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Abstract

This thesis examines the framework of multi-agent market equilibria through math-
ematical models and empirical analyses.

Chapter 2 considers a model for the interaction between a slow institutional
investor and a high- frequency trader by means of a stochastic multi-period Stack-
elberg game. We determine the unique multi-period Stackelberg equilibrium of the
game in terms of the resolvent of a Fredholm integral equation. Our results provide
an explicit solution which shows that the high-frequency trader can adopt either
predatory or cooperative strategies in each period, depending on the trade-off be-
tween the order-flow and the trading signal. We also show that the institutional
investor’s strategy is more profitable when the order-flow of the high-frequency
trader is taken into account.

In Chapter 3 we study a model for a multi-player stochastic differential game,
where agents interact through their joint price impact on an asset that they trade
to exploit a common trading signal. We prove that a closed-loop Nash equilibrium
exists if the price impact parameter is small enough. A comparison with the corre-
sponding open-loop Nash equilibrium shows that both the agents’ optimal trading
rates and their performance move towards the central-planner solution, since ex-
cessive trading due to lack of coordination is reduced. Nevertheless, we find that
the size of this effect is modest for plausible parameter values.

Chapter 4 develops a methodology which accurately replicates the FTSE Rus-
sell indexes reconstruction, including the quarterly rebalancings due to new initial
public offerings (IPOs). We apply our index reconstruction protocol to compute
the permanent and temporary price impact on the Russell 3000 annual additions
and deletions, and on the quarterly additions of new IPOs. Our findings show that
the index portfolios following the Russell 3000 index and rebalanced on an annual
basis are overall more crowded than those following the index on a quarterly basis.

V



To my mother

VI



Acknowledgements

I would like to thank my supervisors, Prof. Damiano Brigo and Dr. Eyal Neuman,
for their help, support and guidance throughout my Ph.D. Their teachings and
my memories of the time spent together will accompany me for the rest of my
life. I wish to thank Prof. Johannes Muhle-Karbe from whom I was able to learn
many insightful lessons during our collaboration. I thank Prof. Umut Cetin and
Dr. Nikolas Kantas for taking the time to read my thesis and agreeing to be the
examiners for my viva.

I would like to thank the EPSRC CDT in Mathematics of Random Systems for
supporting me financially throughout this journey.

Many thanks go also to my family and friends for believing me in the good and
bad times. Finally, my most heartfelt thanks go to Mélodie, with whom I had the
pleasure to share this adventure and hope to share many more in the future.

VII



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline of the contributions . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Fast and Slow Optimal Trading with Exogenous Information 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Proof of Theorem 2.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7 Proof of Theorem 2.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.8 Proofs of Lemma 2.7.1 and Propositions 2.7.4 and 2.7.9 . . . . . . . 64

2.9 Proof of Lemma 2.7.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.10 Proofs of the Numerical Results in Section 2.5 . . . . . . . . . . . . 75

3 Closed-Loop Nash Competition for Liquidity 81

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Other Forms of Interactions . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Heuristics for the Closed-Loop Equilibrium . . . . . . . . . . . . . . 99

3.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

VIII



4 Evidence of Crowding on Russell 3000 Reconstitution Events 123

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2 The FTSE Russell indexes reconstitution Methodology . . . . . . . 130

4.3 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.4 Generating the Russell US indexes . . . . . . . . . . . . . . . . . . 135

4.5 Price Impact on Index Additions and Crowding . . . . . . . . . . . 144

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.7 Data availability statement . . . . . . . . . . . . . . . . . . . . . . . 157

5 Outlook 158

A Appendix for Chapter 2 160

A.1 An Example of Spectral Decomposition of G . . . . . . . . . . . . . 160

B Appendix for Chapter 3 164

B.1 Proof of Proposition 3.3.3 and Lemma 3.6.10 . . . . . . . . . . . . . 164

B.2 Identities for the Proofs of Lemmas 3.6.1 and 3.6.10 . . . . . . . . . 169

C Appendix for Chapter 4 171

C.1 CRSP US Financial Data . . . . . . . . . . . . . . . . . . . . . . . 171

C.2 Bootstrap Two-Samples t-test . . . . . . . . . . . . . . . . . . . . . 173

C.3 Multiple Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

IX



1
Introduction

The advent of electronic markets has substantially changed the way market partici-

pants interact. The traditional open outcry exchanges where traders communicated

by shouting and using hand signals gave way to the server rooms of electronic ex-

changes’ data centers in which algorithms quietly execute trading strategies with

laser-like precision. Fifty years after the opening of the first electronic stock ex-

change, the NASDAQ, the effects of this transformation have yet to be fully under-

stood. The electronification of order submissions has reduced the core of modern

financial markets to a collection of logical rules and completely removed the human-

factor from the trading process. This has been a blessing, in that it has improved

market transparency, but also a curse, as the removal of any physical barrier has

incentivised fragmentation and complexity.

The uncharted territories of modern financial markets have been the subject of

increasing attentions from regulators, practitioners and academics. The new rules

of trading stimulated the development of market microstructural and mathemati-

cal models describing the strategic interaction of financial players. Among those,

multi-agent market equilibria have found particular success in striking a balance

between providing a parsimonious description of the rational behaviour of traders

and a sufficient flexibility to span a broad range of securities and markets. This

thesis aims to contribute to the growing literature of multi-agent market equilibria

through novel mathematical models and empirical analyses.
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1.1 Background

1.1.1 Trading, Fast and Slow

Despite investors of all kinds trade on markets with the same single purpose, making

money, what goes behind the scene of trading is a more complex business.

Institutional investors make profits by tracking long-term investment goals and

adjusting their portfolios accordingly. They trade infrequently, nevertheless, the

sheer volumes of share they execute each time they trade is substantial. This

poses the problem on how to liquidate such supersized orders since, given their

volumes, they cannot be executed immediately due to insufficient market liquidity.

Furthermore, they must face a multitude of costs which are conventionally bucketed

into two macro categories:

⋄ Explicit costs: which are known in advance and are mostly in the form of

commission costs charged by exchanges and execution desks;

⋄ Implicit costs: which are uncertain economic losses mainly arising from

market impact.

While explicit costs can be mitigated by an adequate selection of venues and bro-

kerage and eventually result in an irreducible fraction of the total execution costs,

implicit costs are harder to constrain and substantially affect the execution quality

of a trade.

The paramount importance of implicit costs has attracted substantial atten-

tion from regulators and has pushed them to enforce new duties for investment

firms, often collectively named “best execution” practices. In Europe, the Markets

in Financial Instruments Directive (MiFID) requires investment firms “to take all

sufficient steps to obtain, when executing orders, the best possible result for their

clients taking into account price, costs, speed, likelihood of execution and settle-

ment, size” (see European Commission (2018)). In this context, several benchmark
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prices have been used to quantify executions costs, a common one being the arrival

price, that is the mid-price of the asset at the time the order is given to execute.

The execution costs measured with respect to the arrival price are known as the

implementation shortfall (see (Perold, 1988; Almgren and Chriss, 2000)) and they

represent the extra costs one would need to pay for implementing a liquidation

strategy which until then existed only on paper.

Starting from the seminal papers of (Almgren and Chriss, 2000; Obizhaeva and

Wang, 2013), substantial academic efforts have been made on developing models

to help institutional investors devise optimal liquidation strategies in increasingly

realistic settings. The prototypical optimal liquidation strategy slices the large

initial order into smaller orders while accounting for transitory and permanent

effects each transaction will have on quoted prices due to market resilience.

Overall, institutional investors represent the traditional side of finance where,

still to this date, trades are frequently based on the expertise and the discretionary

decisions of traders and portfolio managers. For their strong human-based nature

and their substantially analog trading systems, they have been dubbed as low-

frequency traders (see O’Hara (2014)).

The advent of modern technology has had a substantial impact on the financial

world. The increasing automation of market venues has established a fertile ground

for a class of market participants adopting trading strategies whose decisions are

made by algorithms running on computers. The practice of highly automatized

trading, known as algorithmic trading, has pushed traditional finance beyond hu-

man biases and reaction times. In particular, large computational powers and

fast network connectivity have sustained the growth of a class of technologically

advanced market participants called High-Frequency Traders (HFTs). Typically,

HFTs are characterized by high speeds and high turnover rates that leverage real-

time high-frequency financial signals and electronic trading tools. HFTs trade for

their own account and, in order to minimise their risk exposure, they do not con-

sume significant amounts of capital, accumulate positions or hold their positions

overnight.
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Whether HFTs help improving market quality or not is an important open

question and often debated among practitioners, academics and regulators. One

of the main concerns is that HFTs could employ predatory algorithms to exploit

market inefficiencies, for example, to benefit from predictable liquidation strategies

employed by low-frequency traders. On the other hand, it has been observed that,

under certain circumstances, the presence of HFTs has a positive effect on liquidity

by narrowing spreads, reducing adverse selection and improving trade-related price

discovery (see Hendershott et al. (2011)).

1.1.2 Skate to Where the Puck is Going

The problem of optimal portfolio selection is one of the pillars of modern mathe-

matical finance. At its core it entails finding an optimal allocation of an investor’s

economical resources to multiple uncertain assets. In practice, determining such op-

timal allocation is a complex task as asset managers are faced with several layers of

complexities. More precisely, the universe of candidate securities to include in their

portfolios may present strong and persistent interdependencies, as assets returns

are often correlated and future returns can be forecasted using an array of market

signals. Furthermore, each trade must account for investors’ risk preferences and,

as discussed in Section 1.1.1, for explicit and implicit costs.

Therefore, investors are faced with the problem of weighing the expected benefit

of trading against its risks and costs. Mathematically speaking, the following statis-

tical properties are often considered as the leading factors of successful investment

portfolios:

⋄ Expected returns, as assets with higher returns often correlate with higher

financial performance;

⋄ Variance of returns, as higher variance presents higher uncertainty and

risk, for example, in terms of large losses.

From these considerations, Markowitz (1952) proposed a framework for discrete-
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time optimal portfolio selection accounting for the portfolios’ expected returns and

variances. Specifically, an ideal investor would rank her preferences for different

portfolios according to a mean-variance utility function where she would weigh a

putative portfolio’s expected returns with its variance in order to account for her

risk preferences.

Since Markowitz (1952), the mean-variance approach to portfolio selection has

been extended to more general and realistic settings. Relevant to this thesis are

the discrete and continuous time models of Gârleanu and Pedersen (2013) and

Gârleanu and Pedersen (2016). Specifically, their results provide a solution to the

problem of portfolio optimization in the presence of transaction costs and time-

dependent signals. The optimal portfolios of Gârleanu and Pedersen (2013) and

Gârleanu and Pedersen (2016) present several simple and intuitive properties which

can be understood in terms of two principles: (1) aim in front of the target and

(2) trade partially toward the current aim. For a fixed level of risk and in ab-

sence of transaction costs, a Markowitz portfolio analogous to the one derived in

Markowitz (1952) is the optimal portfolio to keep. Nevertheless, when returns are

time-dependent, the Markowitz portfolio behave as a stochastic moving target as

the expected returns can change at any time, thus, making the current Markowitz

portfolio ephemeral and the future ones uncertain. Therefore, in the presence of

market frictions the benefit of tightly tracking the Markowitz portfolio should be

weighed with the transaction costs arising from high turnover needed to track this

moving target. The solution to this conundrum can be stated in the words of the

NHL player Wayne Gretzky:

“A great hockey player skates to where the puck is going to be, not where

it is.”

Indeed, the optimal strategies of Gârleanu and Pedersen (2013) and Gârleanu and

Pedersen (2016) entail tracking an aim portfolio consisting of a weighted average

of the current Markowitz portfolio and the expected Markowitz portfolios on all

future dates, in order to account for the future trajectories of the uncertain price

returns. Accounting for future expectations is a recurring feature of many moving
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targets problems which has found practical success in areas beyond mathematical

finance including missile systems, competitive shooting and, indeed, professional

hockey.

1.1.3 Birds of a Feather Flock Together

The second week of August 2007 will be long remembered in the world of quan-

titative finance. The technological developments at the end of the last century

allowed hedge funds managers to develop trading strategies which could go beyond

human limitations. Specifically, a new class of strategies called “long/short equity

market-neutral” allowed to bet on the mean reverting properties of stock returns.

Typically, one such strategy would entail buying past losers and selling past win-

ners in order to profit from the reversal of stock prices over a given time window.

Therefore, a profitable long/short equity market-neutral portfolio is constructed by

assigning weights to a basket of stocks with the property that their sum equals zero.

Stocks with positive weights will have long positions which are offset, potentially

in equal measure, by the short positions of those with negative weights. Practically

speaking, strategies of this kind must be implemented over thousands of stocks in

order to be successful, making their management beyond human capabilities and

requiring the usage of modern computers. From a risk-management perspective,

market-neutral strategies were seen as a relative robust and conservative as they

are, by design, less exposed to market movements.

As reported in Figure 3 of Khandani and Lo (2008) this family of strategies had

witnessed a steady decline in financial performance over the years 1995 to 2007.

This is due to the increase in competition and the growth in assets devoted to

these strategies. Such consistent decline in profitability had profound implications

on the financial practices undertaken by hedge funds over those years. In order

to guarantee their investors the same levels of expected returns in the face of

lower profitability, hedge funds had to strongly rely on leverage, the practice of

undertaking loans with the intent of transforming small profit opportunities into

larger ones.
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The early months of 2007 had witness an alarming increase of delinquencies

on U.S. home mortgages, the effects of which rippled throughout the financial

world. As reported by (Ip and Perry, 2007; Zuckermann et al., 2007), the Wall

Street trading giant Bear Stearns Cos. had seen two of its own credit hedge funds

collapse after they had made substantial bets on securities backed by subprime

mortgage loans. The corresponding market turmoils fueled further uncertainty in

market participants as well as, in a conservative move to avoid further credit risk,

hesitation and reluctance to lend each other money.

Such uncertain and mutating circumstances had an enormous impact on those

same hedge funds who were juicing up their returns with leverage. On one hand,

as discussed in (Khandani and Lo, 2008, Section 7), hedge funds were forced to

reduce their exposure to reduce their risk limits, either voluntarily or out of a

request from their prime brokers and other creditors. On the other hand, those

funds who weren’t able anymore to get the short-term cash needed to fund their

trades, for example, were forced to sell their holdings (see Ip and Perry (2007)). As

noticed by Wigglesworth (2017), it is also plausible that some of the players hit by

subprime mortgage losses were forced to sell their more liquid but highly leveraged

equity portfolios in order to fulfill the investors’ cash withdrawals.

The simultaneous occurrence of these factors created the perfect storm for

tremendous losses among hedge funds, especially those specializing in market neu-

tral strategies. As reported by Zuckermann et al. (2007), Renaissance Technologies,

one of the most successful hedge funds in recent years, had lost 8.7% in August.

Similarly, AQR Capital Management, another big american hedge fund, had seen

losses in the first week of August in investments employing market-neutral strate-

gies. Many other funds were equally affected. Overall, during the second week of

August 2007, the Dow Jones Industrial Average and the S&P 500 experienced their

second-worst losses of the year (see Ossinger (2007)).

The collective drawdown of market neutral strategies has often been dubbed as

the “quant quake” or “quant meltdown”. What might have triggered the quant melt-

down will never be known exactly, nevertheless, many agree that too many investors
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adopting similar strategies might have been a substantial contributing factor (see

(Khandani and Lo, 2008, Section 10) and Zuckermann et al. (2007)). Specifically,

quantitative funds, including the aforementioned market-neutral funds, adopt sim-

ilar data and similar computer models to guide their trading decisions. This has

the undesired effect that they might end up making the same trade and holding

the same positions without, however, accounting for the popularity of the models

themselves. Such overlap in portfolios has been extensively studied in the quantita-

tive finance literature under the name of crowding and has attracted the attention

of practitioners willing to enhance their strategies as well as regulators trying to

save financial markets. As noticed by Wigglesworth (2017) and (Khandani and Lo,

2008, Section 7), the losses of August 2007 are likely due to a large liquidation of

market-neutral portfolio affecting participants with similar trades and triggering

new rounds of liquidations. Indeed, as many funds try to escape the same trades

at exactly the same moment, this generates a spiral which has a multiplier effect

on the losses that everyone experiences.

1.2 Outline of the contributions

We now present a summary of the significant contributions made in this thesis

towards advancing the study of multi-agent market equilibria. In the first project

we consider a stochastic game between a slow institutional investor and a high-

frequency trader who are trading a risky asset and their aggregated order-flow

impacts the asset price. We model this system by means of two coupled stochastic

control problems, in which the high-frequency trader exploits the available infor-

mation on a price predicting signal more frequently, but is also subject to periodic

“end of day” inventory constraints. We first derive the optimal strategy of the high-

frequency trader given any admissible strategy of the institutional investor. Then,

we solve the problem of the institutional investor given the optimal signal-adaptive

strategy of the high-frequency trader, in terms of the resolvent of a Fredholm in-

tegral equation, thus establishing the unique multi-period Stackelberg equilibrium
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of the game. Our results provide an explicit solution to the game, which shows

that the high-frequency trader can adopt either predatory or cooperative strategies

in each period, depending on the tradeoff between the order-flow and the trading

signal. We also show that the institutional investor’s strategy is considerably more

profitable when the order-flow of the high-frequency trader is taken into account

in her trading strategy.

In the second project we study a multi-agent stochastic differential game, where

agents interact through their joint price impact on an asset that they trade to

exploit a common trading signal. Our model is an extension of the single-agent

model of Gârleanu and Pedersen (2016) to the multi-agent setting. We prove that

a closed-loop Nash equilibrium for the game exists if the price impact parameter is

small enough. Compared to the corresponding open-loop Nash equilibrium, both

the agents’ optimal trading rates and their performance move towards the central-

planner solution, in that excessive trading due to lack of coordination is reduced.

In the third project we develop a methodology which replicates in great accu-

racy the FTSE Russell indexes reconstitutions, including the quarterly rebalancings

due to new initial public offerings (IPOs). We demonstrate the accuracy of this

methodology by comparing it to the original Russell US indexes for the time period

between 1989 to 2019. As an application, we use our index reconstruction protocol

to compute the permanent and temporary price impact on the Russell 3000 annual

additions and deletions, and on the quarterly additions of new IPOs. We find that

the index portfolios following the Russell 3000 index and rebalanced on an annual

basis are overall more crowded than those following the index on a quarterly ba-

sis. This phenomenon implies that transaction costs of indexing strategies could

be significantly reduced by buying new IPOs additions in proximity to quarterly

rebalance dates.
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1.3 Thesis Structure

This thesis is structured as follows. In Chapter 2 and 3 we study the interaction of

market players by developing novel mathematical models for multi-agent market

equilibria in the context of high-frequency trading and portfolio optimisation. The

empirical analysis of Chapter 4 sheds light on the adoption of index strategies

among market participants and provides new insights on crowding. Finally, in

Chapter 5 we provide further research directions which could represent valuable

extensions to the content presented in this thesis.

Chapter 2, 3 corresponds to papers Micheli and Neuman (2022), Micheli et al.

(2021) and Micheli and Neuman (2019), respectively, and they can be read inde-

pendently of the others. We remark that the notation across this thesis may vary

as each chapter is designed to be self-contained. The majority of the mathemati-

cal proofs are provided at the end of each chapter while only minor mathematical

results are postponed to the appendix.
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2
Fast and Slow Optimal Trading with

Exogenous Information

This chapter is based on the paper Micheli and Neuman (2022) which is a joint

work with Dr. Eyal Neuman. The paper Micheli and Neuman (2022) has been

submitted to Finance & Stochastics for publication.

2.1 Introduction

Modern financial markets involve a range of participants who place buy and sell

orders across a wide spectrum of time scales: on one end, pension funds rebalance

their portfolio on an annual basis and mutual fund managers rebalance typically

on a monthly time scale while, on the other end of the spectrum, electronic market

makers and high frequency trading firms submit several thousands of orders per

second (see e.g. Cont (2011)), while having strict inventory constraints (see p.4 of

U.S. Securities and Exchange Commission (2014)). Although this heterogeneity in

time scales has been always present, the development of computerized trading in

electronic markets has substantially widened the range of frequencies at which

various market participants operate. The interaction between the flow of buy

and sell orders from these different participants results in an aggregate order flow

which is the superposition of components across a wide range of frequencies. The

11



consequences of this phenomenon for market volatility, price dynamics and market

stability have yet to be systematically explored.

This heterogeneity in time frequencies stands in contrast with mathematical

models of market microstructure and price dynamics which are often formulated in

terms of homogeneous agents operating at a single time scale as in (Gârleanu and

Pedersen, 2016; Evangelista and Thamsten, 2020; Voß, 2019; Neuman and Schied,

2022; Micheli et al., 2021; Drapeau et al., 2019; Casgrain and Jaimungal, 2020; Fu

et al., 2021; Neuman and Voß, 2021; Garnier et al., 2015) among others. Yet, the

repeated occurrence of ‘flash crashes’ (see Kirilenko et al. (2017)) demonstrates

that components at different frequencies may strongly interact and possibly lead

to market disruption, calling for a modeling framework which incorporates in some

way the co-existence of agents operating at different time scales.

As a first step to investigate these phenomena, we propose a model for the

dynamics of prices and order flow in a market where participants of two different

frequencies submit buy and sell orders on a risky asset. Specifically, we consider

a stochastic game between an institutional investor and a high-frequency trader

who are exploiting an exogenous signal which interacts with the price process in

the drift term. The institutional investor and high-frequency trader, which will be

referred to as major agent and minor agent, respectively, interact through their

aggregated order-flow, which is resulting by their own trades. The trades of both

agents create temporary and permanent price impact which affect the asset price

process. We model this system by means of two coupled multi-period stochastic

control problems over a fixed time horizon T , where the high-frequency trader

exploits the exogenous information continuously, but is also subject to periodic

inventory constraints at the end of any sub-period 0 < t1 < ... < tn = T , for

some n ≥ 1. On the other hand, the institutional investor has a limited access to

the signal but she is only subject to inventory constraints at time T . Since in the

setting that we wish to describe the minor agent has a clear advantage in terms

of information exploitation, it is natural to look for a Stackelberg equilibrium in

this game, where the minor agent takes advantage of the signal and the order-flow
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which is created by the major agent’s transactions.

Our first result derives the unique optimal strategy of the high-frequency trader

given any admissible strategy of the major agent (see Theorem 2.3.2). The chal-

lenging part in establishing a Stackelberg equilibrium is to derive the strategy of

the player who plays first, namely the major agent. We develop a novel approach

for this class of Stackelberg games in order to derive the major agent’s optimal

strategy given the optimal signal-adaptive strategy of the minor agent using tools

from the theory of integral equations. Specifically, in Theorem 2.3.5 we describe the

unique optimal major agent’s strategy in terms of the resolvent of a Fredholm in-

tegral equation, thus establishing the unique multi-period Stackelberg equilibrium

of the game. In Section 2.4 we illustrate the solutions to the Stackelberg game and

in Section 2.5 we derive the additional technical steps that are needed in order to

obtain such explicit results directly from Theorems 2.3.2 and 2.3.5.

From our main theoretical results we derive explicit expressions for both agents

equilibrium strategies which have fascinating economic interpretation regarding the

trading behaviour of high-frequency traders and on the best practices for institu-

tional investors who are executing large meta-orders. We summarise these insights

in the following list and refer the reader for the comprehensive discussion in Section

2.4:

(i) Our results suggest that the high-frequency trader can adopt either preda-

tory or cooperative strategy with respect to the major agent in each period,

depending on the tradeoff between the order-flow of the major agent and the

trading signal during the period. See Figure 2.1 for specific realisations of

such strategies.

(ii) We compare the revenues of the major agent’s optimal order execution with

a benchmark optimal strategy in which the agent is not taking into account

of the minor agent’s trading activity. In Figure 2.5 we show that the major

agent’s optimal strategy on average considerably outperforms the benchmark

strategy. This contrasts with the common belief that high-frequency traders
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order-flow can be regarded as noise.

(iii) We show that the major agent’s and minor agent’s optimal trading strategies

induce the well-known U-shaped pattern of intraday trading volume, where

the traded volume peaks at the beginning and at the end of the day (see

Figure 2.6).

Our model is related to a class of predatory trading models which was intro-

duced by Carlin et al. (2007) for a single period and further developed by Schied and

Schöneborn (2009) for two-periods. In Carlin et al. (2007) a single-period multi-

agent game was introduced where traders are liquidating simultaneously where

while creating both temporary and permanent price impact which affects the price

process. In their model there are two types of agents: sellers which start with

a positive amount of assets and competitors who have zero initial positions. All

agents are seeking to maximise simultaneously similar revenue functionals, using

strictly deterministic strategies. Their main results derive a Nash equilibrium for

the game. In the single period case it is shown that, under some assumptions on the

model parameters, if the seller is liquidating then the competitor is first selling and

later buying her position back due to inventory constraints (see Figure 1 in Schied

and Schöneborn (2009)). In the two period model the seller can liquidate only in

the first period, while the competitor can execute her strategy over two periods.

Depending on the price impact parameters, there are two possible scenarios: either

the competitor is buying in the first period and then selling in the second period,

i.e. introducing cooperative strategies in the game (see Figure 8 therein), or doing

a round trip of selling first and then closing the position all in the first period.

Our model is different from the Schied and Schöneborn (2009) in a few critical

points. First, we assume that minor agent (resp. competitor) is trading at a higher

frequency than the major agent (resp. seller). This is reflected in the model as

periodic inventory constraints in the minor agent’s revenue functional. This term

do not appear in the major agent’s objective, who has a fuel constraint only at the

end to the trading time horizon. The minor agent is also reacting continuously to

exogenous information while the major agent has access to the information only at
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the beginning of the trade. This means also that the minor agent’s optimal strat-

egy is stochastic, unlike the deterministic game which was studied in Schied and

Schöneborn (2009). Another major difference between these models is in the type

of equilibrium which is derived. In Schied and Schöneborn (2009) an open-loop

Nash equilibrium was derived, which means that all traders optimise simultane-

ously. From market microstructure setting with various frequencies, it is essential

to consider a Stackelberg equilibrium as the minor agent is indeed reacting to the

major agent’s selling strategy. As stated before, neither Carlin et al. (2007) nor

Schied and Schöneborn (2009) take into account exogenous information, therefore,

their optimal strategies are always found to be deterministic. One of the main con-

clusions of our analysis is that this aspect has a prominent effect on the behaviour

of the major agent and the minor agent, which is not captured in Carlin et al.

(2007) and Schied and Schöneborn (2009). Finally, despite the clear asymmetry

in our model between the agents in the access to information, type of equilibrium

and inventory constraints, which make the problem quite involved and required

us to introduce new methods for Stackelberg games, we are able to derive explicit

solutions for any number of time periods, in contrast to Schied and Schöneborn

(2009), where only the two period model is tractable.

We briefly mention in this context that Roşu (2019) studied a discrete-time

model where fast traders, whose decisions depend on a market signal, trade simul-

taneously with slow traders, who can only observe a lagged version of that same

signal. However besides this difference in the access to information, the fast agents

do not have different objective functionals nor inventory constraints which differ

them from the slow agents, which are some of the main ingredients in our model.

The rest of the chapter is organised as follows. In Section 2.2 we define the two

player model. Our main results regarding the explicit solution to the Stackelberg

game are presented in Section 2.3. Section 2.4 contains the illustrations and the

financial interpretation of the main results. In Section 2.5 we derive rigorously the

numerical scheme that we have used in order to plot the solutions in Section 2.4.

The proofs of the results of this chapter are given in Sections 2.6–2.10.
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2.2 Model Setup

We define the Stackelberg game between a major agent liquidating an initial

amount of shares in a risky assets and a proprietary high frequency trader (HFT)

trading on the same asset and who, throughout this chapter, we will regard as a

minor agent. Let T > 0 denote a finite deterministic time horizon and fix a fil-

tered probability space (Ω,F , (Ft)t∈[0,T ],P) satisfying the usual conditions of right

continuity and completeness. The set H2 represents the class of all (special) semi-

martingales P = (Pt)t∈[0,T ] whose canonical decomposition P =M+A into a (local)

martingale M = (Mt)t∈[0,T ] and a predictable finite-variation process A = (At)t∈[0,T ]

satisfies

E [⟨M⟩T ] + E

[(ˆ T

0

|dAs|
)2
]
<∞. (2.2.1)

We denote by L2([0, T ]) the space of square integrable functions f : [0, T ] → R and

by ⟨·, ·⟩L2 the inner product on L2([0, T ]), that is

⟨f, g⟩L2 =

ˆ T

0

f(t)g(t)dt, f, g ∈ L2([0, T ]),

and by || · ||L2 the associated norm.

Admissible strategies and price impact. The major agent has an initial hold-

ing of q0 ∈ R shares in a risky asset. Her trading rate ν0 = (ν0t )t∈[0,T ] is chosen

from the class of fuel-constrained deterministic admissible strategies Aq0
M , which is

defined as

Aq0
M :=

{
ν ∈ L2([0, T ]) s.t.

ˆ T

0

νtdt = q0

}
. (2.2.2)

Her trading rate ν0 affects her inventory process Q0,ν0 so that

Q0,ν0

t = q0 −
ˆ t

0

ν0sds, 0 ≤ t ≤ T. (2.2.3)

The minor agent, being a proprietary high frequency trader, is assumed to have a

zero initial position in the risky asset. Her trading rate ν1 = (ν1t )t∈[0,T ] is chosen
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from a class of adaptive admissible strategies

Am :=

{
ν progressively measurable s.t. E

[ˆ T

0

ν2sds

]
<∞

}
. (2.2.4)

Her trading rate ν1 affects her inventory process Q1,ν1 so that

Q1,ν1

t = −
ˆ t

0

ν1sds, 0 ≤ t ≤ T. (2.2.5)

Throughout, we use the notation ν = (ν0, ν1) for the major agent’s control ν0 and

the minor agent’s control ν1. Once ν is fixed, the visible asset mid-price P ν satisfies

P ν
t = Pt − Y ν

t , 0 ≤ t ≤ T, (2.2.6)

where P ∈ H2 and where Y ν is the permanent price impact price impact à la Alm-

gren and Chriss (2000), which is generated by both agents and which is given by

Y ν
t =

ˆ t

0

(κ0ν
0
s + κ1ν

1
s )ds, (2.2.7)

where κi, i = 1, 2, are positive constants.

Major agent’s objective. The major agent’s execution price is affected instan-

taneously in an adverse manner through the presence of linear temporary price

impact. The major agent’s execution price is taken to be

S0,ν
t = P ν

t − λ0ν
0
t , (2.2.8)

where λ0 is a positive constant measuring the magnitude of her temporary price

impact. As a result, the major agent’s cash process satisfies

X0,ν
t = x0 +

ˆ t

0

S0,ν
s ν0sds, 0 ≤ t ≤ T. (2.2.9)

The major agent’s objective is to optimally unwind her initial position q0 by the

trading horizon T , so to minimise her execution costs. This is equivalent to max-
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imising the expected revenues from her liquidation, therefore, we take the major

agent’s performance functional to be1

H0
(
ν0; ν1

)
:= E

[
X0,ν

T

]
. (2.2.10)

Minor agent’s objective. As in the case of the major agent, the transactions

of the minor agent create temporary price impact, such that the execution price of

her orders is given by

S1,ν
t = P ν

t − λ1ν
1
t . (2.2.11)

where λ1 is a positive constant. Note that the temporary price impact parameter

is likely to be smaller for the minor agent as HFTs can take advantage of the

order-book real-time information in order to reduce their price impact.

The minor agent’s cash process is given by

X1,ν
t = x1 +

ˆ t

0

S1,ν
s ν1sds, 0 ≤ t ≤ T. (2.2.12)

The minor agent wishes to maximise her cash, however as an HFT, she is inclined

to avoid overnight risk, specifically, in the form of non-zero overnight inventory. As

an example, consider T to be one business week, such that [0, T ] can be partitioned

in five disjoint and contiguous intervals of equal duration τ , where each intervals

represents the market hours of each business day from Monday to Friday. Without

loss of generality, in the context of our example we assume that the minor agent’s

intraday risk preferences are independent of the business day considered and we

ignore the possibility of after-hours trading. Since the minor agent wishes to close

her position by the end of each day, then as often done for terminal inventory

penalties in the context of single-day liquidations, we can introduce a penalisation

for non-zero inventory at the end of each day. These dynamic inventory preferences

can be accounted by modelling the running inventory costs of the minor agent via a

1It is straightforward to show that maximising (2.2.10) is equivalent to minimising the imple-
mentation shortfall of the major agent’s liquidation, see for example (Cartea et al., 2015, Chapter
6.3).
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periodic function of period τ which drastically increases towards the end of each day

(see e.g. (2.4.6)), i.e. as t approaches τ, 2τ, 3τ, 4τ, 5τ from the left. Mathematically,

in order to capture the minor agent’s dynamic inventory preferences of our example

and more general ones, we define the minor agent’s running inventory costs in

terms of a function ϕ1 : [0, T ] → R+. Henceforth, we work under the following

assumption:

Assumption 2.2.1. We assume ϕ1 is a piecewise continuous and locally bounded

function.

The minor agent risk-revenue functional is therefore given by

H1(ν1; ν0) := E
[
X1,ν

T +Q1,ν1

T

(
P ν
T − αQ1,ν1

T

)
−
ˆ T

0

ϕ1
t

(
Q1,ν1

t

)2
dt

]
. (2.2.13)

The first two terms in (2.2.13) represent the trader’s terminal wealth; that is, her

final cash position, accounting for the accrued trading costs which are induced

by temporary price impact and the permanent price impact of both agents as

prescribed in (2.2.11), as well as the mark-to-market value of her terminal risky

asset position. The third and fourth terms in (2.2.13) implement a penalty ϕ1
t > 0

and α > 0 on her running and terminal inventory, respectively. Also observe that

H1(ν1; ν0) <∞ for any pair of admissible strategies ν0 ∈ Aq0
M and ν1 ∈ Am.

The Stackelberg game. We formulate the competition between the major agent

and the minor agent as a stochastic Stackelberg game in which the minor agent is

reacting to the major agent’s trading. Mathematically, the game unfolds in two

steps:

(i) Minor Agent’s Problem: for a given major agent’s liquidation strategy ν0 ∈
Aq0

M , the minor agent chooses her own strategy ν1,∗(ν0) ∈ Am in order to

maximise her objective functional H1;

(ii) Major Agent’s Problem: given the optimal minor agent’s strategy ν1,∗ es-

tablished in (i), the major agent determines the optimal liquidation strategy

ν0,∗ ∈ Aq0
M in order to maximise her objective functional H0.
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In the context of our model, we formalise the definition of Stackelberg equilibrium

as follows.

Definition 2.2.2 (Stackelberg equilibrium). A pair ν∗ := (ν0,∗, ν1,∗(ν0,∗)) where

ν0,∗ and ν1,∗(ν0,∗) solve the major and minor agent’s problems, respectively, is called

a Stackelberg equilibrium.

2.3 Main Results

Our main results derive explicitly the unique Stackelberg equilibrium of the game.

As stated at the end of Section 2.2, we start by solving the minor agent’s problem.

2.3.1 Solution to the Minor Agent’s Problem

We denote by L2([0, T ]2) the space of measurable kernels T : [0, T ]2 → R such that

ˆ T

0

ˆ T

0

T (t, s)2dtds <∞. (2.3.1)

Henceforth, we make the following assumption (see also Remark 2.3.3).

Assumption 2.3.1. We assume that the parameters α in (2.2.13) and κ1 in (2.2.7)

are chosen such that

2α ≥ κ1.

As proved in Section 2.6, the solution to the minor agent’s problem can be

stated in terms of the solution of a Riccati equation and the solution of a BSDE.

So, let r1 = (r1t )t∈[0,T ] be the solution to the following Riccati equation with a time

varying coefficient, ∂tr
1
t = 1

λ1
ϕ1
t − (r1t )

2,

r1T = −2α−κ1

2λ1
.

(2.3.2)

Under Assumption 2.3.1, the solution r1 of (2.3.2) exists and is unique over [0, T ]
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(see Proposition 2.6.7). We further define

ξ±t := e±
´ t
0 r1zdz, 0 ≤ t ≤ T, (2.3.3)

as well as the kernel K : [0, T ]2 → R+ which is given by

K(t, s) := ξ−t ξ
+
s , 0 ≤ t, s ≤ T. (2.3.4)

Note that the kernel K is in L2([0, T ]2) (see Lemma 2.6.6). Moreover, for any

ν0 ∈ Aq0
M we define the predictable process

r0t :=
1

2λ1
Et

[ˆ T

t

K(t, s)(dAs − κ0ν
0
sds)

]
, 0 ≤ t ≤ T. (2.3.5)

where A is the finite variation component of the price process P . As shown in

Section 2.6, the process r0t is the solution to the BSDE 2.6.28. The solution to the

minor agent problem is given in the following theorem.

Theorem 2.3.2 (Solution to the minor agent’s problem). Let ν0 ∈ Aq0
M . Un-

der Assumption 2.3.1, there exists a unique optimal strategy ν1,∗(ν0) ∈ Am that

maximizes (2.2.13). This strategy is given by

ν1,∗t = −
(
r0t + r1t

ˆ t

0

K(s, t)r0sds

)
, 0 ≤ t ≤ T. (2.3.6)

The proof of Theorem 2.3.2 is given in Section 2.6.

Remark 2.3.3. In Lemma 2.6.2 we show that Assumption 2.3.1 is a sufficient

condition to guarantee the strict concavity of the minor agent’s functional (2.2.13),

hence the uniqueness of the solution to the minor agent’s problem.

