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The effectiveness of Bayesian Additive Regression Trees (BART) has been demonstrated in a 
variety of contexts including non-parametric regression and classification. A BART scheme 
for estimating the intensity of inhomogeneous Poisson processes is introduced. Poisson 
intensity estimation is a vital task in various applications including medical imaging, 
astrophysics and network traffic analysis. The new approach enables full posterior inference 
of the intensity in a non-parametric regression setting. The performance of the novel 
scheme is demonstrated through simulation studies on synthetic and real datasets up to 
five dimensions, and the new scheme is compared with alternative approaches.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Bayesian Additive Regression Trees (BART) model is a Bayesian framework, which uses a sum of trees to predict the 
posterior distribution of a response y given a p-dimensional covariate X and priors on the function relating the covariates 
to the response. Chipman et al. (2010) proposed an inference procedure using Metropolis Hastings within a Gibbs Sampler, 
whereas Lakshminarayanan et al. (2015) used a Particle Gibbs Sampler to increase mixing when the true posterior consists of 
deep trees or when the dimensionality of the data is high. Several theoretical studies of BART models (Rockova and van der 
Pas, 2017; Rockova and Saha, 2018; Linero and Yang, 2018) have recently established optimal posterior convergence rates. 
The BART model has been applied in various contexts including non-parametric mean regression (Chipman et al., 2010), 
classification (Chipman et al., 2010; Zhang and Härdle, 2010; Kindo et al., 2016), variable selection (Chipman et al., 2010; 
Bleich et al., 2014; Linero, 2018), estimation of monotone functions (Chipman et al., 2021), causal inference (Hill, 2011), 
survival analysis (Sparapani et al., 2016), and heteroskedasticity (Bleich and Kapelner, 2014; Pratola et al., 2016). Linero 
and Yang (2018) illustrated how the BART model suffers from a lack of smoothness and the curse of dimensionality, and 
overcome both potential shortcomings by considering a sparsity assumption similar to (Linero, 2018) and treating decisions 
at branches probabilistically.

The original BART model (Chipman et al., 2010) assumes that the response has a Gaussian distribution and the majority 
of applications have used this framework. Murray (2017) adapted the BART model to count data and categorical data via a 
log-linear transformation, and provided an efficient MCMC sampler. Our focus is on extending this methodology to estimate 
the intensity function of inhomogeneous Poisson processes.
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The question of estimating the intensity of Poisson processes has a long history, including both frequentist and Bayesian 
methods. Frequentist methods include fixed-bandwidth and adaptive bandwidth kernel estimators with edge correction 
(Diggle et al., 2003), and wavelet-based methods (e.g. Fryzlewicz and Nason, 2004; Patil et al., 2004). Bayesian methods 
include using a sigmoidal Gaussian Cox process model for intensity inference (Adams et al., 2009), a Markov random field 
(MRF) with Laplace prior (Sardy and Tseng, 2004), variational Bayesian intensity inference (Lloyd et al., 2015), and non-
parametric Bayesian estimations of the intensity via piecewise functions with either random or fixed partitions of constant 
intensity (Arjas and Gasbarra, 1994; Heikkinen and Arjas, 1998; Gugushvili et al., 2018).

In this paper, we introduce an extension of the BART model (Chipman et al., 2010) for Poisson Processes whose inten-
sity at each point is estimated via a tiny ensemble of trees. Specifically, the logarithm of the intensity at each point is 
modelled via a sum of trees (and hence the intensity is a product of trees). This approach enables full posterior inference 
of the intensity in a non-parametric regression setting. Our main contribution is a novel BART scheme for estimating the 
intensity of an inhomogeneous Poisson process. The simulation studies demonstrate that our algorithm is competitive with 
the Haar-Fisz algorithm in one dimension, kernel smoothing in two dimensions, and outperforms the kernel approach for 
multidimensional intensities. The simulation analysis also demonstrates that our proposed algorithm is competitive with the 
inference via spatial log-Gaussian Cox processes. We also demonstrate its ability to track varying intensity in synthetic and 
real data.

The outline of the article is as follows. Section 2 introduces our approach for estimating the intensity of a Poisson process 
through the BART model, and Section 3 presents the proposed inference algorithm. Sections 4 and 5 present the application 
of the algorithm to synthetic data and real data sets, respectively. Section 6 provides our conclusions and plans for future 
work.

2. The BART model for Poisson processes

Consider an inhomogeneous Poisson process defined on a d-dimensional domain S ⊂ Rd , d ≥ 1, with intensity λ : S →
R+ . For such a process, the number of points within a subregion B ⊂ S has a Poisson distribution with mean λB = ∫B λ(s) ds, 
and the number of points in disjoint subregions are independent (Daley and Vere-Jones, 2003). The homogeneous Poisson 
process is a special case with constant intensity λ(s) = λ0, ∀s ∈ S .

To estimate the intensity of the inhomogeneous Poisson process, we use m partitions of the domain S , each associated 
with a tree Th, h = 1, . . . , m. The partitions are denoted Th = {�ht}bh

t=1, where bh is the number of terminal nodes in the 
corresponding tree Th , and each leaf node t corresponds to one of the subregions �ht of the partition Th . Being a partition, 
every tree covers the full domain, i.e. S = ∪bh

t=1�ht for every h. Each subregion �ht has an associated parameter λht , and 
hence each tree Th has an associated vector of leaf intensities �h = (λh1, λh2, .., λhbh ).

We model the intensity of s ∈ S as:

log(λ(s)) =
m∑

h=1

bh∑
t=1

log (λht) I(s ∈ �ht) (1)

Th ∼ heterogeneous Galton-Watson process for a partition of S (2)

λht |Th
iid∼ Gamma(α,β) (3)

where I(·) denotes the indicator function. Equivalently, (1) can be expressed as

λ(s) =
m∏

h=1

bh∏
t=1

λ
I(s∈�ht )

ht . (4)

Given a fixed number of trees, m, the parameters of the model are thus the regression trees T = {Th}m
h=1 and their 

corresponding intensities � = {�h}m
h=1. Following Chipman et al. (2010), we assume that the tree components (Th, �h) are 

independent of each other, and that the terminal node parameters of every tree are independent, so that the prior can be 
factorized as:

P (�, T ) =
m∏

h=1

P (�h, Th) =
m∏

h=1

P (�h|Th)P (Th) =
m∏

h=1

⎡⎣ bh∏
t=1

P (λht |Th)

⎤⎦ P (Th). (5)

Prior on the trees The trees Th of the BART model are stochastic regression trees generated through a heterogeneous Galton-
Watson (GW) process (Harris et al., 1963; Rockova and Saha, 2018). The GW process is the simplest branching process 
concerning the evolution of a population in discrete time. Individuals (tree nodes) of a generation (tree depth) give birth 
to a random number of individuals (tree nodes), called offspring, mutually independent and all with the same offspring 
distribution that may vary from generation (depth) to generation (depth). In our case, we use the prior introduced by 
2
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Chipman et al. (1998), that is a GW process in which each node has either zero or two offspring and the probability of a 
node splitting depends on its depth in the tree. Specifically, a node η ∈ Th splits into two offsprings with probability

psplit(η) = γ

(1 + d(η))δ
, (6)

where d(η) is the depth of node η in the tree, and γ ∈ (0, 1) and δ ≥ 0 are parameters of the model. Classic results 
from the theory of branching processes show that γ ≤ 0.5 guarantees that the expected depth of the tree is finite. In our 
construction, each tree Th is associated with a partition of S . Namely, if node η splits, we select uniformly at random 
one of the d dimensions of the space of the Poisson process, followed by uniform selection from the available split values 
associated with that dimension respecting the splitting rules higher in the tree.

Prior on the leaf intensities Our choice of a Gamma prior for the leaf parameters λht builds upon previous work by Murray 
(2017), who used a mixture of Generalized Inverse Gaussian (GIG) distributions as the prior on leaf parameters in a BART 
model for count regression. Here we impose a Gamma prior (a special case of GIG) on the leaf parameters, which sim-
plifies the model and leads to a closed form of the conditional integrated likelihood below (see Section 3) as the Gamma 
distribution is the conjugate prior for the Poisson likelihood. We discuss the selection of it hyperparameters α and β in 
Section 3.1.

3. The inference algorithm

Given a finite realization of an inhomogeneous Poisson process with n sample points s = s1, . . . , sn ∈ S ⊂Rd , we seek to 
infer the parameters of the model (�, T ) by sampling from the posterior P (�, T |s).

Before presenting the sampling algorithm we summarize a preliminary result. To simplify our notation, let us define

g(si; Th,�h) =
bh∏

t=1

λ
I(si∈�ht)

ht ,

so that Eq. (4) becomes λ(si) =∏m
h=1 g(si; Th, �h).

Let us choose any arbitrary tree Th in our ensemble T , and let us denote the set with the rest of the trees as T(h) =
{T j}m

j=1, j �=h and their leaf parameters as �(h) = {� j}m
j=1, j �=h . The intersection of all the partitions associated with the trees 

in T(h) gives us a global partition {�(h)

k }K (T(h))

k=1 with K (T(h)) subregions (Rockova and van der Pas, 2017).
Then we have the following result.

Remark 1.

