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Abstract
Background  This study uses bootstrapping to evaluate the technical variability (in terms of model parameter variation) of 
Zernike corneal surface fit parameters based on Casia2 biometric data.
Methods  Using a dataset containing N = 6953 Casia2 biometric measurements from a cataractous population, a Fringe 
Zernike polynomial surface of radial degree 10 (36 components) was fitted to the height data. The fit error (height – recon-
struction) was bootstrapped 100 times after normalisation. After reversal of normalisation, the bootstrapped fit errors were 
added to the reconstructed height, and characteristic surface parameters (flat/steep axis, radii, and asphericities in both axes) 
extracted. The median parameters refer to a robust surface representation for later estimates of elevation, whereas the SD of 
the 100 bootstraps refers to the variability of the surface fit.
Results  Bootstrapping gave median radius and asphericity values of 7.74/7.68 mm and −0.20/−0.24 for the corneal front 
surface in the flat/steep meridian and 6.52/6.37 mm and −0.22/−0.31 for the corneal back surface. The respective SD values 
for the 100 bootstraps were 0.0032/0.0028 mm and 0.0093/0.0082 for the front and 0.0126/0.0115 mm and 0.0366/0.0312 
for the back surface. The uncertainties for the back surface are systematically larger as compared to the uncertainties of the 
front surface.
Conclusion  As measured with the Casia2 tomographer, the fit parameters for the corneal back surface exhibit a larger degree 
of variability compared with those for the front surface. Further studies are needed to show whether these uncertainties are 
representative for the situation where actual repeat measurements are possible.

Keywords  Bootstrap techniques · Anterior segment tomographer · Model parameter uncertainties · Robustness of surface 
fit · Fringe Zernike polynomial surface representation
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Introduction

Corneal parameters and surface models for the cornea are 
mandatory in ophthalmology for special applications such 
as raytracing through the eye, contact lens fitting, calcula-
tion of optical implants including capsular bag replacement 
lenses (for cataract surgery or clear lens extraction) or sup-
plementary lenses (phakic lenses or Add-On lenses), and 
for definition of ablation profiles in refractive laser surgery.

There are currently several competing tomography tech-
niques for measuring the corneal front and back surface: in 
addition to classical Scheimpflug tomography, which uses 
projections onto the cornea of a thin light slit comparable 
to a slitlamp biomicroscope, the new generation of anterior 
segment optical coherence tomographers (OCT) has gained 
in popularity. The Scheimpflug tomographer uses multiple 
projections from a rotating or scanning slit to examine the 
entire cornea, whereas in OCT devices, multiple A-scans 
are used in a polar grid (multiple meridians) or a raster 
scan (parallel line scans) to examine the entire cornea. The 
first generation of time domain OCTs had the disadvan-
tage of a slow scanning rate (e.g. 2000 A-scans per second 
with the Zeiss Visante), whereas newer generation spec-
tral domain OCTs or swept source OCTs employ scanning 
rates of up to 100,000 A-scans per second. This allows for 
a dense sampling (high lateral resolution) together with a 
short examination time (to avoid movement artifacts).

All tomographers process the measurement data inter-
nally in order to fit surface models of varying degrees 
of complexity to both corneal surfaces [1, 2]. Various 

clinically relevant parameters such as the average cen-
tral corneal radius, the radius in both cardinal meridians, 
together with the orientation axes or the asphericity of the 
surface can be extracted from these surface models [3]. 
Additional parameters from a more detailed analysis give 
information about surface asymmetry, local irregularity, 
or similarity to an ectatic disease configuration (e.g. kera-
toconus screening). However, the internal processing of 
the measurement data is not disclosed.

Nearly all tomographers provide an interface allowing 
the raw data to be exported [4]. These interfaces provide 
data on axial or instantaneous curvature or power, ker-
atometric power, surface sag (height data), or elevation 
(height data minus a reference surface). The reference 
surface for derivation of the elevation data may be either 
a simple best fit sphere (floating or centred), or more com-
plex surface models such as quadric or biconic surfaces.