Remark 2.3.4. Note that minor agent’s optimal control in (2.3.6) can be written

in feedback form as follows,

ν1,∗t = −
(
r0t + r1tQ

1,ν1,∗

t

)
, 0 ≤ t ≤ T.

In the special case where there is no permanent price impact, that is κi = 0, i = 1, 2
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and the risk aversion function ϕ1 is a positive constant, (2.3.6) coincides with the

optimal strategy in (Belak et al., 2019, Theorem 3.1).

2.3.2 Solution to the Major Agent’s Problem

Our next step is to derive the maximiser of the major agent’s objective functional

(2.2.10), given the minor agent’s optimal strategy ν1,∗ in (2.3.6). As it is often

the case in Stackelberg games, solving the second phase of the game is technically

challenging and rarely achievable. In order to do so we make the following simpli-

fying assumption on the signal A in (2.2.1). We assume that the signal process A

is given by

At =

ˆ t

0

µsds, 0 ≤ t ≤ T.

where µ = (µt)t∈[0,T ] is an (Ft)t∈[0,T ]-adapted stochastic process satisfying

ˆ T

0

E[µ2
t ]dt <∞. (2.3.7)

Note that this assumption is an adaptation of the assumptions made in (Cartea

and Jaimungal, 2016; Lehalle and Neuman, 2019) on the signal for single agent

optimal execution problems to the present context. We further denote

µ̄t := E[µt], 0 ≤ t ≤ T. (2.3.8)

Next, we introduce some essential definitions related to linear operators in

L2([0, T ]).

Definitions for linear operators in L2([0, T ]). For any linear operator T from

L2([0, T ]) to L2([0, T ]) we define the operator norm

||T|| := sup
{
||Tψ||L2 : ψ ∈ L2([0, T ]), ||ψ||L2 ≤ 1

}
, (2.3.9)
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and we denote by B(L2([0, T ])) the space of all bounded linear operator from

L2([0, T ]) to L2([0, T ]) with respect to the operator norm (2.3.9).

For any kernel T ∈ L2([0, T ]2) (see (2.3.1)) we say that T is the integral operator

generated by the kernel T if for any ψ ∈ L2([0, T ]),

(Tψ)(t) =

ˆ T

0

T (t, s)ψ(s)ds, 0 ≤ t ≤ T.

Any integral operator generated by a kernel in L2([0, T ]2) is in B(L2([0, T ])) by the

Cauchy-Schwarz inequality.

If T1 and T2 are two operators in B(L2([0, T ])), then we denote by T2T1 the

operator obtained by composing T2 with T1, that is for any ψ ∈ L2([0, T ]),

(T2T1ψ)(t) := (T2(T1ψ))(t), 0 ≤ t ≤ T.

Special operators for our setting. Recall that K was defined in (2.3.4). We

introduce the kernel G : [0, T ]2 → R+ defined as

G(t, s) :=
ˆ t∧s

0

K(u, t)K(u, s)du, 0 ≤ t, s ≤ T. (2.3.10)

Note that the kernel G is symmetric and in L2([0, T ]2) (see Proposition 2.8.1). We

define the operators G and S acting on any ψ ∈ L2([0, T ]) as follows,

(Gψ)(t) :=

ˆ T

0

G(t, s)ψ(s)ds, (2.3.11)

(Sψ)(t) :=
1

2λ0

ˆ T

0

1{s≤t}ψ(s)ds+
κ1

4λ1λ0
(Gψ)(t). (2.3.12)

Note that the both operators G and S are in B(L2([0, T ])) (see Proposition 2.7.4

and Lemma 2.7.10). Moreover, the operator G admits a spectral decomposition in

terms of a sequence of positive eigenvalues (ζn)n≥1 and a corresponding sequence

of eigenfunctions (ψn)n≥1 in L2([0, T ]) (see Lemma 2.8.3). We define the resolvent
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kernel R : [0, T ]2 → R as

R(t, s) = − κ1κ0
2λ0λ1

G(t, s) +
∑
n≥1

1

1 + κ1κ0

2λ0λ1
ζn

(
κ1κ0
2λ0λ1

ζn

)2

ψn(t)ψn(s), (2.3.13)

for all t, s ∈ [0, T ] and where the sum converges uniformly and uniformly-absolutely

over [0, T ]2, see Remark 2.3.10 for details. Moreover, we define the resolvent oper-

ator R, acting on any ψ ∈ L2([0, T ]) as follows,

(Rψ)(t) := ψ(t) +

ˆ T

0

R(t, s)ψ(s)ds, 0 ≤ t ≤ T. (2.3.14)

The operator R is also in B(L2([0, T ])), this is proved later in Proposition 2.7.9.

Notation. We denote by 1 (t) the constant function which equals to 1 everywhere

on [0, T ].

We are ready to state our main result regarding the solution to major’s agent

problem conditional on the minor agent adopting the strategy ν1,∗ given in (2.3.6).

Recall that µ̄ was defined in (2.3.8) and S was defined in (2.3.12).

Theorem 2.3.5 (Solution to the major agent’s problem). Assume that ν1,∗ is given

by (2.3.6) and that Assumption 2.3.1 holds. Then, there exists a unique optimal

strategy ν0,∗ ∈ Aq0
M that maximizes the major agent’s objective functional (2.2.10).

It is given by

ν0,∗t =
η

2λ0
(R1 )(t) + (RSµ̄)(t), 0 ≤ t ≤ T, (2.3.15)

where

η = 2λ0
q0 − ⟨RSµ̄, 1 ⟩L2

⟨R1 , 1 ⟩L2

. (2.3.16)

Moreover, ν0,∗t is continuous on [0, T ].

The proof of Theorem 2.3.5 is given in Section 2.7. In the proof of Theorem 2.3.5

we also show that the constant η in (2.3.16) is well-defined, which is an ingredient

in proving the admissibility of the optimal strategy (2.3.15).

The following corollary follows immediately from Theorem 2.3.2 and Theorem
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2.3.5.

Corollary 2.3.6. Let ν0,∗ and ν1,∗(ν0,∗) as in Theorem 2.3.5 and Theorem 2.3.2,

respectively. Then, under Assumption 2.3.1, the pair (ν0,∗, ν1,∗(ν0,∗)) ∈ Aq0
M ×Am

is the unique Stackelberg equilibrium in the sense of Definition 2.2.2.

The following remarks discuss the result of Corollary 2.3.6.

Remark 2.3.7. Note that ν0,∗ in (2.3.15) is given in terms of the resolvent operator

R. In Section 2.5 we derive a numerical scheme that approximates ν0,∗ by using

finite dimensional projections of G. The problem of computing R and hence ν0,∗ is

reduced to a finite-dimensional problem of matrix inversion. We refer to Proposition

2.5.4 and Theorem 2.5.6 for the details.

Remark 2.3.8. The most challenging step in obtaining a Stackelberg equilibrium

is to derive the strategy of the player who acts first, namely the major agent. In

our case we needed to develop a novel approach for deriving the optimal strategy in

(2.3.15), using tools from the theory of integral equations. In Section 2.4 we illus-

trate the solutions to the Stackelberg game and in Section 2.5 we derive additional

technical steps, which are needed in order to plot such explicit solutions directly

from Theorems 2.3.2 and 2.3.5.

Remark 2.3.9. Our illustrations in Section 2.4 suggest that the minor agent can

adopt either predatory or cooperative strategy with respect to the major agent, in

each period, depending on the trade-off between the order-flow of the major agent

and the trading signal during the period (see Figure 2.1). This qualitative behaviour

can be compared with the deterministic model of Schied and Schöneborn (2009), who

showed that in the single period case the competitor is also selling and then buying

her position back due to inventory constraints (see Figure 1 therein). In their two

period model the seller is selling only the first period and then depending on the

price impact parameters there are two possible scenarios: either the competitor is

buying in the first period and then selling in the second period, i.e. introducing

cooperative strategies in the game (see Figure 8 therein), or doing a round trip of

selling first and then closing the position, all in the first period.
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Remark 2.3.10. We remark that the sum appearing in (2.3.13) satisfies the fol-

lowing convergence properties. Define

RN(t, s) =
N∑

n=1

1

1 + κ1κ0

2λ0λ1
ζn

(
κ1κ0
2λ0λ1

ζn

)2

ψn(t)ψn(s), t, s ∈ [0, T ],

Rabs
N (t, s) =

N∑
n=1

∣∣∣∣∣ 1

1 + κ1κ0

2λ0λ1
ζn

(
κ1κ0
2λ0λ1

ζn

)2

ψn(t)ψn(s)

∣∣∣∣∣ , t, s ∈ [0, T ].

Then, it follows from the proof of (Porter and Stirling, 1990, Theorem 4.27) that

RN converges uniformly to the sum in R on (t, s) ∈ [0, T ]2 , and that Rabs
N is

uniformly convergent. The uniform convergence of Rabs
N guarantees that the uniform

convergence of RN is preserved even when the order of summation is changed.

Therefore, as it is natural to expect, the solution ν0,∗ in (2.3.15) is independent of

how one enumerates the eigenvalues and the corresponding eigenfunctions of G.

2.4 Illustrations

In this section we illustrate the agents’ optimal equilibrium strategies, which were

derived in Theorems 2.3.5 and 2.3.2. Motivated by Section 4 of Lehalle and Neuman

(2019), we consider the case where the signal µ in (2.3.7) follows an Ornstein-

Uhlenbeck process,

dµt = −βµtdt+ σdWt, µ0 = m0, (2.4.1)

where W = (Wt)t≥0 is a standard Brownian motion and β and σ are positive

constants. Here, the process µ could model a trading signal such as moving averages

of past price changes (Gârleanu and Pedersen, 2013), order-book imbalances (Cont

and de Larrard, 2013; Cont, Kukanov, and Stoikov, 2014; Lipton, Pesavento, and

Sotiropoulos, 2013; Cartea and Jaimungal, 2016; Lehalle and Neuman, 2019), or

price-dividend ratios (Barberis, 2000). Furthermore, we assume that M in (2.2.1)

is given by

Mt =M0 + σMW̃t, (2.4.2)
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where W̃ is a standard Brownian motion independent from W , and M0, σ0 are

positive constants. We fix the values of the price impact parameters λi, κi, the

initial inventory of the major agent q0 and the terminal penalty parameter α in

(2.2.13) to be

κ0 = 2, κ1 = 2, λ0 = 1, λ1 = 1, q0 = 10, α = 10, (2.4.3)

as well as the parameters of M in (2.4.2) and of µ in (2.4.1),

m0 = −0.5, β = 0.1, σ = 4, M0 = 100, σM = 1. (2.4.4)

The plots in this section are generated by using the numerical scheme which

will described in detail in Section 2.5. We choose as a complete orthonormal basis

(ai)
∞
i=1 the functions

ai(t) :=

1/
√
T i = 1√

2/T cos
(

(i−1)πt
T

)
i = 2, 3, . . .

(2.4.5)

and such that each of corresponding degenerate kernel Gn defined in (2.5.4) rep-

resent the nth-degree Fourier series approximation of the kernel G in (2.3.10). In

order to strike a balance between numerical accuracy and computational efficiency,

our simulations are generated by approximating the kernel G with the degenerate

kernel G300.

The time dependence in the minor agent’s inventory costs ϕ1
t (see (2.2.13)) can

accommodate the setting of a liquidation carried out over several days. We take

T = kτ for some positive integer k and for τ > 0. Moreover, we choose the function

ϕ1 to be given by the following parametric form

ϕ1
t = c0

(
t

τ
−
⌊
t

τ

⌋)c1

, 0 ≤ t ≤ T, (2.4.6)

for two positive constants c0 and c1, which in the context of our simulations, we

take to be c0 = 500 and c1 = 15. The function (2.4.6) is periodic of period τ
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and increases to its maximum value as t approaches τ, 2τ, 3τ, . . . , kτ from the

left, forcing the minor agent to liquidate most of her position at the end of each

period. We consider a liquidation carried over a business week, from Monday to

Friday, such that T = 5 (days) and τ = 1 (day). Figure 2.1 illustrates three

examples of a multi-day liquidation. Specifically, the top panel shows the major

agent’s deterministic optimal inventory (green line), deduced from (2.3.15), as well

as three different realisations of the minor agent’s optimal inventories that one

obtains from (2.3.6) (blue, purple and red lines). The bottom panel shows the

corresponding signal µ observed by the minor agent’s while adopting the strategies

at the top panel.

From (2.2.6) it follows that the price impact generated by the major agent’s

optimal strategy ν0,∗ is perceived as a deterministic signal. The sell-off of shares by

the major agent has the effect of pushing the price downwards, therefore, it gener-

ates opportunities which can be exploited by the minor agent. These considerations

justify the fact that, as shown in (2.3.6), the minor agent adopts a trading strategy

which tracks the “impacted” signal µt − κ0ν
0,∗
t instead of the raw market signal µt.

Hence, depending on her forecast on the impacted signal µt − κ0ν
0,∗
t , during each

period the minor agent can decide whether to trade in the same direction of the

major agent or not. This has the effect that, over the interval [0, T ], the observed

trading style of the minor agent can be predatory, i.e. front running the major

agent (blue line), cooperative (red line) or a hybrid of both (purple line).

To further understand several novel features of our model in the context of the

multi-day liquidation we have just analysed, it is instructive to momentarily pause

our discussion and consider the simpler case of a liquidation carried out over a

single day. In particular, we wish to benchmark the major agent’s optimal strategy

in (2.3.15) against the strategy ν0,BM the major agent would use if she were unaware

of the minor agent’s trading activity. The strategy ν0,BM can be found by solving

the major agent’s problem with κ1 = 0 and it is given by

ν0,BM
t =

q0
T

+
m0

2λ0β

(
1− βTe−βt − e−βT

βT

)
, 0 ≤ t ≤ T. (2.4.7)
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Figure 2.1: In the top panel, the green line represent the major agent’s optimal
inventory while the remaining solid lines represent the minor agent’s optimal in-
ventory when the minor agent is adopting a predatory trading style (blue line)
and cooperative trading style (red line) or an hybrid of both (purple line). In the
bottom panel, we show the signal µt corresponding to the realisations of the minor
agent’s inventories in the top panel.

29



Note that in the case of m0 = 0 in (2.4.1), ν0,BM in (2.4.7) is a TWAP strategy.

We assume that the major agent wishes to liquidate his initial position over a

time horizon of six hours, from 10 AM to 4 PM, hence we set T = 6 (hours).

In the present context, we slightly modify some of the parameters in (2.4.3) and

(2.4.4): σ = 1.5, α = 50 and ϕ1
t ≡ 1. The top panel of Figure 2.2 shows the major

agent’s optimal trading rate ν0,∗ (solid green line) and the benchmark trading rate

ν0,BM (dashed green line). The bottom panel show 1000 realisations of minor agent’s

optimal trading rate ν1,∗ (thin solid orange lines) and the cross-sectional average

(thick solid brown line). We observe that the major agent’s optimal strategy visibly

deviate from the benchmark one in order to take into account the adverse effect of

the minor agent’s trading activity. We remark that since the major agent adopts a

deterministic strategy, her decisions are based on the cross-sectional average of the

minor agent’s strategy, i.e. the solid brown line in the bottom panel of Figure 2.2.

Initially, it is optimal to trade faster than the benchmark strategy in anticipation

of the expected permanent price impact generated by the minor agent’s reaction.

Indeed, the early prices are more favourable to the major agent since they have

not been affected yet by the extra price impact generated by presence of the minor

agent. In the middle of the trading window the major agent’s keeps trading but

at a lower rate than the benchmark strategy. The explanation for this is that the

major agent is aware that the minor agent could potentially trade in the same

direction. Therefore, slowing down partially minimise the negative externality the

minor agent’s exerts on her via the aggregated permanent price impact. Finally, in

the last section of the trading window two factors determine the behaviour of the

major agent’s optimal strategy. First, the major agent must increase her trading

rate to meet the terminal inventory constraint Q0,ν0,∗

T = 0. Second, the major agent

is aware that, on average, the minor agent will have to close her short position at the

end of the time horizon, therefore, she will have to buy shares, generating market

impact and pushing the price up again. Hence, the prices at the end of the trading

window are more favourable for the major agent, therefore, a substantial portion

of the liquidation is postponed to the last hour. Figure 2.3 presents the major
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agent’s and minor agent’s inventories corresponding to the trading rates depicted

in Figure 2.2.

Figure 2.2: The major agent’s and minor agent’s optimal strategies in (2.3.15) and
(2.3.6), respectively, for a single-day liquidation. In the top panel, the green solid
line shows the major agent’s optimal strategy while the dashed green line shows
the benchmark strategy of (2.4.7). In the bottom panel, the thin orange solid lines
depicts different realisations of the minor agent’s optimal strategy. The brown solid
line is the cross-sectional mean over the realisations.

Having established the major agent’s and minor agent’s trading patterns in the

context of a single day liquidation, we turn again to the case of the multi-day

liquidation presented in Figure 2.1. Analogously to Figure 2.2, the top panel of

Figure 2.4 shows the major agent’s optimal trading rate (solid green line) as well
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Figure 2.3: The major agent’s and minor agent’s optimal inventories corresponding
to the strategies in (2.3.15) and (2.3.6), respectively, for a single-day liquidation.
In the top panel, the solid green line shows the major agent’s optimal inventory
corresponding to the major agent’s optimal strategy while the dashed green line
shows the inventory corresponding to benchmark strategy in (2.4.7). In the bottom
panel, the thin solid orange lines represent different realisations of the minor agent’s
optimal inventories corresponding to the strategy in (2.3.6) while the solid brown
line is the cross-sectional mean over the realisations.
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the trading rate of the benchmark strategy (dashed green line) in the context of the

multiday-liquidation initially presented in Figure 2.1. Moreover, the bottom panel

of Figure 2.4 presents 1000 realisations of the minor agent’s trading rates (thin

orange lines) as well as the cross-sectional average (solid brown line). We recover

analogous trading patterns to the one observed in the single-day liquidation: the

major agent’s speed, when compared to the benchmark strategy, greatly increases

at the beginning and at the end of each day. Moreover, on average, the minor

agent acquires a short position at the beginning of each day, pushing the price

down, and then, in order to meet her terminal inventory constraint at the end of

each day, she pushes the price up again by buying shares. Note from Figure 2.1

that the predatory, cooperative and hybrid strategies share some common features.

First, at the end of each day all the strategies have a very small inventory. This is

because, by introducing the periodic running inventory costs of (2.4.6), the minor

agent is strongly discouraged to hold a non-zero position at the end of each day,

independently of her forecast for the impacted signal µt − κ0ν
0,∗
t . Secondly, from

Figure 2.1 we observe that that the major agent is not liquidating at constant

speed. Indeed, over the first day she liquidates at a speed visibly larger than, for

example, the one employed over the last day. Such an intense liquidation in the

first day generates an equally large alpha-signal through the corresponding price

impact term κ0ν
0,∗
t . In the first day, the market impact-generated signal κ0ν0,∗t

is large enough to outweigh any realistic realisation of the exogenous signal µt,

therefore, pushing the minor agent to trade in the same direction of the major

agent, independently of the trading style she will adopt later on in the remaining

days.

It is of practical interest to compare the financial performance of the major

agent’s optimal strategy ν0,∗ against those of the benchmark strategy ν0,BM. In

the interest of brevity, we limit ourselves to the case of the single-day liquidation

presented in Figure 2.3. In Figure 2.5 we present a histogram of the empirical

probability distribution of the performance of the major agent’s optimal strategy

in (2.3.15) relative to the benchmark strategy in (2.4.7) generated using 1,000

simulations. We compare the profit-and-loss (PnL) of the strategies in basis points
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Figure 2.4: We present the major agent’s and minor agent’s optimal strategy in
(2.3.15) and (2.3.6), respectively, for a multi-day liquidation. In the top panel, the
green solid line shows the major agent’s optimal strategy while the dashed green
line shows the benchmark strategy of (2.4.7). In the bottom panel, the thin orange
solid lines depicts different realisations of the minor agent’s optimal strategy while
the brown solid line represents the cross-sectional mean over the realisations.
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Figure 2.5: The savings per share, computed using (2.4.8), measured in basis points
(bps) from following the major agent’s optimal strategy relative to the benchmark
strategy in (2.4.7). The top panel shows the box-plot corresponding to the distri-
bution in the bottom panel.

(bps) through the following formula:

X0,ν0,∗

T −X0,ν0,BM

T

X0,ν0,BM

T

× 104, (2.4.8)

where X0,ν0,BM

T is the terminal cash obtained from employing the benchmark strat-

egy ν0,BM and X0,ν0,∗

T is the terminal cash obtained from employing the optimal

strategy ν0,∗t . Notice that in the computation of X0,ν0,BM

T we assume that the minor

agent is still present in the market, she can still affect the major agent’s execution

price via her permanent price impact and that she adopts the optimal strategy

ν1,∗(ν0,BM). The mean of the distribution in Figure 2.5 is strictly positive, hence

the major agent’s optimal strategy on average outperforms the benchmark strategy.

Finally, we show that the major agent’s and minor agent’s trading behaviour in-

duces noteworthy patterns in the intraday volume. A well-known empirical pattern

of intraday volume is that it follows a U-shaped curve, where the traded volume
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Figure 2.6: Intraday volume curve as a function of the time of day. Realisations of
the volume curves are represented by blue lines, while the cross-sectional median
is drawn in pink.

peaks at the beginning of the day and at the end of the day, see for example (Cartea

et al., 2015, Chapter 4, Figure 4.2). In Figure 2.6 we present the intraday volume

curve implied by the major agent’s and minor agent’s trading behaviour. Specif-

ically, we simulate 1000 realisation of the minor agent’s trading strategy and for

each realisation we consider the absolute number of shares traded by the minor

agent and the major agent over 1 minute bins from 10 AM to 4 PM. We call this

quantity the “volume” traded in each minute bin. Then, we compute the natural

logarithm of 1 + volume, where adding 1 allows to consider assets whose traded

volume is a fraction of a share. Our procedure is completely analogous to the one

described in Cartea et al. (2015). Each blue line in Figure 2.6 represents a realisa-

tion of the log-volume, while the magenta line is the median value of each 1-minute

bin. The volume curves of Figure 2.6 visibly present a U-shaped pattern analogous,

for example, to those empirically observed and reported in Cartea et al. (2015).
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2.5 Numerical Scheme

Theorem 2.3.5 presents the unique major agent optimal strategy ν0,∗ in closed-

form. The optimal strategy ν0,∗ is expressed in terms of the resolvent operator R,

defined in (2.3.13), which in turn relies on the eigenvalues (ζn)n≥1 and eigenfunc-

tions (ψn)n≥1 of the operator G defined in (2.3.11). In several simple cases these

eigenfunctions and eigenvalues can be computed explicitly.

For example, in the case of ϕ1 ≡ 0, (ζn)n≥1 and (ψn)n≥1 can be explicitly deter-

mined in terms of the roots of a transcendental equation (see Appendix A.1). Never-

theless, a closed-form representation for the eigenvalues (ζn)n≥1 and the eigenfunc-

tions (ψn)n≥1 might be unattainable when ϕ1 is a generic non-negative piecewise

continuous function. Therefore, we dedicate this section to developing a numerical

scheme to compute the major agent optimal strategy ν0,∗ which fully bypass the

need of determining these eigenvalues and eigenfunctions. As a by product, such

numerical scheme will also determine the Stackelberg equilibrium of Corollary 2.3.6.

We denote by I the identity operator on L2([0, T ]), that is

(Iψ)(t) = ψ(t) for all 0 ≤ t ≤ T, ψ ∈ L2([0, T ]). (2.5.1)

As usual, the resolvent operator in (2.3.14) can be written as

R =

(
I+

κ1κ0
2λ0λ1

G

)−1

.

This is proved rigorously in Proposition 2.7.9. It follows that the major agent

optimal strategy ν0,∗ in (2.3.15) satisfies to the following integral operator equation

(
I+

κ1κ0
2λ0λ1

G

)
ν0,∗ = Sµ̄+

η

2λ0
, (2.5.2)

Here, the constant η is defined as in (2.3.16) and the operators G and S are defined

as in (2.3.11) and (2.3.12), respectively. The idea is to replace (2.5.2) with a

sequence of approximate equations (see (2.5.8)) whose solutions converge to the
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desired optimal strategy ν0,∗.

For the discussion that follows it is convenient to recall the definition of a finite-

rank operator and that of a compact operator, which we will provide in Definition

2.7.2. In Proposition 2.7.4 we will show that the operator G is compact. Therefore,

there exists a sequence of finite-rank operator (Gn)n≥1 in B(L2([0, T ])) satisfying

the approximation property

lim
n→∞

||Gn − G|| = 0,

where ∥ · ∥ refers to the operator norm in (2.3.9).

In order to construct such sequence, we consider a complete orthonormal ba-

sis (ai)
∞
i=1 in L2([0, T ]). A possible choice of such complete orthonormal basis in

L2([0, T ]) is given by (2.4.5).

Let the kernel G be defined as in (2.3.10) and let the functions (bi)∞i=1 be defined

as

bi(t) :=

ˆ T

0

G(t, s)ai(s)ds. (2.5.3)

We recall the definition of a degenerate kernel (Porter and Stirling, 1990, Definition

3.1) which will be useful in the following.

Definition 2.5.1 (Degenerate Kernel). Let n ≥ 1 and suppose there are finitely

many functions (ai)
n
i=1 and (bi)

n
i=1 such that ai : [0, T ] → R and bi : [0, T ] → R for

i = 1, . . . , n. Assume further that T : [0, T ]2 → R is a kernel such that

T (t, s) =
n∑

i=1

ai(t)bi(s), t, s ∈ [0, T ].

Then, the kernel T is said to be degenerate.

Define the sequence of degenerate kernels (Gn)n≥1 as the partial sums

Gn(t, s) :=
n∑

i=1

ai(t)bi(s), n ≥ 1. (2.5.4)
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Since G is a kernel in L2([0, T ]2) (see Proposition 2.8.1) then, as shown in the proof

of (Porter and Stirling, 1990, Theorem 3.4), the sequence (Gn)n≥1 converges to G
in the sense

lim
n→∞

ˆ T

0

ˆ T

0

(G(t, s)− Gn(t, s))
2dsdt = 0. (2.5.5)

Given the degenerate kernels (Gn)n≥1 we can define a corresponding sequence of

so-called finite rank integral operators (Gn)n≥1 as

(Gnψ)(t) :=

ˆ T

0

Gn(t, s)ψ(s)ds, ψ ∈ L2([0, T ]). (2.5.6)

The following proposition, which is proved in Section 2.10, gives the convergence

result for the sequence (Gn)n≥1.

Proposition 2.5.2. Under Assumption 2.3.1, let (Gn)n≥1 be defined as in (2.5.6)

and let G be defined as in (2.3.11). Then the finite rank operators Gn are in

B(L2([0, T ])). Moreover, we have that

lim
n→∞

||Gn − G|| = 0. (2.5.7)

Next, we consider the following sequence of approximate equations to (2.5.2),

(
I+

κ1κ0
2λ0λ1

Gn

)
ν0,(n) = Sµ̄+

ηn
2λ0

, n ≥ 1, (2.5.8)

for a suitably defined sequence of constants (ηn)n≥1.

Remark 2.5.3. We remark that in (2.5.8) we continue to take the operator S to be

defined in terms of G, as in (2.3.12), and not in terms of the sequence (Gn)n≥1. It

is not necessary to approximate the operator S since it can be explicitly expressed in

terms of the kernel G in (2.3.10), via the operator G, therefore, it can be computed

explicitly via numerical integration (see also Remark 2.5.8).

A solution to (2.5.8) exists if the inverse of the operator I+ κ1κ0

2λ0λ1
Gn exists, with
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the candidate solution ν0,(n) being given by

ν0,(n) =

(
I+

κ1κ0
2λ0λ1

Gn

)−1(
Sµ̄+

ηn
2λ0

)
. (2.5.9)

The next result shows that for sufficiently large n, the inverse of I+ κ1κ0

2λ0λ1
Gn exists.

Moreover, we show that the problem of finding such inverse is reduced to the finite

dimensional problem of matrix inversion.

To state our results it is convenient to introduce the sequence of matrices

(Gn)n≥1 where Gn ∈ Rn×n and whose entries are defined as

(Gn)ij := ⟨ai, bj⟩L2 (2.5.10)

for all 1 ≤ i, j ≤ n and with ai and bj defined as in (2.5.3). Moreover, we will denote

by In the n-dimensional identity matrix, that is In := diag(1, . . . , 1) ∈ Rn×n.

We are now ready to state our next proposition, which is proved in Section 2.10.

Proposition 2.5.4. Under Assumption 2.3.1, let (Gn)n≥1 be defined as in (2.5.6)

and let (Gn)n≥1 be defined as in (2.5.10). Then, there exists N ≥ 1 such that for

all n ≥ N the operator I+ κ1κ0

2λ0λ1
Gn and the matrix In + κ1κ0

2λ0λ1
Gn are both invertible.

In particular, for all n ≥ N it holds that

(
I+

κ1κ0
2λ0λ1

Gn

)−1

ψ = ψ − κ1κ0
2λ0λ1

n∑
i,j=1

(
In +

κ1κ0
2λ0λ1

Gn

)−1

i,j

⟨ψ, bj⟩L2 ai, (2.5.11)

for any ψ ∈ L2([0, T ]).

Note that both operators I+ κ1κ0

2λ0λ1
G and I+ κ1κ0

2λ0λ1
Gn are invertible (see Proposition

2.7.17), nevertheless, only in the case of the latter the inverse operator can be

computed via matrix inversion by exploiting the corresponding degenerate kernel

decomposition, see also Remark 2.5.8 for additional discussion.

The next result shows that that the candidate solutions in (2.5.9) converge

in mean to the optimal strategy ν0,∗ of Theorem 2.3.5. Henceforth, we take the
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sequence of constants (ηn)n≥1 to be defined as

ηn := 2λ0

q0 −
〈(

I+ κ1κ0

2λ0λ1
Gn

)−1

Sµ̄, 1

〉
L2〈(

I+ κ1κ0

2λ0λ1
Gn

)−1

1 , 1

〉
L2

, n ≥ 1. (2.5.12)

Proposition 2.5.5. Under Assumption 2.3.1, let ν0,∗ and ν0,(n) be defined as in

(2.3.15) and (2.5.9), respectively. Then, there exists N ≥ 1 such that for all n ≥ N

the functions ν0,(n) are well-defined and are in L2([0, T ]). Moreover,

lim
n→∞

∥∥ν0,∗ − ν0,(n)
∥∥
L2 = 0. (2.5.13)

The proof of Proposition 2.5.5 is postponed to Section 2.10. Lemma 2.10.4

shows that for sufficiently large n, the constants ηn in (2.5.12) are well-defined.

In order to obtain an approximating sequence which converges uniformly to the

optimal control ν0,∗ we introduce the sequence of candidate functions (ν̂0,(n))n≥1

defined as

ν̂
0,(n)
t := − κ1κ0

2λ0λ1

(
Gν0,(n)

)
(t) + (Sµ̄)(t) +

ηn
2λ0

(2.5.14)

for all t ∈ [0, T ] and for all n ≥ 1. Our main result for this section is the following

convergence theorem.

Theorem 2.5.6. Under Assumption 2.3.1, let ν0,∗, ν̂0,(n) and ν1,∗ be defined as in

(2.3.15), (2.5.14) and (2.3.6), respectively. Then, there exists an N ≥ 1 such that

for all n ≥ N the functions ν̂0,(n) are in L2([0, T ]) and the controls ν1,∗(ν̂0,(n)) are

in Am. Furthermore, we have that:

(i)

lim
n→∞

sup
t∈[0,T ]

∣∣∣ν0,∗t − ν̂
0,(n)
t

∣∣∣ = 0,

(ii)

lim
n→∞

sup
t∈[0,T ]

∣∣ν1,∗t

(
ν0,∗
)
− ν1,∗t

(
ν̂0,(n)

)∣∣ = 0, P− a.s.

The proof of Theorem 2.5.6 is postponed to Section 2.10.

41



Proposition 2.5.4 and Theorem 2.5.6 show that the infinite-dimensional problem

of determining the solution to (2.5.2), can be reduced to the finite-dimensional

problem of matrix inversion.

Remark 2.5.7. The proofs of the results of Proposition 2.5.5 and Theorem 2.5.6

do not rely on the existence of the orthonormal expansion in (2.5.4) and the cor-

responding convergence (2.5.5). Indeed, our result can be extended to any generic

sequence of operators (Gn)n≥1 in B(L2([0, T ])) satisfying the approximation property

of Proposition 2.5.2 and which do not necessarily enjoy a integral representation of

the form in (2.5.6).

Remark 2.5.8. The matrix entries in (2.5.10) must be computed numerically. The

use of a numerical evaluation in (2.5.10) will lead to numerical errors in the entries

of the matrix In+ κ1κ0

2λ0λ1
Gn. As shown in (Atkinson, 1997, Chapter 2.3.4), for a suf-

ficiently accurate estimation the numerical error arising from these computations

is negligible. A similar discussion applies to, among others, the numerical evalu-

ation of the inverse of the matrix In + κ1κ0

2λ0λ1
Gn and of the integral Sµ̄. These are

all elementary and well-understood convergence problems in numerical analysis and

the corresponding convergence rate could be easily incorporated in the convergence

results of this section. Hence, our discussion assumes that the aforementioned

quantities are taken to be exact and that the corresponding numerical errors are

negligible.

Remark 2.5.9. The numerical scheme we have presented has an advantage from

an implementation standpoint too. Specifically, if one were to determine the major

agent’s optimal strategy by using the result of Theorem 2.3.5, she would need to

mathematically determine the eigenvalues (ζn)n≥1 and eigenfunctions (ψn)n≥1 each

time she wishes to change the function ϕ1, as shown, for example, in Appendix

A.1. On the other hand, with the numerical scheme of Theorem 2.5.6, to achieve

the same goal it is sufficient to change the expression of ϕ1 in the numerical solver

of the Riccati ODE (2.3.2), which usually amounts to change solely few lines of

code.
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2.6 Proof of Theorem 2.3.2

We show how the Stackelberg equilibrium can be found by backward induction,

that is by first solving the minor agent’s problem and then the major agent’s prob-

lem. We determine the minor agent’s optimal strategy via a calculus of variations

argument, as similarly done in Neuman and Voß (2022). The following results also

borrow ideas from Casgrain and Jaimungal (2019).

Henceforth, we assume that ν0 ∈ Aq0
M is a fixed major agent liquidation strategy

and with a slight abuse of notation we write H1(ν) for H1(ν; ν0). We start by

determining an alternative representation for the minor agent’s objective.

Lemma 2.6.1. The minor agent’s objective H1 in (2.2.13) can be alternatively

represented as

H1(ν1) = x1 − E

[
λ1

ˆ T

0

(ν1t )
2dt+ α

(
Q1,ν1

T

)2
+

ˆ T

0

ϕ1
t

(
Q1,ν1

t

)2
dt

+

ˆ T

0

Q1,ν1

t (κ0ν
0
t dt+ κ1ν

1
t dt− dAt)

]
,

(2.6.1)

for any ν1 ∈ Am.

Proof. We use (2.2.12), (2.2.11) and the Itô’s product rule on Q1,ν1

T P ν
T to get

E
[
X1,ν1

T +Q1,ν1

T P ν
T

]
= x1 + E

[ˆ T

0

(P ν
t − λ1ν

1
t )ν

1
t dt+

ˆ T

0

Q1,ν1

t dP ν
t +

ˆ T

0

P ν
t dQ

1,ν1

t

]
,

(2.6.2)

where we also used Q1,ν1

0 = 0 by (2.2.5). Recall that P =M+A. We apply (2.2.5),
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(2.2.6) and (2.2.7) to (2.6.2) in order to obtain

E
[
X1,ν1

T +Q1,ν1

T P ν
T

]
= x1 + E

[
− λ1

ˆ T

0

(ν1t )
2dt+

ˆ T

0

Q1,ν1

t dP ν
t

]

= x1 − E

[
λ1

ˆ T

0

(ν1t )
2dt−

ˆ T

0

Q1,ν1

t dMt

+

ˆ T

0

Q1,ν1

t (κ0ν
0
t dt+ κ1ν

1
t dt− dAt)

]
.

(2.6.3)

Since ν1 ∈ Am (see (2.2.4)), then we can drop the martingale term in (2.6.3) and

obtain

E
[
X1,ν1

T +Q1,ν1

T P ν
T

]
= x1 − E

[
λ1

ˆ T

0

(ν1t )
2dt

+

ˆ T

0

Q1,ν1

t (κ0ν
0
t dt+ κ1ν

1
t dt− dAt)

]
.

(2.6.4)

Substituting (2.6.4) in (2.2.13) returns (2.6.1).

In the next result we use the representation of (2.6.1) to show that the minor

agent’s objective is strictly concave.

Lemma 2.6.2. Under Assumption 2.3.1, the functional H1 defined in (2.2.13) is

strictly concave for ν1 ∈ Am.

