorghum at 
6 weeks produces broader leaves and becomes larger than rice at the same age.
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Herbivory-induced volatile emissions

The main HIPVs in rice were identified as monoterpene lina-
lool; sesquiterpenes β-elemene and (E)-nerolidol; homoter-
penes (E)-4,8-dimethyl-1,3,7-non-atriene (DMNT) and (E,E)- 
4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT); GLVs (Z)- 
3-hexen-1-ol and (Z)-3-hexenyl acetate; and aromatic com-
pounds indole and methyl salicylate13 (Figure 3, Table S1). 
All these HIPVs, except for indole and (Z)-3-hexen-1-ol, 
were significantly more abundant in headspace of rice plants 
treated with artificial herbivory (Figure 3, Table S1). Upon the 
same treatment, a similar set of HIPVs was induced in sor-
ghum, supporting the overall VOC conservation in sorghum 
and rice. However, as noticed above, strong quantitative differ-
ences could be detected in both species (Figure 3, S1, Table S1). 
Sorghum headspace contained approximately 1/10 of linalool, 
TMTT, methyl salicylate and (Z)-3-hexen-1-ol, while it showed 
a somewhat more comparable level of indole and DMNT with 
rice. In contrast to generally low terpenes found in sorghum 
headspace, (Z)-3-hexenyl acetate was more abundant in sor-
ghum relative to rice. The differences have been preserved in 
6-week-old sorghum (Figure 3), suggesting that even older 
sorghum plants cannot produce more volatiles, despite their 
size is bigger than that of rice (Figure 1).

In accord with quantitative differences observed in VOCs of 
rice and sorghum (Figure 3), principal component analysis 
(PCA) showed a clear separation of rice from all sorghum 
cultivars (Figure 4a), both at control and induced levels. Out 
of 39 compounds used in PCA analysis, major separations 
between rice and sorghum appeared in linalool, DMNT, (Z)- 
3-hexenyl acetate, methyl salicylate, and β-caryophyllene 
(Figure 4b). Interestingly, one of the sorghum cultivars, 
Epuripur, also separated in PCA plot from the two other 
genotypes, thus revealing a significant level of genetic variation 

in the production and/or release of VOCs in sorghum. 
Apparently, Epuripur headspace contained relatively more 
HIPVs compared to other sorghums, which mainly involved 
the important HIPVs linalool, DMNT and (Z)-3-hexenyl acet-
ate (Figure 3).

Diurnal volatile emissions

Next, we asked if daytime emissions are responsible for differ-
ential amounts of VOCs observed in initial bulk 24 h entrap-
ments (Figure 3). We thus conducted a time-resolved 
collection of VOCs under control and artificial herbivory con-
ditions. In this experiment, however, plants were allowed to 
rest one night after treatment to allow partial healing of open 
wounds inflicted by artificial herbivory. This was used to 
obtain more specific diurnal patterns, i.e. those which are 
devoid of VOCs that passively escape from the plant’s open 
wounds (see Materials and Methods). In result, both sorghum 
and rice volatile emissions followed diurnal rhythm (Figures 5, 
S2), although total number of volatiles detectable in the short 3  
h trapping periods was reduced, due to volatiles falling below 
the detection limit of GC-MS instrument (Table S2). However, 
majority of previously observed trends and differences in vola-
tiles between sorghum and rice were conserved. For instance, 
Epuripur plants released comparably more HIPVs (e.g. DMNT 
and (Z)-3-hexenyl acetate) than BTx623 and NOG (Figures 5, 
S2, Table S2). Anisole release was predominant in BTx623, 
which was associated with the photoperiod (Figures 5, S2).

