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Abstract

Objectives

To propose a novel framework for COVID-19 vaccine allocation based on three components

of Vulnerability, Vaccination, and Values (3Vs).

Methods

A combination of geospatial data analysis and artificial intelligence methods for evaluating

vulnerability factors at the local level and allocate vaccines according to a dynamic mecha-

nism for updating vulnerability and vaccine uptake.
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Results

A novel approach is introduced including (I) Vulnerability data collection (including country-

specific data on demographic, socioeconomic, epidemiological, healthcare, and environ-

mental factors), (II) Vaccination prioritization through estimation of a unique Vulnerability

Index composed of a range of factors selected and weighed through an Artificial Intelligence

(AI-enabled) expert elicitation survey and scientific literature screening, and (III) Values con-

sideration by identification of the most effective GIS-assisted allocation of vaccines at the

local level, considering context-specific constraints and objectives.

Conclusions

We showcase the performance of the 3Vs strategy by comparing it to the actual vaccination

rollout in Kenya. We show that under the current strategy, socially vulnerable individuals

comprise only 45% of all vaccinated people in Kenya while if the 3Vs strategy was imple-

mented, this group would be the first to receive vaccines.

Introduction

As COVID-19 mass vaccination campaigns in developed countries across Europe and North-

ern America are reaching a greater share of the population, many low- and middle-income

countries (LMIC) in Asia, Africa, and Latin America are left behind facing growing challenges

of securing the supply of vaccine, particularly, for their vulnerable populations to avoid the

risk of new waves of infection [1]. Facing uncertainty, limited supply of vaccines, and the risk

of growing vaccine hesitancy in relation to misinformation campaigns [2], these countries are

forced to constantly revise their vaccination rollout plans to reflect realities on the ground and

target the most vulnerable groups [3]. Meanwhile high-resolution spatial and temporal data

that can be collected and shared through open licenses provide a unique opportunity to

develop transparent and trustworthy Artificial Intelligence (AI)-supported tools and frame-

works that can interoperate with existing health data platforms and integrate diverse expert

opinions. Such tools could help public health decision-makers optimise their vaccine cam-

paigns considering country-specific needs and geographical, institutional, and infrastructure

constraints.

This paper introduces a framework for data collection and integration, evaluation of

COVID-19 risks and allocation and prioritization of the available vaccine doses. The proposed

framework combines knowledge from diverse disciplines, including geospatial, epidemiology,

economics, statistics, and computational sciences. It employs spatial data analysis and visuali-

zation techniques to create an open platform for policymakers, community leaders, the scien-

tific community, and other stakeholders to evaluate and compare different vaccination

strategies based on principles and objectives outlined by the World Health Organization

(WHO) Strategic Advisory Group of Experts on Immunization (SAGE) values framework for

the allocation and prioritization of COVID-19 vaccination [4]. By focusing on Vulnerability,

Vaccination, and Values (3Vs), this framework prioritizes vulnerable populations for receiving

COVID-19 vaccine by considering the principles outlined in the WHO SAGE framework [5].

Methods

The 3Vs framework is designed to help public health decision makers better allocate their

resources and address vaccination inequalities. The 3Vs framework will be manifested in an
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online interactive decision support platform aimed at optimizing COVID-19 country-specific

vaccine rollout plans, from procurement to deployment and administration through the

assessment and analysis of the following three components (Fig 1).

Component I—Vulnerability data collection: collection of data on socio-demographic,

economic, epidemiological, and environmental characteristics of the affected communities,

availability and accessibility of healthcare services, and other economic and societal indicators.

Component II—Vaccination prioritization: methods for compiling and translating data,

with the help of AI-enabled expert elicitation techniques, into prioritization criteria spanning

different health and demographic dimensions.

Component III—Values consideration: computational methods for geospatial vaccination

allocation based on equity values enhanced by data visualization and communication tools.

A graphical representation of the 3Vs framework is provided in Fig 1.

The proposed framework will provide support to policy decision-makers through the avail-

ability and visualisation of vulnerable fragments of the population and their access to existing

healthcare facilities at the finest geographical resolution. Furthermore, it will ensure that the

factors considered in the first component are representative of most vulnerable populations

including those belonging to historically underprivileged demographic and socioeconomic

groups and, where necessary, identifying and including additional local elements. These may

be related to the sustainability assessment of the vaccination program by evaluating its cost

and benefits and its long-term impact on the healthcare system as well as other factors related

to how individuals will respond to the vaccination program. Vaccine hesitancy might indeed

further complicate any vaccination rollout plan. Through this approach several feasible options

will be visualized and communicated to planners so that they will be able to make better and

more informed decisions.