Proof. In order to prove that the functional H1 is strictly concave, we must show

that for any 0 < ρ < 1 and ν, ω ∈ Am, such that ν and ω are dP⊗dt distinguishable,

it holds that

I1(ρ, ν, ω) := H1(ρν + (1− ρ)ω)− ρH1(ν)− (1− ρ)H1(ω) > 0. (2.6.5)

It is convenient to introduce the constant θ := 2α−κ1

2
as well as to define the function

Γ1 as follows

Γ1
t =

λ1 −θ
−θ ϕ1

t

 , 0 ≤ t ≤ T. (2.6.6)
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Note that under Assumption 2.3.1 it holds that θ ≥ 0. From (2.2.5) and integration

by parts we get (
Q1,ν1

T

)2
= −2

ˆ T

0

Q1,ν1

t ν1t dt. (2.6.7)

Using (2.6.7) we rewrite the minor agent’s objective in (2.6.1) in terms of the

function Γ1 as

H1(ν1) = x1−E

[ ˆ T

0

 ν1t

Q1,ν1

t

⊺

Γ1
t

 ν1t

Q1,ν1

t

 dt+

ˆ T

0

Q1,ν1

t (κ0ν
0
t dt−dAt)

]
. (2.6.8)

Note that, given the representation in (2.6.8), in the case of θ > 0 and ϕ1
t > 0 for

all t ∈ [0, T ] the strict concavity of H1(ν1) follows from (2.2.5) and the fact that

Γ1
t is a positive-definite matrix for all t ∈ [0, T ]. In what follows we will use (2.6.8)

to show that H1(ν1) is strictly concave also under the assumption that ϕ1
t ≥ 0 and

θ ≥ 0.

We observe that Q1,ν is linear with respect to ν, that is

Q
1,ρν+(1−ρ)ω
t = ρQ1,ν

t + (1− ρ)Q1,ω
t for all ρ ∈ [0, 1], ν, ω ∈ Am.

We substitute (2.6.8) in (2.6.5) and we use the linearity of Q1,· to cancel out the

Q1,·
t (κ0ν

0
t dt− dAt) terms. This yields

I1(ρ, ν, ω) = E

[ˆ T

0

ρ

 νt

Q1,ν
t

⊺

Γ1
t

 νt

Q1,ν
t

 dt+ (1− ρ)

 ωt

Q1,ω
t

⊺

Γ1
t

 ωt

Q1,ω
t

 dt

−

ρ
 νt

Q1,ν
t

+ (1− ρ)

 ωt

Q1,ω
t

⊺

Γ1
t

ρ
 νt

Q1,ν
t

+ (1− ρ)

 ωt

Q1,ω
t

 dt

]
,

where after multiplying out all the terms we get

I1(ρ, ν, ω) =

E

[ˆ T

0

ρ(1− ρ)

 νt

Q1,ν
t

−

 ωt

Q1,ω
t

⊺

Γ1
t

 νt

Q1,ν
t

−

 ωt

Q1,ω
t

 dt

]
. (2.6.9)
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It is convenient to introduce the function δt := νt − ωt for all t ∈ [0, T ]. From

(2.2.5) it follows that Q1,δ
t = Q1,ν

t − Q1,ω
t for all t ∈ [0, T ]. We can rewrite (2.6.9)

in terms of δ and Q1,δ as

I1(ρ, ν, ω) = ρ(1− ρ)
(
E
[ˆ T

0

λ1δ
2
t dt

]
+ E

[ˆ T

0

ϕ1
t

(
Q1,δ

t

)2
dt

]
− E

[ˆ T

0

2θδtQ
1,δ
t dt

])
,

(2.6.10)

where we have used (2.6.6).

Since ϕ1
t ≥ 0 for all t ∈ [0, T ], we have

E
[ˆ T

0

ϕ1
t

(
Q1,δ

t

)2
dt

]
≥ 0.

From (2.2.5) it holds that Q1,δ
t = −

´ t
0
δtdt, therefore by (2.6.7) we get

−E
[ˆ T

0

2δtQ
1,δ
t dt

]
= E

[(
Q1,δ

T

)2]
≥ 0. (2.6.11)

Finally, notice that since ν and ω are dP⊗ dt distinguishable then

E
[ˆ T

0

δ2t dt

]
> 0.

This shows that I1(ρ, ν, ω) > 0 for any θ ≥ 0, 0 < ρ < 1 and any ν, ω ∈ Am, such

that ν and ω are dP⊗ dt distinguishable.

As similarly show in Neuman and Voß (2022), a probabilistic and convex an-

alytic calculus of variations approach can be readily applied to derive a system

of coupled linear FBSDEs which characterises the unique solution to the minor

agent’s problem.

Since under Assumption 2.3.1 the map ν1 → H1(ν1) in (2.6.1) is strictly con-

cave, then it admits a unique maximiser characterised by the critical point at which
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the Gâteaux derivative

⟨DH1(ν1), ω⟩ := lim
ϵ→0

H1(ν1 + ϵω)−H1(ν1)

ϵ
(2.6.12)

vanishes. In the following lemma we obtain an explicit expression for the Gâteaux

derivative of H1.

Lemma 2.6.3. The Gâteaux derivative of H1 in (2.6.1), in direction ω ∈ Am is

given by

〈
DH1(ν1), ω

〉
= E

[ ˆ T

0

ωt

(
− 2λ1ν

1
t + 2αQ1,ν1

T − κ1Q
1,ν1

t + At

+

ˆ T

t

(
2ϕ1

sQ
1,ν1

s + κ0ν
0
s + κ1ν

1
s

)
ds− AT

)
dt

]
, (2.6.13)

for any ν1 ∈ Am.

Proof. Let ϵ > 0 and ν1, ω ∈ Am. We note that from (2.2.5) it follows that

Q1,ν1+ϵω
t = Q1,ν1

t − ϵ

ˆ t

0

ωsds, for all 0 ≤ t ≤ T. (2.6.14)

We use the alternative representation of H1 in (2.6.1) and (2.6.14) to get

H1(ν1 + ϵω)−H1(ν1) = ϵE

[ˆ T

0

ωt(−2λ1ν
1
t + 2αQ1,ν1

T − κ1Q
1,ν1

t )dt

+

ˆ T

0

(ˆ t

0

ωsds

)
(2ϕ1

tQ
1,ν1

t dt+ κ0ν
0
t dt+ κ1ν

1
t dt− dAt)

]

+ ϵ2E

[
− λ1

ˆ T

0

ω2
sds− α

(ˆ T

0

ωsds

)2

−
ˆ T

0

ϕ1
t

(ˆ t

0

ωsds

)2

dt+ κ1

ˆ T

0

ωt

(ˆ t

0

ωsds

)
dt

]
.

(2.6.15)
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From (2.6.12) and (2.6.15) we get

⟨DH1(ν1), ω⟩ = E

[ ˆ T

0

ωt(−2λ1ν
1
t + 2αQ1,ν1

T − κ1Q
1,ν1

t )dt

+

ˆ T

0

(ˆ t

0

ωsds

)
(2ϕ1

tQ
1,ν1

t dt+ κ0ν
0
t dt+ κ1ν

1
t dt− dAt)

]
.

(2.6.16)

Since ν1, ω ∈ Am, ν0 ∈ Aq0
M and E[(

´ T
0
|dAt|)2] < ∞, then use Fubini’s theorem in

(2.6.16) to get

⟨DH1(ν1), ω⟩ = E

[ˆ T

0

ωt

(
− 2λ1ν

1
t + 2αQ1,ν1

T − κ1Q
1,ν1

t + At

+

ˆ T

t

(
2ϕ1

sQ
1,ν1

s + κ0ν
0
s + κ1ν

1
s

)
ds− AT

)
dt

]
,

which concludes the result.

From the explicit expression of the Gâteaux derivative in (2.6.13) we can de-

rive a first order optimality condition. It takes the form of a coupled system of

linear forward backward stochastic differential equations (FBSDE), as described in

following lemma.

Lemma 2.6.4. Under Assumption 2.3.1, the control ν1,∗ ∈ Am is the unique max-

imiser to the minor agent’s objective functional H1 in (2.6.1) if and only if the

process (Q1,ν1,∗ , ν1,∗) satisfies the following coupled linear FBSDE system

dQ1,ν1,∗

t = −ν1,∗t dt, Q1,ν1,∗

0 = 0,

dν1,∗t =
1

2λ1
dNt +

1

2λ1
dMt −

ϕ1
t

λ1
Q1,ν1,∗

t dt− κ0
2λ1

ν0t dt+
1

2λ1
dAt,

ν1,∗T =
2α− κ1
2λ1

Q1,ν1,∗

T

(2.6.17)

dP ⊗ dt-a.e. on Ω × [0, T ] where M = (Mt)t∈[0,T ] and N = (Nt)t∈[0,T ] are two

suitable square integrable martingales.

Proof. In Lemma 2.6.2 we have shown that under Assumption 2.3.1, the functional
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H1(ν1) is strictly concave of any ν1 ∈ Am. Therefore, we may apply Proposition

2.1 of (Ekeland and Témam, 1999, Chapter II) to obtain that

⟨DH1(ν1,∗), ω⟩ = 0 for all ω ∈ Am ⇐⇒ ν1,∗ = arg sup
ν∈Am

H1(ν). (2.6.18)

The strict concavity of H1 guarantees that the optimiser ν1,∗ is unique.

Necessity: We assume that

ν1,∗ = arg sup
ν∈Am

H1(ν).

Then, (2.6.18) and (2.6.13) imply that for all ω ∈ Am it holds

⟨DH1(ν1,∗), ω⟩ = E

[ˆ T

0

ωt

(
− 2λ1ν

1,∗
t + 2αQ1,ν1,∗

T − κ1Q
1,ν1,∗

t + At

+

ˆ T

t

(
2ϕ1

sQ
1,ν1,∗

s + κ0ν
0
s + κ1ν

1,∗
s

)
ds− AT

)
dt

]
= 0.

By applying the optional projection theorem we get

E

[ˆ T

0

ωt

(
− 2λ1ν

1,∗
t + Et

[
2αQ1,ν1,∗

T − AT

]
− κ1Q

1,ν1,∗

t + At

+ Et

[ˆ T

t

(
2ϕ1

sQ
1,ν1,∗

s + κ0ν
0
s + κ1ν

1,∗
s

)
ds

])
dt

]
= 0, (2.6.19)

As (2.6.19) holds for all ω ∈ Am we deduce the following first order condition holds

− 2λ1ν
1,∗
t + Et

[
2αQ1,ν1,∗

T − AT

]
− κ1Q

1,ν1,∗

t + At

+ Et

[ˆ T

t

(
2ϕ1

sQ
1,ν1,∗

s + κ0ν
0
s + κ1ν

1,∗
s

)
ds

]
= 0, (2.6.20)

dP⊗ dt-a.e. on Ω× [0, T ].
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We define the following martingales

Mt := Et

[ˆ T

0

(
2ϕ1

sQ
1,ν1,∗

s + κ0ν
0
s + κ1ν

1,∗
s

)
ds

]
,

Nt := Et

[
2αQ1,ν1,∗

T − AT

]
.

(2.6.21)

Note that M and N are square-integrable since E[(
´ T
0
|dAt|)2] < ∞, ν1,∗, ω ∈ Am

and ν0 ∈ Aq0
M .

We plug M and N in (2.6.20) to get

−2λ1ν
1,∗
t +Nt − κ1Q

1,ν1,∗

t + At +Mt −
ˆ t

0

(
2ϕ1

sQ
1,ν1,∗

s + κ0ν
0
s + κ1ν

1,∗
s

)
ds = 0,

(2.6.22)

From (2.2.5) and (2.6.22) it follows that ν1,∗ solves the following BSDE

dν
1,∗
t = 1

2λ1
dNt +

1
2λ1
dMt − 1

λ1
ϕ1
tQ

1,ν1,∗

t dt− κ0

2λ1
ν0t dt+

1
2λ1
dAt,

ν1,∗T = 2α−κ1

2λ1
Q1,ν1,∗

T ,

this gives (2.6.17).

Sufficiency: Assume that (Q1,ν1,∗ , ν1,∗) solves (2.6.17) dP ⊗ dt-a.e. and that

ν1,∗ ∈ Am. We will show that ⟨DH1(ν1,∗), ω⟩ vanishes for all ω ∈ Am which,

once combined with (2.6.18), implies that ν1,∗ is the solution to the minor agent’s

problem. Since (Q1,ν1,∗ , ν1,∗) solves (2.6.17) we get that

2λ1ν
1,∗
t = Et

[
(2α− κ1)Q

1,ν1,∗

T

]
− Et

[ˆ T

t

dAs

]
+ Et

[ˆ T

t

(
κ0ν

0
s + 2ϕ1

tQ
1,ν1,∗

s

)
ds

]
= Et

[
2αQ1,ν1,∗

T − AT

]
− κ1Q

1,ν1,∗

t + At

+ Et

[ˆ T

t

(
κ0ν

0
s + 2ϕ1

tQ
1,ν1,∗

s + κ1ν
1,∗
s

)
ds

]
, dP⊗ dt− a.e.,

(2.6.23)

where we used (2.2.5) in the second equality. Hence, ν1,∗t satisfies (2.6.20), therefore

the left-hand side of (2.6.18) hold.

For the remainder of this section we focus on the derivation of the explicit
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solution to (2.6.17). We first describe the heuristics of the proof.

Heuristics for the solution to (2.6.17). The solution to the FBSDE system

(2.6.17) determines the solution to the minor agent’s problem. The main obstacle

in solving the system (2.6.17) is that it presents a general time dependent coefficient

ϕ1
t . In order to solve this equation, we formulate an ansatz for the minor agent’s

optimal strategy ν1,∗. Then, we demonstrate that the ansatz solution for ν1,∗ is the

unique solution to (2.6.17) and therefore the solution to the minor agent’s problem.

Due to the linear structure of the system (2.6.17), we make the ansatz that there

are two progressively measurable processes r0 = (r0t )t∈[0,T ] and r1 = (r1t )t∈[0,T ] such

that ν1,∗ can be expressed as

ν1,∗t = −
(
r0t + r1tQ

1,ν1,∗

t

)
, 0 ≤ t ≤ T. (2.6.24)

We differentiate (2.6.24) via Itô’s lemma and by using dQ1,ν1,∗

t = −ν1,∗t dt to get

dν1,∗t = −dr0t − dr1tQ
1,ν1,∗

t + ν1,∗t r1t dt. (2.6.25)

We plug (2.6.25) into (2.6.17) and we arrive at

0 =
(
2λ1dr

1
t − 2ϕ1

tdt+ 2λ1(r
1
t )

2dt
)
Q1,ν1,∗

t

+
(
2λ1dr

0
t + 2λ1r

1
t r

0
t dt− κ0ν

0
t dt+ dAt + dMt + dNt

)
.

(2.6.26)

Equation (2.6.26) must hold dP ⊗ dt almost everywhere for all values Q1,ν1,∗

t . We

conjecture that the terms within each of the brackets must vanish independently.

The terms from (2.6.26) yield to two coupled differential equations for r0 and r1

independent of the process Q1,ν1,∗ , where we determine the terminal conditions

from (2.6.17). Specifically, the process r1 must satisfy dt-a.e. the following non-

autonomous Riccati ODE

∂tr
1
t =

1

λ1
ϕ1
t − (r1t )

2, r1T = −2α− κ1
2λ1

, (2.6.27)
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while r0 must satisfy the following BSDE

−dr0t = r1t r
0
t dt−

κ0
2λ1

ν0t dt+
1

2λ1
dAt +

1

2λ1
dMt +

1

2λ1
dNt, r0T = 0. (2.6.28)

An explicit formula for the solution of (2.6.27) does not exist when ϕ1
t is a general

piecewise continuous function as in the case at hand. Nevertheless, we will prove

that the solution to (2.6.27) exists and it is unique. Once a solution to (2.6.27) is

found, then we can plug it to (2.6.28) and derive r0.

Our next result proves the existence and uniqueness of the solution to (2.6.27).

Lemma 2.6.5. Under Assumption 2.3.1, the Riccati equation (2.6.27) has a unique

continuous solution.

Proof. Let r̂1 be the solution to the following equation∂tr̂
1
t = − 1

λ1
ϕ1
t + (r̂1t )

2, 0 ≤ t ≤ T,

r̂1T = 2α−κ1

2λ1
.

(2.6.29)

Since, r̂1T ≥ 0 and ϕ1 is a piecewise continuous, locally bounded non-negative

function over [0, T ], then by Theorem 2.1 of Wonham (1968) there exists a unique

solution r̂1, which is absolutely continuous on [0, T ] (see also Theorem 3.5 in Freiling

(2002) for a more recent reference). As stated by Wonham (1968), the function

r̂1 satisfies (2.6.29) only dt almost everywhere. Note that by taking r1t = −r̂1t , it

follows that r1 is an absolutely continuous solution to (2.6.27). Uniqueness of the

solution to (2.6.27) then follows by the uniqueness for (2.6.29).

In order to prove the existence of a solution to the BSDE (2.6.28) we need the

following techinical result.

Lemma 2.6.6. Let r1 be the unique solution of (2.6.27). Then, the kernel K is

jointly continuous over [0, T ]2. In particular, K is bounded over [0, T ]2 and is in

L2([0, T ]2).
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Proof. Lemma 2.6.5 proves that r1 is continuous on [0, T ]. Then, from (2.3.3) it

follows that the functions ξ±t are continuous. Therefore, from (2.3.4) we get that

K is jointly continuous on [0, T ]2 hence it K is bounded on [0, T ]2 and

ˆ T

0

ˆ T

0

|K(t, s)|2 dsdt <∞,

that is K is in L2([0, T ]2).

In the following proposition we derive the existence and uniqueness of the so-

lutions to (2.6.27) and (2.6.28).

Proposition 2.6.7. Under Assumption 2.3.1, there exists a unique continuous

function r1 that satisfies the non-autonomous Riccati ODE (2.6.27) dt-a.e. on

[0, T ]. Furthermore, the BSDE (2.6.28) admits a closed form solution r0 given by

(2.3.5). Moreover,

E
[ˆ T

0

(r0t )
2dt

]
<∞. (2.6.30)

Proof. In Lemma 2.6.5 we have established that (2.6.27) has a unique continuous

solution r1. We prove the rest of the claims in the following two steps.

Step 1. We show that r0t given by (2.3.5) solves the BSDE (2.6.28); Note that

since r1 is continuous, the function ξ+ in (2.3.3) is the unique solution of the ODE

dξ+t
dt

= r1t ξ
+
t , ξ+0 = 1. (2.6.31)

Since r1t is continuous on [0, T ], it holds that

ˆ T

0

(ξ+t )
2dt <∞. (2.6.32)

Since ξ+t satisfies (2.6.32), then the process

ξ+t r
0
t :=

1

2λ1
Et

[ˆ T

t

ξ+s (dAs − κ0ν
0
sds)

]
, 0 ≤ t ≤ T, (2.6.33)

53



is the unique strong solution to the following linear BSDEd(ξ
+
t r

0
t ) =

ξ+t
2λ1

(κ0ν
0
t dt− dAt)− 1

2λ1
ξ+t dMt − 1

2λ1
ξ+t dNt,

ξ+T r
0
T = 0.

(2.6.34)

We multiply both sides in (2.6.33) by ξ−t from (2.3.3) and use the identity ξ−t ξ
+
t = 1.

By doing so, we can obtain an expression for r0t , that is

r0t =
1

2λ1
Et

[ˆ T

t

ξ−t ξ
+
s (dAs − κ0ν

0
sds)

]
. (2.6.35)

We now show that r0 from (2.6.35) is the solution to (2.6.28). From (2.6.34) and

Itô’s product rule we get

dξ+t r
0
t + ξ+t dr

0
t =

ξ+t
2λ1

(κ0ν
0
t dt− dAt)−

1

2λ1
ξ+t dMt −

1

2λ1
ξ+t dNt. (2.6.36)

Next, we use (2.6.31) and (2.6.36) to get

ξ+t

(
r1t r

0
t dt+ dr0t −

1

2λ1
(κ0ν

0
t dt− dAt) +

1

2λ1
dMt +

1

2λ1
dNt

)
= 0. (2.6.37)

Since ξ+t > 0 for all t ∈ [0, T ], we have

r1t r
0
t dt+ dr0t −

1

2λ1
(κ0ν

0
t dt− dAt) +

1

2λ1
dMt +

1

2λ1
dNt = 0.

with terminal condition r0T = 0 which follows from (2.6.35). By comparing this

with (2.6.28), it follows that r0t is the solution to the BSDE (2.6.28). Recall the

definition of K in (2.3.4). We substitute the expression for K(t, s) from (2.3.4) into

(2.6.35) from which it follows that r0t given by (2.3.5) solves (2.6.28).

Step 2. We show (2.6.30). From (2.3.4) it follows that K(t, s) > 0 for all

t, s ∈ [0, T ]2. Moreover by Lemma 2.6.6, K is bounded on [0, T ]2. Since A is

of bounded variation and K is bounded, then by using the conditional Jensen’s
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inequality and the tower property we get

sup
t∈[0,T ]

E

[(
Et

[ˆ T

t

K(t, s)dAs

])2
]
≤ CE

[(ˆ T

0

|dAs|
)2
]

<∞,

(2.6.38)

where we used (2.2.1) in the last inequality. Similarly, we can obtain that

sup
t∈[0,T ]

E

[(
Et

[ˆ T

t

K(t, s)ν0sds

])2
]
≤ CE

[ˆ T

0

(ν0s )
2ds

]
<∞,

(2.6.39)

where we used the fact that ν0 ∈ Aq0
M and (2.2.2). From (2.3.5), (2.6.38) and

(2.6.39) we get

sup
t∈[0,T ]

E[(r0t )2] <∞,

and (2.6.30) follows.

Remark 2.6.8. As stated in Proposition 2.6.7, the function r1 satisfies the Riccati

ODE (2.6.27) only dt almost everywhere. This is to be expected since ϕ1 is assumed

to be piecewise continuous and the derivatives of r1 may not exists at the points of

discontinuity. Nevertheless, as we will show in the proof of Theorem 2.3.2, this is

sufficient for our needs as we wish to solve the FBSDE system (2.6.17) only dP⊗dt
almost everywhere.

We are now ready to prove Theorem 2.3.2. In order to simplify the notation,

we will often denote the process ν1,∗(ν0) by ν1,∗.

Proof of Theorem 2.3.2. Let ν1,∗ as in (2.3.6) with r1 as in (2.6.27) and r0 as in

(2.3.5).

Step 1: We determine an explicit expression for Q1,ν1,∗ . We argue that

Q1,ν1,∗

t =

ˆ t

0

K(s, t)r0sds. (2.6.40)
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This could verified by using (2.3.4) so we can write (2.6.40) as

Q1,ν1,∗

t = ξ+t

ˆ t

0

ξ−s r
0
sds. (2.6.41)

From (2.3.3) we note that ξ+ satisfies the following ODE,

dξ+t
dt

= r1t ξ
+
t 0 ≤ t ≤ T. (2.6.42)

Taking the derivative in (2.6.41) and using (2.3.3), (2.3.4) and (2.6.42) we arrive

at

dQ1,ν1,∗

t = r1t

(
ξ+t

ˆ t

0

ξ−s r
0
sds

)
dt+ r0t dt

=

(
r0t + r1t

ˆ t

0

K(s, t)r0sds

)
dt.

(2.6.43)

From (2.6.43) and (2.2.5) we get (2.6.40).

Step 2: We show that ν1,∗ solves (2.6.17). Note that from (2.2.5) and (2.3.6)

we can rewrite ν1,∗ as

ν1,∗t = −
(
r0t + r1tQ

1,ν1,∗

t

)
, 0 ≤ t ≤ T. (2.6.44)

By plugging in (2.6.44) into (2.6.17) we conclude that it is enough to prove that

(2.6.26) holds. Since r0t satisfies (2.6.28) and r1t satisfies (2.6.27) dt-a.e. on [0, T ],

then (2.6.26) holds dP⊗dt almost everywhere. Next, using the terminal conditions

of r0 and r1 from (2.6.28) and (2.6.27) we deduce from (2.6.44) that the terminal

condition in (2.6.17) is satisfied. Recall that the forward component in (2.6.17)

is satisfied by (2.2.5). Therefore, (Q1,ν1,∗ , ν1,∗) solve the system (2.6.17), dP ⊗ dt

almost everywhere.

Step 3: We show that ν1,∗ ∈ Am. From (2.2.4) it follows that we need to verify

that

E
[ˆ T

0

(ν1,∗t )2dt

]
<∞. (2.6.45)

Form (2.6.40), Proposition 2.6.7, Lemma 2.6.6 and Cauchy-Schwartz inequality we
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get

E
[ˆ T

0

(
Q1,ν1,∗

t

)2
dt

]
≤ E

[ˆ T

0

(ˆ t

0

K(s, t)2ds

)(ˆ t

0

(r0s)
2ds

)
dt

]
<∞.

(2.6.46)

From Proposition 2.6.7 it follows that r1 is continuous hence bounded on [0, T ] and

that r0 is square-integrable. Using this, (2.6.44) and Cauchy-Schwartz inequality

gives

E
[ˆ T

0

(ν1,∗t )2dt

]
≤ 2E

[ˆ T

0

(r0t )
2dt

]
+ 2E

[ˆ T

0

(r1t )
2
(
Q1,ν1,∗

t

)2
dt

]
<∞.

(2.6.47)

Therefore, ν1,∗ is admissible and it solves (2.6.17), hence by Lemma (2.6.4) it is

the unique maximiser to the minor agent’s objective functional H1 in (2.6.1).

2.7 Proof of Theorem 2.3.5

In this section we derive the major agent’s optimal strategy via a calculus of vari-

ation argument. We start be defining operators which are essential to our proofs.

Then we derive an equivalent representation the major agent’s objective H0 which

is more convenient to our method of proof. Throughout this section we assume

that Assumption 2.3.1 holds and that the minor agent is adopting the strategy ν1,∗

from Theorem 2.3.2. Henceforth, with a slight abuse of notation we write H0(ν0)

for H0(ν0, ν1,∗(ν0)).

Essential definitions of L2([0, T ]) operators. We denote by T ∗ the adjoint

kernel of T for ⟨·, ·⟩L2 , that is

T ∗(t, s) := T (s, t), s, t ∈ [0, T ], (2.7.1)

and by T∗ the corresponding adjoint integral operator.
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We define the kernel K1 : [0, T ]
2 → R+ as

K1(t, s) := K(s, t)1{s≤t}, s, t ∈ [0, T ], (2.7.2)

where K is given in (2.3.4). We let K1 to be the integral operator generated by the

kernel K1, that is

(K1ψ)(t) :=

ˆ T

0

K1(t, s)ψ(s)ds, t ∈ [0, T ], ψ ∈ L2([0, T ]), (2.7.3)

The following lemma, which is proved in Section 2.8, outlines some useful properties

of K1. Recall that the class of operators B(L2([0, T ])) was defined after (2.3.9).

Lemma 2.7.1. The operator K1 is in B(L2([0, T ])). Moreover, K∗
1 ∈ B(L2([0, T ]))

is given by

(K∗
1ψ)(t) =

ˆ T

0

K(t, s)ψ(s)1{t≤s}ds, t ∈ [0, T ], ψ ∈ L2([0, T ]). (2.7.4)

We recall the definition of a compact operator from Porter and Stirling (1990),

(see Definition 3.2 therein).

Definition 2.7.2. An operator T : L2([0, T ]) → L2([0, T ]) is said to have finite

rank if its image {Tψ : ψ ∈ L2([0, T ])} has finite dimension. An operator L ∈
B(L2([0, T ])) is said to be compact if there is a sequence (Ln)n≥1 of finite-rank

operators in B(L2([0, T ])) such that ||Ln − L|| → 0 as n→ ∞.

A particularly important result that we will use states that any operator gener-

ated by a kernel in L2([0, T ]2) is compact (see Theorem 3.4 in Porter and Stirling

(1990)). We remark that not all operators in B(L2([0, T ])) are compact operators

as pointed out in example 3.6 in Porter and Stirling (1990).

Next we define non-negative and positive operators in B(L2([0, T ])) as in (Porter

and Stirling, 1990, Definition 6.1).

Definition 2.7.3. Let T ∈ B(L2([0, T ])) be a self-adjoint operator. T is said to

be non-negative if and only if ⟨Tψ, ψ⟩L2 ≥ 0 for all ψ ∈ L2([0, T ]). It is said to be
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positive if and only if ⟨Tψ, ψ⟩L2 > 0 for all ψ ̸= 0 in L2([0, T ]). If there a positive

constant m for which ⟨Tψ, ψ⟩L2 ≥ m||ψ||2L2 for all ψ ∈ L2([0, T ]), then T is said to

be positive and bounded below.

Our next result outlines several important properties of the operator G in

(2.3.11). Recall that K1 was defined in (2.7.3).

Proposition 2.7.4. Let G be defined as in (2.3.11). Then G ∈ B(L2([0, T ])) is a

positive, compact and self-adjoint operator. Moreover, it satisfies

(Gψ)(t) = (K1K
∗
1ψ)(t), for all t ∈ [0, T ], ψ ∈ L2([0, T ]). (2.7.5)

The proof of Proposition 2.7.4 is given in Section 2.8.

In the following lemma we determine an alternative representation for the major

agent’s objective functional.

Lemma 2.7.5. Let H0 be the major agent’s objective functional in (2.2.10). Then,

for any ν0 ∈ Aq0
M it holds that

H0(ν0) = x0 +M0q0 − κ0
q20
2
− κ1κ0

2λ1

ˆ T

0

ν0t (Gν
0)(t)dt

+

ˆ T

0

(
κ1
2λ1

ν0t (Gµ̄)(t) +Q0,ν0

t µ̄t

)
dt− λ0

ˆ T

0

(ν0t )
2dt.

(2.7.6)

The proof of Lemma 2.7.5 is postponed to Section 2.9.

The following proposition establishes the uniqueness of the maximiser of H0.

Proposition 2.7.6. There exists at most one admissible maximiser to the major

agent’s objective functional H0 in (2.2.10)

Proof. To show the desired result, it is sufficient to show that the objective func-

tional H0 is strictly concave over Aq0
M .

Notice that since ν1,∗ ∈ Am, ν0 ∈ Aq0
M and µ satisfies (2.3.7), then H0 is finite.

Therefore, in order to show that the objective H0 is strictly concave over Aq0
M we
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must verify that

I0(ρ, ν, ω) := H0(ρν + (1− ρ)ω)− ρH0(ν)− (1− ρ)H0(ω) > 0 (2.7.7)

for any ρ ∈ (0, 1) and for any dt-distinguishable ν, ω ∈ Aq0
M .

We now fix such ρ and ν, ω. From (2.2.3) and (2.3.11) it follows that Q0,ν and

Gν are linear in ν. Then from (2.7.6) and (2.7.7) we get

I0(ρ, ν, ω) = ρ(1− ρ)λ0

ˆ T

0

(νt − ωt)
2dt

+ ρ(1− ρ)
κ1κ0
2λ1

ˆ T

0

(νt − ωt)(G(ν − ω))(t)dt.

(2.7.8)

Note that the left to show that the right-hand side of (2.7.8) is strictly positive since

G is a positive operator by Proposition 2.7.4 and ν and ω are dt-distinguishable.

As similarly done in Section 2.6, we can apply a convex analytic calculus of

variation approach to derive a first order optimality conditions which characterizes

the unique solution to the major agent’s problem.

Since the map ν0 → H0(ν0) in (2.2.10) is strictly concave, then H0 admits a

unique maximiser characterised by the critical point at which the Gâteaux deriva-

tive ⟨DH0(ν0), ω⟩, as defined in (2.6.12), vanishes. We remind the reader that the

minor agent optimal strategy ν1,∗ was fixed to be the one in (2.3.6), therefore,

making the major agent’s objective functional H0 only a function of the major

agent control ν0. In the next lemma we explicitly compute the first-order Gâteaux

derivative of H0. Recall that Aq0
M was defined in (2.2.2).

Lemma 2.7.7. The Gâteaux derivative of H0 in (2.7.6), in a direction ω ∈ A0
M is

given by

⟨DH0(ν0), ω⟩ =
ˆ T

0

ωt

(
− 2λ0ν

0
t −

κ1κ0
λ1

(Gν0)(t) +
κ1
2λ1

(Gµ̄)(t)−
ˆ T

t

µ̄sds

)
dt, (2.7.9)
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for any ν0 ∈ Aq0
M .

Proof. Let ϵ > 0, ν0 ∈ Aq0
M and ω ∈ A0

M . From (2.7.6) we get

H0(ν0 + ϵω)−H0(ν0)

= ϵ

(ˆ T

0

ωt

(
−2λ0ν

0
t +

κ1
2λ1

(Gµ̄)(t)

)
dt− κ1κ0

2λ1

ˆ T

0

ωt(Gν
0)(t)dt

− κ1κ0
2λ1

ˆ T

0

ν0t (Gω)(t)dt−
ˆ T

0

µ̄t

(ˆ t

0

ωsds

)
dt

)

+ ϵ2

(
− λ0

ˆ T

0

ω2
sds−

κ1κ0
2λ1

ˆ T

0

ωt(Gω)(t)dt

)
.

(2.7.10)

Notice that all the terms in (2.7.10) are finite as a consequence of ω ∈ A0
M , ν0 ∈ Aq0

M ,

µ satisfying (2.3.7) and G ∈ B(L2([0, T ])) as shown in Proposition 2.7.4. It follows

that

⟨DH0(ν0), ω⟩ =
ˆ T

0

ωt

(
− 2λ0ν

0
t −

κ1κ0
2λ1

(Gν0)(t) +
κ1
2λ1

(Gµ̄)(t)
)
dt

− κ1κ0
2λ1

ˆ T

0

ν0t (Gω)(t)dt−
ˆ T

0

(µ̄t)

(ˆ t

0

ωsds

)
dt.

(2.7.11)

Proposition 2.7.4 shows that G ∈ B(L2([0, T ])). Since µ satisfies (2.3.7), then µ̄ is

in L2([0, T ]) by Jensen’s inequality. Since ω ∈ A0
M and µ̄ ∈ L2([0, T ]), then we can

apply Fubini’s theorem to obtain

ˆ T

0

(µ̄t)

(ˆ t

0

ωsds

)
dt =

ˆ T

0

ωs

ˆ T

s

µ̄tdtds. (2.7.12)

As claimed in Proposition 2.7.4, G is self-adjoint, therefore, it holds that

ˆ T

0

ν0t (Gω)(t)dt = ⟨ν0, (Gω)⟩L2

= ⟨ω, (Gν0)⟩L2

=

ˆ T

0

ωt(Gν
0)(t)dt.

(2.7.13)

Finally, we use (2.7.12) and (2.7.13) in (2.7.11) to get (2.7.9).
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Recall the definition of the operator S in (2.3.12). In the following lemma we

derive an optimality condition that takes the form of an integral equation.

Proposition 2.7.8. A strategy ν0,∗ ∈ Aq0
M maximises the major agent’s perfor-

mance functional (2.2.10) if there exists a constant η ∈ R such that,

ν0,∗t +
κ1κ0
2λ0λ1

(Gν0,∗)(t) = (Sµ̄)(t) +
η

2λ0
, for all 0 ≤ t ≤ T. (2.7.14)

Proof. In the proof of Proposition 2.7.6 we have shown that the objective functional

H0 is strictly concave over Aq0
M . Therefore, by Proposition 2.1 in Chapter 2 in

Ekeland and Témam (1999) if an admissible strategy ν0,∗ satisfies

⟨DH0(ν0,∗), ω⟩ = 0, for all ω ∈ A0
M , (2.7.15)

then it is the maximiser of H0.

Recalling the result of Lemma 2.7.7, we plug (2.7.14) into (2.7.9) to get

⟨DH0(ν0,∗), ω⟩ = −
ˆ T

0

ωt

(
2λ0(Sµ̄)(t) + η − κ1

2λ1
(Gµ̄)(t) +

ˆ T

t

µ̄sds

)
dt

= −
(ˆ T

0

µ̄sds+ η

) ˆ T

0

ωtdt

(2.7.16)

where we used (2.3.12) in the second equality. Recall that ω ∈ A0
M , then from

(2.2.2) we get (2.7.15).

The following proposition, which is proved in Section 2.8, derives some proper-

ties of the operator R in (2.3.14) that are crucial to the proof of Theorem 2.3.5.

Proposition 2.7.9. Let R be defined as in (2.3.14) and G be defined as in (2.3.11).

Then the following holds:
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(i) The inverse operator of I+ κ1κ0

2λ0λ1
G exists and it satisfies

R =

(
I+

κ1κ0
2λ0λ1

G

)−1

. (2.7.17)

(ii) R is positive, bounded from below and is in B(L2([0, T ])).

(iii) If f ∈ C([0, T ]), then (Rf) ∈ C([0, T ]).

The following lemma derive some essential properties of the operator S in

(2.3.12).

Lemma 2.7.10. Let S be as in (2.3.12). Then S is in B(L2([0, T ])) and for any

ψ ∈ L2([0, T ]),(Sψ)(t) is continuous on 0 ≤ t ≤ T .

Proof. Proposition 2.7.4 proves that G is in B(L2([0, T ])), hence it follows from

(2.3.12) that also S is in B(L2([0, T ])).

Next, let ψ ∈ L2([0, T ]). From Proposition 2.9.4 it follows that Gψ is continu-

ously differentiable on [0, T ], hence by (2.3.12) the continuity of (Sψ)(·) follows.

We are now ready to prove Theorem 2.3.5.

Proof of Theorem 2.3.5. Recall that ν0,∗ and η were defined in (2.3.15) and (2.3.16),

respectively. We split the proof into the following steps.

