
PHYSICAL REVIEW B 102, 241404(R) (2020)
Rapid Communications

Discovery of topological metamaterials by symmetry relaxation and smooth topological indicators
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Physical properties of a topological origin are known to be robust against small perturbations. This robustness
is both a source of theoretical interest and a driver for technological applications, but presents a challenge when
looking for new topological systems: Small perturbations cannot be used to identify the global direction of
change in the topological indices. Here, we overcome this limitation by breaking the symmetries protecting
the topology. The introduction of symmetry-breaking terms causes the topological indices to become smooth,
nonquantized functions of the system parameters, which are amenable to efficient design algorithms based
on gradient methods. We demonstrate this capability by designing discrete and continuous phononic systems
realizing conventional and higher-order topological insulators.
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The key idea in topological physics has remained largely
unchanged since its beginnings in the explanation of the quan-
tum Hall effect [1] by means of the Chern number [2]: We
can associate integer-valued topological invariants to the bulk
band properties of a material, and these topological invariants
in turn predict the material’s boundary physics [3]. A crucial
property of topological invariants is that they are insensitive to
smooth deformations, as long as these respect the protecting
symmetries of the topological invariant [4–6]. This equips
topological materials with their characteristic robustness, but
presents a challenge from a design point of view, as one
cannot systematically discover new topological systems by
smoothly modifying a nontopological model in the direction
of growth of the topological index. A proof of this challenge
is that discovering new topological models is still as much
of an art as a science, as exemplified by the diversity of ap-
proaches to the design problem. These include engineering the
symmetries of the system [7], exhaustive searches of crystal
structure databases [8,9], identifying geometries that mimic
known topological tight-binding models over a range of fre-
quencies [10,11], using artificial-intelligence constructs such
as neural networks [12–14], or optimizing for proxy quantities
such as boundary modes [15] or energy transfer [16,17] that,
while not topological themselves, are frequently associated
with topology.

In this Rapid Communication, we present an approach to
the problem of designing topological metamaterials. The pro-
posed approach does not require prior knowledge of the model
details, other than the general structure, the relevant invariant,
and the protecting symmetries. We start with a parametrized
design, which can be a tight-binding model, a unit-cell ge-
ometry, or a material property distribution, where some or
all of the parameters (e.g., hopping potentials, geometric di-
mensions, or stiffness values) are allowed to change. We then
proceed by relaxing the protecting symmetries [18,19], by
allowing symmetry-breaking terms in the model. This has the

effect of lifting the discreteness of the topological invariant.
Once the topological invariant becomes a smooth function
of the design parameters, we can use small perturbations to
determine its direction of change. This allows us to use effi-
cient gradient-based methods to identify the parameter values
that produce a topological phase, in which the symmetries are
eventually restored.

This Rapid Communication is structured as follows: We
will start by describing the approach in the Su-Schrieffer-
Heeger (SSH) [20] model, a simple, paradigmatic one-
dimensional (1D) lattice model whose topological properties
can be characterized by a Berry phase [21]. We will continue
by showing that the same idea can be used to design contin-
uous metamaterials, by considering a 1D bar supporting the
propagation of elastic waves, but which can nonetheless be
described by the same symmetries and topological invariant as
the SSH model. Then, we will demonstrate that the proposed
approach is general and can be applied to other types of
topological invariants besides Berry phases, by considering
a double-SSH system whose topology is given by the eigen-
values of the parity operator [22]. Finally, we will show that
the proposed approach can be applied beyond conventional
topological models, by designing a higher-order topological
insulator (HOTI), a recently discovered type of topological
system with boundary states more than one dimension below
that of the bulk [23,24].