(i) The conditional likelihood of the realization is given by

P (s|�, T ) = ch

bh∏
t=1

λ
nht
ht e−λht cht , (7)

with ch =
n∏

i=1

m∏
j=1, j �=h

g(si; T j,� j),

cht =
K (T(h))∑

k=1

λ
(h)

k |�(h)

k ∩ �ht |,

where λ(h)

k =∏m
t=1,t �=h

∏bt
l=1 λ

I(�tl∩�
(h)

k �=0)

tl , nht is the cardinality of the set {i : si ∈ �ht}, and |�(h)

k ∩ �ht | is the volume 

of the region �(h)

k ∩ �ht .
(ii) For a tree h, the conditional integrated likelihood obtained by integrating out �h is

P (s|Th, T(h),�(h)) = ch

(
βα


(α)

)bh bh∏
t=1


(nht + α)

(cht + β)nht+α
. (8)

A proof can be found in Appendix B and Appendix C.
We now summarize our sampling algorithm. To sample from P (�, T |s), we implement a Metropolis-Hastings within 

block Gibbs sampler (Algorithm 1), which requires m successive draws from (Th, �h)|T(h), �(h), s. Note that
3
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P (Th,�h|T(h),�(h), s) = P (Th|T(h),�(h), s) P (�h|Th, T(h),�(h), s)

∝ P (Th|T(h),�(h), s) P (s|�, T )P (�h|Th)

= P (Th|T(h),�(h), s) P (s|�, T )

bh∏
t=1

P (λht |Th)

= P (Th|T(h),�(h), s) ch

bh∏
t=1

λ
nht
ht e−λht cht

bh∏
t=1

βα


(α)
λα−1

ht e−βλht

∝ P (Th|T(h),�(h), s)
bh∏

t=1

λ
nht+α−1
ht e−(cht+β)λht (9)

which follows directly from Bayes’ rule and Eqs. (5) and (3).
From (9), it is clear that a draw from (Th, �h)|T(h), �(h), s can be achieved in (bh+1) successive steps consisting of:

• sampling Th|T(h), �(h), s using Metropolis-Hastings (Algorithm 2)
• sampling λht |Th, T(h), �(h), s from a Gamma distribution with shape nht + α and rate cht + β for t = 1, .., bh .

These steps are implemented through Metropolis-Hastings in Algorithm 1. Note also that

P (Th|T(h),�(h), s) ∝ P (s|Th, T(h),�(h)) P (Th),

so that the conditional integrated likelihood (8) is required to compute the Hastings ratio.

Algorithm 1 Metropolis-Hastings within Gibbs sampler.
for v = 1, 2, 3, .. do

for h = 1 to m do
Sample T (v+1)

h |s, {T (v+1)
j }h−1

j=1 , {T (v)
j }m

j=h+1, {�(v+1)
j }h−1

j=1 , {�(v)
j }m

j=h+1
using Algorithm 2

for t = 1 to bh do
Sample λ(v+1)

ht |s, {T (v+1)
j }h

j=1, {T (v)
j }m

j=h+1, {�(v+1)
j }h−1

j=1 , {�(v)
j }m

j=h+1 from Gamma(nht + α, cht + β)
end for

end for
end for

Algorithm 2 Metropolis-Hastings Algorithm for sampling from the posterior P (T j|s, T( j), �( j)).

Generate a candidate value T ∗
j with probability q(T ∗

j |T (v)
j ).

Set T (v+1)
j = T ∗

j with probability

α(T (v)
j , T ∗

j ) = min

⎧⎨⎩1,
q(T (v)

j |T ∗
j )

q(T ∗
j |T (v)

j )

P (s|T ∗
j , T( j),�( j))

P (s|T (v)
j , T( j),�( j))

P (T ∗
j )

P (T (v)
j )

⎫⎬⎭
Otherwise, set T (v+1)

j = T (v)
j .

The transition kernel q in Algorithm 2 is chosen from the three proposals: GROW, PRUNE, CHANGE (Chipman et al., 2010; 
Kapelner and Bleich, 2013). The GROW proposal randomly picks a terminal node, splits the chosen terminal into two new 
nodes and assigns a decision rule to it. The PRUNE proposal randomly picks a parent of two terminal nodes and turns it 
into a terminal node by collapsing the nodes below it. The CHANGE proposal randomly picks an internal node and randomly 
reassigns to it a splitting rule. We describe the implementation of the proposals in Appendix A.

For completeness, in the supplementary material, we present the full development of the algorithm for inference of the 
intensity of inhomogeneous Poisson processes via only one tree.

3.1. Fixing the hyperparameters of the model

Hyperparameters of the Gamma distribution for the leaf intensities We use a simple data-informed approach to fix the hy-
perparameters α and β of the Gamma distribution (3). We discretize the domain into NG subregions of equal volume 
(NG = (�1001/d�)d works well in practice up to 5 dimensions) and count the number of samples si per subregion. We 
thus obtain the empirical densities in each of the subregions: ξi, i = 1, . . . , NG . Given the form of the intensity (4) as a 
product of m trees, we consider the m-th roots � = {ξ1/m}NG as candidates for the intensity of each tree. Taking the 
i i=1

4
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sample mean μ̂� and sample variance σ̂ 2
� , we choose the model hyperparameters α and β to correspond to those of a 

Gamma distribution with the same mean and variance, i.e., α = μ̂2
�/σ̂ 2

� and β = μ̂�/σ̂ 2
� , although fixing β = 1 can also 

give good estimates of the intensity. Although setting NG = (�1001/d�)d leads to convergence and good estimates of the 
intensity in our simulation studies below, there are other possibilities. Alternatively, we can bin the data based on a cri-
terion that takes into account the number of samples, n, and the number of dimensions, d. For example, the number of 
bins per dimension, nb , can be computed as (Scott, 2008; Wand, 1997): (i) nb = �n1/(d+1)�, (ii) nb = �n1/(d+2)�, or (iii) 
nb = maxk∈{1,2,..,d}[�D Rk · n1/(d+2)/(2 · IQR({si,k})�], where IQR denotes the interquartile range of the sample, D Rk is the 
range of the domain in dimension k (here we scale the initial domain to a unit hypercube so that D Rk = 1, ∀k), and by 
extension NG = nb

d . In our simulation scenarios below, all these approaches lead to comparable convergence times and 
estimates of the intensity.

Hyperparameters of the stochastic ensemble of regression trees The GW stochastic process that generates our tree ensemble has 
several hyperparameters. The parameters (γ , δ) control the shape of trees. The parameter γ > 0 controls the probability 
that the root of a tree will split into two offspring, while the parameter δ > 0 penalizes against deep trees. As noted in 
(Chipman et al., 2010), for a sum-of-trees model, we want to keep the depth of the tree small whilst ensuring non-trivial 
trees, hence, in our simulation study we fix γ = 0.98 and δ = 2. Second, each of the d dimensions has to be assigned a grid 
of split values, from which the subregions of the partition are randomly chosen, yet always respecting the consistency of 
the ancestors in the tree (that is respecting the splitting rules higher in the tree). Here, we use a simple uniform grid for 
each of the d-dimensions (Pratola et al., 2016): we normalize each dimension of the space from (0,1) and discretize each 
dimension into Nd segments. (Nd = 100 works well in practice and is used throughout our examples.) More sophisticated, 
data-informed grids are also possible, although using, e.g., the sample points as split values does not improve noticeably 
the performance in our examples. Finally, the number of trees m also needs to be fixed as in Chipman et al. (2010). In our 
examples below, we have checked the performance of our algorithm with varying number of trees m between 2 and 50. 
We find that good performance can be achieved with a moderate number of trees, m, between 3 and 10 depending on the 
particular example.

4. Simulation study on synthetic data

We carried out a simulation study on synthetic data to illustrate the performance of Algorithm 1 to estimate first the 
intensity of one dimensional and two dimensional inhomogeneous Poisson processes and finally the intensity of multidi-
mensional Poisson processes.

We simulate realizations of Poisson processes on the domain [0, 1)d for d ∈ {1, 2, 3, 4, 5} via thinning (Lewis and Shedler, 
1979). The hyperparameters of the model (for the trees and the leaf intensities) are fixed as described in Section 3.1. We 
initially randomly generate m trees of zero depth. The probabilities of the proposals in Algorithm 2 are set to: P (GROW) =
P (PRUNE) = 0.4 and P (CHANGE) = 0.2. A set {zi} is defined by uniformly sampling points in the domain [0, 1)d .

We run 3 parallel chains of the same length. We discard their first halves treating the second halves as a sample from 
the target distribution. We assess chain convergence using the Gelman-Rubin convergence diagnostic (Gelman et al., 1992) 
applied to the estimated intensity for each point of the set {zi}, as well as trace plots and autocorrelation plots for some 
points of the testing set.

At each state t of a simulated chain we estimate the intensity for each point zi by a product of trees denoted as

λ̂(t)(zi) =
m∏

j=1

g(zi; T (t)
j ,�

(t)
j ).

The induced sequence {̂λ(t)(·)}∞t=1 for the sequence of draws {(T (t)
1 , �(t)

1 ), .., (T (t)
m , �(t)

m )}∞t=1 converges to P (̂λ|s). We estimate 
the posterior mean E [̂λ(·)|s1, ..sn], the posterior median of ̂λ(·), and the highest density interval (hdi) using the function hdi
provided by the R package bayestestR (Makowski et al., 2019). To assess the performance of our algorithm, we compute the 
Average Absolute Error (AAE) of the computed estimate:

AAE(̂λ) = 1

Nz

Nz∑
i=1

|̂λ(zi) − λ(zi)| (10)

and the Root Integrated Square Error (RISE):

RISE(̂λ) =
(

1

Nz

Nz∑
i=1

(̂λ(zi) − λ(zi))
2

)1/2

(11)

where Nz is the number of test points.
In the spirit of Akaike information criterion (AIC) (Loader, 1999), we also introduce two diagnostics targetting the likeli-

hood function to evaluate if increasing the number of trees leads to better intensity estimation:
5
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D g = 2
(
log P (s1, .., sn) − kg

)
,

and

Dl = 2 (log P (s1, .., sn) − kl) ,

where kg is the number of global cells, and kl is the overall number of leaves in the ensemble. We estimate both diagnostics 
using the sequence of the draws 

(
T (w),�(w)

)= {(T (w)
1 ,�

(w)
1

)
, ...,

(
T (w)

m ,�
(w)
m

)}
after the burn-in period as

D g ≈ 2
1

Nw

Nw∑
w=1

(
log P

(
s1, .., sn|

(
T (w),�(w)

))
− k(w)

g

)
,

and

Dl ≈ 2
1

Nw

Nw∑
w=1

(
log P

(
s1, .., sn|

(
T (w),�(w)

))
− k(w)

l

)
,

where k(w)
g and k(w)

l are the number of global cells and the overall number of leaves in the ensemble associated to the wth
draw, respectively.