Expression of sorghum terpene synthases

As VOCs appeared quantitatively different in three sorghum 
cultivars, we examined the cultivar-specific expression of 

Figure 2. Comparison of sorghum and rice volatile profiles. The ion fragment m/z 93 representing terpenoid compounds was extracted from chromatograms of 
untreated rice (Nip-Cont), artificial herbivory-treated rice (Nip-WOS), untreated sorghum (BTx623-Cont) and treated sorghum (BTx623-WOS). Bottom chromatogram 
shows mixture of standard compounds (Std) run under the same conditions in GC-MS. In order to show peaks in sorghum, chromatograms are magnified 50× (scale 0-50 
kCounts) compared to rice (scale 0-2.5 MCounts). Representative compounds occurring in both plants are labeled with numbers: 1, α-pinene; 2, myrcene; 3, D-limonene; 
4, linalool; 5, β-caryophyllene; 6, β-farnesene; C, contaminant peak of butylated hydroxytoluene.
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terpene synthases.18 The transcript levels of SbTPS3 
(Sb07g004480), SbTPS4 (Sb07g005130), SbTPS5 
(Sb07g003080), SbTPS14 (Sb04g001780), and a putative sor-
ghum hydroperoxide lyase (SbHPL, Sb04g000830), were deter-
mined in control and artificial herbivory-treated BTx623, 

Epuripur and NOG plants. SbTPS3 gene transcripts were 
strongly induced in NOG and Epuripur (Figure S3A), support-
ing the inducible character of the main TPS3 enzymatic pro-
ducts, (E)-β-farnesene and (E)-α-bergamotene. SbTPS4 gene 
expression was suppressed by artificial herbivory (Figure S3B), 

Figure 3. Accumulation of major VOCs in headspace of sorghum and rice. Three sorghum varieties (BTx623, Epuripur and NOG), either size or age matched with rice 
plants, were placed in acrylic cylinders and VOCs were captured by Porapak filters. After elution and GC-MS runs, compound peaks in specific ion chromatogram traces 
were quantified and the content of monoterpenes, sesquiterpenes, homoterpenes, indole/aromatic compounds, and green leaf volatiles (GLVs) was determined against 
external calibration curves. For compounds without authentic standards (labeled with ‘#’), the content was quantified against representative compounds from a similar 
structural group (DMNT as linalool equivalent; β-elemene and TMTT as β-caryophyllene eq.). Data are means from independent samples (n = 4) with SE. Asterisks show 
significant differences between each pair of control (untreated) and WOS-treated plants (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). Different small letters show significant 
differences for each compound within the control group of samples (Control) determined by ANOVA with Tukey LSD. Differences within the treated group of samples 
(WOS) for each compound are shown with different capital letters.
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same as caryophyllene synthase in rice.13 SbTPS4 expression 
was not particularly correlated with the volatile β- 
caryophyllene levels shown in Figure 3. The SbTPS5 showed 
an inconsistent expression pattern in sorghum (Figure S3C). 
Interestingly, transcripts of SbTPS14, here assigned as putative 
sorghum linalool synthase (Figure S4), were strongly elevated 
by artificial herbivory. Furthermore, SbTPS14 transcripts were 
more abundant in Epuripur relative to NOG and BTx623 
(Figure 6), which was consistent with the observed headspace 
linalool levels (Figure 3). Putative sorghum SbHPL gene, iden-
tified based on the protein similarity with rice SbHPL3 (Figure 
S5), was downregulated in the morning (9AM), and, generally, 
transcripts were not changed by artificial herbivory (Figure 
S3D), similar to previous OsHPL3 report in rice.13

Discussion

In this study, sorghum and rice released similar VOCs, as might 
have been expected from a close phylogenetic relationship of the 
species.30–32 However, in direct comparison, sorghum and rice 
displayed large quantitative differences in their headspace VOC 
contents. In particular, levels of several mono- and sesquiter-
penes were dramatically lower in sorghum compared to rice. On 

the other hand, homoterpene DMNT showed more similar 
contents in rice and sorghum, and sorghum had greater GLV 
(Z)-3-hexenyl acetate emissions than rice. In addition, three 
sorghum cultivars had somewhat different volatile profiles, 
showing that intra-species genetic variation exists in sorghum 
for the production and/or release of VOCs.