Ophthalmologists are familiar with surface models 
characterising corneal shape. Best fit spheres derived from 
measurement data in a central region of the cornea (e.g. a 
9-mm zone) are typically very robust, but are restricted to 
the overall base curve of the cornea and do not fully reflect 
the imaging properties. In contrast, if the fitting is restricted 
to smaller zones (e.g. measurement data over the entrance 
pupil), more complex models (quadric surfaces [2], or a 
biconic surface [4]), then the alignment of the surface with 
respect to the instrument axis must be taken into account, 
and the larger number of degrees of freedom in the surface 
fit might negatively impact the robustness of the surface fit. 
In the worst case (e.g. if a biconic or Zernike polynomial 

Key messages

What is known:

Decomposition of corneal tomography measurement data into a Zernike polynomial base is known as a proper 
and mathematically efficient tool for characterising the front and back surface and for determining characteristic 
surface parameters such as the orientation of the 2 cardinal meridians, radii of curvature, or asphericities at both
meridians. However, the sensitivity of Zernike surface fitting to variations in biometric input data from Casia2 
tomography is not fully understood yet.      

What is new:

This study uses measurement data from an anterior segment OCT tomographer to extract the Fringe Zernike 
representation of radial degree 10 and to investigate the uncertainties of the Zernike coefficients as well as the
uncertainties of the characteristic surface parameters. Bootstrapping methods are used to evaluate the technical
variability of the surface fit model based on Fringe Zernike polynomials, in terms of the sensitivity of the model
parameters to variability in the input biometric data.      

Overall, in our dataset with cataractous eyes, the surface fit with a Fringe Zernike polynomial base for both 
surfaces shows small variations / uncertainties of the Zernike coefficients and the characteristic surface parameters
such as radii and asphericities show less variability for the corneal front surface measurement as compared to the
back surface measurement.      
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surface is fitted to the measurement data), 6 degrees of 
freedom have to be considered (3 translation and 3 rota-
tion parameters). If, e.g. a decentration of the measurement 
axis to the centre of the model surface is ignored, a simple 
spherical aberration component converts to spherical aber-
ration overlaid with tilt and coma (both of which grow in a 
linear fashion with decentration), and astigmatism and defo-
cus (both of which grow quadratically with decentration) [5].

Surface fits using Zernike polynomials generally have 
the advantage of being additive [3, 6]. Such polynomi-
als are well known to be orthogonal within the unit cir-
cle; however, if we are restricted to discrete data points 
extracted from the tomographer, they are no longer orthog-
onal [5]. However, in most cases, an orthogonalisation 
(e.g. Gram-Schmidt-orthogonalisation) is not required for 
clinical applications since the correlation of the Zernike 
polynomials on our data samples is very low. This addi-
tive behaviour means that the coefficients of the surface 

decomposition into Zernike polynomials can easily be 
derived by solving a least squares equation system [3, 5]. 
Given the selection of an appropriate radial order for the 
polynomial base [7, 8], corneal surfaces can be character-
ised sufficiently with Zernike polynomials. This allows 
all relevant parameters such as average corneal radius, the 
radii of curvature in both cardinal meridians together with 
the orientation axes, as well as the asphericity (or conic 
constant) overall or in both meridians to be extracted eas-
ily [9]. However, it is important to understand whether 
our surface fit with Zernike polynomials is robust enough 
to reliably extract these characteristic surface parameters 
[6, 7, 10]. In most cases, an expansion into a full Zernike 
polynomial base is not required for clinical applications. 
With higher radial degrees, the number of azimuthal fre-
quencies increases, and as an example, for a radial degree 
of NZ = 4 or 6, a total of 15 or 28 Zernike polynomials 
have to be considered. Since Zernike polynomials with 

Fig. 1   This scheme describes 
the strategy of surface data 
analysis. After alignment of 
the corneal surface, the initial 
Fringe Zernike decomposition 
of radial degree NZ = 12 is per-
formed and the surface recon-
struction FZS and the fit error E 
are derived. After normalisation 
of E, NB bootstraps are calcu-
lated. After reverse normalisa-
tion, the NB bootstrapped fit 
errors are added to FZS, and 
each bootstrap is decomposed 
into a Fringe Zernike surface 
with radial degree NZ = 12. 
The metrics for uncertainty or 
robustness are derived from the 
NB bootstrapped Zernike surface 
representations
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higher azimuthal frequencies might be mostly affected by 
noise from the tomographer, in most applications, it is 
sufficient to consider a simplified polynomial base (the so-
called Fringe Zernike polynomials) where the ‘wings’ of 
the Zernike scheme are clipped in such a way that the sum 
of the radial degree and the azimuthal order equals NZ. For 
example, for a radial degree of NZ = 4 or 6, a total of 9 or 
16 Fringe Zernike polynomials have to be considered [5].