AIC has been shown to be asymptomatically equal to leave-one-out cross validation (LOO-CV) (Stone, 1977; Gelman et 
al., 2014). According to Leininger and Gelfand (2017), the computational burden required for leave-one-out cross validation 
considering a point pattern data is impractical. We introduce a leave-partition-out (LPO) method, assuming that the initial 
process N(t) is obtained by combining independent processes {Ni(t)}N p

i=1, as follows

D L P O =
N P∑
i=1

log P (Ni(t)|N(t) − {Ni(t)}) (12)

where P (Ni(t)|N(t) − {Ni(t)}) is the leave-partition-out predictive intensity given the process N(t) without the ith partition, 
Ni(t). We can evaluate (12) as follows,

D L P O =
N P∑
i=1

log

(
1

Nw

Nw∑
w=1

P
(

Ni(t)|
(

T (w,i),�(w,i)
)))

where (T (w,i), �(w,i)) is the sequence of draws 
{(

T (w,i)
1 ,�

(w,i)
1

)
, ...,

(
T (w,i)

m ,�
(w,i)
m

)}
after the burn-in period leaving out 

the partition Ni(t). We assume that each event of N(t) is coming from Ni(t) with probability pi . The bias of the method 
is introduced by randomly splitting the process into individual processes. We can get the LOO-CV by LPO, defining ap-
propriately the parameter Np . As higher the number Np is, as less biased the method is. In the simulation scenarios, we 
consider that pi = 0.1, i = 1, ..., Np and Np = 10 for computational reasons. The diagnostics show that tiny ensembles of 
trees provide good estimates in our simulation scenarios.

To confirm the proposed diagnostics, we use p-thinning (Illian et al., 2008, Chapter 6) with p = 0.8 to create training 
and test datasets in two of the simulation scenarios. We employ Root Standardized Mean Square Error (RSMSE) and Rank 
Probability Score (RPS) with the test data set comparing observed counts in disjoint equal volume subregions {Si }Ns

i=1 as 
follows:

RSMSE(N̂) =
(

1

Ns

Ns∑
i=1

(N̂(Si) − N(Si))
2

N̂(Si)

)1/2

(13)

and

RPS(N(S j)) =
N(S j)−1∑

u=0

F (u)2 +
∞∑

u=N(S j)

(F (u) − 1)2 , (14)

where F is the Poisson distribution with parameter m = ∫S j
λ̂(s)ds, N(Si) the actual number of testing points in Si and 

N̂(Si) the estimated number of testing points in Si given by

N̂(Si) =
∫
Si

1 − p

p
λ̂(s)ds � 1 − p

p

1

Ni
z

∑
z j∈Si

λ̂(z j)|Si| (15)
6



Fig. 1. The original intensity (blue curve), the posterior mean (red curve), the posterior median (black curve), the 95% hdi interval of the estimated intensity 
illustrated by the dotted green lines and the Haar-Fisz estimator (cyan curve). The rug plot on the bottom displays the 3590 event times.

with Ni
z being the number of points {z j} falling in Si and estimating the intensity at each points s, ̂λ(s), via the posterior 

mean E [̂λ(·)|s1, ..sn].
For one dimensional processes, we compare the results of Algorithm 1 to the Haar-Fisz algorithm (Fryzlewicz and Nason, 

2004), a wavelet based method for estimating the intensity of one dimensional Poisson Processes that outperforms well 
known competitors. We apply the Haar-Fisz algorithm to the counts of points falling into 256 consecutive intervals using the
R package haarfisz (Fryzlewicz, 2010). Our algorithm is competitive with the Haar algorithm for smooth intensity functions 
and is not strongly out-performed by the Haar-Fisz algorithm when the underlying intensity is a stepwise function.

For two-dimensional processes, we compare the results of our algorithm with fixed-bandwidth estimators and log-
Gaussian Cox processes (LGCP) with intensity λ(s) = exp (a + u(s)) where u is a Gaussian process with exponential co-
variance function. We used a discretization version of the LGCP model defined on a regular grid over space which we 
implemented using Stan-code (Gelman et al., 2015). As noted in Davies and Baddeley (2018), the choice of the kernel is not 
of primary importance, we choose a Gaussian kernel for its wide applicability. In our tables of results, the smoothing band-
width, sigma, selected using likelihood cross-validation (Loader, 1999) denoted by (LCV), and we have also included other 
values of sigma to demonstrate the sensitivity to bandwidth choice. The kernel estimators, and the bandwidth value given 
by likelihood cross-validation, were computed using the R package spatstat (Baddeley and Turner, 2005). Our algorithm 
outperforms the maximum likelihood approach using linear conditional intensity, as expected. Our algorithm outperforms 
kernel smoothing and LGCP for stepwise functions and is competitive with them for a smooth intensity.

Finally, we examine the performance of our algorithm for multidimensional intensities by generating realizations of Pois-
son Processes on the domain [0, 1)d for d ∈ {3, 5} via thinning. Future work includes the study of intensities in higher 
dimensions (d > 5). We compare our intensity estimates with kernel smoothing estimators having isotropic standard devi-
ation matrices with diagonal elements equal to h and the methodology for applying maximum likelihood to point process 
models with linear conditional intensity (Peng, 2003). We select the bandwidth h using likelihood cross-validation (Loader, 
1999) denoted by (LCV).

4.1. One dimensional Poisson process with stepwise intensity

Our first example is a one dimensional Poisson Process with piecewise constant intensity with several steps (Fig. 1). We 
run 3 parallel chains of the same length for 200000 iterations for 2-10 trees, 100000 for 12 trees, 50000 iterations for 15 
trees and 30000 iterations for 20 trees.

Our algorithm detects the change points and provides good estimates of the intensity and is competitive in terms of AAE 
with the Haar-Fisz algorithm, but does not perform as well in terms of RISE (see Fig. 1 and Tables 3-6). We have found the 
metrics and convergence diagnostics in a set of uniformly chosen points without excluding the points close to jumps. Due to 
inferring the intensity via a product of stepwise functions, it is expected that the proposed algorithm will provide estimates 
with higher variability close to jumps. The proposed algorithm outperforms the Haar-Fisz algorithm without considering the 
points close to jumps. Tables 4-5 show the metrics for various number of trees without considering the points in a distance 
= ±0.02 from the jumps.

The diagnostics D g , Dl and D L P O obtain their highest values for 7, 4 and 8 trees, respectively. The analysis demonstrates 
only small differences between log-likelihood values as the number of trees increases, supporting results found in previous 
BART studies that the method is robust to the choice of m. The average RSMSE and RPS on testing points over 7 different 
splits of the original data set (Tables 1-2) provide evidence that ensembles with more than seven trees do not improve the 
fit of the proposed algorithm.
S. Lamprinakou, M. Barahona, S. Flaxman et al. Computational Statistics and Data Analysis 180 (2023) 107658
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Table 1
The average RPS on testing points over 7 different splits of the original data set 
in Fig. 1.

Proposed BART Algorithm

Number 
of trees

Ns = 1 Ns = 10 Ns = 25 Ns = 50 Ns = 75 Ns = 75

2 17.05 5.24 3.10 2.08 1.66 1.44
3 17.12 5.25 3.11 2.08 1.65 1.43
4 16.98 5.28 3.09 2.07 1.64 1.42
5 16.94 5.26 3.04 2.06 1.63 1.41
7 17.01 5.22 3.00 2.04 1.62 1.40
8 17.09 5.20 2.99 2.03 1.62 1.40
9 17.07 5.20 2.98 2.02 1.61 1.39
10 20.10 5.78 3.12 2.12 1.63 1.43
12 17.74 5.37 2.99 2.06 1.63 1.39
15 17.03 5.15 2.94 2.01 1.60 1.38
20 17.08 5.16 2.93 2.00 1.60 1.38

Table 2
The average RSMSE on testing points over 7 different splits of the original data 
set in Fig. 1.

Proposed BART Algorithm

Number 
of trees

Ns = 1 Ns = 10 Ns = 25 Ns = 50 Ns = 75 Ns = 75

2 0.95 1.13 1.06 1.02 0.99 1.00
3 0.95 1.13 1.06 1.02 0.98 0.99
4 0.95 1.14 1.06 1.02 0.98 0.98
5 0.94 1.13 1.04 1.02 0.98 0.98
7 0.95 1.13 1.04 1.01 0.97 0.97
8 0.95 1.12 1.03 1.01 0.97 0.96
9 0.95 1.13 1.03 1.01 0.97 0.97
10 1.10 1.20 1.06 1.04 0.98 0.98
12 0.98 1.18 1.04 1.02 0.98 0.96
15 0.95 1.12 1.02 1.00 0.97 0.96
20 0.95 1.12 1.02 1.00 0.97 0.96

Table 3
Average Absolute Error and Root Integrated Square Error for various number of trees for the data 
in Fig. 1.