The spectrum of sorghum VOCs identified in this study was 
consistent with previous independent study by Zhuang et al.,18 

in which the fall armyworm (Spodoptera frugiperda) feeding 
induced headspace levels of monoterpene linalool, sesquiter-
penes β-elemene, (E)-β-caryophyllene, (E)-α-bergamotene, 
sesquisabinene A, (E)-β-farnesene, α-humulene, zingiberene, 
β-bisabolene, β-sesquiphellandrene and (E)-nerolidol, GLV 
(Z)-3-hexenyl acetate, and aromatic compound, indole. In 
our experiments (Table S1), although we did not find sesqui-
sabinene A and zingiberene, we additionally detected DMNT 
and TMTT, two homoterpenes commonly present in monocot 
plants,33 and another aromatic compound methyl salicylate, in 
the sorghum headspace. Anisole was identified as volatile pre-
dominantly released by BTx623 sorghum, relative to rice and 
two other sorghum cultivars (Figure 5, S2). Similar to rice, 
most of the sorghum VOCs were emitted during daytime 
(Figure 5, S2).

Figure 4. Principal component analysis (PCA) of VOCs in headspace of sorghum and rice. VOCs in sorghum and rice headspace shown in Figure 3 and Table S1 were 
subjected to PCA analysis using MetaboAnalyst tool. (a) 3D-PCA plot shows a clear separation of rice VOCs (yellow) from sorghum samples (BTx623, red; Epuripur, blue; 
NOG, green). A separation also occurs between Epuripur and two other sorghums. Circles represent untreated 4-week-old plants (control); squares are 4-week-old plants 
treated with artificial herbivory (WOS); triangles are untreated plants at 6 weeks; diamonds are 6-week-old plants treated with WOS. (b) Loading plots show compounds 
with the highest contribution to the separation of headspace volatiles in rice and sorghum.
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In spite of qualitative overlap between volatile blends of 
rice and sorghum (Table S1, Figures 3, 5, S2),13,34,35 sig-
nificantly higher levels of induced VOCs were typical for 
rice. In addition, low levels of basal volatiles emitted from 
sorghum support the idea of sorghum being a low emitter 
rather than being a low responder to herbivory stimuli. In 
the natural environment, sorghum and rice have evolved 
very distinct lifestyles. Sorghum, which is a C4 plant, is 
more efficient in carbon-fixation, water and nitrogen utili-
zation, and it performs well under extreme temperatures 
and light.36,37 In contrast, a representative of C3 plants, 
rice, is highly dependent on water and nutrient supply to 
achieve the expected yield.38 With respect to quantitative 
VOC differences between rice and sorghum, it is possible to 
infer from a large volume of indirect evidence that C3 and 
C4 metabolic networks might be actually involved in the 
empirically observed differential emission of VOCs in our 
experiments. Previously, Niinemets and Reichstein39,40 con-
cluded that the amounts of VOCs released by plants are 

affected by stomatal conductance, which, reportedly, tends 
to be lower in C4 compared to C3 plants, especially under 
high light conditions.41–43 In 28 grass species, C4 species 
consistently had lower maximum stomatal conductance to 
water (gmax) than their C3 relatives.44 Therefore, C3 and C4 
plant adaptations may be helpful to explain the differential 
release of VOCs, clearly exemplified here by the rice and 
sorghum headspace analyses.

However, alternative explanations for differential VOCs in 
rice and sorghum should also be considered. For example, 
sorghum is a typical high biomass crop, which may divert all 
resources to growth on the account of defense. This hypothesis 
is supported by observations of plant behaviors that involve 
trade-offs between growth and defense.45,46 Another possibility 
is that sorghum preferentially retains volatiles inside for the 
purposes of direct defense.47 Specific plants are known to 
retain large amounts of terpenoids, such as mint Teucrium 
marum storing monoterpenes in the leaf epidermal 
capsules.48 In our unpublished metabolomics experiment, we 

Figure 5. Diurnal profiles of headspace VOCs released from C3 rice (Nipponbare) and C4 sorghum (BTx623). Sorghum and rice plants at 6 weeks were placed in acrylic 
cylinders and VOCs were trapped on Porapak filters in 3 h intervals (A, 6AM-9AM; B, 9AM-12AM, C, 12AM-3PM; D, 3PM-6PM; E, 6PM-9PM; F, 9PM-12PM; G, 12PM-3AM; H, 
3AM-6AM; I, 6AM-9AM). Plants were either untreated (Control) or treated with artificial herbivory (WOS) twice on the previous day at 3PM and 5PM. Data are means 
from independent samples (n = 3) with SE. L, light period, D, dark period.

