
An Improved Data-Driven Memristor Model
Accounting for Sequences Stimulus Features

Abstract—The natural similarity between the emerging mem-
ristive technology and synapses makes memristor a promising
device in the spiking input based neuromorphic systems. How-
ever, while asynchronous signal processing relies on memristor’s
response under the pulses stimulus, hardly any memristor models
take the impact of sequences features on device behaviour
into consideration. This paper proposes an optimized data-
driven compact memristor model where the boundary of its
internal state variable-resistive state (RS) is modelled with pulse
amplitude and pulse width based on characterisation data. The
model has been developed in Verilog-A, simulated and verified
in Cadence Virtuoso Electronic Design Automation (EDA) tools.
Based on the simulation, we further analyse and introduce
a new concept of “Effective Time Window”. Along with the
observed pulse width modulated resistance, more potential circuit
applications can be implemented based on a more realistic
memristor switching behaviour.

Index Terms—Memristor, Resistive switching device character-
isation, Modelling, Memristor Verilog-A model.

I. INTRODUCTION

The memristor, demonstrating the intrinsic synaptic-like
features [1]–[3], is regarded as an ideal device for the re-
alization of artificial synapses. To facilitate the development
of memristor-based neuromorphic systems [4]–[6], the avail-
ability of computationally efficient models that are capable
of precisely capturing memristors’ physical behaviour is crit-
ical. A variety of models has been proposed and the main
difference in these models is the different implementations
of internal state variables with their boundaries (i.e. Window
functions). In the ion drift based models such as [7]–[10], the
width of the highly doped region w is used as the internal
state variable. To model other features observed in many
fabricated memristors such as non-linearity, threshold voltage,
volatility, etc., models based on different physical principles
were proposed with various internal states such as magnetic
flux [11], the area index [12], the memory conductance [13],
Simmons tunnel barrier width [14], narrow tunnel barrier [15],
the normalized conductivity index [16], the effective electric
tunnel width in TEAM model [17], and the stimulus voltage in
the empirical models [18], [19]. More empirical models were
developed from large-scale experimental data [20], [21] where
the internal variable resistive state (RS) is defined based on
experiments.

In the meantime, a number of window functions [8], [10],
[16], [17], [22], that bound the internal state variables and
alleviate the bounds issues were also proposed along with the
models. In different models, various mathematical expressions
are taken as the window functions, according to the state
variables, to fit to the practical memristor characterisation data.

Even though the existing models are quite broad to model
the dynamic behaviour of memristive systems, hardly any im-
plementations of internal states variables or the corresponding
window functions take the characteristics of the continuously
repetitive pulsing inputs into account. The behaviour under
such stimulus is essential for memristive neuromorphic sys-
tems, since the signal resembling nerve impulses can empower
novelties into circuits such as spike-timing-dependent plastic-
ity [23], unsupervised learning [6] and associate memory [24],
etc. To provide reliable simulation results, it is critically re-
quiring the modelling of memristors for spiking inputs, which
uncovers the correlations between memristors’ behaviour and
the parameters of pulse sequences.

In this work, we propose an improved data-driven model
with a more detailed description on the temporal evolution
of the internal state variable RS and the RS boundary, using
pulse amplitude and pulse width, based on real measurement
results. The paper is organized as follows, Section II describes
a specialised characterisation flow for memristor spikes’ re-
sponse features. Section III presents statistical analysis and the
quantitative modelling. Section IV shows an improved data-
driven Verilog-A model, continued with model simulation and
verification in the EDA where a new concept of “Effective
Time Window” is defined within. Finally this paper is con-
cluded in Section V.

II. CHARACTERISATION PROCESS AND RESULTS

A reliable model needs data from a fully characterized
memristor, Figure 1 shows the pulse stimulus pattern used
in the characterisation routine of memristor’s pulse sequences
response. The characterisation flow covers the measurements
on the effects of both positive and negative pulse sequence
parameters: write pulses number of every voltage step, the
amplitude of the pulses, the pulse width and the pulse interval.

