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Muscle contraction is the primary source of all animal movement. I show that the
maximum mechanical output of such contractions is determined by a characteristic
dimensionless number, the “effective inertia,” 0, defined by a small set of mechanical,
physiological, and anatomical properties of the interrogated musculoskeletal complex.
Different musculoskeletal systems with equal 0 may be considered physiologically
similar, in the sense that maximum performance involves equal fractions of the muscle’s
maximum strain rate, strain capacity, work, and power density. It can be demonstrated
that there exists a unique, “optimal” musculoskeletal anatomy which enables a unit
volume of muscle to deliver maximum work and power simultaneously, corresponding
to0 close to unity. External forces truncate the mechanical performance space accessible
to muscle by introducing parasitic losses, and subtly alter how musculoskeletal
anatomy modulates muscle performance, challenging canonical notions of skeletal
force–velocity trade-offs. 0 varies systematically under isogeometric transformations
of musculoskeletal systems, a result which provides fundamental insights into the key
determinants of animal locomotor performance across scales.

locomotion | scaling | motor | dimensional analysis

Muscle, the “prime mover” of the animal kingdom, is used for acts of tender kindness,
devastating brutality, and astonishing grace. By conversion of chemical into mechanical
energy, it enables contractions long-lasting and cyclical, actions fast and forceful, and
movements precise and reflexive. Whether an animal swims, runs, crawls, or flies; whether
it is smaller than the tip of a sharp pencil or heavier than 15 school buses; whether it
first appeared millions or only thousands of years ago—muscle is what gets it about
(1–4).

Juxtaposed to this diversity stands the observation that many functional, physiological,
and ultrastructural features of muscle vary remarkably little (1, 5, 6), suggesting
the existence of general limits to what it can achieve. Identification of these limits,
and assessment of their consequences for locomotor performance and musculoskeletal
anatomy, has a long history in biomechanics and muscle physiology (e.g., refs. 7–24).
A particularly successful and thus popular approach in comparative studies of animal
locomotion has been the notion of similarity indices, derived via dimensional analysis,
and introduced to biology in the hope to replicate the success it afforded in the physical
sciences (e.g., refs. 11, 13, 14, and 25). Remarkably, the two dominant similarity
indices for animal movement—the Froude and the Strouhal number—consider elastic
and gravitational forces as the agents of motion (3). The scarcity of similarity theories
which make explicit reference to muscle (e.g., refs. 9, 16, 17, 21, and 22) may be
partially explained by the complexity of muscle as a motor: Muscle force, work, and
power output depend in a nontrivial fashion on muscle strain rate (26), strain (27), and
contractile history (28). Appropriate assessment of muscle performance thus requires
coupling these characteristic properties with both internal and external forces, in order
to avoid results that are mechanically possible, but physiologically prohibited (29–31);
a task rarely addressed and so challenging that it typically requires numerical resolution
(e.g., refs. 15, 19, 32–34).

In this text, I investigate how the interaction between physical constraints, muscle
physiology, and the anatomy of musculoskeletal systems places bounds on the mechanical
performance space accessible to muscle. It will be demonstrated analytically that the
maximal mechanical output of every muscle contraction is governed by the competition
between two distinct limits, which arise from physiological and anatomical constraints.
The relative importance of these constraints characterises the degree of “physiological
similarity” of muscle contractions, a metric defined by a dimensionless number that
enables direct comparison of musculoskeletal systems across size, and physiological and
anatomical make-up.

Significance

Muscle is the ancient biological
motor. The contractile
mechanism and physiology of
muscle are remarkably
conserved, suggesting that its
maximum mechanical
performance may be bound by
similar constraints in animals of
different sizes, and across
locomotor modes. I show that
this similarity can be captured by
a dimensionless number, the
“effective inertia.” The effective
inertia quantifies the relative
importance of strain and strain
rate in limiting muscle mechanical
output, and the extent to which
muscle can access its maximum
power and work density; muscle
contractions with equal effective
inertia may thus be considered
“physiologically similar.” The
effective inertia varies
systematically with body size for
geometrically similar animals,
with profound consequences for
our understanding of the scaling
of animal locomotion.
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Two Speed Limits for Muscle-Driven Motion

Consider the seemingly simple example of a muscle with constant
gear ratio G, capable of exerting a maximum force Fmax , as
it contracts to accelerate an object of mass m.* What is the
maximum speed it can impart in a single contraction? Mass,
maximum force, and gear ratio together determine the net
acceleration (a), a = FmaxGm−1, of dimension length per time
squared [L t−2]. Identifying a maximum speed v of dimension
length per time [L t−1] thus requires specification of either a
time (t), vt ∼ at, or a displacement (δ), vδ ∼

√
aδ. These

results may be recognized as the first time- and path-integrals of
Newton’s 2nd law, respectively, which link the speed imparted
to the delivered impulse (p), mv ∼ p ∼

∫
FmaxGdt, or the work

done (W ),mv2
∼ W ∼

∫
FmaxGdδ. Unfortunately, this analysis

does not yet yield the maximum speed the muscle can impart,
for Newtonian mechanics alone provides no information about
what the appropriate displacement or time might be. Because no
muscle can contract in perpetuity, both boundary conditions may
be identified through introduction of appropriate physiological
and anatomical constraints.

In order to develop some intuition for how such constraints
enter the problem, consider the joyful if simplistic analogy of
riding a bicycle: If the gear is much too small, it is impossible
to increase speed because the muscle cannot contract quickly
enough to accelerate the pedals; the best it can do is to keep them
spinning at their current speed. If the gear is much too large, in
turn, the muscle will accelerate the pedals rather slowly, so that
the speed imparted at the end of a single contraction cycle will be
miniscule. Both scenarios are manifestations of two limits to the
speed of muscle-driven motion: how fast a muscle can contract,
and by how much it can shorten. The axiomatic limit on muscle
strain rate, ε̇, and the anatomical limit on muscle strain, ε, can
inform the mechanical analysis, for they each impose a distinct
limit on the maximum impulse muscle can deliver, and on the
maximum work that it can do.

The maximum distance δmax available for acceleration must be
some fraction of the muscle fiber length lm, δmax = lmεmaxG−1,
where the maximum strain εmax is considered to be independent
of the gear ratio. This distance is covered in a time tmax,δ ∼√

2δmaxa−1 (the factor two arises from integration). Where work
and impulse are limited by the strain capacity of muscle, the
maximum speed then follows from either maximum distance or
time as:

vBo =

√
2
Wmax

m
=

√
2
m
Vmσ̂maxεmax , [1]

where Wmax = Vmσ̂maxεmax is the maximum work, defined by
the muscle volume Vm, and the maximum average stress, σ̂max ,
the muscle can exert as it shortens by εmax .† In recognition of the
pioneering work of GA Borelli, who first derived an equivalent
result (7), I will refer to Eq. 1 as the Borelli limit to speed and
define the Borelli number, Bo ∝ v (2Wmaxm−1)−1/2.

