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A B S T R A C T

Nowadays, most agricultural robots rely on precise and expensive localisation, typically based on global
navigation satellite systems (GNSS) and real-time kinematic (RTK) receivers. Unfortunately, the precision of
GNSS localisation significantly decreases in environments where the signal paths between the receiver and the
satellites are obstructed. This precision hampers deployments of these robots in, e.g., polytunnels or forests.
An attractive alternative to GNSS is vision-based localisation and navigation. However, perceptual aliasing
and landmark deficiency, typical for agricultural environments, cause traditional image processing techniques,
such as feature matching, to fail. We propose an approach for an affordable pure vision-based navigation
system which is not only robust to perceptual aliasing, but it actually exploits the repetitiveness of agricultural
environments. Our system extends the classic concept of visual teach and repeat to visual teach and generalise
(VTAG). Our teach and generalise method uses a deep learning-based image registration pipeline to register
similar images through meaningful generalised representations obtained from different but similar areas. The
proposed system uses only a low-cost uncalibrated monocular camera and the robot’s wheel odometry to
produce heading corrections to traverse crop rows in polytunnels safely. We evaluate this method at our test
farm and at a commercial farm on three different robotic platforms where an operator teaches only a single
crop row. With all platforms, the method successfully navigates the majority of rows with most interventions
required at the end of the rows, where the camera no longer has a view of any repeating landmarks such as
poles, crop row tables or rows which have visually different features to that of the taught row. For one robot
which was taught one row 25 m long our approach autonomously navigated the robot a total distance of over
3.5 km, reaching a teach-generalisation gain of 140.
1. Introduction

The presence of robots in agriculture is gradually increasing, in
recent years a greater number of robotic platforms have become com-
mercially available to automate tasks such as harvesting, plant treat-
ment, phenotyping, yield estimation, weeding, transportation etc. The
market value for precision agriculture is increasing significantly from
an estimated $3.67 billion in 2016 to $7.29 billion in 2021 and increas-
ing annually at a rate of 14.7% (Oliveira et al., 2021). Robots have
the potential to change agriculture entirely as they can assist humans
by undertaking repetitive and arduous tasks and replace them in haz-
ardous conditions such as operating under extreme heat. The adoption
of robots in agriculture has accelerated further after the impact of the
COVID-19 pandemic and the disruption in the availability of seasonal
workers (Mitaritonna et al., 2020). Automating these tasks can help
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resolve some of these problems and bring benefits to farmers with
reduced costs and higher yields ensuring that the growing presence of
robots in agriculture is not a transient phenomenon.

The ability to autonomously navigate in its environment is essential
for a robot to undertake its task. There are many methods used to
navigate in autonomous robotics each having its own advantages and
limitations depending on the requirements of the application and the
available sensors. The most common sensors used for localisation and
path traversal are Lidars, global navigation satellite system (GNSS)
receivers, cameras (colour, infra-red (IR) and stereo), wheel encoders
and inertial measurement units (IMUs).

In agricultural applications, the most commonly used sensors are
GNSS receivers together with wheel encoders, however, both of these
can introduce errors, wheel odometry suffers from accumulating errors
vailable online 1 August 2023
168-1699/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.compag.2023.108054
Received 12 April 2023; Received in revised form 4 July 2023; Accepted 7 July 20
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

23

https://www.elsevier.com/locate/compag
http://www.elsevier.com/locate/compag
mailto:jcox@lincoln.ac.uk
https://doi.org/10.1016/j.compag.2023.108054
https://doi.org/10.1016/j.compag.2023.108054
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2023.108054&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers and Electronics in Agriculture 212 (2023) 108054J. Cox et al.
Fig. 1. The three robots used in our experiments, (a) Saga Thorvald in its Tall Arch configuration, (b) Clearpath Husky and (c) Agilex Hunter 2.0. The three robots are equipped
with an Intel Realsense D435i camera mounted at different locations on each robot, on the Thorvald it is mounted at the top of the arch at a height of 1.95 m, on the Husky it
is mounted at 0.5 m above the ground and on the Hunter 2.0 the camera was mounted at two heights 0.35 m and 0.8 m.
over time, especially in environments where the robot’s wheels are
prone to skid and slip, while the accuracy of civil-grade GNSS is any-
where from 3 m to 30 m (Gao et al., 2018). The accuracy of GNSS can
be improved with the use of real-time kinematic (RTK) GNSS to sub-
centimetre accuracy (Nørremark et al., 2008), however, this accuracy
comes with a high cost of receivers and requires the availability of
nearby base station or the cost of a RTK data service and a method of
sending the RTK correction data to the mobile robot by WiFi or mobile
data.

The use of RTK GNSS is suitable for some agricultural robot appli-
cations, e.g. outside in open fields, however in other applications the
robot has to operate in covered areas such as around buildings, metal
polytunnels, tree canopies and drive through dense large crops which
can attenuate or reflect the signal (Perez-Ruiz and Upadhyaya, 2012;
Guo et al., 2018; Opiyo et al., 2021). Navigation inside polytunnels
requires high precision localisation due to the confined spaces between
the crop rows making traversing a large robot difficult, as can be seen
in Figs. 1 and 5. Therefore the need for alternative navigation methods
originates from the requirement for robots to operate in GNSS denied
environments.

