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Symmetry indicators for inversion-symmetric non-Hermitian topological band structures
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We characterize non-Hermitian band structures by symmetry indicator topological invariants. Enabled by crys-
talline inversion symmetry, these indicators allow us to short-cut the calculation of conventional non-Hermitian
topological invariants. In particular, we express the three-dimensional winding number of point-gapped non-
Hermitian systems, which is defined as an integral over the whole Brillouin zone, in terms of symmetry
eigenvalues at high-symmetry momenta. Furthermore, for time-reversal symmetric non-Hermitian topological
insulators, we find that symmetry indicators characterize the associated Chern-Simons form, whose evaluation
usually requires a computationally expensive choice of smooth gauge. In each case, we discuss the non-
Hermitian surface states associated with nontrivial symmetry indicators.
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Non-Hermitian topological band structures generalize the
concept of crystalline band-structure topology to systems with
loss and gain [1–5]. In a first approximation to open quan-
tum systems in condensed matter, the Bloch description of
crystals is adapted to accommodate non-Hermitian hopping
matrices while remaining fundamentally a Hamiltonian-based
single-particle description. The approximation breaks down
on timescales comparable to the associated non-Hermitian
decay lengths, but it provides insight into how well-known
concepts from Hermitian band theory are modified to ac-
count for dissipation. In particular, it turns out that the
celebrated bulk-boundary correspondence of topological in-
sulators should be revisited [6–12]: the non-Hermitian skin
effect [13–21] is a striking example of the sensitive depen-
dence of (single-particle [22,23]) non-Hermitian systems on
the boundary conditions. In the same tradition as many other
topological features of electronic band structures, it has al-
ready been theoretically predicted and experimentally realized
in a range of classical analog systems [24–29].

Nevertheless, the bulk classification of topological insula-
tors with respect to (crystalline) symmetries can be adapted
rather straightforwardly to non-Hermitian systems, as long as
the notion of a bulk gap is specified [30–34]: for Hermitian
insulators, the gap separates the occupied and empty band
subspaces. For non-Hermitian systems, which in general have
complex energy spectra, one distinguishes line gaps and point
gaps. In the complex plane, a line gap separates the spectrum
into two disconnected “bands,” while a point gap constitutes
a region (centered around E = 0 without loss of generality)
that is devoid of eigenstates. Only point-gapped systems are
intrinsically non-Hermitian, in that they cannot be deformed
to Hermitian systems without closing the gap.

A (partial) topological classification of point-gapped insu-
lators has been achieved, but the corresponding topological
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invariants are often formulated in terms of computationally
expensive Brillouin zone integrals [30,31,35]. For Hermitian
systems, crystalline symmetries have often been fruitfully
used to simplify the calculation of topological invariants
of noncrystalline topological phases [36–41]. In this Let-
ter, we show that the same is possible for non-Hermitian
band structures: We first prove symmetry indicator formu-
las for the winding numbers of one-dimensional (1D) and
three-dimensional (3D) non-Hermitian insulators in Altland-
Zirnbauer class A. Then, we formulate a symmetry-indicator-
based invariant for 3D point-gapped systems in symmetry
class AII, where the usual invariant is especially costly in that
it requires the choice of a smooth gauge over the Brillouin
zone [42]. Our results point toward a unified understanding of
Hermitian and non-Hermitian crystalline topology.

1D winding number. Consider the disorder-free Hatano-
Nelson chain [13–15] with Hamiltonian

H =
∑

i

trc
†
i+1ci + tlc

†
i ci+1, (1)

where tr �= tl are the real-valued right and left hopping am-
plitudes, respectively, and c†

i creates an electron at site i ∈
1, . . . , L (L is the system size; we choose a lattice spacing
a = 1). With periodic boundary conditions (PBCs), the sys-
tem is described by the 1 × 1 Bloch Hamiltonian