Step 1. We show that (ν0,∗, η) is the unique solution to (2.7.14). Recall that R

was defined in (2.3.14). From (2.3.7) and Lemma 2.7.10 it follows that Sµ̄(·) is in

L2([0, T ]). Then, from Proposition 2.7.9 we get that the unique solution to (2.7.14)

is given by

ν0,∗t =

((
I+

κ1κ0
2λ0λ1

G

)−1(
η

2λ0
+ Sµ̄

))
(t)

=
η

2λ0
(R1 )(t) + (RSµ̄)(t), 0 ≤ t ≤ T.

(2.7.18)

Step 2. We verify that ν0,∗ satisfies the fuel constraint in (2.2.2). Note that
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we need to show that ⟨ν0,∗, 1 ⟩L2 = q0. From (2.3.15) and (2.3.16) we get

⟨ν0,∗, 1 ⟩L2 =
η

2λ0
⟨R1 , 1 ⟩L2 + ⟨RSµ̄, 1 ⟩L2

=

(
q0 − ⟨RSµ̄, 1 ⟩L2

⟨R1 , 1 ⟩L2

)
⟨R1 , 1 ⟩L2 + ⟨RSµ̄, 1 ⟩L2

= q0.

(2.7.19)

Note that by Proposition 2.7.9(ii) the operator R is positive and bounded from

below. Therefore the denominator in (2.3.16) is strictly positive and the constant

η is well-defined.

Step 3. We verify that ν0,∗ is in L2([0, T ]). From Lemma 2.7.10 it follows that

(Sµ̄)(t) is continuous on [0, T ]. Proposition 2.7.9(iii) and (2.7.18) then imply that

ν0,∗t is continuous and therefore bounded on [0, T ]. This concludes the proof.

2.8 Proofs of Lemma 2.7.1 and Propositions 2.7.4

and 2.7.9

Proof of Lemma 2.7.1. Recall that kernels K and K1 were defined in (2.3.4) and

(2.7.2) respectively. Let ψ be in L2([0, T ]). From (2.7.1) we get

K∗
1(t, s) = K(t, s)1{t≤s}, for all 0 ≤ t, s ≤ T, (2.8.1)

which verifies (2.7.4). From Lemma 2.6.6 we get that K is in L2([0, T ]2). Then by

(2.7.2) and (2.8.1) also K∗
1 and K1 are in L2([0, T ]2), therefore, K1 and K∗

1 are in

B(L2([0, T ])).

The following lemma describes several properties of the kernel G in (2.3.10)

which are essential to the proof of Proposition 2.7.9.

Lemma 2.8.1. Let G as in (2.3.10). Then, G is symmetric and jointly continuous

on [0, T ]2. Moreover, G is in L2([0, T ]2).
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Proof. From (2.3.10) it follows that G is symmetric. Recall that ξ+ and ξ− were

defined as in (2.3.3). Note that ξ+ and ξ− are continuous on [0, T ] and that ξ−

belongs to L2([0, T ]). It follows that t 7→
´ t
0
(ξ−u )

2du is continuous on [0, T ]. From

(2.3.4) and (2.3.10) it follows that the kernel G can be rewritten as follows,

G(t, s) = ξ+t ξ
+
s

ˆ t∧s

0

(ξ−u )
2du, for all 0 ≤ t, s ≤ T.

Therefore, G(t, s) is jointly continuous on [0, T ]2, hence it is in L2([0, T ]2).

The following lemma is needed for the proof of Proposition 2.7.4.

Lemma 2.8.2. Let K1 be defined as in (2.7.3) and let ψ ∈ L2([0, T ]). If (K1ψ)(t) =

0 for all 0 ≤ t ≤ T , then ψ(t) = 0 a.e. on [0, T ].

Proof. Let ψ ∈ L2([0, T ]) and assume that (K1ψ)(t) = 0 for all 0 ≤ t ≤ T . From

(2.3.4), (2.7.2) and (2.7.3) we get

(K1ψ)(t) = ξ+t

(ˆ t

0

ξ−s ψ(s)ds

)
= 0, for all 0 ≤ t ≤ T. (2.8.2)

From (2.3.3) it follows that ξ±t > 0 for all 0 ≤ t ≤ T , therefore

ˆ t

0

ξ−s ψ(s)ds = 0, for all 0 ≤ t ≤ T. (2.8.3)

Since ξ±t are also continuous for all t ∈ [0, T ] and ψ ∈ L2([0, T ]), then ξ−ψ is

integrable. Then from Lebesgue differentiation theorem and (2.8.3) we conclude

that

ξ−t ψ(t) = 0, dt-a.e. on [0, T ].

But again since ξ−t > 0 on [0, T ] we get that

ψ(t) = 0, dt-a.e. on [0, T ],

which proves the result.
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Proof of Proposition 2.7.4. Let ψ ∈ L2([0, T ]). From (2.3.10) we get

(Gψ)(t) =

ˆ T

0

G(t, u)ψ(u)du

=

ˆ T

0

ψ(u)

ˆ t∧u

0

K(s, t)K(s, u)dsdu

=

ˆ T

0

ˆ T

0

K(s, t)K(s, u)ψ(u)1{s≤t}1{s≤u}duds.

Together with (2.7.2) and (2.8.1) it follows that

(Gψ)(t) =

ˆ T

0

K1(t, s)

ˆ T

0

K∗
1(s, u)ψ(u)duds

= (K1K
∗
1ψ)(t), for all 0 ≤ t ≤ T,

(2.8.4)

which proves (2.7.5). Since by Lemma 2.7.1, K1,K
∗
1 ∈ B(L2([0, T ])), a straight-

forward application of the Cauchy-Schwartz inequality and (2.8.4) shows that

G ∈ B(L2([0, T ])). Note that (2.8.4) also implies that G is self-adjoint, that is

G∗ = (K1K
∗
1)

∗

= (K∗
1)

∗K∗
1

= G.

(2.8.5)

Next, using (2.3.11) we prove that G is compact (see Definition 2.7.2). From Lemma

2.8.1 it follows that G is in L2([0, T ]2). Then the result follows from Theorem 3.4

in Porter and Stirling (1990), which shows that any integral operator generated by

a kernel in L2([0, T ]2) is compact.

Finally, we prove that G is a positive operator in the sense of Definition 2.7.3.

We have shown that G = K1K
∗
1. Since for any ψ ∈ L2([0, T ]) we have

⟨Gψ, ψ⟩ = ⟨K1K
∗
1ψ, ψ⟩ = ||K1ψ||2 ≥ 0,

it follows that G is non-negative. By Lemma 2.8.2 we have (K1ψ)(t) = 0 for all

t ∈ [0, T ] only for ψ = 0 a.e. on [0, T ]. Therefore, G is positive.
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In the following we present a sequence of results which are essential to the proof

of Proposition 2.7.9. Using the results of Proposition 2.7.4 we are in a position to

fully characterise the spectral properties of the integral operator G.

Lemma 2.8.3 (Spectral Decomposition of G). Let G be defined as in (2.3.11). Then

G has a sequence of positive eigenvalues (ζn)n≥1 and a corresponding orthonormal

sequence (ψn)n≥1 of eigenfunctions in L2([0, T ]), such that for each φ ∈ L2([0, T ]),

we have that

Gφ =
∑
n≥1

ζn⟨φ, ψn⟩L2ψn.

Moreover, for all N ≥ 1, define GN ,G
abs
N ∈ B(L2([0, T ])) by

GNφ =
N∑

n=1

ζn⟨φ, ψn⟩L2ψn,

Gabs
N φ =

N∑
n=1

|ζn⟨φ, ψn⟩L2ψn| .
(2.8.6)

Then, GNφ converges uniformly to Gφ,

lim
N→∞

sup
t∈[0,T ]

|(GNφ)(t)− (Gφ)(t)| = 0, (2.8.7)

and Gabs
N φ is uniformly convergent, that is, there exists a function Φ ∈ L2([0, T ])

such that

lim
N→∞

sup
t∈[0,T ]

∣∣(Gabs
N φ)(t)− Φ(t)

∣∣ = 0. (2.8.8)

Proof. From Proposition 2.7.4 it follows that G is a self-adjoint compact operator in

B(L2([0, T ])). Therefore, from Theorem 4.15 of Porter and Stirling (1990) there is a

sequence (ζn)n≥1 of non-zero eigenvalues of G and a corresponding orthonormal se-

quence (ψn)n≥1 of eigenfunctions in L2([0, T ]) such that Gψ =
∑

n≥1 ζn⟨ψ, ψn⟩L2ψn.

Moreover, the operator GN converges to G in mean, i.e. ||G−GN || → 0 as N → ∞.

From Proposition 2.7.4 it follows that G is positive and self-adjoint, hence from

Lemma 6.1 in Porter and Stirling (1990) we get that all of its eigenvalues (ζn)n≥1

are positive. Since by Proposition 2.8.1 G is continuous and symmetric, then from

Theorem 4.22 of Porter and Stirling (1990) it follows that GNψ and Gabs
N satisfy the
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convergence in (2.8.7) and (2.8.8).

Remark 2.8.4. In Appendix A.1 we provide an example for the spectral decompo-

sition of G in Lemma 2.8.3.

Lemma 2.8.5. Let G be defined as in (2.3.11). Then, the operator I + κ1κ0

2λ0λ1
G is

positive and bounded from below in the sense of Definition 2.7.3.

Proof. Let ψ ∈ L2([0, T ]). Since G is positive by Proposition 2.7.4 and

κ0, κ1, λ0, λ1 > 0, we get that

〈(
I+

κ1κ0
2λ0λ1

G

)
ψ, ψ

〉
L2

≥ ||ψ||2L2 . (2.8.9)

Therefore, I+ κ1κ0

2λ0λ1
G is positive and bounded from below.

Recall that we assume that constants λ0, λ1, κ1 and κ0 are strictly positive and

that we proved in Lemma 2.8.3 that the eigenvalues of G are all positive. The

following lemma is therefore an easy corollary.

Lemma 2.8.6. Let ζ∗ = −2λ0λ1

κ1κ0
and let G be defined as in (2.3.11). Then, ζ∗ is

not an eigenvalue of the integral operator G.

We recall Theorem 4.27 of Porter and Stirling (1990) which will be useful in

the proof of Proposition 2.7.9.

Proposition 2.8.7 ((Porter and Stirling, 1990, Theorem 4.27)). Let f ∈ L2([0, T ]).

Suppose that T : [0, T ]2 → R is a continuous symmetric kernel and that T is

the integral operator generated by T . Let (µn)n≥1 and (φn)n≥1 be the sequence of

eigenvalues and eigenfunctions of the operator T. Moreover, suppose that 1
λ

is not

an eigenvalue of T. Then the unique solution to the integral equation

ψ(t)− λ

ˆ T

0

T (t, s)ψ(s)dt = f(t), t ∈ [0, T ], (2.8.10)

is given by

ψ(t) = f(t) +

ˆ T

0

R̃(t, s)f(s)ds, t ∈ [0, T ],
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where

R̃(t, s) = λT (t, s) +
∑
n≥1

λµn

1− λµn

φn(t)φn(s),

is jointly continuous on [0, T ]2.

We are now ready to prove Proposition 2.7.9.

Proof of Proposition 2.7.9. (i) Note that the operator G and the corresponding

kernel G satisfy the assumptions of Proposition 2.8.7. Specifically, from Lemma

2.8.6 it follows that −2λ0λ1

κ1κ0
is not an eigenvalue of G. Moreover, in Proposition

2.8.1 we have shown that G is continuous and symmetric on [0, T ]2. Therefore, we

can apply the result of Proposition 2.8.7 to the following integral equation,

ψ(t) +
κ1κ0
2λ0λ1

ˆ T

0

G(t, s)ψ(s)ds = f(t), t ∈ [0, T ], (2.8.11)

and determine that the unique solution to (2.8.11) is given by

ψ(t) = f(t) +

ˆ T

0

R(t, s)f(s)ds, (2.8.12)

with R as in (2.3.13). Moreover, it follows from Proposition 2.8.7 that the kernel

R is jointly continuous on [0, T ]2.

Next, we show that the inverse of I + κ1κ0

2λ0λ1
G is given by R. Since by Lemma

2.8.6, −2λ0λ1

κ1κ0
is not an eigenvalue of G, the operator

(
I+ κ1κ0

2λ0λ1
G
)−1

exists. Let ψ

be the solution of (2.8.11). Since I + κ1κ0

2λ0λ1
G is invertible it follows from (2.8.11)

that ψ can be written as follows,

ψ =

(
I+

κ1κ0
2λ0λ1

G

)−1

f. (2.8.13)

On the other hand, from (2.3.14) and (2.8.12) we have that

ψ = Rf. (2.8.14)
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Therefore, by comparing (2.8.13) and (2.8.14) we find that

(
I+

κ1κ0
2λ0λ1

G

)−1

f = Rf. (2.8.15)

Since (2.8.15) holds for any f ∈ L2([0, T ]), (i) follows.

(ii) From Proposition 2.7.4 it follows that G is a compact operator. Since G

is a compact and the inverse of I + κ1κ0

2λ0λ1
G exists by (i), we get from the remark

below the proof of Theorem 3.3 of Porter and Stirling (1990), that the inverse of

I+ κ1κ0

2λ0λ1
G is in B(L2([0, T ])). From (2.7.17) it follows that R is also in B(L2([0, T ])).

Recall that Lemma 2.8.5 shows that I+ κ1κ0

2λ0λ1
G is positive and bounded from below,

hence from Lemma 6.2 of Porter and Stirling (1990) it follows that its inverse is

positive and bounded from below. From (2.7.17) we conclude that R is positive

and bounded from below in the sense of Definition 2.7.3.

(iii) Assume that f ∈ C([0, T ]) then (iii) follows from (2.8.14) and since R is

jointly continuous on [0, T ]2 by (i).

2.9 Proof of Lemma 2.7.5

Throughout this section we assume Assumption 2.3.1 such that minor agent’s op-

timal control ν1,∗ is well-defined. Before proving Lemma 2.7.5 we prove several

intermediate results.

Lemma 2.9.1. Let r0 be defined as in (2.3.5) and K1 be defined as in (2.7.3). Then

the following holds for any ν0 ∈ Aq0
M ,

E[r0t (ν0)] =
1

2λ1
(K∗

1µ̄)(t)−
κ0
2λ1

(K∗
1ν

0)(t), for all 0 ≤ t ≤ T, (2.9.1)

Moreover (E[r0t (ν0)])t∈[0,T ] is in L2([0, T ]).

Proof. Let ν0 ∈ Aq0
M and recall that K was defined in (2.3.4). From Lemma 2.6.6,

(2.3.7) and (2.3.8) it follows that the conditions of Fubini’s theorem are satisfied

70



and we get that

E
[ˆ T

t

K(t, s)µsds

]
=

ˆ T

t

K(t, s)µ̄sds, for all 0 ≤ t ≤ T. (2.9.2)

Using (2.3.5), (2.9.2) and the tower property we get

E[r0t (ν0)] =
1

2λ1
E
[
Et

[ˆ T

t

K(t, s)(µs − κ0ν
0
s )ds

]]
=

1

2λ1

ˆ T

0

K(t, s)(µ̄s − κ0ν
0
s )1{t≤s}ds.

(2.9.3)

Using the expression for K∗
1 from (2.7.4) in (2.9.3) we arrive at (2.9.1).

From Lemma 2.7.1 it follows that the operators K1 and K∗
1 are in B(L2([0, T ])).

By assumption ν0, µ̄ ∈ L2([0, T ]), then from (2.9.1) it follows that (E[r0t (ν0)])t∈[0,T ]

is in L2([0, T ]).

Lemma 2.9.2. Let ν1,∗ be defined as in (2.3.6). Then or any ν0 ∈ Aq0
M the following

holds

E[ν1,∗t (ν0)] =
κ0
2λ1

[(K∗
1ν

0)(t) + r1t (Gν
0)(t)]− 1

2λ1
[(K∗

1µ̄)(t) + r1t (Gµ̄)(t)],

for all 0 ≤ t ≤ T .

Proof. Lemmas 2.9.1 and 2.6.6 prove that E [r0· (ν
0)] ∈ L2([0, T ]) and K ∈

L2([0, T ]2), respectively. Then from (2.3.6) and Fubini’s theorem it follows that

E[ν1,∗t (ν0)] = −E
[
r0t (ν

0)
]
− r1t

ˆ t

0

K(s, t)E
[
r0s(ν

0)
]
ds.

Together with (2.9.1) we get

E[ν1,∗t (ν0)] = − 1

2λ1
(K∗

1µ̄)(t) +
κ0
2λ1

(K∗
1ν

0)(t)

− r1t

ˆ t

0

K(s, t)

(
1

2λ1
(K∗

1µ̄)(s)−
κ0
2λ1

(K∗
1ν

0)(s)

)
ds.

(2.9.4)

By using (2.7.2), (2.7.3) and (2.7.5) in (2.9.4) we get the result.

71



The following lemma simply follows from (2.2.2) and integration by parts hence

we omit the proof.

Lemma 2.9.3. Let M be a martingale as in (2.2.1). Then for any ν0 ∈ Aq0
M , we

have

E
[ˆ T

0

Mtν
0
t dt

]
=M0q0.

In the following proposition we derive an operator differential equation which

is satisfied by the operator G in (2.3.11).

Proposition 2.9.4. For any ψ ∈ L2([0, T ]) the operator G satisfies the following

differential equation,

d

dt
(Gψ)(t) = r1t (Gψ)(t) + (K∗

1ψ)(t), (Gψ)(0) = 0, 0 ≤ t ≤ T. (2.9.5)

Moreover, (Gψ)(t) is continuously differentiable on [0, T ].

Proof. Let ψ ∈ L2([0, T ]). From Proposition 2.8.1 it follows that G is jointly

continuous on [0, T ]2 hence by (2.3.11) we get that (Gψ)(t) is continuous on [0, T ].

Note that by (2.3.3) we have

dξ±

dt
= ±r1t ξ±t , for all 0 ≤ t ≤ T. (2.9.6)

Since by Proposition 2.6.7 r1 is continuous over [0, T ], it follows from (2.9.6) that

ξ± are continuously differentiable on [0, T ]. From (2.8.2), (2.8.4) and (2.9.6) we get

that
d

dt
(Gψ)(t) =

d

dt

(
ξ+t

ˆ t

0

ξ−s (K
∗
1ψ)(s)ds

)
= r1t

(
ξ+t

ˆ t

0

ξ−s (K
∗
1ψ)(s)ds

)
+ (K∗

1ψ)(t)

= r1t (Gψ)(t) + (K∗
1ψ)(t).

Since by (2.7.5) that the operator G can be represented in terms of K1 and K∗
1 and

Lemma 2.6.6 shows that K is jointly continuous on [0, T ]2, it follows from (2.7.3)

and (2.7.4) that (Gψ)(t) and (K∗
1ψ)(t) are continuous on [0, T ]. Since we have show
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that r1t is also continuous, it follows that d
dt
(Gψ) is continuous over [0, T ]. Finally,

note that

(K1ψ)(0) =

ˆ T

0

K(s, 0)1{s≤0}ψ(s)ds = 0.

From (2.7.5) we have (Gψ)(t) = (K1K
∗
1ψ)(t). This proves that (Gψ)(0) = 0 and

completes the proof.

Now we are ready to prove Lemma 2.7.5.

Proof of Lemma 2.7.5. Let ν0 ∈ Aq0
M . Recall that minor agent’s strategy is as-

sumed to be ν1,∗ in (2.3.6). We define

Zν
t = Y ν

t −
ˆ t

0

µsds, 0 ≤ t ≤ T. (2.9.7)

Note that from (2.2.7) it follows that Zν
0 = 0.

Using (2.2.9) and (2.2.8) we get

E
[
X0,ν0

T

]
= x0 + E

[ˆ T

0

(P ν
t − λ0ν

0
t )ν

0
t dt

]
.

Together with (2.2.6), (2.2.3) and (2.9.7) we arrive at

E
[
X0,ν0

T

]
= x0 + E

[ˆ T

0

Mtν
0
t dt

]
+ E

[ˆ T

0

Zν
t dQ

0,ν0

t

]
−
ˆ T

0

λ0(ν
0
t )

2dt. (2.9.8)

Recall that Zν
0 = 0 and Q0,ν0

T = 0. Using integration by parts, (2.2.7), (2.9.7) and

Fubini’s theorem we obtain

E
[ˆ T

0

Zν
t dQ

0,ν0

t

]
= −E

[ˆ T

0

Q0,ν0

t dZν
t

]
= −
ˆ T

0

Q0,ν
t

(
κ0ν

0
t + κ1E

[
ν1,∗t (ν0)

]
− µ̄t

)
dt.

(2.9.9)

Moreover, it follows from (2.2.3) that

ˆ T

0

Q0,ν0

t ν0t dt =
q20
2
. (2.9.10)
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By substituting (2.9.3), (2.9.9) and (2.9.10) into (2.9.8) we get

E
[
X0,ν0

T

]
= x0 +M0q0 − κ0

q20
2

−
ˆ T

0

Q0,ν0

t (κ1E[ν1,∗t (ν0)]− µ̄t)dt−
ˆ T

0

λ0(ν
0
t )

2dt.

(2.9.11)

Notice that from Proposition 2.9.4 and Lemma 2.9.2 we have

E[ν1,∗t (ν0)] =
κ0
2λ1

d

dt
(Gν0)(t)− 1

2λ1

d

dt
(Gµ̄)(t), for all 0 ≤ t ≤ T. (2.9.12)

Plugging in (2.9.12) into (2.9.11) gives

E
[
X0,ν0

T

]
= x0 +M0q0 − κ0

q20
2
− κ1κ0

2λ1

ˆ T

0

Q0,ν0

t

d

dt
(Gν0)(t)dt

+

ˆ T

0

Q0,ν0

t

(
κ1
2λ1

d

dt
(Gµ̄)(t) + µ̄t

)
dt− λ0

ˆ T

0

(ν0t )
2dt.

(2.9.13)

Since by (2.3.7) and (2.3.8), µ̄ ∈ L2([0, T ]) and by (2.2.2) also ν0 ∈ L2([0, T ]), we

get that from Proposition 2.9.4 that (Gµ̄)(0) = (Gν0)(0) = 0. Then by additional

integration by parts and recalling that Q0,ν0

T = 0 we get

ˆ T

0

Q0,ν0

t

d

dt
(Gν0)(t)dt =

ˆ T

0

ν0t (Gν
0)(t)dt, (2.9.14)

as well as ˆ T

0

Q0,ν0

t

d

dt
(Gµ̄)(t)dt =

ˆ T

0

ν0t (Gµ̄)(t)dt. (2.9.15)

Hence, by plugging in (2.9.14) and (2.9.15) into (2.9.13) we obtain

E
[
X0,ν0

T

]
= x0 +M0q0 − κ0

q20
2
− κ1κ0

2λ1

ˆ T

0

ν0t (Gν
0)(t)dt

+

ˆ T

0

(
κ1
2λ1

ν0t (Gµ̄)(t) +Q0,ν0

t µ̄t

)
dt− λ0

ˆ T

0

(ν0t )
2dt,

(2.9.16)

which together (2.2.10), proves the result.
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2.10 Proofs of the Numerical Results in Section

2.5

Throughout this section we assume that Assumption 2.3.1 holds. Our first goal is

to prove Proposition 2.5.2, but before getting to the proof we introduce an auxiliary

lemma.

Lemma 2.10.1. Let (Gn)n≥1 be defined as in (2.5.4). Then, Gn is in L2([0, T ]2)

for any n ≥ 1.

Proof. Recall that G was defined in (2.3.11). From Proposition 2.7.4 it follows that

G is an operator in B(L2([0, T ])). Recall (ai)i≥1 is a complete orthonormal basis

in L2([0, T ]), hence from (2.5.3) we get that (bi)i≥1 are in L2([0, T ]). We therefore

get from (2.5.4) that

ˆ T

0

ˆ T

0

Gn(t, s)
2dsdt ≤ n

n∑
i=1

(ˆ T

0

a2i (t)dt

)(ˆ T

0

b2i (s)ds

)
<∞,

(2.10.1)

and the result follows.

Proof of Proposition 2.5.2. The result follows directly from Lemma 2.10.1 and

(2.5.5).

Before we prove Proposition 2.5.4 we introduce the following theorem from

Atkinson (1997).

Theorem 2.10.2 ((Atkinson, 1997, Theorem 2.1.1)). Let G be in B(L2([0, T ]))

and let λ ∈ R. Assume that I−λG is invertible on L2([0, T ]). Furthermore, assume

that (Gn)n≥1 is a sequence of operators in B(L2([0, T ])) with

lim
n→∞

||G− Gn|| = 0.

Then the following holds:
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(i) there exists an N ≥ 1 such that for all n ≥ N the operators (I− λGn)
−1 exists

and are in B(L2([0, T ]));

(iii) (I− λGn)
−1 converges to (I− λG)−1 in B(L2([0, T ])), that is

lim
n→∞

∣∣∣∣(I− λGn)
−1 − (I− λG)−1

∣∣∣∣ = 0;

(iii)
∣∣∣∣(I− λGn)

−1
∣∣∣∣ converges to

∣∣∣∣(I− λG)−1
∣∣∣∣, that is

lim
n→∞

∣∣∣∣(I− λGn)
−1
∣∣∣∣ = ∣∣∣∣(I− λG)−1

∣∣∣∣ .
We define

Rn :=

(
I+

κ1κ0
2λ0λ1

Gn

)−1

, n ≥ 1. (2.10.2)

Proof of Proposition 2.5.4. Recall that (Gn)n≥1 was defined in (2.5.6) and that G

was defined as in (2.3.11). From Propositions 2.5.2, 2.7.4 and 2.7.9 it follows that

the assumptions of Theorem 2.10.2 hold, hence there exists an N ≥ 1 such that

for all n ≥ N the operators I + κ1κ0

2λ0λ1
Gn are invertible. Since for any n ≥ N the

corresponding kernels Gn in (2.5.4) are degenerate, hence it follows from Theorem

2.1.2 of Atkinson (1997) that the matrices In+ κ1κ0

2λ0λ1
Gn are invertible (recall (2.5.10)

for the definition of Gn).

Let g, ψ ∈ L2([0, T ]) and define

γi = − κ1κ0
2λ0λ1

n∑
j=1

(
In +

κ1κ0
2λ0λ1

Gn

)−1

ij

⟨ψ, bj⟩L2 , i = 1, . . . , n,

for any n ≥ N . As shown in Chapter 3 of Porter and Stirling (1990) (see equations

(3.5) – (3.7) therein) the unique solution to

(
I+

κ1κ0
2λ0λ1

Gn

)
g = ψ,
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is given by

g(t) = ψ(t) +
n∑

i=1

γiai,n(t), for all 0 ≤ t ≤ T, n ≥ N,

and (2.5.11) follows.

Before proving Proposition 2.5.5, we need to present two intermediate lemmas.

Lemma 2.10.3. Let R be defined as in (2.3.14) and let (Rn)n≥1 be defined as in

(2.10.2). Then the following holds:

(i)

lim inf
n

⟨Rn1 , 1 ⟩L2 > 0,

(ii)

lim
n→∞

1

⟨Rn1 , 1 ⟩L2

=
1

⟨R1 , 1 ⟩L2

.

Proof. (i) We have shown in the proof of Proposition 2.5.4 that the assumptions

of Theorem 2.10.2 hold, hence there exists an N ≥ 1 such that for all n ≥ N the

operators Rn exist. From the Cauchy-Schwarz inequality and since ∥1∥L2 = T we

get
|⟨Rn1 , 1 ⟩L2 − ⟨R1 , 1 ⟩L2| ≤ ∥Rn − R∥∥1∥2L2

≤ ∥Rn − R∥T 2.
(2.10.3)

From Proposition 2.7.9(ii) it follows that the operator R is bounded from below,

therefore, by Definition 2.7.3, there exists ε > 0 such that

⟨R1 , 1 ⟩L2 > ε. (2.10.4)

From Theorem 2.10.2(iii) we get that there exists an N1 ≥ N such that for all

n ≥ N1 we have that

||Rn − R|| < εT−2/2. (2.10.5)

From (2.10.3)–(2.10.5) we get (i).

(ii) follows directly from (2.10.3), (2.10.4) and (i).
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Next, we prove the convergence of the sequence of constants (ηn)n≥1 from

(2.5.12).

Lemma 2.10.4. Let η and ηn be defined as in (2.3.16) and (2.5.12), respectively.

Then, there exists N ≥ 1 such that for all n ≥ N the constants ηn are well-defined.

Moreover,

lim
n→∞

ηn = η. (2.10.6)

Proof of Lemma 2.10.4. From Lemma 2.10.3(i), (2.3.16) and (2.10.2) if follows that

for all n sufficiently large ηn is well defined. The same claim holds for η by (2.5.12),

(2.10.4) and Proposition 2.7.9(i). From Cauchy-Schwarz inequality we get

|⟨RnSµ̄, 1 ⟩L2 − ⟨RSµ̄, 1 ⟩L2| ≤ ∥R− Rn∥∥Sµ̄∥L2||1∥L2 ,

and together with Theorem 2.10.2(iii) and Lemma 2.7.10 it follows that

lim
n→∞

|⟨RnSµ̄, 1 ⟩L2 − ⟨RSµ̄, 1 ⟩L2| = 0. (2.10.7)

From (2.3.16) and (2.5.12) we have

|ηn − η| =
∣∣∣∣⟨RnSµ̄, 1 ⟩L2

⟨Rn1 , 1 ⟩L2

− ⟨RSµ̄, 1 ⟩L2

⟨R1 , 1 ⟩L2

∣∣∣∣ , (2.10.8)

hence (2.10.6) follows from Lemma 2.10.3 and (2.10.7).

We are now ready to prove Proposition 2.5.5.

Proof of Proposition 2.5.5. From (2.3.15), (2.5.9) and (2.10.2) we have

ν0,∗ − ν0,(n) = (R− Rn) (Sµ̄) +
1

2λ0
(ηR1 − ηnRn1 ).

It follows that

||ν0,∗ − ν0,(n)||L2 ≤ ||(R− Rn) (Sµ̄)||L2 +
η

2λ0
||(R− Rn) 1 ||L2

+
1

2λ0
|ηn − η|∥Rn1∥L2 .
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Hence by Lemma 2.10.4, Theorem 2.10.2(iii) and following similar lines as in the

proof of (2.10.7) we get

lim
n→∞

∣∣∣∣ν0,∗ − ν0,(n)
∣∣∣∣
L2 = 0.

Finally, we we prove Theorem 2.5.6.

Proof of Theorem 2.5.6. Throughout the proof we consider n’s large enough such

that the results of Lemma 2.10.4 and Proposition 2.5.5 hold, even if it is not stated

explicitly.

(i) From (2.5.14) and (2.7.14) we get

ν0,∗t − ν̂
0,(n)
t = − κ1κ0

2λ0λ1

(
G
(
ν0,∗ − ν0,(n)

))
(t) +

η − ηn
2λ0

= − κ1κ0
2λ0λ1

ˆ T

0

G(t, s)
(
ν0,∗s − ν0,(n)s

)
ds+

η − ηn
2λ0

,

where we used (2.3.11) in the second equality.

From Cauchy-Schwarz inequality we get for all 0 ≤ t ≤ T and n sufficiently

large,

∣∣∣ν0,∗t − ν̂
0,(n)
t

∣∣∣ ≤ κ1κ0
2λ0λ1

(ˆ T

0

|G(t, s)|2ds
)1/2 ∣∣∣∣ν0,∗ − ν0,(n)

∣∣∣∣
L2 +

|η − ηn|
2λ0

.

Hence, from Proposition 2.8.1, Lemma 2.10.4 and Proposition 2.5.5, we get (i).

(ii) From Proposition 2.6.7 it follows that r1 is bounded over [0, T ] and from

Lemma 2.6.6 we get that the kernel K is bounded over [0, T ]2. Together with

(2.3.6) we get that there exists a constant C > 0 such that for all 0 ≤ t ≤ T and

n sufficiently large we have

∣∣ν1,∗t

(
ν0,∗
)
− ν1,∗t

(
ν̂0,(n)

)∣∣ ≤ ∣∣r0t (ν̂0,(n))− r0t
(
ν0,∗
)∣∣

+ C

∣∣∣∣ˆ t

0

(
r0s
(
ν̂0,(n)

)
− r0s

(
ν0,∗
))
ds

∣∣∣∣ . (2.10.9)
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By plugging in (2.3.5) into (2.10.9) and observing that the stochastic part in the

right hand side of (2.3.5) cancels, we conclude that

∣∣ν1,∗t

(
ν0,∗
)
− ν1,∗t

(
ν̂0,(n)

)∣∣ ≤ C1

ˆ T

t

∣∣ν̂0,(n)s − ν0,∗s

∣∣ ds
+ C2

ˆ t

0

(ˆ T

s

∣∣ν̂0,(n)r − ν0,∗r

∣∣ dr) ds, (2.10.10)

for some constants C1, C2 > 0 independent from n and t. Then (ii) follows from

(2.10.10) and (i).
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3
Closed-Loop Nash Competition for

Liquidity

The results presented in this chapter are based on the paper Micheli et al. (2021)

and are joint work with Prof. Johannes Muhle-Karbe and Dr. Eyal Neuman.

The paper Micheli et al. (2021) has been revised and submitted to Mathematical

Finance for publication.

3.1 Introduction

Most quantitative trading strategies are based on some form of “signals” about

future price changes. A major obstacle to make such strategies profitable in practice

is the adverse price impact caused by the rapid execution of large orders. In

particular for large portfolios, this requires to strike a delicate balance between

exploiting trading opportunities, but only doing so if the respective signals are

strong and persistent enough to outweigh the associated trading costs.

Accordingly, a large and rapidly growing literature studies how to optimally

exploit trading signals with various dynamics in the presence of superlinear trading

costs as in the models pioneered by Almgren and Chriss (2000), cf., e.g., Gârleanu

and Pedersen (2013, 2016); Cartea and Jaimungal (2016); Moreau, Muhle-Karbe,
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and Soner (2017); Lehalle and Neuman (2019); Collin-Dufresne, Daniel, and Saglam

(2020) and the references therein1. In this context, many investors use variants of

the same trading signals, such as moving averages of past price changes (Gârleanu

and Pedersen, 2013), order-book imbalances (Cont and de Larrard, 2013; Cont,

Kukanov, and Stoikov, 2014; Lipton, Pesavento, and Sotiropoulos, 2013; Cartea and

Jaimungal, 2016; Lehalle and Neuman, 2019), or price-dividend ratios (Barberis,

2000). Such “crowded” signals naturally lead to stochastic games, where the agents

interact through the rates at which they draw on the same pool of liquidity.

“Market-impact games” of this kind have been analyzed in depth for the optimal

execution of a single exogenously given order, exploiting that the corresponding

optimal trading patterns are deterministic in many cases as, cf. Brunnermeier and

Pedersen (2005); Carlin, Lobo, and Viswanathan (2007); Schied and Schöneborn

(2009) as well as many more recent studies.2 More recently, a number of papers also

analyze the competition for liquidity between agents that trade to exploit a common

trading signal (Voß, 2019; Drapeau, Luo, Schied, and Xiong, 2019; Evangelista

and Thamsten, 2020; Neuman and Voß, 2021). To obtain tractable results, these

papers focus on open-loop Nash equilibria. This means that each player considers

the others’ actions to be fixed, when deciding whether to unilaterally deviate from

the putative equilibrium. Each player’s optimality condition can in turn be derived

in analogy to the single-agent version of the model, with the other agents’ actions

acting as additional exogenous inputs. A Nash equilibrium can in turn be derived in

a second step by imposing the consistency condition that all single-agent optimality

conditions must hold simultaneously. For optimal trading problems with mean-

reverting signals and linear price impact, this leads to multidimensional but linear

systems of forward-backward stochastic differential equations, which admit closed-

form solutions.

Even more tractable results obtain in the mean-field limit of many small agents,

which often reduces the analysis to single-agent stochastic control problems with

1Linear costs corresponding to bid-ask spreads, which are the dominant frictions for somewhat
smaller portfolios, are studied in De Lataillade et al. (2012); Martin (2014), for example.

2In particular, Chen, Choi, Larsen, and Seppi (2021b) show how to endogenize price dynamics,
interest rates, and permanent price impact in a setting with deterministic trading schedules.
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the average of all agents actions acting as an additional exogenous input. In the

present context, such models have been studied by Cardaliaguet and Lehalle (2018);

Casgrain and Jaimungal (2019, 2020); Fu, Graewe, Horst, and Popier (2021); Neu-

man and Voß (2021), for example.

In contrast, much less is known about closed-loop Nash equilibria, where other

agents react to unilateral deviations from a putative equilibrium. More specifically,

each agent then assumes that the feedback form of the others’ controls are fixed but

takes into account unilateral deviations through their impact on the state variables

of the model. The controls of the other agents in turn can no longer be treated

as an exogenous input for the single-agent optimization, leading to a much more

involved coupling between the agents’ individual optimality conditions.

In this chapter, we study a stylized model for such closed-loop Nash equilib-

ria, and analyze how this more sophisticated form of competition changes optimal

trading patterns and welfare relative to the open-loop and to a central-planner solu-

tion. In order to obtain tractable results, we focus on a symmetric infinite-horizon

model,3 where a finite number of identical agents trade a risky asset, whose re-

turns are partially predictable through a trading signal with Ornstein-Uhlenbeck

dynamics. All agents’ trading problems are intertwined through their common

linear (instantaneous) price impact on the asset’s execution price.