Fig 1. The 3Vs framework. Summary of the 3Vs (Vulnerability, Vaccination, and Values) framework and the

relationships among its main components.

https://doi.org/10.1371/journal.pone.0275037.g001
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A multi-resolution and multiscale system model will be adopted so that different local pri-

orities will be embedded in the algorithms and available to the users via an interactive online

platform based on different layers of the spatial data. Stakeholders will be able to choose vul-

nerability factors among a set of predefined indicators and evaluate and compare the generated

outputs.

Component I–vulnerability data collection

The collection of the most up to date data from various heterogeneous sources will be used to

construct a unique Vulnerability Index which will characterise the finest geographical units of

the considered populations. Background data about the vulnerability of affected populations

can be grouped into categories: socioeconomic, demographic, healthcare access, and epidemi-

ological. As part of the activities within this component, a list of openly licensed geospatial

information is retrieved from different sources and will be overlaid on one another. These

include high-resolution population data [6,7], gridded gender and age distributions [7], degree

of urbanization [8,9], travel friction surfaces [10], administrative boundaries and, where possi-

ble, health facility catchment areas [11], along with geotagged sample household survey infor-

mation [12] on socio-demographics, health status, and cultural attitudes towards vaccines.

Our framework also considers healthcare facilities location [13] and typologies [14,15] as well

as their accessibility [16], and, where available, data on Intensive Care Unit (ICU) beds and

vaccine hesitancy.

This baseline set of information, available (in part) for many LMICs, will provide the geos-

patial distribution of vulnerable population segments which drives the vaccine allocation

plans. It will also paint a timely picture of the available healthcare facilities, along with critical

logistics considerations such as the travel time for the population to reach those facilities. The

gathered data will be complemented with region-specific information such as local or need-tai-

lored data obtained from governments and development/aid agencies involved in the vaccina-

tion rollout planning and operationalization. Where available, local data on vaccine hesitancy

will be incorporated into Component I. The success of COVID-19 vaccination as a pandemic

mitigation strategy relies on its widespread acceptance [17], but early studies suggest that vac-

cine hesitancy could become a significant obstacle to COVID-19 vaccine uptake in many

countries, including LMICs [18]. Integrating information on vaccine hesitancy into the frame-

work would allow coordination of vaccination efforts with appropriate interventions to pre-

empt or reduce refusal rates among target populations.

Component II—vaccination prioritization

The ideal allocation of vaccines should consider a variety of factors that constitute the vulnera-

bility of affected populations. In most countries, mass vaccination priorities have been driven,

firstly, by targeting healthcare workers and frontline staff (e.g., teachers, security personnel)

and, secondly, by age stratification [19,20], due to the age patterns of COVID-19 mortality

[21]. However, in LMICs, the populations are much younger, and considering only the age fac-

tor, may overshadow other significant factors underlying the risk of severe infection or death.

This is especially the case in communities with weak health infrastructure, with pre-existing

health conditions, or without reliable access to healthcare services due to poverty or other

socioeconomic conditions [22]. To identify the segments of the population that should be tar-

geted by vaccination programs, the use of a multidimensional Vulnerability Index that reflects

the underlying risk factors (demographic, health, and socioeconomic), is more nuanced than a

unidimensional factor (e.g., age stratification). Early in the pandemic, existing indexes such as

the Infection Diseases Vulnerability Index were used to assess the vulnerability and capacity to
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respond to the pandemic at the country level in Africa [23,24] and other countries around the

world [25,26].

AI-enabled integration of expert knowledge for vulnerability index estimation. Differ-

ently from existing direct data-driven models for estimating the Vulnerability Index, we used

the suggestions of experts to decide which factors to include and their relative importance in

defining the level of vulnerability in different geographical areas within a specific country. This

allows to integrate the perceptual opinion of experts, as well as other key stakeholder groups to

provide their insights and experience to bridge the knowledge gap between theoretical

approaches to vulnerability assessment and the pandemic-related inequalities that many sub-

populations are facing [27]. In our proposed approach, we have assembled and consulted a

multidisciplinary panel of experts about their opinion on the following:

• A curated list of the relevant factors will be reviewed and updated based on more recent and

available evidence and on the feedback received from a medical science, healthcare, and pol-

icy expert’s panel.

• The relative importance of each factor will be considered by a weighting process that will be

based on scientific, epidemiological, and health experts’ opinions.

