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Abstract

Atopic Dermatitis (AD, eczema) is a common inflammatory skin disease, characterised by
dry and itchy skin. AD cannot be cured, but its long-term outcomes can be managed with
treatments. Given the heterogeneity in patients’ responses to treatment, designing personalised
rather than “one-size-fits-all” treatment strategies is of high clinical relevance. In this thesis, we
aim to pave the way towards a data-driven personalised management of AD severity, whereby
severity data would be collected automatically from photographs without the need for patients
to visit a clinic, be used to predict the evolution of AD severity, and generate personalised
treatment recommendations.

First, we developed EczemaNet, a computer vision pipeline using convolution neural
networks that detects areas of AD from photographs and then makes probabilistic assessments
of AD severity. EczemaNet was internally validated with a medium-size dataset of images
collected in a published clinical trial and demonstrated fair performance.

Then, we developed models predicting the daily to weekly evolution of AD severity. We
highlighted the challenges of extracting signals from noisy severity data, with small and
practically not significant effects of environmental factors and biomarkers on prediction. We
showed the importance of using high-quality measurements of validated and objective (vs
subjective) severity scores. We also stressed the importance of modelling individual severity
items rather than aggregate scores, and introduced EczemaPred, a principled approach to
predict AD severity using Bayesian state-space models. Our models are flexible by design,
interpretable and can quantify uncertainty in measurements, parameters and predictions.
The models demonstrated good performance to predict the Patient-Oriented SCOring AD
(PO-SCORAD).

Finally, we generated personalised treatment recommendations using Bayesian decision
analysis. We observed that treatment effects and recommendations could be confounded by
the clinical phenotype of patients. We also pretrained our model using historical data and
combined clinical and self-assessments.

In conclusion, we have demonstrated the feasibility and the challenges of a data-driven
personalised management of AD severity.
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Barbarot, Dr. Thérèse Nocera, Yann Kling.

• The British Skin Foundation and Pierre Fabre Laboratories for supporting financially the
research projects presented in this thesis.

• The Department of Bioengineering for creating a welcoming environment. A special
thanks to Dr Angela Kedgley, the Director of Postgraduate studies, who has always been
very helpful, and my mentor Prof. Mengxing Tang. I would also like to thank my fellow
Bioengineering PhD representatives with whom I had the pleasure to work with: Caryn
Urbanczyk, Julia Agramunt, Krysia Broda, Konstantinos Kalyviotis, Leah Xu.

5 of 217



• My friends, especially those in the department and particularly Mikolaj Kegler and Alison
Pouplin.

• The R and Stan communities.

• My family, especially my parents Elisabeth and Frédéric, and my partner Marta, for their
support, love and encouragement.

6 of 217



Table of contents

Abstract 3

Declarations 4

Acknowledgements 5

Table of Contents 7

List of Figures 13

List of Tables 16

Nomenclature 17

1 Introduction 20

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3 Modelling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Model-based vs model-free approaches to decision-making . . . . . . . 23
1.3.2 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.3 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.4 Uncertainty quantification . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.5 Comparing modelling approaches . . . . . . . . . . . . . . . . . . . . . 27
1.3.6 Bayesian modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Background 30

2.1 Atopic Dermatitis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.1 Pathogenic mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.3 Severity scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 of 217



TABLE OF CONTENTS

2.1.4 Properties of severity scores . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2 Bayesian modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Bayesian statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.2 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.3 Inference algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.4 Bayesian workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.5 Evaluating probabilistic forecasts . . . . . . . . . . . . . . . . . . . . . 44

2.3 Time-series forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.1 Forward chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.2 Learning curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.3 Reference models for time-series forecasting . . . . . . . . . . . . . . . 50
2.3.4 State-space models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 Ordered logistic distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Automating the assessment of AD severity 56

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Region of Interest detection . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.2 Severity prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Experiments and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.1 Region of Interest detection . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2 Severity prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Afterword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 A statistical model to predict AD severity 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.3 Bayesian models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.4 Model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.5 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.1 Model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 of 217



TABLE OF CONTENTS

4.3.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Effects of treatment modalities and risk factors on predictions . . . . . 75

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.1 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.2 Strengths of our approach . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.3 Limitations of the study and future directions . . . . . . . . . . . . . . 79

5 The role of environmental factors in AD severity prediction 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.2 Mixed effect autoregressive ordinal logistic regression model . . . . . . 84
5.2.3 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.1 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.2 Effect of environmental factors on the model’s predictions . . . . . . . 86

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 The role of biomarkers in AD severity prediction 90

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.2 Model overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.3 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.1 Model fit and validation . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.2 Effects of biomarkers on the model’s predictions . . . . . . . . . . . . . 98

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 The role of measurements in AD severity prediction 101

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2.2 EczemaPred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2.3 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Results of PO-SCORAD models . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3.1 Predictions of severity items . . . . . . . . . . . . . . . . . . . . . . . . 110

9 of 217



TABLE OF CONTENTS

7.3.2 Predictions of PO-(o)SCORAD . . . . . . . . . . . . . . . . . . . . . . 110
7.3.3 Decomposition of prediction uncertainty in EczemaPred . . . . . . . . 115

7.4 Results of POEM models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.5.1 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.5.2 Choosing the right score for severity prediction . . . . . . . . . . . . . 119
7.5.3 Strengths of our approach . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.5.4 Limitations and future directions . . . . . . . . . . . . . . . . . . . . . 121

8 Towards generating treatment recommendations 122

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.2.3 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2.4 Treatment recommendation . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2.5 Inference and validation . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.3.1 Multivariate dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.3.2 Calibration of PO-SCORAD with SCORAD . . . . . . . . . . . . . . . . 130
8.3.3 Treatment effects and recommendations . . . . . . . . . . . . . . . . . 130
8.3.4 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9 Conclusion 136

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.1.1 Collecting AD severity data . . . . . . . . . . . . . . . . . . . . . . . . 136
9.1.2 Predicting AD severity . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.1.3 Generating treatment recommendations . . . . . . . . . . . . . . . . . 138

9.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.2.1 Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.2.2 Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

References 142

A Supplementary figures to Chapter 3 161

B Appendix to Chapter 4 164

10 of 217



TABLE OF CONTENTS

B.1 Clinical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.1.1 Flares dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.1.2 SWET dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

B.2 Description of the extended model . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.3 Missing value imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
B.4 Choice of priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
B.5 Learning curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
B.6 Supplementary tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
B.7 Supplementary figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

C Supplementary figure to Chapter 5 180

D Appendix to Chapter 6 181

D.1 Choice of priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
D.1.1 Priors for the baseline model . . . . . . . . . . . . . . . . . . . . . . . . 181
D.1.2 Regularised horseshoe prior . . . . . . . . . . . . . . . . . . . . . . . . 183
D.1.3 Reference model priors . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

D.2 Supplementary tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
D.3 Supplementary figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

E Appendix to Chapter 7 187

E.1 EczemaPred models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
E.1.1 Binomial Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
E.1.2 Binomial random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
E.1.3 Ordered logistic random walk (v1) . . . . . . . . . . . . . . . . . . . . . 191
E.1.4 Ordered logistic random walk (v2) . . . . . . . . . . . . . . . . . . . . . 192
E.1.5 Multivariate dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

E.2 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
E.2.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
E.2.2 Learning curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

E.3 Reference models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
E.3.1 Markov chain model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
E.3.2 Priors for the other reference models . . . . . . . . . . . . . . . . . . . 196

E.4 Supplementary PO-SCORAD figures . . . . . . . . . . . . . . . . . . . . . . . . 198
E.5 Supplementary POEM Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

F Appendix to Chapter 8 206

11 of 217



TABLE OF CONTENTS

F.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
F.1.1 Latent dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
F.1.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

F.2 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
F.2.1 Power prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
F.2.2 Correlations between severity items . . . . . . . . . . . . . . . . . . . . 212
F.2.3 Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
F.2.4 Inference of daily treatment usage . . . . . . . . . . . . . . . . . . . . . 212
F.2.5 Treatment effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
F.2.6 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

F.3 Treatment recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
F.3.1 Utility function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
F.3.2 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
F.3.3 Decision profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

F.4 Supplementary figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

12 of 217



List of Figures

1.1 Proposed pipeline for a data-driven personalised management of Atopic Der-
matitis severity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Itchy skin with signs of redness and scratch . . . . . . . . . . . . . . . . . . . . 30
2.2 SCORAD intensity scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Overview of the Bayesian workflow . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4 Forward chaining with a horizon of 4 days . . . . . . . . . . . . . . . . . . . . 48
2.5 Schematic of a state-space model . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.6 Illustration of an ordered logistic distribution . . . . . . . . . . . . . . . . . . . 54

3.1 Disease signs and their relationship to severity scores . . . . . . . . . . . . . . 57
3.2 EczemaNet overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 EczemaNet predictive performance . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Bayesian model of AD severity dynamics . . . . . . . . . . . . . . . . . . . . . 69
4.2 Posterior predictive distribution of AD severity scores for four representative

patients from Flares dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Fitting of the extended model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Estimated effects of potential risk factors and responsiveness to treatments on

the severity score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Example trajectories of the six AD sign scores and the derived AD symptom
state for a representative patient. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Comparison of the predictive performance for the models predicting the AD

symptom state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Effects of environmental factors . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 An overview of the Bayesian state-space model for probabilistic predictions of
AD severity scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 The posterior predictive distribution of four representative patients by our
model predicting EASI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

13 of 217



LIST OF FIGURES

6.3 Predictive performance for EASI by our Bayesian state-space model and the
reference models, measured by the lpd . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Effects of covariates in our model’s predictions of EASI . . . . . . . . . . . . . 98

7.1 Example trajectories of PO-SCORAD and its severity items for representative
patients from datasets 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Model overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3 Predictive performance for 4-days-ahead forecasts by EczemaPred models and

reference models measured by lpd. . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.4 PO-SCORAD prediction by EczemaPred for four representative patients from

dataset 1 and dataset 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.5 Learning curves for 4-days-ahead forecasts of PO-SCORAD evaluated by lpd

and accuracy, as a function of the number of training observations, for datasets
1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.6 Results of the model with an ordered logistic distribution and multivariate
latent random walk dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.7 Predictive performance estimates for one-week-ahead of the different symptoms
and POEM by several models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.1 Model and method overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.2 Data from a representative patient . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.3 Power prior contribution and correlogram . . . . . . . . . . . . . . . . . . . . 129
8.4 Calibration of PO-SCORAD measurements using SCORAD . . . . . . . . . . . 131
8.5 Treatment effects and recommendations . . . . . . . . . . . . . . . . . . . . . . 132
8.6 Analysis of treatment recommendations for a risk neutral patient and a “normal”

perceived cost of treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.1 Data inclusion, exclusion and validation splits . . . . . . . . . . . . . . . . . . 161
A.2 Architectures of EczemaNet, baselines and ablations . . . . . . . . . . . . . . . 162
A.3 Base architecture comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.4 SASSAD prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.5 TISS prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

B.1 Learning curves of RPS for the model trained on Flares dataset . . . . . . . . . 169
B.2 Example data from SWET dataset . . . . . . . . . . . . . . . . . . . . . . . . . 172
B.3 Missing bother scores in Flares dataset . . . . . . . . . . . . . . . . . . . . . . 173
B.4 Missing bother scores in SWET dataset . . . . . . . . . . . . . . . . . . . . . . 174
B.5 Factor graph of the treatment term from the extended model . . . . . . . . . . 175
B.6 Estimates of the patient-dependent model parameters fitted to Flares dataset . 176
B.7 Estimates of the patient-dependent model parameters fitted to SWET dataset . 177

14 of 217



LIST OF FIGURES

B.8 Calibration curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
B.9 Results of the model predicting the “scratch” severity score with the Flares dataset 179

C.1 Distribution of the AD signs scores across time and patients. . . . . . . . . . . 180

D.1 K-fold cross-validation in a forward chaining setting . . . . . . . . . . . . . . . 185
D.2 Performance of our model and reference models to predict EASI . . . . . . . . 185
D.3 Predictive performance of our model and reference models for oSCORAD,

SCORAD and POEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

E.1 Two state Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
E.2 Distribution of the nine severity items and PO-(o)SCORAD in dataset 1. . . . . 198
E.3 Distribution of the nine severity items and PO-(o)SCORAD in dataset 2. . . . . 198
E.4 Predictive performance of the Extent model with datasets 1 and 2 . . . . . . . 199
E.5 Predictive performance of the Dryness model with datasets 1 and 2 . . . . . . 199
E.6 Predictive performance of the Redness model with datasets 1 and 2 . . . . . . 200
E.7 Predictive performance of the Swelling model with datasets 1 and 2 . . . . . . 200
E.8 Predictive performance of the Oozing model with datasets 1 and 2 . . . . . . . 201
E.9 Predictive performance of the Scratching model with datasets 1 and 2 . . . . . 201
E.10 Predictive performance of the Thickening model with datasets 1 and 2 . . . . . 202
E.11 Predictive performance of the Itching model with datasets 1 and 2 . . . . . . . 202
E.12 Predictive performance of the Sleep loss model with datasets 1 and 2 . . . . . 203
E.13 Learning curves of models predicting PO-oSCORAD, measured by lpd and

accuracy, as a function of the number of training observations, for datasets 1
and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

E.14 PO-SCORAD predictive performance changes as the prediction horizon is in-
creased by one day, measured by Accuracy and lpd, for datasets 1 and 2 . . . . 204

E.15 PO-oSCORAD predictive performance changes as the prediction horizon is
increased by one day, measured by Accuracy and lpd, for datasets 1 and 2 . . . 204

E.16 lpd learning curves for one-week-ahead forecasts as a function the number
training observations or equivalently training week . . . . . . . . . . . . . . . 205

F.1 Estimates of the measurement and latent dynamic standard deviations for all
severity items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

F.2 Minimum and maximum of the expected trend component, for each patient
and each severity item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

F.3 Mean and 90% credible interval of the characteristic learning time 𝜏 of the
calibration process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