Proposed BART Algorithm

Number 
of trees

AAE for 
Posterior 
Mean

AAE for 
Posterior 
Median

RISE for 
Posterior 
Mean

RISE for 
Posterior 
Median

D g Dl D L P O

3 308.87 320.84 603.54 633.48 54095.1 54090 -339.7
4 287.89 283.03 580.69 587.08 54096.5 54090 -368
5 289.27 281.13 580.55 586.24 54098 54088.4 -352.5
7 281.59 274.88 588.7 592.11 54098 54082.7 -263.5
8 280.62 274.07 588.73 591.29 54097.9 54079.5 -261.5
9 282.78 276.99 593.93 595.23 54096.9 54075.2 -327.9
10 283.79 279.07 593.95 595.41 54095.6 54071.6 -322.6
20 297.21 287.86 599.77 595.04 54082.9 54029.7 -436

Table 4
Average Absolute Error and Root Integrated Square Error for the 
data in Fig. 1 without considering points close to steps.

Proposed BART Algorithm

Number 
of trees

AAE for 
Posterior 
Mean

AAE for 
Posterior 
Median

RISE for 
Posterior 
Mean

RISE for 
Posterior 
Median

4 144.48 139.58 181.21 174.82
5 144.55 139.02 180.74 176.19
7 124.53 123.2 175.74 172.4
8
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Table 5
Average Absolute Error and Root 
Integrated Square Error for Haar-
Fisz estimator for the data in 
Fig. 1 without considering points 
close to steps.

Haar-Fisz Algorithm

AAE RISE

141.95 192.6

Table 6
Average Absolute Error and Root 
Integrated Square Error for Haar-
Fisz estimator for the data in 
Fig. 1.

Haar-Fisz Algorithm

AAE RISE

272.3 476.9

Table 7
Average Absolute Error, Root Integrated Square Error and diagnostics for various trees for the data 
in Fig. 2.

Proposed BART Algorithm

Number 
of trees

AAE for 
Posterior 
Mean

AAE for 
Posterior 
Median

RISE for 
Posterior 
Mean

RISE for 
Posterior 
Median

D g Dl D L P O

3 224.1 230.3 419.2 453.7 87227.2 87232.3 505.1
4 208.7 213 410.2 447.9 87223.7 87230.5 491.2
5 216.8 212.9 389.5 410.9 87211.6 87220.6 406
6 228.9 221.9 395.8 412.8 87197.5 87214.7 463.9

Table 8
Average Absolute Error and Root Integrated 
Square Error for fixed bandwidth estima-
tors for the data in Fig. 2.

Kernel Smoothing

Bandwidth (sigma) AAE RISE

0.027 763.8 1041.3
0.038 662.7 956.8
0.047 (LCV) 636.7 960.6
0.067 672.8 1042.5

4.2. Two-dimensional Poisson process with stepwise intensity function

To demonstrate the applicability of our algorithm in a two-dimensional setting, Figs. 2-3 and Tables 7-9 reveal that 
our algorithm outperforms kernel smoothing and inference with spatial log-Gaussian Cox processes for stepwise intensity 
functions. We run 3 parallel chains of the same length for 100000 iterations for 3-6 trees. The convergence criteria indicate 
convergence of the simulated chains for the majority of points. As may be expected, the simulation study shows that points 
close to jumps are estimated with less reliability. The algorithm converges less well at these points, as demonstrated by the 
Gelman-Rubin diagnostic (see supplementary material). The diagnostics D g , Dl and D L P O obtain their highest values for 
three trees, respectively. The diagnostics indicate that small ensembles of trees can provide a good estimate of the intensity.

4.3. Inhomogeneous three-dimensional Poisson process with Gaussian intensity

Our first example for multidimensional intensities is a three-dimensional Poisson process with intensity λ(x) = 500exT x

for x ∈ [0, 1)3. We generated a realization of 1616 points via thinning. We run 3 parallel chains of the same length for 
100000 iterations for 3-10 trees and 30000 iterations for 12 trees. Tables 10 and 11 illustrate the statistics of our algorithm 
and kernel smoothing. Figs. 4 and 5 show our estimators and the kernel estimator with h=0.073 for 8 Trees and 10 Trees 
with fixed third dimension (x[3]) at 0.4 and 0.8, respectively.
9
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Fig. 2. Original Intensity, posterior mean and posterior median for 4 trees.

Fig. 3. Kernel estimator and inference with spatial log-Gaussian Cox processes.

The diagnostics D g , Dl and D L P O get their highest values with 4 trees, respectively. We observe that the diagnostic Dl
slightly differs between 4 and 8 trees. The diagnostic D g is similar between 4 and 5 trees. The estimate of the average 
logarithm of Poisson process likelihood does not change significantly from 4 trees to 12 trees. Specifically, we observe its 
maximum equal to 10536.3 at 12 trees, while its minimum to 10531.9 at 4 trees. In addition, the estimated average number 
of leaves in a tree of an ensemble is about 3 for 4 − 12 trees. That explains why we observe higher values of diagnostics 
10
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Table 9
Average Absolute Error and Root Integrated Square Er-
ror with LGCP for the data in Fig. 2.

Inference with spatial log-Gaussian Cox processes

grid AAE RISE

10 × 10 568 751
20 × 20 678 953

Table 10
Average Absolute Error, Root Integrated Square Error and diagnostics for various number of trees.

Proposed BART Algorithm

Number 
of trees

AAE for 
Mean

AAE for 
Median

RISE for 
Mean

RISE for 
Median

D g Dl D L P O

4 247.6 254.9 360.7 376.3 20993.7 21040.6 -1409
5 250.2 258.3 364.3 380.4 20992.1 21039.8 -1492
6 247.6 254.7 360.8 375.4 20979.5 21038.6 -1529
8 234.8 239.4 341 352.4 20938.6 21032.8 -1515
10 226.8 229.4 330.5 338.5 20883 21026.9 -1539
12 221.6 222.3 320.6 326.4 20810.4 21020.7 -1609

Table 11
Average Absolute Error and Root Integrated 
Square Error for various isotropic variance 
matrices.

Kernel Smoothing

h AAE RISE

0.053 480.8 667.5
0.073 (LCV) 415.86 645.16
0.08 417.7 661.4
0.085 423.2 676.2
0.1 450.3 727.6
0.3 890.4 1236

for a small number of trees. The metrics A AE and R I S E are optimised with 12 trees. However, it should be noted that 
only small variations in the metrics are seen between 4 and 12 trees. The diagnostics provide evidence that increasing the 
number of trees does not improve the fit of the proposed model.

4.4. Inhomogeneous five dimensional Poisson process with sparsity assumption

Here, we demonstrate the performance of our algorithm to detect the dimensions that contribute most in the intensity 
of s ∈ S in a noisy environment. Consider a five dimensional inhomogeneous Poisson process with intensity function of 
x = (x1, x2, x3, x4, x5) ∈ [0, 1)5 depending on 3 of 5 dimensions:

λ(x) = (21 (x1 < 0.2) + 101 (x1 ≥ 0.2)) ∗ (31 (x2 < 0.5) + 151 (x2 ≥ 0.5))

∗ (31 (x3 < 0.8) + 301 (x3 ≥ 0.8))

We generate a realization of 669 points via thinning. We run 3 parallel chains of the same length for 100000 iterations for 
4-8 trees, 50000 iterations for 10 trees, 30000 iterations for 12 trees and 10000 iterations for 15 trees. The convergence 
criterion is smaller than 1.1 for the majority of testing points.

Table 12 shows the metrics and diagnostics D g and Dl of the estimated intensity over various numbers of trees. The 
diagnostics D g and Dl obtain their highest values with 4 trees, and the diagnostic Dl shows only small differences between 
4 and 5 trees. We note that (i) the average number of leaves in a tree of the ensemble is about 2.2 for 4-5 trees, and (ii) 
the estimated logarithm of Poisson process likelihood for 4 and 5 trees are 4271.5 and 4271.8, respectively. The diagnostic 
D L P O gets its highest value with 5 trees. The p-thinning approach confirms the diagnostics, and indicates that increasing 
the number of trees does not improve the fit of the proposed model to the data. (See Tables 17 and 18.)

Table 16 demonstrates the frequency of times we meet each dimension in the decision rules of a tree. Table 15 shows 
how likely each dimension is to be involved in the root’s decision rule. The results illustrate that the important covariates 
x1, x2 and x3 are more likely to be involved in the decision rules of a tree than the noisy dimensions x4 and x5. That 
indicates the algorithm prioritizes the dimensions that contribute most to the intensity. Fig. 6 shows that the means of the 
posterior marginal intensities are similar to the expected marginal intensities given that {xi}5

i=1 are uniform independent 
covariates.
11



Fig. 4. Kernel estimator and Posterior Median for 8 and 10 Trees with x[3] = 0.4.

Table 12
Average Absolute Error, Root Integrated Square Error and diagnostics for various number of 
trees in the case of Inhomogeneous five dimensional Poisson Process with sparsity assump-
tion.

Proposed BART Algorithm

Number 
of trees

AAE for 
Mean

AAE for 
Median

RISE for 
Mean

RISE for 
Median

D g Dl D L P O

4 48.36 45.47 159.95 170.35 8510.1 8525.4 -485.9
5 49.18 44.54 158.82 169.07 8486.1 8520.9 -467.1
6 50.59 45.05 161.36 170.61 8462.1 8519 -477.4
8 56.06 47.94 162.56 164.46 8349 8511.8 -490.8
10 61.55 52.23 169.72 166.62 8141.8 8505.5 -503.1
12 67.01 57.06 180.53 175.23 7774.7 8499.8 -522.2
15 75 65.06 192.88 181.03 6813.1 8490 -500.2

Tables 12, 13 and 14 show that our algorithm outperforms kernel smoothing and the maximum likelihood approach 
considering linear conditional intensity as expected. The ability of our method to identify important features demonstrates 
an important advantage over other procedures.