However, experts may have either convergent or divergent decisions which makes it nec-

essary to implement AI-driven decision-making that convey that information in complete

accord. Furthermore, these opinions can be subjective or vague and therefore an AI model

should be able to account for the uncertainty of the provided responses. We suggest model-

ling the uncertain opinion of the experts via fuzzy linguistic variables that express informa-

tion in terms of sets or intervals, rather than crisp numbers [28]. This way experts’ opinions

can be encoded into commonly used natural language expressions (viz. words) such as

“Weakly important”, “Fairly important”, “Equally important”, “Very important”, with each

expression denoting a possible fuzzy alignment to a determined rank level. Next there is the

challenge of integrating divergent opinions and intelligently forming a consensus in a sys-

tematic way. We suggest using AI techniques for collective Multiple Criteria Decision Anal-

ysis (MCDA) such as derivatives approaches of the Best-Worst Method (BWM) [29] to

compute the weight of each factor. Next, this later approach can be followed by a related

Weighted Sum Method (WSM) [30] to calculate the unique index for each geographical

division. These methods can account for the inconsistency of the surveying experts’

opinions.

Component III–values consideration

After building the Vulnerability Index using expert judgments, the proposed 3Vs framework

builds on a mathematical allocation algorithm to assign available vaccines to designated vacci-

nation centers considering vulnerability and accessibility, income/age/gender equity, and

other feasibility considerations, including costs.

Allocation method

The aim of the proposed strategy is to minimize the population-weighted average vulnerability

across all regions (at the highest–available resolution). As a proof of concept, we set forth a

stylized but effective recursive method that accounts for the relative priorities that determine

the proportional size of the allocated number of doses to each area within a given country

should be estimated based on the relatively vulnerable population in each area. In other words,

the number of vaccines doses received by area i (out of the N areas) at time t from the supplied
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batch of vaccines with size Bt
i will follow this equation:

xti ¼
Pjt
i � Vt

i
PN

n¼1
Pt
n � Vt

n

� Bt ð1Þ

where Vt
i is the Vulnerability Index and Pt

i is the unvaccinated population of the area i at the

beginning of vaccination time t with the vaccine batch Bt. Once the vaccines are distributed

among vulnerable populations in each area, the number of unvaccinated people and the Vul-

nerability Index of each area should be updated accordingly for the next time step:

Ptþ1

i ¼ Pt
i � xti ð2Þ

Vtþ1

i ¼
Pt
i � Vt

i � xti
Ptþ1
i

ð3Þ

With more individuals receiving a vaccine, the Vulnerability Index will decay towards a

limit of V̂ i � 0 which indicates the minimum feasible and acceptable vulnerability in the spe-

cific region i due to vaccine hesitancy among the vulnerable population or logistical challenges

in vaccinating all vulnerable populations.

Results

To assess the validity of our proposed 3Vs framework, data from the recently developed Ken-

yan COVID-19 Social Vulnerability Index at the sub-county level was used [24]. These allowed

the combination of 19 factors under three main categories related to socioeconomic inequality,

population characteristics, and access to services. In addition, an array of microdata provided

by the Demographic and Health Survey (DHS) was also included in our framework to charac-

terise individuals’ socio-demographic characteristics (age, employment, poverty, education) as

well as their healthcare status (e.g., sanitation, vaccination). A detailed list of categories and the

description of factors within each category together with the corresponding sources is pre-

sented in the Supporting information.

In Fig 2A the population distribution together with the healthcare facilities designated as

main vaccination posts are shown (622 facilities out of the 13232 available in the country).

Similarly, in Fig 2B we show the spatial distribution of the Social Vulnerability Index at the

sub-county level [23] which is then used to perform the allocation of the vaccine doses fol-

lowing the procedure explained in the previous section. This allocation is based on popula-

tion-weighted vulnerability and as a result, the hypothetical distribution of unvaccinated

vulnerable population which derives from the implementation of the 3Vs framework shows

very uniform and low vulnerabilities across the country (Fig 2C). On the other hand, map-

ping the current deployment of about 1 million vaccines in Kenya as of October 6, 2021, the

vulnerability map of unvaccinated distribution does not change significantly and still closely

mirrors the distribution of the population and the Social Vulnerability Index before vacci-

nation (Fig 2D).

Comparing Fig 2A and 2B reveals that there may be some areas (such as the northern east-

ern parts of the country) with high vulnerability and doses’ allocation requirements that may

lack healthcare facilities to support vaccine distribution. On the contrary, a high number of

healthcare facilities appear to be allocated in the western part of the country and around the

capital (the blue circle in Fig 2A) where moderate social vulnerability and vaccination needs

are derived from our analysis due to high concentration of economic opportunities and health-

care services.
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To compare the performance of our proposed 3Vs strategy with the current vaccination

rollout strategy in Kenya, we calculate the number of socially vulnerable populations in each

sub-county who are left out of the vaccination program under each strategy. We estimate that

under the current strategy, only about 450,000 vulnerable people have received vaccines and

the rest of the vaccines have been administered to non-vulnerable populations. In other words,