Navigation in GNSS denied environments can be achieved with
onboard sensors such as laser range scanners and cameras in combi-
nation with Simultaneous Localisation and Mapping (SLAM) (Durrant-
Whyte and Bailey, 2006; Bailey and Durrant-Whyte, 2006), visual
SLAM (Taketomi et al., 2017) or Monte Carlo Localisation (MCL)
(Dellaert et al., 1999). While these methods are suitable for localisation
and mapping, they typically require sensors such as Lidar scanners,
colour depth (RGB-D) cameras and stereo cameras, which are more
expensive than monocular cameras. In addition, SLAM algorithms do
not perform well in repetitive environments and are prone to failures
caused by environmental changes (Cadena et al., 2016). An alterna-
tive approach to navigation, based on the teach-and-repeat paradigm
(Furgale and Barfoot, 2010b) has shown to be able to perform well in
changing environments using only an off-the-shelf monocular camera
(Krajník et al., 2010). The robustness of teach-and-repeat systems to
environmental changes was confirmed by extensive field tests (Paton
et al., 2017).

Our approach is based on the idea of navigation without localisation
in a metric map, where the robot only travels a known path from a start
point to a goal. This has the benefit of not requiring a large metric map
that is not scalable to commercial agricultural settings. In this paper,
our aim is to extend this method to where the robot can generalise and
travel a trajectory along untaught paths similar to the mapped one.

Our teach and generalise method takes advantage of scenes with
high visual aliasing or visual repeatability and can be applied to a
wide range of applications that have repetitive environments, such as
corridors in offices and hospitals, isles in factories, supermarkets and
warehouses, agricultural polytunnels, crop fields, vineyards etc. Our
method has the advantage of only using low-cost monocular cameras
2

over traditional navigation methods that use expensive Lidars, RTK
GPS receivers and RGB-D cameras, leading to more affordable robotic
platforms, making them more accessible to a broader range of users
and scalable to new applications that require fleets of robots, such as
logistics (Ravikanna et al., 2021). Finally, our method can significantly
reduce the man-hours spent on creating a precise metric map for the
whole environment where the robot is deployed.

We test our approach across three different robotic platforms and
in multiple agricultural polytunnels, one at a test farm site and several
others on a commercial farm. The robots are taught trajectories along
a row and use the method to repeat the path along new, previously
unseen rows. We evaluate the method by recording the number and
locations of any interventions that may be required and the distance
the robot can autonomously travel based on the distance taught, a gen-
eralisation gain. Our focus is on in-row navigation where our approach
can navigate along the rows and not at the end of rows where other
navigation methods can be used.

1.1. Related work

Within polytunnel environments, most path traversal methods use
Lidars to detect the rows and poles and move the robot along the centre
of the rows (Le et al., 2020; Xiong et al., 2020; Ponnambalam et al.,
2020). The interest in vision based navigation has increased in recent
studies to complement or overcome the shortcomings and expense of
GNSS and Lidar based navigation (Aguiar et al., 2020).

1.1.1. Visual crop row following
Monocular cameras have been widely employed for crop row fol-

lowing in open fields as the crops can provide sufficient colour infor-
mation and texture, RGB-D and stereo cameras can utilise additional
information from the scene structure. The choice of the sensor depends
on the application as the environment influences the decision. RGB-
D and stereo cameras can complement traditional 2D segmentation
methods which usually perform poorly under inconsistent lighting
conditions, but they are preferred in applications where crops are large
enough to be distinguished from the soil (English et al., 2014). RGB-D
and stereo cameras find wide applicability in between-row navigation
such as in orchards, vineyards or maize fields as those crops are large
enough to provide adequate information (Aghi et al., 2021; Peng et al.,
2022; Fei and Vougioukas, 2022; Cerrato et al., 2021; Luo et al., 2022)
and in environments with the absence of crops where the camera
detects the ridges and furrows of the crop rows (Song et al., 2022).

Vision based navigation in crop rows needs to distinguish the crops
from the background this can be achieved by using segmentation and
contour based methods (Guerrero et al., 2013; Romeo et al., 2012),
classical computer vision techniques such as edge detection and colour
segmentation (Luo et al., 2022; Zhou et al., 2021; Chang et al., 2022;
Li et al., 2022) vegetation indexes using colour (García-Santillán et al.,



Computers and Electronics in Agriculture 212 (2023) 108054J. Cox et al.
2017; Ahmadi et al., 2020, 2021) and IR cameras (García-Santillán
et al., 2017; Åstrand and Baerveldt, 2005) or with deep learning
networks (Lin and Chen, 2019; Chen et al., 2021; He et al., 2022;
Bah et al., 2019; Adhikari et al., 2020; de Silva et al., 2022). Colour
based approaches perform poorly in the presence of weeds and rely
on manually tuned hyperparameters such as thresholding values, while
deep learning methods are not crop agnostic and they require large
amounts of labelled data which can be laborious to collect and not
readily available.

After extracting suitable regions of interest, a common method is to
trace a line on top of the identified crops (or between the crops in multi-
row applications). This can be done either by extracting centroids from
the contours of the segmented image and then performing standard
regression fitting (Ahmadi et al., 2021; Ma et al., 2021) or by applying
a Hough Transformation (Li et al., 2022; Winterhalter et al., 2018).
Fitting arbitrary lines on extracted crop centroids has the advantage of
navigating on curved paths (García-Santillán et al., 2017). Finally, the
calculated angle and position of the extracted line in the image is used
by a controller to send navigation commands to the robot.