The spiking features characterisation routine is carried out
after the device-under-test (DUT) is successfully electro-
formed. The amplitude of read pulses Vr is set as 200mV
and the internal state variable RS is experimentally defined as
the memristance measured under the read pulses through out
the work. The number of write pulses N is set to ensure the
RS at each voltage step being able to reach saturation(i.e. RS
boundary). The statistical definition of RS boundary will be
explained in Section III. Considering the stochastic behaviour
of memristors and the instrumental noise, a number of M read
pulses are applied between each two write pulses to increase
the characterisation reliability by calculating the average value.
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Fig. 1. Positive pulse stimulus pattern used in the characterisation flow. A
series of ramp pulse sequences is applied on the DUT, sweeping the pulse
interval T from an initial pulse interval Tinit to a maximum pulse interval
Tmax at a pulse interval step Tstep and sweeping the pulse width τ from
an initial value τinit to a maximum value τmax at a step of τstep. In each
pulse sequence, there are several voltage steps from an initial value Vinit to
the maximum amplitude Vmax at a step of Vstep. Each step has N write
pulses between which are M read pulses. The read pulses’ amplitude is Vr

and their pulse width τr is automatically set according to T .
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Fig. 2. Example data from data set 1 (pulse interval=200µs). The pulse
stimulus waveform used in the characterisation process is shown at the bottom.
6 sets of data corresponding to different stimulus pulse width: 10µs, 50µs,
100µs, 500µs, 1000µs, 5000µs are selected to present at the top.

After each ramp pulse sequence, the DUT is reset to
minimum RS by inverting the polarity of pulses. Negative
characterisation is carried out under the negative pulse stim-
ulus which shares a similar pattern as in Figure 1. To avoid
random error and alleviate experimental bias, replicated tri-
als of polarity alternating characterisation are required and
multiple memristor samples should be randomly selected to
characterise. The resistive switching behaviour based on ap-
plied pulse sequences and corresponding pulse parameters are
recorded after each programming cycle.

With the routine introduced above, our in house fabricated
Pt/T iO2/Pt memristors are characterised and twenty data
sets containing the RS response and corresponding pulse
stimulation data are obtained. Data sets 1-10 are under positive
stimulation. The pulse interval covers from 1ms to 10ms at
a step of 1ms. Pulse width covers the values from 10µs to
5000µs and pulse amplitude is swept varying from 0.5V to 5V
at a step of 0.5V . For each voltage step, a pulse sequence of
200 pulses is applied. The rest of the ten data sets correspond
to negative stimulus with the same sweeping parameters. An
example of measurement results is shown in Figure 2.
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Fig. 3. Modelling process of RS boundary (a) Selected RS boundary and
corresponding stimulus amplitude data in data set 1 (pulse interval=200µs).
The data points are fitted with a·exp(b·x) showing in curves. Different colors
represent the data from different programming cycles of the stimulus pulse
width 10µs,20µs...5000µs. (b) Selected RS boundary and corresponding
stimulus pulse width data in data set 1 (pulse interval=200µs). The data points
are fitted with a · ln(x+1)+ b showing in curves. Different colors represent
the data from different voltage steps 0V ,0.5V ,1V ... 5V . (c) Selected mea-
surement data of RS boundary, corresponding pulse amplitude and pulse width
from data set 1-4. The data points are fitted with a ·exp(b ·x) ·(ln(y+1)+c)
which presents as the surface.

III. RS BOUNDARY MODELLING

To further analyse the data, a suitable sliding window of
N-dependent size is applied to the time series of each voltage
step. Autocorrelation function (ACF) and Augmented Dickey-
Fuller Test (ADF) are used to classify the stationary series
in the shifting window with a fixed lag. RS boundary is
then defined as the mean value of RS from the beginning of
stationary segment to the end of the step. Interpolation method
is used to fit all the data sets where it presents an exponential
function between RS boundary and voltage amplitude, and
a logarithm function between RS boundary and pulse width.
Figure 3(a) shows the selected data set 1 and a · exp(b · x) is
fitted to the RS boundary and voltage amplitude. The average
R-square of all fittings for pulse width is 0.98. Similarly,
Figure 3(b) shows the fitting of RS boundary and pulse width
with a · ln(x+1)+ b, and the average R-square of all fittings
for amplitude is 0.917.