F.4 Predictive performance estimates for four-days-ahead predictions after training
the model with 65 days of data . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

15 of 217



List of Tables

3.1 Results of experiments in terms of 𝐹1 score and RPS for all 7 disease signs . . 64

7.1 Characteristics of PO-SCORAD datasets . . . . . . . . . . . . . . . . . . . . . . 104

B.1 Posterior summary statistics for the population-level parameters of the model
trained on the Flares dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.2 Posterior summary statistics for the population-level parameters of the model
trained on the SWET dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.3 Posterior summary statistics for the population-level parameters of the extended
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

D.1 Posterior summary statistics of the population-level parameters for the model
predicting EASI without covariates. . . . . . . . . . . . . . . . . . . . . . . . . 184

D.2 MCID and MDC comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

F.1 Decision profiles for treatment recommendations . . . . . . . . . . . . . . . . 215

16 of 217



Nomenclature

AD Atopic Dermatitis
CNN Convolutional Neural Network
DL Deep Learning
FLG Filaggrin
HMC Hamiltonian Monte-Carlo
HOME Harmonizing Outcome Measures for Eczema
LOWESS LOcally Weighted Scatterplot Smoothing
MCMC Markov Chain Monte-Carlo
MDC Minimal Detectable Change
MID Minimal Important Difference
ML Machine Learning
RoI Region of Interest
SNR Signal-to-Noise Ratio
SSM State-Space Model
SWET Softened Water Eczema Trial

Severity scores

EASI Eczema Area and Severity Index (severity score)
oSCORAD objective SCORAD (severity score)
PO-SCORAD Patient-Oriented SCORAD (severity score)
POEM Patient-Oriented Eczema Measure (severity score)
SASSAD Six Area Six Sign Atopic Dermatitis (severity score)
SCORAD SCOring Atopic Dermatitis (severity score)
TISS Three Item Severity Score

Performance metrics

BS Brier Score
CRPS Continuous Ranked Probability Score

17 of 217



NOMENCLATURE

lpd log predictive density
RMSE Root Mean Squared Error
RPS Ranked Probability Score

Distributions

𝒩 (𝜇, 𝜎2) Normal distribution with mean 𝜇 and variance 𝜎2

𝒩+(0, 𝜎2) Half-normal distribution with variance 𝜎2

𝒩[𝑎,𝑏](𝜇.𝜎
2) Truncated normal distribution in [𝑎, 𝑏], with mean 𝜇 and variance 𝜎2

log𝒩 (𝜇, 𝜎2) Log-Normal distribution with log mean 𝜇 and log variance 𝜎2:
if 𝑦 ∼ log𝒩 (𝜇, 𝜎2), then log(𝑦) ∼ 𝒩 (𝜇, 𝜎2)

logit𝒩 Logit-Normal distribution with logit mean 𝜇 and logit variance 𝜎2:
if 𝑦 ∼ logit𝒩 (𝜇, 𝜎2), then logit(𝑦) ∼ 𝒩 (𝜇, 𝜎2)

𝒞(𝜇, 𝜎) Cauchy distribution with location 𝜇 and scale 𝜎

ℬ(𝑁, 𝑝) Binomial distribution for 𝑁 trials with a probability of success 𝑝
Beta(𝛼, 𝛽) Beta distribution with shape parameters 𝛼 and 𝛽

𝒰(𝑎, 𝑏) Uniform distribution (discrete or continuous) with bounds 𝑎 and 𝑏, 𝑎 < 𝑏

Conventions

Unless stated otherwise, we will use the following mathematical conventions throughout this
thesis:
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• Matrices are denoted with a capital letter.
• Subscripts are used to subset vectors or matrices.

For data and parameters, we will use the following symbols:

• 𝑦 to refer to outcomes. For example, 𝑦(𝑘)(𝑡) represents the vector of outcomes for the
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ing parameters are noted as 𝛽. In particular, 𝛽0 corresponds to the intercept.
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19 of 217



Chapter 1

Introduction

1.1 Motivation

Atopic Dermatitis is a chronic inflammatory skin disease characterised by a dry and itchy
skin [1]. AD is a complex disease, and despite affecting up to 20% of the paediatric population
worldwide [2] and having a high socio-economic impact [3], its pathogenic mechanisms are not
fully understood yet. Although AD is often considered as a specific form of eczema presenting
an atopic phenotype, “eczema” is commonly used as a synonym to AD [4] [5]. Because of this
ambiguity, the terms “Atopic Dermatitis” and “eczema” sometimes refer to different clinical
phenotypes in the literature. Usage of the terms “Atopic Dermatitis” and “eczema” also differs
between scientific fields and languages [6]. In this thesis, we will follow the World Allergy
Organization nomenclature and use “eczema” as a synonym to Atopic Dermatitis [7].

AD cannot be cured, but its long-term outcomes can be managed/controlled with the use of
treatments. Managing AD is nonetheless challenging for patients [8] and often results in low
adherence to treatment [9]. In addition, treatment responses vary considerably from patient to
patient [10]. As a result, personalised (precision) medicine, i.e. tailoring medical treatments
to each patient1 as opposed to a “one-size-fits-all” approach to treatment, is of high clinical
relevance for AD [10] [11]. Together with tools to support eczema self-management such as
smartphone apps [12], personalised medicine could help patients become more involved in the
management of their condition and improve medical outcomes.

Personalised medicine is made possible thanks to many technological advances, such as
the ability to generate large volume of data (e.g. health monitoring using IoT devices, gene

1Even though personalised medicine is often associated with genomics, to identify genes that predispose
specific outcomes or treatment responses, we do not restrict personalised medicine to the study of genes in this
thesis.
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sequencing, etc.) as well as the increase in computational power and the development of new
techniques to analyse data. Machine Learning (ML), in particular, has been very successful
in fields such as computer vision or natural language processing [13], and holds promises to
analyse medical data and uncover complex patterns that are hardly detectable by the human
eye [14] [15]. However, there has been little AD research using ML, or more generally advanced
data analytics methods, so far [16].

Data-driven computational methods could offer valuable support tools for medical decision-
making for AD, notably to generate personalised2 recommendations3. The idea of recommend-
ing treatment algorithmically to standardise and improve disease management and control
has already been demonstrated in a randomised clinical trial, where a rule-based treatment
algorithm was derived from a literature review [17]. A computational and data-driven treatment
recommendation algorithm could potentially do even better, as the outcomes of different treat-
ment regimens could be simulated beforehand, to assess which treatment is most likely to be
effective for a particular patient. These simulations could be personalised to the characteristics
of patients and included in a cost-benefit analysis to guide treatment recommendations4.

Generating treatment recommendations requires the ability to accurately predict the future
evolution of eczema severity. However, past studies have mostly focused on quantifying
associations with disease outcomes [16], or remain preliminary with significant limitations [18].
Instead, predictions need to be generated and evaluated on out-of-sample data, as associations
often do not generalise to unseen data [19]. Beyond predictions, modelling the evolution of AD
severity could help our understanding of the disease dynamics, using predictive performance
as a way to compare competing theories [20]. For example, predictive models could be used to
investigate the influence of past severity, treatments, environmental factors and even biomarkers
on future severity [21] [10]. In a clinical setting, such models could also help track and generate
insights into the evolution of the disease, or could be used as a tool to initiate a discussion with
patients (e.g. showing potential outcomes under different treatment conditions).

To make AD severity prediction and treatment recommendation tools available to a wide
audience, it is crucial to develop the means to collect the appropriate severity data [22]. AD
severity is measured by trained clinical staff (often nurses) when a patient visits a clinic, i.e.
infrequently, especially if patients live in a remote area. Automatic assessments of AD severity
using images taken from a smartphone could help patients track the evolution of their symptoms

2In a decision analysis, one must consider subjective criteria such as patients’ preferences. Therefore we prefer
to talk about “personalised” rather than “optimal” treatment recommendations.

3We prefer the term “recommendation” as opposed to “decision” in this thesis, because algorithmic recommen-
dations/decisions should not be viewed as prescriptive, but as a tool to support decision-making. For example, the
final decision to initiate treatment may rely on external factors, not available to the machine.

4Our main focus in this thesis is on treatment recommendations, but recommendations are not necessarily
limited to treatments and could relate to other possible interventions, such as environmental factors exposures
(e.g. staying indoor during a pollution peak).
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daily, and contribute data for the development and large scale deployment of decision support
tools.

1.2 Aims and objectives

In this thesis, we aim to pave the way towards a closed-loop system, whereby AD severity
data would be collected automatically from camera images, this data would be used to predict
the evolution of AD severity, and the resultant predictions would help generate personalised
treatment recommendations [21] (Fig. 1.1). We hope such data-driven personalised pipeline for
managing AD severity would improve the care of AD patients.

The objective of this thesis is threefold:

1. Automating the assessment of AD severity using camera images (Chapter 3).
2. Developing and exploring the requirements for personalised predictive models of AD

severity (Chapters 4, 5, 6, 7 and 8). This will be the main focus of this thesis.
3. Generating personalised treatment recommendations (Chapter 8).

Figure 1.1: Proposed pipeline for a data-driven personalised management of Atopic Dermatitis
severity.

1.3 Modelling strategy

Automating the assessment of AD severity using camera images is a classic computer vision
task, and there is little debate about the superiority of Deep Learning (DL) techniques in recent

22 of 217



CHAPTER 1. INTRODUCTION

years, compared to more traditional feature-engineering approaches [13] [23].

However, the choice of a model, or more generally of a modelling strategy, is less straightfor-
ward for the tasks of predicting the evolution of eczema severity and subsequently generating
treatment recommendations.

For these tasks, we will use data collected in different clinical trials or observational studies5,
although the ultimate goal is to collect data directly from photographic images taken by patients.
The datasets used in this thesis are similar, in that they consist of longitudinal data (time-series
from different patients) of AD severity measurements. The measurements are imperfect with
the presence of measurement errors (cf. Section 2.1.3), and often contain a non-negligible
fraction of missing values (e.g. when patients forget to record their severity). Finally, all the
datasets are relatively small, in the order of 100 patients and 100 timepoints per time-series or
less.

With that in mind, in this section, we will discuss considerations, key requirements and
challenges for our models. Based on these, we will argue in favour of statistical modelling as
our preferred modelling strategy, and particularly Bayesian modelling.

1.3.1 Model-based vs model-free approaches to decision-making

We will adopt a model-based approach for generating treatment recommendations. This
approach consists of first developing a model of the evolution eczema severity, and then
generating treatment recommendations by comparing the predictions of the model under
different treatment conditions.

Model-free approaches are different from model-based ones in that they can learn how to
make optimal decisions without requiring a model of the environment. Model-free approaches
are popular in the field of reinforcement learning (RL) [24], whereas statistical decision analysis
and control engineering rely on models. Compared to model-free approaches, model-based
approaches are, by definition, prone to model misspecifications. However, model-based ap-
proaches require less data for training, as the exploration of the action space is guided by
the model [25], making them more suitable in our context of working with small data. Hav-
ing a model of the environment may also be desirable when causality, interpretability, and
uncertainty quantification aspects (that we will review below) are important.

In addition to being an intermediate step towards generating treatment recommendations,
and in the absence of prior work, modelling the evolution of eczema severity can be useful

5We use data from multiple studies as no dataset contains all the necessary information to explore the different
aspects of AD severity prediction.
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on its own. According to the tripartite division of statistical problems by Bernardo and Smith
[26], our problem is ℳ-complete in the sense that we believe a true model of the human body
suffering from AD exists, but we do not presume it can be written down. This is in contrast
to ℳ-closed problems where a true model exists, can be written down and is among a list of
models that a researcher can choose from; or ℳ-open problems where a true model exists but
cannot be specified (or that no true model can even be conceptualised [27]). If our problem
were ℳ-open, we could only aim at making predictions, as it would not be possible to say
anything about the underlying mechanisms. However, in ℳ-complete problems, the role of
modelling is to produce surrogate (incorrect) models that are tractable and can be used for
multiple purposes, including descriptive modelling (summarising data), making inferences or
good predictions [28].

1.3.2 Causality

Designing treatment recommendations is a decision-making problem, with the implicit under-
standing that decisions have a causal impact on the outcomes we consider. Since decisions
correspond to interventions (“what if” questions), in order to make the best decision, one must
understand the causal structure of the problem [29] [30]. In other words, it is not sufficient
to select the action that is associated with the best outcome, if the latter is not caused by the
former. It is thus desirable to integrate causal considerations in our models of the evolution of
AD severity.

Causal mechanisms can be learnt by conducting interventions on the environment. For
example, autonomous systems, such as robots learning how to move, usually have the ability
to act on their environment, observe the consequences of their actions and conduct hypotheses
(formally or informally) to learn causal relationships between actions and their outcomes. In
the medical field, hypotheses can be tested in randomised controlled trials, but it is not possible
to let an algorithm experiment treatments on patients for obvious ethical reasons. When online
data collection is not possible, one must rely on previously collected data, as in the case of
this thesis. In this “offline” data setting, learning how to make decisions is more difficult, as it
requires counterfactual predictions (e.g. what would have happened if the patient had taken
a different treatment) [31] [32]. For example, ML approaches focus almost exclusively on
association rules [30], and can mistake associations for causation. A “naive” ML system could
thus recommend patients to avoid going to the doctor to reduce their probability of illness.

Answering causal questions (causal inference) from observational data is challenging. In
particular, causal inference requires assumptions and cannot be entirely data-driven: one must
specify the causal structure problem and assumes the absence of unobserved confounders
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(ignorability or back-door criterion) [32]. However, we do not think we can reasonably assume
that the data available to us include measurements of all potential confounding factors to
estimate causal effects of treatments on AD severity6.