1.1.2. Visual teach and repeat
Teach and repeat is a learning from demonstration technique similar

to that used to programme stationary industrial robots to perform
repetitive tasks. It is a well established concept in robotics, but visual
teach and repeat (VT&R) and specifically in the context of navigation,
is a keyframe based technique where the robot tries to localise and
navigate based on past experiences using only a camera and odometry.
As its name suggests it consists of two phases, the ‘‘teach’’ phase and
the ‘‘repeat’’ phase. During the teaching phase an operator teleoperates
the robot along a desired trajectory and the robot creates a topological
map by saving the current image and wheel odometry at predefined
distances as a graph of vertices and edges.

VT&R methods can be classified into pose based and appearance
based approaches. Pose based approaches (Barfoot et al., 2012; Fur-
gale and Barfoot, 2010a; Courbon et al., 2009; Ostafew et al., 2013;
McManus et al., 2012; Clement et al., 2017) relies on relative pose
estimation between the current and stored images this is based on
matched features between these images. During the repeat phase, the
system compares each frame from the live camera images with images
stored in the vertices and localises itself by computing its current
pose with each stored pose. After finding the closest vertex, it tries
to move there by minimising the transformation between its current
pose and the vertex’s pose. Then it proceeds to the next vertex. During
initialisation all the reference images are used in order to find the initial
position of the robot, these approaches are computationally expensive.

Appearance based approaches first introduced by Chen and Birch-
field (2009) and later by Krajník et al. (2010) use the same concept of
a graph like map but without performing explicit localisation, it relies
on comparing landmarks in the images captured with a monocular
uncalibrated camera and wheel odometry. During the teaching phase,
the operator drives the robot along the desired path and at fixed
distance intervals a vertex is inserted into the map and stores the image
and the distance travelled. During the repeat phase, the robot starts at
approximately the same place with a suitable orientation to allow it
to detect landmarks located in the first vertex, it starts navigating by
replaying the velocity commands captured during the teaching phase
and stops only when the total travelled distance matches the recorded
one. As there is uncertainty about the robot’s initial position and errors
such as wheel slippage, reaching the end of the path by relying only
on dead reckoning is insufficient. To reach the end of the path heading
corrections are applied by using techniques such as feature matching
the live camera images to the images stored in the map (Krajník et al.,
2010; Chen and Birchfield, 2006; Churchill and Vardy, 2012; Erhard
et al., 2009; Vardy, 2010; Majdik et al., 2013; Krajník et al., 2018,
2017), resulting in bearing navigation which optimises the heading or
3

bearing of the robot. This method has benefits in computational cost,
scalability in terms of distance and ease of implementation.

In recent years, a large part of computer vision research has been
dominated by deep learning. It was shown that the handcrafted feature
extractors could be outperformed by the learned ones (Krizhevsky et al.,
2012). This development also has a significant impact on the field of
visual navigation. Many modifications that exploit the advantages of
machine learning were suggested to improve the robustness of VT&R
(Camara et al., 2020; Broughton et al., 2021; Gridseth and Barfoot,
2022). One of the major issues for navigation is the deficiency of
matching features caused by the environmental changes between the
mapping and teaching phases. This issue is even more significant in
agriculture, where the crops are growing, and the appearance of the
environment can change rapidly. Multiple different approaches are
used to tackle the changes in the environment. One way is to do
continual mapping of the environment so that the map currently used
for the navigation is not obsolete (Dayoub and Duckett, 2008; Churchill
and Newman, 2013). Another way would be to learn what changes can
happen from the long-term datasets and then use the learned model
as an image descriptor, invariant to specific environmental changes
(Krajník et al., 2017).

Some assumptions can be applied to the mobile ground robot for
the VT&R framework, such as the robot is constrained to 2DoF as it
can only move linearly forwards, backwards and rotate. Many of these
frameworks use feature extractors but they do not use the matched
features to estimate the 6DoF in the environment. The information
usually obtained from the matched features is their displacement in
the horizontal axis and the robot is then controlled to minimise this dis-
placement. It was shown that it is possible to use the cross-correlation of
the whole images to obtain similar information (Dall’Osto et al., 2021).
Later, a fully-convolutional neural network was applied to improve
the quality of cross-correlation (Rozsypálek et al., 2022b). The neural
network is learned via contrastive methods and can produce a dense
representation of the image, which is robust to seasonal and day/night
image variations. Another advantage of this method is that it can be
learned in a self-supervised fashion and is relatively efficient in terms
of the needed amount of data. Additionally, the network is small, which
is favourable for usage on a mobile robot, where real-time usage is
crucial, and the performance of onboard computers is modest.

2. Method

Our new visual teach and generalise (VTAG) method adopts and
pushes the work of the Bearnav framework, which is a complete VT&R
navigation framework fully integrated in ROS (Krajník et al., 2018).
Similarly, as with other VT&R frameworks, the deployment consists
of two steps — teach and repeat. During the teaching phase, the
operator drives the robot, and the framework constructs a map by
saving reference images at predefined distance integrals by recording
the camera and odometry data. Additionally, it records the velocity
command data. During the repeat phase, the robot repeats the taught
trajectory by replaying the pre-recorded velocity command, camera
and odometry data and applies heading corrections based on the live
camera feed.