5. Intensity estimation for real data

In this section, we first apply our algorithm to real data sets when modelled as realizations of inhomogeneous Poisson 
processes in one and two dimensions. To assess the performance of our algorithm, we break the domain [0, 1)d into equal 
S. Lamprinakou, M. Barahona, S. Flaxman et al. Computational Statistics and Data Analysis 180 (2023) 107658
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Fig. 5. Kernel Estimator and Posterior Median for 8 and 10 Trees with x[3] = 0.8.

Table 13
Average Absolute Error and Root Inte-
grated Square Error for fixed bandwidth 
estimators in the case of Inhomogeneous 
five dimensional Poisson Process with 
sparsity assumption.

Kernel Smoothing

Bandwidth (sigma) AAE RISE

0.121 (LCV) 407.1 888.1

Table 14
Average Absolute Error and 
Root Integrated Square Error 
for linear conditional intensity 
in the case of Inhomogeneous 
five dimensional Poisson Pro-
cess with sparsity assumption.

Linear conditional intensity

AAE RISE

654.2 1076.5
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Fig. 6. Posterior marginal intensities considering 4 trees.
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Table 15
How likely each dimension is to be involved in the 
root’s decision rule.

Proposed BART Algorithm

Number 
of trees

x1 x2 x3 x4 x5

4 0.31 0.29 0.34 0.03 0.03
5 0.35 0.29 0.26 0.05 0.06

Table 16
The frequency of times we meet each dimension in 
the decision rules of a tree.

Proposed BART Algorithm

Number 
of trees

x1 x2 x3 x4 x5

4 0.35 0.36 0.37 0.06 0.07
5 0.39 0.34 0.37 0.09 0.10

Table 17
The average RPS on testing points over 7 dif-
ferent splits of the original data set in the case 
of Inhomogeneous five dimensional Poisson Pro-
cess with sparsity assumption.

Proposed BART Algorithm

Number 
of trees

Ns = 1 Ns = 32 Ns = 243

4 5.40 0.99 0.71
5 5.40 1 0.71
6 5.42 1 0.71
8 5.42 1 0.71
10 5.42 1 0.71
15 5.43 1 0.71

Table 18
The average RSMSE on testing points over 7 dif-
ferent splits of the original data set in the case 
of Inhomogeneous five dimensional Poisson Pro-
cess with sparsity assumption.

Proposed BART Algorithm

Number 
of trees

Ns = 1 Ns = 32 Ns = 243

4 0.64 0.95 1
5 0.64 0.95 1
6 0.65 0.95 1
8 0.65 0.96 1.01
10 0.65 0.96 1.01
15 0.65 0.96 1.01

volume subareas {Si}N S
i=1 and consider a set {zi} by uniformly sampling points in the domain [0, 1)d . We compute the AAE 

of the estimated expected number of points falling into each of the subareas:

AAE(N̂) = 1

N S

N S∑
i=1

|N̂(Si) − N(Si)| (16)

and Root Integrated Square Error (RISE):

RISE(N̂) =
(

1

N S

N S∑
i=1

(N̂(Si) − N(Si))
2

)1/2

, (17)

where N(Si) is the actual number of points in Si and
15
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Fig. 7. Earthquakes Data: The posterior mean (red curve), the posterior median (black curve), the 95% hdi interval of the estimated intensity illustrated by 
the dotted green lines and the intensity estimator of the Haar-Fisz Algorithm illustrated by the blue line. The rug plot on the bottom displays the event 
times.

N̂(Si) =
∫
Si

λ̂(s)ds � 1

N Si

∑
z j∈Si

|Si |̂λ(z j) (18)

with N Si being the number of testing points {z j} falling in Si . We apply the metrics AAE and RISE to compare our intensity 
estimates of one dimensional processes with those obtained by applying the Haar-Fisz algorithm for one dimensional data; 
and with kernel estimators for two-dimensional data. We observe that our algorithm, the Haar-Fisz algorithm and the 
kernel smoothing lead to similar results. As expected, the reconstructions of the intensity function are less smooth than 
those derived with kernel smoothing. The kernel estimator, as well as the bandwidth value given by likelihood cross-
validation were computed using the R package spatstat (Baddeley and Turner, 2005). We provide more simulation results 
in the supplementary material.

5.1. Earthquakes data

This data set is available online from the Earthquake Hazards Program and consists of the times of 1088 earthquakes 
from 2-3-2020 to 1-4-2020. We consider the period from 27-2-2020 to 5-4-2020 to avoid edges. We run 3 parallel chains 
of the same length for 100000 iterations for 3-10 trees. The convergence criteria included in the supplementary material 
indicate that the considered chains have converged.

Fig. 7 presents the Posterior Mean and the Posterior Median for 5 Trees, as well as the intensity estimate of the Haar-
Fisz algorithm applied to the counts in 128 consecutive intervals of equal length. The deterministic discretized intensity 
of the R package haarfisz is divided by the duration of an interval. The differences between both algorithms are due to 
different assumptions; the Haar-Fisz algorithm considers the aggregated counts into disjoint subintervals of the domain, 
while the proposed algorithm the times of individual events. The most noticeable difference is observed between 2020.212 
and 2020.213 (69th interval) where we see a jump in earthquakes from 5 to 33 and again to 7. The Haar-Fisz algorithm 
detects that peak as we feed it with that information, while the proposed algorithm does not indicate a sharp rise in the 
intensity in that period, treating it as an outlier. The intensity estimate of the Haar-Fitz algorithm applied in 64 consecutive 
intervals is closer to the proposed algorithm (see Fig. 8), as expected. Similar to coarser binning, the proposed algorithm 
is less prone to overfitting to spikes in the data, which get filtered out. The estimated AAE and RISE demonstrate good 
performance compared to the Haar-Fisz method. The simulation results illustrate that our algorithm can track the varying 
intensity of earthquakes. (See Tables 19 and 20.)

The diagnostics D g , Dl and D L P O obtain their highest values at 9, 3 and 8 trees, respectively (see Table 19). The AIC 
diagnostics values between 3 and 9 trees show only small variations, we choose 5 trees for the analysis, noting that the 
results will not vary significantly for other choices of m in this region.

5.2. Lansing data

The lansing data set included in the R package spatstat describes the locations of different types of trees in the Lansing 
woods forest. Our attention is restricted to the locations of 514 maples that are presented with dots in Figs. 9-10. We run 
3 parallel chains of the same length for 200000 iterations for 3-10 trees and 100000 iterations for 12 trees. The diagnostic 
criteria included in the supplementary material indicate that the considered chains have converged for the majority of 
testing points.
16
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Fig. 8. Earthquakes Data: The posterior mean (red curve), the posterior median (black curve), the 95% hdi interval of the estimated intensity illustrated by 
the dotted green lines and the intensity estimator of the Haar-Fisz Algorithm illustrated by the blue line. The rug plot on the bottom displays the event 
times.

Table 19
Average Absolute Error, Root Integrated Square Error and diagnostics for the data in Fig. 7.

Proposed BART Algorithm

Number 
of trees

AAE for 
Posterior 
Mean

AAE for 
Posterior 
Median

RISE for 
Posterior 
Mean

RISE for 
Posterior 
Median

D g Dl D L P O

3 93.8 94.1 106.9 107.1 13570.1 13565.4 -1194.7
4 94 94.1 106.8 107 13570.6 13563.6 -1163.8
5 93.6 94 106.7 107 13570.1 13560.7 -1150.5
6 93.8 94 106.9 107 13571.6 13559.6 -1169.7
8 93.5 94 106.6 107.1 13571.8 13554.9 -1140.2
9 93.4 94 106.7 107.3 13572.1 13552.6 -1192.5
10 93.4 94 106.8 107.3 13571.9 13549.8 -1184.4

Table 20
Average Absolute Error and Root Mean 
Square Error for Haar-Fisz estimator for 
the data in Fig. 7.

Haar-Fisz Algorithm

Subintervals AAE RMSE

128 94.1 107.8
64 94 107

We compare our algorithm to a fixed bandwidth estimator using a Gaussian kernel. Our algorithm and the kernel esti-
mator are consistent in the overall structure. The differences are due to the different nature of the methods. Given the tree 
locations, our algorithm recovers the spatial pattern of trees as rectangular regions of different intensities (Fig. 9), whereas 
the kernel method produces a continuum with more localized peaks in space. As expected, the kernel estimator presented 
in Fig. 10 consists of smoother subregions with various intensities. Tables 21-23 show that our algorithm is competitive to 
kernel smoothing with fixed bandwidth chosen with likelihood cross-validation. In contrast to our method, kernel methods 
are highly sensitive to parameter (bandwidth) choice.

The diagnostics D g and Dl obtain their highest values at 4 and 10 trees, respectively.

6. Discussion and future work

In this article, we have studied how the Bayesian Additive Regression Trees (BART) model can be applied to estimating 
the intensity of Poisson processes. The BART framework provides a flexible non-parametric approach to capturing non-linear 
and additive effects in the underlying functional form of the intensity. Our numerical experiments show that our algorithm 
provides good approximations of the intensity with ensembles of less than 10 trees. This enables our algorithm to detect 
the dimensions contributing most to the intensity. The ability of our method to identify important features demonstrates an 
important advantage over other procedures.
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Fig. 9. Posterior Mean and Posterior Median for 5 and 10 Trees.