Non-causal predictive models can nonetheless be useful for causal decision-making, as
illustrated by their ubiquitous use in industry [33]. For example, the ranking of treatment effects
(especially knowing which treatment is the best) is more important for causal decision-making
than the precise estimation of causal treatment effects. As a result, learning from confounded
data introduces biases in causal treatment effects that do not necessarily influence causal
decision-making, while potentially reducing errors due to variance. Non-causal predictive
models can thus serve as proxies for causal decision-making, and sometimes even outperform
causal models [33]. To illustrate this proxy view, we can consider the suspected role of
biomarkers for patient stratification, i.e. biomarkers that would identify the most responsive
patients to a given treatment [10]. Unlike treatments or environmental factors, we would not
assume that biomarkers directly cause changes in severity, but that biomarkers and severity
changes have common causes and are thus associated. Without being a causal driver, biomarkers
can therefore be useful as surrogates for multiple causal mechanisms in a predictive model of
the evolution of AD severity.

As our work is preliminary, we chose to develop non-causal models, even if the ultimate
goal is to generate treatment recommendations7. We may nonetheless want to integrate causal
considerations in our models, as understanding the causal structure of the problem can guide
model development, lead to improvements in predictive performance, result in useful (albeit
biased) inference, and help build trust in the model’s outputs (see Section 1.3.3).

1.3.3 Interpretability

Ideally, we would like our models to be somewhat interpretable, to engender trust in their
outputs. Existing regulations such as the European Union’s General Data Protection Regulation
(GDPR) highlights patients’ “right to an explanation” for automated decision-making [34]. In
particular, “black-box” models or algorithms may fail to be accepted by the medical community
or patients, as interpretability is an important desideratum for high stake decision problems
[22] [35].

6For example, treatment effects could be confounded by environmental factor exposures through the patient’s
“behaviour”. That is, the patient’s behaviour could influence both their environmental exposures and treatment
usage. Alternatively, we can imagine a situation where treatment is used as a preventive measure before being
exposed to environmental factors (if a forecast is available), thus confounding the causal effect of treatments.

7We will primarily focus on modelling the evolution of AD severity in this thesis, only addressing the treatment
recommendation question in Chapter 8.
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Interpretability is an ill-defined concept, covering many different aspects, but is often
associated with the notion of transparency, in terms of simulatability (whether we can con-
template and understand the model at once), decomposability (whether individual parts such
as the model’s parameters can be explained) or whether the optimisation algorithm is itself
transparent [36]. In addition, there has been a growing interest in post-hoc interpretability, or
explainability, in the field of DL. Post-hoc interpretability usually consists of deploying another
model or technics to “explain” an original black-box model. However, post-hoc interpretability
is challenging [37], and also highly questionable as post-hoc explanations are not guaranteed
to match the algorithm’s true decision process [35]. When available, it is often preferable to
use interpretable models rather than relying on post-hoc explanations of a black-box model.
This is the approach we will take in this thesis.

1.3.4 Uncertainty quantification

Another desirable characteristic for our models is the ability to quantify uncertainty, using
probability distributions as opposed to point-estimates.

There are indeed multiple sources of uncertainty that we would like to keep track of and
propagate, such as uncertainties in measurements (due to measurement errors, cf. Section
2.1.3; or missing values) or in parameters (as a result of learning with data of limited size). In
addition, we believe it is important to quantify uncertainties in predictions, that are mainly
due to the stochasticity in the dynamics of AD and the sheer complexity of predicting health
in general8 [38].

Failing to quantify uncertainty could lead to suboptimal results and overconfident claims.
Quantifying uncertainty is also critical when assessing the risks associated with making a
decision. On the contrary, making point predictions would imply a forced choice imposed
on the clinician or patient (e.g. dichotomising a continuous probability of disease into a 0-1
classification) [39]. Finally, quantifying uncertainty is useful for science communication, as
communicating uncertainty can help maintain the public’s trust in science and the tools to be
developed [40] [41].

8Apart from specific genetic disorders, health is typically a low signal-to-noise ratio (SNR) environment, where
even identical twins can have very different medical outcomes.
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1.3.5 Comparing modelling approaches

We can broadly identify three potential approaches9 to develop predictive models of the
evolution of AD severity: mathematical modelling, statistical modelling, and Machine Learning.
We argue here in favour of statistical modelling for the purpose of this thesis.

Mathematical modelling is virtually theory-driven, with the aim to model biological mecha-
nisms of disease using a systems medicine/biology approach [42]. Mathematical models tend
to be highly complex with a well-defined and sometimes highly constrained structure. They
also require many parameters to be optimised and are therefore prone to overfitting. Even
though mathematical models can be very valuable when trying to formalise our understanding
of disease mechanisms or formulate new scientific hypotheses [43], they often do not lead to
a good fit to data or accurate predictions [44], compared to other approaches. We therefore
believe mathematical modelling is not the most appropriate strategy for developing predictive
models of AD severity.

Machine Learning models, on the other hand, are completely data-driven and focus almost
exclusively on predictions. We can locate statistical modelling somewhere in-between mathe-
matical modelling and machine learning, although the distinction between statistical modelling
and Machine Learning is often blurry. Here, we take the view that statistical modelling origi-
nates from a data modelling culture and ML from an algorithmic modelling culture [45] [46].
In that view, both statistical modelling and machine learning approaches are data-driven.
However, unlike ML, statistical modelling does not treat the data-generating mechanisms as
unknown, and is therefore deeply connected to causal theory [47] [48]. For example, neural
networks, decision trees, ensembling methods (e.g. random forest, bagging, boosting) or Sup-
port Vector Machine can be viewed as ML; whereas we can consider regression (e.g. linear,
logistic), including regularised regression (Lasso, Ridge, Elastic Net [49]) or regression splines,
as statistical modelling techniques.

ML models are often believed to provide better predictive performance than statistical
models, thanks to their ability to model complex and unspecified relationships in data, and
that it comes at the price of reduced interpretability. However, this “accuracy-interpretability”
trade-off is more of a myth than a conclusion based on empirical results [35]. It is certainly
true that ML outperforms statistical models in situations with a high signal-to-noise ratio, such
as computer vision or natural language processing. However, when the data has a well-defined
structure10 with meaningful features11, there is little evidence that ML performs better than

9This trichotomy is not without limitations, but we believe it can still be helpful to guide our discussion.
10Our data exhibits time-dependence, can be grouped by patients and the scoring system is structured (cf.

Section 2.1.3).
11Demographics, treatments, environmental factors, etc.
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statistical models [35], especially for clinical prediction models [50] or time-series forecasting
[51].

With their focus on data-generating mechanisms, statistical models are considered more
interpretable than ML, and can be used for estimation and inference, in addition to predictions
[48]. As they explicitly formulate a probabilistic model for the data, statistical models are
also more suitable to quantify uncertainty [46], whereas uncertainty quantification tend to be
challenging in ML, especially in DL [52].

There are also benefits in using “simpler” statistical models compared to more complex
ML models or algorithms. Statistical models tend to be simpler than ML models or algorithms
as they typically assume an additive structure and require fewer parameters to be optimised
compared to ML models. In the absence of prior studies that investigated predictive models for
AD, we can expect simple models to capture the bulk of the maximum achievable performance,
as the benefit of using complex models over simple models is often marginal and sometimes
illusory [53]. Using more complex approaches such as ML also typically requires a higher
sample size compared to simpler approaches such as statistical modelling [46], and can pose
challenges to the reproducibility of results [54]. Finally, simpler models are often easier to
implement, can guide the development of more complex models and provide useful benchmarks
along the way.

1.3.6 Bayesian modelling

Within statistical modelling, we believe Bayesian modelling provides a relevant framework for
developing predictive models of eczema severity.

An attractive feature of Bayesian modelling is its ability to design flexible models tailored
to the problem at hand, as opposed to finding the best existing algorithm/model [55]. This can
be achieved by specifying the data-generating mechanisms explicitly with probabilistic graphi-
cal models and using Bayesian inference12. With the development of powerful probabilistic
programming languages such as Stan [56], this approach also allows researchers to focus more
on modelling rather than inference algorithms.

A Bayesian approach also “provides a powerful way to handle uncertainty in all observations,
model parameters, and model structure using probability theory” [57], and can explicitly
incorporate prior knowledge in the models, a useful feature when working with small data.

12This approach has been coined “model-based machine learning” by Bishop [55]. This oxymoron highlights the
arbitrary dichotomy between ML and statistical modelling defined above, and that statistical modelling techniques
can also be used to model complex relationships in data.
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Finally, Bayesian decision analysis offers a simple and principled approach to generating
treatment recommendations from existing Bayesian models [58].

1.4 Structure of this thesis

This thesis is organised as follows:

• In Chapter 2, we review relevant preliminary information pertaining to this thesis. We
start by providing a brief background on Atopic Dermatitis, and especially AD severity
scores, which constitute the main source of information for our models. Then, we detail
the main concepts of Bayesian modelling, which will be used in Chapters 4, 6, 7 and
8. We also introduce common time-series forecasting methods. Finally, we review the
ordered logistic distribution, which we will use to model AD severity items in Chapters
5, 7 and 8.

• In Chapter 3, we present a computer vision pipeline, EczemaNet [59], that can automat-
ically assess eczema severity from camera images.

• In Chapter 4, we develop a Bayesian model to predict the evolution of eczema severity
[60], and demonstrate the possibility of predicting the short-term evolution of AD, and
its challenges.

• In Chapters 5 and 6, we explore whether additional measurements can help predict
future (daily to monthly) AD severity. We investigate the role of environmental factors
(weather, pollution) in AD severity prediction in Chapter 5 [61] and whether serum
biomarkers can help predict the severity outcome of a systemic therapy in Chapter 6
[62].

• In Chapter 7, we investigate to what extent using better quality measurements can im-
prove the prediction of AD severity. We also introduce EczemaPred [63], a computational
framework that provides building blocks for eczema severity models, available as a R
package.

• In Chapter 8, we build upon the models proposed in Chapter 7 to integrate multiple
sources of information, and generate treatment recommendations using Bayesian decision
analysis.

• In Chapter 9, we present the general conclusions of this thesis and discuss future
directions.
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Chapter 2

Background

2.1 Atopic Dermatitis

Atopic Dermatitis (AD) is a common chronic inflammatory skin disease characterised by a dry
and itchy skin (Fig. 2.1). It is usually, although imprecisely, referred to as eczema (see Section
1).

Figure 2.1: Itchy skin with signs of redness and scratch. The image is reproduced from Wikime-
dia Commons under the Creative Commons Attribution/Share-Alike 3.0 Unported License.

AD is more frequent in children than in adults and affects up to 20% of the paediatric
population and 10% of adults worldwide [1]. It usually starts during infancy with 45% of all
cases beginning within the first 6 months of life, 60% during the first year, and 85% before 5
years of age [64]. AD prevalence varies in different regions of the world, and is more common in
industrialised countries with a Western lifestyle, even though AD is on the increase worldwide
[65].

While AD is not life-threatening, it has a severe impact on patients’ quality of life, as well
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as a high socio-economic impact [3]. Conservative estimates have found that the total cost of
AD in the US was over 5 billion US dollars in 2015, including healthcare costs, costs associated
with a lower quality of life and costs associated with a loss of productivity in the workplace [3].
The social impact of AD is also significant, with patients reporting feelings of isolation, loss of
self-esteem and self-confidence [3].

The diagnosis of AD is based on the physical examination of the skin and patient history
(chronic inflammation of the skin, personal or family history of atopy). Several criteria have
been developed over the years, including the Hanifin and Rajka criteria [66] and the UK
working party criteria [67]. The essential features of these diagnostic tools are pruritus (itch)
and inflammation of the skin.

2.1.1 Pathogenic mechanisms

AD is a complex disease and its pathogenic mechanisms remain only partially understood.
It has nonetheless been established that AD pathogenesis is primarily driven by immune
dysregulation and skin barrier defects [68]. Understanding these mechanisms could help the
design of predictive models for AD severity.

On one hand, AD is linked to the predominance of Th2 cells over Th1 cells, two types of
T-helper cells (immune cells). This imbalance leads to the overproduction of Immunoglobulin E
(IgE), which is a characteristic of allergic diseases [64].

On the other hand, the AD skin is characterised by abnormalities in the stratum corneum
(upper layer of the skin), such as decreased hydration, increased water loss, increased skin
pH and the lack of diversity in the skin microbiome with an overabundance of the bacteria S.
aureus [69]. Alterations and deficiencies in the stratum corneum proteins have been implicated
in these deficiencies. In particular, mutations in the gene coding the filaggrin protein (FLG),
involved in the formation of the stratum corneum, were shown to be associated with AD [70].
Environmental factors are also responsible for the degradation of the skin barrier [1], especially
airborne pollutants [71], which are associated with industrialisation and urban living.

2.1.2 Treatments

Treatments are the main interventions we will consider in this thesis.

The current main treatments of AD consist of the application of emollient creams to prevent
and soothe dry skin, and topical corticosteroids for inflammatory skin [72] [73]. Calcineurin
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inhibitors can also be used for AD patients who are not responsive to corticosteroids, and
antibiotics are reserved for patients with bacterial infections [73]. Systemic therapies using
traditional immunosuppressants can be used for severe AD patients who do not respond to
topical therapies [74]. Proactive therapies have been suggested to control long-term outcomes,
as opposed to traditional “reactive” therapies consisting of the application of a treatment when
a flare occurs [75].

However, open questions remain about the best and safest way of using these treatments
[69], mainly because of the heterogeneity in phenotypes and responses to treatments [10].
Educational aspects may also be at play, considering the problem of low adherence to treatments
[9], especially due to corticosteroids phobia [76]. For example, patients often delay initiating
treatments after a flare [8].

2.1.3 Severity scores

Severity scores are the primary source of information for the models presented in this thesis.
In this section, we will describe the main scoring systems/instruments in length, as they guide
the design of our models, and help us understand the limitations of our data.

Several tools to assess eczema severity, commonly called severity scores, have been devel-
oped in the last 30 years. Severity scores are the primary outcomes for most clinical trials. All
these instruments report AD severity as a single score, obtained by combining the assessments
of intensity of AD signs, the extent of eczema (area affected by eczema) or subjective symptoms.
The scores thus differ by the severity items they consider and the rule used to combine them.

Recently, the eczema community formed an international focus group, the Harmonizing
Outcome Measures for Eczema (HOME), to develop a consensus-based core outcome set (COS)
for clinical trials and clinical practice.