To verify the null hypothesises that parameters b is weakly



TABLE I
HYPOTHESIS TESTS RESULT

Correlation
Test Pearson Spearman

b-pulse width
a · exp(b · x)

P 0.14 0.10
ρ 0.33 0.38

b-amplitude
a · ln(x+ 1) + b

P 0.78 0.99
ρ −0.069 0.17× 10−2

related to pulse width in RS boundary-amplitude fitting and
weakly related to amplitude in RS boundary-pulse width
fitting, hypothesis tests are used to evaluate the correlation
levels. As the results shown in Table I, all P-values are greater
than the significance level 0.05 and the correlation coefficients
ρ are low in all tests, indicating the null hypothesises are valid.
Thus the simplified expression (1) can be used to model RS
boundary with pulse width and pulse amplitude. The generated
fitting surface is shown in Figure 3(c) and the goodness of the
fitting for all the data sets can reach a high R-square of 0.8438
and a % RMSE of 32.5%.

rp,n(vp,n, τp,n) =

{
rp,ae

rp,bvp(ln(1 + τp) + rp,c) v > 0

rn,ae
rn,bvn(ln(1 + τn) + rn,c) v ≤ 0

(1)

The proposed RS boundary modelling work is applied in
the data driven Verilog-A model proposed in [20] and a more
precise RS expression can be solved analytically in (2) under
a constant bias voltage Vb from the improved time derivative
of the state variable dRS/dt, where R0 is the initial RS,
t is the duration of the constant bias, s(Vb) is a constant
value of switching sensitivity, and rp,n(Vb, τp,n) can be derived
with given pulse width. The extracted parameters from the
characterisation data are listed in Table II.

RS(t)|Vb =

{
R0+sp(Vb)·rp(Vb,τp)(rp(Vb,τp)−R0)·t

1+sp(Vb)·(rp(Vb,τp)−R0)·t v > 0
R0+sn(Vb)·rn(Vb,τn)(rn(Vb,τn)−R0)·t

1+sn(Vb)·(rn(Vb,τn)−R0)·t v ≤ 0

(2)

TABLE II
EXTRACTED PARAMETER VALUES FITTING THE Pt/T iO2/P t

MEMRISTOR WITH THE IMPROVED MODEL

Parameter Positive polarity value(p) Negative polarity value(n)
a 0.88 0.39
b 1.08 1.78
A 6.48× 10−3 −145.7
t 3.65 3.04× 106

ra 313.20 1.58× 1011

rb 1.25 7.87
rc −1.94 14.34

IV. IMPLEMENTATION IN VERILOG-A MODEL AND ITS
SIMULATION RESULTS

The model is implemented in Verilog-A and the logic con-
trol is improved from [21]. More cases are considered when

updating the RS. In order to clarify the logic of calculating
RS, we present a short description of all the cases that the
model will be encountered and corresponding RS output.

• Case 1: The stimulus amplitude ≤ 200mV . RS will
remain the same. Current is only determined by the
applied voltage.

• Case 2: The stimulus amplitude > 200mV . Current RS
is outside RS boundary R0 ≥ rp or R0 ≤ rn. RS will
remain the same.

• Case 3: The stimulus amplitude > 200mV . Current RS
and estimated RS are within RS boundary rn ≤ RStem ≤
rp. RS will be updated with the estimated value.

• Case 4: The stimulus amplitude > 200mV . Current RS
is within RS boundary but estimated RS is outside the
boundary. RS will be updated with the boundary value.

The algorithm is presented in Algorithm 1 where the parameter
R0 is the initial RS value of each iteration, time represents
the absolute time of the end of each iteration, τbegin is used
to record the absolute time when a pulse starts. After the
parameters are initialised at the beginning of every simulation,
the model will enter iterations where RS boundary rp,n and
the estimated RS RStem are calculated from (1) and (2)
respectively based on variables τp,n, vp,n, and the simula-
tion time of current iteration dt. Subsequently, the value of
RStem is assigned to RS based on the boundary conditions
discussed above and the current flowing through the device is
determined.

Algorithm 1 Algorithm for improved memristor model
Input: vp,n ← external stimulus V
Output: current I

Initialisation:
R0 = Rinit;time = 0;τbegin = 0;τp,n = 0;

Iteration:
for time < simulation time do

Variable Calculation:
dt = $abstime− time, τp,n = $abstime− τbegin;

RS Calculation:
rp,n = rp,n(vp,n, τp,n), RStem = RS(dt);

Boundary Cases Classification:
RS

boundary conditions←− RStem;
Output Current Calculation:I = G(RS, v)v [21]
Update Variables:

τbegin = $abstime@cross(vp,n = 0);
time = $abstime;
R0 = RS;

end for
return I

The model is simulated in EDA tools and Figure 4 presents
the comparison between characterisation data and simulation
results. In addition, as shown in Figure 2, the stochasticity
in memristors increases when RS enters high resistance state,
the %RMS fitting error equals to 5.41% when RS varies from
50kΩ to 700kΩ. The %RMS fitting error for 10kΩ to 17kΩ is
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Fig. 4. The simulation results of the proposed model and model in [21]. The
applied pulse stimulus pattern (bottom) is the same as in Figure 2. The models
are simulated under the stimulus of 100µs and 500µs as shown in blue (top).
Corresponding characterisation data of Pt/TiO2/Pt devices is presented in
grey to compare with the simulation results. RS boundary of each voltage
step is marked to indicate the trend with different amplitude and pulse width.

only 2.1%, less than the %RMS fitting error of 2.18% in [21].
Figure 4 also compares the different simulation results of the
model proposed in [21] and the improved model in this work.
The model in [21] presents the change of RS boundary in a
linear form whereas the RS boundary in this proposed model
presents an exponential relation under the same ramp pulses
stimulus. Furthermore, as shown in Figure 4, while the model
in [21] reacts same under the stimulus of different pulse width,
the improved model shows higher RS and RS boundary for the
stimulus of larger pulse width as it takes the effect of pulse
width on memristor’s behavior into account. The improved
model with the pulse width modulated RS provides a more
realistic solution in circuit design.

During the characterisation process, RS has been directly
linked with the whole pulse width, but the model still needs to
show the memristors’ behaviour inside a single pulse, without
knowing the entire pulse width. Based on the simulation
results, here we introduce a new concept of Effective Time
Window to explain the process. As Figure 5 (a) shows, when
the model is iterating in a pulse, the accumulative pulse width
τ(i) will increase with the iteration number i, from τ(i) = 0
to the end of the pulse τ(i) = pulse width. According to the
logarithm correlation of RS-pulse width, RS boundary will
also increase with the updated τ(i) from a value close to 0.
As a result, RS will firstly remain unchanged when it is outside
the RS boundary and at a certain time point when

τth,p,n(RS)|Vb = r−1
p,n(RS, Vb) (3)

which makes the boundary to include the RS, RS will then
be affected to change in which the time region is defined as
Effective Time Window. The time region before the Effective
Time Window in which RS remains stable is defined as Stable
Time Window. In Figure 5(b), we compare the simulation
result of the improved model with the model in [21] under
the same input pulses stimulation. The memristance of the
model in [21] increases continuously without showing the
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Fig. 5. Demonstration of Effective Time Window (a) Effective Time Window
in a Pulse. Pulsing event is happening along the timeline. The model samples
the accumulative pulse width as time increasing which is represented by τ(i).
Effective Time Window and Stable Time Window are marked. (b) Comparison
between the simulation results of the model proposed in [21] and our proposed
model (top) under the stimulus of input pulses (bottom). The unchanged
segments of memristance in each pulse is marked with their values to reflect
the signature but weak effects of Stable Time Window and Effective Time
Window in the proposed model.

Stable Time Window or Effective Time Window. However,
in the simulation of our model, memristance will remain the
same (10.662k, 11.135k, 11.526k) at the very beginning of
each pulse. After a while the memristance increases again
indicating the model has stepped into the Effective Time Win-
dow. Notably, as the RS approaching to the RS boundary, the
Effective Time Window is shrinking. The introduced concepts
provide a possible explanation for how a time related factor
would affect RS boundary inside a pulse.

V. CONCLUSION

This work, for the first time, presents an improved data-
driven memristor model which accounts for the features of
continuous pulses sequences. The empirical model quantita-
tively evaluates the impact of pulse amplitude and pulse width
on the internal state boundary. With a customized characteri-
sation routine, the parameters in the model are extracted from
the measurement data of Pt/T iO2/Pt memristors. The model
is implemented in Verilog-A with a more comprehensive
operational logic. From the simulation results in Cadence EDA
tools, the model presents a more realistic behaviour under
spiking stimulus compared with the measurement data. With
the characteristics embodied in the model, Effective Time
Window and pulse width modulated RS, we anticipate the
proposed model provides a more realistic switching behaviour,
and thus enables more novel applications in circuits design.



REFERENCES

[1] G. S. Snider, “Cortical computing with memristive nanodevices,” Sci-
DAC Review, vol. 10, pp. 58–65, 2008.