We first illustrate the concept of design by symmetry re-
laxation using the SSH model [20], which consists of a 1D
chain with dimerized hopping potentials of strength t and s
[Fig. 1(a)]. While the phases of the SSH model are well under-
stood, its simplicity provides a good platform to introduce the
gradient-based design approach proposed in this work. The
SSH model is described by the Bloch Hamiltonian [20,25,26]

H =
(

0 t + seik

t + se−ik 0

)
. (1)
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FIG. 1. Symmetry relaxation in the SSH model. (a) Example of
an SSH chain. The rectangle highlights the unit cell. The model
consists of a dimerized chain with alternating hopping potentials of
strength t and s. (b) Berry phase (left) and band structure (right) for
an SSH chain with intact inversion symmetry, as the hopping s is
varied. (c) Berry phase (left) and unit cell and band structure (right)
for an SSH chain with relaxed inversion symmetry, as the hopping s
is varied. The arrows indicate the evolution of a gradient-following
optimization of the system parameters.

When the hopping potentials are different (t �= s), the result-
ing spectrum is gapped. If t < s, the system is in a topological
phase, and finite samples present boundary-localized states in
the gap. When t > s, the system is in a trivial phase, and finite
samples do not present in-gap states at the boundary [22,27].
The topology of the SSH model can be characterized by a
Berry phase invariant of the form [21,28]

θ = i
∮

u∗(k)
d

dk
u(k)dk, (2)

u(k) being the eigenfunction of Eq. (1) with energy below the
gap, evaluated at momentum point k.

Smoothly deforming the system by altering the couplings
s or t [Fig. 1(b)] does not affect the topological invariant
in Eq. (2), unless the system goes through the configuration
where s = t . In this configuration, the lattice is not dimerized,
the gap closes, and the topological invariant is not defined.
This picture is, however, only true when the symmetry that
protects the topological invariant is preserved [22,28,29]—in
this case, inversion symmetry. If we eliminate the inversion
symmetry, by adding a small scalar potential ε � |s|, |t | act-
ing oppositely on the two sites of the unit cell,

Hrelaxed =
(

ε t + seik

t + se−ik −ε

)
, (3)

we observe two well-understood effects [Fig. 1(c)]: First, the
Berry phase changes smoothly when we vary the hopping
potentials s and t , and second, the gap � does not close in
the configuration where s = t , meaning that Eq. (2) can be
evaluated for all values of the hopping potentials. We refer
to such quantities as smooth topological indicators. While
smooth topological indicators can no longer be interpreted as
topological invariants, here we show that they can be a valu-
able quantity in the process of discovering novel topological
systems. In contrast to the invariant in Fig. 1(b), the smooth
topological indicator in Fig. 1(c) has a nonzero slope that can
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FIG. 2. Design of a phononic topological insulator using smooth
topological indicators. (a) Material design made by repeating a three-
material unit cell. (b) Dispersion relation for the system in (a). The
red region denotes the gap selected for optimization. (c) Multiband
Berry phase as a function of the unit cell parameters EB and EC , while
EA and ρ are kept constant. The red line shows a gradient-ascending
optimization trajectory starting from a symmetric, trivial phase and
ending in a symmetric, topological configuration. (d) Finite element
method simulation (COMSOL®Multiphysics) of a localized mode at
the interface between two sandwich metamaterials, one topological
and one trivial [30], corresponding respectively to the start point
and end point in (c). The domain wall is placed at x = 0, and
WA = 0.6759W .

be used to determine the direction of parameter change that
leads towards the topological phase. The proposed metama-
terial design method consists in numerically determining the
gradient of the smooth topological indicator, and using it to
adjust the model parameters until a topological configuration
is reached [30] [Fig. 1(c)].

We will now illustrate the proposed method by designing
a continuous phononic metamaterial, whose classical elas-
tic vibration spectrum presents nontrivial band gaps. While
the concept of a smooth topological indicator was intro-
duced in the SSH model, a quantum tight-binding model, the
Berry phase is a property of the Bloch eigenfunctions and as
such can be equally assigned to classical wave propagation
problems. In fact, classical systems presenting topological
wave phenomena [31–36] are an established platform for the
demonstration of novel condensed matter physics: Fragile
topological phases [37], higher-order topological insulators
[11,38], and Weyl semimetal effects such as axial fields [39]
and surface physics [40], were all first observed in classical
systems. In contrast to discrete models such as the SSH model,
the problem of designing continuous systems with topological
wave propagation is not straightforward, due to its higher
dimensionality, as both the dynamical variables and material
properties are functions of the spatial coordinates.