Fig. 10. Fixed-bandwidth chosen using likelihood cross-validation.

Our approach enables full posterior inference of the intensity in a non-parametric regression setting. In addition, the 
method extends easily to higher dimensional settings. The simulation study on synthetic data sets shows that our algo-
rithm can detect change points and provides good estimates of the intensity via either the posterior mean or the posterior 
median. Our algorithm is competitive with the Haar-Fisz algorithm and kernel methods in one and two dimensions and in-
18



S. Lamprinakou, M. Barahona, S. Flaxman et al. Computational Statistics and Data Analysis 180 (2023) 107658
Table 21
Average Absolute Error, Root Integrated Square Error with NS = 225 and diagnostics 
for the data in Fig. 9.

Proposed BART Algorithm

Number 
of trees

AAE for 
Posterior 
Mean

AAE for 
Posterior 
Median

RMSE for 
Posterior 
Mean

RMSE for 
Posterior 
Median

D g Dl

3 1.3 1.2 1.7 1.8 5686.5 5705.3
4 1.2 1.2 1.7 1.8 5683.8 5709.5
5 1.2 1.2 1.7 1.7 5672.4 5705.4
7 1.2 1.2 1.7 1.71 5643.5 5702
8 1.2 1.2 1.7 1.7 5634 5707.2
9 1.2 1.2 1.7 1.7 5614.3 5698.1
10 1.2 1.2 1.6 1.7 5596.6 5699.8
12 1.2 1.2 1.7 1.7 5558.2 5692.5

Table 22
Average Absolute Error and Root Integrated Square Error with 
N S = 400 for the data in Fig. 9.

Proposed BART Algorithm

Number 
of trees

AAE for 
Posterior 
Mean

AAE for 
Posterior 
Median

RMSE for 
Posterior 
Mean

RMSE for 
Posterior 
Median

3 0.9 0.9 1.3 1.3
4 0.9 0.9 1.2 1.3
5 0.9 0.9 1.2 1.3
7 0.9 0.9 1.2 1.2
8 0.9 0.9 1.2 1.2
9 0.9 0.9 1.2 1.2
10 0.9 0.9 1.2 1.2
12 0.9 0.9 1.2 1.2

Table 23
Average Absolute Error and Root Integrated 
Square Error for fixed bandwidth estimators 
for data in Fig. 10.

Kernel Smoothing

Bandwidth (sigma) AAE RISE

0.05 (LCV) for NS = 225 1.03 1.42
0.05 (LCV) for NS = 400 0.82 1.13

ference using spatial log-Gaussian Cox processes. The strength of our method is its performance in higher dimensions, and 
we demonstrate that it outperforms the kernel approach for multidimensional intensities. We also demonstrate that our 
inference for the intensity is consistent with the variability of the rate of events in real and synthetic data. The convergence 
criteria included in the supplementary material indicate good convergence of the considered chains. We ran each chain for 
at least 100000 iterations to increase our confidence in the results. However, our algorithm works well with considerably 
fewer iterations (around 10000). The BART model assumes independence of the underlying tree structure. The alternative 
method of (Sardy and Tseng, 2004) makes use of a locally dependent Markov Random Field, and one way of extending our 
model in this direction is to consider neighbouring intensities following Chipman et al. (2021).

Our method has only considered the standard priors commonly used in BART procedures, an interesting avenue of 
future research would be to implement different prior assumptions. In addition, we have fixed the parameters for the 
Galton-Watson prior on the trees, and further work on sensitivities to hyperparameter selection and alternative methods for 
inference of the hyperparameters is of interest. Currently, our model is limited to non-homogeneous Poisson Process and 
we believe the flexibility of the BART approach could be extended to more general point processes.

Appendix A. Metropolis Hastings proposals

We describe the proposals of Algorithm 2. The Hastings ratio can be expressed as the product of three terms (Kapelner 
and Bleich, 2016):
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• Transition Ratio:

TR = q(T (t)
j |T ∗

j )

q(T ∗
j |T (t)

j )

• Likelihood Ratio:

LR = P (s|T ∗
j , T( j),�( j))

P (s|T (t)
j , T( j),�( j))

• Tree Structure Ratio:

TSR = P (T ∗
j )

P (T (t)
j )

A.1. GROW proposal

This proposal randomly picks a terminal node, splits the chosen terminal into two new nodes and assigns a decision rule 
to it.

Let η be the randomly picked terminal node in tree T (t)
j . We denote the new nodes as ηL and ηR . We now derive the 

expressions for the transition ratio (TR), tree structure ratio (TSR) and likelihood ratio (LR).

Transition ratio It holds that:

(i) q(T ∗
j |T (t)

j ) = P(GROW)
× P(selecting a leaf η to grow from)
× P(selecting an available dimension j to split on)
× P(selecting the slitting value given the chosen dimension to split on)

= P(GROW) 1
b j

1
card(kη)

1
card(τη)

where b j is the number of terminal nodes in the tree T (t)
j , kh the set of all available dimensions to split the node 

η, τη the set of all available splitting values given the chosen dimension for splitting the node η and card(S) the 
cardinality of a set S .

(ii) q(T (t)
j |T ∗

j ) = P(PRUNE)
× P(selecting a node η having two terminal nodes to prune from)

= P(PRUNE) 1
w∗

where w∗ is the number of internal nodes with two terminal nodes as children in the tree T ∗
j .

Hence the transition ratio is given by

TR = P (PRUNE) 1
w∗

P (GROW) 1
b j

1
card(kη)

1
card(τη)

.

Tree structure ratio: The difference between the structures of the proposed tree T (t)
j and the tree T ∗

j is the two offsprings 
ηL and ηR . Thus the tree structure ratio is:

TSR = P (T ∗
j )

P (T (t)
j )

= (1 − pSPLIT(ηL)) (1 − pSPLIT(ηR)) pSPLIT(η) pRU LE(η)

(1 − pSPLIT(η))

=
(

1 − γ
(1+d(ηL))

δ

)(
1 − γ

(1+d(ηR ))δ

)
γ

(1+d(η))δ
1

card(kη)
1

card(τη)

1 − γ
(1+d(η))δ

,

where pSPLIT(η) is the splitting probability for a node η and pRU LE(η) the distribution of decision rule associated to node 
η.

Likelihood ratio The likelihood ratio is an application of equation (8) twice, that is once considering the proposed tree, T ∗
j

(numerator) and the other considering the tree of the current iteration t , T (t)
j (denominator), which can be simplified as 

follows
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LR = βα


(α)


(n jηL +α)

(c jηL +β)
n jηL

+α


(n jηR +α)

(c jηR +β)
n jηR

+α


(n jη+α)

(c jη+β)
n jη+α

= βα


(α)


(n jηL + α)
(n jηR + α)


(n jη + α)

(c jη + β)n jη+α

(c jηL + β)n jηL +α(c jηR + β)n jηR +α

A.2. PRUNE proposal

This proposal randomly picks a parent of two terminal nodes and turns it into a terminal node by collapsing the nodes 
below it.

Let η be the picked parent of two terminal nodes, y and c the dimension and splitting value of the rule linked to the 
node η.

Transition ratio It holds that:

(i) q(T ∗
j |T (t)

j ) = P(PRUNE)
× P(selecting a parent of two terminal nodes to prune from)

= P(PRUNE) 1
w

where w is the number of nodes with two terminal nodes as children in the tree T (t)
j .

(ii) q(T (t)
j |T ∗

j ) = P(GROW)
× P(selecting the node η to grow from)
× P(selecting the dimension y)
× P(selecting the slitting value c given the chosen dimension y)

= P(GROW) 1
w∗ 1

card(kη)
1

card(τη)

where w∗ is the number of terminal nodes in the tree T ∗
j , kh the set of all available dimensions to split the node 

η and τη the set of all available splitting values given the chosen dimension y for splitting the node η.

Hence the transition ratio is given by

TR =
P (GROW) 1

w∗ 1
card(kη)

1
card(τη)

P (PRUNE) 1
w

.

Tree structure ratio The proposed tree differs by not having the two children nodes ηL and ηR . Thus the tree structure ratio 
is:

TSR = P (T ∗
j )

P (T (t)
j )

= (1 − pSPLIT(η))

(1 − pSPLIT(ηL)) (1 − pSPLIT(ηR)) pSPLIT(η) pRU LE(η)

=
1 − γ

(1+d(η))δ(
1 − γ

(1+d(ηL))
δ

)(
1 − γ

(1+d(ηR ))δ

)
γ

(1+d(η))δ
1

card(kη)
1

card(τη)

Likelihood ratio Similar to the GROW proposal, the likelihood ratio can be written as follows

LR =
(

βα


(α)

)−1

(n jη+α)

(c jη+β)
n jη+α


(n jηL +α)

(c jηL +β)
n jηL

+α


(n jηR +α)

(c jηR +β)
n jηR

+α

=
(

βα


(α)

)−1 
(n jη + α)


(n jηL + α)
(n jηR + α)

(c jηL + β)n jηL +α(c jηR + β)n jηR +α

(c jη + β)n jη+α

A.3. CHANGE proposal

This proposal randomly picks an internal node and randomly reassigns to it a splitting rule.
Let η be the picked internal node having rule y < c and children denoted as ηR and ηL . We assume that ̃y < c̃ is its new 

assigned rule in the proposed tree, T ∗
j . Following Kapelner and Bleich (2016), for simplicity we are restricted to picking an 

internal node having two terminal nodes as children.
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Transition ratio It holds that:

(i) q(T ∗
j |T (t)

j ) = P(CHANGE)
× P(selecting an internal node η to change)
× P(selecting the new available dimension ỹ to split on)
× P(selecting the new splitting value ̃c given the chosen dimension ỹ)

(ii) q(T (t)
j |T ∗

j ) = P(CHANGE)
× P(selecting the node η to change)
× P(selecting the dimension y to split on)
× P(selecting the splitting value c given the chosen dimension y)

Thus the Transition Ratio is

TR = P (selecting c to split on given the chosen dimension y)

P (selecting c̃ to split on given the chosen dimension ỹ)

Tree structure ratio The two trees differ in the splitting rule at node η. Thus we have that

TSR = P (T ∗
j )

P (T (t)
j )

= pSPLIT(η) pRULE(η|T ∗
j )

pSPLIT(η) pRULE(η|T (t)
j )

= P (selecting ỹ) P (selecting c̃ given ỹ)

P (selecting y) P (selecting c given y)

= P (selecting c̃ given ỹ)

P (selecting c given y)
.