We show that the corresponding individual optimality and consistency condi-

tions can be expressed in terms of a system of nonlinear algebraic equations. Unlike

in more complex settings with endogenous price dynamics (Sannikov and Skrzy-

pacz, 2016; Obizhaeva and Wang, 2019), we then prove that this system has a

unique solution when the price impact parameter λ is small enough. With this

solution in hand, we can in turn verify that the proposed candidate indeed is a

closed-loop Nash equilibrium, which is unique in the linear class that contains the

(globally unique) open-loop and central-planner solutions. This analysis is compli-

3Finite-horizon models lead to analytically intractable systems of coupled differential equations
already for stochastic factor processes, compare Carmona and Yang (2008). In a different price
impact model (where agents’ holdings affect future expected returns), existence results for a finite
horizon model have been obtained by Chen, Choi, Larsen, and Seppi (2021a).
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cated by the fact that even in the limit λ = 0, the system does not admit a tractable

solution as in single-agent models (Gârleanu and Pedersen, 2016). Therefore, in

order to show that our candidate value function is well defined and establish a

verification theorem, we need to establish and exploit various implicit properties of

the solution.

At the leading order for small price impact, the equilibrium trading rates admit

asymptotic expansions, which disentangle the effects of trading costs, inventory

costs and Nash competition between the agents. In our model, limited liquidity

creates a negative externality, where agents only internalize the adverse effects that

their price impact has on their own execution rates but not others’. Accordingly,

Nash competition leads to excessive trading relative to the central-planner bench-

mark. Closed-loop equilibria, where agents react to out-of-equilibrium deviations,

move part of the way from the open-loop solution to its central-planner counter-

part. By somewhat reducing excessive trading, they in turn also reduce the “price

of anarchy” by which the agents’ optimal performance is reduced due to the lack

of perfect coordination4 due to the changes in the investment opportunity set.

However, both asymptotically and by the numerical computation of the exact

equilibrium for realistic model parameters from Collin-Dufresne et al. (2020), we

find that the closed-loop equilibrium quantitatively lies much closer to its open-

loop counterpart than to the central-planner solution. At least for the symmetric

model that we consider here, this suggests that open-loop models can indeed serve

as an accurate but much more tractable proxy for closed-loop Nash equilibria.

To the best of our knowledge, the present chapter is the first existing example in

the literature where open-loop and closed-loop equilibria are compared qualitatively

and quantitatively in a finite-player game with interaction through the controls.

Such comparisons were derived by Carmona et al. (2013) for systemic risk games,

for example, which involve interactions through the state processes, but not through

the controls. Lacker and Zariphopoulou (2019); Lacker and Soret (2020); Chen et al.

4Unlike in Chen et al. (2021b), where the difference between Nash equilibria and central
planner solutions disappears over time, this difference is persistent in our model
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(2021b) computed explicit closed-loop Nash equilibria for games with interactions

through the controls, but the controls happen to be deterministic so that the open-

loop and closed-loop equilibria coincide.

Some related work has appeared recently on convergence of the finite-player

Nash equilibrium to the corresponding mean-field equilibrium in various settings.

Laurière and Tangpi (2020) proved such convergence results for open-loop equi-

libria of games with idiosyncratic noise for each of the players. Neuman and Voß

(2021) studied the corresponding problem for execution games with common noise.

Lacker and Le Flem (2021) and Djete (2021) proved the convergence of closed-loop

solutions (under the a-priori assumption that they exist) to the mean-field solution

in the case where each player is influenced by idiosyncratic and common noise. In

both these papers the idiosyncratic noise is crucial to establish the convergence.

Even though the game in the present chapter only has common noise, numerical

evidence suggests that open- and closed-loop nevertheless converge to the same

mean-field limits. A rigorous proof of this result is a challenging open problem for

future research.

The remainder of this chapter is organized as follows. In Section 3.2 we present

the multiplayer game. Section 3.3 contains our main results on the corresponding

closed-loop Nash equilibrium. A comparison between the closed-loop, open-loop

and central-planner solution is subsequently presented in Section 3.4. Section 3.5

outlines the heuristic derivation of the closed-loop equilibrium. The rigorous proofs

of these results are in turn developed in Section 3.6; the most onerous calculations

are delegated to Appendix B for better readability.

3.2 Model Setup

3.2.1 Financial Market

Throughout this chapter, we fix a filtered probability space (Ω,F , (Ft)t≥0,P) sup-

porting two standard Brownian motions (W P
t )t≥0 and (Wt)t≥0. We consider a
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financial market with two assets. The first one is safe, with price normalised to

one. The other asset is risky; its exogenous unaffected price process (Pt)t≥0 has

dynamics

dPt = µtdt+ σPdW
P
t , P0 = p0, (3.2.1)

for a positive constant p0. Here, the volatility is a positive constant σP ; the expected

returns have mean-reverting Ornstein-Uhlenbeck dynamics

dµt = −βµtdt+ σdWt, µ0 = m, (3.2.2)

for positive constants β, σ and for m ∈ R. (We set the mean-reversion level to

zero to simplify the already involved algebra below.) The current expected return

µt can be interpreted as a signal about future price changes, such as dividend

yields (Barberis, 2000), moving averages of past returns (Gârleanu and Pedersen,

2013; Martin, 2014), or order-book imbalances (Cont et al., 2014; Lipton et al.,

2013; Cartea and Jaimungal, 2016; Lehalle and Neuman, 2019), for example.

3.2.2 Agents

The assets are traded by N ≥ 2 identical agents indexed by n = 1, . . . , N . Starting

from an initial position x ∈ R, they adjust their risky holdings φn = (φn
t )t≥0 at

absolutely continuous trading rates φ̇n
t = dφn

t /dt, because their aggregate trading

activity φ̇ = (φ̇1, . . . , φ̇N) has an adverse linear temporary impact on the execution

price:

P φ̇
t = Pt + λ

N∑
i=1

φ̇i
t, t ≥ 0, (3.2.3)

for a positive constant λ. For each agent n, the others’ trading rates are denoted

by

φ̇−n = (φ̇1, . . . , φ̇n−1, φ̇n+1, . . . , φ̇N).

As in Gârleanu and Pedersen (2016), the agents choose their trading rates φ̇n to

maximize expected discounted returns over an infinite horizon, penalized for risk
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and transaction costs (relative to the unaffected execution prices):

Jn(φ̇n; φ̇−n) = E

[ˆ ∞

0

e−ρt

(
µtφ

n
t −

γ

2
(φn

t )
2 − λφ̇n

t

(
N∑
i=1

φ̇i
t

))
dt

]
. (3.2.4)

Here, ρ > 0 is the time-discount rate and γ > 0 penalizes risk through a run-

ning cost on the agents’ squared inventories.5 To ensure that all terms in these

goal functionals are well defined, we focus on admissible trading rates for which

φ̇ = (φ̇1, . . . , φ̇N) ∈ AN
ρ and φ = (φ1, . . . , φN) ∈ AN

ρ , where Aρ denotes the pro-

gressively measurable processes (Xt)t≥0 that satisfy E
[´∞

0
e−ρtX2

t dt
]
<∞ and AN

ρ

is the space of N -dimensional vectors of such processes.

3.2.3 Nash Equilibrium

Due to their joint impact on the execution price (3.2.3) of the risky asset, the agents’

optimization problems (3.2.4) are intertwined. Their interaction accordingly has

to be studied in a game-theoretic fashion:

Definition 3.2.1. Admissible trading rates φ̇ = (φ̇1, . . . , φ̇N) form a Nash equi-

librium if, given the trading rates φ̇−n of the other agents, no agent n = 1, . . . , N

has an incentive to deviate from the equilibrium because φ̇n already maximizes the

corresponding goal functional (3.2.4).

In dynamic models, different notions of Nash equilibria arise depending on

whether agents anticipate that others may react if they deviate from the equilib-

rium. In the present context, a number of recent papers (Voß, 2019; Casgrain and

Jaimungal, 2020; Neuman and Voß, 2021) study open-loop Nash equilibria, where

each agent treats the others’ trading rates as fixed stochastic processes. This means

that agents do not consider at all how the others may react if they were to deviate

from the equilibrium.
5As in many related studies, this is a reduced-form proxy for an exponential utility function

with constant absolute risk aversion. Formally carrying out the analysis below for such a goal
functional is still feasible by adapting single-agent results (Champonnois and Sefton, 2021). How-
ever, in the present game-theoretic context this would lead to a very high-dimensional system of
nonlinear equations for which existence is unclear as in Obizhaeva and Wang (2019).
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In this chapter, we extend this analysis by solving for a closed-loop Nash equi-

librium in feedback form (Carmona, 2016, Chapter 5.1.2). To wit, each agent con-

siders the others’ feedback controls to be fixed, but takes into account how their

own deviations from the equilibrium impact others’ trading through their effect on

the model’s state variables.6 In the present context, single-agent optimal trading

rates (Gârleanu and Pedersen, 2016) and open-loop Nash equilibria (Voß, 2019) are

functions of the (exogenous) trading signal µt and the (endogenous) risky positions

φt = (φ1
t , . . . , φ

N
t ) of the agents. We therefore naturally search for a closed-loop

equilibrium in the same class of strategies. If agents unilaterally deviate from the

equilibrium, this changes their positions and then in turn feeds back into the trades

of the other agents.

Formally, this leads to the following notion of Nash equilibrium.

Definition 3.2.2 ((Admissible) Feedback Controls). A feedback trading rate is

a function φ̇ : R1+N → RN that maps the current value of the signal µt and the

agents’ risky positions φt = (φ1
t , . . . , φ

N
t ) to the rates at which the agents’ risky

positions are adjusted. A trading rate is admissible if the RN -valued system of

controlled positions

dφt = φ̇(µt, φt)dt

has a unique solution for which φ̇ = (φ̇(µt, φt))t≥0 and φ belongs to AN
ρ .

Definition 3.2.3 (Closed-Loop Nash Equilibrium). An admissible feedback control

is a closed-loop Nash equilibrium, if no agent n = 1, . . . , N has an incentive to

deviate from the equilibrium in that

Jn(φ̇n; φ̇−n) ≥ Jn(ψ̇n; φ̇−n),

for all admissible feedback trading rates ψ̇ = (φ̇1, . . . , φ̇n−1, ψ̇n, φ̇n+1, . . . , φ̇N) where

the other agents’ feedback controls remain fixed.
6The even more sophisticated notion of “subgame perfect Nash equilibria” is studied by Chen,

Choi, Larsen, and Seppi (2021a) in a model where agents’ holdings affect the expected returns
of the risky asset. This means that even the feedback controls of the other agents are not fixed
out of equilibrium, but have to solve an appropriate optimization problem, too. For the present
model with instantaneous trading costs, this form of interaction does not appear to be tractable.
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In order to further elucidate the notion of closed-loop Nash equilibrium we

compare it with the following definition of open-loop Nash equilibrium.

Definition 3.2.4 (Open-Loop Nash Equilibrium). Admissible trading rates φ̇ =

(φ̇1, . . . , φ̇N) form an open-loop Nash equilibrium if no agent n = 1, . . . , N has an

incentive to deviate from the equilibrium, in that

Jn(φ̇n, φ̇−n) ≥ Jn(ψ̇n, φ̇−n),

for all admissible trading rates ψ̇n ∈ Aρ of agent n.

Remark 3.2.5. Let us emphasize the difference between this notion and the closed-

loop Nash competition studied in the present chapter. In Definition 3.2.4, each

agent treats the others’ trading strategies as fixed stochastic processes when consid-

ering whether to deviate unilaterally from the equilibrium. In contrast, in closed-

loop equilibria as in Definition 3.2.3, such deviations change the agent’s own in-

ventory and in turn feed back into the other agents’ trading decisions through their

feedback controls.

3.3 Main Results

We are now ready to state our main result. It shows that, for sufficiently small

price impact λ, there exists a symmetric closed-loop Nash equilibrium. The cor-

responding equilibrium trading rate is linear with respect to the signal µt and the

agents inventories φt = (φ1
t , . . . , φ

N
t ). More specifically, it tracks an “aim portfo-

lio” (a constant multiple Maim of the frictionless optimal holdings µt/γ) with a

constant (relative) trading rate Mrate. This parallels results for single-agent mod-

els (Gârleanu and Pedersen, 2016), a central planner (Section 3.4.1), or open-loop

equilibria (Voß (2019); Casgrain and Jaimungal (2020) or Section 3.4.2). However

the coefficients as well as the corresponding optimal value all depend on the form

of the agents’ strategic interaction. We discuss this in more detail in Section 3.4.3

below.
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Theorem 3.3.1 (Closed-Loop Nash Equilibrium). For sufficiently small λ, there

exists a symmetric closed-loop equilibrium, where

φ̇n
t =Mrate

(
Maim

µt

γ
− φn

t

)
, n = 1, . . . , N, (3.3.1)

for some positive constants Mrate,Maim. For zero initial positions

(φ1
0 = ... = φN

0 = 0) and a zero initial signal (µ0 = 0), the corresponding

equilibrium value of the agents’ goal functionals (3.2.4) is

Jn(φ̇n; φ̇−n) =

(
1 + 2λNM2

rate

Maim

γ

)
MrateMaim

γ

σ2

ρ(2β + ρ)(β + ρ+Mrate)

− 1

ρ(2β + ρ)

(
σMrateMaim

γ

)2(
λN +

γ + 2λNM2
rate

(ρ+ 2Mrate)(β + ρ+Mrate)

)
.

(3.3.2)

For better readability, the lengthy proof of Theorem 3.3.1 is deferred to Section

3.6.

Remark 3.3.2. The coefficients Mrate and Maim in Theorem 3.3.1 are given by

(3.6.8) and (3.6.18) in terms of the solution to the system of equations (3.5.5)–

(3.5.11), (3.5.12)–(3.5.14), which can be determined via the scalar equation (3.5.19).

See Section 3.5 for more details.

The constants in Theorem 3.3.1 are determined by the root of the scalar equa-

tion (3.5.19), which can readily be solved numerically. However, in order to disen-

tangle the effects of holding costs γ, trading costs λ, and competition between N

agents, it is also instructive to expand the solution for small λ. The proof of this

result is again deferred to Section B.1.

Proposition 3.3.3. For small price impact λ→ 0,

Mrate =

√
γ

λ
∆(N) +O (1) , Maim = 1 +O(

√
λ), (3.3.3)

for a nonnegative function ∆(N) that only depends on the number of agents N ,

cf. (3.5.22). For zero initial positions (φ1
0 = ... = φN

0 = 0) and a zero initial signal
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(µ0 = 0), the corresponding equilibrium value of the agents’ goal functional satisfies

Jn(φ̇n; φ̇−n) =
σ2

2ργ(2β + ρ)
−

√
λσ2(1 + 2∆(N)2N)

4γ3/2ρ∆(N)
+O (λ) . (3.3.4)

Here, the function ∆(N) is determined by the unique root of the limiting ver-

sion (3.5.20) of the scalar equation (3.5.19), which only depends on N but not the

other model parameters.

3.4 Other Forms of Interactions

We now discuss some of the quantitative and qualitative implications of Theo-

rem 3.3.1 and Proposition 3.3.3. More specifically, we consider how the equilib-

rium trading rates and their performances depend on the number of agents and

the nature of their strategic interaction.

3.4.1 Central Planner

To better understand the closed-loop Nash equilibrium, one natural reference point

is the case where the agents cooperate perfectly, in that a “central planner” chooses

all of their controls φ̇ = (φ̇1, . . . , φ̇N) simultaneously in order to maximize the

agents’ average welfare:

J̄(φ̇) =
1

N

N∑
n=1

Jn(φ̇n; φ̇−n). (3.4.1)

By symmetry, maximizing the average welfare of the agents is equivalent to a single

agent problem with price impact parameter Nλ.7

7Put differently, in the “mean-field scaling” where each agent has mass 1/N so that the total
mass of agents does not depend on N , the central-planner problem is exactly the same as each
single agent’s.
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Optimum The optimal trading rates chosen by the central planner are

φ̇n
t =MCP

rate

(
MCP

aim

µt

γ
− φn

t

)
, n = 1, ..., N,

where

MCP
rate =

√
γ

2Nλ
+
ρ2

4
− ρ

2
∈ (0,∞), MCP

aim =

√
γ

2Nλ
+ ρ2

4
+ ρ

2√
γ

2Nλ
+ ρ2

4
+ ρ

2
+ β

∈ (0, 1).

For zero initial positions and a zero initial signal, the corresponding optimal per-

formance is

J̄(φ̇) =
σ2

2ρ

1

2Nλ(ρ+ 2β)

(
ρ

2
+ β +

√
γ

2Nλ
+
ρ2

4

)−2

.

Asymptotics For small price impact λ → 0, Taylor-expansion of these explicit

formulas shows

MCP
rate =

√
γ

2Nλ
+O (1) , MCP

aim = 1 +O(λ), (3.4.2)

and

J̄(φ̇) =
1

2γ

σ2

ρ(2β + ρ)
− σ2

2ρ

√
2N

γ3/2

√
λ+O (λ) .

3.4.2 Open-Loop Nash Equilibrium

Another important benchmark is the case of open-loop Nash competition studied

by Voß (2019); Drapeau et al. (2019); Casgrain and Jaimungal (2020); Neuman

and Voß (2021) and introduced in Definition 3.2.4.

Equilibrium For an open-loop equilibrium, each agent’s optimality condition

can be derived in analogy to the single agent case by treating the other agents’

trading rates as fixed. This model is analogous to the single-agent infinite time

horizon model studied by (Bouchard et al., 2018) and to the two agents finite
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time horizon model developed in (Voß, 2019). In the transaction cost term, the

corresponding first-order condition then leads to an integral of λ(2φ̇1
t +

∑N
n=2 φ̇

n
t )

rather than λ2φ̇1
t in the single-agent model.

In the symmetric case where all agents are identical and their trading strategies

must therefore be the same, it follows that the open-loop equilibrium is again of

the same form as the single-agent model, up to replacing the constant 2 with N +1

rather than with 2N as in the central-planner model throughout.

More specifically, in the unique open-loop Nash equilibrium each agent’s optimal

trading speed is given by

φ̇n
t =MOL

rate

(
MOL

aim

µt

γ
− φn

t

)
, n = 1, ..., N,

for

MOL
rate =

√
γ

(N + 1)λ
+
ρ2

4
−ρ
2
∈ (0,∞), MOL

aim =

√
γ

(N+1)λ
+ ρ2

4
+ ρ

2√
γ

(N+1)λ
+ ρ2

4
+ ρ

2

+β ∈ (0, 1).

For zero initial positions and a zero initial signal, the agents’ corresponding common

optimal value is

Jn
OL(φ̇

n; φ̇−n) =

(
1 + 2λN(MOL

rate)
2M

OL
aim

γ

)
MOL

rateM
OL
aim

γ

σ2

ρ(2β + ρ)(β + ρ+MOL
rate)

− 1

ρ(2β + ρ)

(
σMOL

rateM
OL
aim

γ

)2
(
λN +

γ + 2λN
(
MOL

rate

)2
(ρ+ 2MOL

rate)(β + ρ+MOL
rate)

)
.

Asymptotics For small price impact λ → 0, Taylor expansion of these explicit

formulas shows that

MOL
rate =

√
γ

(N + 1)λ
+O (1) , MOL

aim = 1 +O (λ) , (3.4.3)

and

Jn
OL(φ̇

n; φ̇−n) =
1

2γ

σ2

ρ(2β + ρ)
− σ2(1 + 3N)

4ργ3/2
√
1 +N

√
λ+O (λ) .
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3.4.3 Comparison

We now compare the equilibrium trading strategies and their performance in the

closed-loop equilibrium, the open-loop equilibrium, and the central-planner solu-

tion. To focus on the impact of the agents’ Nash competition rather than changes

in overall risk-bearing capacity, we consider throughout the “mean-field scaling”

where each agent has mass 1/N , so that the total mass of agents in the economy

does not change with N . The price impact parameter λ is then replaced by λ/N

in the formulas above.

Trading Rates Comparison of the asymptotic trading rates (3.3.3), (3.4.2),

and (3.4.3) shows that, in each case, the equilibrium trading rates for small price

impact track the frictionless optimal holdings µt/γ, in parallel to general results

for single-agent models (Moreau et al., 2017).

The relative trading speed Mrate with which this target strategy is tracked also

depends in the same way on the ratio γ/λ of inventory and trading costs, but scales

differently with the number N of agents in each model. To wit, the trading rate

chosen by the social planner is multiplied by the constant 1/
√
2 – by symmetry, the

social optimum that can be achieved with perfect cooperation evidently does not

depend on the number of agents. The respective factor in the corresponding open-

loop Nash equilibrium
√
N/(1 +N) is larger. This is an example of the “tragedy

of the commons” – without perfect cooperation, the agents overuse the common

pool of liquidity available to all of them, because they only internalize the negative

impact their trading has on their own execution prices but not on others’.

In the closed-loop equilibrium, the relative trading speed scales with ∆(N)
√
N .

As depicted in Figure 3.1, this multiplier lies between its counterparts for the

open-loop equilibrium and the social planner solution for all values of N . The

intuition is that, with closed-loop controls, agents at least partially slow down

their trading when others are trading in the same direction. This reduces the

negative externality somewhat and moves the agents closer to the social optimum.
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Figure 3.1: Leading-order asymptotics of the relative trading speeds in the central
planner model (green, lowest curve), in the closed-loop equilibrium (red, middle
curve) and in the open-loop equilibrium (blue, top curve) plotted against the num-
ber N of agents for the parameters from Table 3.1.

However, for all values of N and irrespective of the other model parameters, these

asymptotic formulas suggest that the closed-loop equilibrium is a lot closer to its

open-loop counterpart than to the social planner model. At least for the symmetric

setting with identical agents studied here, this provides compelling evidence for

using open-loop models as more tractable approximations of the generally very

involved closed-loop analysis.

So far, we have focused on the crisp asymptotic formulas that one obtains in

the limit for small price impact λ ↓ 0. In this regime, the differences between the

central-planner solution, open-loop and closed-loop Nash equilibria only depend on

the number of agents, whereas the effect of all other model parameters scales out.

We now assess the accuracy of the asymptotic approximations by comparing them

to the numerical solution of the equations describing the exact closed-loop Nash

equilibrium. Unlike for the asymptotic formulas, this requires realistic parameter

values, both for the predictive signal and the trading and inventory cost parameters.

To this end, we follow Collin-Dufresne, Daniel, and Saglam (2020). For a
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discrete-time version of the present model, they estimate the quadratic transac-

tion cost parameter λ from a proprietary dataset of real transactions executed by

a large investment bank. Whereas trading costs and volatilities are constant in our

model, these are modulated by a four-state Markov chain in their paper, which also

acts as a trading signal by affecting expected returns. In order to translate this to

our model, we average volatilities and trading costs against the stationary distribu-

tion of the Markov chain, and estimate the parameters of our Ornstein-Uhlenbeck

return (3.2.2) from a long simulated time series of the (centered) Markov chain.8

For the inventory cost γ, we use the medium value from (Collin-Dufresne et al.,

2020, Section 5.6). These parameter values are summarized in Table 3.1.

Parameter Value

Price volatility σP 0.0088
Discount rate ρ 0.00004

Signal volatility σ 0.00015
Signal mean reversion β 0.070

Trading Cost λ 1.88× 10−10

Inventory Cost γ 2.5× 10−8 × σ2
P

Table 3.1: (Daily) Model Parameters

Figure 3.2 compares the asymptotic approximation of Mrate to its exact coun-

terpart, computed numerically by solving the system of algebraic equations (3.5.5)–

(3.5.11). Even though the size of the portfolios under consideration here is quite

large (the frictionless portfolio µt/γ has a stationary standard deviation of about

two hundred million shares), the asymptotic approximation of the relative trading

speed turns out to be almost perfect for all values of N .

Aim Portfolios As illustrated by Figure 3.3, this is not the case for the aim

portfolio. Indeed, for the large portfolio sizes considered here, the multiplier Maim

of the frictionless optimal portfolio is not close to its asymptotic value 1, but

8As already mentioned above, we do not incorporate a nonzero mean-reversion level of the
signal process here in order not to make the lengthy calculations for the closed-loop model even
more involved.
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Figure 3.2: Relative trading speeds in the closed-loop equilibrium (blue crosses)
and its asymptotic approximation (red dots), plotted against the number of agents
N for the parameters from Table 3.1.

consistently below 70%.9 As for the relative trading speeds, the aim portfolio for

the closed-loop model lies between its counterparts for the central-planner and

open-loop models. The interpretation again is that trading activity is scaled back

somewhat towards the social optimum, but still remains much closer to the closed-

loop equilibrium for all values of N .

Performance Since the aim portfolio changes considerably relative to its fric-

tionless counterpart, the optimal values in the different models also need to be

compared using the exact formulas in the respective models rather than relying

on asymptotics alone. This is illustrated in Figure 3.4, where we plot the optimal

performances with trading costs against the number N of agents in each model.

To make these numbers easier to interpret, we report them as fractions of the opti-

mal frictionless value. Recall that the closed-loop trading rates and aim portfolios

move partially from the open-loop solution towards the central planner solution.
9In addition to the size of the portfolios, this is due to the relatively fast mean reversion of the

trading signal considered in Collin-Dufresne et al. (2020). The dividend yield used as a predictor
in Barberis (2000) is much more persistent, for example, so that the leading-order asymptotics
are considerably more accurate in this case.
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Figure 3.3: Multipliers Maim for the aim portfolio Maim × µt/γ in the closed-loop
equilibrium (red, middle curve), in the central-planner model MCP

aim (green, lowest
curve) and in the open-loop equilibrium, MOL

aim (blue, top curve), plotted against
the number of agents N for the parameters from Table 3.1.
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Figure 3.4: Optimal values in the central-planner model (green, top curve of dots),
in the closed-loop equilibrium (red, middle curve), and in the open-loop equilibrium
(blue, bottom curve) as fractions of the frictionless optimal value, plotted against
the number of agents N for the parameters from Table 3.1.
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Accordingly, the optimal values of the closed-loop equilibrium also fall between

the open-loop model and the central-planner solution. The shortfall compared to

the frictionless version of the model increases as the lack of cooperation becomes

more and more severe for large N . This is called the “price of anarchy” in the

game-theory literature.

Mean-Field Limit? The numerical results reported above suggest that the

open-loop and closed-loop models lead to rather similar results for realistic param-

eter values. An intriguing theoretical question is whether the difference vanishes

completely in the “mean-field limit” of many small agents.

Rigorous convergence results of this kind have recently been obtained for mod-

els with interaction through the controlled state processes (Lacker, 2020; Lacker

and Le Flem, 2021) and for “extended” mean-field games with interaction through

the agents’ controls (Djete, 2021). However in their setup, each agent is also af-

fected by an idiosyncratic noise, which is crucial to the proof of convergence. It

is an important question for future research to study similar limiting results to

generic “extended” mean-field games, where the only source of randomness is a

common noise, as in the present chapter. To prove this convergence result in our

setting, one would have to study the large-N asymptotics of the system of equa-

tions (3.5.5)–(3.5.11), (3.5.12)–(3.5.14) characterizing our closed-loop equilibrium

for the rescaled trading cost λ/N . We do not pursue this here but report some

positive numerical evidence. Specifically, in Figure 3.5 we plot the ratio of the

optimal values in the closed-loop and open-loop models for numbers of agents up

to N = 1000 which suggests the existence of some limiting model to which the

closed-loop and open-loop equilibria converge.

3.5 Heuristics for the Closed-Loop Equilibrium

In single-agent models (Gârleanu and Pedersen, 2016), the optimal trading rate for

Ornstein-Uhlenbeck returns (3.2.2) is linear both in the current trading signal and
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Figure 3.5: Ratio of the optimal values in the closed-loop and in the open-loop
equilibriums, plotted against the number of agents N for the parameters from
Table 3.1.

in the agent’s current position. In open-loop equilibria, the agents’ optimal trading

rates also depend on these two state variables as well as the other agents’ positions

in a linear fashion (Voß, 2019; Casgrain and Jaimungal, 2020). Accordingly, we

search for closed-loop equilibria in the same linear class.

To this end it suffices, by symmetry, to focus on the optimization problem of

agent n = 1, when the feedback trading rates of the other agents are fixed:

φ̇n
t = āµt + b̄

∑
m̸=n

φm
t − c̄φn

t , n = 2, . . . , N. (3.5.1)

Here, ā, b̄, c̄ > 0, so that the above ansatz implies that agents try to reduce their

own positions, but trade less to reduce price impact costs if others have the same

objective. When the trading rates of agents n = 2, . . . , N are all equal and fixed to

be as in 3.5.1, agent n = 1 faces a standard stochastic control problem of choosing

their own trading rate φ̇1 to maximize

E
[ˆ ∞

0
e−ρt

(
µtφ

1
t −

γ

2
(φ1

t )
2 − λφ̇1

t

(
φ̇1
t + (N − 1)(āµt + b̄((N − 2)φ̄t + φ1

t )− c̄φ̄t)
))

dt

]
.

Here, φ1
t and the (symmetric) positions φ̄t = φ2

t = . . . = φN
t of the other agents
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have the coupled controlled dynamics

dφ1
t = φ̇1

tdt,

dφ̄t =
(
āµt + b̄((N − 2)φ̄t + φ1

t )− c̄φ̄t

)
dt.

By linearity of these dynamics and those of the exogenous state process µt, we

make the ansatz that the value function of agent 1 is purely quadratic in the initial

signal µ0 = m, agent 1’s own initial position φ1
0 = x and (with a slight abuse of

notation) the other agents’ initial positions φ̄0 = y (which are all the same given

that they apply the same trading rates (3.5.1)):

V (x, y,m) = −a
2
x2 +

b

2
y2 +

c

2
m2 − dxy + exm+ fym+ g, (3.5.2)

for constants a, b, c, d, e, f, g to be determined.

Remark 3.5.1. If the Ornstein-Uhlenbeck state process (3.2.2) has a nonzero

mean-reversion level, then this purely quadratic ansatz needs to be extended to in-

clude three further linear terms. The analysis below then generalizes, but involves

three further equations. We therefore do not pursue this extension of the model in

order not to complicate the already cumbersome calculations below.

The corresponding standard infinite-horizon HJB equation is

ρV =mx− γ

2
x2 − βm∂mV +

1

2
σ2∂2mV +

[
ām+ b̄((N − 2)y + x)− c̄y

]
∂yV

+ sup
φ̇1∈R

{
− λφ̇1[φ̇1 + (N − 1)ām+ (N − 1)((N − 2)b̄− c̄)y

+ (N − 1)b̄x] + φ̇1∂xV
}
.

(3.5.3)

After plugging in the quadratic ansatz (3.5.2), the pointwise maximizer can be

computed as

φ̇1 =
(e− λ(N − 1)ā)m− (a+ λ(N − 1)b̄)x− (d+ λ(N − 1)((N − 2)b̄− c̄))y

2λ
.

(3.5.4)

After inserting this back into the HJB equation, comparison of coefficients for the
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terms proportional to x2, y2, m2, xy, xm, ym and constant terms in turn yields

the following seven equations that pin down the coefficients a, b, c, d, e, f , g of

agent 1’s value function for fixed trading rates (3.5.1) of the other agents:

0 =
ρa

2
− γ

2
− db̄+

(a+ λ(N − 1)b̄)2

4λ
, (3.5.5)

0 = −ρb
2

+ b((N − 2)b̄− c̄) +
(d+ λ(N − 1)((N − 2)b̄− c̄))2

4λ
, (3.5.6)

0 = ρd+ bb̄− d((N − 2)b̄− c̄) +
(a+ λ(N − 1)b̄)(d+ λ(N − 1)((N − 2)b̄− c̄))

2λ
,

(3.5.7)

0 = −g + σ2

2ρ
c, (3.5.8)

0 = −
(
ρ+ 2β

2

)
c+ fā+

(e− λ(N − 1)ā)2

4λ
, (3.5.9)

0 = −(ρ+ β)e+ 1− dā+ b̄f − (e− λ(N − 1)ā)(a+ λ(N − 1)b̄)

2λ
, (3.5.10)

bā+ f((N − 2)b̄− c̄) = (ρ+ β)f +
(e− λ(N − 1)ā)(d+ λ(N − 1)((N − 2)b̄− c̄))

2λ
.

(3.5.11)

A symmetric Nash equilibrium is then identified by requiring that agent 1 has

no incentive to deviate from the other agents’ common controls, in that the same

weights are placed on trading signals, own and others’ inventories in each case.

Comparison between (3.5.1) and (3.5.4) in turn leads to the following three addi-

tional equations:

ā =
(e− λ(N − 1)ā)

2λ
,

(N − 1)b̄ = −d+ λ(N − 1)((N − 2)b̄− c̄)

2λ
,

c̄ =
(a+ λ(N − 1)b̄)

2λ
.

By algebraic manipulations, this system of ten nonlinear equations for ten un-

knowns can be reduced to a single scalar equation. To wit, first observe that

ā =
e

(N + 1)λ
. (3.5.12)
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Then, notice that the linear equations for b̄ and c̄ can be solved in terms of a and

d:

b̄ =
−aN + a+ 2d

λ− λN2
, (3.5.13)

c̄ = −d− aN

λ+ λN
. (3.5.14)

After plugging in the expression for b̄, (3.5.5) can in turn be solved for a in terms

of d 10

a(d) =
d(6N + 2)− λ(N + 1)2

(
−
√
− 4d2(3N+1)

λ2(N−1)(N+1)2
+ ρ2 + 8γN2−4dρ(3N+1)

λ(N+1)2
+ ρ
)

4N2
.

(3.5.15)

We now use (3.5.6) to determine an expression for b only in terms of a(d) and d.

Specifically, b̄ and c̄ in (3.5.13) and (3.5.14) depend only on a(d) and d. Further-

more, (3.5.6) depends only on b̄, c̄, d and b. Therefore, we first plug b̄ and c̄ in

(3.5.6) to obtain a linear equation in b that only depends on a(d) and d. We can

now solve such linear equation for b and determine that

b(d) =
2(N − 1)(−a(d)N + a(d) + 2d)2

(N + 1) (4a(d)(N − 1) + 2d(N − 3) + ρλ (N2 − 1))
. (3.5.16)

The remaining parameters c, e, f, g can in turn be sequentially expressed in terms

of d only as well by proceeding as follows. First, plug in the expressions for a(d),

b(d), and the formulas for ā (a linear function of e) and for b̄ and c̄ (in terms of

d only) into (3.5.10) and (3.5.11). This leads to two linear equations for e(d) and

f(d), that can be solved explicitly in terms of d, see (B.2.1) for the lengthy explicit

expressions. Then, after inserting these representations and the formula for ā in

terms of d,11 (3.5.9) leads to an explicit formula for c(d) in terms of d (see (B.2.1)).

Finally, the coefficient g(d) can be determined in terms of d by using the formula

for c(d) and (3.5.8), g(d) = σ2

2ρ
c(d).

Finally, we use (3.5.7) to determine an algebraic equation for the parameter d.

10Note that a(d) chosen in (3.5.15) is the only root of (3.5.5) that gives positive ā, b̄ and c̄.
11Note that ā is determined in terms of d by (3.5.12) and our solution for e as ā(d) = e(d)

(1+N)λ .
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Note that since a(d) in (3.5.15) depends only on d, then, b(d) in (3.5.16) depends

only on d. Moreover, notice that b̄(d) and c̄(d) as stated in (3.5.13) and (3.5.14)

only depend on d since they only depend on d and a(d). Hence, we can plug the

expressions for a(d), b(d), b̄(d) and c̄(d) from (3.5.15), (3.5.16), (3.5.13) and (3.5.14)

into (3.5.7) to obtain a complex but explicit scalar equation for d:

0 =
−2a(d)2N(N − 1)2

λ(N − 1)(N + 1)2
+
a(d)(N − 1)(b(d)N + b(d) + 8dN)

λ(N − 1)(N + 1)2

+
d (−2b(d)(N + 1) + d(N − 6)N + d+ λ(N − 1)(N + 1)2ρ)

λ(N − 1)(N + 1)2
.

(3.5.17)

We stress that although a(d) and b(d) appear in (3.5.17), via the identities in

(3.5.15) and (3.5.16), (3.5.17) is a scalar equation depending exclusively on the

parameter d. In order to identify a solution d = d(λ) of (3.5.17) for fixed N ≥ 2

and sufficiently small λ, we postulate the following factorization,

d(λ) =
√
γλδN(λ), (3.5.18)

for some function δN(·) to be determined. The rescaling with
√
λ is essential in

order to obtain a nontrivial limit as λ ↓ 0 in (3.5.17). The rescaling with √
γ leads

to a limiting equation for λ = 0 which does not depend on γ but only on the number

N of agents. This change of variables therefore asymptotically decouples the effects

of trading costs (λ), inventory costs (γ) and competition (N), see Lemma 3.6.9(i).

With the change of variable in (3.5.18), the function δN(λ) is characterized as

a root of a scalar equation obtained from (3.5.17):

ΦN(λ, δN(λ)) = 0. (3.5.19)

(See (3.6.22)–(3.6.23) for the explicit form of ΦN .) In the limit λ ↓ 0, we show in

Lemma 3.6.9 that δN(0) =: δ∗N > 0 is the unique root of this equation:

ΦN(0, δ
∗
N) = 0. (3.5.20)
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In fact, any root of this equation is the root of a cubic polynomial. Cardano’s

method therefore leads to three explicit candidates for the roots of ΦN(0, ·). Using

symbolic calculations detailed in the Mathematica companion of Micheli et al.

(2021), we then verify that only one of these polynomial roots also is a root of

ΦN(0, ·).