The purpose of this study was:

•	 to better understand the sensitivity of Fringe Zernike 
corneal surface fitting polynomials with radial degree 
up to NZ = 10 to variations in Casia2 anterior segment 
tomography input data (corneal front and back surface), 
using bootstrapping of the surface fit error,

•	 to investigate the technical variability of the surface 
fit for raytracing applications and to extract character-
istic surface parameters such as radii, orientation axes, 
and asphericities in both cardinal meridians as used in 
intraocular lens power calculations, and

•	 to apply this procedure to a large clinical dataset to show 
the clinical applicability.

Materials and methods

Dataset for formula constant optimisation

In this retrospective study, we analysed a dataset containing 
measurements from 8000 eyes from a cataract population 
from the Augen- und Laserklinik Castrop-Rauxel, Castrop-
Rauxel, Germany, which was transferred to us. The local 
ethics committee (Ärztekammer des Saarlandes) provided a 
waiver for this study (157/21). The raw export data (.CSV-
format) were transferred to us in an anonymised fashion, 
precluding back-tracing of the patient. The anonymised 
data contained preoperative anterior segment tomographic 
data acquired using the Casia2 (Tomey GmbH, Nürnberg, 
Germany, software version Ver.50.5A.03). The CSV data 
were imported into MATLAB (Matlab 2021a, MathWorks, 
Natick, USA) for further processing. Figure 1 shows the 
strategy of data analysis as described below. This strategy 
is applied independently to the corneal front and corneal 
back surface data, which are indexed with ()a and ()p.

Preprocessing of the data

Custom software was written in Matlab. As standard, data 
exported from the Casia2 software include lateral position 
data and data on axial, keratometric, or instantaneous cur-
vature/power of both surfaces or real/refractive power of the 
cornea, as well as height and elevation data. In addition to 
eye side (OS or OD), gender, date of birth, and examination 

date, we restricted the data selection to the lateral position 
and height of the corneal front and back surface, discarding 
all other data. Each data block (lateral position and surface 
height of both surfaces) contained cylinder coordinate meas-
urements at 32 semi-meridians (angle θ from 0° to 348.75° 
in steps of 11.25°) with 400 radial positions (radial distance 
r from centre from 0.02 to 8.0 mm in steps of 0.02 mm) each 
in a central 16-mm zone. Measurements having a quality 
marker QS other than ‘OK’, and incomplete datasets for the 
corneal front or back surface height within the 7-mm cen-
tral zone of the cornea were excluded from the study. The 
patient age was derived from the examination date and the 
date of birth.

Cylindrical coordinates (r,θ,Z) were converted to Car-
tesian coordinates (X,Y,Z) for further processing. Fringe 
Zernike polynomials were used as shown in Gross [5]. For 
misalignment removal in the data, a rigid transformation was 
implemented according to Schröder [4]. A simple ‘floating’ 
rotational symmetric 4th-order paraboloid (Fringe Zernike 
polynomials: piston Z1, defocus Z4, and spherical aberration 
Z9) was fitted to the measurement data within the central 
7-mm zone to derive the lateral translation offset and the tilt 
of the surface. The lateral position data and surface height 
data for the corneal front and back surface were both cor-
rected for lateral translations (in the X and Y directions) and 
tilt (rotation around the X and Y axes) before further process-
ing. After misalignment removal, all data outside the central 
6-mm zone were discarded [4].

Subsequently, an initial Fringe Zernike polynomial sur-
face of degree NZ = 10 (FZS, in total a Zernike polynomial 
base with 36 components, with ordering according to Gross 
[5]) was fitted to the corneal front and back surface height 
data in terms of a least squares solution from a matrix cal-
culus (unit circle refers to a 6-mm zone). The axes of the 
two cardinal meridians (flat meridian A1 and steep meridian 
A2) were extracted from the Zernike coefficients characteris-
ing the primary astigmatism. The FZS reconstruction was 
analysed at both cardinal meridians A1 and A2 with a poly-
nomial expansion of radial degree 4 to determine the central 
radii of curvature (radius R1 and R2) as well as the aspheric-
ities Q1 and Q2 at the flat and steep meridian, respectively. 
In addition to R1, A1, Q1 and R2, A2, Q2, the average radius 
(R = 0.5·(R1+R2)) and asphericity (Q = 0.5·(Q1+Q2)), the 
differences in radius (ΔR = R1−R2) and asphericity (ΔQ = 
Q1−Q2), and the projections of ΔR to the 0°/90° meridian 
(R0° = ΔR·cos(2A1)) and the 45°/135° meridian (R45° = 
ΔR·sin(2A1)) were recorded.