[2] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale memristor device as synapse in neuromorphic systems,”
Nano letters, vol. 10, no. 4, pp. 1297–1301, 2010.

[3] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri,
and B. Linares-Barranco, “Stdp and stdp variations with memristors
for spiking neuromorphic learning systems,” Frontiers in neuroscience,
vol. 7, p. 2, 2013.

[4] A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein, and T. Prodromakis,
“Unsupervised learning in probabilistic neural networks with multi-state
metal-oxide memristive synapses,” Nature communications, vol. 7, no. 1,
pp. 1–9, 2016.

[5] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and
T. Prodromakis, “Integration of nanoscale memristor synapses in neuro-
morphic computing architectures,” Nanotechnology, vol. 24, no. 38, p.
384010, 2013.

[6] E. Covi, S. Brivio, A. Serb, T. Prodromakis, M. Fanciulli, and S. Spiga,
“Analog memristive synapse in spiking networks implementing unsu-
pervised learning,” Frontiers in neuroscience, p. 482, 2016.

[7] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” nature, vol. 453, no. 7191, pp. 80–83, 2008.

[8] Z. Biolek, D. Biolek, and V. Biolkova, “Spice model of memristor with
nonlinear dopant drift.” Radioengineering, vol. 18, no. 2, 2009.

[9] A. Rak and G. Cserey, “Macromodeling of the memristor in spice,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 29, no. 4, pp. 632–636, 2010.

[10] Y. N. Joglekar and S. J. Wolf, “The elusive memristor: properties of
basic electrical circuits,” European Journal of physics, vol. 30, no. 4, p.
661, 2009.

[11] D. Batas and H. Fiedler, “A memristor spice implementation and a
new approach for magnetic flux-controlled memristor modeling,” IEEE
Transactions on Nanotechnology, vol. 10, no. 2, pp. 250–255, 2010.

[12] T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, and W. Lu,
“Synaptic behaviors and modeling of a metal oxide memristive device,”
Applied physics A, vol. 102, no. 4, pp. 857–863, 2011.

[13] Y. Shang, W. Fei, and H. Yu, “Analysis and modeling of internal state
variables for dynamic effects of nonvolatile memory devices,” IEEE
transactions on circuits and systems I: Regular papers, vol. 59, no. 9,
pp. 1906–1918, 2012.

[14] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider,
D. R. Stewart, and R. S. Williams, “Switching dynamics in titanium
dioxide memristive devices,” Journal of Applied Physics, vol. 106, no. 7,
p. 074508, 2009.

[15] H. Abdalla and M. D. Pickett, “Spice modeling of memristors,” in 2011
IEEE International Symposium of Circuits and Systems (ISCAS). IEEE,
2011, pp. 1832–1835.

[16] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, “Generalized
memristive device spice model and its application in circuit design,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 32, no. 8, pp. 1201–1214, 2013.

[17] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “Team:
Threshold adaptive memristor model,” IEEE transactions on circuits and
systems I: regular papers, vol. 60, no. 1, pp. 211–221, 2012.

[18] R. Berdan, C. Lim, A. Khiat, C. Papavassiliou, and T. Prodromakis, “A
memristor spice model accounting for volatile characteristics of practical
reram,” IEEE Electron Device Letters, vol. 35, no. 1, pp. 135–137, 2013.

[19] Q. Li, A. Serb, T. Prodromakis, and H. Xu, “A memristor spice model
accounting for synaptic activity dependence,” PloS one, vol. 10, no. 3,
p. e0120506, 2015.

[20] I. Messaris, A. Serb, A. Khiat, S. Nikolaidis, and T. Prodro-
makis, “A compact verilog-a reram switching model,” arXiv preprint
arXiv:1703.01167, 2017.

[21] I. Messaris, A. Serb, S. Stathopoulos, A. Khiat, S. Nikolaidis, and T. Pro-
dromakis, “A data-driven verilog-a reram model,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 12, pp. 3151–3162, 2018.

[22] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, “A versa-
tile memristor model with nonlinear dopant kinetics,” IEEE transactions
on electron devices, vol. 58, no. 9, pp. 3099–3105, 2011.

[23] C. Zamarreño-Ramos, L. A. Camuñas-Mesa, J. A. Pérez-Carrasco,
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