The continuous phononic metamaterial considered here is
a 1D bar of elastic material, made by periodically repeating a
unit cell of length W , consisting of a three-material sandwich
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[41,42] with constant density ρ and elastic moduli EA, EB, and
EC [30], respectively [Fig. 2(a)]. The rod satisfies the elastic
wave equation,

ρ(x)∂ttψ (x, t ) + ∂x[E (x)∂xψ (x, t )] = 0, (4)

where ψ is the displacement along the longitudinal direction
(x) of the bar, ρ is the density (assumed uniform throughout
the bar), and E is the elastic modulus. The system presents
multiple band gaps [Fig. 2(b)]. To every band gap, we can
associate a Berry-phase-like topological invariant, generalized
to multiband systems [21],

θ = −i log det U , (5)

where Umn = 〈um(−π )|e−i2πx/W |un(π )〉, um(k), un(k) being
the Bloch wave functions in the parallel transport gauge
[21,30], for all bands m, n below the band gap under con-
sideration. The topological invariant in Eq. (5), which equals
the Berry phase [Eq. (2)] in single-band systems, is protected
by inversion symmetry, and becomes a smooth topological
indicator when the symmetry is broken by setting EB �= EC .
This is exemplified for the fifth band gap in Fig. 2(c), although
the same holds true for all band gaps. Along the line where the
EB = EC , inversion symmetry quantizes the Berry phase to the
values of 0 or ±π . However, allowing symmetry violations re-
sults in a path through parameter space where the Berry phase
transitions smoothly between trivial and topological values,
without going through a gap closing. There, a gradient-ascent

algorithm can be used to identify topological configurations
of the phononic system in a direct manner. We demonstrate
this ability by finding values of EB and EC resulting in a
topological configuration [Fig. 2(c)], and observing the pres-
ence of localized modes at the selected band gap in a finite
element simulation of the interface between a topological and
a trivial metamaterial [Fig. 2(d)]. Two aspects of this result
deserve special mention: By having selected realistic initial
conditions, we obtain a system geometry and material prop-
erties that can be easily realized experimentally. Second, the
system ends up naturally in a symmetry-respecting configura-
tion. Symmetry in the final configuration cannot be always
guaranteed to appear automatically, but can be restored by
penalizing symmetry-breaking terms towards the end of the
optimization.

Not all topological insulators can be described by a Berry
phase. In the presence of inversion symmetries, an alternative
characterization can be established using the eigenvalues [6]
of the parity operator, evaluated at inversion-symmetric mo-
mentum points in reciprocal space [22]. We will show here
that this type of invariant can also be smoothed out by sym-
metry relaxation, and that the resulting smooth topological
indicator can be used to design metamaterials. This will be
done in the double-SSH model [30], which consists of two
coupled, parallel SSH chains [Fig. 3(a)]. In the double-SSH
model, the Berry phase is zero for both topological and trivial
configurations, hence the need for an alternative topological
index. The system is described by the Hamiltonian

HD(k) =

⎛
⎜⎜⎝

V + ε1 t1 + s1eik cv cx + cxeik

t1 + s1e−ik V − ε1 cx + cxe−ik cv

cv cx + cxeik V + ε2 t2 + s2eik

cx + cxe−ik cv t2 + s2e−ik V − ε2

⎞
⎟⎟⎠, (6)

where V is a local potential that has the effect of shifting the
eigenfrequencies/energies without changing the eigenfunc-
tions, t1, t2, s1, and s2 are the real-valued hopping potentials
for the two chains, cx and cv are the real-valued cross and
vertical chain coupling strengths, and ε1 and ε2 are real-valued
inversion symmetry-breaking terms introduced to obtain a
smooth topological indicator.