Consider next the case where muscle work and impulse are
limited by the maximum shortening speed of muscle instead. Let

*An exact analysis would need to consider separately the mass of the object and of the
muscle. For simplicity, I here lump both into one term. This lumping will introduce an error
in calculations where the muscle mass is comparable to the external mass that is moved
by the muscle, but this error will only change the result in magnitude, and not in principle,
because the distributed mass of the muscle can be taken into account with an “effective
mass”-term that is a fixed fraction of the total muscle mass (35).
†For a muscle which generates a constant force throughout the contraction, �̂max = �max .
But this is not true for “real” muscle, for which the force varies with both strain and strain
rate as discussed in more detail later.

this maximum shortening speed be vmax = lmε̇max , where ε̇max
is the maximum strain rate in units of muscle lengths per second.
Reaching ε̇max requires accelerating the mass over a distance
δmax,ε̇ ∼ 1/2(lmε̇max)2a−1G−2, which takes a time tmax,ε̇ ∼
lmε̇maxa−1G−1. The speed imparted then follows from either as:

vHi =
lmε̇max
G

, [2]

which I will call the Hill limit to speed, with the associated
Hill number, Hi ∝ vG (lmε̇max)−1, in recognition of AV Hill’s
groundbreaking contributions to our understanding of the force–
velocity properties of muscle (26). The Hill limit may also be
derived through a simpler argument: In the absence of series
elasticity, the speed of the mass must equal the muscle shortening
speed divided by the gear ratio at any time; the mass thus cannot
move faster than vHi = lmε̇max

G .
The Borelli and Hill number are dimensionless numbers

which may be interpreted as indices of dynamic similarity in
muscle-driven motion: Where muscle does equal amounts of
mass-specific work, movements will have equal Borelli numbers;
equality of Hill numbers, in turn, implies equal ratios between
the muscle contraction speed and the musculoskeletal gear ratio.
But which number is appropriate to assess the limit which binds
maximum speed?

To answer this question, I once more borrow from the
versatile toolbox of dimensional analysis: The ratio between a
characteristic speed and a characteristic displacement depends on
the acceleration via v2δ−1

∼ a. Thus, for vanishing acceleration,
the speed gained per unit displacement is negligible, and the
muscle will have shortened maximally long before it has reached
its maximum shortening speed; the contraction is quasi-static
relative to the maximum strain rate. If the acceleration is large,
in turn, the maximum speed is reached with minimum length
change of the muscle, and within miniscule time; the contraction
is quasi-instantaneous. Thus, in general, a muscle that contracts
against a sufficiently small mass is bound by the Hill limit
(Fig. 1A and B); the impulse and work it can deliver, and thus
the speed it can impart, are limited by its maximum strain rate.
In contrast, a muscle that contracts against a sufficiently large
mass is Borelli-limited (Fig. 1C and D); the impulse, work, and
speed it can deliver are limited by its strain capacity.

This dimensional argument is simple, but unsatisfying—How
large is a sufficiently large, and how small is a sufficiently small
mass? To render the qualitative argument quantitative, I next
normalize the mass with the relevant physiological properties
of muscle, with the aim to find the “effective inertia” of the
musculoskeletal system.

The Effective Inertia of a Muscle Contraction

The Borelli and Hill limit are absolute: A muscle that has
exhausted its strain capacity cannot increase the speed of the mass
further, even if it could contract faster still; a muscle contracting
with its maximum strain rate can no longer accelerate the mass,
even if it has not yet shortened by the maximum possible amount.
The maximum speed muscle can impart is thus determined by
whichever of the two speeds is lower (Fig. 1A), so that the relevant
limit can be identified by consideration of the ratio between the
Hill and the Borelli limit:

0 =
[
vHi

vBo

]2
=

1
2

[
l2m
G2

] [
ε̇2
max

σ̂maxεmax

] [
m
Vm

]
. [3]
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A

B C D

Fig. 1. (A) The maximum speed that muscle can impart in a single contraction depends on the effective inertia, 0, of the mass-musculoskeletal system. For
0 < 1, the speed is bound by the Hill limit (Eq.2), which arises because muscle has a finite maximum strain rate, "̇max . For 0 > 1, the speed is bound by the Borelli
limit (Eq.1), which arises because muscle can only shorten by a fraction of its length, "max lm. For a constant force muscle, the Hill and the Borelli limit are exact
expressions for the maximum speed (dark gray dashed line), and the transition between both occurs abruptly at 0 = 1. For a Hill muscle (black solid & dashed
lines), where the force depends both on muscle strain rate and strain, the Hill and the Borelli limit are asymptotic, reasonably accurate only below or above
a critical value 0crit (SI Appendix); for intermediate values of 0, the speed is bound by the Hill–Borelli limit instead, which reflects reductions in work capacity
due the strain-rate dependence of the muscle force. Black triangles at the Bottom indicate an estimate for the effective inertia of the hindlimb of a generalized
tetrapod with a body mass of 10 g, 1 kg, 100 kg, and 10 ton, respectively (Left to Right, see text for details). (B) The effective inertia controls the fraction of the
maximum strain rate that muscle can access. For vanishing 0, the contraction may be considered quasi-instantaneous, and the relation between force and
velocity is described solely by the FV relationship of the muscle (cf. to (D), and Eq.5). (C) The solutions of all possible equations of motion can be visualized on a
3D landscape which relates the normalized force to the normalized displacement and velocity. For a constant force muscle, the resulting contractile landscape
is a horizontal plane (gray, on top), but for a Hill muscle, it describes a complex 3D envelope (blue), shaped by the projections of the FV and FL relationships,
respectively. A muscle with small 0 operates in the Hill limit and contracts close to the FV plane; a muscle with large 0 operates in the Borelli limit and contracts
close to the FL plane. (D) The effective inertia determines the fraction of the maximum strain over which muscle can accelerate. For diverging 0, the relation
between force and displacement approaches the FL relationship (dashed line), and the contraction may thus be considered quasi-static with respect to the
maximum relative speed (cf. to (B), and Eq.6).