only about 45% of administered vaccines have gone to socially vulnerable groups. In compari-

son, if the proposed 3Vs strategy was used, the vaccines would be allocated only to vulnerable

populations. It is worth mentioning that we do not consider vaccination hesitancy and out-

reach obstacles for this illustrative example and therefore, we assume all allocated vaccine

doses would have been administrated. Fig 3A shows the spatial distribution of vulnerable peo-

ple who would have received vaccines if our proposed strategy was implemented instead of the

current strategy. Fig 3B in contrast, shows the benefits of the current strategy in terms of vul-

nerable populations unreached under our allocation scenario based on vulnerability. By sum-

ming up the numbers in each map and subtracting them, we find out that our strategy

outperforms the current strategy by vaccinating an additional 550,000 vulnerable people in

Kenya.

Fig 2. Actual and proposed vaccine allocation distributions in Kenya. (A) Population distribution at the sub-county

level. The designated vaccination centres are shown with grey dots2 and the area around the capital, Nairobi, is

identified with a blue circle. (B) Social Vulnerability Index distribution. (C) Distribution of unvaccinated vulnerable

population after the implementation of the 3Vs strategy, and (D) distribution of unvaccinated vulnerable people after

the implementation of current strategy.

https://doi.org/10.1371/journal.pone.0275037.g002
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Discussion

The WHO SAGE framework outlines a series of principles that vaccination should follow and

emphasizes on the value of fair access and equitable allocation in vaccine prioritization deci-

sions. However, practical solutions at the national and local levels should be developed to sup-

port these overarching goals while guiding and enabling a well-informed decision-making

process [4]. This situation is especially challenging in LMICs in sub-Saharan Africa, where sev-

eral factors including underdeveloped and fragile healthcare systems, pervasive inequalities,

widespread poverty and food insecurity, and high rates of infectious diseases can jeopardize

the success of COVID-19 vaccination programs [31]. For example, shortage of healthcare facil-

ities with reliable electricity supply necessary for cold chain and vaccine storage, and lack of

physical access to these healthcare services within a reasonable travel time may hinder reaching

vaccination targets and create further health inequalities between vaccinated and unvaccinated

communities [32]. On the other side, there is evidence on much higher Covid-19 acceptance

rates with respect to US or Russia [33] and it is crucial to translate these rates into actual uptake

to prevent the risk of growing vaccine hesitancy in relation to targeted misinformation cam-

paigns [34]. Therefore, our work aims at coupling goals and principles of vaccination strategies

developed at the national level with more granular data about vulnerability and healthcare

accessibility at the sub-national and local levels to support an informed decision-making pro-

cess. In this position paper, we propose the 3Vs framework to support the recommendations

and guidelines made by WHO for Covid-19 vaccine allocation. Our stylized example of vacci-

nation rollout in Kenya shows the power of our approach in a clear way: while the proposed

3Vs strategy would distribute all vaccines to socially vulnerable populations across the country,

under the current strategy more than half of the allocated doses have gone to people which are

not considered socially vulnerable in our assessment.

Another important feature of our proposed strategy is the use of artificial intelligence.

Given the compelling task of optimising the allocation of vaccines, the use of supportive

Fig 3. Comparison of the performance of two strategies. (A) distribution of unvaccinated and socially vulnerable people under the current strategy that could

have been vaccinated if the proposed 3Vs strategy was adopted (B) distribution of socially vulnerable people that would have not been vaccinated under the

proposed 3Vs strategy although they have been vaccinated under the current strategy.

https://doi.org/10.1371/journal.pone.0275037.g003
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computational models, some of them AI-powered, have been a subject of consideration. Not-

withstanding, the use of AI suggests some level of autonomy of the system. Therefore, we pro-

pose a limited, regulated, and transparent use of mathematical and statistical methods to

achieve two specific challenges: 1) supporting experts’ consensus through data-driven decision

making; 2) estimating the relevancy of the risk factors that compose the vulnerability index.

We reiterate that these AI-enabled tasks should not be performed fully autonomously, but in a

human-in-the-loop fashion.

Conclusions

By collecting and compiling data at the highest possible resolution, the 3Vs framework will

produce a multidimensional Vulnerability Index not only for COVID-19 but for any other

health emergency (such as climate change threats [35]). These indices will be critical in the

decision-making process of allocating scarce resources, such as vaccines and healthcare ser-

vices, in an efficient way to the most vulnerable segments of the populations. These tools can

be integrated into already existing systems for decision-making at national or local levels in

developing countries with limited access to high-quality data. Local non-governmental organi-

zations and research communities in these countries should take the centre stage in developing

such tools whose implementation and maintenance can be supported and funded by interna-

tional aid and development organizations.
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