The fit error E, defined as the height difference between 
the measurement data and Fringe Zernike reconstruction, 
was derived for both surfaces. As the measurement error 
of anterior segment OCT is known to increase in a quad-
ratic fashion from centre to periphery (R = (X2+Y2)1/2), the 
absolute value of the error in radial direction was fitted by 
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a 2nd-order polynomial to derive the intercept a0 and 2nd-
order coefficient a2. The fit error E was normalised to:

Bootstrapping implementation

The following section outlines the strategy of bootstrapping 
for estimation of standard errors of the formula constants. 
This was performed separately for the corneal front and back 
surfaces.

1.	 The normalised fit error E0 was sampled NB times 
(NB refers to the number of bootstrap sequences) with 
replacement (E01 to E0NB).

2.	 The normalisation of the NB bootstrapped fit errors E01 
was reversed (E0NB) by

3.	 The bootstrap errors after reversion E01’ to E0NB’ were 
added to the Fringe Zernike surface reconstruction data 
FZS ([10]). For each bootstrap, a new Fringe Zernike 
polynomial decomposition of radial degree NZ = 10 
was performed to obtain the 36 Zernike coefficients as 
described before.

4.	 The mean, median, SD, and 90% confidence intervals 
were calculated from the NB sets of Zernike coefficients. 
The 90% confidence interval for the NB sets of Zernike 
coefficients was then quoted as the ‘uncertainty’ of the 
Zernike coefficients [11].

5.	 For each of the NB bootstraps, the characteristic surface 
parameters R1, R2, R, ΔR, R0°, R45° and Q1, Q2, Q, ΔQ 
(calculated as shown above) were calculated, and their 
90% confidence intervals quoted as the ‘uncertainty’ of 
the surface characteristics.

Statistical evaluation

The explorative data for both corneal surfaces are shown 
with mean, standard deviation (SD), median, and 90% con-
fidence intervals (5% quantile as the lower bound and 95% 
quantile as the upper bound) for the Fringe Zernike coef-
ficients of the initial surface fit (restricted to the first 9 com-
ponents referring to the 4th radial degree), the polynomial 
coefficients a0 and a2 describing the radial polynomial fit 
of the absolute fit error, as well as the standard deviation of 
the NB bootstrapped surface characteristics parameters R1, 

E0(R, �) =
E(R, �)

a0 + a2 ∙ R
2
.

E01
�(R, �) = E01(R, �) ∙

(

a0 + a2 ∙ R
2
)

… … …

E0NB

�(R, �) = E0NB
(R, �) ∙

(

a0 + a2 ∙ R
2
)

.

R2, R, ΔR, R0°, R45° and Q1, Q2, Q, ΔQ. For the NB boot-
strapped Fringe Zernike coefficients (restricted to the first 
9 components referring to the 4th radial degree), the 90% 
confidence interval is shown.

Results

From the N = 8000 data from the Casia2 tomographer trans-
ferred to us, a total of N = 6953 (3744 right eyes and 3209 
left eyes) were used after eliminating measurements with 
incomplete data or with a quality check other than ‘OK’. 
The mean age at the time of measurement was 71.04±13.05 
years.

To illustrate the principle of our strategy, we selected 
one case (measurement 11 of 8000) from our dataset as an 
example. Figure 2a shows the absolute value of the fit error 
(initial Fringe Zernike decomposition) in the pre-processing 
stage after alignment of both surfaces (centring in X and Y 
and removal of tiles around X and Y) as a function of the dis-
tance to the centre r for the corneal front and back surface. 
As shown in the graph, the fit error E increases in a quadratic 
fashion. The polynomial fit y~1+r2 is used to normalise the 
fit error E to E0 before bootstrapping. The reconstructed sur-
face FZS in the pre-processing stage is evaluated to obtain 
both cardinal meridians (the flat (A1) and the steep (A2) 
meridian). Figure 2b shows the FZS in both meridians (at 
axes A1 and A2) together with the polynomial fit to extract 
the characteristic surface parameters (the radii and aspherici-
ties in cardinal meridians, the average radius and asphericity, 
and the difference of radii and asphericities between both 
meridians). After bootstrapping of the normalised fit error 
from the pre-processing stage, we reversed the normalisa-
tion to read out E0’. Then, for each of the NB = 100 boot-
straps, E0’ is added to the surface reconstruction FZS, and 
NB = 100 Fringe Zernike polynomial decompositions are 
calculated. Figure 2c displays the distributions of the radii 
and asphericities in meridians, the average and difference 
of radii and asphericities between both meridians, and the 
projections of the difference of radii to the 0°/90° and to the 
45°/135° meridian for the corneal front and back surfaces. 
Finally, Fig. 2d shows the uncertainty of the reconstruction 
of the radii in terms of average radius and the radius differ-
ence between the flat and steep meridian projected to the 
0°/90° and to the 45°/135° meridian in a 3D scatterplot for 
the corneal front and back surface.