2.1. Topological navigation framework

At our test farm, we can make use of a topological map of the site
which comprises of nodes and edges connecting the nodes, as illustrated
in Fig. 5(c). The nodes within this map correspond to predefined goal
points, while the edges dictate the permissible paths and movement
constraints for the robots. The edges in the map are associated with
specific ROS actions, such as move_base for areas outside the tunnels
and VTAG for regions within the tunnels. The utilisation of ROS ac-
tions enables transitioning between these two navigation methods, as
depicted in Fig. 7 where the navigation mode shifts from VTAG to
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Fig. 2. Diagram depicting the training of the fully-convolutional Siamese network. The input are two different images labelled as similar. One of the images is cropped in width
nd both images are passed through CNN denoted 𝑅. The output of the CNN are the neural representations, which are further cross-correlated. Final histogram is used to compute
he loss and the target is constructed on the fly, based on the position of the crop.
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ove_base at the end of the rows. It is important to highlight that
his paper focuses on addressing in-row navigation and not traversing
etween rows or outside the polytunnels. A more detailed description
f topological maps and analysis of such a robotic system for supporting
arms and workers can be found in Zhu et al. (2023).

.2. Teach and generalise

The VT&R frameworks generally cannot traverse different trajec-
ories than the one traversed during the teaching phase. However, it
an be highly tedious to create maps covering the whole environment,
specially in agriculture, as autonomous robots are often deployed
o cover vast areas. In this paper, we turn this challenge into an
pportunity by aiming to teach only a small part of the site where
he robot is deployed and use a single map to traverse the rest. This is
ossible because agricultural environments are usually very repetitive,
nd they often share visual cues, which can be followed to perform
successful traversal. In the past, such a visual cue was picked by

umans, and the feature extractor was handcrafted. Our method aims to
emove a human from the loop as much as possible and create a unified
ramework which is able to learn the most suitable features together
ith their extractor and descriptor.

Our method is an extension of Bearnav (Krajník et al., 2018;
ozsypálek et al., 2022a) which is based on a fully-convolutional self-
upervised Siamese network (Bromley et al., 1993), which is used
or the estimation of the image alignment during the repeat phase,

diagram of the architecture is shown in Fig. 2. We show that the
raining process can be altered so that the network is able to focus
n the features specific to certain types of trajectory and environment,
nd thus apply the heading corrections on previously unseen paths.
e exploit the capability of contrastive learning to automatically

xtract the most suitable features, without the aid of manually selecting
eatures, based on the data feed in the training process.

Contrastive learning, in general, can update the parameters of the
odel, based on which data points are labelled as similar or dissimilar.
he labelling is absolutely crucial and determines what kind of features
re extracted by the model. Originally the fully-convolutional Siamese
etworks were used for image tracking — the part of the image contain-
ng the object in the consecutive video frames was labelled as similar,
nd the parts of the images not containing the object were labelled
s dissimilar (Bertinetto et al., 2016). In this setup, the final extractor
as robust to object variations in the image (rotation, partial occlusion,
tc.). Further, it was shown that a similar method can be used to obtain
mage features robust to seasonal and day/night variations (Germain
t al., 2019). More recent research showed that this approach is also
uitable for deployment in robotics (Rozsypálek et al., 2022a). This
articular model pre-trained on a large dataset is used as a starting
4

oint in our training pipeline. r
Fig. 3 shows the CNN architecture, which is denoted as a function 𝑅
n our Siamese architecture and is used to obtain a neural representa-
ion of the images. The training pipeline of the original model required

large number of images taken from the same position at different
imes (or environment state). All images which are taken at the same
lace with similar headings are then labelled as similar. Further, pair of
mages labelled as similar is loaded into the pipeline, and one of them
s cropped. Both images are then passed through the same CNN, and
heir representation is obtained. Representation of the cropped image
s significantly smaller and is used as a cross-correlation kernel. Finally,
e know the exact location of the crop, so it is possible to create a

arget for the binary cross-entropy loss. This target has zero values at
he positions where the crop is not located and non-zero values at the
rue crop location. In this paper, the training pipeline is alike, and the
hape of the target can be seen in Fig. 4.

We push the framework presented in Rozsypálek et al. (2022a) even
urther, and we relax the constraint on the similarity of the position
rom which the image was taken. Our only requirement is that the
mage pairs are labelled as similar when they contain a visual cue on

consistent position. At first, this seems like a strong requirement.
owever, in repetitive agricultural environments, this can be ensured
asily, for example by keeping the robot at a consistent distance from
he crop row or polytunnel row structures during the data collection.
he resulting model will learn to ignore the variances present in the
ataset (i.e. plant details, background) and to focus on similarities
i.e. groups of plants, tracks in the dirt, consistent man-made objects
uch as polytunnel poles). It is necessary to keep in mind that by
abelling images from different positions as similar, the neural network
an lose some abilities presented in navigation stacks exploiting similar
pproach (Rozsypálek et al., 2023). For example, when one long crop
ow is traversed back and forth, and all the gathered images are labelled
s potentially positive image pairs, the network will inevitably lose
he ability to estimate the exact position in the row from the camera
eed. Still, it can gain the ability to generalise and output valid heading
orrections to traverse a different row.