It then follows that TR × TSR = 1, and hence only the likelihood ratio needs to be found to obtain the Hastings ratio.

Likelihood ratio Let n∗
L = n

(T ∗
j )

jηL
, n∗

R = n
(T ∗

j )

jηR
, c∗

L = c
(T ∗

j )

jηL
, c∗

R = c
(T ∗

j )

jηR
, n(t)

L = n
(T (t)

j )

jηL
, n(t)

R = n
(T (t)

j )

jηR
, c(t)

L = c
(T (t)

j )

jηL
and c(t)

R = c
(T (t)

j )

jηR
, 

where (T ∗
j ) and (T (t)

j ) indicate that the corresponding quantities are related to the tree T ∗
j and T (t)

J respectively. Following 
the previous proposals, the likelihood ratio is

LR =

(n∗

L+α)

(c∗
L+β)

n∗
L+α


(n∗
R+α)

(c∗
R+β)

n∗
R +α


(n(t)
L +α)

(c(t)
L +β)

n
(t)
L +α


(n(t)
R +α)

(c(t)
R +β)

n
(t)
R +α

= (c(t)
L + β)n(t)

L +α (c(t)
R + β)n(t)

R +α

(c∗
L + β)n∗

L+α (c∗
R + β)n∗

R+α


(n∗
L + α)
(n∗

R + α)


(n(t)
L + α)
(n(t)

R + α)
.

Appendix B. The Poisson process conditional likelihood

Let us consider a finite realization of an inhomogeneous Poisson process with n points s. Given the tree components 
(T , �), and approximating the intensity of a point si ∈ S by a product of m trees λ(si) =∏m

j=1 g(si; T j, � j), the likelihood 
is:

P (s|�, T ) =
n∏

i=1

λ(si)exp

⎛⎝−
∫
S

λ(s)ds

⎞⎠
=

n∏
i=1

m∏
j=1

g(si; T j,� j)exp

⎛⎝−
∫
S

m∏
j=1

g(s; T j,� j)ds

⎞⎠ . (B.1)

The first term of the above equation can be written as follows

n∏
i=1

m∏
j=1

g(si; T j,� j) =
n∏

i=1

m∏
j=1, j �=h

g(si; T j,� j)g(si; Th,�h)

=
n∏

i=1

m∏
j=1, j �=h

g(si; T j,� j)

(
n∏

i=1

g(si; Th,�h)

)
= ch

bh∏
t=1

λ
nht
ht

where ch =∏n
i=1
∏m

j=1, j �=h g(si; T j, � j) and nht is the cardinality of the set {i : si ∈ �ht}.
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The exponential term of (B.1) can be expressed as:

exp

⎛⎝−
∫
S

m∏
j=1

g(s; T j,� j)ds

⎞⎠= exp

⎛⎝−
∫
S

m∏
j=1, j �=h

g(s; T j,� j)g(s; Th,�h)

⎞⎠
= exp

⎛⎝−
∫
S

m∏
j=1, j �=h

g(s; T j,� j)

⎛⎝ bh∑
t=1

λht I(s ∈ �ht)

⎞⎠ds

⎞⎠
= exp

⎛⎝−
∫
S

bh∑
t=1

λht

m∏
j=1, j �=h

g(s; T j,� j)I(s ∈ �ht)ds

⎞⎠
Tonelli’s theorem allows the change of order between summation and integral.

exp

⎛⎝−
∫
S

m∏
j=1

g(s; T j,� j)ds

⎞⎠= exp

⎛⎝−
bh∑

t=1

λht

∫
S

m∏
j=1, j �=h

g(s; T j,� j)I(s ∈ �ht)ds

⎞⎠
= exp

⎛⎝−
bh∑

t=1

λhtcht

⎞⎠
where

cht =
∫
S

⎛⎝ m∏
j=1, j �=h

g(s; T j,� j)

⎞⎠ I(s ∈ �ht)ds.

Let T(h) = {T j}m
j=1, j �=h be an ensemble of trees not including the tree Th that defines the global partition {�(h)

k }K (T(h))

k=1 by 
merging all cuts in {T j}m

j=1, j �=h . Giving,

m∏
j=1, j �=h

g(s; T j,� j) =
K (Th)∑
k=1

λ
(h)

k I(s ∈ �
(h)

k )

where

λ
(h)

k =
m∏

t=1,t �=h

bt∏
l=1

λ
I(�tl∩�

(h)

k �=0)

tl ,

leading to the following expression for cht ,

cht =
∫
S

⎛⎝ m∏
j=1, j �=h

g(s, T j,� j)

⎞⎠ I(s ∈ �ht)ds =
∫
S

⎛⎝K (T(h))∑
k=1

λ
(h)

k I(s ∈ �
(h)

k )

⎞⎠ I(s ∈ �ht)ds

=
K (T(h))∑

k=1

λ
(h)

k

∫
S

I(s ∈ �
(h)

k ∩ �ht)ds =
K (T(h))∑

k=1

λ
(h)

k |�(h)

k ∩ �ht |,

where |�(h)

k ∩ �ht | is the volume of the region �(h)

k ∩ �ht . Hence the conditional likelihood can be written as follows

P (s|�, T ) = ch

bh∏
t=1

λ
nht
ht e−λht cht .

Appendix C. The conditional integrated likelihood

The conditional integrated likelihood is given by

P (s|Th, T(h),�(h)) =
∞∫

P (s,�h|Th, T(h),�(h))d�h
0
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=
∞∫

0

P (s|�, T ) P (�h|Th, T(h),�(h))d�h

= ch

∞∫
0

. . .

∞∫
0

bh∏
t=1

λ
nht
ht e−λht cht

bh∏
t=1

βα


(α)
e−βλht λα−1

ht dλh1 . . .dλhbh

= ch

(
βα


(α)

)bh bh∏
t=1

∞∫
0

λ
nht+α−1
ht e−(cht+β)λht dλht

= ch

(
βα


(α)

)bh bh∏
t=1


(nht + α)

(cht + β)nht+α

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2022 .107658.

References

Adams, Ryan Prescott, Murray, Iain, MacKay, David J.C., 2009. Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process 
intensities. In: Proceedings of the 26th Annual International Conference on Machine Learning. ACM, pp. 9–16.

Arjas, Elja, Gasbarra, Dario, 1994. Nonparametric Bayesian inference from right censored survival data, using the Gibbs sampler. Stat. Sin., 505–524.
Baddeley, Adrian, Turner, Rolf, 2005. spatstat: an R package for analyzing spatial point patterns. J. Stat. Softw. 12 (6), 1–42. http://www.jstatsoft .org /v12 /i06/.
Bleich, Justin, Kapelner, Adam, 2014. Bayesian additive regression trees with parametric models of heteroskedasticity. Preprint, arXiv:1402 .5397.
Bleich, Justin, Kapelner, Adam, George, Edward I., Jensen, Shane T., et al., 2014. Variable selection for BART: an application to gene regulation. Ann. Appl. 

Stat. 8 (3), 1750–1781.
Chipman, Hugh A., George, Edward I., McCulloch, Robert E., 1998. Bayesian CART model search. J. Am. Stat. Assoc. 93 (443), 935–948.
Chipman, Hugh A., George, Edward I., McCulloch, Robert E., et al., 2010. BART: Bayesian additive regression trees. Ann. Appl. Stat. 4 (1), 266–298.
Chipman, Hugh A., George, Edward I., McCulloch, Robert E., Shively, Thomas S., 2021. mBART: multidimensional monotone BART. Bayesian Anal., 1–30. 

https://doi .org /10 .1214 /21 -BA1259.
Daley, Daryl J., Vere-Jones, David, 2003. Elementary Theory and Methods. Springer.
Davies, Tilman M., Baddeley, Adrian, 2018. Fast computation of spatially adaptive kernel estimates. Stat. Comput. 28 (4), 937–956.
Diggle, Peter J., et al., 2003. Statistical Analysis of Spatial Point Patterns, 2nd ed. Academic Press.
Fryzlewicz, Piotr, 2010. haarfisz: software to perform Haar Fisz transforms. R package version 4.5. https://CRAN.R-project .org /package =haarfisz.
Fryzlewicz, Piotr, Nason, Guy P., 2004. A Haar-Fisz algorithm for Poisson intensity estimation. J. Comput. Graph. Stat. 13 (3), 621–638.
Gelman, Andrew, Rubin, Donald B., et al., 1992. Inference from iterative simulation using multiple sequences. Stat. Sci. 7 (4), 457–472.
Gelman, Andrew, Hwang, Jessica, Vehtari, Aki, 2014. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24 (6), 997–1016.
Gelman, Andrew, Lee, Daniel, Stan, Jiqiang Guo, 2015. A probabilistic programming language for Bayesian inference and optimization. J. Educ. Behav. Stat. 40 