Overall, for the 6953 data samples which were analysed in 
the study, the coefficients for the polynomial fit to normalise 
the fit error E in the radial direction are displayed in Table 1. 
We can see that the intercept a0 is mostly systematically 
larger for the corneal back surface as compared to the front 
surface, implying either that the measurement data for the 
corneal back surface are much more noisy or that the data 
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Fig. 2   Exemplary case presentation (measurement 11 of N = 8000). a 
The fit error for the corneal front (left image) and back surface (right 
image) derived from the initial Fringe Zernike polynomials decompo-
sition after alignment of the data (removal of decentration and tilt) as 
a function of the radial component r together with the polynomial fit 
y~1+r2 (polynomial coefficients ·e−4: a0 = 1.01/8.37, a2 = 6.08/7.22 
for the front/back surface). The fit error is normalised to the poly-
nomial representation before bootstrapping. b The Fringe Zernike 
polynomial representation for the corneal front (left image) and back 
surface (right image) of the surface evaluated in both cardinal merid-
ian (the flat and the steep meridian) together with a polynomial fit to 
derive central radius of curvature and asphericity in both meridians. 

c The violin plot of the distributions of the corneal radii of both sur-
faces (radius in the flat (R1) and steep meridian (R2), average radius 
(R), and difference of radii in both meridians (ΔR)), the corneal 
asphericities of both surfaces (asphericity in the flat (Q1) and steep 
meridian (Q2), average asphericity (Q), and difference of aspherici-
ties in both meridians (ΔQ)), as well as the projections of the differ-
ence of both radii to the 0°/90° and the 45°/135 meridian for the cor-
neal front and back surface derived from the NB = 100 bootstraps of 
each data. d The 3D scatterplot of the average corneal radius (vertical 
direction) versus the double angle representation of the difference of 
the radii in both cardinal meridians (horizontal directions) for the cor-
neal front (left image) and the corneal back surface (right image)
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Fig. 2   (continued)
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are poorly represented by our Fringe Zernike representation 
of degree NZ = 10. In Table 2 and Table 3, the explorative 
data for the lower and the upper limits of the 90% confidence 
intervals of the initial 9 Fringe Zernike coefficients derived 
from the NB = 100 bootstraps are listed for the corneal front 
and back surface. These tables show the uncertainties of 
the Zernike coefficients when the bootstrapped fit errors are 
reversed in normalisation, added to the initial surface recon-
struction FZS, and again decomposed into Fringe Zernike 
polynomials of degree NZ = 10. In the lower parts of the 
tables, the width of the confidence intervals (as upper minus 
lower boundary of the 90% confidence intervals) is shown. 
The variations in the Zernike coefficients themselves cannot 
be directly interpreted in clinical terms. We therefore used 
the NB = 100 bootstraps to extract the characteristic param-
eters for the corneal front and back surface in terms of radii 
at the flat and the steep meridians, the average radius and 
difference of radii between the flat and the steep meridians, 
the asphericities at the flat and the steep meridians, and the 
average asphericity and difference of asphericities between 
the flat and the steep meridians, as listed in Table 4. In this 
table, the median value of the characteristic parameters from 
the NB = 100 bootstraps is evaluated, providing a ‘robust’ 
metric for the surface representation for both corneal sur-
faces. What we can see from these data is that on average, 
the radii and the asphericities pretty much resemble the data 
of classical schematic model eyes. In our population, we 
found a mean corneal radius of Ra = 7.68/Rp = 6.45 mm 
and mean asphericities of Qa = −0.22/Qp = −0.27 for the 
corneal front/back surface. In addition, we derived a radius 
difference between the flat and steep corneal meridian of 
ΔRa = 0.13/ΔRp = 0.17 mm.