Outcomes for clinical trials

HOME recommended the Eczema Area and Severity Index (EASI) [77] [78] as the core outcome
instrument for measuring the clinical signs of AD [79]. SCORing AD [80] (SCORAD) and its
objective component (oSCORAD) have also been validated as outcome instruments [81] [82],
and other scores such as Six Area Six Signs AD (SASSAD) [83] or Three Item Severity Score
(TISS) [84] are still routinely used in clinical trials or practice.

The HOME initiative also recommended the Patient-Oriented Eczema Measure (POEM)
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[85] as the core outcome for measuring subjective symptoms in clinical trials [86].

Outcomes (self-assessments) for clinical practice

Self-assessments, i.e. scores measured by patients or their carers, can be useful in clinical
practice as they are suitable to track the short-term (daily to weekly) evolution of the severity,
compared to clinical assessments that can be performed only during clinical consultations of a
limited frequency (usually monthly in a clinical trial).

HOME recommended the Patient-Oriented SCORAD (PO-SCORAD) [87] and POEM for
measuring eczema severity in clinical practice [88]. However, global assessments or ad hoc
measurements such as answers to the question “how much bother did your eczema cause
today?” are still routinely used.

SCORAD

SCORAD was created by the European Task Force on Atopic Dermatitis in 1990 [80], in order
to define a standardised way of assessing the severity of AD and has become a reference tool
for AD assessment since then [81].

SCORAD was defined as the first three principal components of 16 indices of AD symptoms,
obtained from a group of 88 AD patients. The three components were derived from a Principal
Component Analysis (PCA) and were found to account for more than 50% of the total variance
across patients. It is defined as:

SCORAD = 0.2𝐴+ 3.5𝐵 + 𝐶 (2.1)

• 𝐴 ∈ [0, 100] corresponds to the extent of AD (aka body surface area), i.e. the percentage
area affected by eczema in the whole body. 𝐴 is often estimated from a drawing of the
body where the areas of different regions are pre-calculated (“rule of 9”). For example, if
AD signs are only present on the head and the neck (representing approximately 9% of the
body), and one arm (representing approximately 9% of the body), then 𝐴 = 9 + 9 = 18.

• 𝐵 ∈ [0, 18] is the intensity signs component. It is calculated as the sum of the intensity
of six signs (Fig. 2.2):

– Erythema (redness)
– Edema/papulation (swelling)
– Oozing/crusting
– Excoriation (scratch marks)
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– Lichenification (thickening)
– Dryness

The signs are graded as “absent” (0), “mild” (1), “moderate” (2), and “severe” (3). Each sign
is evaluated at its own representative area based on the rater’s judgement, where the
representative area should reflect the average intensity of the sign in the patient, rather
than one “target” area or the worst affected site. The same site may be chosen for two or
more signs.

• 𝐶 ∈ [0, 20] represents subjective symptoms and is calculated as the sum of two symptoms:
– Pruritus (itch)
– Sleep loss/disturbance

The symptoms are scored by the patient using a Visual Analogue Scale (VAS) from 0
(absence) to 10 (worst case possible).

SCORAD ranges from 0 to 103. However, high values of the scores are very unlikely. For
example, it is very unlikely to observe a patient with eczema covering the entirety of its body
(𝐴 = 100) or that all intensity signs are severe. In practice, SCORAD above 50 is already
considered severe or very severe [89] [90]. The intensity signs component is the predominant
component of SCORAD and can contribute up to 3.5× 6 signs × 3 points = 63 points out of
the 103 points of SCORAD. The extent (0.2𝐴) and the subjective symptoms (𝐶) components
contribute at most 20 points each to the total SCORAD.

oSCORAD refers to the objective component of SCORAD (𝐴 and 𝐵 terms) and ranges from
0 to 83:

oSCORAD = SCORAD − 𝐶 = 0.2𝐴+ 3.5𝐵 (2.2)

PO-SCORAD is a self-assessment of SCORAD and uses the same scoring system. PO-
SCORAD has been shown to be strongly associated with SCORAD, even more so after a few
weeks of practice [91]. PO-SCORAD can be assessed with the help of a smartphone app
(https://www.poscorad.com), which includes illustrations of the different intensities for each of
the six intensity signs, for different skin types, and a tool to calculate extent by selecting the
affected body regions.

EASI

EASI was developed in 1998 based on the Psoriasis Area and Severity Index (PASI) used for
assessing psoriasis severity. It is defined as:

EASI =
∑︁

r∈Body regions

𝛾r · Ar · Sr (2.3)

34 of 217

https://www.poscorad.com


CHAPTER 2. BACKGROUND

Figure 2.2: SCORAD intensity scores. The image is supplied by DermNet NZ under the Creative
Commons Attribution-NonCommercial-NoDerivs 3.0 (New Zealand) license.
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• Four body regions are considered: head and neck, trunk, upper limbs, and lower limbs.
• 𝛾𝑟 is a fixed multiplier representing the relative importance of each body region1, so that

the sum of the multipliers over regions is 1. For example, lower limbs and the trunk
contribute more to EASI than upper limbs and the head and neck.

• 𝐴𝑟 represents the area score for region 𝑟, on a discrete scale from 0 (no eczema in the
region) to 6 (the entire region is affected by eczema).

• 𝑆𝑟 =
∑︀

𝑠∈Sign
𝐼𝑟,𝑠 is the sum of the intensity score, 𝐼𝑟,𝑠, of four signs (redness, thickness,

scratching, and lichenification), each of which is assessed by none (0), mild (1), moderate
(2) or severe (3).

EASI ranges from 0 to 72.

POEM

Unlike SCORAD and EASI, POEM focuses on the subjective illness experienced by the patient.
The POEM score is the sum of the answers to 7 questions asking how many days an AD symptom
was present over the last week. The answer can be “No day” (0), “1-2 days” (1), “3-4 days” (2),
“5-6 days” (3) or “Every day” (4). As a result, POEM ranges from 0 to 28.

The questions (formulated for the carers of children here) are:

1. On how many days has your child’s skin been itchy because of their eczema?
2. On how many nights has your child’s sleep been disturbed because of their eczema?
3. On how many days has your child’s skin been bleeding because of their eczema?
4. On how many days has your child’s skin been weeping or oozing clear fluid because of

their eczema?
5. On how many days has your child’s skin been cracked because of their eczema?
6. On how many days has your child’s skin been flaking off because of their eczema?
7. On how many days has your child’s skin felt dry or rough because of their eczema?

2.1.4 Properties of severity scores

In the previous section, we alluded that scores such as EASI, (o)SCORAD and POEM had been
validated. Many aspects (aka psychometrics properties) are considered when evaluating a new
scoring system, such as whether it measures what it is expected to measure (construct validity),
its interpretability or its ease of use. Here, we detail some aspects of the validation procedure

1The multipliers are slightly different between children (0-7 years) and adults (8 years or more).
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of severity scores, that are of interest when evaluating the predictions of these scores, namely
the quantification of measurement errors and what can be considered an important change.

Inter- and intra- rater reliability

Inter-rater reliability refers to the degree of agreement between raters, i.e. to what extent
the scores are independent of a particular rater. In particular, if the inter-rater reliability is
high, “raters can be used interchangeably without the researcher having to worry about the
categorisation being affected by a significant rater factor” [92].

Intra-rater reliability refers to the degree of agreement between repeated assessments of
the same item by a single rater.

Estimating the extent of eczema was found to display high inter-rater variability [93].
Moreover, the scoring of intensity signs can be challenging, for example the distinction between
mild or moderate lesions is not always clear (Fig. 2.2) and mostly an artefact of the measurement
process, as severity is likely a continuum in reality. Overall, the evidence is poor that SCORAD,
EASI and POEM have a good inter- and intra-rater reliability [82], i.e. that the measurements
are perfect2.

Minimal Detectable Change (MDC)

Inter- and intra-rater variability implies the existence of measurement errors, compared to a
“true” estimate of the severity, which could be obtained by averaging the repeated measurements
of multiple independent raters. As a result, it can be desirable to know when a change can no
longer be explained by the presence of measurement noise (at a given confidence level), i.e.
when it exceeds the Minimal Detectable Change (MDC).

In the context of developing predictive models, the MDC can provide a lower bound for
the minimum error it is possible to achieve (cf. Bayes error rate), when single assessments are
considered as “ground truth” for prediction metrics.

To the best of our knowledge, the MDC has not been estimated for SCORAD, EASI, and
POEM.

2Hence the wish to model measurement uncertainties, expressed in Section 1.3.
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Minimal Important Difference (MID)

A change that is detectable statistically is not necessarily “important”3 [94]. The Minimal
Clinically Important Difference (MCID) was thus introduced in 1989 [95] to determine whether
a medical intervention improves perceived outcomes in patients. It is defined as the smallest
change in a disease outcome measure that can be considered important/meaningful for patients,
as opposed to a statistically significant change. The Minimal Important Difference (MID) was
introduced as a synonym to the MCID to clarify the focus on patients’ experiences rather than
clinical interpretations [96]. The MID is also referred to as “responsiveness to change” in terms
of psychometric properties of severity scores.

Estimating the MID (or MDC) for a disease outcome can notably be useful in designing
clinical trials, as it can inform an effect size of practical interest to compute the power (or
equivalently, given the power, compute the required number of participants) of minimal effect
or equivalence tests to estimate treatment effects. The MID can also put the average prediction
error of models in perspective.

However, the concept of MID is also problematic in many ways4:

• Dichotomising a change as “important” or “not important” is rarely a good idea [97]. In
particular:

– MID is often estimated using global assessments serving as anchors, which are
themselves poorly defined [98].

– Procedures to estimate the MID often ignore the trade-off between false positives
(changes classified as important when they are not) and false negatives (changes
classified as not important when they are) [99] [100] [101], while this trade-off
should be specified explicitly according to the research question. Indeed, classifying
a change as “important” or “not important” will produce misclassification and is,
therefore, a decision-making problem, which cannot be solved using data only.

• MID implicitly assumes linearity, i.e. the perception of change is the same regardless
of the severity. However, it is unclear whether patients are more perceptive of absolute
changes compared to relative changes, for example.

• The purpose of the MID is to quantify what is a meaningful change for patients, which
can appear in conflict with the implicit search for a unique MID value that would apply
to all patients.

• While the goal of “MCID studies is the search for a unique threshold value, […] ironically,
the different methods produce a variety of MCID values” [99].

3Nor an “important” change is necessarily detectable, even if this is desirable.
4This is also true to some extent about the MDC.
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Even though there have been attempts to estimate the MID of SCORAD, EASI and POEM
[102], we do not rely on these measures in this thesis. Instead, we can interpret the prediction
error in light of the maximum value 𝑀 that the score can take, instead of using the MID as a
reference.

2.2 Bayesian modelling

Most of our analyses are probabilistic by design, especially Bayesian, notably because Bayesian
modelling provides a useful framework to develop flexible models and quantify uncertainty
(cf. Section 1.3). In this section, we review the main concepts of Bayesian statistics and
modelling required to comprehend this thesis, assuming the readers are already familiar with
basic statistical and machine learning concepts. We will refer interested readers to [103] as
an introduction to statistical learning, and to [104] and [105] for more details about Bayesian
modelling.

2.2.1 Bayesian statistics

Here, we introduce Bayesian statistics in contrast to the standard (i.e. usually taught and
applied) frequentist approach. Philosophically, the two approaches notably differ in the way
they interpret what a probability is. In the frequentist setting, a probability is the long-term
frequency of an event (e.g. the frequency of heads in coin flip experiments), whereas in a
Bayesian setting, a probability is a measure/quantification of the uncertainty of an event (e.g.
the probability of rain tomorrow5).

A parameter is thus considered differently in the two settings. In a frequentist setting, a
parameter is considered to have a true, fixed but unknown value (not a random variable), and
its estimate is a random variable. In a Bayesian setting, a parameter is considered a random
variable and can be described directly using probability distributions. The implications of this
difference can be illustrated with the notion of confidence intervals (in a frequentist setting)
and its Bayesian “equivalent”, the credible intervals. A (frequentist) confidence interval is an
interval that is designed to include the true value of the parameter at a certain rate (e.g. 95%):
if the procedure to produce a 𝑥% confidence interval is repeated a large/infinite number of
times, 𝑥% of the 𝑥% confidence intervals should include the true value (this property is called
coverage) [106]. However, since the true value is unknown and fixed in a frequentist setting, a
𝑥% confidence interval cannot be the interval in which the true value lies with 𝑥% probability:

5This probability is not meaningful in a frequentist paradigm as the event cannot be repeated.
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on a given experiment, the true value is either in or out of the confidence interval. In contrast,
a Bayesian 𝑥% credible interval is an interval in which the parameter lies with 𝑥% (subjective)
probability.

When data 𝑦 is observed, Bayes’ theorem is used to update the prior 𝑝(𝜃) over the parameters
𝜃, by their posterior distributions 𝑝(𝜃|𝑦):

𝑝(𝜃|𝑦) = 𝑝(𝑦|𝜃)𝑝(𝜃)
𝑝(𝑦)

∝ 𝑝(𝑦|𝜃)𝑝(𝜃) (2.4)

𝑝(𝑦|𝜃) is the likelihood (the “model”) and 𝑝(𝑦) =
∫︀
𝑝(𝑦|𝜃)𝑝(𝜃)𝑑𝜃 is the evidence term.

The evidence term can be seen as a normalisation constant (it is not a function of 𝜃) and its
calculation (often intractable) is usually not necessary for Bayesian inference. The role of the
prior 𝑝(𝜃) is to incorporate information about the problem that is not directly present in the
data.

Bayesian statistics are widely used in science, but remain controversial [107], even though
the criticisms often stem from misunderstandings or incorrect applications of Bayesian concepts
[108] (not that fair criticisms are nonexistent [109]). For example, the Bayesian approach is often
criticised by the existence of the prior 𝑝(𝜃), which supposedly introduces subjectivity in the
analysis, while “science should be objective” [107]. However, the choice of a model/likelihood
is often as subjective as the choice of the prior [110] [111], and a prior can be perfectly objective
if it is based on historical data [112]. It is usually more helpful to think in terms of transparency,
consensus, or awareness of multiple perspectives to evaluate a statistical approach [113], rather
than introducing a false dichotomy between objectivity and subjectivity in statistics.