.3. Experimental setup

The experiments were conducted in a test farm at the Riseholme
ampus of the University of Lincoln, UK and three polytunnel fields in
commercial farm in Norfolk, UK. The test farm consists of two 25 m

ong polytunnels each with five rows of strawberry plants mounted on
abletops (numbered r1 to r10) and six paths between these rows where
he robots can traverse along (numbered r0.7, r1.5, r2.5, r3.5, r4.5,
5.3, r5.7, r6.5, r7.5, r8.5, r9.5, r10.3), the polytunnel and row numbers
re shown in Fig. 5. The first commercial farm consists of twenty-two
20 m long polytunnels each split into two halves with seven 58 m
ows where the robots can traverse. The second and third consist of

ows of 65 m and 90 m long. Multiple traversals of the polytunnels were
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Fig. 3. Architecture of the convolutional neural network 𝑅 used as the backbone of the Siamese architecture, which creates the embedding from the images captured by the
camera.
Fig. 4. An example of a data sample from the training process. At the top, we see the image captured by the robot during the traversal of a polytunnel. In the middle is a crop
of the image, which was captured while traversing a different row in the same polytunnel. The crop position is chosen randomly on the fly during the training, and the target
(visible at the bottom) matches the position of the crop. The proxy task for the network is to estimate the position of the crop given the top image. Even though the images are
from different rows, they follow similar patterns (crop row, poles) the network can learn from.
performed, and the data gathered during these traversals are labelled as
similar images for the training pipeline of the Siamese neural network.
The resulting model is then used in the standard VT&R setup with one
major difference — only one map (from a single polytunnel row) is used
to traverse all the polytunnel rows.

To test the generalisability of the navigation system three robots
were used for the experiments, a Saga Thorvald in its tall arch config-
uration, a Clearpath Husky and an AgileX Hunter 2.0, see Fig. 1. These
represent a range of different ground robot types, from the Throvald
with 4-wheel drive and 4-wheel steering, the Husky with 4-wheel differ-
ential drive and the Hunter 2.0 with 2-wheel drive Ackerman steering.
All three robots are equipped with an IMU and an Intel Realsense D435i
using only the RGB image stream with a resolution of 640 × 480 pixels.
The cameras are mounted at different locations on the robots, on the
Thorvald it is mounted at the top at a height of 1.95 m with a view
looking over the top of the crop rows, on the Husky and Hunter 2.0 the
cameras are mounted on the front of the robots at 0.5 m and 0.35 m
from the ground respectively, this again tests the generalisability of
the navigation system to different viewpoints in the environment, the
camera views from the Thorvald and Hunter 2.0 are shown in Fig. 6.
The Thorvald can only drive along the ten table top rows due to its
5

tall arch design as it drives over the crop rows rather than in between
the rows as the Husky and Hunter 2.0 can. Unlike the other robots, the
Thorvald platform can take advantage of the RTK GNSS because the
plants do not occlude the signal, and thus it is possible to use the RTK
GNSS as ground truth for this robot.

In our study we refer to training as the data training of the Siamese
network, teaching as driving the robot along a new path to create a map
and repeating as the robot driving along a taught path. The Siamese
network and feature extractor were trained only once on the Thorvald
with the camera at a height of 1.95 m along all the rows at the test
farm in Riseholme at midday (Fig. 6(a)). This network was used on all
three robots at all the polytunnel sites without being retrained.

For the teaching phase, all three robots drove along a row in the
polytunnels at a constant speed. After creating a map from a row
the robot is guided to each row’s start point, once at the start of the
row VTAG’s repeat mode is started to traverse the row. During the
traversals, each frame from the camera’s live feed is compared to the
closest image in the map, based on the current odometry, to estimate
the horizontal displacement and to correct the heading, by sending
velocity commands to the robot. The robot configuration and VTAG
parameters are shown in Table 1. Thanks to the small size of the neural
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Table 1
The different configurations of the three robotic platforms and the VTAG parameters used in the experiments, node
interval is the distance between nodes and recorded images in the map created by VTAG. The cameras used are
Realsesne D435i but only the RGB images were enabled.

Parameter Thorvald Husky Hunter 2.0

Steering Configuration 4 Wheel Steer Skid Steer 2 Wheel Ackerman
Camera type Intel RS D435i Intel RS D435i Intel RS D435i
Camera Height, [m] 1.95 0.5 0.35 & 0.80
Camera Resolution, [px] 640 × 480 640 × 480 640 × 480
Computer Intel NUC 8 Asus PN50-E1 Intel NUC 11
CPU Intel 8th Gen i5 AMD Ryzen 4700u Intel 11th Gen i7
RAM 16 GB 8 GB 16 GB
Robot Size, L × W × H, [m] 2.00 × 1.50 × 2.00 0.99 × 0.67 × 0.70 0.98 × 0.75 × 0.38
Teach-Repeat speed, [m/s] 0.2 0.4 0.4
Node interval, [m] 0.7 0.7 0.7
Fig. 5. The test site strawberry polytunnel at the University of Lincoln. (a) shows the two polytunnels and the row numbering system and orientation, the rows are 1.4 m wide
(between the poles) and 25 m long. (b) a diagram of the top down view of the polytunnels. There are ten table top crop rows numbered r1 to r10 the rows in between the table
top rows are numbered r0.7, r1.5, r2.5, r3.5, r4.5, r5.3, r5.7, r6.5, r7.5, r8.5, r9.5 and r10.3. (c) shows the topological map of the polytunnels showing the nodes and edges the
robots can traverse when using topological navigation.
Fig. 6. Camera views from the robots at the test farm, the network was trained on images from the Thorvald (camera height 1.95 m) (a), VTAG was used on the Hunter
2.0 (camera height 0.8 m) (b) shows the taught row and (c) one of the repeated rows, which is visually different in position in the polytunnel, pole positions, roof height and
background scene.
network, it is possible to achieve relatively high speed even though we
do not employ GPU for image processing. With the Intel NUC 8th gen
the processing speed is approximately 10FPS, and from our experience
with VT&R navigation, it is necessary to process at least 3–5 images per
metre, which puts the upper bound to the maximal speed of the robot.
We were able to navigate the Husky robot with speeds over 1 m/s, but
the space in the polytunnels is very tight, so, for safety reasons, we used
lower speeds in the experiments.