Table 5 shows the explorative data for the uncertainties 
(in terms of standard deviations SD) of the characteristic 
surface data of the NB = 100 bootstraps for both corneal 
surfaces, which is a metric for the technical variability of the 

surface fit and surface representation using OCT measure-
ment data from the Casia2 corneal tomographer. As we can 
see from the table, the variations in the corneal radii (1.8 
μm/3.6 μm) and in the corneal asphericities (0.0054/0.0078) 
for the corneal front/back surface are on average very low. 
However, from the 95% quantile, we learn that in 5% of the 
corneal measurement data, the NB = 100 bootstraps show a 
variation of average radius of more than 6.9 μm/15.6 μm and 
a variation of average asphericity more than 0.022/0.037 for 
the corneal front and back surface respectively.

Discussion

Bootstrapping refers to any test or metrics that uses random 
sampling with replacement (e.g. simulating a sampling pro-
cess), which falls under the general envelope of resampling 
techniques. Bootstrapping is commonly used in computer 
technology and statistics [12–14], but less well known in 
ophthalmology (Iskander 2004, [15]). Normally, a set of 
measurements is performed on the same individuals from 
the same (intra-operator) or different examiners (inter-oper-
ator) to determine how consistent the results are [4]. How-
ever, repeat measurements are very time consuming under 
clinical conditions, and in such cases, bootstrapping offers 
a practical and valid alternative to repeated measurements 
for obtaining some insight into the technical variability of 
measurements. As another alternative, resampling of the 
data could be used as a straightforward strategy to calculate 
error propagation.

The idea behind bootstrapping is very simple: Instead of 
repeating the measurement, the datapoints of a measurement 
are sampled with replacement to get NB sets of datapoints of 
the same size [11]. These NB sets are considered as ‘repeat 
measurements’. Model parameters are retrieved from each of 
the NB sets and the estimation of the variation of the model 
parameters is used as a measure of variability of the model 
fit on the data set. For corneal tomographic data, this means 
that, e.g. the 4800 data points for the corneal front surface 
measurement within the 6-mm central zone of the cornea are 
sampled with replacement NB = 100 times, and for each of 
the 100 bootstraps, a surface model is fitted [10]. From the 
100 surface models, we can determine the uncertainties of 
the surface fit, and an explorative analysis gives us metrics 
(for example, an estimate of how reliable the axes of both 
cardinal meridians or the radius of curvature or asphericity 
in both cardinal meridians could be extracted [16]).

In the present study, we used Fringe Zernike polynomials 
of degree NZ = 10 (in total 36 components) to represent the 
surface shape [5]. With a higher degree, the surface model 
is more flexible to consider surface irregularities, but on 
the other hand, a higher polynomial degree bears the risk 
of overfitting, which would mean that measurement noise 

Table 1   Explorative data of polynomial coefficients for normalisa-
tion of the fit error with E = a0+a2·R2. The fit error is assumed to 
increase in a quadratic fashion with the distance R from the axis. Data 
are given with mean, standard deviation (SD), median, and the lower 
(quantile 5%) and upper (quantile 95%) boundaries of the 90% confi-
dence interval

N=6953, data 
X100

Corneal front surface Corneal back surface

Intercept a0 2nd-order 
coefficient a2

Intercept 
a0

2nd-order 
coefficient a2

Mean 0.0361 0.0261 0.2572 0.0303
SD 0.0593 0.0322 0.4383 0.0593
Median 0.0209 0.0173 0.1465 0.0148
Quantile 5% 0.0100 0.0092 0.0649 0.0031
Quantile 95% 0.1877 0.1024 1.1941 0.1672
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could be interpreted as measurement data [7, 8, 17]. In gen-
eral, nearly arbitrary surface models could be fitted to tomo-
graphic data, but Zernike polynomials have the advantage of 
being additive with the consequence that we could derive the 
coefficients from the 3D data efficiently using simple matrix 
calculus in terms of a least squares fit [1, 3].

In Fig. 1, the flowchart of our calculation strategy is 
shown. After alignment of the data, an initial Fringe Zernike 
polynomial model is fitted to the tomographic data for both 
surfaces. From the raw measurement data and the surface 
reconstruction, we extract the fit error, which is used for 
bootstrapping [18]. As it is well-known that the measure-
ment error increases from the centre to periphery, the fit 
error had to be normalised before bootstrapping. For nor-
malisation, we used a simple 2nd-order polynomial in the 

radial direction. From Table 1, we can see that the inter-
cept a0 is much higher for the back surface as compared 
to the front surface, meaning that the measurement noise 
is in general higher for the back surface or that the back 
surface is not properly described by the surface model. We 
feel that the Fringe Zernike polynomials with 36 compo-
nents should be sufficient to represent both corneal sur-
faces [7], and we therefore argue that the larger intercept 
a0 is mostly due to measurement noise. We then analysed 
the confidence intervals of the Zernike coefficients for the 
NB = 100 bootstraps, to obtain insight into the variations 
resulting from sampling with replacement. In Tables 2 and 
3, we restricted the explorative analysis to the lower and 
upper bounds of the 90% confidence intervals for the first 9 
Fringe Zernike coefficients, together with the interquantile 