I squared the ratio for convenience, and split the equation into
three terms to distinguish between distinct determinants of the
effective inertia: the geometry of the musculoskeletal system,
represented by the gear ratio and the allocation of a unit volume of
muscle into fiber length versus cross-sectional area; the physiology
of the muscle, represented by the maximum average stress, strain
rate, and strain; and a characteristic density, m/Vm, which may
be interpreted as a relative investment of muscle tissue compared
to the mass that is to be moved. If 0 < 1, the muscle is Hill-
limited, and if 0 > 1, the muscle is Borelli-limited; 0 = 1
corresponds to the unique special case for which a constant force
muscle operates simultaneously at both limits.

I note that the specific parameter combination in Eq. 3 also
falls out of more formal dimensional analyses as a dimensionless
mass (see SI Appendix in refs. 33, 36, and SI Appendix in ref.

16 for a similar result for series elasticity). Throughout this
work, I will discuss several possible interpretations of 0. For
example, 0 also follows as the ratio between the kinetic energy
associated with a contraction at maximum strain rate, and the
work done in a contraction to maximum strain (SI Appendix,
Eq. S6). For 0 < 1, the muscle uses a fraction ε = 0εmax of its
strain capacity to reach its maximum strain rate (Fig. 1A and B).
For 0 > 1, in turn, the muscle uses its entire strain capacity
to accelerate to a fraction ε̇ = 0−1/2ε̇max of its maximum
strain rate (Fig. 1A and D). Dimensionless numbers such as
0 can be interpreted in a number of ways, and I submit that
the effective inertia may best be thought of as a physiological
similarity index a notion which combines all possible interpre-
tations into one term, and on which I will expand on further
below.
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It is of obvious interest to estimate the effective inertia of
“real” muscle and musculoskeletal systems. In SI Appendix, I
derive two such estimates using published data (3, 37–40). First,
for a representative vertebrate muscle contracting against itself,
0 ≈ 2/3 l2m meters−2. Thus, even for a long muscle with a
fiber length of 1 m, 0 ≈ 2/3 < 1; for a fiber length of 1 cm,
the effective inertia drops to 0 ≈ 2/3 · 10−4. Second, for a
generalized tetrapod hindlimb contracting to accelerate the body
mass, 0 ≈ 4/25m0.6 kg−0.6. Thus, for a shrew with a body mass
of 0.01 kg, 0 ≈ 0.01; for a mole with a body mass of 0.1 kg,
0 ≈ 0.04; for a cat with a body mass of 1 kg, 0 ≈ 0.16; for
a dwarf crocodile with a body mass of 10 kg, 0 ≈ 0.64; for a
caribou of with a body mass of 100 kg, 0 ≈ 2.5; for a rhinoceros
with a body mass of 1,000 kg, 0 ≈ 10; and for an elephant with
a body mass of 10,000 kg, 0 ≈ 40. The strong size-dependence
of 0 is evident, and will be discussed in more detail below.

The Equations of Motion Landscape and the Hill–Borelli Tran-
sition for Real Muscle. The above analysis is valid for a muscle
which generates a constant force throughout the contraction.
In reality, however, muscle is more complex a motor, and the
force it generates is a function of both its relative strain rate,
ε̇rel = ε̇ε̇−1

max , and its relative length, lrel = ll−1
opt (26, 27): Muscle

produces maximum force during an isometric contraction, ε̇ = 0,
at “optimal” length, l = lopt , and less force for any deviation
from these conditions. Unfortunately, as the muscle contracts to
accelerate the mass, it must change both its length and contractile
speed; the net force it generates—and thus, the acceleration the
mass experiences—consequently varies continuously throughout
the contraction. In order to assess the effect of this dynamic
complexity, I now introduce the force–length (FL) and force–
velocity (FV) properties of muscle. Three simplifying assump-
tions: aid this analysis: The muscle activation time constant,
tact , is much smaller than the characteristic acceleration time,
tact << t∗ ∼ vmmF−1

m G−2, so that the muscle can be considered
fully activated throughout; I consider a single contraction from
rest at the optimal length, so that the relative length can be
reexpressed via the strain, lrel − 1 = ε = 1lml−1

m ; and the
normalized FV and FL functions, FV = f (ε̇rel ) and FL = f (ε),
respectively, are independent, and each modulate the generated
muscle force such that it is equal to some fraction of its maximum
value (dashed lines in Fig. 1B andD). The muscle force may then
be written as Fm = Fmax f (ε̇rel )f (ε).

In order to develop some intuition for the effect of FV and
FL properties on muscle contraction dynamics, I briefly return
to the simpler case of a muscle which generates a constant force
throughout the contraction, i. e. f (ε̇rel ) = f (ε) = 1, and thus
Fm = Fmax . The contraction dynamics—that is the change of
speed and displacement with time—are governed by the equation
of motion (EoM), a = FmaxGm−1. All possible solutions of this
EoM can be visualized in a single plot of the normalized net force
against the normalized displacement and velocity, respectively
(Fig. 1C ). Because the net force is constant throughout the
contraction, all such solutions lie in a horizontal plane (gray
plane at the top of Fig. 1C ). Consider now the path inscribed
onto this plane by contractions with different effective inertias; as
an illustrative example, let the very same muscle contract against
different masses. For any specific mass, the contraction describes
a unique trajectory onto the EoM plane: If the mass is very small,
0 vanishes, and the mass thus gains normalized speed rapidly,
and with minimum normalized displacement; the contractile
trajectory is almost parallel to the FV-line. If the mass is large,

in turn, 0 diverges and the normalized speed remains small
throughout the displacement; the contractile trajectory is almost
parallel to the FL-line. For intermediate masses, corresponding
to 0 close to unity, the contraction involves significant changes
in both normalized speed and displacement and thus describes a
more complex FVL trajectory (Fig. 1C ).

Consider next the more complex case of a Hill muscle
with FV and FL properties, governed by the EoM, a =
FmaxGm−1f (ε̇rel )f (ε). The two horizontal lines which defined
the EoM plane for a constant-force muscle are now curves, and
the EoM plane is thus transformed into a three-dimensional EoM
landscape, shaped by their projection (Fig. 1C ). The principal
logic and interpretation, however, remain the same: If the muscle
contracts against a vanishing mass, 0 is small, the acceleration is
large, and the muscle reaches its maximum strain rate with a small
change in length. The EoM of the contraction is defined solely
by the muscle’s FV properties, f (ε) ≈ 1, so that the contractile
trajectory is approximately equal to the FV-curve (Fig. 1B and
C ). If the muscle contracts against a diverging mass, in turn, 0 is
large, the acceleration is small, and the muscle will have shortened
by its maximum amount long before it has reached its maximum
strain rate. The EoM of the contraction is defined solely by
the muscle’s FL properties, f (ε̇rel ) ≈ 1, so that the contractile
trajectory is approximately equal to the FL-curve (Fig. 1C and
D). The relative FV and FL functions may thus be interpreted
as the sole contributors to the EoMs of two contractions which
represent unphysical extremes: a quasi-instantaneous contraction
which reaches the maximum strain rate with vanishing strain; and
a quasi-static contraction, during which a muscle shortens by its
maximum strain with a vanishing increase in strain rate.