3. Results

Our aim is to investigate the generalisability of the VTAG navigation
framework in polytunnel environments. To evaluate this, we record
the locations where human intervention is required, an intervention
6

is where the operator intervened manually, with a joystick, to pre-
vent the robot from hitting obstacles or where the robot drastically
deviates from the desired trajectory. After an intervention, the robot
was manually manoeuvred back to the centre of the row and VTAG
resumed, occasionally the robot was driven back to the start of the
row, which is reflected in the autonomous distance figures. As a total
measure of this, we calculate the mean distance between interventions
(MDBI), i.e. the total distance autonomously travelled divided by the
number of interventions. Note that there is a minimal margin for error
inside the polytunnel, and even a relatively small deviation in the
lateral axis (∼20 cm) can require an intervention. We also calculate a
generalisation gain (or the teach/repeat ratio), the distance the robots
travel using VTAG over the distance the robot was taught, in the case
where the whole environment is mapped the gain would be 1. Another
measure is the absolute trajectory error (ATE), which was only recorded
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Table 2
Experiment results of our VTAG method used on three different robotic platforms (Thorvald, Husky and Hunter 2.0)
in both our test farm and commercial farm sites.

Farm Robot Camera Distance [m] Interventions MDBI [m] Generalisation
height [m] teach traverse end-row in-row end-row in-row gain

Test Thorvald 1.95 25 418 20 0 21 n/a 17
Test Husky 0.50 25 3,549 25 1 142 3,549 142
Test Hunter 2.0 0.35 50 1,035 18 10 58 103 21
Test Hunter 2.0 0.80 50 2,339 32 3 73 780 47
Commercial Husky 0.50 116 2,146 0 0 n/a n/a 19
Commercial Hunter 2.0 0.80 606 6,016 9 20 668 301 10
on the Thorvald, where the repeated trajectory is compared to ground
truth,

𝐴𝑇𝐸𝑅𝑀𝑆𝐸 (�̂�, 𝑋) =
√

1
𝑁

‖𝑡𝑟𝑎𝑛𝑠(�̂�𝑛) − 𝑡𝑟𝑎𝑛𝑠(𝑥𝑛)‖2 (1)

where 𝑡𝑟𝑎𝑛𝑠(𝑥𝑛) is an individual 2D ground truth point corresponding
to the crop row and 𝑡𝑟𝑎𝑛𝑠(�̂�𝑛) a 2D point of the demonstrated trajectory.

he GNSS coordinates of the rows were used as ground truth or refer-
nce trajectory points, while the demonstrated trajectory was sampled
very 0.2 m, using coordinate data from the RTK GNSS data. The
xperimental results for all three robots and farm sites are summarised
n Table 2.

.1. Thorvald

The Thorvald robot was taught to traverse the centre of row r8
orth to south in our test farm polytunnel around midday and re-
eated the trajectory on all ten rows in both directions using VTAG
ramework the same afternoon. Fig. 7 summarises the results of the
ateral, absolute trajectory and displacement errors for all ten rows
epeated in both directions. The Thorvald is equipped with an RTK GPS
eceiver allowing a ground truth to be collected along the centre of each
ow traversed and compared against. The average lateral and absolute
rajectory errors show an oscillation around the row with a mean error
f 5–6 cm, while the robot did not fail to traverse a single row. The
ision system was disengaging and switching back to move_base in
he last 2.8 m as the table top crop row was no longer visible in the
amera view. Fig. 7(c) shows the neural network’s certainty of the
utput displacement estimations averaged over all the traversed rows,
or the larger part of the row, the network is very confident, while
owards the end of the row, the confidence drops significantly. This is
ainly due to the decrease in the relevant features in the scene as the

rop rows become less visible. The Thorvald travelled a total of 418 m
ith no in-row interventions. The only interventions were at the end
f each row where the Timed Elastic Band (TEB) planner took over
rom VTAG given that the rows are only 25 m long VTAG successfully
avigated the robot for 87% of all the row lengths.