Table 4   Explorative data of the median of the characteristic surface 
parameters derived from the NB = 100 bootstraps. R1 and R2 refer 
to radius of curvature of the flat and steep corneal meridian, R to the 
average radius, and ΔR to the difference between flat and steep merid-
ian. Q1 and Q2 refer to asphericity at the flat and steep corneal merid-

ian, Q to the average asphericity, and ΔQ to the difference between 
asphericities at the flat and steep meridian. The table lists the mean, 
standard deviation (SD), median, and the lower (quantile 5%) and 
upper (quantile 95%) boundaries of the 90% confidence interval

Median of characteristic parameters of the corneal surface fit derived from NB = 100 bootstraps

N = 6953 R1 in mm R2 in mm R in mm ΔR in mm Q1 Q2 Q ΔQ

Corneal front surface Mean 7.7361 7.6180 7.6770 0.1289 −0.1996 −0.2381 −0.2187 0.0385
SD 0.2275 0.2118 0.2074 0.1362 0.2377 0.2196 0.1929 0.2457
Median 7.7358 7.6188 7.6841 0.0829 −0.2125 −0.2318 −0.2197 0.0117
Quantile 5% 7.2454 7.2069 7.2258 0.0047 −0.6797 −0.6562 −0.6099 −0.4078
Quantile 95% 8.2115 8.0542 8.0802 0.5260 0.3620 0.2805 0.2207 0.6387

Corneal back surface Mean 6.5190 6.3718 6.4455 0.1683 −0.2262 −0.3093 −0.2676 0.0831
SD 0.2674 0.2424 0.2416 0.1424 0.2740 0.2492 0.2210 0.2799
Median 6.5542 6.3816 6.4748 0.1322 −0.2369 −0.3043 −0.2610 0.0551
Quantile 5% 5.9317 5.9085 5.9243 0.0080 −0.7466 −0.7358 −0.7119 −0.4849
Quantile 95% 6.9878 6.8744 6.8936 0.5737 0.3498 0.2419 0.2032 0.8056

Table 5   Explorative data of the standard deviation SD of the charac-
teristic surface parameters derived from the NB = 100 bootstraps as 
a measure for robustness. R1 and R2 refer to radius of curvature of 
the flat and steep corneal meridian, R to the average radius, and ΔR 
to the difference between flat and steep meridian. Q1 and Q2 refer 

to asphericity at the flat and steep corneal meridian, Q to the aver-
age asphericity, and ΔQ to the difference between asphericities at the 
flat and steep meridian. The table lists the mean, standard deviation 
(SD), median, and the lower (quantile 5%) and upper (quantile 95%) 
boundaries of the 90% confidence interval

Standard deviation SD of characteristic parameters of the corneal surface fit derived from NB = 100 bootstraps

N = 6953 R1 in mm R2 in mm R in mm ΔR in mm Q1 Q2 Q ΔQ

Corneal front surface Mean 0.0032 0.0028 0.0018 0.0046 0.0093 0.0082 0.0054 0.0144
SD 0.0076 0.0079 0.0037 0.0088 0.0182 0.0179 0.0106 0..0289
Median 0.0019 0.0017 0.0012 0.0027 0.0059 0.0053 0.0034 0.0091
Quantile 5% 0.0005 0.0002 0.0003 0.0006 0.0019 0.0014 0.0013 0.0034
Quantile 95% 0.0126 0.0115 0.0069 0.0193 0.0366 0.0312 0.0216 0.0570