Although the introduction of FV and FL properties leaves the
effect of variations in 0 qualitatively unaltered, there exists a
material difference. For a constant-force muscle, the Hill and the
Borelli limit are exact expressions for the maximum speed muscle
can impart; the transition between both limits is sharp and occurs
at 0 = 1, where the muscle reaches its maximum contraction
velocity exactly when it has contracted to the maximum strain
(Fig. 1C ). For a Hill muscle, the Hill limit remains intact, but
the Borelli limit is now only exact in the limit of diverging 0,
for which the contraction becomes quasi-static; the imparted
speed is smaller than vBo for any other contraction to εmax . This
result may be understood qualitatively as follows: the Borelli limit
is the speed that can be imparted during a contraction which
involves the maximum possible work output, or, equivalently,
the maximal possible area underneath the FL-trajectory. For a
constant-force muscle, this area is maximized for any contraction
to εmax . For a Hill muscle, however, the area is maximal only
for a quasi-static contraction; any increase in muscle strain rate
reduces the muscle work output compared to this maximum
Fig. 1D and ref. 19. Because the work output during realistic
displacement-limited contractions is influenced by both the FL
and the FV-function, I will refer to the corresponding speed limit
as the Hill–Borelli limit, vHi-Bo.

Evaluation of the Hill–Borelli limit requires solution of the
EoM a = FmaxGm−1f (ε̇rel )f (ε). This EoM is a nonlinear
differential equation, which can be solved by rewriting it as a
path integral, which permits separation of variables (SI Appendix
for detailed derivations and further discussion of the results which
follow):

∫ δmax

0

FmaxG
m

f (δ)dδ =
∫ vHi-Bo

0

v
f (v)

dv, [4]
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where I used the coupling δ = lmεG−1 and v = lmε̇G−1,
respectively, to reexpress the strain and strain rate in terms of
the integration variables. Eq. 4 may be recognized as the Work–
Energy theorem, which relates the work done by the muscle to
the resulting change in the kinetic energy.

Up to this point, the exposition is agnostic to the form of the
FL and FV relationship, and thus general.‡ Further evaluation
however requires a specific choice, which is not trivial, for
there are no accepted first principle forms of the FL and the
FV functions of striated muscle (but see ref. 41, for exciting
recent developments). I proceed with two common forms, not
to proclaim their superiority, but merely by way of example; the
procedure laid out here may be followed just as well for any other
choice. I describe the FV relationship with a normalized Hill
relation (1, 26, see dashedline in Fig. 1B):

Fm = Fmax
[

1− ε̇rel
1 + K ε̇rel

]
︸ ︷︷ ︸

f (ε̇rel )

. [5]

Here, K is a dimensionless constant of order unity, which
controls the curvature of the FV relationship (1). The FL
relationship, in turn, may be written as (e.g., ref. 42, see dashed
line in Fig. 1D):

Fm = Fmax
[
exp

(
−βε2)]︸ ︷︷ ︸
f (ε)

, [6]

where β is a dimensionless shape parameter, which controls how
quickly the force decays with strain.

The two integrals in Eq. 4 have a closed-form solution for these
two choices, but an explicit writing in terms of vHi-Bo is only
possible for a linear FV relationship, i. e., K = 0 (SI Appendix):

vHi-Bo = vHi

[
1 + W

(
−exp

(
−1−

1
20

))]
, [7]

where W is the Lambert W function. Although only exact for the
special case K = 0, this solution captures all relevant physical
(dimensional) parameters, and confirms that the effective inertia
remains the key dimensionless number which governs muscle
performance: For 0 → 0, vHi-Bo → vHi, and for 0 → ∞,
vHi-Bo → vBo (Fig. 1A. In SI Appendix, I derive limiting values
0crit , below or above which the Hill and the Borelli number
are within 1% of vHi-Bo and may thus be considered reasonable
approximations). I thus define the Hill–Borelli number, Hi-Bo
∝ v v−1

Hi-Bo, as dynamic similarity index which characterizes the
maximum output of a Hill muscle across a broad range of 0. It is
instructive to compare the prediction via Eq. 7 to i) the result for
a constant force muscle and ii) to a numerical result for K = 4
and β = 6.5—reasonable values for animal muscle (refs. 3, 43,
and SI Appendix). vHi-Bo remains within 30% of either result for
any value of 0 and may thus be considered sufficiently accurate
unless all experimental quantities are known with small error
(Fig. 1A). All that follows nevertheless proceeds with the general
form of the Hill relation to retain generality.

Finding an expression for the maximum speed that muscle
can impart is, at first glance, a simple problem in Newtonian
mechanics. But the simplicity of the governing equations is
deceiving. No muscle can contract by more than εmax , or faster

‡But see SI Appendix for a discussion on the choice of the integration limits.

than with ε̇max . Because these boundary conditions compete and
dynamically couple to the mass that is accelerated, and because
muscle is a rather peculiar motor with complex FV and FL
functions, the problem acquires considerable subtlety. It was
demonstrated that the resulting complexity is suitably captured
by a single characteristic dimensionless number: the effective
inertia, or the physiological similarity index, 0.

The Effective Work and Power Density of
Muscle and the “Optimal” Geometry of
Musculoskeletal Systems

Equipped with a first-order understanding of the relevance of the
effective inertia in muscle contractions, one may next interrogate
musculoskeletal “design.” A classic concept in the analysis of
muscle performance is the notion of a characteristic work and
power density; each unit mass of muscle can at most deliver
an ostensibly fixed maximum amount of work and power, and
these maxima represent putatively suitable metrics to characterize
muscle performance limits (4, 7, 9, 10, 22, 33, 36). What
determines whether a mass-musculoskeletal system operates close
to these limits?