The topological invariant is defined as ν = n−(0) − n−(π )
[29] where n−(k) is the number of Bloch eigenfunctions with
−1 parity eigenvalue, evaluated at the point k. In inversion-
symmetric systems, the parity eigenfunctions can only take
values +1 or −1 at the inversion-symmetric momenta, and
the invariant ν can be stated as [29,29,43]

ν = 1
2 Tr[U †(0)(Î − P̂)U (0)]

− 1
2 Tr[U †(π )(Î − P̂)U (π )], (7)

where Î is the identity operator, P̂ is a parity transformation,
and U (k) is a matrix whose columns are the normalized Bloch
eigenfunctions below the band gap of interest, evaluated at
the momentum point k. Equation (7) is gauge-invariant and ν

becomes quantized when the inversion symmetry (ε1 = ε2 =
0) is respected [Fig. 3(b)].

If we relax the inversion symmetry by setting ε1 �= 0
and ε2 �= 0, Eq. (7) becomes a smoothly-varying function
[Fig. 3(c)]. Under these conditions, ν cannot be interpreted as
a topological quantity. However, since ν varies smoothly with
the system parameters and equals the topological invariant
when symmetry is respected, it can be interpreted as a smooth
topological indicator and used to guide a search algorithm
towards a topological configuration. The search process is
illustrated in Fig. 3(c). Figure 3(d) shows the changes in the
response of a finite, classical mass-spring implementation [30]
as the parameters are changed following the gradient of the
smooth topological indicator. At the start of the optimization,
both bulk and boundary sites present a band gap, and no in-gap
boundary modes are present. As the optimization progresses,
modes from the upper and lower bulk bands merge and be-
come increasingly localized at the boundary, finally becoming
the expected boundary modes of the double-SSH model. This
merging process can be seen to occur twice in Fig. 3(d), as
expected from a system composed of two SSH lattices.

Design by symmetry relaxation can also be applied
to higher-order topological insulators (HOTIs), systems
where the nontrivial bulk topology gives rise to bound-
ary modes that are more than one dimension below that
of the bulk [23,24]. Two-dimensional (2D) HOTIs can
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FIG. 3. Relaxation of topological indices based on symmetry
eigenvalues at inversion-symmetric momenta. (a) Double-SSH chain
with couplings t1, t2, s1, s2, cv , and cx . (b) Topological index in the
presence of inversion symmetry. (c) Topological index after the sym-
metry has been lifted by perturbations εi �= 0. The red line represents
a gradient-ascending optimization trajectory. (d) Bulk and boundary
responsivity |
|2(ω) of a finite sample, as the hopping strengths
are being optimized from a trivial to a topological configuration
following the red line in (c).

be protected by mirror symmetries Mx and My. For
such systems, we introduce a topological characteriza-
tion [30] based on four mirror-graded invariants [28,29,44]
of the form νx

± = |θ±(kx = 0) − θ±(kx = π )| and ν
y
± =

|θ±(ky = 0) − θ±(ky = π )|, with the topological phase char-
acterized by νx

± = ν
y
± = π . The quantities θ± are multiband

Berry phases calculated on a subset of the bands below the
gap of interest, selected according to the band symmetry
characteristics, with θ+ (θ−) being the multiband Berry phase
calculated using the bands with positive (negative) eigenvalue
according to a classifying symmetry. The classifying symme-
try will be Mx (My) when calculating the invariants νx

± (νy
±).

The multiband Berry phases that appear in the expression
of νx

± (νy
±) are quantized by a different mirror symmetry,

My (Mx), as the one used for classification. Therefore, by
relaxing one of the symmetries while respecting the other, a
pair of invariants becomes a well-defined smooth topological
indicator, as the classification is still possible but the resulting
Berry phases are no longer quantized.