Next, we also show that ∂yΦN(λ, y)|(λ,y)=(0,δ∗N ) > 0. The implicit function theo-

rem in turn allows us to pin down δN(λ) as the unique continuous function defined

on a neighbourhood of 0 such that (3.5.19) holds. For sufficiently small λ, this

yields a solution d(λ) of (3.5.17) and in turn our system of ten equations derived

from the agents’ optimality and consistency conditions.

The implicit function theorem also allows us to obtain the leading-order asymp-

totics of the agents’ optimal policies and their performance. To wit,

δN(λ) = δ∗N +O(λ).

Together with (3.5.18) , it follows that

d =
√
λγδ∗N +O(λ3/2). (3.5.21)

This allows us to obtain asymptotic expansions of all the coefficients in (3.5.5)–

(3.5.12) since these can all be expressed as functions of d. For example, using

the expansion (3.5.21) for d, (3.5.1), the assumption of symmetric equilibrium and

Taylor expansion lead to the expansion of the relative trading speed Mrate from

(3.3.3),

Mrate = c̄− (N − 1)b̄ =

√
γ

λ
∆(N) +O(1),

where

∆(N) =
1

2N2

√
2N3 − 2N2 − 3N(δ∗N)

2 − (δ∗N)
2

(N − 1)
+

(2N + 1)δ∗N
2N2

. (3.5.22)

More details on the asymptotic expansions are provided in Section 3.6.2.
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Remark 3.5.2. The asymptotic analysis is complicated by the fact that δ∗N is a root

of a third order polynomial (see (3.6.30)), which does not admit a simple expression

unlike in single-agent models (Gârleanu and Pedersen, 2016; Moreau et al., 2017).

Explicit expressions for δ∗N in terms of N can be derived using Cardano’s method,

and these allow to verify that only one of the polynomial roots also is a root of the

equation for δ∗N . However, the explicit expression (involving imaginary numbers)

is too complex for deriving the analytical properties necessary to (i) show that our

candidate value function is well defined and (ii) establish a verification theorem.

As a way out, we therefore instead use implicit properties of δ∗N to show that

the other coefficients a, b, c, e, f , g are well defined (in terms of d, and therefore

by (3.5.21) in terms of δ∗N) and have the right signs to carry out the verification

argument.

For example, in Lemma 3.6.10 we prove that for sufficiently small λ, e(λ) is

well defined and strictly positive. As follows from (3.5.12), this is needed in order

to verify that ā > 0 in (3.6.1). Another example appears in Lemma B.1.3 where we

prove that Maim = 1+O(
√
λ) for sufficiently small λ. This is essential to derive the

asymptotics of the goal functionals Jn(φ̇n; φ̇−n) in Proposition 3.3.3. As pointed

out in (B.1.13), the expansion of Maim follows from a highly nontrivial connection

between N , δ∗N , and ∆(N) which is proved in Lemma B.1.2, and arrises directly

from properties of the polynomial root δ∗N .

3.6 Proofs

3.6.1 Proof of Theorem 3.3.1

This section is dedicated to the proof of Theorem 3.3.1. The most onerous part of

the proof is to show that the optimality and consistency conditions derived in the

previous section indeed have a solution with the right signs for sufficiently small λ.

The lengthy proof of this result is postponed to Section 3.6.2 for better readability.
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Lemma 3.6.1. For sufficiently small λ > 0, there is a solution

(a, b, c, d, e, f, g, ā, b̄, c̄) of the system (3.5.5)–(3.5.11), (3.5.12)–(3.5.14) which is well

defined. Moreover, such solution satisfies

ā > 0 and c̄− (N − 1)b̄ > 0. (3.6.1)

To prove our main result, Theorem 3.3.1, we focus without loss of generality on

the optimization problem of agent 1, where the feedback controls of agents 2, . . . , N

are fixed according to (3.5.1). Then, regardless of the policy chosen by agent 1, the

trading rates and holdings of the other agents n = 2, . . . , N will be the same, so it

is convenient to simplify the notation by using that

φ̇2
t =

1

N − 1

N∑
k=2

φ̇k
t , and φ2

t =
1

N − 1

N∑
k=2

φk
t , t ≥ 0.

Note that dφ2
t = φ̇2

tdt and, by (3.5.1),

φ̇2
t =

1

N − 1

N∑
k=2

(āµt − c̄φk
t + b̄

∑
m̸=k

φm
t ) = āµt + b̄φ1

t − (c̄− (N − 2)b̄)φ2
t .

(3.6.2)

Using these observations, we can rewrite agent 1’s goal functional (3.2.4) as follows:

J1(φ̇1; φ̇2)(x, y,m)

= Ex,y,m

[ˆ ∞

0

e−ρt

(
µtφ

1
t −

γ

2

(
φ1
t

)2
− λφ̇1

t

(
φ̇1
t + (N − 1)(āµt + b̄φ1

t − (c̄− (N − 2)b̄)φ2
t )
))

dt

]
.

(3.6.3)

Here the expectation Ex,y,m[·] is taken conditional on the initial values φ1
0 = x,

φ2
0 = y, and µ0 = m; to ease notation, we often suppress this dependence. The

corresponding value function is denoted by (here, the supremum is taken over
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admissible feedback controls in the sense of Definition 3.2.2):

V 1(x, y,m) = sup
φ̇1

J1(φ̇1; φ̇2)(x, y,m). (3.6.4)

Remark 3.6.2. In fact, the subsequent analysis shows that deviations from the

Nash equilibrium are also suboptimal among non-Markovian controls, as long as

the resulting system of state equations has a sufficiently integrable solution.

We will prove Theorem 3.3.1 using a verification argument that identifies agent

1’s value function and optimal trading rate, and thereby shows that this (repre-

sentative) agent has no incentive to deviate from the common feedback trading

rate adopted by the other agents n = 2, . . . , N . As a preparation for this result,

we first establish that our candidates for the equilibrium trading rates are indeed

admissible.

Lemma 3.6.3. For the coefficients ā, b̄, c̄ from Lemma 3.6.1, consider the feedback

trading rates

φ̇n
t = āµt − c̄φn

t + b̄
∑
m ̸=n

φm
t , n = 1, . . . , N, t ≥ 0. (3.6.5)

Then, the following linear forward SDE system

dφn
t = φ̇n

t dt, φn
0 = x, n = 1, . . . , N, (3.6.6)

for (φ1, . . . , φN , φ̇1, . . . , φ̇N) has a unique solution, which satisfies φ̇n, φn ∈ Aρ for

all n = 1, . . . , N .

Proof. As all agents apply the same trading rates in the context of this lemma, the

corresponding trading rates (3.6.5) simplify to

φ̇n
t = āµt + ((N − 1)b̄− c̄)φn

t , n = 1, . . . , N. (3.6.7)

Put differently, the corresponding positions φn
t are the unique solution of a (ran-
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dom) linear ODE. By the variation of constants formula, it is given by

φn
t = e−Mratetx+

ˆ t

0

e−Mrate(t−s)āµsds, where Mrate = c̄− (N − 1)b̄. (3.6.8)

Together with (3.6.7), it follows that

φ̇n
t = āµt −Mrate

ˆ t

0

e−Mrate(t−s)āµsds−Mratee
−Mratetx. (3.6.9)

As Mrate > 0 by (3.6.1), (3.6.8), Hölder inequality, Fubini’s theorem and the

second moment of the Ornstein-Uhlenbeck process (3.2.2) in turn yield the required

integrability of the trading rate:

E
[ ˆ ∞

0

e−ρt(φn
t )

2dt
]
≤ x2

ρ+ 2Mrate

+ ā2E
[ ˆ ∞

0

e−ρt

(ˆ t

0

e−2Mrate(t−s)ds

)(ˆ t

0

µ2
sds

)
dt
]

≤ x2

ρ+ 2Mrate

+
ā2

2Mrate

ˆ ∞

0

e−ρt

(ˆ t

0

E[µ2
s]ds

)
dt

≤ x2

ρ+ 2Mrate

+
ā2

2Mrate

(
σ2

2β

)
1

ρ
,

and therefore φn ∈ Aρ. The corresponding integrability of the associated trading

rate φ̇n follows from the representation (3.6.9) along the same lines.

The exogenous signal process µ evidently has the same integrability (this can

be checked, e.g., using the formula for its second moment):

Lemma 3.6.4. For ρ > 0 and µ from (3.2.2), we have µ ∈ Aρ.

The next ingredient for our verification theorem is to show that the local mar-

tingale that appears when Itô’s formula is applied to the candidate value function

is in fact a true martingale.

Lemma 3.6.5. Suppose agents n = 2, . . . , N use the same admissible trading rates

φ̇2 = . . . = φ̇N from (3.6.5) and define the function V as in (3.5.2). Then, for any

admissible trading rate φ̇1 ∈ Aρ of agent 1, the process

M1
t =

ˆ t

0

e−ρt∂mV (φ1
t , φ

2
t , µt)dWt, t ≥ 0,
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is a square-integrable true martingale.

Proof. From (3.5.2) we have ∂mV (x, y,m) = ex + fy + cm. Accordingly, there

exists a constant C > 0 such that

E
[
⟨M1⟩t

]
≤ CE

[ˆ t

0

exp{−2ρt}
(
(φ1

s)
2 + (φ2

s)
2 + (µs)

2
)
ds

]
<∞, for all t ≥ 0.

Here, we used Lemma 3.6.4 and the admissibility of the trading rates in the last

step. Hence, the local martingale M1 is indeed a square-integrable martingale.

Next, we show that the agents’ infinite-horizon goal functionals are indeed well

defined for admissible trading rates.

Lemma 3.6.6. For any admissible trading rates φ̇ = (φ̇1, ..., φ̇N), the following

limit is finite:

lim
T→∞

E

[ˆ T

0

e−ρt

(
µtφ

n
t −

γ

2
(φn

t )
2 − λφ̇n

t

( N∑
k=1

φ̇k
t

))
dt

]

= E

[ˆ ∞

0

e−ρt

(
µtφ

n
t −

γ

2
(φn

t )
2 − λφ̇n

t

( N∑
k=1

φ̇k
t

))
dt

]
.

(3.6.10)

Proof. The triangle inequality and Hölder’s inequality yield

FT =

∣∣∣∣∣
ˆ T

0

e−ρt

(
µtφ

n
t −

γ

2
(φn

t )
2 − λφ̇n

t

( N∑
k=1

φ̇k
t

))
dt

∣∣∣∣∣
≤
(ˆ T

0

e−ρt|µt|2dt
)1/2(ˆ T

0

e−ρt(φn
t )

2dt
)1/2

+
γ

2

ˆ T

0

e−ρt(φn
t )

2dt

+ λ
( ˆ T

0

e−ρt|φ̇n
t |2dt

)1/2(ˆ T

0

e−ρt
( N∑

k=1

|φ̇k
t |
)2
dt
)2
.

As a result, (3.6.10) follows from Lemmas 3.6.3 and 3.6.4 and dominated conver-

gence.

Finally, as the last ingredient for our verification argument, we show that the

candidate value function satisfies a transversality condition.
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Lemma 3.6.7. Suppose agents n = 2, . . . , N use the same admissible trading rates

φ̇2 = . . . = φ̇N from (3.6.5) and define the function V as in (3.5.2). Then, for any

admissible trading rate φ̇1 of agent 1, we have

lim inf
T→∞

E
[
e−ρTV (φ1

T , φ
2
T , µT )

]
= 0. (3.6.11)

Proof. By Lemma 3.6.4 and admissibility of the trading rates, µ, φ1 and φ2 all

belong to Aρ. In particular,

lim inf
t→∞

E
[
e−ρt(φ1

t )
2
]
= 0, lim inf

t→∞
E
[
e−ρt(φ2

t )
2
]

= 0, lim inf
t→∞

E
[
e−ρt (µt)

2] = 0.

(3.6.12)

The transversality condition (3.6.11) in turn follows from the definition of V in

(3.5.2), (3.6.12) and Hölder’s inequality.

Now, we are ready to prove a verification theorem which shows that the func-

tion V from (3.5.2) indeed is the value function V 1 of agent 1’s optimization prob-

lem (3.6.4) for fixed feedback controls of the other agents. As a byproduct, we

obtain the optimal feedback trading rate of agent 1, which indeed coincides with

the fixed feedback trading rates of the other agents n = 2, . . . , N as required for a

Nash equilibrium.

Proposition 3.6.8. Suppose λ is sufficiently small for the coefficients

(a, b, c, d, e, f, g, ā, b̄, c̄) to satisfy the statement of Lemma 3.6.1. Define the trad-

ing rates φ̇2, ..., φ̇N of agents n = 2, . . . , N as in (3.6.5) and suppose agents

n = 2, . . . , N use the same admissible trading rates φ̇2 = . . . = φ̇N . Moreover,

define the function V as in (3.5.2). Then, we have

V ≥ J1(φ̇1; φ̇2), (3.6.13)

for all admissible feedback trading rates φ̇1 of agent 1, with equality if φ̇1 is also

given by (3.6.5).

Proof. Let φ̇1(x, y,m) be any admissible feedback control for agent 1 and define
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the operator

L = φ̇1(x, y,m)∂x + (āµ+ b̄x− (c̄− (N − 2)b̄)y)∂y − βm∂m +
σ2

2
∂2m.

With this notation, Itô’s formula yields

d
(
e−ρtV (φ1

t , φ
2
t , µt)

)
= −ρe−ρtV (φ1

t , φ
2
t , µt)dt+ e−ρtLV (φ1

t , φ
2
t , µt)dt

+ σe−ρt∂mV (φ1
t , φ

2
t , µt)dWt.

(3.6.14)

The stochastic integral in (3.6.14) is a true martingale by Lemma 3.6.5. Integrating

and taking expectation on both sides of (3.6.14) in turn leads to

V (x, y,m)− E
[
e−ρTV (φ1

T , φ
2
T , µT )

]
= E

[ˆ T

0

e−ρt
(
ρV (φ1

t , φ
2
t , µt)− LV (φ1

t , φ
2
t , µt)

)
dt

]
.

(3.6.15)

As the coefficients (a, b, c, d, e, f, g, ā, b̄, c̄) satisfy (3.5.5)–(3.5.14) by Lemma 3.6.1

for λ small enough, the function V solves the HJB equation (3.5.3) (compare the

derivation of (3.5.5)–(3.5.14) in Section 3.5). As a consequence, we have

ρV −LV ≥ xµ− λφ̇1(φ̇1 + (N − 1)(ām+ b̄x− (c̄− (N − 2)b̄)y))− γ

2
x2. (3.6.16)

Together, (3.6.15) and (3.6.16) show

V (x, y,m)− E
[
e−ρTV (φ1

T , φ
2
T , µT )

]
≥ E

[ˆ T

0

e−ρt
(
µtφ

1
t −

γ

2

(
φ1
t

)2
− λφ̇1

t (φ̇
1
t + (N − 1)(āµt + b̄φ1

t − (c̄− (N − 2)b̄)φ2
t ))
)
dt

]
.

(3.6.17)

In view of Lemma 3.6.6 and the transversality condition from Lemma 3.6.7, we can

now take the limit T → ∞ on both sides of (3.6.17) and obtain the asserted upper

bound (3.6.13) for any admissible feedback control.

The admissibility of our candidate φ̇1 has already been established in Lemma

3.6.3. Moreover, note that when φ̇1 is given by (3.6.5) like the other agents’ controls,
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then it follows by construction that the inequality (3.6.16) holds with equality

(because this choice corresponds to the pointwise maximizer in the HJB equation).

Repeating the arguments leading to (3.6.17) then shows that (3.6.13) holds with

equality.

As a result, V indeed is the value function of agent 1 given the feedback trading

rates (3.6.5) of agents n = 2, . . . , N . Moreover, the same feedback trading rate is

indeed optimal for agent 1 as required for a Nash equilibrium.

We finally complete the proof of the last missing items from Theorem 3.3.1.

Proof of Theorem 3.3.1. To finish the proof of Theorem 3.3.1, we first show that

the feedback trading rate φ̇1 from (3.6.9) can be rewritten in the form (3.3.1). This

follows by defining

Maim =
āγ

Mrate

, (3.6.18)

and observing that (3.6.8) and (3.6.9) satisfy (3.3.1). In view of the results already

established in Proposition 3.6.8, it now only remains to derive the representa-

tion (3.3.2) for the optimal equilibrium value. Henceforth, we assume a zero initial

signal (µ0 = 0) and zero initial positions (φ1
0 = . . . = φN

0 = 0). For the symmetric

trading rates φ̇1
t = . . . = φ̇N

t = φ̇t from (3.6.5), we can (with a slight abuse of

notation) rewrite the goal functionals (3.2.4) as follows:

J(φ̇) = E
[ˆ ∞

0

e−ρt
(
µtφt −

γ

2
(φt)

2 − λN(φ̇t)
2
)
dt

]
. (3.6.19)

The representation (3.3.1) gives

(φ̇t)
2 =

(
MrateMaim

γ

)2

µ2
t − 2M2

rate

Maim

γ
µtφt +M2

rate (φt)
2 , (3.6.20)
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from which we obtain

J(φ̇) = E

[ ˆ ∞

0

e−ρt

((
1 + 2λNM2

rate

Maim

γ

)
µtφt

−
(γ
2
+ λNM2

rate

)
(φt)

2 − λN

(
MrateMaim

γ

)2

µ2
t

)
dt

]
.

(3.6.21)

In order to derive the explicit expression for J it now remains to compute the

integrals

I1 = E
[ˆ ∞

0

e−ρtµtφtdt

]
, I2 = E

[ˆ ∞

0

e−ρt (φt)
2 dt

]
, I3 = E

[ˆ ∞

0

e−ρtµ2
tdt

]
.

A straightforward calculation shows that

I1 =
MrateMaim

γ

σ2

2β

ˆ ∞

0

e−ρt

ˆ t

0

e−Mrate(t−s)
(
e−β|t−s| − e−β(t+s)

)
dsdt,

I2 =

(
MrateMaim

γ

)2
σ2

2β

×
ˆ ∞

0

e−ρt

ˆ t

0

e−Mrate(t−u)

ˆ t

0

e−Mrate(t−s)
(
e−β|u−s| − e−β(u+s)

)
dsdudt,

I3 =
σ2

2β

ˆ ∞

0

e−ρt(1− e−2βt)dt.

Here, have used that

E [µtµs] = cov(µtµs) + E [µt]E [µs] =
σ2

2β

(
e−β|t−s| − e−β(t+s)

)
.

Evaluation of the above integrals gives

I1 =
MrateMaim

γ

σ2

ρ(2β + ρ)(β + ρ+Mrate)
,

I2 =

(
MrateMaim

γ

)2
2σ2

ρ(2β + ρ)(ρ+ 2Mrate)(β + ρ+Mrate)
,

I3 =
σ2

2βρ+ ρ2
.

Plugging these expressions for I1, I2 and I3 into (3.6.21) in turn yields the asserted

representation (3.3.2) from Theorem 3.3.1.
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3.6.2 Proof of Lemma 3.6.1

This section contains the lengthy proof of Lemma 3.6.1, which states that the

system of the agents’ optimality and consistency conditions has a solution with the

properties required for our verification result, Proposition 3.6.8.

As derived heuristically in Section 3.5, the solution of the ten algebraic equations

can be reduced to finding the root of a single complicated but explicit function

ΦN(λ, ·):

ΦN(λ, y)

=
1

λ(N − 1)(N + 1)2

(
y
(
(N + 1)

√
γλ
(
ρλ
(
N2 − 1

)
− 2ΨN

)
+ γλ((N − 6)N + 1)y

)
− 2Θ2

N(N − 1)2N +ΘN(N − 1)
(
NΨN + 8Ny

√
γλ+ΨN

))
,

(3.6.22)

where

ΨN(λ, y) =
2(N − 1)

(
ΘN −ΘNN + 2y

√
γλ
)2

(N + 1)
(
ρλ (N2 − 1) + 4ΘN(N − 1) + 2(N − 3)y

√
γλ
)

and

ΘN(λ, y)

=
1

4N2

[
λ(N + 1)2

√ρ2 +
8γN2 − 4ρ(3N + 1)y

√
γλ

λ(N + 1)2
− 4γ(3N + 1)y2

λ(N − 1)(N + 1)2
− ρ


+ (6N + 2)y

√
γλ

]
. (3.6.23)

Notice that the functions ΘN(λ, y) and ΨN(λ, y) correspond to the functions a(d)

and b(d), introduced in (3.5.15) and (3.5.16), after substituting the change of vari-

able d =
√
λγy.

We now show that ΦN(λ, ·) has a root δ(λ) for sufficiently small λ. Here,

the limiting function ΦN(0, ·) only depends on the number N of agents, but not

the model parameters. Its roots are also roots of a polynomial of order three,
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which leads to three candidates for the roots of ΦN(0, ·). However, using symbolic

calculations, we can show that only one of these is a root of ΦN(0, ·). By verifying

that the relevant derivative in this limiting point does not vanish, we can then

extend the existence result to sufficiently small λ by means of the implicit function

theorem.

Lemma 3.6.9. Define ΦN(λ, y) as in (3.6.22). Then, there exists an open set

ΛN ⊂ R containing λ = 0 such that:

(i) there exists a unique point δ∗N such that ΦN(0, δ
∗
N) = 0; it satisfies

δ∗N ∈
(
0,
√
2N
√

N−1
3N+1

]
; (3.6.24)

(ii) there exists a unique continuously differentiable function δN : ΛN → R such

that

ΦN(λ, δN(λ)) = 0, for all λ ∈ ΛN , where δN(0) = δ∗N .

Proof. (i) Our goal is to show that there is a solution of

ΦN(λ, y) = 0 (3.6.25)

for sufficiently small λ ↓ 0. In this asymptotic regime, to first order (3.6.25)

becomes

γ3/2
Γ(N, y)

Ξ(N, y)
+O(λ1/2) = 0, (3.6.26)
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where,

Γ(N, y) =− 3N7
√

2N3−2N2−3Ny2−y2

(N−1)(N+1)2
+ 4N6y3 + 8N6y2

√
2N3−2N2−3Ny2−y2

(N−1)(N+1)2

+ 5N6
√

2N3−2N2−3Ny2−y2

(N−1)(N+1)2
+ 4N5y2

√
2N3−2N2−3Ny2−y2

(N−1)(N+1)2

+ 2N5
√

2N3−2N2−3Ny2−y2

(N−1)(N+1)2
− 24N4y3 − 20N4y2

√
2N3−2N2−3Ny2−y2

(N−1)(N+1)2

− 6N4
√

2N3−2N2−3Ny2−y2

(N−1)(N+1)2
− 8N3y3 − 14N3y2

√
2N3−2N2−3Ny2−y2

(N−1)(N+1)2

+N3
√

2N3−2N2−3Ny2−y2

(N−1)(N+1)2
+ 18N2y3 + 10N2y2

√
2N3−2N2−3Ny2−y2

(N−1)(N+1)2

+N2
√

2N3−2N2−3Ny2−y2

(N−1)(N+1)2
+ 10Ny2

√
2N3−2N2−3Ny2−y2

(N−1)(N+1)2

+ 2y2
√

2N3−2N2−3Ny2−y2

(N−1)(N+1)2
− 4N7y + 17N6y − 10N5y − 12N4y + 6N3y

+ 3N2y + 12Ny3 + 2y3,

(3.6.27)

and

Ξ(N, y) = 4(N − 1)N4

(
N2

√
γ(2N3−2N2−3Ny2−y2)

(N−1)(N+1)2

−
√

γ(2N3−2N2−3Ny2−y2)
(N−1)(N+1)2

+
√
γN2y −√

γNy −√
γy

)
.

(3.6.28)

From (3.6.26) it follows that we can set Γ(N, y) = 0 to find the roots of (3.6.25)

when λ = 0. We move all the terms with the square root to one side of the equality,

and the rest of them to the other side of the equality. Then, squaring both sides

and reorganizing gives

2N6PN(y) = 0, (3.6.29)

for a polynomial of order three in y2, whose coefficients depend on the number N

of agents but not the other model parameters:

PN(y
2) =8N6(y2)3 +

(
−16N7 + 4N6 + 48N5 − 52N4 + 8N3 + 20N2 − 8N − 4

)
(y2)2

+
(
8N8 − 20N7 + 46N6 − 112N5 + 114N4 − 4N3 − 46N2 + 8N + 6

)
y2

− 9N8 + 48N7 − 100N6 + 96N5 − 30N4 − 16N3 + 12N2 − 1.

(3.6.30)

The polynomial PN(y
2) has a root in the interval (0, 2N2 N−1

3N+1
). This follows from
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the intermediate value theorem, since N ≥ 2 and in turn

PN(0) = −(N − 1)6(3N + 1)2 < 0,

PN

(
2N2 N−1

3N+1

)
= (N−1)3(N(N(N(N(4N(2N−3)−13)+6)+12)+6)+1)2

(3N+1)3
> 0.

(3.6.31)

The equalities in (3.6.31) can be verified by expanding the products on the right-

hand sides of (3.6.31) and comparing the corresponding result with PN(0) and

PN

(
2N2 N−1

3N+1

)
obtained by using (3.6.30). In fact, the cubic polynomial PN has

three real roots, but not all of these are roots of Γ(·, N). Using symbolic calculations

detailed in the Mathematica companion of Micheli et al. (2021), it can be verified

that only one root δ∗N of PN satisfies ΦN(0, δ
∗
N) = 0. This completes the proof

of (i).

(ii) Again using symbolic computations, it can be verified that ∂yΦN(0, δ
∗
N) ̸= 0.

(More details can be found in the Mathematica companion of Micheli et al. (2021).)

Then, by the Implicit Function theorem there exists bN > 0 and a function δN :

[0, bN) → R, such that ΦN(λ, δN(λ)) = 0 for λ ∈ [0, bN) as desired.

In order to prove the main result of this section we first need to establish the

following auxiliary lemma.

Lemma 3.6.10. For all sufficiently small λ, e = e(λ) is well defined and strictly

positive.

The proof of Lemma 3.6.10 is postponed to Appendix B.1 for better readability.

We are now ready to prove the main result for this section.

Proof of Lemma 3.6.1. Let N ≥ 2. The proof is split in two parts:

(i) We show that there exists a solution of the system (3.5.5)–(3.5.11), (3.5.12)–

(3.5.14);

(ii) We show that the solution of Part (i) is well-defined and satisfies the con-

straint of (3.6.1);
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We remark that to prove our result we will use certain identities for e, f and c

(see (B.2.1) and (B.2.2)) which we have postponed to Appendix B.2 for better

readability.

Part (i). By reverting the steps in Section 3.5 we recover the parame-

ters (a, b, c, d, e, f, g, ā, b̄, c̄) in terms of d. We then find a solution d = d(λ,N)

to (3.5.17) for N ≥ 2 and sufficiently small λ as described in (3.5.18)–(3.5.21) us-

ing Lemma 3.6.9. Moreover, it follows that there exists a neighbourhood ΛN of 0

such that

ΦN(λ, δN(λ)) = 0, for all λ ∈ ΛN , (3.6.32)

which implies the existence of a solution d = d(λ,N) to (3.5.17) for sufficiently

small λ.

Part (ii). Recall that by Lemma 3.6.9(i), δ∗N ∈ (0,
√
2N
√

N−1
3N+1

]. The Implicit

Function theorem as applied in the proof of Lemma 3.6.9 yields

δN(λ) = δ∗N +O(λ). (3.6.33)

Using (3.5.18) and (3.6.33) we find that

d =
√
λγδN =

√
λγδ∗N +O(λ3/2). (3.6.34)

Thus since δ∗N > 0, (3.6.34) shows that d > 0 for sufficiently small λ. Recall that in

(3.5.15) a was defined in terms of d. Plugging (3.5.18) in (3.5.15) for the parameter
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d, and expanding around λ > 0 gives

a

=
1

4N2

(
(6N + 2)

√
γλδN

+ λ(N + 1)2
(√

8γN2

λ(N + 1)2
− 4(3N + 1)ρ

√
γλδN

λ(N + 1)2
− 4γ(3N + 1)δ2N
λ(N − 1)(N + 1)2

+ ρ2 − ρ

))

=
√
γλ

(
1

2

√
2N3 − 2N2 − 3N(δ∗N)

2 − (δ∗N)
2

(N − 1)(N + 1)2

+
1

N

√
2N3 − 2N2 − 3N(δ∗N)

2 − (δ∗N)
2

(N − 1)(N + 1)2

+
1

2N2

√
2N3 − 2N2 − 3N(δ∗N)

2 − (δ∗N)
2

(N − 1)(N + 1)2
+

3N + 1

2N2
δ∗N

)
+O(λ)

=
√
γλ

(
D
(N + 1)2

2N2
+

3N + 1

2N2
δ∗N

)
+O(λ),

(3.6.35)

where

D =

√
2N3 − 2N2 − 3N(δ∗N)

2 − (δ∗N)
2

(N − 1)(N + 1)2
. (3.6.36)

Then, for sufficiently small λ, the arguments of all the square roots above are

positive so that a is indeed well defined and positive. Next, note that for δ∗N ∈
(0,

√
2N
√

N−1
3N+1

] we have

2N3 − 2N2 − 3N(δ∗N)
2 − (δ∗N)

2 ≥ 0. (3.6.37)

Using (3.5.13), (3.5.14) , (3.5.15) and (3.5.18) we get that

c̄− (N − 1)b̄ = −(N − 1)
(
−aN + a+ 2

√
γλδN

)
λ− λN2

−
√
γλδN − aN

λ+ λN
. (3.6.38)

Together with a given in terms of δN by (3.6.35), we obtain a power series expansion

for the left-hand side of (3.6.38) around λ = 0:

c̄− (N − 1)b̄ =

√
γ

λ
∆(N) +O(1), (3.6.39)
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where ∆(N) > 0 was defined in (3.5.22). Therefore, for sufficiently small λ it holds

that

c̄− (N − 1)b̄ > 0. (3.6.40)

In order to verify (3.6.1), it now remains to prove that ā > 0. In view of (3.5.12),

we have

ā =
e

(1 +N)λ
.

so it suffices to establish e > 0. Lemma 3.6.10 shows, that for sufficiently small

λ, the constant e is strictly positive and well defined. Therefore, the constant ā is

also strictly positive and well defined.

It remains to prove that (b, c, f, g) are well defined. Since a, d > 0 for sufficiently

small λ, b in (3.5.16) is well defined. From the expression for f in (B.2.1) it

follows that in order to verify that f is well defined we need to show that all the

denominators appearing in (B.2.1) are different from zero when λ is small, namely

h3(λ)− β − ρ ̸=0, (3.6.41)

h4(λ)λ(N + 1)2
(
4a(N − 1) + 2d(N − 3) + λ

(
N2 − 1

)
ρ
)
̸=0. (3.6.42)

In view of Lemma 3.6.10 and since e = 1/h4 by (B.2.1), we have h4(λ) > 0, a > 0,

d > 0 for sufficiently small λ and in turn (3.6.42). (The case N = 2 needs to be

handled separately – in this case, it follows from (3.5.15) that for λ small enough

we have a ≥ d/2, which together with h4(λ) > 0 gives (3.6.42).)

Using the expression for h3 in (B.2.2) together with (3.6.34) and (3.6.35) we

find that for sufficiently small λ we have

h3 =

√
γ

λ

(−N2 +N + 1) δ∗N − (N2 − 1)

√
(2N3−2N2−3N(δ∗N )2−(δ∗N )2)

(N−1)(N+1)2

(N − 1)N2

+O(1) < 0,

where we also used (3.6.37) in the last step. This proves (3.6.41), so that f is well

defined. Next note that g is well defined if c is well defined, hence in order to

121



complete the proof we need to prove that c is well defined. From (3.5.9) we have

c =

(
ρ+ 2β

2

)−1 (
fā+

(e− λ(N − 1)ā)2

4λ

)
, (3.6.43)

since we already showed that (e, f, ā) are well defined, the result follows.

Remark 3.6.11. We remark that there exists a unique solution to the system

(3.5.5)–(3.5.11), (3.5.12)–(3.5.14) for which (3.6.1) and (3.6.24) are satisfied.

Specifically, such unique solution can be characterised as the unique root of the

polynomial (3.6.30) satisfying (3.6.24) while being also the root of (3.6.26). Such

solution identifies a unique closed-loop Nash equilibrium in the class of linear strate-

gies. We remark the polynomial (3.6.30) has other roots (other than the one corre-

sponding to the closed-loop Nash equilibrium), however, they either do not satisfy

(3.6.24) or are not a root of (3.6.26). We remind the reader that, as stated in the

footnote of page 19, we had already initially excluded all the solutions corresponding

to the other root of (3.5.5) as the corresponding solution did not present the correct

sign in at least one of the parameters among ā, b̄ and c̄.
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4
Evidence of Crowding on Russell 3000

Reconstitution Events

This chapter, based on the paper Micheli and Neuman (2019), is a joint work with

Dr. Eyal Neuman and it has been accepted for publication in Market Microstructure

and Liquidity.

4.1 Introduction

FTSE Russell is, quoting the company web-page (cf. FTSE Russell (2020b)), a

“global provider of benchmarks, analytics, and data solutions with multi-asset ca-

pabilities”. The company maintains a wide range of indexes varying for geographic

regions, weighting procedures and asset classes.

In US markets, FTSE Russell most prominent products are the Russell US

indexes : the Russell 1000, 2000, 3000 and 3000E indexes track rosters of US com-

panies across different market capitalizations. Part of the strength of Russell US

indexes resides in their modularity. As shown in Table 4.1, each index is composed

according to different investment styles, therefore offering an extended and meticu-

lous coverage for the US equity market. As an example, the Russell 3000 measures

the performance of the 3,000 largest public companies in the US by total market
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capitalization and represents approximately 98 percent of the American public eq-

uity market. On the other hand, the Russell 1000 Defensive Index is much more

specialized as it includes those Russell 1000 Index companies that are more stable

and are less sensitive to economic cycles, credit cycles and market volatility.

Such indexes are often used by portfolio managers as benchmarks for US equity

market performances across different market segments. It does not come as a

surprise then, that Russell US indexes are the go-to equity universe for a wide

body of academic literature, including portfolio management research (Cremers

et al., 2020; Biktimirov et al., 2004; Boone and White, 2015; Chang et al., 2014;

Chen et al., 2005) as well as market microstructure e.g. (Bucci et al., 2019; Volpati

et al., 2020; Capponi and Cont, 2019; Zarinelli et al., 2015; Bucci et al., 2020a;

Bormetti et al., 2015; Bucci et al., 2020b; Calcagnile et al., 2018).

The rosters of securities in the Russell U.S. indexes have also received attention

for the presence of the so called “index effects”. It has been empirically observed

that the securities added to equity indexes receive positive returns concurrently

with their index additions and shortly thereafter. The main indexes on which

such effects are observed are the S&P500 and the Russell U.S. indexes, with many

studies, such as Madhavan (2003); Cai and Houge (2008); Chen (2006); Chang

et al. (2014); Petajisto (2011), providing evidences in support of the existence of

the aforementioned abnormal returns.

As for the Russell U.S. indexes, Madhavan Madhavan (2003) first analyzed the

presence of statistically significant abnormal returns attributable to the annual

reconstitution of Russell 2000 and Russell 3000 indexes. Moreover, Madhavan ex-

plained the abnormal returns due to microstructure effects such as price pressure

and changes in liquidity. The mechanisms generating these abnormal returns phe-

nomenon were further investigated and tested by Chen (2006). Cai and Houge

(2008) compared the performance of a buy-and-hold strategy of the Russell 2000

index to the returns of a portfolio following the annually rebalanced Russell 2000

index. The latter was shown to be significantly more profitable in a time scale of 5

years. More recently, Onayev and Zdorovtsov (2008) have found evidence of strate-
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gic predatory trading behaviour around the annual reconstitution, whereby closing

prices of companies are manipulated in order to influence their index membership.

Russell U.S. Indexes

Broad market Large cap Small cap

Russell 3000E Index Russell 1000 Index Russell 2000 Index
Russell 3000E Value Index Russell 1000 Value Index Russell 2000 Value Index
Russell 3000E Growth In-
dex

Russell 1000 Growth Index Russell 2000 Growth Index

Russell 3000 Index Russell 1000 Defensive In-
dex

Russell 2000 Defensive In-
dex

Russell 3000 Value Index Russell 1000 Dynamic In-
dex

Russell 2000 Dynamic In-
dex

Russell 3000 Growth Index Russell 1000 Growth-
Defensive Index

Russell 2000 Growth-
Defensive Index

Russell 3000 Defensive In-
dex

Russell 1000 Growth-
Dynamic Index

Russell 2000 Growth-
Dynamic Index

Russell 3000 Dynamic In-
dex

Russell 1000 Value-
Defensive Index

Russell 2000 Value-
Defensive Index

Russell 3000 Growth-
Defensive Index

Russell 1000 Value-
Dynamic Index

Russell 2000 Value-
Dynamic Index

Russell 3000 Growth-
Dynamic Index
Russell 3000 Value-
Defensive Index
Russell 3000 Value-
Dynamic Index

Table 4.1: Russell US indexes by investment style and market sector. Table
originally published in Section “Construction and Methodology” of FTSE Russell
(2020c).

One of the main features distinguishing the Russell U.S. indexes across all oth-

ers US stocks equity indexes is their rebalance procedure. In general, rebalance

procedure of equity indexes are not necessarily publicly disclosed and sometimes

presents some degree of arbitrariness. For example, as discussed in Cai and Houge

(2008); Petajisto (2011), Standard & Poor’s maintains a proprietary selection pro-

cess used to discern which stocks will belong to the new issue of the index and make

adjustments whenever it considers it to be necessary. Nonetheless, even though

such procedures remain undisclosed, the S&P500 historical constituents securities

are available to researchers via the WRDS database maintained by the Wharton
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School of the University of Pennsylvania.