By definition, muscle operates with maximum work density,
Wρ,max , in the Borelli limit, where it contracts over the largest
possible distance with the smallest possible increase in strain
rate (Figs. 2A and 3); Wρ,max is a sole function of the muscle’s
FL properties, the muscle density, ρ, and the maximum strain,
Wρ,max ∼ σ̂max(εmax)εmaxρ−1 (SI Appendix, Eqs. S12 and S16).
As may be expected by analogy, muscle operates with maximum
average power density in the Hill limit, where it reaches any strain
rate with a minimum loss in force due to length changes (Fig. 2B);
Pρ,max is a sole function of the muscle’s FV properties, its density,
and a characteristic strain rate, Pρ,max ∼ σ̂max(ε̇c)ε̇cρ−1 (SI
Appendix, Eqs. S13 and S20, and note that the stress is now
time-averaged). For a muscle which generates constant force,
maximum average power is delivered in contractions to ε̇max , but
for a muscle with FV properties, average power is maximized
when the contraction is terminated at a lower strain rate (about
half of ε̇max for K = 4; SI Appendix for a detailed calculation and
refs. 44 and 45 for related results).§

To explore the implications of these observations for mus-
culoskeletal design, consider first again the simpler case of a
constant force muscle. A unit volume of muscle operates with
Wρ,max in the Borelli limit and with Pρ,max in the Hill limit. It
can thus only operate with both Wρ,max and Pρ,max if 0 = 1, the
unique effective inertia at which the musculoskeletal system is
simultaneously in both limits (Fig. 2C ). For 0 < 1, muscle only
delivers a fraction of its work density, equal to Wρ,% = 0, and
for 0 > 1, it delivers only a fraction of its power density, equal
to Pρ,% = 0−1/2 (SI Appendix, and Fig. 2A–C ). The product
of the relative power and work densities thus takes a maximum
value of unity at 0 = 1 and is equal to 0 for 0 < 1 and to
0−1/2 for 0 > 1. Somewhat fortuitously, 0 can thus also be
interpreted as the fraction of the maximum work and average
power density that muscle can deliver. Indeed, 0 may also be
derived as the ratio between the average power and work density
of the contracting muscle, Pρ,maxW−1

ρ,max = 1/2ε̇maxε−1
max , which

defines a characteristic physiological time scale; normalization of
this time scale with the time it takes to accelerate to the maximum
strain rate, tmax = mε̇max lmF̂−1

maxG
−2, yields the effective inertia.

§In fact, the power density goes to zero as the strain rate approaches "̇max because the
Hill relation is asymptotic; (see SI Appendix).
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A

B

C

Fig. 2. A muscle delivers its maximum work density, W�,max , in the Borelli
limit (A), and its maximum power density, P�,max , in the Hill limit (B). The
effective inertia 0 is directly related to the fractions W�,% and P�,% delivered
in the Hill and the Borelli limit, respectively, as indicated by the slopes. (C)
Maximizing the product between W�,% and P�,% may be considered a design
objective: A constant force muscle operating at 0 = 1 can deliver both its
maximum work and power density simultaneously. For a Hill muscle, the
maximum product is less than unity and occurs at 0 > 1. Dark gray lines
show contractions which result in maximum average power output, Pmax , as
opposed to close to maximum strain rate, 0.99"̇max (SI Appendix, Text). Black
triangles at the Bottom indicate an estimate for the effective inertia of the
hindlimb of a generalized tetrapod with a body mass of 10 g, 1 kg, 100 kg, and
10 ton, respectively (Left to Right).

For a muscle with FV and FL properties, these results are no
longer exact, but the scaling relations hold in the limit of small
and large 0, i.e., where the Hill–Borelli limit is close to the
Hill and the Borelli limit, respectively (Fig. 2A–C ). Although
there no longer exists an effective inertia at which the muscle
is simultaneously in both the Hill and the Borelli limit, an

equivalent optimum may still be defined as the value of 0 which
maximizes the product between Wρ,% and Pρ,%. This maximum
product is now smaller than unity and occurs at an effective inertia
larger than unity (Fig. 2C ). An exploration of the exact value of
0 which corresponds to this putative optimum as a function of
the FL and FV properties of muscle is beyond the scope of this
work. However, the implication is clear: Operation with small or
large 0 means operation with suboptimal work or power density,
respectively (Fig. 2A–C ).

It is instructive to note that although neither Wρ,max nor
Pρ,max depend on the geometry of the musculoskeletal system,
nor on the mass muscle contracts against, the ability of muscle
to deliver either depends on both (Fig. 2A and B and Eq. 3).
In the classic literature, the influence of mass on the ability of
muscle to deliver Wρ,max or Pρ,max has rarely been explicitly
considered (but see e.g., refs. 19–21, 24, 46, and 22), and
variations in musculoskeletal anatomy are typically interpreted
as controlling a trade-off between force and velocity. The above
result demonstrates that this popular interpretation is correct
only if muscle operates in the Hill limit (i.e. 0 < 1), where
musculoskeletal geometry determines the extent to which a unit
power is split into force versus velocity (Eq. 2). In sharp contrast,
in the Borelli limit (i. e. 0 > 1), the maximum velocity is
independent of the musculoskeletal geometry (Eq. 1), which
instead merely determines the extent to which a unit amount of
work is split into force and displacement, respectively; changing
the gear ratio in the Borelli limit changes the force, but leaves the
maximum velocity unaffected. Consider as an illustrative example
a muscle operating close to an effective inertia of unity: Increasing
the gear ratio results in a reduction of both the maximum
achievable speed and the time it takes to reach this maximum
speed; the power remains constant but the work done decreases.
Decreasing the gear ratio, in turn, leaves the maximum speed
unchanged but increases the time it takes to reach it; the work
remains constant but the power decreases (see refs. (20) and (23)
for other results indicating a work-power trade-off modulated by
musculoskeletal geometry). At an effective inertia of unity, the
musculoskeletal system imparts the maximum possible speed in
the shortest possible time.

On the basis of these remarks, it is tempting to consider0 ≈ 1
as the “optimal design” for a musculoskeletal system. This may
well be so, but the notion of a maximum speed, power, and work
density as the sole design objective is likely overly simplistic for at
least two reasons. First, where muscle is expected to move a range
of masses in stereotypical scenarios, muscle performance is not
suitably characterized by a single-valued effective inertia and will
thus deviate by necessity from any putative optimum. Second,
delivering the same amount of muscle mass–specific work or
power in a different time may well be associated with a variation
in efficiency, i.e., the amount of metabolic energy required to
deliver a unit amount of mechanical energy. Such variation may
then favor effective inertias smaller or larger than unity.