Smoothed mirror-graded indicators can be used to design
HOTIs in a straightforward way. We will demonstrate this in a
square lattice with four sites per unit cell [Fig. 4(a)] described
by a Hamiltonian of the form

H (kx, ky) = H0 + eikx Hx + eiky Hy + H.c., (8)
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FIG. 4. Symmetry relaxation in higher-order topological insu-
lators. (a) Square lattice with four sites per unit cell (inset). Each
unit cell interacts only with nearest-neighbor unit cells. (b) Evolu-
tion of the topological invariants θ±(k) during the design process.
(c) Evolution of the frequency spectrum for a finite, classical system
consisting of 20 × 20 unit cells, evaluated at the bulk, edges, and
corners. (d) Bulk, edge, and corner responsivities |
|2(ω) of the
finite classical sample in (c), at the end of the design process. (e)
Example of a corner-localized eigenmode of the finite system in (c).

with H0 representing the potentials and interactions inside
the unit cell, and Hx, Hy the hopping potentials between
unit cells in the x and y direction, respectively. It should be
noted that the model does not require any prior knowledge
of higher-order topological systems. It must only be capable
of accommodating the appropriate symmetries and provide a
search space that is sufficiently large to contain a topological
solution.

The optimization process for the invariants νx
± starts from

a highly symmetric configuration that respects Mx, My, and
π/2-rotation symmetry C4. During optimization, the clas-
sifying symmetry Mx is respected, while the quantizing
symmetry My is allowed to relax. The matrices of the sys-
tem are optimized following a gradient-ascent algorithm, with
two additional requirements: First, the direction of change
is required to be orthogonal to the gradient of the band gap
size, meaning that changes in the system parameters are not
allowed to alter the gap size. This is done to prevent the
system from undergoing a gap closing during optimization,
which could result in an exchange of classifying sym-
metry eigenvalues. Second, as the optimization progresses,
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violations of the My symmetry are increasingly penalized,
as this system does not naturally converge to a symmetric
configuration at the end of the optimization. As shown in the
Supplemental Material [30], the presence of the Mx and My

symmetries causes the topological invariants along y to be
equal to those along x, and therefore the system ends up in
a fully topological configuration. In this example, the opti-
mization process can get trapped in local minima, which we
escape by restarting the optimization from a different random
configuration (see Supplemental Material for a discussion and
source code for the optimization algorithms [30]). For more
complex metamaterials, advanced stochastic algorithms such
as the Hamiltonian Monte Carlo [45] will be more computa-
tionally efficient than simply restarting when trapped on local
minima.

The optimization process is illustrated in Figs. 4(b) and
4(c). The four multiband Berry phases converge to quantized
values of 0 or π [Fig. 4(b)]. As the optimization progresses,
edge and corner modes nucleate [Fig. 4(c)]. The system ends
up presenting the hallmarks of higher-order topology [11],
namely gapped edge states in the bulk band gap, and corner
states in the edge gap [Fig. 4(d)]. The eigenfunction corre-
sponding to one of such eigenstates is presented in Fig. 4(e).

In conclusion, we have demonstrated an approach to effi-
ciently design topological metamaterials. The approach starts
by relaxing the symmetries of the model through the addition
of symmetry-breaking potential terms. When the symmetries

are relaxed, the topological indicators are no longer quan-
tized. They instead become smooth functions of the system
parameters such as hopping strengths, geometric parameters,
or stiffness values. We can then use gradient-based methods
to efficiently identify the parameter values that result in a
topological configuration. This is significant because it pro-
vides a universal method for discovering topological phases
of parametrized models, where only the topological invariant
and relevant symmetries must be known in advance. While we
have demonstrated the approach in tight-binding models and
phononic metamaterials, the approach is general and therefore
provides a route towards the realization of topological phases
in diverse platforms such as photonic metamaterials or ultra-
cold atoms. In fact, we expect the approach to be applicable to
all symmetry-protected topological systems, including crys-
talline topological insulators [5] or those protected by chiral,
time-reversal, or parity symmetries [4].
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