On the other hand, we have the FTSE company that implements a publicly

available fully deterministic rebalance algorithm for its Russell indexes, but which

prefers not to publicly disclose their historical index compositions. Bloomberg L.P.

terminals offer the list of the companies in the indexes but neither the constituents

securities nor the index weights are available.

The FTSE index compositions are available to buy for financial institutions and

funds. On the academic side, the WRDS database has recently started providing

a Russell index historical dataset for 21 indexes, with a substantial annual fee.

However, at the time of writing, this dataset provides only information on index

weights and companies contributions to returns. It falls short of more refined

information such as quarterly and annual ranking and rebalance days, and on

historical lists of securities for companies which are traded across different classes of

shares. We invite the reader to consult Section 4.2 for a detailed description of these

features and their importance to index reconstitution. Since these features play a

crucial role on indexes reconstitution, tracking them in a consistent framework

is important for academic research (see e.g. the analysis in Section 4.5). There

seems to be a gap in Russell data for research purposes, in the sense that there

is no recognised source from which academic researchers and financial institutions’

internal researchers can borrow detailed Russell US indexes data from. Therefore,

it is very likely that the notion and composition which is used to approximate

the Russell US indexes, e.g. the Russell 3000 or Russell 2000 indexes, could be

diversified across different academic papers.

Agreeing upon a common “definition” of what are Russell indexes could benefit

the financial research community as a whole and is one of the main goals of this

work. On some very elementary scientific grounding, sharing the notion of initial

data, common to all financial data analyses, allows for a higher degree of repro-

ducibility of the results. In the first part of this chapter (Sections 4.2–4.4) we de-

velop a methodology which is based only on data available in the CRSP database

of the Wharton Research Data Services (see Section 4.3 for more details on the
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database). This methodology allows us to replicate in great accuracy the Russell

1000, 2000 and 3000 indexes weights and returns, and to track new additions and

deletions. We demonstrate the accuracy of this methodology by comparing our

suggested reconstitution procedure versus the original Russell US indexes for the

time period June 1989 to June 2019 (see Section 4.4). A python package named

pyndex that generates the indexes according to our methodology is also provided

in Micheli (2020).

The impact of sharing such initial data might vary across different studies,

ranging from marginal to impactful, nonetheless we still remark that it could only

be beneficial and would bring the research community a step closer to the conclusion

of disputes on results based on the quality of the data being analysed. Similarly to

the natural sciences, we remark that the validity of quantitative claims is settled

only by referring to the observations of the phenomenon, which, by nature, strongly

depend on the data analysed.

As a first application for our index reconstruction methodology, we study crowd-

ing on indexing strategies around Russell 3000 reconstitution events, which starting

from 2004 occurs every quarter. Before we describe our analysis on this topic, we

survey some existing literature on crowding in financial markets.

Over the last 20 years, the phenomenon of crowding in financial markets has

increasingly gained attention both from academics as well as from financial in-

stitutions. It is a subject of many research works studying both theoretical and

empirical aspects including (Cont and Bouchaud, 2000; Volpati et al., 2020; Bucci

et al., 2020b; Barroso et al., 2017; Caccioli et al., 2015, 2014; Khandani and Lo,

2008).

Crowding is often considered to be an explanation for sub-par performances

of investments as well the development of systemic risk in financial markets. The

presence of largely overlapping portfolios comes at the expense of portfolio man-

agers, also in terms of transaction costs, as affine positions usually lead to similar

trades.
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Cont and Bouchaud (2000) proposed a simple mathematical model in which

the communication structure between agents gives rise to heavy tailed distribution

for stock returns. This established a theoretical connection between crowding and

stock markets shortfall. The aforementioned portfolios overlap was shown to be a

considerable factor in the August 2007 Quant Meltdown. Using simulated returns

of overlapping equity portfolios, Khandani and Lo (2008) showed that combined

effects of portfolio deleveraging following by a temporary withdrawal of market-

making risk capital was one of the main drivers of the 2007 Quant Meltdown.

Caccioli et al. (2015, 2014) developed a mathematical model for a network of dif-

ferent banks holding overlapping portfolios. They investigated the circumstances

under which systemic instabilities may occur as a result of various parameters, such

as market crowding and market impact. Recently, Volpati et al. (2020) measured

significant levels of crowding in U.S. equity markets for Momentum signals as well

as for Fama-French factors signals, even though with smaller significance.

As already mentioned, we apply our index reconstruction methodology in order

to measure crowding effect on Russell indexes around reconstitutions events. It was

reported by Madhavan (2003) and others, that around annual index reconstitution

events, there are significant abnormal returns on stocks which are new additions or

deletions from the index. These returns are caused by portfolio trading strategies

which anticipate the change in the stock price for new additions or deletions. The

returns of these stocks are typically decomposed into two parts. The first is called

temporary price impact, and it describes the returns that revert back within one

month from index rebalance day. The permanent price impact captures sustainable

stock returns, which accumulates within two months from the index reconstitution

announcement (see more details in Section 4.5). It follows that the reconstitution

events of the Russell 3000 index serve as prominent examples for studying crowding

effects of trading strategies.

Starting from 2004, the Russell indexes received quarterly additions to take into

account the changes brought in the market by newly listed securities, that is IPOs,

which took place between annual rebalancings (see additional details in Section
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4.2). The practice of quarterly updates to the indexes was continued ever since

and is currently still in use. To our knowledge, none of the papers that studied the

Russell index reconstitution effect has dealt with these quarterly additions. The

reconstruction methodology, which is developed in this chapter, can assist us to

preform a more refined analysis of crowding phenomenon on Russell 3000 index

around reconstitution dates. This is the second objective of this chapter.

In Section 4.5 we compute the permanent and temporary price impact on the

Russell 3000 stock additions and deletions, using the annual index portfolios gen-

erated with our protocol. We also track the quarterly additions to the Russell 3000

index. We find that the price impacts of the aforementioned quarterly additions

are overall compatible with the hypothesis that the majority of market participants

track the Russell 3000 index on an annual basis rather than on a quarterly basis.

Such findings are consistent with the belief that the portfolio strategies following

the Russell 3000 index rebalance on an annual basis are more crowded than those

following the Russell 3000 index rebalance on a quarterly basis.

This chapter is structured as follows. In Section 4.2 we describe the precise

methodology of the FTSE Russell indexes reconstitution which includes the quar-

terly rebalancings due to new initial public offerings (IPOs). In Section 4.3 we de-

scribe the data that we are using in order to reconstruct the indexes in this chapter.

Section 4.4 is dedicated to our methodology which approximates the Russell US

indexes to our results which replicate the indexes. In Section 4.5 we determine the

temporary and permanent price impact generated by the annual index additions

as well as examine the existence of crowded trades around the annual Russell 3000

reconstitution. In Section 4.6 we present the conclusions of this chapter.
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4.2 The FTSE Russell indexes reconstitution

Methodology

In this section we describe the main features in the original FTSE Russell indexes

reconstitution methodology.

The FTSE Russell US 1000, 2000 and 3000 are equity capitalisation-weighted in-

dexes that currently follow an annual rebalance procedure, which was first adopted

in June 1989. As further discussed in Cai and Houge (2008), the indexes followed

a quarterly rebalance schedule from 1979 to 1986 and a semi-annual one from 1987

to 1989. In the 2004 rebalance calendar, the Russell indexes received quarterly

additions to take into account the changes brought in the market by newly listed

securities, that is IPOs which took place between annual rebalancings. The prac-

tice of quarterly updates to the indexes was continued ever since and is currently

still in use.

We remark that the newly issued securities added at each quarter do not replace

any other company already in the indexes, in fact quoting the 2004 press release

BusinessWire Press Release (2004) of Russell Investments1:

“As IPOs are added to Russell indexes each quarter, Russell will not

delete existing index members to make room for them, but will con-

tinue to reconstitute the indexes fully each year at the end of the second

quarter.”

Inclusion in the Russell indexes is established systematically via a set of rules

which we will briefly summarise, without intending to be fully exhaustive. For the

full list of the current selection rules we invite the reader to consider the official

documentation available at FTSE Russell (2020c).

Each year on the rank day, which takes place in May, all U.S.-domiciled com-
1Russell Investments controlled the Russell US indexes until its index division was bought by

LSE Group in 2015 and subsequently renamed FTSE Russell.
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panies with stock prices greater than $1.00 are ranked according to their market

capitalisation. The total market capitalisation of a company is computed by deter-

mining the shares of common stock, non-restricted exchangeable shares and part-

nership units/membership interests while excluding any other form of shares, such

as convertible preferred stocks, foreign securities as well as American Depositary

Receipts (ADR). Explicitly, as discussed in FTSE Russell (2020c), exchangeable

shares are shares which may be exchanged, on a one-for-one basis, at the owner’s

option at any time, while membership interests or partnership units embody an

economic interest in a limited liability company or limited partnership.

For a company which is traded across different classes of shares, e.g. Berkshire

Hathaway, FTSE Russell first determines its so called pricing vehicle: the share

class with the highest two-year trading volume as of the corresponding rank day

in May. Hence, the total market capitalisation is computed by multiplying the

cumulative sum of shares across all classes by the close price of the pricing vehicle

on the rank day. Only companies with a total market capitalisation higher than

30 million U.S. dollars are included in the ranking of the Russell US indexes.

Once the ranking has been established, the 3000 companies with the highest

market capitalisation fall in the Russell 3000 index. The top 1000 companies in

the Russell 3000 index in turn, constitute the Russell 1000 index, while the bottom

2000 determine the Russell 2000 index. The top 4000 companies in the ranking with

total market capitalisation higher than 30 million U.S. dollars, or all the available

securities in case they are less than 4000, constitute the Russell 3000E.

The weight corresponding to each security admitted to the index is computed

as follows. The outstanding shares of a security are adjusted to only include the

number of available shares which can be traded by the public, the so called “free

float”. In fact, it is possible that some of the shares, as those held by government

or other third party, might not be available for trading. The adjustment is done

based on information contained in governmental filings, such as those submitted

to the Securities and Exchange Commission (SEC). Further information about the

float-adjustment procedure for the rebalance year 2020 can be found in Section
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“Methodology Enhancements” of FTSE Russell (2020a). A market capitalization

computed via the free float shares is called float adjusted. Stocks in the Russell US

indexes are weighted by their float-adjusted market capitalization times the closing

price of the corresponding pricing vehicle.

The rebalance day is scheduled to be one month later than the ranking day,

coinciding therefore with the end of June or beginning of July. On this day the

new issues of the indexes officially replaces the previous ones in the stock market.

Minor adjustments to the indexes are made in the period between the ranking day

and the rebalance day, for example, in the case of mergers and spin-off of companies.

Since the FTSE Russell acquisition of the Russell U.S. indexes, which took place in

2015, the exact reconstitution calendar have been published on the FTSE Russell

webpage. In order to reliably retrieve the reconstitution calendar prior to FTSE

Russell acquisition one has to consider the research literature. Specifically, in Table

4.2 we gather the rank days and rebalance days as described in Section “Index

Construction and Sample Selection” of Cai and Houge (2008), Section 2 of Chen

(2006) and Section 3.2 of Madhavan (2003). It is documented by the FTSE Russell

webpage FTSE Russell (2017) that, starting from 2017, the Russell U.S. indexes

rank day has seen a shift towards the first half of May, in agreement to what is

also observed for the year 2020 in Table 4.2. The academic sources, that are dated

before 2017, unanimously agree on the rank day coinciding with the 31st of March.

Academic Sources and Annual Reconstitution Calendars

Source Rank Day Rebalance Day

FTSE Russell (2020a) May 8 June 26
Cai and Houge (2008) May 31 June 30
Madhavan (2003) May 31 July 1
Chen (2006) May 31 June 30

Table 4.2: A comparison of the Russell indexes reconstitution calendar across dif-
ferent sources.

In a similar fashion to the annual rebalance schedule, the ranking for inclusions
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of IPOs takes place at the end of Q3, Q4 and Q1. Approximately one month

after each quarterly ranking date the index gets extended with the new eligible

IPOs, as it can be seen from the 2019 quarterly rebalance calendar in Table 4.3.

As discussed in Section “Defining Membership by size” FTSE Russell (2020c), the

quarterly rebalance days are taken to be the third Fridays of September, December

and March and the corresponding rank days are set to be 5 weeks before each

quarterly rebalance day.

Russell U.S. Quarterly Rebalance Calendar 2019

Quarterly additions 2019-Q3 Additions 2019-Q4 Additions 2020-Q1 Additions

Initial offering period IPOs which ini-
tially price/trade
between May 13
and Aug 16.

IPOs which ini-
tially price/trade
between Aug 17
and Nov 15.

IPOs which ini-
tially price/trade
between Nov 16
and Feb 14.

Rank date 16 Aug 2019 15 Nov 2019 14 Feb 2020
Rebalance date 20 Sep 2019 20 Dec 2019 20 Mar 2020

Table 4.3: Quarterly IPO calendar for the 2019 Russell rebalance schedule.

The eligibility of the IPOs is established in two ways:

1. If the new issue released in the IPO belongs to a company which is already

an index constituent, the following criterion is considered. FTSE Russell

determines the value associated to the IPO by multiplying the number of

shares released in the IPO by the price of the pricing vehicle of the company

releasing the issue. If the IPO’s value is larger than the market capitalisation

of the company sitting at the bottom of the Russell 3000E index, the security

released in the IPO is added to the index. The market capitalisation of the

company at the bottom of the Russell 3000E index, before being used in the

comparison with the IPO’s values, is suitably adjusted to take into account

the price variations of the stocks which have taken place since the annual

rebalance day. Note that the index membership assigned to the new issue

will be the same of the pricing vehicle. However, the new issue is added to

the index as a separate entity, therefore, it does not contribute to the total
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market capitalization of its company.

2. If the new issue belongs to a company which is not in the index at the

time of the IPO, then the market capitalisation of the IPO is established

by multiplying the number of shares released, by their price on the quarter

IPO ranking day. If such market capitalisation falls within any of the

capitalisation breakpoints established at the annual ranking day2 then the

company is added to the one or more of the indexes accordingly.

At every ranking day, either annual or quarterly, the index weights are recalculated

based on the current capitalisation of the index constituents. The current annual

cycle of the indexes is summarised by Fig. 4.1. Note that once a company is

January February March April May June July August September October November December

Annual Ranking

Minor Adjustments

Annual Rebalance

Q1 IPO Ranking

Q1 IPO Additions

Q3 IPO Ranking

Q3 IPO Additions

Q4 IPO Ranking

Q4 IPO Additions

Figure 4.1: Russell US indexes annual reconstitution timeline starting from June
2004. The timeline for the years 1989-2004 is identical apart from the quarterly
IPOs additions, i.e. the blue circles.

delisted from the market, the corresponding securities are not traded anymore.

This implies that if any such company is part of any Russell US index, then the

number of actively traded securities in the index might reduce during the course

of the year. Nonetheless, FTSE decides not to alter the current composition of the

index and therefore any stock in the index which is delisted is not replaced.

Finally, as discussed in Section “Long-Run Impact of Additions and Deletions”

of Cai and Houge (2008), the index returns can be found by a weighted average of

the daily stock returns belonging to the index under the assumption of dividends

reinvestment.
2The capitalisation breakpoints are determined by the market capitalisation on the annual

ranking day of the lowest ranking company in the Russell 1000 and 3000 index. For the Russell
2000 index they are similarly determined by the highest and lowest market capitalisation.
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4.3 The Data

For the index reconstitution we will adopt the data available in the Wharton Re-

search Data Services (WRDS) database, a research platform available to “50,000

corporate, academic, government and nonprofit users at 400+ institutions in 30+

countries” provided by the the Wharton School of the University of Pennsylvania.

Specifically, we will limit ourselves to the financial data collected in the Center

for Research in Security Prices (CRSP) U.S. Stock database, which offers highly

accurate information for the U.S. stock market. As further discussed in Section

“General Description: Coverage” of Wharton Research Data Services (2020), such

database contains end-of-day and month-end prices for,

• NYSE, starting from December 31, 1925,

• NYSE MKT, starting from July 2, 1962,

• NASDAQ, starting from December 14, 1972,

• Arca Exchanges, starting from March 8, 2006.

Moreover, the securities listed in this database are only equity securities for U.S.

companies or international companies which are traded in any of the stock market

aforementioned. The CRSP database contains the necessary information about the

financial securities to be used in our analysis, such as prices, quote data, shares

outstanding as well as the information about corporate actions, including IPOs.

We refer the reader to Appendix C.1 for further technical details regarding CRSP

databases and their content.

4.4 Generating the Russell US indexes

We turn to discuss the main features of our analysis for reconstructing Russell 1000,

2000 and 3000 using CRSP datasets to a very high degree of accuracy. Our analysis
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will not be free from approximations to the original Russell US index reconstitution,

which currently counts more than 40 pages of methodology. Due to the restricted

breadth of data we consider, which as mentioned in Section 4.3 is confined to the

CRSP U.S. stock financial data, our reconstitution methodology departs in multiple

ways from the one of Section 4.2. We will consider the time window starting from

July 1989, the first year in which the annual rebalance schedule has been applied,

and terminating in June 2019.

As already discussed in Section 4.2, the exact annual reconstitution calendar of

the Russell U.S. indexes is not available to the public for the entire time period we

consider here. Therefore, we will take the annual rank day to take place on the 31st

of May while the annual rebalance day to be the last Friday of June, as similarly

supported by the academic sources cited in Table 4.2. Following Table 4.3 and the

methodology in FTSE Russell (2020c) we take the Q3, Q4 and Q1 rebalance days

to fall on the third Friday of September, December and March respectively and the

corresponding rank days to be 5 weeks theretofore. If any rank day, be it annual or

quarterly, falls on a U.S. non-trading day then we move it to the preceding trading

day. Instead, for a rebalance day, be it annual or quarterly, which falls on a U.S.

non-trading day we shift it to the following trading day. We do so in order to avoid

any look-ahead bias 3. Such choice of schedule may deviate from the real one, but

given that the rank and rebalance days often take place at the end of May and at

the beginning of July respectively, we expect the deviation to be marginal and not

to present any measurable effect on our final result.

Originally, as explained at length in Section 4.2, the pricing vehicle for each

company is identified and then used to determine the market value of such company

on the ranking day. Such procedure presents extra work required for companies

with more than one share class: we would need to identify the pricing vehicle using

the two-year trading volume of each share class. Figure 2 of Cai and Houge (2008)

shows that it is possible to replicate, for the time period 1979-2004, to very high

statistical accuracy the cumulative returns of the Russell 2000 index. This is done

3A look-ahead bias is any bias that can appear in the data which is caused by using information
that would not have been known or available during the period being analyzed.
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by computing the market capitalization of every company without determining its

pricing vehicle, that is by multiplying the total shares outstanding of each security

times the corresponding share price. This motivates us to deviate from the original

methodology and to approximate the market capitalization of each company as in

Cai and Houge (2008), for all the Russell U.S. indexes and for the entire time period

1989-2019. Moreover, we remark that such market capitalization would differ from

the original one only for companies which are traded across two or more share

classes and not for all the index constituents.

CRSP does not contain any information regarding cross-ownership or privately

held shares. Such a piece of information is necessary in order to adjust for the

free float, i.e. the fraction of shares which can be traded by the public. Hence,

instead of computing the weights of the stock admitted to the index using the

float-adjusted market capitalization, as in the original methodology, we use the the

same market capitalization which was used to establish the index ranking.

Starting from the reconstitution calendar of May 2004, we introduce quarterly

ranking days and rebalance days in order to update our index with the IPOs taking

place between rank days. Note that this is one of the main differences from previous

index reconstruction papers such as Cai and Houge (2008). As already discussed

in Section 4.2, the way in which the original methodology considers adding newly

issued securities to the index is two-fold, depending whether they belong to a

company listed in the index or not. Our methodology deviates from the original

as follows. We will add any newly issued securities belonging to companies not

listed in the index. We require each security to satisfy the standard eligibility

requirements for the admission to the index and whose IPO took place in the 3

months preceding the quarterly rank day. Once a new issues satisfies the eligibility

requirements, then it can be added to one or more Russell U.S. indexes, only if

its total market capitalization falls within the market capitalization breakpoints

established during the most recent annual ranking day.

Finally, in accordance with the original FTSE Russell methodology any com-

pany in the index which is deleted between rebalance days is never replaced.
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Now we are ready to present our main results regarding indexes replication.

We first concentrate on the results of indexes replication between 1989-2004, where

Russell indexes were rebalanced annually, without any quarterly IPOs additions.

Then we focus on more recent results of indexes replication between 2004-2019,

where quarterly rebalancings including companies IPOs were introduced.

Cai and Houge (2008) retrieved the roster of companies in the Russell 1000

and 2000 indexes for the time period 1979 to 2004 directly from Frank Russell

Company. Figure 1 in Cai and Houge (2008) displays the total number of Russell

2000 membership changes for each annual rank date alongside the number of new

issues, i.e. IPOs and spin-offs, picked up by the index each year. In Figure 4.2 we

also compute the annual number of constituent changes to Russell 2000 index for

each annual reconstitution. Specifically, the “Total Index Additions” bar at year t

counts the number of companies added to the Russell index during the year t annual

rebalance but which weren’t in the index in the previous release of the index. The

“New Issues” bar at year t quantifies the companies added to the Russell 2000

index during the year t annual rebalance whose IPO took place between May of

year t − 1 and May of year t. CRSP does not offer enough information regarding

corporate actions in order to include spin-offs, as it was done in Figure 1 of Cai and

Houge (2008). Over the years 1989 to 2004, where our methodology intersects with

Cai and Houge (2008), we see that there is a very good agreement in terms of the

number of new issues added to the index and the total number of index additions.

Therefore, this guarantees that, for the time period 1989-2004, our methodology

does not significantly differ from the original methodology which generated the

rosters of companies studied by Cai and Houge and which were originally retrieved

from Frank Russell Company. Figure 4.2 extends the results of Cai and Houge to

the time period in which IPOs were included in the original methodology, that is

from the year 2004 until the most recent data.

We visually compare the index returns generated with our methodology versus

the original index returns. We retrieve the original daily returns for the Russell

1000, 2000 and 3000 from the Bloomberg L.P. terminal. As already discussed, the
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Figure 4.2: The annual index changes between 1989-2019, as well the total number
of new IPOs taking place in 12 months before year the rebalance of each year
and satisfying the requirements for index additions. Russell US indexes started
receiving index additions due to IPOs from September 2004.

index daily returns can be computed by a weighted average of the stock returns

using the index weights. Therefore, a correct combination of the stocks selection

and their corresponding index weights should be capable to reproduce the original

daily index returns. We remark that it would be very hard, if not impossible, to

back-engineer the constituents and the corresponding weights given the original

daily index returns for the entire time period considered. The daily index returns

are too noisy to be used for any meaningful visual comparison, therefore we plot

the trailing three-months (T3M) index gross returns. Let 0 ≤ t1 < t2 and let rt be

the daily net return from day t − 1 to time t. The compounded gross returns on

[t1, t2] are given by, ∏
t∈[t1,t2]

(1 + rt).

Hence, the trailing three-months gross returns at time t2 are computed by taking

[t1, t2] to be a 3 months time window.

Figure 4.3 compares the T3M index gross returns based on the daily returns

of our replicated indexes and the original Russell 1000, 2000 and 3000 indexes

for the time window between July 1989 to June 2019. The Russell U.S. indexes
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generated following our methodology are consistently capable of mimicking the

original Russell indexes for the entire duration of the time window considered.

The visual agreement of Figure 4.3 is further assessed statistically via cross-

correlations of daily returns of our replicated indexes against the original Russell

U.S. indexes.

As discussed in Section “What is the problem with cross-correlating simultaneous

autocorrelated time series?” of Dean and Dunsmuir (2016), the confidence bands of

the cross-correlation between two time series has to be altered from the conventional

cross-correlation limit, if the time series considered individually present significant

autocorrelations. If such autocorrelations are not taken into account they may lead

to the phenomenon of “spurious correlations”, in which, as also shown in Figure 1

of Dean and Dunsmuir (2016), where even two independent time series can present

a significant correlation.

For the time window 1989-2004 and 2004-2019, we checked that none of the daily

returns of the indexes, generated or original, present significant autocorrelation at

any non-zero lag. The Pearson’s correlations of generated and original indexes at

zero lag are reported in Table 4.4, along with the 95% confidence bands which are

given by ±1.96/
√
n, where n is the sample size. As a benchmark, in parentheses we

report the cross-correlation at zero lag between a portfolio in which the components

of the reconstructed Russell indexes are equally weighted and the original Russell

indexes. All the Pearson’s cross-correlations are strongly significant.

To further test the agreement among the series in terms of non linear mea-

sures of dependence, we also determine the Kendall’s τ correlations between the

reconstructed Russell indexes and the original ones. We report the values report

in Table 4.5 along with 95% confidence bands which are given, for large sam-

ples, by ±1.96
√

2(2n+5)
9n(n−1)

where n is the sample size. Similarly to the case of Pear-

son’s cross-correlations, we also report in parentheses the correlations between the

equally weighted portfolio and the original Russell indexes. All the Kendall’s τ

correlations are strongly significant and outperform the benchmark of the equally

weighted portfolio.
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Cross-Correlations (Pearson’s)

Years Russell 3000 Russell 2000 Russell 1000 95% Confidence Bands

1989-2004 0.98 (0.88) 0.97 (0.96) 0.98 (0.94) ± 0.03
2004-2019 0.99 (0.95) 0.99 (0.99) 0.99 (0.97) ± 0.03

Table 4.4: Pearson’s cross-correlation at lag 0 days between daily net returns for
Russell 1000, 2000 and 3000 generated with our reconstitution procedure versus
the original Russell indexes. The values in parenthesis are the cross-correlations
between a portfolio in which the components of the reconstructed Russell indexes
are equally weighted and the original Russell indexes.

Cross-Correlations (Kendall’s τ)

Years Russell 3000 Russell 2000 Russell 1000 95% Confidence Bands

1989-2004 0.92 (0.67) 0.88 (0.86) 0.92 (0.77) ± 0.02
2004-2019 0.96 (0.77) 0.94 (0.89) 0.95 (0.83) ± 0.02

Table 4.5: Kendall’s τ cross-correlation at lag 0 days between daily net returns for
Russell 1000, 2000 and 3000 generated with our reconstitution procedure versus
the original Russell indexes. The values in parenthesis are the cross-correlations
between a portfolio in which the components of the reconstructed Russell indexes
are equally weighted and the original Russell indexes.

Similarly, as shown in Figure 4.4, the normalised distribution of the daily returns

overlap to a very good degree between June 1989 to June 2004. The agreement is

also confirmed by the corresponding Q-Q plot.

Next, we turn to the time window ranging from June 2004 to June 2019. As

already discussed at the beginning of this section, we consider adding to our index

only securities issued by companies which are not listed in the index at the time of

their IPO. This approximation allows us to exclude the extra work of considering

different criteria for the securities belonging to companies already in the index.

The full discussion of such criteria was given in Section 4.2. Figure 4.5 displays

a justification for such approximation. We compare, for each year from 2004 to

2019, the number of new issues from companies which are not in the index, namely

“New Issues not in Index”, to the number of new issues from companies which

belong to the Russell 1000 or 2000 indexes, that is the “New Issues from Russell

1000” and “New Issues from Russell 2000” bars. Specifically, the “New Issues from

Russell 1000” bar at year t quantifies the eligible securities issued by a company
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in the Russell 1000 index in the time window from year t to year t + 1. Similarly,

mutatis mutandis, for the “New Issues from Russell 2000” and the “New Issues not

in Index” bars. We remark that given the hierarchical structure of the Russell 1000,

2000 and 3000 indexes the sum of the new issues from companies which belong to

the Russell 1000 and 2000 indexes is simply the total number of new issues from

companies in the Russell 3000 index.

For the entire duration of our analysis the “New Issues not in Index” IPOs are

about two orders of magnitude larger than the “New Issues from Russell 1000 and

Russell 2000” IPOs combined. In many years there are no new issues belonging

companies belonging to the indexes, for example as in 2007 or 2016.

Similarly to the time period 1989-2004, we compare the T3M index gross returns

of the reproduced Russell index against those of the original ones. Again, Figure

4.3 compares the T3M cumulative returns arising from the Russell 1000, 2000 and

3000 index generated with our methodology versus the original indexes between

June 2004 to June 2019. Similarly to the pre-2004 returns, our generated index

can fully imitate the original Russell indexes returns.

Moreover, for the time window 2004-2019, the daily returns do not show any au-

tocorrelation both for the original and generated time series. As contained in Table

4.4, the cross-correlation between the generated and original returns is extremely

significant for both the Russell 1000, 2000 and 3000 indexes.

When comparing the normalised distributions of the daily returns as in Figure

4.6 we observe a very good agreement between our and the original indexes, which

is supported by the respective daily returns histogram (left panel) and Q-Q plot

(right panel) for the Russell 3000.
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Figure 4.3: We compare the T3M gross returns for the time period June 1989 to June 2019 belonging Russell 1000, 2000 and 3000
generated with our reconstruction methodology (in blue) versus the original Russell US indexes (in orange).
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Figure 4.4: On the left panel we compare between the normalised daily returns
histogram of the Russell 3000 replicated index (orange area) and the original index
(blue area), from June 1989 to June 2004. On the right panel the corresponding
Q-Q plot between the two distributions is presented.
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Figure 4.5: Comparison of the number of new IPOs in each year in the following
groups: “New Issues not in Index” for securities which are not in the Russell 3000
index, “New Issues from Russell 1000” and “New Issues from Russell 2000” ,between
2004-2018.

4.5 Price Impact on Index Additions and

Crowding

In this section we measure the temporary and permanent price impact for the

annual additions and deletions in the Russell 3000 index. Moreover, we conduct a

careful analysis on temporary and permanent price impact for new IPO’s which are

added to the the Russell 3000 index, estimating such quantities near the dates of
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Figure 4.6: On the left panel we compare between the normalised daily returns
histogram of the Russell 3000 replicated index (orange area) and the original index
(blue area), from June 2004 to June 2019. On the right panel the corresponding
Q-Q plot between the two distributions is presented.

quarterly and annual rebalances. Studying the aforementioned price impact allows

us to test whether the majority of market participants follow the index rebalance

annually or quarterly. Specifically, for each year from 2004 to 2018 we test the

following hypotheses:

• whether the most recent Q3, Q4 and Q1 quarterly additions remaining in the

Russell 3000 index at annual rebalance, present a significantly different price

impact compared to all the other additions in the index, near the date of the

annual rebalance.

• whether near each of the Q3, Q4 and Q1 rebalances, the quarterly addi-

tions have a price impact significantly different from other Russell 3000 index

members, which have not changed their index membership in the most recent

annual rebalance.

As a result we shed light on crowded and less crowded trades on new stock addi-

tions to the Russell 3000 index, in proximity of the annual and quarterly rebalance

dates.

Madhavan, in his seminal work Madhavan (2003), measured the mean perma-
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nent and temporary price impacts generated by the annual addition and deletions of

securities to the Russell U.S. indexes. Specifically, Madhavan focused on the 1996-

2001 period, that is, before the index reconstitution methodology was updated to

include the quarterly IPO additions as discussed in Section 4.2. He computed the

permanent and temporary price impact in terms of the log-returns produced by the

securities within the following time intervals: for permanent impact, from the end

of May until two months thereafter and for temporary impact from June 30 until

one month thereafter. We recall that the end of May coincides with the annual

rank day and June 30 can be considered the date of the reconstitution, as it can

be inferred by Table 4.2. It was found that for index additions over the period

1996-2001, the mean temporary impact and the mean permanent impact for the

Russell 3000 index were 5.4% and 3.3%, respectively. For index deletions in the

Russell 2000 index, the results were more modest with a mean temporary impact

of 0.7% and a mean permanent impact of –1.6% (see Table 1 and 2 therein).

Quantifying temporary and permanent market impact is especially of interest

to the market microstructure literature as well as to financial institutions since

they are often found to be two of the main sources of transaction costs.

Analogously to Madhavan (2003), we determine the permanent and temporary

price impacts associated to the annual reconstitution of the index both for index

additions and deletions. We adopt the methodology from Section 5.2 of Madhavan

(2003) and quantify the temporary market impact as,

Rtemp = ln(p1)− ln(p2) (4.5.1)

and the permanent market impact as,

Rperm = ln(p2)− ln(p0), (4.5.2)

where p0, p1 and p2 are the stock prices at the annual rank day, one month thereafter

and two months thereafter, respectively. Table 4.6 reports the measurement for

the permanent and temporary market impact for annual additions and deletions.
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The columns R̄temp and R̄perm contain the mean temporary and permanent market

impact, respectively, expressed in terms of percentages with the corresponding

standard errors in parenthesis. The column No contains the size of the sample

considered. Note that we included in this analysis also the new IPOs which were

added to the index on the annual rebalance, but not the ones that were added in

the quarterly rebalancing of Q3, Q4 and Q1 of the same year.

We remark that after 2008, the temporary market impact often presents a neg-

ative sign, presumably amenable to the 2010s bull market which signed a positive

trend in the equity stock market, as also it has been documented by financial news

e.g. WSJ Staff (2019); Davies (2019); Randewich (2019). Nonetheless, in many

years deletions still present a combination of positive temporary price impact and

negative market impact regardless of the positive trend aforementioned. Moreover,

we also measure a more moderate price impact for deleted securities, analogously

to what has been observed by Madhavan (2003) for the time period 1996-2001. A

regression model can be applied in order to fully test the effect of market trends

on Rperm and Rtemp. Since both the reference market index S&P 500 and individ-

ual stock monthly returns present significant autocorrelations across different lags

Jegadeesh (1990), this type of analysis is quite involved and is left to a future work.

As discussed in Section 4.2, from the 2004 annual reconstitution the Russell

U.S. indexes has started receiving quarterly additions with newly issued securities

in order to provide a version of the indexes which better resemble the equity market.

We therefore investigate if such quarterly updates are really implemented by market

participants via quarterly reconstitutions of the index portfolios.

We recall that the price impact measured on the index additions arises from the

transactions generated by traders portfolio rebalances. In fact, close to the annual

reconstitution period, market participants review their equity portfolios tracking

the indexes: buy and sell orders are based on their beliefs on what constituents

will be added and deleted from their current portfolio composition. It follows that

the securities which are already present in the equity portfolio aforementioned at

the time of the annual review and are believed to remain in the new roster of
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Price Impact in Russell 3000 Index

Annual Additions Annual Deletions

Year R̄temp R̄perm No R̄temp R̄perm No

2005 -5.1 (0.6) 9.7 (1.1) 344 -4.9 (1.1) 5.2 (1.8) 242
2006 4.6 (0.7) -10.7 (1.0) 348 2.0 (0.8) -7.1 (1.1) 232
2007 6.4 (0.8) -8.6 (1.0) 328 3.3 (0.7) -3.2 (1.1) 198
2008 2.1 (0.9) -9.0 (1.0) 373 5.9 (2.1) -18.6 (2.7) 200
2009 -1.6 (0.9) 8.8 (1.3) 302 -5.2 (1.6) -0.6 (2.6) 190
2010 5.6 (0.8) -9.3 (1.3) 296 2.0 (1.3) -10.8 (1.9) 200
2011 -0.7 (0.7) -5.1 (1.0) 273 -1.0 (1.3) -5.1 (1.4) 161
2012 1.5 (0.8) -1.5 (1.1) 265 -1.1 (1.9) -6.6 (2.4) 148
2013 -4.7 (0.8) 6.1 (1.1) 236 -3.2 (1.6) -4.5 (2.9) 121
2014 7.2 (0.7) -0.3 (0.9) 289 3.0 (1.2) 0.2 (1.4) 178
2015 4.5 (1.2) -4.2 (1.6) 254 12.8 (1.9) -16.5 (2.4) 162
2016 -5.4 (0.6) 1.0 (1.2) 283 0.2 (1.6) -0.9 (2.2) 163
2017 -0.8 (0.8) 1.8 (1.2) 285 1.8 (1.1) 1.0 (1.8) 156
2018 -0.2 (1.0) 1.5 (1.6) 270 2.6 (1.7) -5.8 (2.2) 155

Table 4.6: A comparison of the mean permanent and temporary price impact for
additions and deletions during the annual rebalance of the Russell 3000 index. The
mean impacts are expressed in terms of percentages. In parenthesis the standard
error of the mean.

securities, will not see an excess of transactions comparable to those of the new

additions and deletions. Indeed, this is the reason why the index effect literature

focuses exclusively on annual index additions and deletions.

In the hypothesis of a portfolio manager tracking the index at each quarter

rebalance, at the time of the annual reconstitution she would mainly have to buy

shares of the securities which she believes will be added to the index, and which

were not added in any of the most recent Q3, Q4 and Q1 quarterly rebalances.

Contrarily, a portfolio manager tracking the index annually would need to buy the

securities which she thinks are going to be added based on the previous annual

index rebalance. Therefore, the latter portfolio manager may also buy securities

that were added at the most recent Q3, Q4 and Q1 quarterly rebalances, which are

believed to remain in the index during the upcoming annual reconstitution.