Parasitic Forces and the Truncation of the EoM
Landscape

The above analysis is vulnerable to the reasonable criticism
that it is concerned with a case of seemingly limited practical
relevance—muscle is never the sole contributor to the net force
that accelerates the mass. I will next demonstrate that the initial
development, though restricted to a special case, constructed
an conceptual framework strong enough to carry the burden of
further complexity.
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A B

C

κ = 0.8

Γ = 1

κ = 0

κ = 0.3

κ = 0.1

Γ = 0.1 Γ = 10

SΓ
SHi

SBo

D

Γ = 10Γ = 0.01

Γκ =
 0.02

Γκ =
 0.1

Γ = 1

Γκ  = 2

Γκ = 10
κ = 0.9^

κ = 0.5^

κ = 0^

Fig. 3. External forces which oppose motion influence muscle dynamics in two distinct ways, distinguished in their generality by their dependence on the
force–length (FL) and force–velocity (FV) relationship. (A) A constant opposing force, P, manifests its presence via a downward shift of the equation-of-motion
(EoM) plane; P consumes part of the work done by muscle and may thus be considered “parasitic.” The amount of muscle work which flows into parasitic
instead of kinetic energy is quantified by the reduced parasitic energy, �̂ = PF̂−1

m G−1, where F̂m is the muscle force averaged over the displacement, and G is the
gear ratio. The effective inertia increases with �̂, as illustrated by the contractile trajectories on each EoM plane. (B) For a Hill muscle, the influence of parasitic
forces is more complex. Because the FL and FV functions are now curves, the downward shift of the EoM plane results in a truncation of the accessible speed
and displacement range. The extent of this truncation depends on the magnitude of the reduced parasitic force, � = PF−1

maxG−1, as illustrated by the FL and
FV planes, and the EoM plane for � = 0.3. (C) The net effect of a constant parasitic force is a decrease in both the maximum relative speed and the effective
inertia. (D) The magnitude of these changes can be described by proportionality constants, Si , which depend on � and may thus serve as sensitivity indices that
quantify the importance of external forces (Eqs.11a–12): For � < 0.005, � < 0.01, and � < 0.05, all Si ≥ 0.95, i. e., 0� , Hi� and Bo� are within 5% of 0, vHi, and vBo,
respectively—the parasitic force may be neglected. The asymptote at � = PF−1

maxG−1 = 1 is a force limit to muscle-driven motion. En route to this asymptote, all
Si decline steeply. For typical FL and FV relationships, the Hill number is more sensitive to parasitic forces than the Borelli number, as the muscle force declines
more sharply with strain rate than with muscle strain.

The net force is the vector sum of all external forces. Where
such forces oppose the muscle force, they will influence muscle
dynamics in two distinct ways, distinguished in their generality by
their dependence on the FV and FL relationships. Let a muscle
contract against an opposing force P. The opposing force is
“parasitic,” in the sense that it does negative work; it consumes
part of the work done by muscle and, in doing so, redirects it
from kinetic energy to other forms of energy—heat, gravitational
potential energy, what have you. To evaluate the partitioning of
muscle work into kinetic versus parasitic energy, one can find
from conversation of energy:

Ekin
Wm

= 1−
Epara
Wm

= 1− κ̂ , [8]

where Wm is the work done by muscle. The reduced parasitic
energy κ̂ = P̂F̂−1

m G−1 is the fraction of muscle work consumed
by the parasitic force, with the immediate consequence that 1− κ̂
represents the fraction of muscle work which flows into kinetic
energy. Because κ̂ is the ratio of the work done by the parasitic
and the driving force, which both act over the same displacement,
it is, in general, a ratio of average forces. For F̂mG = 10P̂, 90%
of the work done by muscle flows into kinetic energy, and for
F̂mG = 2P̂, it is half. For F̂mG = 20P̂, the error in neglecting
the parasitic force in the energy balance is less than 5%, and for
F̂mG = P̂, muscle can do zero work; no acceleration is possible at
all, and the system is in equilibrium. The reduced parasitic energy
can be related to familiar dimensionless numbers, such as the
Froude, Strouhal, or Reynolds number for gravitational, elastic,
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or viscous parasitic forces, respectively, via EkinE−1
para = κ̂−1

− 1
(note that these then differ from their definition in Alexander’s
sense, as gravitational and elastic energy are no longer the source
of kinetic energy, but a sink for muscle work). I submit that their
definition via a ratio of forces is preferable in problems of muscle
dynamics because it places the focus on the agent which caused
the change in energy: the contracting muscle.

For a constant force muscle, κ̂ fully captures the influence of
parasitic forces on muscle performance. The Hill number remains
unchanged, but the Borelli number and thus the effective inertia
gain an additional term, defined by Eq. 8. The net effect of the
parasitic force is thus an increase of the effective inertia by a factor
0κ0

−1 = (1 − κ̂)−1; as P̂ → F̂mG, the constant force muscle
is increasingly likely to be Borelli-limited (Fig. 3A), and reaching
a unit speed takes longer. The interpretations developed above
remain valid, but now refer to the work that flows into kinetic
energy, rather than the total muscle work.

For a Hill muscle, the influence of parasitic forces is more
complex, which may be illustrated by returning to the notion of
the EoM landscape. For a constant force muscle, the presence
of a constant parasitic force manifests itself in a downward
shift of the EoM plane (Fig. 3A). The net force is reduced, but
the maximum possible relative speed and displacement remain
unchanged because the muscle force is independent of muscle
strain and strain rate; the relative FL and FV functions are equal
and constant. For a Hill muscle, the FL and FV functions are
curves. As a consequence of the downward shift of the normalized
net force, these curves may now intersect with the zero plane
at a shortening velocity smaller than lmε̇max and at a finite
displacement smaller than lmεmax ; parasitic forces truncate the
EoM landscape (Fig. 3B and refs. 30, 31, 47–51). The extent
of this truncation can, in principle, be quantified through an
exercise in equilibrium mechanics (refs. 30, 47, 50, and 51):
The maximum relative displacement over which the muscle can
accelerate, and the maximum strain rate it can contract with are
reached when the net force is zero, i.e., when the muscle force
balances the parasitic force. For constant P, analytical evaluation
of the fraction of the strain rate and strain that is accessible is
straightforward: Each fraction corresponds to the point on the
FL and FV curves at which the muscle force is equal to P. Setting
P equal to the FV and FL functions defined by Eqs. 5 and 6
yields:

εκ =
{
εmax if

√
log(κ)(−β)−1 ≥ εmax√

log(κ)(−β)−1 otherwise
, [9]