2.2.2 Priors

Prior specification is essential to Bayesian analysis, and nonetheless one of its challenging parts.
Many types of priors are available, including conjugate priors, Jeffrey’s priors, hierarchical
priors, regularising priors, sparsity-inducing priors, maximum entropy priors, penalise com-
plexity priors, etc. We do not attempt to review all these different types of priors for concision,
but we can broadly classify priors as informative, weakly informative and non-informative.

Informative priors are priors that reflect substantial knowledge about the parameter values,
and are usually derived from the literature. On the contrary, uninformative priors (aka improper
priors, uniform priors, or flat priors) put equal weights on all parameter values, making Bayesian
inference equivalent to frequentist inference (𝑝(𝜃) is constant in Eq. (2.4) and the posterior is
proportional to the likelihood). Even though these priors are called uninformative, a change of
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variables can make a uniform prior highly informative. For example, a uniform prior on the
logit space (e.g. for the intercept of a logistic regression) would result in a highly informative
prior on the probability space with modes at 0 and 1. As such, “the prior can often only be
understood in the context of a likelihood” [114]. Finally, weakly informative priors are priors
designed to rule out implausible parameter values, without excluding values that could make
sense. For example, a weakly informative prior on the height of humans would at least exclude
values with an order of magnitude that is different than one meter (e.g. excluding values below
10cm and above 10m). In this thesis, we will often use weakly informative priors.

2.2.3 Inference algorithms

Once the likelihood and priors have been specified, Bayesian inference is conducted to obtain the
posterior distribution. There are mainly two types of algorithms to perform Bayesian inference:
algorithms relying on variational inference, i.e. approximating the posterior distribution, and
algorithms relying on sampling the posterior distribution using Markov chains. In this thesis,
we will focus on the latter type of algorithms, as early attempts at fitting models with variational
inference methods, notably using expectation propagation [115], were unsuccessful.

Sampling algorithms are based on the Markov Chain Monte-Carlo (MCMC) method and
include Gibbs sampling, the Metropolis-Hasting algorithm, and the Hamiltonian Monte-Carlo
algorithm [116]. In specific cases, for example in an online learning setting when frequent
updates are necessary, Sequential Monte-Carlo algorithms (SMC, particle filters) can be used.
However, SMC tends to be less flexible than MCMC algorithms for model development (the
main focus of this thesis, as opposed to developing computational methods), so they will not
be discussed here.

Intuition behind MCMC

The purpose of MCMC is to obtain random samples from a probability distribution, the posterior
𝑝(𝜃|𝑦), which is difficult to sample, especially as the number of parameters grows. For example,
if we want to sample a one-dimensional cube (that is, a segment), we can use 10 evenly spaced
points. If we sample a two-dimensional cube instead of a segment at the same sampling rate,
we would need 100 evenly spaced points; and 1000 evenly spaced points in the case of a
three-dimensional cube. This is the curse of dimensionality, as the number of samples needs to
grow exponentially with the number of dimensions. However, in a high dimensional space,
the probability mass of non-uniform distributions tends to concentrate in small regions. In the
cube analogy, this means that we do not need to sample the whole volume but maybe only
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the centre, for example. MCMC methods take advantage of this phenomenon by randomly
sampling the regions of high probability mass.

With MCMC, the sampling is made by Markov Chains. A Markov Chain is characterised
by a transition operator and describes how to perform random walks in a graph. The basic idea
of MCMC is to let Markov Chains explore the regions of high probability mass, by generating
dependent samples rather than independent samples. Briefly, if we have a “good” sample of
𝜃, sampling around this value is likely to generate other “good” samples. The task is then to
construct the transition operator, the Markov Chain, to transition from one 𝜃 to another, for
which the equilibrium (stationary) distribution is the target distribution. Finally, the dependence
between samples can be addressed by thinning6 or computing an effective sample size (details
below).

Metropolis algorithm

The original algorithm for MCMC was the Metropolis algorithm (later generalised as Metropolis-
Hastings algorithm). This algorithm performs a random walk and uses an acceptance/rejection
rule to converge to the target distribution.

From a starting sample 𝜃, a new sample 𝜃′ is proposed from a proposal distribution7. This
new sample 𝜃′ is accepted with a probability equal to min(1, 𝜋(𝜃

′)
𝜋(𝜃)

), where 𝜋(𝜃) = 𝑝(𝑦|𝜃)𝑝(𝜃)8,
otherwise a new sample is proposed. If the process is repeated long enough, the distribution of
samples is guaranteed to converge to the target distribution.

Hamiltonian Monte-Carlo

Choosing an appropriate proposal distribution in the Metropolis (-Hastings) algorithm is key
to ensure an efficient exploration of the posterior distribution. Unfortunately, relying on a
random walk is usually not an efficient way to explore the parameter space, especially in
high dimensions, where the algorithm either stays in the local neighbourhood of the current
state, or has a low acceptance rate. The Hamiltonian Monte-Carlo (HMC) algorithm tries to
overcome this issue by replacing the random walk with a Hamiltonian flow (used to describe

6Saving only a fraction of the samples, as the dependence decreases with the increase in the number of
transitions between samples. For example, if the second sample of the Markov Chain is highly dependent on the
first sample, the tenth or hundredth samples may be reasonably independent from the first sample.

7In the original Metropolis algorithm, the proposal distribution needs to be symmetric, and is typically a
normal distribution 𝜃′ ∼ 𝒩 (𝜃, 𝜎2), where 𝜎 corresponds to a step size.

8Taking the ratio of 𝜋 is equivalent to taking the ratio of posteriors, 𝜋(𝜃′)
𝜋(𝜃) = 𝑝(𝜃′|𝑦)

𝑝(𝜃|𝑦) , without requiring the
computation of the normalising constant.
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the diffusion of particles in physics), which relies on the computation of gradients to propose
better transitions.

In the Bayesian analyses presented in this thesis, we use a particular flavour of the HMC
algorithm, the No-U-Turn Sampler (NUTS) [117]. NUTS is designed to avoid retracing its own
steps, and is characterised by its use of adaptive hyperparameters that facilitates hyperparameter
tuning. In particular, we use NUTS as implemented in the probabilistic programming Stan [56].

MCMC diagnostics

When using MCMC, it is desirable to know whether the Markov Chains have converged to
their stationary distribution, i.e. whether they are sampling the posterior distribution or they
are “stuck” elsewhere. Unfortunately, like many inference algorithms, it is not possible to
obtain guarantees that a particular Markov Chain has converged, but instead the algorithm
provides diagnostics of a lack of convergence.

Before computing any diagnostics, the first iterations of the Markov chain, corresponding
to a “burn-in” (or “warm-up” in Stan [56]) period, are discarded, as they are unlikely to have
converged yet.

Running the Markov chain for as long as possible is a good practice, since the longer a chain
is being run, the more likely it is to converge. However, the extent to which this is possible in
practice is limited. Instead, multiple chains, using different initial conditions, can be run in
parallel, and convergence can be assessed by checking whether different Markov chains sample
the same distribution. This can be done visually by inspecting trace plots (time-series plots of
MCMC draws) or numerically using the Gelman-Rubin convergence diagnostic, �̂� [118] [119],
for example. As a rule of thumb, �̂� < 1.1 indicates good “mixing” of the Markov Chains, i.e.
the chains sample the same distribution.

In the case of HMC, numerical errors (divergences) occurring in the computation of Markov
Chain transitions can also be flagged as an indicator for a lack of convergence.

Finally, the precision of parameter estimates can be assessed by computing an effective
sample size 𝑁eff (an efficiency diagnostic as opposed to a convergence diagnostic). Given a
parameter 𝜃 whose distribution is estimated by 𝑁 independent and identically distributed
samples, the sample mean 𝜃 is given by 𝜃 ∼ 𝒩

(︀
𝜇𝜃, (

𝜎𝜃√
𝑁
)2
)︀
, according to the central limit

theorem, where 𝜇𝜃 and 𝜎𝜃 are the true mean and the standard deviation of 𝜃, respectively.
Therefore, the resolution of 𝜃 is proportional to

√
𝑁 , suggesting that 100 times more samples are

required if one more digit of precision is needed for 𝜃. In MCMC, the samples are autocorrelated,
and thus the error is proportional to 1√

𝑁eff
, rather than 1√

𝑁
, where 𝑁eff is computed from the
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autocorrelation function of the Markov chains [119].

2.2.4 Bayesian workflow

In this section, we describe the different steps of a Bayesian analysis and the corresponding
Bayesian workflow we adopted in this thesis [57] [120] (Fig. 2.3). The Bayesian workflow is
iterative, starting from a most simple yet relevant model for the task, and adding complexity
gradually.

After initially specifying a model (likelihood) and priors, prior predictive checks are con-
ducted to check that the chosen priors are reasonable [121]. Prior predictive checks consist of
sampling parameters from the prior distribution and generating data according to the model, to
obtain samples from the prior predictive distribution. The priors can then be understood in the
outcome space, which is generally more interpretable than the parameter space, to examine
whether the priors conform to our understanding of the problem.

Then, fake-data checks (aka fake-data simulations) are conducted by fitting the model with
samples from the prior predictive distribution (the fake-data, with known data-generating
mechanism), to verify that the inference algorithm is able to retrieve known parameters. Fake
data simulations are a minimum requirement to validate the inference algorithm, as inference
algorithms often only guarantee asymptotic results (with infinite data and computation) on toy
models. Fake-data simulations are especially useful to detect problems with the computational
method, but are not sufficient to guarantee that the inference on real data will be error-free
(absence of evidence is not the evidence of an absence). A more exhaustive validation of the
computational method can be done using Simulation-Based Calibration (SBC) [122], even
though it is often computationally intensive.

Finally, the model can be fitted to real data: convergence diagnostics are computed and
posterior predictive checks or out-of-sample validation (e.g. cross-validation) are conducted
to assess model fit and validation. Posterior predictive checks are useful to detect failings of
the model and are more qualitative (e.g. visual) than quantitative. The idea behind posterior
predictive checks is to generate data from the posterior predictive distribution 𝑝(𝑦new|𝑦) =∫︀
𝑝(𝑦new|𝜃)𝑝(𝜃|𝑦)𝑑𝜃, and check whether it is similar to the data that was used to fit the model.

2.2.5 Evaluating probabilistic forecasts

Predictions from a probabilistic model come in the form of distributions rather than point-
estimates. Given the posterior distribution 𝑝post(𝜃) = 𝑝(𝜃|𝑦) (we drop the condition on training
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Figure 2.3: Overview of the Bayesian workflow. The figure is reproduced from [57].

data 𝑦 for concision), the expected predictive distribution of a new datapoint 𝑦new is given by:

𝑝(𝑦new) =

∫︁
𝑝(𝑦new|𝜃)𝑝post(𝜃)𝑑𝜃 (2.5)

Ideally, probabilistic forecasts should be calibrated. A classifier is said to be calibrated if, for
example, an event that is forecasted with a probability of 50% (forecast probability) happens
approximately 50% of the time (observed frequency). If the event happens only 30% of the time,
the classifier is called overconfident. If the event happens 70% of the time, then the classifier
is called underconfident. However, a perfectly calibrated classifier can be useless when the
forecasted probability matches the prevalence of the event (historical forecast, cf. Section
2.3.3). The goal of probabilistic forecasts is then to maximise the sharpness of the predictive
distribution, subject to calibration [123].

For discrete outcomes, calibration plots can be used to assess visually whether forecasts
are calibrated [124]. More generally, scoring rules provide quantitative measures to evaluate
probabilistic forecasts [125] [126]. In particular, proper scoring rules encourage honest forecasts
[126]. This is not the case of improper scoring rules, such as classification accuracy, sensitivity,
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specificity, etc. which can be gamed as they reduce probabilistic forecasts to all-or-none
predictions [127].

In this thesis, we will mostly consider the logarithmic scoring rule, the log predictive density
(lpd, aka predictive log-likelihood, which is equivalent to (minus) the Log-Loss or cross-entropy
for classification problems), as well as quadratic scoring rules: the Brier Score (BS) for binary
forecasts, the Ranked Probability Score (RPS) for ordinal forecasts and the Continuous Ranked
Probability Score (CRPS) for continuous forecasts. Logarithmic scores tend to penalise incorrect
predictions more compared to quadratic scores. Logarithmic scores are also local, which means
they only focus on the density at the test datapoint, whereas quadratic scores are global and
focus on the entire distribution. For example, unlike the RPS, the lpd does not consider the
ordinal nature of disease signs, although it may be preferable to predict “moderate” rather than
“mild” when the true label is “severe”.

In the following, we present the equations for computing the scoring rules for individual
predictions, which can then be averaged for a set of predictions (e.g. forward chaining iteration).

Log predictive density (lpd)

The log predictive density (lpd) is the local strictly proper logarithmic scoring rule that is
defined by the density (probability mass in the case of a discrete outcome) assigned to the true
outcome. For a new datapoint 𝑦new, the lpd is defined by:

lpd(𝑦new) = log 𝑝(𝑦 = 𝑦new) (2.6)

lpd ∈]−∞,+∞[ for continuous outcomes and lpd ∈]−∞, 0] for discrete outcomes (i.e.
using probability mass functions), with higher values of lpd indicating better forecasts.

Brier Score (BS)

The Brier score is a quadratic scoring rule for categorical outcomes defined as the Euclidean
distance between the outcome 𝑦new and its forecast. For a multi-category forecast, the Brier
score is defined as:

BS (ynew) =
R∑︁

i=1

(︀
fi − oi

)︀2 (2.7)

• R is the number of classes
• 𝑓𝑖 = 𝑃 (𝑦 = 𝑖) is the forecast probability to predict the 𝑖-th class
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• 𝑜𝑖 = 𝛿𝑖,𝑦new ∈ {0, 1} is the actual outcome of the 𝑖-th class, with 𝛿𝑖,𝑗 the Kronecker delta.