H(k) = tre
ik + tle

−ik, (2)

where k = 2π/L, . . . , 2π is the crystal momentum. The spec-
trum then forms an ellipse in the complex plane, and the
single-particle eigenstates are standard Bloch waves. Under
the introduction of open boundary conditions (OBCs), the
spectrum collapses onto the real line, while all eigenstates
accumulate on only one edge of the system. For |tr| > |tl| this
is the right edge, while for |tr| < |tl| this is the left edge. This
distinctly non-Hermitian phenomenon of spectral collapse in
OBCs is dubbed the non-Hermitian skin effect [6–9,13–21].
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Importantly, the skin effect is an unavoidable property of
all Bloch Hamiltonians that have a nontrivial 1D winding
number (taking L → ∞)

w1D =
∫ 2π

0

dk

2π i

d

dk
ln det H(k) ∈ Z, (3)

which is well-defined in the presence of a point gap at E =
0 [21]. For the Hamiltonian in Eq. (2), we obtain w1D =
sgn(|tr| − |tl|). In this sense, w1D is an integer-valued invari-
ant of intrinsically 1D non-Hermitian topological phases that
requires no symmetries for its quantization. (The topological
classification of non-Hermitian systems in Altland-Zirnbauer
class A is Z [31].)

In the presence of crystalline inversion symmetry, w1D

mod 2 can be expressed purely in terms of inversion eigenval-
ues at inversion-symmetric momenta. For this, first note that
for non-Hermitian systems, there are two ways of implement-
ing inversion symmetry: (i) “standard” inversion symmetry
implies

IH(k)I† = H(−k) (4)

for some unitary matrix I. (ii) “Pseudo”inversion symmetry
implies

IH(k)I† = H†(−k). (5)

In both cases, I2 = 1. The two options are equivalent in the
Hermitian case. For systems with a skin effect, pseudoin-
version is the relevant symmetry. With standard inversion
symmetry,

w1D =
∫ 2π

0

dk

2π i

d

dk
ln det H(−k) = −w1D, (6)

so that the only admissible winding number is w1D = 0. And
indeed, the Bloch Hamiltonian in Eq. (2) satisfies pseudoin-
version: H(k) = H†(−k), so that I = 1.

Let us therefore consider a general 1D non-Hermitian
Bloch Hamiltonian H(k) that satisfies Eq. (5). Its Hermitian
double is given by

H̄(k) =
(

0 H(k)
H†(k) 0

)
. (7)

The presence of a point gap of H(k) around E = 0 translates
into a gapped spectrum of H̄(k). By construction, H̄(k) fur-
thermore enjoys a chiral (sublattice) symmetry:

C̄H̄(k)C̄† = −H̄(k), C̄ =
(

1 0
0 −1

)
, (8)

positioning the Hermitian double in symmetry class AIII of
the Altland-Zirnbauer classification [on the other hand, the
non-Hermitian Hamiltonian H(k) has no internal symmetries
and so it lies in class A]. The quantity w1D is then merely the
winding number of 1D Hermitian systems with chiral symme-
try, and as such it counts the number of protected zero-energy
edge states. Moreover, the pseudoinversion symmetry of H(k)
implies a standard inversion symmetry for H̄(k):

ĪH̄(k)Ī† = H̄(−k), Ī =
(

0 I
I 0

)
. (9)

(Note that Ī and C̄ anticommute if the non-Hermitian Hamil-
tonian has pseudoinversion, whereas for standard inversion
symmetry Ī and C̄ commute and so they preclude any
symmetry-indicated band inversions.) Correspondingly, the
eigenstates of H̄(k) can be chosen as eigenstates of Ī at
the inversion-symmetric momenta k = 0, π . It is well known
[42,44] that w1D is related to the Zak phase γ of H̄(k) via

w1D mod 2 = γ /π. (10)

Furthermore, Ref. [45] showed that the Z2-valued Zak phase
is constrained by the relation

γ = π

2

∑
k∗∈ISMs

eik∗
Tr[ĪP̄(k∗)] mod 2π, (11)

where P̄(k) is the projector onto the occupied subspace of
H̄(k), and the inversion-symmetric momenta are given by
ISMs = {0, π}. Equations (10) and (11) provide an example
of a symmetry indicator formula for a non-Hermitian topolog-
ical invariant.