.2. Husky

The Husky robot was used at both our test farm and at a commercial
arm. At our test farm, it was taught to traverse the centre of row
4.5 north to south around 11 am–12 pm. All twelve of the rows were
epeated in both directions, a total of 144 row lengths (3.6 km) were
epeated using this taught trajectory of a single 25 m row, in the results
round two thirds of the repeat rows were conducted on the same
ay as the teaching, 12 pm–4 pm, and around one third was con-
ucted three days later, 11 am–3 pm, using the same taught trajectory.
ig. 8(a) shows the locations of interventions in the polytunnel rows
uring the repeat phase. There were no interventions at the start of the
epeat runs, almost all of the interventions are within 1–2 m of the end
f the repeat runs at the end of the rows. We consider the end-of-row at
.5 m from the end, shown as horizontal lines in Fig. 8. This is where in
7

the camera view the distance between the last polytunnel poles is half
the width of the image and the view is of the outside of the polytunnel
with little view of the table top crop rows or the upright poles. One
location requiring the intervention is halfway along row r10.3 this most
likely because the visual features are different in the end rows than
the middle rows, the end rows have a slightly different arrangement of
poles and crop row tables which may have caused the neural network
to misalign the images on this occasion. The Husky travelled a total of
3,548.5 m with 1 in-row intervention resulting in an in-row MDBI of
3,548.5 m and 20 interventions at the end-of-rows.

In the commercial farm polytunnels the Husky was taught to tra-
verse the centre of one 58 m row (1.55 m wide) in both directions,
around 10 am–11 am. The robot was then commanded to repeat 18
rows in both directions (one row twice) the same day from 11 am–4 pm.
The Husky travelled a total of 37 row lengths, a distance of 2,146 m,
successfully traversing all the rows without any intervention.

3.3. Hunter 2.0

The Hunter 2.0 robot was tested at both our test site and at the com-
mercial farm. Firstly at our test site, the camera height was mounted at
a height of 0.35 m and the robot was taught to traverse the centre of
row r2.5 (Fig. 6(b)) both north and south in our test farm polytunnel,
from 11 am–12 am. All twelve of the rows were repeated, the same day
from 12 pm–4 pm in both directions using the respective north or south
taught path a total of 48 row lengths. As with the Husky the majority of
intervention locations during its repeat phase are near the end of the
rows, as shown in Fig. 8(b). Some of the locations are further inside
the rows (1–5 m) compared to the Husky and there are a few locations
requiring intervention at the start of rows this is likely due to the lower
camera position on the Hunter 2.0 where less of the table top rows are
in the camera view. There are several locations in the end rows, r0.7,
r5.3, r5.7 and r10.3, parts of these rows are visually different from the
middle rows where the robot was taught. The Hunter 2.0 travelled a
total of 1,034.5 m with 10 in-row interventions resulting in an in-row
MDBI of 103.45 m and 18 interventions at the end-of-rows.

To investigate if the low camera position was causing interventions
we raised the camera height to 0.8 m on the Hunter 2.0. In this
configuration, the robot was taught r3.5 both north and south in our
test site, from 10 am–11 am. All twelve of the rows were repeated twice
the same day from 11 am–4 pm in both directions using the respective
north or south taught path a total of 96 row lengths. As can be seen in
Fig. 8(c) most of the interventions are at the ends of the row but there
are fewer interventions in the rows, three interventions whereas eleven
with the lower camera position. The Hunter 2.0 with the higher camera
position travelled a total of 2,338.5 m with 3 in-row interventions
resulting in an in-row MDBI of 779.5 m and 32 interventions at the
end-of-rows, a large improvement over the lower camera height.

In the commercial farm polytunnels the Hunter was tested in three
different polytunnel environments with row lengths from 58 m to 90 m.
In all the polytunnels there are two row widths 1.55 m and 1.05 m the
robot was taught to traverse both row types once in each polytunnel,
around 9 am–11 am. Across all the polytunnels the robot repeated, the
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Fig. 7. The average lateral error (a), average absolute trajectory error (b) and average displacement confidence (c) averaged over all ten rows repeated in both directions using
the Thorvald. Green highlights navigation with VTAG and red where navigation is taken over by move_base and the Timed Elastic Band (TEB) planner.
same day from 10 am–4 pm a total of 94 rows and successfully travelled
6,016 m with 20 in-row interventions resulting in an in-row MDBI of
300.8 m and 9 interventions at the end-of-rows.

4. Discussion and conclusion

We extend the classic visual teach and repeat to a novel teach and
generalise approach for autonomous path traversal, where the robot
learns how to traverse a path and is able to generalise on unseen paths.
This approach only uses a single uncalibrated monocular camera and
the robot’s odometry, it has been tested in a strawberry farm polytunnel
but it can be used in any visually repeating environment, such as
corridors in offices and hospitals, isles in factories, supermarkets and
warehouses, crop fields, vineyards etc.

The method is based on path repeatability convergent property
introduced in Krajník et al. (2010) by applying only heading correc-
tions. Visual displacement estimation can be challenging in agricultural
environments due to the lack of distinct landmarks and the perceptual
aliasing introduced by the scene’s repeatability. This perceptual aliasing
8

is turned in our favour by learning general scene representations using
the self-supervised framework introduced in Rozsypálek et al. (2022a).