BS ∈ [0, 2], where 0 corresponds to a perfectly-calibrated classifier.

Ranked Probability Score (RPS)

The Ranked Probability Score (RPS) is a quadratic scoring rule for discrete ordinal outcomes.
For a single datapoint 𝑦new, the RPS is defined as:

RPS (𝑦new) =
1

𝑅− 1

𝑅∑︁
𝑖=1

(︀
𝐹𝑖 −𝑂𝑖

)︀2 (2.8)

• 𝑅 is the number of classes.
• 𝐹𝑖 = 𝑃 (𝑦 ≤ 𝑖) is the (expected) cumulative forecast distribution.
• 𝑂𝑖 = 1𝑦new≤𝑖 is the cumulative observed outcome (1 is the indicator function).

RPS ∈ [0, 1], where 0 corresponds to a perfect score.

Continuous Ranked Probability Score (CRPS)

For continuous outcomes, we can compute the CRPS of a single data point 𝑦new for a forecast
with cumulative distribution 𝐹 (𝑥) by:

CRPS (𝑦new) =

∫︁ (︀
𝐹 (𝑥)− 1𝑦new≤𝑥(𝑥)

)︀2
𝑑𝑥 (2.9)

A notable difference between the CRPS and the RPS is that the CRPS is not normalised to be
between 0 and 1.

While the integral in Eq. (2.9) is challenging to compute analytically, efficient algorithms
have been proposed to compute the CRPS from Monte-Carlo samples [128].

2.3 Time-series forecasting

In this section, we review key time-series concepts that we will use throughout this thesis, such
as the validation procedure for time-series models, standard models for time-series forecasting
that we will use as references to benchmark our models, and state-space models.
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2.3.1 Forward chaining

When dealing with time-series data, it is not possible to use standard cross-validation methods
to internally validate a model, as it is not reasonable to use future data to predict the past.
Instead, we assess the predictive performance of the model in a “forward chaining” setting, aka
rolling forecast origin validation [129], where, for example, the model is first trained on the
first week of data and tested on the second week of data (first iteration), then trained on the
first two weeks of data and tested on the third week of data (second iteration), etc.

Usually, we will start with only the first timepoint in the training set (iteration 0), so
that the associated predictions correspond to the prior predictive distribution (in a Bayesian
setting). Then, for the 𝑖-th iteration and an horizon ℎ (in weeks or days depending of the
context), the training set includes timepoints 𝑡 ≤ 𝑖 × ℎ + 1 and the testing set includes
𝑖× ℎ+1 < 𝑡 ≤ (𝑖+1)× ℎ+1 (Fig. 2.4). In this setting, we generate predictions up to ℎ-steps-
ahead in the future, but the predictive performance can be evaluated for shorter prediction
horizons as well.

Figure 2.4: Forward chaining with a horizon of 4 days

The forward chaining procedure is computationally demanding, as it involves retraining
the model multiple times9, and approximations have been proposed to reduce the number of
training iterations [130]. However, we do not use these approximations in this thesis, as the
training time of the models is not prohibitive because our datasets are small, and we have
access to a large number of CPUs to parallelise the forward chaining iterations.

2.3.2 Learning curves

After computing the predictive performance for each prediction, we can compute the average
predictive performance for each forward chaining iteration and plot a learning curve (perfor-

9Unless when proper Bayesian updating is implemented, for example when using Sequential Monte-Carlo
algorithms, or conjugate priors.
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mance vs forward chaining iteration or equivalently, training time or training data size). A
learning curve allows us to investigate the overall trend of the performance (e.g. determined
visually or by computing a smoothed average), as opposed to looking at the performance of a
single iteration that may exhibit random variability10.

Because we work with longitudinal data, the average performance at a given iteration is
mostly equivalent to the average performance across patients. However, the population of
patients that we averaged across is not always the same for different training iterations due
to missing observations. For instance, it is possible that we average across patients 1 and 2
to compute the performance at the 𝑖-th iteration and across patients 1 and 3 at the (𝑖+ 1)-th
iteration. This could cause an issue if the model is consistently better at predicting patient 2
than patients 1 and 3, because the performance at the 𝑖-th iteration could be higher than the
performance at the (𝑖 + 1)-th iteration, even though the model could be learning from the
𝑖-th to the 𝑖 + 1-th iteration. This phenomenon is known as Simpson’s paradox, and occurs
because we fail to consider the patient IDs as a confounding factor [126] (an example is given
in Chapter 4, Fig. B.1).

Another confounding factor of the predictive performance is the prediction horizon, which
may differ on average from one iteration to another. For example, due to irregular measurements,
the average prediction horizon may be 2 days at the 𝑖-th iteration and 3 days at the 𝑖 + 1-
th iteration. This may result in the performance at the 𝑖-th iteration appearing higher than
the performance at the 𝑖+ 1-th iteration, as it is usually easier to predict shorter prediction
horizons, even though the model’s performance may actually improve from the 𝑖-th to the
𝑖+ 1-th iterations.

To address these potential confounding issues, we usually attempt to adjust11 for these
confounding factors using a “meta-model” of the predictive performance as a function of
training iteration, prediction horizon, and patient ID, and report the average performance from
the meta-model (details are given in each chapter).

10This is similar to standard cross-validation techniques such as K-fold, where the average performance across
folds is deemed more informative and robust than the performance estimate from a single fold.

11Another option is to use relative measures of performance (e.g. pairwise difference in performance between
the model of interest and a reference model). However, these measures are improper, in the sense that an increase
in the relative performance is not necessarily associated with an increase in the performance of the model of
interest (it could be due to a decrease in performance of the reference model). We looked at such metrics during
model development to better “triangulate” and understand the performance of the models, but do not report them
in this thesis.
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2.3.3 Reference models for time-series forecasting

In this thesis, we compare the performance of our severity prediction models to that of standard
time-series forecasting models, including a uniform forecast, a historical forecast, a random
walk model, an exponential smoothing model, an autoregressive model of order 1 and a mixed
effect autoregressive of order 1 [129]. We did not consider higher-order time-series forecasting
models, such as Autoregressive Integrated Moving Average (ARIMA) models, as they are not
well suited and difficult to fit with longitudinal data, short time-series or in the presence of
missing values (which are characteristics of the data we use in this thesis).

The reference models are reimplemented in a Bayesian context12 so that they can provide
probabilistic predictions instead of point predictions, to allow a fair comparison within Bayesian
analyses. We go beyond the off-the-shelf implementation by training the models in a semi-
supervised setting where missing values are treated as parameters to be inferred by the model.
However, the models remain “naive” in the sense that the likelihood is defined with non-
truncated distributions, even though severity scores are bounded, and implicitly treat the scores
as continuous, similarly to standard off-the-shelf implementations. As a result, the predictive
distributions are truncated for proper evaluation, so that the predictive distribution integrates
to one over the support of the score. In the case of discrete variables, predictions are also
discretised (rounded to the nearest integer).

The following describes the likelihood of the reference models considered in this thesis.
Their priors are defined in the individual chapters where they are used, as they are chosen to
be consistent with the other models they are compared to.

Uniform forecast

A uniform forecast assumes that observations 𝑦 ∈ [0,𝑀 ] follow a uniform distribution (discrete
or continuous depending on the outcome):

𝑦(𝑡+ 1) ∼ 𝒰(0,𝑀) (2.10)

For discrete variables, this means ∀𝑖 ∈ [0,𝑀 ], 𝑃
(︀
𝑦(𝑡+ 1) = 𝑖

)︀
= 1

𝑀+1
.

12Except for the uniform and historical forecasts.
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Historical forecast

A historical forecast model makes heuristic forecasts based on the prevalence of past observa-
tions, at the population level13.

In the discrete case, a probability table can be calculated. For instance, if 10% of observations
in the training set are 0, then 𝑃

(︀
𝑦(𝑡+ 1) = 0

)︀
= 0.1.

For the continuous case, it is not possible to compute a probability table from past obser-
vations. Instead, we compute the performance metrics associated with this forecast directly
by using kernel density estimates for computing the lpd and considering the training set as
Monte-Carlo samples for computing the CRPS (cf. Section 2.2.5).

Random walk model

A random walk model provides a flat forecast, i.e. a forecast centred on the last observation
with the uncertainty quantified by a variance parameter 𝜎2, and is described by:

𝑦(𝑡+ 1) ∼ 𝒩
(︀
𝑦(𝑡), 𝜎2

)︀
(2.11)

Exponential smoothing model

An exponential smoothing model corresponds to an exponential smoothing of the data and a
flat forecast, and is described by:

𝑙(𝑡) = 𝜑𝑦(𝑡) + (1− 𝜑)𝑙(𝑡− 1) (2.12)

𝑦(𝑡+ 1) ∼ 𝒩
(︀
𝑙(𝑡), 𝜎2

)︀
(2.13)

where 𝑙14 represents the smoothed values (the level, which is also the predictor for 𝑦: 𝑙(𝑡) =
𝑦(𝑡+ 1)) and 𝜑 ∈ [0, 1] is the smoothing factor, which can be related to the time constant 𝜏 of
the process and the delay ∆𝑇 between two observations (e.g. one day) by:

𝜑 = 1− 𝑒−
Δ𝑇
𝜏 ⇐⇒ 𝜏 = − ∆𝑇

log(1− 𝜑)
(2.14)

13The historical forecast could be made patient-dependent given enough data, especially if the number of
categories is small (in the discrete case). However, we deemed that the patients’ time-series used in this study are
too short to obtain stable estimates of a patient-dependent historical forecast.

14We deviate from our convention to be consistent with the time-series literature: 𝑙 is a function of data and
parameters.
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Autoregressive model

An autoregressive model of order 1 is an extension of the “random walk” model with an
autocorrelation coefficient 𝛼, and an intercept 𝛽0, and defined by:

𝑦(𝑡+ 1) ∼ 𝒩
(︀
𝛼𝑦(𝑡) + 𝛽0, 𝜎

2
)︀

(2.15)

We assume stationarity and set 𝛽0 = (1− 𝛼)𝑦∞, where 𝑦∞ is the expected value of the series.

Mixed effect autoregressive model

A mixed autoregressive model is an extension of the “Autoregressive model”, by assuming
patient-dependence for the autocorrelation 𝛼(𝑘) and the intercept 𝛽(𝑘)

0 = (1− 𝛼(𝑘))𝑦
(𝑘)
∞ . The

model is described by:

𝑦(𝑘)(𝑡+ 1) ∼ 𝒩
(︀
𝛼(𝑘)𝑦(𝑘)(𝑡) + 𝛽

(𝑘)
0 , 𝜎2

)︀
(2.16)

The patient-dependent parameters are partially pooled using hierarchical priors (details in
the relevant chapters).

2.3.4 State-space models

State-space models (SSM) constitute a class of models that are useful for time-series forecasting.
We will use SSM in Chapters 4, 6, 7 and 8.

SSM are discrete-time stochastic models that assume the existence of latent (i.e. unobserved)
states, which follow their own dynamics, and from which the measurements/observations
are obtained (Fig. 2.5). For example, in the context of modelling the evolution of AD severity
discussed in this thesis, a state-space model can be understood as if the severity scores are the
imperfect measurements of a true latent severity, which follows its own latent dynamic.

SSM are thus described by two sets of equations: the state equation that specifies how
the latent process transitions in time (the latent dynamic), and the observation equation that
describes how the measurements are obtained from the latent states (the measurement process).

SSM are similar to Hidden Markov Models (HMM), in that HMM often refers to models
where the latent states are discrete, whereas the term SSM is often used when the latent states
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Figure 2.5: Schematic of a state-space model

are continuous. In addition, dynamic linear models15 are a special case of SSM, where the latent
dynamics and measurement processes are linear and follow (multivariate) normal distributions.

SSM are especially useful when the measurements are noisy, since predictions are not
directly based on the measurements (as in an autoregressive model, for example) but on the
states, which can be seen as a smoothed version of the measurements and may be more reliable.
In addition, assuming the data is missing at random16, missing values can be treated elegantly
by specifying that the measurement at the corresponding timepoint is absent and leaving the
latent dynamic untouched.

2.4 Ordered logistic distribution

In this section, we review the ordered logistic distribution, which we will use in Chapters 5, 7
and 8 to model the measurement processes of AD severity items.

For a discrete ordinal outcome 𝑦 ∈ {0, ...,𝑀} (𝑀 + 1 categories), the probability mass
function of the ordered logistic distribution is defined by:

OrderedLogistic
(︀
𝑦|𝜂, 𝑐) =

⎧⎪⎨⎪⎩
1− logit−1

(︀
𝜂 − 𝑐1

)︀
if 𝑦 = 0

logit−1
(︀
𝜂 − 𝑐𝑦

)︀
− logit−1

(︀
𝜂 − 𝑐𝑦+1

)︀
if 0 < 𝑦 < 𝑀

logit−1
(︀
𝜂 − 𝑐𝑀

)︀
if 𝑦 = 𝑀

(2.17)

𝜂 is the location of the distribution17 and 𝑐 is a vector (of size 𝑀 ) of cut-offs for the distribution.

The ordered logistic distribution can be understood as a logistic distribution (the distribution
for which the cumulative distribution is a logistic function) with location 𝜂 and scale 1, being

15Including the Kalman filter, an algorithm performing the recursive estimation of a dynamic linear model.
16For example if the missing severity is not the cause of the missingness. If the data is not missing at random,

we would need to model the cause of the missingness.
17In a regression setting, the location would usually correspond to the linear predictor 𝑋𝛽.
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discretised using cut-offs 𝑐. As such, the probability of observing 𝑦 is equal to the area under
the logistic distribution between the 𝑦-th and the 𝑦 + 1-th cut-offs18 (Fig. 2.6). Eq. (2.17) can
thus be written as:

𝑦 ∼ OrderedLogistic(𝜂, 𝑐)

⇐⇒ 𝑦 ∼ Logistic(𝜂, 1) &

⎧⎪⎨⎪⎩
𝑦 = 0 if 𝑦 < 𝑐1

𝑦 = 𝑖 if 𝑐𝑖 < 𝑦 < 𝑐𝑖+1 for 0 < 𝑖 < 𝑀

𝑦 = 𝑀 if 𝑦 > 𝑐𝑀

(2.18)

Figure 2.6: Illustration of an ordered logistic distribution. Top: logistic distribution with location
𝜂 and scale 1. Vertical lines represent cut-off values. Bottom: Corresponding ordered logistic
distribution.