3D winding number. We next formulate symmetry indicator
invariants for 3D point-gapped non-Hermitian Hamiltoni-
ans H(k) that are characterized by the 3D winding number
[30,31,46]

w3D = −
∑
i jk

∫
BZ

d3k
24π2

εi jkTr[Qi(k)Qj (k)Qk (k)] ∈ Z, (12)

where Qj (k) = H(k)−1∂k jH(k), j = x, y, z, and BZ =
[0, 2π ]3 denotes the 3D Brillouin zone. A nontrivial w3D has
been identified with the presence of anomalous non-Hermitian
surface states in Ref. [47], giving rise to exceptional
topological insulators (ETIs). Again, the Hermitian double
H̄(k), defined in analogy to Eq. (7), describes a gapped 3D
system in Altland-Zirnbauer class AIII. The invariant w3D

then counts the number of protected (twofold) Dirac cone
surface states [48].

To make contact with the 1D case, we begin by discussing
systems with inversion symmetry. In analogy to Eq. (6), stan-
dard inversion symmetry implies w3D = 0, prompting us to
focus on pseudoinversion [Eq. (5)]. Defining the inversion
operator Ī of the Hermitian double as in Eq. (9), we now prove

w3D mod 2 = ν2, (13)

where the Z2-valued symmetry indicator ν2 is defined by

ν2 = 1

4

∑
k∗∈ISMs

Tr[ĪP̄(k∗)] mod 2. (14)

Here, P̄(k) is again the projector onto the occupied subspace
of the Hermitian double H̄(k), while the inversion-symmetric
momenta are now drawn from

ISMs = {(0, 0, 0), (0, π, 0), (π, 0, 0), (π, π, 0),

(0, 0, π ), (0, π, π ), (π, 0, π ), (π, π, π )}. (15)

To derive the relation, we begin by noting that ν2 = 1 is
precisely the condition for a gapped, inversion-symmetric
Hermitian Hamiltonian (for now without chiral symmetry) to
be a symmetry-indicated axion insulator (AXI) [49–51]. AXIs
are (time-reversal broken) higher-order topological insulators
that host one-dimensional unidirectional (chiral) hinge states
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FIG. 1. Inversion symmetry indicator for w3D. (a),(c) Bulk (gray)
and surface (blue) spectra in the complex plane for a non-Hermitian
topological insulator with w3D = 0 (a) and w3D = 1 (c) [43].
(b),(d) Band structure of the corresponding Hermitian doubles along
high-symmetry lines of the Brillouin zone. All bands are twofold-
degenerate, and each pair has equal inversion eigenvalues at the
inversion-symmetric momenta (the inversion eigenvalues of the oc-
cupied bands are shown in red). By Eq. (13), the presence (absence)
of a double band inversion in (d) [in (b)] indicates the presence
(absence) of anomalous non-Hermitian surface states in (c) [in (a)].

when cut into inversion-symmetric geometries. Their surfaces
each host a gapped Dirac cone as a remnant of the bulk double
band inversion (indicated by ν2 = 1). In fact, it is instructive
to regard the hinge states of an AXI as domain wall bound
states in the surface Dirac mass [52]. To prove Eq. (13), we
then only need to show that the surfaces of an AXI respecting
inversion and chiral symmetry must remain gapless, because
w3D counts the number of protected surface Dirac cones of the
Hermitian double. But this must be the case, because the uni-
directional dispersion of chiral hinge states, whose presence
is implied by any inversion-preserving surface gap, violates
chiral symmetry as defined in Eq. (8). (See Fig. 1.)