ε̇κ

ε̇max
=

1− κ
1 + K κ

, [10]

where I introduced the reduced parasitic force, κ = PF−1
maxG

−1.
Because the parasitic force truncates both the strain rate and strain
range, both the Hill and Borelli limit are altered and follow from
combination of Eqs. 9 and 10 with Eqs. 1 and 2, respectively:

vHi,κ = vHi

[
1− κ

1 + K κ

]
︸ ︷︷ ︸

SHi

, [11a]

vBo,κ = vBo

[
C
(√

π

4β
erf
(√
βεκ

)
− κεκ

)]0.5

︸ ︷︷ ︸
SBo

. [11b]

Here, erf is the error function, C is a constant that depends on
β and εmax (SI Appendix, Eq. S25), and Si are sensitivity indices

which quantify the importance of the parasitic force (see below
and Fig. 3D). Both the Hill and the Borelli limit now approach
an asymptote of zero speed at a critical reduced parasitic force
κ = 1; a “force limit” to muscle-driven motion. Close to this
limit, both the Hill and the Borelli limit drop rapidly (Fig. 3C
and D). The effective inertia follows immediately as the squared
ratio of the Hill and the Borelli number:

0κ = 0

 (1− κ)2

(1 + K κ)2 C
(√

π
4β erf

(√
βεκ

)
− κεκ

)


︸ ︷︷ ︸
S0

. [12]

For G = 4 and β = 6.5, Eq. 12 is a decreasing function of κ
(Fig. 3C and D).

The integration of parasitic forces into the definition of the
effective inertia, and the visualization of its effect via the EoM
landscape are conceptually simple. But even for the trivial case of a
constant parasitic force, the increase in mathematical complexity
is noticeable. Indeed, analytical evaluation of the Hill and the
Borelli number in the presence of parasitic forces will only
rarely be possible, first because of the complex form of the FV
and FL relationships, and second because parasitic forces may
depend on speed (viscous dissipation), or displacement (structural
dissipation), resulting in nontrivial interactions with muscle
contraction dynamics. A thorough evaluation of the above results
and their generalization to characteristic nonconstant forces will
have to await further work. However, from the cursory analysis
presented here emerge two points of note.

First, for a given reduced parasitic force, 0κ , vBo,κ , and vHi,κ
are constant multiples of 0, vHi, and vBo. The proportionality
constants, Si, which link both definitions (see bracketed terms in
Eqs. 11a, b and 12), are thus suitable indices for the sensitivity
to parasitic forces: For κ < 0.005, κ < 0.01, and κ < 0.05,
all Si ≥ 0.95 (Fig. 3D). In other words, 0κ , vHi,κ , and vBo,κ
are within 5% of 0, Hi, and Bo, respectively, and the parasitic
force may be neglected in leading order analyses. To illustrate the
utility of this simple analysis, consider briefly a long-standing
observation in comparative biomechanics: Small animals are
seemingly untroubled by the presence of gravity, and only
change locomotor speed slightly, if at all, between running on
horizontal or vertical surfaces. In contrast, larger animals generally
slow down significantly when moving up inclines (52–55). The
relevant parasitic force is the gravitational force, Fg = mg,
and the reduced parasitic force thus reads κg = mgF−1

maxG
−1,

and a ratio between kinetic and parasitic energy—the Froude
number of the contraction—Fr = κ−1

g − 1. An approximate
limit κg ≥ 0.05 m1/3 kg−1/3, where m is the body mass in
kilograms, was estimated from published data by Alexander (56).
Thus, animals with a body massm < 1 g,m < 10 g andm < 1 kg
may be considered “gravitationally indifferent” in terms of their
effective inertia, their Hill and their Borelli number, respectively,
in robust agreement with the scarce experimental data (52–54).
The work done by the muscle of small animals against the
gravitational force is negligible, because the reduced parasitic
force is small, and the muscle Froude number is large (see also
ref. 18).

Second, the role of musculoskeletal anatomy, represented by
the ratio between muscle fiber length and skeletal gear ratio,
lmG−1, needs careful reinterpretation. In the absence of parasitic
forces, the Borelli number is agnostic to musculoskeletal anatomy
because all work flows into kinetic energy, irrespective of whether
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it is done by displacing a large force over a small distance,
or a small force over a long distance (see above and Eq. 1).
Musculoskeletal anatomy does however control the speed in the
Hill limit, which is maximal for maximum values of lmG−1

(Eq. 2). In the presence of parasitic forces, both results change
fundamentally (Eq. 11a and b). In the Borelli limit, the split
of a unit work into force versus displacement now matters
because it controls the partitioning into parasitic versus kinetic
energy; minimizing lmG−1 minimizes the reduced parasitic
energy, κ̂ = P̂σ̂−1

maxV
−1
m lmG−1. In the Hill limit, in turn,

maximizing lmG−1 will now minimize speed because it increases
the reduced parasitic force, κ = Pσ−1

maxV
−1
m lmG−1, so amplifying

the truncation of the accessible contractile speed range (refs. 48
and 50; the analogous result holds for the truncation of the
strain range in the Borelli-limit). Thus, in both the Hill and the
Borelli limit, increasing the gear ratio or decreasing the muscle
fiber length may now increase not only the net force but also
the maximum possible velocity and displacement, in noteworthy
contrast to their canonical interpretation as parameters which
control putative force–velocity or force–displacement trade-offs
(see above and refs. 57–59, for a recent controversial discussion
of this topic). This force–velocity trade-off is now more complex:
If lmG−1 is too small, the mass can only reach a fraction of its
theoretical maximum possible speed, and the muscle only has
access to a fraction of its work density; if it is too large, in turn,
muscle performance is reduced by parasitic losses instead (Fig. 3C
and D). The optimum anatomy thus likely corresponds to
intermediate values of lmG−1 that result in effective inertias close
to the transition between the Hill and the Borelli limit; around
this transition, the absolute speed, and relative effective work and
effective power density are all close to their theoretical maximum
(Figs. 1 and 2). Realizing this optimum will require a different
anatomy for a physiologically identical muscle contracting against
varying parasitic force (Fig. 3C and D). Some reduced parasitic
forces, for example, those due to gravity, will vary systematically
with animal size, κg ∝ m1/3 (assuming geometric similarity). It
follows at once that there now exists an incentive to depart from
geometric similarity via systematic variation of musculoskeletal
anatomy, for example, due to posture variation (20, 38), in
order to remain close to the putative optimum: A systematic
increase of the gear ratio with size can attenuate the decrease in
the Froude number, and keep a larger fraction of the dynamic
muscle performance space accessible.