Thresholding a normal distribution instead of a logistic distribution results in an ordered
probit distribution. Since the logistic distribution has a similar shape to a normal distribution
(with slightly fatter tails) (Fig. 2.6), the ordered logistic distribution is similar to the ordered
probit distribution, in the same way a logistic regression is similar to a probit regression. In
practice, we found that using an ordered logistic distribution was more robust computationally
than using an ordered probit distribution, in our situation.

We can intuit from Fig. 2.6 that the ordered logistic distribution is invariant if 𝜂 and 𝑐

18The cut-offs vector 𝑐 can be appended with 𝑐0 = −∞ and 𝑐𝑀+1 = +∞ for the sake of the argument. In
that view, the observations 𝑦 = 0 or 𝑦 = 𝑀 are considered censored, which means that we interpret 𝑦 = 0 as
𝑦 < 1 (e.g. for intensity signs, any intensity value that is less than mild or cannot be detected), and 𝑦 = 𝑀 as
𝑦 > 𝑀 − 1 (e.g. for intensity signs, any intensity value that is more severe than a “moderate” severity).
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are translated by a scalar 𝜆: OrderedLogistic(𝑦|𝜂 + 𝜆, 𝑐+ 𝜆) = OrderedLogistic(𝑦|𝜂, 𝑐). As
a result, if 𝜂 contains an intercept, one of the 𝑐𝑖 can be set to an arbitrary value, e.g. 𝑐0 = 0.
Alternatively, 𝜂 does not need an intercept if 𝑐 is not anchored. We can also intuit a scale
invariance: if we scale 𝜂 and 𝑐 by a scalar 1

𝑠
, then OrderedLogistic(𝑦|𝜂

𝑠
, 1
𝑠
𝑐) is equivalent to

thresholding a logistic distribution with location 𝜂 and scale 𝑠 by the vector 𝑐. This also means
that the variance of the ordered logistic distribution is controlled by the range of 𝑐. We will use
this property to obtain a more interpretable parametrisation of the distribution in Chapter 7.

It is worth noting that fitting an ordered logistic distribution is equivalent to fitting logistic
regressions to the cumulative distribution function of 𝑦, assuming proportional odds19, since:

𝑦 ∼ OrderedLogistic(𝜂, 𝑐) (2.19)

⇐⇒∀𝑖 ∈ {0, ...,𝑀}, 𝑃 (𝑦 ≤ 𝑖) = 1− logit−1(𝜂 − 𝑐𝑦+1) = logit−1
(︀
− (𝜂 − 𝑐𝑦+1)

)︀
(2.20)

Here the cut-offs correspond to the intercepts of the logistic regressions and the proportional
odds assumption implies that 𝜂 is the same for all logistic regressions. Thus, the ordered logistic
distribution reduces the complexity of fitting different models for the different cumulative
outcomes by having a single interpretable location parameter 𝜂. At the same time, unlike other
discrete distributions such as the binomial distribution, the ordered logistic distribution has
a flexible shape controlled by the vector of cut-offs 𝑐, which notably controls the variance of
the distribution. This is in contrast with discretising the predictions of reference models to the
nearest integer, for example, which implies fixed and equally spaced cut-offs.

19An ordered logistic regression is often called a proportional odds model.
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Chapter 3

Automating the assessment of AD
severity

We start our journey by investigating how we can automate the collection of AD severity
measurements, by relying on computer vision algorithms that could assess AD severity from
camera images. Currently, AD severity is measured infrequently when patients visit a clinic,
or is based on less reliable self-assessments. Collecting accurate and frequent AD severity
measurements is nonetheless critical to study and develop predictive models of the evolution
of AD severity, and later to deploy such tools to a wide audience.

This chapter is adapted from our paper “EczemaNet: Automating Detection and Severity
Assessment of Atopic Dermatitis”, presented at the Machine Learning and Medical Imaging
conference in 2020 and published in its proceedings [59]. Reproduction of this paper in this
thesis was granted under the Springer Nature License number 5167081192515. The code written
for this project is available at https://github.com/Tanaka-Group/EczemaNet.

This research project is a collaborative work with Kevin Pan (KP), Kai Arulkumaran (KA), and
Prof. Hywel C. Williams (HW). My main contributions in this project were its conceptualisation,
design of models and algorithms, and validation. KP conducted the formal analysis, wrote the
computer code, and contributed to the design of models. KA helped formalise the different
experiments and write the manuscript. Our clinical collaborator (HW) contributed the data
and insights on the clinical relevance of our model.
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3.1 Introduction

Atopic Dermatitis is characterised by recurrent skin inflammation that can severely impact
patients’ lifestyles, with detrimental effects on social, academic, and occupational aspects of
their lives. While current treatments aim to manage dynamic and unpredictable fluctuations of
AD symptoms, only 24% of patients and caregivers feel confident that they can manage AD
symptoms adequately [8]. Automating the evaluation of AD severity would allow us to assist
research into the disease and enable patients to become more involved in the management of
their condition. Remote assessment of AD symptoms by automated evaluation would enhance
data-enabled efficient clinical trials by reducing the burden of parties involved and minimising
detection bias in clinical trials that test interventions.

Several clinical scores are commonly used to grade the severity of AD, including SASSAD
[83], TISS [84], and EASI [78] scores, the latter of which is recommended by the HOME
organisation [79]. Each of these are defined according to a combination of the severity of 7
disease signs1 (Fig. 3.1): cracking (Cra.), dryness (Dry.), erythema (Ery.), excoriation (Exc.),
exudation (Exu.), lichenification (Lic.) and oedema (Oed.). However, due to the lack of sufficient
clinical training materials and the non-intuitive nature of some disease signs (e.g., “dryness”
versus “cracking”), inter- and intra-rater reliability are poor [82]. Our goal is to improve the
reliability of these scoring systems through computer-aided evaluation of the different disease
signs.

Figure 3.1: Disease signs and their relationship to severity scores. A) Examples of the 4 disease
signs associated with EASI. Reproduced from [78]. B) A list of disease signs used for calculating
SASSAD, TISS and EASI.

In recent years, machine-learning-based methods using convolutional neural networks
(CNNs) have reached dermatologist-level performance on classifying skin cancers [131] [132].
However, due to the lack of standardised clinical datasets beyond skin cancer, applications of

1As well as the area of the affected region in the case of EASI.
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CNNs for non-cancerous diseases have mostly been limited to automatic disease diagnosis of
skin lesions [133] [134] [135]. Whether a lesion can be attributed to AD is of limited value
to already diagnosed patients, and does not address the important challenge of assessing the
overall severity of the disease, whose lesions are spatially distributed over the entire body and
can exhibit multiple signs of varying intensities.

In this paper, we introduce a novel computer vision pipeline, EczemaNet, that is capable
of detecting and evaluating the severity of AD from camera images. In comparison to prior
work [136], we use deep learning to learn relevant features from the data (as opposed to
hand-engineered features), produce probabilistic predictions, and evaluate our method on a
far larger dataset. Our pipeline uses CNNs to first detect regions-of-interest (RoI) from an
image to make image crops, and then evaluate the severity of the 7 disease signs in each crop.
Our input images often include background, clothes, etc. while most pipelines expect closely
cropped images [137]. Similarly to recent work on psoriatic plaque severity assessment [138],
we use ordinal classification to predict the severity of multiple disease signs simultaneously.
However, we also propagate the uncertainties over these predictions to produce a final set of
severity scores (SASSAD, TISS, and EASI) simultaneously, and show that using multiple crops
and probabilistic predictions allows us to make well-calibrated predictions with low root mean
squared error (RMSE). These properties make EczemaNet a promising proof-of-concept for the
use of CNNs in clinical trials, with downstream applications in personalised therapies for AD.

3.2 Data

Our data originates from the Softened Water Eczema Trial (SWET), which is a randomised
controlled trial of 12 weeks duration followed by a 4-week crossover period, for 310 AD
children aged from 6 months to 16 years [139] [140]. The original data contains 1393 photos
of representative AD regions taken during their clinic visits, along with the corresponding
severity of each disease sign. During each visit, a disease assessment was made for SASSAD
and TISS, using the 7 disease signs labelled for each image. The severity of each sign was
determined on an ordinal scale: none (0), mild (1), moderate (2), or severe (3).

The photos vary both in resolution and subjective quality, such as focus, lighting, and
blur. In addition, as the photos can contain significant areas of background or areas that are
otherwise irrelevant for diagnosis, we manually curated 962 of the original photos, generating
1748 image crops of representative diseased regions by visual inspection2. We used these crops

2RoI, of arbitrary size, were labelled by three non-expert volunteers given a set of 50 expert-labelled images
for which the lesions were identified, where one of the volunteer was instructed directly by a clinical expert. 431
photos were deemed difficult to label by the volunteers and hence left out of our dataset.
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to fine-tune an RoI detection network, and then bootstrapped our dataset by running this
network on all images, extracting a further 2178 image crops. Both sets of image crops were
then combined and paired with the labels for the 7 disease signs, resulting in a final dataset of
933 diagnoses from 285 patients (78% of declared “white” ethnicity), including 1237 original
photos with corresponding 3926 image crops3.

This final dataset was used to train our severity prediction network (Section 3.3.2). All crops
were labelled with the overall diagnosis for the entire image, as we did not have labels for the
individual crops. Despite this noisy labelling, the use of RoI detection and severity prediction
in EczemaNet led to better performance than using the entire image (Section 3.4.2).

3.3 Methods

Our EczemaNet pipeline consists of detecting RoI, making probabilistic predictions on all
7 disease signs over all crops simultaneously, and then combining these to predict the AD
severity scores per image (Fig. 3.2). We made heavy use of transfer learning [141] to train
on our medium-size dataset successfully: we fine-tuned both our RoI detection and severity
prediction CNNs. The RoI detection was trained first, as otherwise it would not be able to
provide relevant crops for the severity prediction network for end-to-end training. We used
TensorFlow [142] for training and evaluation, starting with pretrained models in TensorFlow.

3.3.1 Region of Interest detection

Following the speed/memory/accuracy model selection guidelines from [143], we chose the
Faster R-CNN model [144] to perform RoI detection for diseased areas.

3.3.2 Severity prediction

Our severity prediction pipeline is composed of a pretrained CNN base and 7 fully-connected
neural networks (FCNNs), each of which predicts the severity of one of the 7 disease signs. We
reflect the ordinal nature of the labels by training the FCNNs with ordinal classification. The
predicted severities are averaged over all crops to calculate a probabilistic distribution of the
severity of each disease sign for the image. Finally, the predictions for the disease signs are

3The full data pipeline is provided in Fig. A.1
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Figure 3.2: EczemaNet overview. The RoI detection network extracts crops from an image. The
severity prediction network makes probabilistic predictions for each disease sign in each crop.
The averaged prediction over crops are then combined to form the final probabilistic prediction
of the severity scores for the image.

combined to produce a probability distribution of the regional4 severity scores (SASSAD, TISS,
and EASI) per image. Here we describe characteristic features of EczemaNet in more detail.

Pretrained CNN base: Our base consists of all convolutional and pooling layers within
MobileNet [145].

Separate FCNNs: We use separate FCNNs per disease sign, as opposed to using one FCNN to
predict all disease signs simultaneously.

Ordinal Classification: Instead of predicting the 4 severities independently for each sign as a
4-way classification, as is typically done, we model them using ordinal classification, which
better reflects the ordinal nature of the severity measurements5.To predict the classes of 𝑋
for the diagnoses none (𝑋 = 0), mild (𝑋 = 1), moderate (𝑋 = 2) and severe (𝑋 = 3), we
train 3 binary classifiers to output the probabilities, 𝑝0 = 𝑃 (𝑋 > 0), 𝑝1 = 𝑃 (𝑋 > 1) and
𝑝2 = 𝑃 (𝑋 > 2). These probabilities are then converted into class probabilities for outcome 𝑋

4In practice, EASI and SASSAD are assessed across different regions of the body, which we do not consider in
this work.

5AD severity is likely a continuous trait in reality, with the discrete nature of the scores being an artefact of
the measurement process.
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using a modification of Frank & Hall’s method [146] with dependent classifiers [147]:

𝑃 (𝑋 = 0) = 1− 𝑝0 (3.1)

𝑃 (𝑋 = 1) = 𝑝0 (1− 𝑝1) (3.2)

𝑃 (𝑋 = 2) = 𝑝0 𝑝1 (1− 𝑝2) (3.3)

𝑃 (𝑋 = 3) = 𝑝0 𝑝1 𝑝2 (3.4)

Expectation over Crops: We produce a single set of severity predictions for each disease sign
over the entire image, by averaging the predictions over all crops6. Despite the high overlap
between most crops, similarly to test-time data augmentation [148], we found that averaging
over crops improved both accuracy and calibration (Section 3.4.2).

Multitask prediction: All 3 regional severity scores (TISS, EASI, SASSAD) are sums of subsets
of the 7 disease signs (Fig. 3.1B). While it is possible to directly predict each of the regional
severity scores, we treat prediction as a multitask problem, predicting the severity of all disease
signs simultaneously, and then sum them7 to calculate the final regional severity scores.

3.4 Experiments and evaluation

Inference for a single image on CPU (Intel i9-9980HK) took 15.6s for the detection network and
1.6s for the severity prediction network. Our work is a proof-of-concept, and could feasibly
run on a smartphone in a few seconds with, e.g., model compression techniques.