Our experimental results show our approach can successfully tra-
verse along unseen polytunnel rows from only one taught row both in
our test farm and in a commercial farm. Our approach is robust and
generalisable across rows and between different robots with different
steering methods and camera positions. Almost all of the locations
where our approach requires intervention are at the end of the repeat
run at the end of the polytunnel rows this is because the camera no
longer has a view of the regular repeating structures such as the poles
and table tops ahead of itself and now has a view of the open areas
outside the polytunnels. As our experiments only taught the trajectories
inside the rows this is to be expected as our approach takes advantage
of the crop row structure to estimate displacement errors. At our test
farm, a few locations requiring intervention are in the end rows of
the polytunnels (r0.7 and r10.3, see Fig. 8), in places these rows have
visual features which are different to the middle rows where the robots
were taught, the end rows have a slightly different arrangement and
number of poles and crop row tables. To improve the approach in our
experiment new trajectories may need to be taught, one of a middle row
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Fig. 8. Locations, within 1 m intervals, and frequency of interventions during the repeat phase in both directions using the (a) Husky and Hunter 2.0 in the polytunnels, (b)
shows the results from the Hunter 2.0 with other lower camera position at 0.35 m above the ground and (c) with the camera at the higher position of 0.8 m. The horizontal lines
at 2.5 m and 22.5 m shows the end-of-row this is where in the camera view the distance between the last polytunnel poles is half the width of the image, with a view outside
the rows and little view of the repeating table tops and poles. Row numbering and orientation are the same as shown in Fig. 5.
and one of an end row and repeat the appropriate trajectory dependent
on which row the robot is travelling along. It is also possible to use the
images collected prior to intervention to improve the neural network’s
performance in the critical sections.

The generalisable of our approach extends to diverse robotic plat-
forms and environments. The neural network was trained only on a
single occasion, using images obtained from the Thorvald robot at our
test farm, which has a significantly different camera view compared
to the Husky and Hunter robots. Furthermore, the environment of the
test farm (Fig. 6) in the images captured is considerably different to the
commercial farm polytunnels (Figs. 1(b) and 1(c)).

The number of in-row interventions for the Hunter in the commer-
cial farm is high due to the narrow rows. The rows are one-third the
width of the rows the network was trained on at our test farm. The
intervention rate for the Hunter robot could be potentially lowered by
training the neural network using the dataset, which corresponds more
closely to the view of the camera mounted on the robot, especially
in the commercial farm where the number of in-row interventions is
higher than at the end-of-row. It is expected that our method is unable
to reliably guide the robot when the learned repetitive cue is not
present in the camera view. There are multiple possible approaches to
tackle this issue as it occurs at the end of the learned path. An advanta-
geous property of our method is that the neural network can estimate
the confidence of the visual cue detection, as shown in Fig. 7(c). When
the confidence is low, the robot can switch to different behaviour and
stop using the heading corrections estimated by the neural network.
The quality of this behaviour switching can also be improved by using
odometry in combination with the known length of the traversed row
or indicating the end of the row by a fiducial marker.

The advantage of the presented approach is that the visual scene
does not have to be consistent. The variations of the crops are a very
challenging problem in agricultural environments. When a suitable
dataset is provided, the neural network can learn a descriptor of the
visual cue invariant to the variations provided in the data. Labelling
image pairs containing tiny seedlings in one image and grown plants
in the other image as positive pair is possible. The contrastive learning
is then able to produce a descriptor of the plant (neural representation
of the image), which is invariant to the plant’s growing phase. A
similar approach could be applied to multiple different variations of
the environment and lighting conditions, resulting in a neural network,
which is pretrained to be robust to given changes, and still a single
9

map can be used to navigate the robot. As found previously by Krajník
et al. (2018) and Rozsypálek et al. (2022a) the method was capable of
handling different lighting conditions and environmental changes, the
time of day the teach and repeats are conducted should not significantly
affect the performance. However, with continual data gathering during
the traversals and automation of the training process, the presented
system can be suitable also for long-term deployment.

Our method can also have a broader impact not only in agriculture
but also in other industries. The preliminary experiments show that
this method is not bound only to natural environments and can be
used in different repetitive environments such as corridors, warehouses,
pathways or car parks. In the future, the robot could exploit multiple
neural networks, each representing desired behaviour in specific envi-
ronments such as centring inside a corridor, travelling along a pathway
and keeping distance to a fence at the side of the pathway etc.

Our approach highlights an advantage over conventional visual
SLAM methods, such as RTAB-Map (Labbe and Michaud, 2014). One
notable limitation observed in visual SLAM methods is the occurrence
of perceptual aliasing, which hampers the creation of reliable maps.
Preliminary experiments conducted with RTAB-Map revealed subpar
performance in terms of feature matching within the rows of the
polytunnels. Consequently, this led to inadequate localisation of the
robot, as most rows are visually similar to every other row. Further-
more, the maps generated by RTAB-Map exhibited a lack of scalability
with respect to the environment’s size, and a consistent map was not
never created. Given these findings, the application of RTAB-Map was
dismissed even before navigation attempts were made, emphasising the
necessity of an alternative solution.

More teaching of trajectories would be required to perform row
changing and movement to other locations outside of the polytunnels,
such as to a warehouse building. However, this would require a lot of
trajectories to be taught and selected by the robot to reach its intended
goal, for example, in our test site every trajectory from r0.7 to every
other row would need to be taught than from r1.5 to every other row
and so on. Future work on a more suitable method would be to use
the VTAG framework only inside the polytunnel rows and switch to
another method for navigation outside the rows. SLAM methods would
be suitable as visual aliasing is not a large problem outside the rows,
this would overcome the limitations of both methods for navigating in
these polytunnel environments.
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