PLANT SIGNALING & BEHAVIOR e2243064-7



noticed that several annotated metabolites in sorghum corre-

spond to volatile conjugates. However, further investigations 

are needed to confirm (1) the identity of these compounds (2) 

and their role as potential internal stores of terpenoids in 

sorghum. Furthermore, while silicon in rice has been reported 

to promote VOC release,49 waxy cuticles in sorghum might be 

preventing the passive diffusion of volatiles in headspace.50 

Finally, volatiles in sorghum could be functionally tuned 

down for a lower activity, possibly due to “redundancy” in 

defense implied from the evolution and use of the potent 

cyanogenic glycoside dhurrin in sorghum species.51

Genetic diversity in sorghum is well studied, however, 
most reports remain focused on growth, yield, and nutri-
tional quality of plants.52,53 Three sorghum cultivars in 
this study showed quantitative metabolic differences, 
namely in linalool, DMNT, and (Z)-3-hexenyl acetate 
(Figures 3, 4B), which contents were higher in Epuripur 
headspace (Figure 3). Previously, (Z)-3-hexen-1-ol acetate 
was dominant (65%) in volatile blend of 4-week-old 
sorghum,54 and this compound was important for attrac-
tiveness to shoot fly (Atherigona soccata) in GC-EAG.55 In 
the same study, volatile emissions from two sorghum 
cultivars, Swarna and IS 18551, were compared, and, 
interestingly, IS 18551 cultivar, which is resistant to 
A. soccata, emitted less VOCs compared to susceptible 
Swarna. In other plants, tea green leafhopper (Empoasca 
vitis) selected host plants based on emissions of (Z)-3-hex-
enyl acetate.56 Therefore, differential emissions of volatiles 
from the closely related varieties, while being of practical 
importance, also open theoretical questions on the regu-
latory mechanisms that underpin these differences.57–59 As 
sorghum genome and TPS genes have already been 
known,18,31,60 SbTSP3, SbTSP4, SbTSP5, SbTSP14, and 
SbHPL gene expression was examined in this study. 
SbTPS3 and SbTPS14 were strongly induced by artificial 
herbivory (Figures 6, S3). Furthermore, SbTPS14 transcript 
levels were strongly induced and consistent with the 

observed headspace linalool levels in three sorghum culti-
vars (Figure 3): BTx623 (lowest), NOG (intermediate) and 
Epuripur (highest). In contrast, transcript levels of SbHPL 
for GLV production, including (Z)-3-hexenyl acetate, were 
not regulated by artificial herbivory, and transcripts fluc-
tuated diurnally (Figure S3D). These data suggest that 
while in some cases the release of volatiles could be 
dependent on the variety-specific expression of biosyn-
thetic genes (e.g., linalool), in other cases, such as GLVs, 
volatiles may be more dependent on the substrate avail-
ability, or other control mechanisms in VOC pathways.

Our current study provides novel cues for previously 
reported sorghum-insect interactions that may depend on dif-
ferential VOC profiles. For example, we showed that NOG and 
BTx623 are differentially susceptible to Asian stem borer, 
Ostrinia furnacalis Guenée.16 As BTx623 produced more ani-
sole, it might be working as a repellent to stem borers and/or 
attract their natural enemies.61 Vice versa, NOG released more 
linalool, suggesting that linalool might be actually attracting 
more herbivores to this cultivar. Further studies are necessary 
to establish the exact roles of VOCs and HIPVs in sorghum 
interactions with herbivores, which can be later applied to 
integrated pest management and plant protection.62 The 
potential impacts of C3 and C4 metabolic networks on VOC 
emissions also call for further research including multiple 
species and their comparisons.
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