A Theory of Physiological Similarity in
Muscle-Driven Motion

Muscle is a motor with a complexity to baffle any mind, but
its operation is eventually restricted to a space bound by the
laws of physics. In the above, an attempt was made to analyse
how these laws interact with some of the key physiological and
anatomical idiosyncrasies of muscle, in an effort to delineate
fundamental bounds on its mechanical performance. From this
analysis emerged three dimensionless parameters—the effective
inertia0, the reduced parasitic energy κ̂ , and the reduced parasitic
force κ—which quantify the relative importance of different
physiological and physical constraints on a continuous scale.

The effective inertia, 0, provides a direct measure of the extent
to which the contractile performance of a unit volume of muscle
is limited by muscle strain rate versus strain capacity, and thus
of the fraction of the maximum power and work muscle can
deliver. Analogous to how seemingly different problems in fluid

dynamics are considered hydrodynamically similar if they occur
with equal Reynolds number, problems in muscle-driven motion
may be considered physiologically similar if they involve equal
0: The involved muscles will operate with comparable fractions
of their maximum strain rate and strain capacity, follow similar
contractile trajectories along the EoM landscape, and deliver a
similar fraction of their maximum power and work density. A unit
volume of muscle has access to its maximum performance space if
the musculoskeletal geometry is such that contractions occur with
an effective inertia close to unity. For much smaller or much larger
0, muscle contractions may be considered quasi-instantaneous
or quasi-static, and are effectively governed by the power or work
density of muscle, or—equivalently—its FV or FL relationship,
respectively. Analytical expressions for the maximum possible
speed in these limits are available in the form of the Hill, the
Hill–Borelli, and the Borelli number, which shed light on the
distinct relevant “design” features of the musculoskeletal system
in each regime.

The reduced parasitic energy and force, κ̂ and κ , quantify
the relative importance of parasitic forces which oppose muscle
contraction, consume muscle work, and truncate the accessible
mechanical performance space. In the presence of parasitic forces,
the Hill and the Borelli number, and thus the effective inertia,
gain additional terms which may serve as sensitivity indices. For
κ < 0.005, parasitic forces may be ignored to first order; for
κ > 0.005, they alter the dynamics by more than a few percent.
Large parasitic forces can decrease both the effective inertia of
the contraction and the maximum speed muscle can impart,
and can fundamentally change how musculoskeletal anatomy
modulates canonical trade-offs between force and velocity or
force and displacement. It stands to reason that any investigation
of muscle performance, and any assessment of musculoskeletal
design, ought to explicitly consider the magnitude of 0, κ , and
κ̂ ; ignoring them is to accept considerable risk of erroneous
conclusions.

Up to this point, the text may have been heavy in theoretical
thought, but arguably light in demonstrated practical conse-
quence. Contractions at different 0 and κ may well be governed
by rather different physiological and physical constraints, but
what range of 0 and κ does real muscle find itself in? I note
that both 0 and typical κ such as κg are size dependent: Under
the parsimonious assumption of geometric similarity, all lengths
scale as L ∝ m1/3, all areas as A ∝ m2/3, and all volumes as
V ∝ m. It follows that, for an isogeometric musculoskeletal
system moving an isogeometric mass, 0 ∝ m2/3 and κg ∝ m1/3.
Evolution has thus involuntarily conducted a control experiment
in one of the world’s largest laboratories: the animal kingdom.
Animals vary by at least 13 orders of magnitude in mass, so
that, assuming geometric similarity, 0 should vary by a factor
about (1013)2/3

≈ 108, and 1/κg should vary by a factor of
(1013)1/3

≈ 104. Without allowing for nontrivial departures
from geometric similarity, or systematic changes in muscle
physiology, it is hard to avoid the conclusion that muscle of
animals of different size operates in most substantially different
physiological regimes, and with markedly different gravitational
sensitivity.

The immediate implications of the influence and size-
dependence of 0 and κ are profound and diverse: Charac-
terisation of the maximum intrinsic muscle shortening speed
via experiments on isolated muscle fibers is only sound if the
contraction occurs in the Hill limit (ref. 35); extrapolation
of such single-fiber experiments to whole muscle or in vivo
performance can be misleading, as it is typically associated
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with changes in 0; musculoskeletal geometry plays a more
complex role than its canonical interpretation as a parameter
that controls a force–velocity or force–displacement trade-off
would have one believe, so that conclusions from comparative
analyses of musculoskeletal functional morphology across species
may need to be carefully reconsidered (see refs. 57 and 59);
isogeometric animals of different sizes neither have access to the
same (maximum) work density, nor to the same (maximum)
power density per unit volume of muscle, and are suffering to
different extents from parasitic losses to gravitational potential
energy—three assertions which challenge the classic scaling
theories in animal locomotion (3, 4, 7–9, 17, 21, 22, 33, 60,
but ref. 24), and extrapolation of data on extant animals to
infer muscle-driven locomotor performance of larger extinct
animals may have to explicitly introduce the size dependence
of 0 and κ to avoid physically possible but physiologically
prohibited inference. Analyses framed in terms of 0 and κ may
also provide inspiration for the design of legged robots and in
sports biomechanics: Electrical motors have characteristic torque-
rounds-per-minute relationships, akin to a FV function; many
sports may be characterized by specific κ , which interacts with
the muscle anatomy and physiology of the competing athlete.
Some sports may provide dynamic control over κ , for example,
gears in bicycles or oars in rowing, suggesting the possibility of
optimal athlete-specific configurations (see ref. 50 for a similar
suggestion). Whether future work verifies or rejects what at this
point are mere hypotheses is immaterial to their potential to
advance our understanding of muscle-driven motion, and of the
design of musculoskeletal systems.

The insights provided by the theory of physiological similarity
should not belie the fact that the list of tasks which need to
be completed before it can be considered comprehensive is

rather long indeed. It includes the appropriate consideration
of activation and deactivation times and of variable muscle
activation (61); the propagation velocity of muscle excitation
(35, 62, 63); contraction history effects; nonconstant parasitic
forces and gear ratios (e.g., refs. 23 and 64); muscle pennation
(e.g., ref. 65); series compliance and the associated storage of
strain energy in muscle and in tendons (e.g., refs. 16, 64,
and 66); multisegment motion (e.g., ref. 19); and instances
where muscle is lengthened, acts as a break, and does negative
work (67–69)—to name but a few. I am under no illusion
that the simple description of physiological similarity presented
here will often be inadequate, and fail to produce a convincing
account across the breathtaking diversity of tasks performed by
muscle. However, it is my hope that identifying the origin of
these shortcomings will push us further in our understanding
of the mechanical, physiological, neurological, developmental,
and phylogenetic constraints that govern the operation of muscle
across the animal tree of life.

Data, Materials, and Software Availability. There are no data underlying
this work.
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