(5), 530–543.
Gugushvili, Shota, van der Meulen, Frank, Schauer, Moritz, Spreij, Peter, 2018. Fast and scalable non-parametric Bayesian inference for Poisson point pro-

cesses. Preprint, arXiv:1804 .03616.
Harris, Theodore Edward, et al., 1963. The Theory of Branching Processes. Springer, Berlin.
Heikkinen, Juha, Arjas, Elja, 1998. Non-parametric Bayesian estimation of a spatial Poisson intensity. Scand. J. Stat. 25 (3), 435–450.
Hill, Jennifer L., 2011. Bayesian nonparametric modeling for causal inference. J. Comput. Graph. Stat. 20 (1), 217–240.
Illian, Janine, Penttinen, Antti, Stoyan, Helga, Stoyan, Dietrich, 2008. Statistical Analysis and Modelling of Spatial Point Patterns, vol. 70. John Wiley & Sons.
Kapelner, Adam, Bleich, Justin, 2013. bartmachine: machine learning with Bayesian additive regression trees. Preprint, arXiv:1312 .2171.
Kapelner, Adam, Bleich, Justin, 2016. bartMachine: machine learning with Bayesian additive regression trees. J. Stat. Softw. (ISSN 1548-7660) 70 (4), 1–40. 

https://doi .org /10 .18637 /jss .v070 .i04.
Kindo, Bereket P., Wang, Hao, Peña, Edsel A., 2016. Multinomial probit Bayesian additive regression trees. Stat 5 (1), 119–131.
Lakshminarayanan, Balaji, Roy, Daniel, Teh, Yee Whye, 2015. Particle Gibbs for Bayesian additive regression trees. In: Artificial Intelligence and Statistics, 

pp. 553–561.
Leininger, Thomas J., Gelfand, Alan E., 2017. Bayesian inference and model assessment for spatial point patterns using posterior predictive samples. Bayesian 

Anal. 12 (1), 1–30.
Lewis, P.A.W., Shedler, Gerald S., 1979. Simulation of nonhomogeneous Poisson processes by thinning. Nav. Res. Logist. Q. 26 (3), 403–413.
Linero, Antonio R., 2018. Bayesian regression trees for high-dimensional prediction and variable selection. J. Am. Stat. Assoc. 113 (522), 626–636.
Linero, Antonio R., Yang, Yun, 2018. Bayesian regression tree ensembles that adapt to smoothness and sparsity. J. R. Stat. Soc., Ser. B, Stat. Methodol. 80 (5), 

1087–1110.
Lloyd, Chris, Gunter, Tom, Osborne, Michael, Roberts, Stephen, 2015. Variational inference for Gaussian process modulated Poisson processes. In: Interna-

tional Conference on Machine Learning, pp. 1814–1822.
Loader, C., 1999. Local Regression and Likelihood. Springer, New York.
Makowski, Dominique, Ben-Shachar, Mattan, Lüdecke, Daniel, 2019. bayestestr: describing effects and their uncertainty, existence and significance within 

the Bayesian framework. J. Open Sour. Softw. 4 (40), 1541.
Murray, Jared S., 2017. Log-linear Bayesian additive regression trees for categorical and count responses. Preprint, arXiv:1701.01503.
Patil, Prakash N., Wood, Andrew T.A., et al., 2004. Counting process intensity estimation by orthogonal wavelet methods. Bernoulli 10 (1), 1–24.
Peng, Roger, 2003. Multi-dimensional point process models in r. J. Stat. Softw. 8, 1–27.
Pratola, Matthew T., et al., 2016. Efficient Metropolis–Hastings proposal mechanisms for Bayesian regression tree models. Bayesian Anal. 11 (3), 885–911.
Rockova, Veronika, Saha, Enakshi, 2018. On theory for Bart. Preprint, arXiv:1810 .00787.
Rockova, Veronika, van der Pas, Stephanie, 2017. Posterior concentration for Bayesian regression trees and their ensembles. Preprint, arXiv:1708 .08734.
24

https://doi.org/10.1016/j.csda.2022.107658
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib93AE4FA3FE280ACD26EAA86EB18E8C44s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib93AE4FA3FE280ACD26EAA86EB18E8C44s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibC0FCF530026F8FB7D6642434C7EADF81s1
http://www.jstatsoft.org/v12/i06/
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib6691F9347B9DFA6D221330C0B08F1B5Cs1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib76115BB14E1B458A1DF5B625C122CA37s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib76115BB14E1B458A1DF5B625C122CA37s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibBE1F4D354FF470161D3C750C24DF5B51s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib113FAB20CFD27336416D47AA0159A75Fs1
https://doi.org/10.1214/21-BA1259
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib833336731E5007674AF7304DBF082C8Bs1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibBB197F846CCD5E7391B3F1E59489FB2As1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib35DF600A801E616AF724A0C9D583CA66s1
https://CRAN.R-project.org/package=haarfisz
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib70F42A31FED24993127F3B63449C375As1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib589EB5C6811A5B4F90A9DDB25BEE77E5s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib694F5D3491EF0B336BF01CE193030224s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib728C6BEF924E68DBC37B0AF282607A22s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib728C6BEF924E68DBC37B0AF282607A22s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib7CF4B34F5A947F8166276B0BFABE8716s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib7CF4B34F5A947F8166276B0BFABE8716s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibE12F63C159C400D2602B8ECC940383BBs1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibE2241E7CCFB08E377FD58A9C608AC5F9s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib1D9944CB38F0183A855B31297A7BBC88s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib46A0080873BE1C8E97357DFD7E21B419s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib2450EFF564B9DE276A229CC6B6814E5Fs1
https://doi.org/10.18637/jss.v070.i04
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib7B96A98110E9EC2C707F16BF18F35018s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib6E07C5D6F22837222FEB3334AAE58826s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib6E07C5D6F22837222FEB3334AAE58826s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib25EE206FE26F6493F83803A810A129F9s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib25EE206FE26F6493F83803A810A129F9s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib11DA150F081763F59C04FE71E4D19A72s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibC1CD91C4DEA7D3C9B389159C5E4C7E6As1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib67151965A4EE8BF81FE80F66E85A562Es1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib67151965A4EE8BF81FE80F66E85A562Es1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibF1532B1D804A23864894ACE37B363DA3s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibF1532B1D804A23864894ACE37B363DA3s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibEE836E73453E6D1FAE8B980AE19FD570s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibF10AF4F95ECFE846B57314053CFABCA8s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibF10AF4F95ECFE846B57314053CFABCA8s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibD96D479924C8CA138C9930B03FF58DEFs1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibAA6C2D772D77538BED6F8954CCEF2D03s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibB36E422B5A1380929FB0CD148B750005s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibC716584CF112B109FBD0541EA947DFD0s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibE3614AEC5DEE42B07950E7A691073DD8s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib02694A81081DCCF6577A4AC490FC4457s1


S. Lamprinakou, M. Barahona, S. Flaxman et al. Computational Statistics and Data Analysis 180 (2023) 107658
Sardy, Sylvain, Tseng, Paul, 2004. On the statistical analysis of smoothing by maximizing dirty Markov random field posterior distributions. J. Am. Stat. 
Assoc. 99 (465), 191–204. https://doi .org /10 .1198 /016214504000000188.

Scott, David, 2008. Histograms: theory and practice, pp. 47–94. https://doi .org /10 .1002 /9780470316849 .ch3.
Sparapani, Rodney A., Logan, Brent R., McCulloch, Robert E., Laud, Purushottam W., 2016. Nonparametric survival analysis using Bayesian additive regression 

trees (BART). Stat. Med. 35 (16), 2741–2753.
Stone, Mervyn, 1977. An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J. R. Stat. Soc., Ser. B, Methodol. 39 (1), 44–47.
Wand, M.P., 1997. Data-based choice of histogram bin width. Am. Stat. 51 (1), 59–64.
Zhang, Junni L., Härdle, Wolfgang K., 2010. The Bayesian additive classification tree applied to credit risk modelling. Comput. Stat. Data Anal. 54 (5), 

1197–1205.
25

https://doi.org/10.1198/016214504000000188
https://doi.org/10.1002/9780470316849.ch3
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib928F80C69ADD1E3DA72009809074967Fs1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib928F80C69ADD1E3DA72009809074967Fs1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib5A647F6281ED44763FE396252AE32F33s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bib55BC13BE4E1D4D50ACBB50FED119F1F0s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibBCAAEE38BF76CDAEA7E3FBBCE42A7394s1
http://refhub.elsevier.com/S0167-9473(22)00238-9/bibBCAAEE38BF76CDAEA7E3FBBCE42A7394s1

	BART-based inference for Poisson processes
	1 Introduction
	2 The BART model for Poisson processes
	3 The inference algorithm
	3.1 Fixing the hyperparameters of the model

	4 Simulation study on synthetic data
	4.1 One dimensional Poisson process with stepwise intensity
	4.2 Two-dimensional Poisson process with stepwise intensity function
	4.3 Inhomogeneous three-dimensional Poisson process with Gaussian intensity
	4.4 Inhomogeneous five dimensional Poisson process with sparsity assumption

	5 Intensity estimation for real data
	5.1 Earthquakes data
	5.2 Lansing data

	6 Discussion and future work
	Appendix A Metropolis Hastings proposals
	A.1 GROW proposal
	A.2 PRUNE proposal
	A.3 CHANGE proposal

	Appendix B The Poisson process conditional likelihood
	Appendix C The conditional integrated likelihood
	Appendix D Supplementary material
	References