If the majority of market participants were to update their index portfolios
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at each quarter, we would not expect to see significant market impact in those

securities which were added at the most recent Q3, Q4 and Q1 rebalances, and are

believed to stay in the index in the upcoming annual reconstitution. On the other

hand, one may consider the case where the majority of market participants update

their index portfolios only at annual rebalances. In this case we would expect that

the securities which were added at the most recent Q3, Q4 and Q1 rebalances to

behave in a very similar fashion to any other security added to the index in the

same year. In this section we are going to check which of these cases applies in the

market.

Figure 4.7 compares the distribution of the permanent and temporary price

impact for each annual reconstitution from 2005 to 2018, near the annual reconsti-

tution dates. The top panel shows the distributions of the permanent price impact

computed via (4.5.2), while the bottom panel shows the distributions of the tempo-

rary market impact as defined in (4.5.1). For each year, the “Quarterly Additions”

group, which appears in orange, are the securities which were added at the most

recent Q3, Q4 and Q1 rebalances and which remained in the index in the upcoming

annual reconstitution. The group “New Additions”, in blue, represents any other

security added to the index in the same year. We observe a very good agreement

for the distributions at each year, supporting the hypothesis that securities in the

“Quarterly Additions” group and those in the “New Additions” group are traded by

market participants in a very similar fashion within the time frame of up to two

months after the annual reconstitution date.

We further investigate the observed similarity between the “Quarterly Addi-

tions” group and the “New Additions” group near the annual reconstitution date,

under minimal assumptions. We conduct a two-sample t-test assuming unequal

variances and unequal sample sizes under the null hypothesis that the two groups

are sampled from the same distribution. The t-statistic, which we denote by tobs,

is defined in (C.2.1). Here, y refers to the log-returns of the “New Additions” group

and z stands for the returns of the “Quarterly Additions” group according to (4.5.1)

and (4.5.2). We apply a bootstrap algorithm with 10,000 repetitions for each year.
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We refer to Algorithm C.2.1 in Appendix C.2 for the procedure used to calculate

the p-values. In order to account for multiple hypothesis tests at each year from

2005 to 2018, we need to modify the p-values which are given by Algorithm C.2.1 by

using the Benjamini-Hochberg procedure (see Section 3 of Benjamini and Hochberg

(1995)). In Appendix C.3 we describe the transformation that needs to be applied

on the p-values (see (C.3.2) and Algorithm C.3.1 therein). When adjusting for mul-

tiple testing, the p-values for the hypothesis for the permanent price impact tests

and those for the hypothesis temporary price impact tests are adjusted separately.

Table 4.7 reports the two-tailed adjusted p-values of our test statistic for each

year from 2005 to 2018. Only in one year out of fourteen, namely 2006, the mean

permanent price impacts of the two groups were found to be significantly different

at 0.05 significance level. As for the temporary market impact the two groups were

found to be significantly different only on three years out of fourteen, namely 2006,

2011 and 2016. Nonetheless, such discrepancy could have already been deduced

from Figure 4.7, where the blue and orange temporary price impact distributions

present visibly different features.

The reconstitution methodology introduced in Section 4.4 allows us to keep

track of the quarterly index additions in the Russell 1000, 2000 and 3000 indexes

at each quarter. This allows us to test the complementary hypothesis of whether

the new quarterly additions receive any abnormal price impact soon after the cor-

responding quarterly rank day. In fact, in the case in which most of market partic-

ipants were to rebalance their index portfolio annually, the new quarterly additions

would not see any significant excess of price impact compared, for example, to the

securities which are already present in the index.

As already discussed in this section, the new annual additions present an excess

of price impact measurable up to the end of July of the corresponding year, i.e.

two months after the annual rank day. Moreover, as shown in Table 4.3, the Q3

rank day usually falls approximately in the middle of August. Hence, it might be

the case that some new annual additions could continue to present a measurable

excess of price impact in the proximity of Q3 rank day.
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Figure 4.7: A comparison of the permanent and temporary impact distributions by year for the “Quarterly Additions” group and the
“New Additions” group, for the Russell 3000 index. The “Quarterly Additions” group are the securities which were added at the most
recent Q3, Q4 and Q1 rebalances and which remained in the index in the upcoming annual reconstitution. The “New Additions”
represent any other security added to the index in the same year.
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Permanent Impact Temporary Impact

Years tobs p tobs p

2005 -0.455 0.755 -1.261 0.322
2006 -3.782 0.001 3.798 0.002
2007 -1.246 0.340 -0.326 0.870
2008 1.186 0.340 -1.605 0.255
2009 1.278 0.340 0.180 0.932
2010 -2.745 0.055 1.843 0.209
2011 2.302 0.077 -3.195 0.013
2012 2.549 0.055 -2.431 0.055
2013 -1.490 0.327 -1.382 0.322
2014 -0.373 0.755 -1.273 0.322
2015 -1.339 0.340 0.011 0.988
2016 0.032 0.972 2.812 0.026
2017 -1.546 0.322 -0.778 0.553
2018 0.644 0.653 -0.834 0.553

Table 4.7: Observed test statistic and the corresponding two-tailed p-values at 0.05
level of significance, for each year from 2005 to 2018 under the null hypothesis that
the “Quarterly Additions” group and the “New Additions” are sampled from the
same distribution.

The only securities in the index which can be safely considered devoid of the

aforementioned excess of price impact are those who have not changed their index

membership in the most recent annual rebalance. In fact, even securities who

remained in the Russell 3000 index during the most recent annual rebalance, but

have moved from the Russell 2000 index to the Russell 1000 index, might still

present an excess of price impact. This effect is generated by the buy orders

of those market participants following the Russell 1000 index. Therefore, we

investigate if the price impact measured on the new quarterly additions and those

securities that have not changed their index membership in the most recent annual

rebalance present measurable differences.

For each quarter we conduct, similarly to what we did for the annual rebalance,

a two-samples t-test assuming unequal variances and unequal sample sizes. Our

t-test is done under the null hypothesis that the new quarterly additions and the

securities that have not changed their index membership in the two most recent

annual rebalances are sampled from the same distribution. Again, we take the
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Figure 4.8: Permanent price impact case. The mean test statistic t̄ is plotted
in the blue line for the new quarterly additions versus those securities that have
not changed their index membership in the most recent annual rebalance. The
light blue bands are the 95% confidence intervals for t-test statistic. Observed test
statistic tobs is presented in the orange line.

10,000 repetitions for the bootstrap resampling as in Algorithm C.2.1.

We define the mean test statistics t̄ to be the mean of the bootstrap t-

distribution created in Algorithm C.2.1, for the two-samples t-test, measuring per-

manent price impact. Here y and z refer to the two months log-returns starting on

the quarter rank day, for stocks which are already in the index and for quarterly

additions, respectively.

The 95% confidence interval is also derived by using a bootstrap percentile

method, as defined in (C.2.2). The 95% confidence interval needs to be further

adjusted for multiple testing, as introduced by Benjamini and Yekutieli (2005)

and further discussed in Section “False Coverage Statement Rate-Adjusted CIs” of
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Groppe (2017). This is done analogously to the p-value corrections of Table 4.7,

see Algorithm C.3.2 in Appendix C.3 for the exact procedure. When adjusting for

multiple testing, the 95% confidence interval for the hypothesis for the Q3, Q4 and

Q1 permanent price impact are adjusted separately. Figure 4.8 presents the mean

test statistics t̄ for the two-samples t-test for permanent price impact (in the blue

line), along with the 95% confidence interval (the light blue region). In the orange

line we show the observed test statistics tobs from (C.2.1)

Finding tobs outside the 95% confidence interval would mean that we must

reject the null hypothesis that the two samples come from the same distribution,

and accept the alternative hypothesis that the distributions generating the two

samples are different. We remark that only three years out of fifteen present two

or more significant observed test statistics tobs, namely 2007 and 2015.

Similarly, in Figure 4.9 we present in the blue line the mean test statistic t̄

from Algorithm C.2.1, for temporary price impact. Here y and z refer to the one

months log-returns starting on the quarter rank day, of stocks which are already

in the index and of quarterly additions, respectively. In the light-blue region we

plot the 95% confidence interval, which is derived along the same lines as in Figure

4.8. In the orange line we show the observed test statistic tobs from (C.2.1), for

temporary price impact. We observe that only four years out of fifteen present two

or more significant observed test statistics tobs, namely 2011, 2013, 2015 and 2017.

Nonetheless, the majority of the significant tobs are only marginally significant. It

is reasonable to believe that the results in the years 2007 and 2009 might have been

biased by the unfolding of the 2007-2008 financial crisis.

Ultimately, no compelling evidences were found to conclude that the majority of

market participants follow the quarterly index rebalances, as shown by Figures 4.8

and 4.9. Moreover, the similarities between the price impact distributions observed

in Figure 4.7 are in favour of the hypothesis that most market participants focus

on the annual index rebalance, disregarding the quarterly index additions until the

entire index portfolio has to be reviewed to take into account the changes brought

by the annual index reconstitution.
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Figure 4.9: Temporary price impact case. The mean test statistic t̄ is plotted
in the blue line for the new quarterly additions versus those securities that have
not changed their index membership in the most recent annual rebalance. The
light blue bands are the 95% confidence intervals for t-test statistic. Observed test
statistic tobs is presented in the orange line.
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The non-crowding phenomenon around quarterly rebalance dates, points out

a possibility for profitable trading strategies on IPOs additions. A trader who

wishes to track the new index additions could purchase new IPOs additions around

quarterly rebalance dates, with relatively low transaction costs. These IPOs could

be sold later by the trader near the annual rebalance date, where the stock price

will experience a significant increase due to price impact.

4.6 Conclusions

This chapter was built out of two parts. On the first part we dealt with recon-

struction of Russell US indexes. We reviewed the main features of the Russell US

index reconstitution methodology, starting from the index eligibility criteria to the

quarterly IPOs addition procedure. Our analysis focused on the years 1989-2019 .

We split our analysis into two time windows: the first is 1989-2004, and the second

is 2004-2019, with 2004 being the year in which the quarterly IPOs addition were

introduced. By a careful choice of approximations to the aforementioned method-

ology we reproduced the Russell 1000, 2000 and 3000 indexes to a very high degree

of accuracy, using only CRSP US Stock database for our index reconstruction. We

remark that the CRSP database, which is part of the Wharton Research Data

Services (WRDS) database, is frequently used by researchers in the field and is

available in many academic institutions.

The index constituents and their corresponding weights are released via a

python package called pyndex (see Micheli (2020)), in the purpose to make this

an accessible and standard platform for researches in the field, as the Russell in-

dexes historical data is often unavailable for academic studies.

In the second part of the chapter, we studied crowding phenomenon on strate-

gies that tracking the Russell 3000 index. We measured the temporary and per-

manent price impact for the annual index additions and deletions from 2005 to

2018. We compared the permanent and temporary price impact affecting the se-

curities added in the Q3, Q4 and Q1 quarterly rebalances and remaining in the
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index versus the new index additions that didn’t belong to the Russell 3000 index

at any time in the previous rebalance year. Such measurements suggested a larger

presence (or crowding) of trading strategies that are tracking the index additions

annually compared to those who rebalance quarterly. This phenomenon implies

that indexing strategies can experience reduced transaction costs by buying new

IPOs additions closely quarterly rebalance dates.

It was shown in Volpati et al. (2020) that common strategies, which are based

only on momentum signals, are crowded and therefore would give a rather poor

profitability. Our finding add additional information on crowding phenomena, as

we show that indexing strategies are indeed crowded on the one year scale but

much less crowded on the 3 months scale near quarterly rebalances.

4.7 Data availability statement

Wharton Research Data Services (WRDS) was used in preparing the paper Micheli

and Neuman (2019). This service and the data available thereon constitute valuable

intellectual property and trade secrets of WRDS and/or its third-party suppliers.
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5
Outlook

In this thesis, we have investigated multi-agent market equilibria through mathe-

matical models and empirical analyses. In Chapter 2 we developed a new math-

ematical model for a game of fast and slow optimal trading and determined the

corresponding Stackelberg equilibrium via a novel approach based on the theory of

Fredholm integral equation. Chapter 3 was dedicated to the first known compari-

son of a closed-loop equilibrium of a market impact game with the corresponding

open-loop equilibrium and central planner solution. Finally, Chapter 4 developed

a novel approach to reconstruct the Russell indexes and studied the presence of

crowding on the Russell 3000 index constituents.

However, our results raise new questions and point us to interesting directions

for future research. The work of Chapter 2 could be extended to consider a Stack-

elberg game where the high frequency trader plays the role of the leader while the

institutional investor plays the role of the follower. If a solution to such equilibrium

exists, it could be compared with the results of Chapter 2 and lead us to identify

the main differences between these Stackelberg equilibria. Further research could

include quantifying the approximation error of the numerical method introduced

in Chapter 2 as well as considering increasingly realistic scenarios such as a model

where the initial inventory of each trader is random and known only to the agent

that owns it.
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The comparison of Chapter 3 is interesting and new but limited only to the

trading features of our model. Further extensions to our work could consider in-

vestigating how systemic risk changes across the different types of equilibria, anal-

ogously to what has already been studied by Carmona et al. (2013) for the case of

a mean-field game.

In conclusion, the work presented in this thesis provides a strong foundation for

further research into field of multi-agent market equilibria and we hope that our

work will inspire future researchers to explore the questions and directions we have

identified.
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A
Appendix for Chapter 2

A.1 An Example of Spectral Decomposition of G

In this section we give an example of the spectral decomposition of G in Lemma

2.8.3 for the case where ϕ1 = 0. We continue to assume that Assumption 2.3.1

holds.

Lemma A.1.1. Let ψ ∈ C([0, T ]) and recall that K1 be defined as in (2.7.3). Then,

K1 satisfies for 0 ≤ t ≤ T ,

d

dt
(K∗

1ψ)(t) = −r1t (K∗
1ψ)(t)− ψ(t), (K∗

1ψ)(T ) = 0.

In particular, (K∗
1ψ)(t) is continuously differentiable on [0, T ].

Proof. The proof follows the same lines of Proposition 2.9.4 hence we just just give

the outlines. We now take a derivative of K∗
1ψ with respect to time using (2.7.4),

(2.3.3) and (2.3.4) to get

d

dt
(K∗

1ψ)(t) =
d

dt

(
ξ−t

ˆ T

t

ξ+s ψ(s)ds

)
= −r1t (K∗

1ψ)(t)− ψ(t), for all 0 ≤ t ≤ T.
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Note that from (2.7.4) it follows that

(K∗
1ψ)(T ) = 0.

Proposition A.1.2. Let G be defined as in (2.3.11) and assume that ϕ1 ≡ 0. Let

(zn)
∞
n=1 be the increasing sequence of real positive roots of the following equation,

cot(z) = −(2α− κ1)

λ1

T

z
. (A.1.1)

Then the eigenvalues (ζn)
∞
n=1 and the eigenfunctions (ψn)

∞
n=1 of G are given by

ψn(t) =
2√
ζn

sin
(

t√
ζn

)
√

2T√
ζn

− sin
(

2T√
ζn

) , ζn =
T 2

z2n
. (A.1.2)

Proof. We first show that the eigenvalues (ζn)
∞
n=1 and eigenfunctions (ψn)

∞
n=1 are

arising from solutions to an ODE. Then we show that the solutions of the ODE

can be determined in terms of the roots to (A.1.1).

Let ζ be an eigenvalue of G and ψ the corresponding eigenfunction, i.e. ζ and

ψ satisfy

(Gψ)(t) = ζψ(t), 0 ≤ t ≤ T. (A.1.3)

From Lemma 2.8.3 it follows that ζ > 0 and ψ ∈ L2([0, T ]). Proposition 2.9.4 shows

that (Gψ)(t) is continuously differentiable over [0, T ], therefore, it follows from

(A.1.3) that ψ(t) is continuously differentiable over [0, T ]. We take a derivative on

both sides of (A.1.3) to obtain that (ζ, ψ) must satisfy

d

dt
(Gψ)(t) = ζψ′(t), for all 0 ≤ t ≤ T. (A.1.4)

Proposition 2.9.4 shows that (Gψ) is the solution to (2.9.5), therefore we can sub-
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stitute (2.9.5) in (A.1.4) to get that ψ must satisfy

r1t (Gψ)(t) + (K∗
1ψ)(t) = ζψ′(t), for all 0 ≤ t ≤ T. (A.1.5)

Proposition 2.6.7 proves that r1 is the solution to (2.6.27). When ϕ1 ≡ 0 it can be

computed explicitly as follows,

r1t =
2α− κ1

(t− T )(2α− κ1)− 2λ1
, t ∈ [0, T ].

Note that under Assumption 2.3.1, r1 is continuously differentiable on [0, T ].

Since we have proved that ψ(t) is continuous, it follows from Proposition A.1.1

that (K∗
1ψ)(t) is continuously differentiable on [0, T ]. We take a derivative on both

sides of (A.1.5) to get

dr1t
dt

(Gψ)(t) + r1t
d

dt
(Gψ)(t) +

d

dt
(K∗

1ψ)(t) = ζψ′′(t),

and then use (2.9.5) to get that ψ satisfies

dr1t
dt

(Gψ)(t) + (r1t )
2(Gψ)(t) + r1t (K

∗
1ψ)(t) +

d

dt
(K∗

1ψ)(t) = ζψ′′(t), 0 ≤ t ≤ T.

(A.1.6)

By applying (2.6.27), (A.1.5) and (A.1.1) to (A.1.6) we get that ψ must satisfy

−ψ(t) = ζψ′′(t), 0 ≤ t ≤ T. (A.1.7)

Recall that ζ > 0, hence it follows from (A.1.3) and Proposition 2.9.4 that ψ satis-

fies the initial condition ψ(0) = 0. The terminal condition ψ′(T ) = −
(

2α−κ1

λ1

)
ψ(T )

follows by combining (A.1.5) with (2.6.27), (A.1.3) and (K∗
1ψ)(T ) = 0 (see Propo-

sition A.1.1). It follows that (ζ, ψ) satisfy

ψ′′(t) = −1

ζ
ψ(t), 0 < t < T, ψ(0) = 0, ψ′(T ) = −

(
2α− κ1
λ1

)
ψ(T ).

(A.1.8)

We show that (A.1.1) has an infinite number of positive roots. To see this, note
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that since 2α− κ1 ≥ 0 by Assumption 2.3.1, then for any n ≥ 1,

lim
z→(n−1)π+

cot(z) +
2α− κ1
λ1

T

z
= +∞,

lim
z→nπ−

cot(z) +
2α− κ1
λ1

T

z
= −∞.

Since cot(z)+ 2α−κ1

λ1

T
z

is continuous over the intervals ((n− 1)π, nπ) for any n ≥ 1,

then it follows by the intermediate value theorem that (A.1.1) has a root in the

interval ((n− 1)π, nπ) for any n ≥ 1.

Next we identify ζn as in (A.1.2). Let zn be the nth positive root of (A.1.1) and

let ζn, ψn be defined as in (A.1.2). First, note that since zn > 0, then

2zn − sin (2zn) > 0. (A.1.9)

From (A.1.2) and (A.1.9) it follows that

2T√
ζn

− sin

(
2T√
ζn

)
> 0,

therefore, the function ψn(t) is well-defined for all t ∈ [0, T ] and ||ψn||L2 = 1. Using

the following identity which arises from (A.1.8),

cos(zn) = −(2α− κ1)

λ1

T

zn
sin(zn),

it is easy to verify that ψn in (A.1.2) solves (A.1.8) with ζ = ζn for any n ≥ 1. This

completes the proof.
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B
Appendix for Chapter 3

B.1 Proof of Proposition 3.3.3 and Lemma 3.6.10

Before proving Lemma 3.6.10, we will introduce two intermediate results which will

help us to disentangle the dependence of the parameter e on λ. We remark that to

prove our result we will use certain identities for e and f (see (B.2.1) and (B.2.2))

which we have postponed to Appendix B.2 for better readability. In particular, we

will exploit the identity e(λ) = 1/h4(λ) stated in (B.2.1).

Lemma B.1.1. For all λ sufficiently small we have,

h4 =

√
γ

λ
h04 +O(1), (B.1.1)

where

h04 =
D(δ∗N) + δ∗N

N

− (N + 1)(δ∗N −D(δ∗N)(N − 1))2

8N2
(
D̄(δ∗N)(N − 1)2 + (N2 −N − 1) δ∗N

)2
×
(
D(δ∗N)(N − 1)

(
N2 + 2N − 3

)
+
(
3N2 − 4N − 3

)
δ∗N
)
.

(B.1.2)

Proof. Recall that h4 was defined in (B.2.2). From the expansions of a and d in
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(3.6.35) and (3.6.34) we get,

h4,1 =
(N − 1)d+ 2aN

λ(N + 1)2
=

(
D(δ∗N) + δ∗N

N

)√
γ

λ
+O(1). (B.1.3)

Define

h4,2 =
2(2d− (N − 1)a)2 (−a (N2 + 2N − 3) + 4d− λ (N2 − 1) ρ)

h2λ(N + 1)2 (2h2 − λ(N2 − 1)(2β + ρ))
. (B.1.4)

We expand h4,2 by using the power series of a and d and the definition of h2 in

(B.2.2) to obtain

h4,2 = −
√
γ

λ

(N + 1)(δ∗N −D(δ∗N)(N − 1))2

8N2
(
D(δ∗N)(N − 1)(N + 1) + (N2 −N − 1) δ∗N

)2
×
(
D(δ∗N)(N + 1)

(
N2 + 2N − 3

)
+
(
3N2 − 4N − 3

)
δ∗N
)
+O (1) .

(B.1.5)

Plugging (B.1.3) and (B.1.5) into (B.2.2) then indeed yields

h4 = h4,1 + h4,1 + β + ρ =

√
γ

λ
h04 +O(1), (B.1.6)

with h04 defined in (B.1.2).

From Lemma B.1.1 we observe that in order to prove Lemma 3.6.10, we need

to derive the sign of h04, which in turn will give us the sign of e = 1/h4. We define

the following function,

χN(y)

=
D(y) + y

N

− (N + 1)
(
(N3 + 3N2 −N − 3)D(y) + (3N2 − 4N − 3) y

) (
y − (N − 1)D(y)

)2
8N2

(
(N2 − 1)D(y) + (N2 −N − 1) y

)2
− 2N2

(N + 1)
(
(N + 1)D(y) + (2N + 1)y

) .
(B.1.7)
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In the following lemma we argue that

h04 −
1

(N + 1)∆(N)
= χN(δ

∗
N),

and we also show that χN(·) vanishes once we plug-in δ∗N . This is a key ingredient

in the proof of the sign of h4 as suggested by (B.1.1).

Lemma B.1.2. For h04 as in (B.1.2) and ∆ given by (3.5.22), we have

h04 =
1

(N + 1)∆(N)
.

Proof. By substituting the expressions for h04 from (B.1.2) and ∆ from (3.5.22), we

obtain

h04 −
1

(N + 1)∆(N)
= χN(δ

∗
N).

We will show that for any N ≥ 2, δ∗N satisfies

χN(δ
∗
N) = 0, (B.1.8)

which will prove the result.

First, we aggregate all the terms appearing on the right hand side of (B.1.7) in

one fraction, that is

χN(δ
∗
N) =

S1(δ
∗
N)

S2(δ∗N)
,
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where,

S1(y) = R1 +R2,

R1(y) = −4N9y2 + 4N8y4 + 47N8y2 − 6N7y4 − 52N7y2 − 66N6y4 − 90N6y2 + 34N5y4

+ 108N5y2 + 144N4y4 + 39N4y2 + 12N3y4 − 36N3y2 − 82N2y4 − 12N2y2 − 9N9

+ 33N8 − 42N7 + 18N6 + 3N5 − 3N4 − 42Ny4 − 6y4,

R2(y) = 14(N + 1)N7y3D − 22(N + 1)N6y3D − 58(N + 1)N5y3D + 56(N + 1)N4y3D

+ 68(N + 1)N3y3D − 22(N + 1)N2y3D − 9(N + 1)N8yD + 44(N + 1)N7yD

− 54(N + 1)N6yD − 6(N + 1)N5yD + 37(N + 1)N4yD − 6(N + 1)N3yD,

− 6(N + 1)N2yD − 30(N + 1)Ny3D − 6(N + 1)y3D,

S2(y) = 2(N − 1)N2(N + 1)(D(N + 1) + 2Ny + y)
(
D
(
N2 − 1

)
+
(
N2 −N − 1

)
y
)2
.

and we abbreviate D(y) to D. Hence, in order to prove (B.1.8) we need to show

that
S1(δ

∗
N)

S2(δ∗N)
= 0,

which is implied by S1(δ
∗
N) = 0 and S2(δ

∗
N) ̸= 0. This is proved by a direct

substitution and by Lemma 3.6.9(i) which identifies δ∗N .

Now we are ready to prove Lemma 3.6.10.

Proof of Lemma 3.6.10. From Lemmas B.1.1 and B.1.2 it follows that for all suffi-

ciently small λ,

h4 =

√
γ

λ
h04 +O(1) =

√
γ

λ

1

(N + 1)∆(N)
+O(1). (B.1.9)

From (3.5.22) we have that ∆(N) > 0. Recall that from (B.2.1) we have that

e = 1
h4

and this completes the proof.

The following intermediate result is an important step in proving Proposition

3.3.3.
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Lemma B.1.3. For λ sufficiently small we have

Mrate =

√
γ

λ
∆(N) +O (1) , Maim = 1 +O(

√
λ). (B.1.10)

for the nonnegative function ∆(N) defined in (3.5.22).

Proof. The representation of Mrate in (3.6.18) and (3.6.39) yield

Mrate =

√
γ

λ
∆(N) +O(1), (B.1.11)

where ∆(N) is given by (3.5.22) and does not depend on λ. From (3.6.18), (3.5.12)

and (B.2.1) we have

Maim = γ
ā

Mrate

= γ
e

λ(N + 1)Mrate

=
γ

λ(N + 1)h4Mrate

. (B.1.12)

Using (B.1.11) and (B.1.9) we obtain that, for λ small enough,

Maim =
γ

λ(N + 1)

1(√
γ
λ
h04 +O(1)

) 1(√
γ
λ
∆(N) +O(1)

) =
1

(N + 1)h04∆(N)
+O(

√
λ).

(B.1.13)

Finally, plugging in the result of Lemma B.1.2 for h04, we get

Maim = 1 +O(
√
λ) (B.1.14)

as asserted.

Proof of Proposition 3.3.3. The asymptotic expansions for Mrate and Maim were

already proved in Lemma B.1.3.

In view of this result, it now remains to derive the asymptotics of the value

function. For Jn as in (3.3.2) we define

Jn(φ̇n, φ̇−n) = w̄1(λ)− w̄2(λ)− w̄3(λ), (B.1.15)
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where

w̄1(λ) =

(
1 + 2λN(Mrate)

2Maim

γ

)(
MrateMaim

γ

)
σ2

ρ(2β + ρ)(β + ρ+Mrate)
,

w̄2(λ) = λN

(
MrateMaim

γ

)2
σ2

2βρ+ ρ2
,

w̄3(λ) =
(γ
2
+ λN (Mrate)

2
)(MrateMaim

γ

)2
2σ2

ρ(2β + ρ)(ρ+ 2Mrate)(β + ρ+Mrate)
.

Using (3.3.3) we can write

Mrate =

√
γ

λ
∆(N) + r1(N) +O

(√
λ
)
, Maim = 1 + a1(N)

√
λ+O (λ) ,

for some explicit functions r1, a1 of N , where the explicit dependence in N is

omitted in what follows to ease notation. Using Taylor expansion, we can in turn

derive power-series expansions of w̄1, w̄2 and w̄3 around λ = 0,

w̄1(λ) =
(1 + 2∆2N)σ2

γρ(2β + ρ)
+

σ2

∆γ2ρ(2β + ρ)

(
a1∆γ + 4a1∆

3γN + 4∆2√γNr1

−√
γβ − 2∆2√γNβ −√

γρ− 2∆2√γNρ
)√

λ+O(λ),

w̄2(λ) =
∆2Nσ2

γρ(2β + ρ)
+

2Nσ2(a1∆
2γ +∆

√
γr1)

γ2ρ(2β + ρ)

√
λ+O(λ),

w̄3(λ) =
(1 + 2∆2N)σ2

2γρ(2β + ρ)
+

σ2

4∆γ3/2ρ(2β + ρ)

(
4a1∆

√
γ(1 + 2∆2N)− 2β

+ 2∆2N(4r1 − 2β − 3ρ)− 3ρ
)√

λ+O(λ).

After inserting these expansions into (B.1.15), we obtain the asserted leading-order

asymptotics (3.3.4) of the optimal value. More details on these calculations can be

found in the Mathematica companion of this chapter.

B.2 Identities for the Proofs of Lemmas 3.6.1 and

3.6.10

In this section we provide some identities for the coefficients of the system (3.5.5)–

(3.5.11), which were used in Section 3.5 and in the proof of Lemma 3.6.1.

169



First, the coefficients e, f and c are given by,

e =
1

h4
,

f =
1

λ(N + 1)h4(h3 − (ρ+ β))

×
(
d+ h3λ(N − 1)− 2h21(N − 1)

(N + 1) (4a(N − 1) + 2d(N − 3) + λ (N2 − 1) ρ)

)
,

c =

2

−

(
1
h4

− N−1
h4(N+1)

)
(d+h3λ(N−1))

2λ
− 2h21(N−1)

h4λ(N+1)2(4a(N−1)+2d(N−3)+λ(N2−1)ρ)
h4λ(N+1)(−β+h3−ρ)

−
(

1
h4

− N−1
h4(N+1)

)2

4λ


−2β − ρ

,

(B.2.1)

where

h1 = 2d− (N − 1)a,

h2 = 2a(N − 1) + d(N − 3) + λ
(
N2 − 1

)
(β + ρ),

h3 = −2a(N − 1) + (N − 3)d

λ(N − 1)(N + 1)
,

h4 =
2(2d− (N − 1)a)2 (−a (N2 + 2N − 3) + 4d− λ (N2 − 1) ρ)

h2λ(N + 1)2 (2h2 − λ(N2 − 1)(2β + ρ))
+

(N − 1)d+ 2aN

λ(N + 1)2

+ β + ρ.

(B.2.2)
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C
Appendix for Chapter 4

C.1 CRSP US Financial Data

The analysis in Chapter 4 is extensively based on the financial data available in

the CRSP dataset. We summarise some of the main features of the databases

considered.

The financial information regarding the securities used for this study was re-

trieved from the CRSPQ:DSF dataset, which consists of the quarterly updated CRSP

daily stock data. The CRSPQ:DSF dataset contains all the major daily financial in-

dicators for the securities traded in the U.S. stock market, including stock closing

prices, daily returns and outstanding shares. On the other hand, the CRSPQ:DSFHDR

dataset contains the metadata related to each security in the CRSPQ:DSF. The in-

formation stored in the CRSPQ:DSFHDR file includes for example the initial day of

trading for each security, the name of company to which the security belongs to as

well as its Standard Industrial Classification.

Two labels are required in order to identify a company and its underlying secu-

rities. The identifier permco uniquely identifies a company in CRSP; it is neither

reused once a company cease to exist, nor changed in case the company’s name is

subject to modification. Each company in CRSP may be traded on one or more se-

curities therefore it is necessary to uniquely identify them in order, for example, to
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compute the company’s market capitalisation. CRSP provides a unique five-digit

permanent identifier for each security, under the name of permno, which neither

changes during an issue’s trading history, nor is reassigned after an issue ceases

trading. For each security, the daily returns, assuming dividend reinvestment, are

given by the column ret in the CRSPQ:DSF file.

As discussed in Section “Calculations” of Wharton Research Data Services

(2020), the market capitalisation of a given company in CRSP can be found by

computing, ∑
i

pit · vit,

where pit is the unadjusted close price of day t of security i and vit is the corre-

sponding unadjusted number of its shares outstanding. The sum is taken over all

the securities belonging to the given company. Here, pit and vit corresponds to the

columns prc and shrout of the CRSPQ:DSF dataset, respectively.

The selection of the securities with prices greater than 1$ discussed in Section

4.2 is performed over the adjusted stock prices. Following Section “Adjusting for

Stock Splits and Other Corporate Actions” of Wharton Research Data Services

(2020) the adjusted stock price of securities i is given by

pit
βi
t

,

where pit is the unadjusted close price of security i at day t and βi
t is the corre-

sponding price adjustment factor. Here βi
t is stored in column cfacpr of CRSPQ:DSF

dataset. The share types in CRSP are identified through a two-digit code, named

as hshrcd, describing the type of shares traded. The file CRSPQ:DSFHDR stores the

hshrcd for all the financial securities belonging to the CRSPQ:DSF dataset. Follow-

ing Appendix A.2 in Chapter 3 of Fong (2005), common stocks are represented by

a hshrcd equal to 10 or 11.

In order to establish which IPOs will be included in which quarterly addition,

one has to consider the corresponding IPO date. In CRSP, the first day of trad-

ing corresponding to an IPO is stored in the begdat variable from CRSPQ:DSFHDR
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dataset. The most widely used database in IPO research is SDC Platinum from

Thomson Financial, which is currently not available in WRDS or CRSP. As re-

ported in Wharton Research Data Services (2020), a comparison between SDC

and CRSPQ:DSFHDR indicates that the first trading days agree in 76% of cases. This

confirms that the IPO dates in the CRSPQ:DSFHDR dataset can be reliably used for

the index reconstruction.

C.2 Bootstrap Two-Samples t-test

In this section we summarise some useful results on bootstrap two samples t-test,

which are taken from Chapter 16.2 of Efron and Tibshirani (1994).

We consider two samples z and y of sizes n and m, respectively, from possibly

different probability distributions F and G. We would like to test the null hypoth-

esis H0 : F = G. Let x be the collection of all the observations in y and z. We

test H0 with the following two-samples unequal variance and unequal size statistic

t(·),
tobs ≡ t(x) =

z̄ − ȳ√
σ̄2
1/n+ σ̄2

2/m
, (C.2.1)

with

σ̄2
1 =

1

n− 1

n∑
i=1

(zi − z̄)2, σ̄2
2 =

1

m− 1

m∑
i=1

(yi − ȳ)2,

where z̄ and ȳ are the means of samples z and y, respectively. Algorithm C.2.1

computes the bootstrap test statistic and the corresponding two-tailed p-values. In

our analysis we take the number of bootstrap repetitions N to be 10000.

Moreover, as discussed in Chapter 13.3 of Efron and Tibshirani (1994), given a

level of significance α, the corresponding confidence interval for the bootstrapped

distribution of the test statistic t can be found using the bootstrap percentile method.

Let Φ̂ be the empirical cumulative distribution function of the bootstrap test statis-

tic t. The (1− α) confidence interval are given by,

(Φ̂−1(α/2), Φ̂−1(1− α/2)), (C.2.2)
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Algorithm C.2.1 Bootstrap test statistic for testing F = G

1. Draw N samples of size n + m with replacement from x. Call the first n
observations z∗ and the remaining m observations y∗.

2. Evaluate t(·) on each sample,

t(x∗,k) =
z̄∗ − ȳ∗√

(σ̄∗
1)

2/n+ (σ̄∗
2)

2/m
, k = 1, 2, . . . N

where σ̄∗
1 and σ̄∗

2 are defined on z∗ and y∗ accordingly.

3. Approximate two-tailed p-values by

p̂boot = 1−
∑N

j=1 1{−tobs≤t(x∗,j)≤tobs}

N
.

where Φ̂−1(α/2) and Φ̂−1(1−α/2) by definition correspond to the α/2 and 1−α/2
percentiles, respectively.

C.3 Multiple Testing

In this section we summarise some of the results regarding the Benjamini-Hochberg

(BH) correction for independent multiple testing.

As discussed in Section 2.b of Y. Benjamini and Yekutieli (2009), the p-values

can be adjusted for multiple testing according to the BH procedure via Algorithm

C.3.1. Section 3 of Benjamini and Hochberg (1995) clarifies that in the BH proce-

dure the test statistics are assumed to be independent. Let H0,i with i = 1, . . . ,m,

be the null hypotheses, and pi be the corresponding p-values. One can alternatively

compute the BH-adjusted p-values as follows

PBH
(i) = min

((
min
j≥i

mpj/j

)
, 1

)
. (C.3.2)

Then, PBH
(i) ≤ α if and only if H(i) is among the discoveries when using the BH

procedure at significance level α.
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Algorithm C.3.1 Multiple testing at significance level α
Let H0,i with i = 1, . . . ,m be the null hypotheses, and pi be the corresponding
p-values.

1. Sort the p-values as p(1) ≤ p(1) ≤ . . . ≤ p(m) and let p(k) be the largest value
such that

p(k) ≤
kα

m
(C.3.1)

2. If no such k exists, select no discovery. Otherwise, reject the k hypotheses
corresponding to p(1), . . . , p(k), declaring these findings to be discoveries.

As further discussed in Section “False Coverage Statement Rate-Adjusted CIs”

of Groppe (2017), the Benjamini-Hochberg procedure can be applied to confidence

intervals for multiple comparisons as shown in the following algorithm.

Algorithm C.3.2 Adjusted Confidence Intervals for Multiple-Testing

1. Apply the BH procedure to the p values from the family of m tests, where m
is the total number of hypothesis tests.

2. For any p value that is significant after the BH procedure, construct a con-
fidence interval for the corresponding test with coverage 1 − α′ , where α′

is:
α′ =

(
k

m

)
α,

with k is defined as in (C.3.1).

In Chapter 4 we take α to be 0.05. Therefore, in order to compute the bootstrap

confidence interval, adjusted to the Benjamini-Hochberg framework, we use α′ in

place of α in (C.2.2).
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