To drive this point further, consider the Dirac surface the-
ory of an AXI with chiral symmetry (where the surface normal
is chosen to lie along the z-direction) [39],

H̄D(kx, ky) = kxσx + kyσy, (16)

where σx,y,z is a set of Pauli matrices. Here, chiral symmetry is
represented by C̄D = σz. The only mass term, multiplying σz,
does not anticommute with chiral symmetry and is therefore
disallowed. Generalizing this, we conclude that all surfaces
remain gapless and host a single Dirac cone, vindicating
Eq. (13).

It is possible to calculate the symmetry indicator ν2 with-
out explicitly constructing the Hermitian double. For this,
we utilize the singular-value decomposition [53], which was
previously fruitfully applied in the context of non-Hermitian
topological systems [54]:

H(k) = U (k)�(k)V (k)†, (17)

where U (k),V (k) are unitary matrices of the same dimension
as H (k), and �(k) is a diagonal matrix with non-negative
entries. We have that

H(k)V (k) = U (k)�(k), H(k)†U (k) = V (k)�(k) (18)

implying that the matrix

S(k) = 1√
2

[
U (k) U (k)
V (k) −V (k)

]
(19)

diagonalizes the Hermitian double H̄(k):

S(k)†H̄(k)S(k) =
[
�(k) 0

0 −�(k)

]
. (20)

We therefore find

ν2 =−1

8

∑
k∗∈ISMs

Tr[V (k)†IU (k) + U (k)†IV (k)] mod 2.

(21)
Chiral Chern-Simons form. We now turn to 3D non-

Hermitian insulators in symmetry class AII. This class is
characterized by a standard time-reversal symmetry, so that
the non-Hermitian Bloch Hamiltonian and the Hermitian dou-
ble satisfy

T H(k)T † = H(−k),

T̄ H̄(k)T̄ † = H̄(−k), T̄ =
(
T 0
0 T

) (22)

for some antiunitary operator T . Together with the 3D ver-
sion of Eq. (8), we then have that time-reversal and chiral
symmetry commute: [T̄ , C̄] = 0, locating the Hermitian dou-
ble in Altland-Zirnbauer class CII. As previously explained,
Eq. (22) necessitates w3D = 0. Nevertheless, the classifica-
tion of non-Hermitian systems in Altland-Zirnbauer class AII
(corresponding to a Hermitian double in class CII) is given
by Z2 [31]; it is indicated by the chiral Chern-Simons form
CS3 whose evaluation requires a smooth gauge of Bloch states
over the Brillouin zone [42]. Note that the ETI with w3D = 1
is adiabatically related to a kz-indexed pumping cycle of a 2D
integer quantum Hall effect (with Chern number 1) around
the complex point gap [47]. Then, appealing to the correspon-
dence between the Z-classified integer quantum Hall effect
in class A and the Z2-classified quantum spin Hall effect in
class AII, it is straightforward to construct a representative
of a nontrivial point-gapped phase in class AII: we take two
time-reversal related copies of the ETI and form the tensor
sum

H(k) =
(
HETI(k) 0

0 T †HETI(−k)T

)
, (23)

where T is an antiunitary operator that squares to −1. The
complex spectrum of H(k) can develop a real line gap under
the addition of symmetry-allowed perturbations. However, we
will see that the surface spectrum necessarily remains gapless
(in that there is no line gap). The non-Hermitian Hamiltonian
satisfies Eq. (22) with

T =
(

0 T
T † 0

)
. (24)
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Because time-reversal symmetry commutes with pseudoin-
version symmetry, the inversion eigenvalues of the Hermitian
double form two copies of the inversion eigenvalues of an AXI
and we obtain ν4 = 2, where ν4 is the symmetry indicator,

ν4 = 1

4

∑
k∗∈ISMs

Tr[ĪP̄(k∗)] mod 4, (25)

associated with the simultaneous presence of inversion and
time-reversal symmetry. Furthermore, we will show that the
surfaces of H(k) are gapless and anomalous, in that they form
two time-reversal related copies of the anomalous surface
states of an ETI. These observations prompt us to posit