Corneal back surface Mean 0.0059 0.0054 0.0036 0.0081 0.0134 0.0123 0.0078 0.0215
SD 0.0134 0.0154 0.0092 0.0157 0.0249 0.0262 0.0151 0.0408
Median 0.0028 0.0024 0.0018 0.0037 0.0070 0.0062 0.0041 0.0109
Quantile 5% 0.0005 0.0003 0.0003 0.0006 0.0012 0.0009 0.0008 0.0021
Quantile 95% 0.0302 0.0285 0.0156 0.0432 0.0698 0.0596 0.0371 0.1106
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range. The characteristic parameters familiar to clinicians 
were extracted from the Fringe Zernike surface represen-
tations. The axes of the cardinal meridians were extracted 
from the 2 primary astigmatism components Z2 and Z3, 
and the Zernike representation was used to calculate the 
radii and asphericities at both cardinal meridians using a 
4th-order polynomial fit. Table 4 lists the median values of 
the characteristic surface parameters for the 100 bootstraps, 
and we see that the results pretty much reflect the data of 
modern schematic model eyes with aspheric surfaces [19]. 
To account for the robustness of the surface fit, we analysed 
the standard deviations of the characteristic surface param-
eters for the 100 bootstraps and these are listed in Table 5. 
Surprisingly, the radii of curvature (for both meridians as 
well as the average radius) show very low variation over the 
100 bootstraps. In contrast, even though the variation of the 
asphericity values is in the same range, the relative variation 
(variation referenced to the mean value as shown in Table 4) 
is much higher. In general, the variation of the surface fit for 
the corneal front surface is systematically lower compared to 
the variation of the surface fit for the corneal back surface, 
suggesting that the surface fit for the front surface is more 
robust compared to the back surface.

For a better understanding, we selected one example 
measurement out of our dataset to illustrate in more detail 
what we did in this study. In Fig. 2a, we addressed the 
behaviour of the fit error as the difference between the raw 
measurement height data and the Fringe Zernike surface 
reconstruction FZS in radial direction. As we can see, the 
fit error increases systematically with the distance from the 
measurement axis, requiring normalisation before bootstrap-
ping (Iskander et al. 2014). The simple polynomial fit y = 
a0+a2·R2 used for normalisation as well as for reversing 
the normalisation after bootstrapping the error is shown in 
the graph. The radii and asphericities in both meridians are 
extracted from an equidistant dense sampling of the Fringe 
Zernike surface representation, evaluated in the two cardi-
nal meridians as shown in Fig. 2b. Figure 2c displays the 
distributions of the radii and asphericities in both cardinal 
meridians (including the average radius and asphericity and 
the difference of radii and asphericities of the flat and the 
steep meridian) for the NB = 100 bootstraps. As we can see 
from the upper graph, the variation of the radii for both sur-
faces is very low. However, from the lower graph, we see 
that the (relative) variation of the asphericities as well as the 
projections of the radius differences ΔR to the 0°/90° and 
the 45°/135° meridian are systematically larger, implying 
that the extraction of asphericity from Casia2 data using 
a Fringe Zernike surface model is less robust compared to 
the extraction of the overall radius for the corneal front and 
back surface.

However, the present study has some limitations: firstly, 
the bootstrapping technique used in this study is based on 

splitting the surface height data into the surface reconstruc-
tion (FZS) and the fit error E. The fit error is bootstrapped 
after normalisation and added after reversing the normali-
sation again to the FZS. This procedure, although com-
monly used in bootstrapping, does not necessarily provide a 
good estimate for the technical variability of the surface fit 
that would be obtained if repeat measurements were used 
instead, and the biological variability not addressed. Sec-
ondly, for surface representation, we used a Fringe Zernike 
representation, of radial degree NZ = 10. The results might 
be different if other surface models such as quadric surfaces 
or biconic surfaces were used. Thirdly, due to the large cal-
culation times, we restricted the bootstrap sample size to 
NB = 100. A larger sample size could help to derive more 
reliable results for the confidence intervals of the parameter 
variability. And fourthly, we used a large dataset of meas-
urements with the Casia2 tomographer from a cataractous 
population, which might not be representative for measure-
ments of normal subjects.

In conclusion, this study addresses the technical vari-
ability of a surface fit for the corneal front and back surface 
measurement data performed with the Casia2 anterior seg-
ment tomographer. In this study, we have shown that boot-
strap techniques could be used to estimate the variability 
of relevant surface parameters such as radii of curvature or 
asphericity in the cardinal meridians, or Fringe Zernike coef-
ficients from the front and back surface measurement data of 
an anterior segment optical coherence tomographer. How-
ever, comparative studies in the future with a large number 
of bootstrap samples would be needed to validate whether 
bootstrapping of single examinations yields equivalent 
results for uncertainties of characteristic surface parameters 
as compared to repeat measurements. Based on the uncer-
tainties of the model fit parameters, it would be possible to 
predict the effect on imaging performance of the eye using 
raytracing and an error propagation model.
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