CS3 mod 2 = 1

2
ν4 mod 2, (26)

where

CS3 = −
∑
i jk

∫
BZ

d3k
8π2

εi jkTr

[
Ai(k)∂k j Ak (k)

+ 2

3
Ai(k)Aj (k)Ak (k)

]
(27)

is the chiral Chern-Simons form, the invariant for Hermitian
insulators in class CII [31,42]. A nontrivial CS3 corresponds
to a stable pair of Dirac cones in the surface spectrum of the
Hermitian double [48], whose presence is heralded by ν4 = 2
(recall that we have previously shown that the surfaces of an
AXI host a single Dirac cone as long as chiral symmetry
is enforced). Here, we have made use of the non-Abelian,
matrix-valued Berry connection

[Ai(k)]mn = 〈um(k)|∂ki |un(k)〉 , (28)

which is defined in terms of the occupied (negative-energy)
Bloch eigenstates |un(k)〉 of H̄(k). We note that Eq. (27) is
gauge-dependent and needs to be supplemented by the gauge
condition∫

∂BZ1/2

d2k εi jTr{[X (k)∂ki X
†(k)][X (k)∂k j X

†(k)]} = 0, (29)

where

X (k) = [|u1(k)〉 , . . . , |uN (k)〉 , |v1(k)〉 , . . . , |vN (k)〉] (30)

is the unitary matrix of occupied and unoccupied eigenstates
of H̄(k), respectively. Evidently, the integral in Eq. (27) and
its associated gauge condition in Eq. (29) are sufficiently
involved as to make an expression in terms of symmetry
indicators highly desirable.

For Eq. (26) to be well-defined, ν4 = 1, 3 should not be
admissible. And indeed, by the Fu-Kane criterion [36], these
values indicate an odd number of double-band inversions in
the bulk of the Hermitian double [2(2n + 1), n ∈ Z, inversion
eigenvalues of the valence manifold switch signs with respect
to the atomic limit], however such a scenario is disallowed in
symmetry class CII [48].

Finally, we discuss the surface physics of H(k) in Eq. (23).
In the unperturbed case, Eq. (23), each ETI contributes a
single exceptional point to the complex surface spectrum. We
can model the surface with z-normal by the Dirac Hamiltonian

HD(kx, ky) = (kx + icx )σx + (ky + icy)σy + iczσz, (31)

where cx,y,z are real numbers and σx,y,z is a set of Pauli
matrices. This Hamiltonian satisfies standard time-reversal
symmetry with T = iσyK , where K denotes complex conju-
gation. For generic values of cx,y,z, there are two exceptional
points in the spectrum of HD(k). These may morph into an
exceptional loop for cx = cy = 0, or into a Hermitian Dirac
cone for cx = cy = cz = 0, but since HD(k) exhausts all terms
allowed by symmetry to linear order in k (up to unitary basis
transformations and terms multiplying the identity matrix),
they can never annihilate. We therefore conclude that the
surface must host two exceptional points. In the Supplemental
Material [55], we discuss this case and the pseudo-time-
reversal symmetric (reciprocal [56]) case with ν4 = 2. There,
we also present tight-binding models for all phases discussed
here.

Discussion. We have derived symmetry indicator invariants
for w1D and w3D, which classify point-gapped non-Hermitian
insulators in Altland-Zirnbauer symmetry class A. Further-
more, we showed that non-Hermitian time-reversal symmetric
topological insulators can be identified using symmetry in-
dicators without the need for a smooth Bloch gauge. To
connect non-Hermitian topological invariants with the sym-
metry indicators of the Hermitian double, our strategy was
to study the effect of chiral symmetry on Hermitian topo-
logical crystalline insulators. Interestingly, the introduction of
chiral symmetry changes the bulk-boundary correspondence
of these insulators while leaving their symmetry indicators
intact. This approach can be straightforwardly generalized to
other symmetry classes.

Note added. While preparing this manuscript, we became
aware of a recent related work [57], which also investigates
non-Hermitian symmetry indicators, but it focuses on bulk
exceptional points and lines in two and three dimensions.
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