3.4.1 Region of Interest detection

We fine-tuned a pre-trained Faster R-CNN model using the 962 manually curated original photos.
With a train/validation/test ratio of 60:20:20, the manually curated photos were randomly split
into 578:192:192 photos. It resulted in 1069:378:346 corresponding image crops, as each photo
can contain a different number of image crops. The model was trained for 105 steps with a
batch size of 1, using stochastic gradient decent (SGD) with momentum = 0.9, with an initial
learning rate of 3× 10−4, dropped to 3× 10−5 after 90000 steps; no data augmentation was
used. We weighted the localisation loss by a factor of 1.2, as our focus was to improve detection,

6Crops were preprocessed by bilinearly resampling to 224×224px.
7We convolve the probability mass functions of the predicted severity of the 7 disease signs, assuming that the

predictions are independent random variables.
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rather than classification by Faster R-CNN, which was trained to detect the presence of AD.

We evaluated our model using the average precision (AP) score, the standard measure
in object detection. The AP score measures the intersection between the ground truth and
predicted boundaries, with a default overlap threshold of 50%. After tuning the hyperparameters
on our validation set, we tested our model using the test set of 192 images and obtained the
AP score of 40.15%. We also performed a more qualitative evaluation to validate our trained
model, and estimated that our model achieved a 10% false positive rate per image. We therefore
concluded that our RoI detection network could generalise sufficiently well, and used it to
extract more crops from the original data (Section 3.2).

3.4.2 Severity prediction

We combined a pre-trained MobileNet with 7 separate randomly initialised FCNNs (for each
disease sign), and trained all parameters to predict the severity of the 7 disease signs on the
final pre-processed dataset, which contained 933 diagnoses from 285 patients, including 1237
original photos with 3926 corresponding image crops. We used 10-fold cross-validation with a
90:10 train/test split, stratified on patients, to train and assess severity prediction models. The
models were trained for a maximum of 50 epochs (using early stopping) with a batch size of 32,
using SGD with a learning rate of 1× 10−4 and momentum = 0.9; no data augmentation was
used. Dropout with 𝑝 = 0.5 and a max 𝐿2-norm weight constraint with 𝑐 = 3 were used to
regularise all fully-connected layers [149]. To combat severe class imbalance, we weighted all
prediction losses by the inverse of the empirical class probabilities.

We evaluated RMSE on EASI (the recommended severity score [79]) for EczemaNet (1.929±
0.019) and for its variations listed below to confirm the use of each characteristic aspect of our
model design (Fig. 3.3A and Table 3.1).

Pretrained CNN Base: The choice of pretrained CNN base significantly impacts the perfor-
mance of the prediction model. We evaluated a range of commonly used CNN architectures for
the base: Inception-v3 [150], MobileNet [145], ResNet-50 [151], VGG-16, and VGG-19 [152].
Only EczemaNet with MobileNet consistently achieved an RMSE on EASI of < 2 including
standard error (Fig. A.3).

Bootstrapped Dataset: Training EczemaNet with the 1748 manually labelled crops, plus the
2178 additional crops automatically extracted by our trained RoI detection network, achieved
the lowest RMSE across all of our experimental conditions (1.929 ± 0.019), compared to
2.003± 0.024 when EczemaNet was trained with only the manually labelled crops.
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Model architectures: We used a set of baselines (baseline and intercept-only) and ablations
(listed in order of performance, Fig. 3.3A and A.2):

EczemaNet Our full model.
–Ordinal 4-way categorical classification vs. ordinal classification.
+Interaction Sign interaction added by concatenating FCNN features vs. separate FCNN

per sign.
–Separate FCNNs A single FCNN for all 7 signs vs. separate FCNNs per sign.
–Crops Using the entire image vs. averaging predictions over crops.
–Pretrained Starting with random CNN weights vs. pretrained CNN weights.
Intercept-only Predicting the average EASI in the training set.
Baseline Predicting EASI from the whole image.
–Multitask Predicting EASI directly vs. summing predicted disease signs.

The full EczemaNet performs best, although some components have a lesser effect on the
RMSE on EASI8 (Fig. 3.3A). In reverse order, multitask learning is the most important modelling
choice, which possibly mitigates overfitting. The baseline model, which is a naive CNN-based
approach, using regression on the whole image, performs almost the same as the intercept-only
model, indicating the difficulty of our problem. Using pre-trained weights and averaging over
crops also play a large role in the good predictive performance of EczemaNet. Sharing FCNN
parameters when modelling the 7 disease signs hurts performance slightly, perhaps due to
interference between the 7 tasks. Finally, ordinal classification provides a small boost over
categorical classification.

The coverage of EczemaNet (Fig. 3.3B) indicates well-calibrated prediction intervals for a
neural network [153]. The performance could be further improved by post-processing, such as
quantile calibration, to make the predictive distribution sharper at the mode and with longer
tails.

Achieving high accuracy on the regional severity scores is a major aim of our work for
clinical relevance. It is also important to examine other metrics as well, particularly because of
the class imbalance in the data. We calculated F1 scores and Ranked Probability Scores (RPS)
for all disease signs for all models that predict all 7 disease signs (Table 3.1). The F1 score is the
harmonic mean of precision and recall (sensitivity, true positive rate), and hence is less sensitive
to class imbalance than recall. RPS is a strictly proper scoring rule and measures the calibration
of ordinal forecasts. We observed approximately the same ranking of baselines/ablations as
for RMSE on EASI, with no clear outliers, supporting our earlier assessment on their relative
importance.

8We also observed a similar ranking across models for SASSAD (Fig. A.4) and TISS (Fig. A.5), as well as across
the individual signs.
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Figure 3.3: EczemaNet predictive performance. A) RMSE (mean ± 1 standard error over cross-
validation) on EASI across models. B) EASI calibration of highest density prediction intervals
(coverage).

Table 3.1: Results of experiments in terms of F1 score (top; ↑ is better) and RPS (bottom; ↓ is
better) for all 7 disease signs. Mean ± 1 standard error over cross-validation.

Model Cra. Dry. Ery. Exc. Exu. Lic. Oed.
Full 0.707± 0.013 0.443± 0.006 0.419± 0.004 0.480± 0.007 0.769± 0.008 0.404± 0.005 0.694± 0.007
–Pretrained 0.671± 0.013 0.242± 0.008 0.250± 0.009 0.269± 0.004 0.759± 0.008 0.234± 0.003 0.694± 0.007
–Separate FCNNs 0.696± 0.013 0.422± 0.006 0.405± 0.006 0.473± 0.005 0.768± 0.008 0.390± 0.005 0.690± 0.007
+Interaction 0.704± 0.013 0.454± 0.008 0.437± 0.005 0.491± 0.007 0.767± 0.008 0.388± 0.007 0.697± 0.007
–Ordinal 0.696± 0.013 0.453± 0.006 0.428± 0.007 0.470± 0.004 0.772± 0.008 0.404± 0.006 0.692± 0.008
–Crops 0.686± 0.012 0.369± 0.004 0.370± 0.006 0.289± 0.007 0.765± 0.007 0.317± 0.006 0.700± 0.007
Full 0.076± 0.003 0.136± 0.001 0.137± 0.001 0.128± 0.001 0.056± 0.002 0.151± 0.002 0.077± 0.002
–Pretrained 0.098± 0.003 0.164± 0.001 0.160± 0.002 0.178± 0.001 0.077± 0.002 0.181± 0.001 0.085± 0.002
–Separate FCNNs 0.080± 0.003 0.140± 0.001 0.142± 0.001 0.132± 0.001 0.057± 0.002 0.156± 0.002 0.079± 0.002
+Interaction 0.080± 0.003 0.141± 0.001 0.141± 0.001 0.131± 0.002 0.056± 0.002 0.156± 0.002 0.079± 0.002
–Ordinal 0.079± 0.003 0.139± 0.001 0.136± 0.001 0.130± 0.001 0.055± 0.002 0.149± 0.001 0.079± 0.002
–Crops 0.083± 0.004 0.154± 0.001 0.155± 0.002 0.163± 0.002 0.063± 0.002 0.165± 0.002 0.081± 0.002

3.5 Discussion

This chapter presented EczemaNet, a CNN-based pipeline for evaluating eczema severity
directly from camera images. EczemaNet consists of an RoI detection network, which extracts
relevant crops from each image, and a severity prediction network, which predicts the severity
of 7 disease signs for each crop. The probability distributions of severities are averaged over
crops, and then combined to form a prediction of the 3 regional severity scores. EczemaNet
achieved fair performance9 on a medium-size clinical dataset and demonstrated well-calibrated
prediction intervals. These results present a step towards standardising the evaluation of
objective AD severity scores for diverse dermatological research purposes, and could be applied
to similar conditions, such as psoriasis.

9The RMSE for predicting regional EASI ∈ [0, 12] was only ≈ 1.9 compared to 2.5 for an intercept-only model.
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Multiple sources of systematic errors, aside from random errors, can be considered to
limit the performance of EczemaNet: mislabelling due to inter- and intra-rater variability,
discretisation error over a continuous outcome (severity), and errors arising from partial/noisy
information (e.g., tactile diagnoses, out-of-focus images). While it is difficult to evaluate the
effects of all these sources of errors, Monte Carlo simulations of the measurement process
suggested that rounding error alone could account for an RMSE of 0.6, which makes it unclear
how much performance could be further improved on EczemaNet trained with our data.

Limitations of this study include potential biases in the validation of the severity model due
to model selection overfitting. Ideally, unbiased estimates of performance for EczemaNet should
be obtained using an independent test set. This was not implemented because of the small size
of the data available for training, and because this study was mostly exploratory. Nonetheless,
we attempted to mitigate potential biases by quantifying uncertainty in performance estimates
using cross-validation and by only considering a small number of alternative models (five
pre-trained CNN bases and six ablations). EczemaNet may also suffer from skin colour biases,
since the SWET dataset mostly contained images of white skin tones [154]. It would be desirable
to collect images of eczema for a variety of skin tones, as it is known that the presentation
of disease signs differs between skin tones. For example, erythema is more likely to appear
violaceous or dark brown in darker skin tones [155].

A natural extension of the work presented here is to move beyond regional severity scores
to predicting the overall severity scores. For a given area, EASI is the product of the intensity
score (which we currently predict), and the area score. The area score could be predicted
simultaneously with the intensity scores given the box labels identified by our RoI network. We
encourage future clinical trials to collect and share richer labels, such as pixel-level segmentation,
to increase the breadth of tasks, such as segmentation, that can be automated using machine
learning. Future work could also involve data augmentation while tackling the issue of severity
class imbalance.

3.6 Afterword

In this section, we briefly allude to follow-ups of this work after its publication, by our group
and others.

At the time of writing and publication of the paper in 2020 [59], this work was the first
exploring computer vision algorithms to automatically assess eczema severity, to the best of
our knowledge. We have identified two similar studies, using somewhat simpler approaches,
that have been published since then.
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• In [156], off-the-shelf computer vision algorithms were used to diagnose different types
of eczema, rather than for severity assessments.

• In [157], off-the-shelf computer vision algorithms were explored to predict the severity of
erythema, papulation, excoriation and lichenification. The authors of this study reported
a good performance, but it is unclear how these results would generalise to a real-world
setting. For example, the authors of [157] used manually processed images (crops) as
input rather than camera images, used for EczemaNet. Comparison with our results is
also difficult because the severity classes were balanced before training and testing the
CNNs, uncertainty was not quantified, and proper scoring rules were not calculated in
[157]. In addition, the validation procedure in [157] is at times unclear. For example, we
do not know whether the training and testing sets were stratified by patients.

As a follow-up to the development of EczemaNet presented in this chapter, we decided
to focus on the eczema detection algorithm. First, we investigated whether it was possible
to accurately identify eczema lesions in digital images. We asked four dermatologists to
independently segment AD lesions in 80 images, and found that the degree of agreement
between raters (inter-rater reliability) was poor (average intra-class correlation coefficient
across images of 0.45, SE = 0.04). This result suggested that algorithms relying on AD
segmentation data (including crops) may be subject to biases. At the time of the final submission
of this thesis (May 2022), this result was summarised in paper (in press at JID Innovations),
“Detecting eczema areas in digital images: an impossible task?”, by Guillem Hurault, Kevin Pan,
Ricardo Mokthari, Bayanne Olabi, Eleanor Earp, Lloyd Steele, Hywel C. Williams and Reiko J.
Tanaka.

Second, we explored possible improvements to EczemaNet, using data augmentation to
improve the generalisability of the eczema detection algorithm, and choosing to rely on skin
segmentation only rather than AD crops to avoid using unreliable segmentation data. We also
investigated the interpretability and adversarial robustness of EczemaNet. While these two
aspects are improved compared to the original EczemaNet presented in this chapter, we did not
detect practically significant improvements in the predictive performance of AD severity scores.
We interpret this result as an additional confirmation that the task of assessing the severity of
eczema lesions with camera images is difficult. As such, we tend to believe that collecting more
and better quality data (images and labels) would surpass the gains in performance from using
a cleverer algorithm [158]. At the time of the final submission of this thesis (May 2022), this
work was summarised in a paper (under review) entitled “Reliable detection of eczema areas
for fully automated assessment of eczema severity from digital camera images”, by Rahman
Attar, Guillem Hurault, Zihao Wang, Ricardo Mokhtari, Kevin Pan, Bayanne Olabi, Eleanor
Earp, Lloyd Steele, Hywel C. Williams, and Reiko J. Tanaka.
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Chapter 4

A statistical model to predict AD severity

In this chapter, we develop the first model, to the best of our knowledge, predicting the evolution
of eczema severity. The model is remotely inspired by a mathematical model of AD pathogenesis
previously developed by our group [159]. This proof-of-concept model allows us to explore the
opportunities and challenges of AD severity prediction.

This chapter is adapted from our paper “Personalized prediction of daily eczema severity
scores using a mechanistic machine learning model”, published in 2020 in Clinical and Experi-
mental Allergy [60], under the terms of the Creative Commons CC BY license. The code written
for this project is available at https://github.com/ghurault/mbml-eczema.

This research project is a collaborative work with Dr. Elisa Domı́nguez-Hüttinger (EDH),
Prof. Sinéad M. Langan (SL), and Prof. Hywel C. Williams (HW). EDH contributed her in-
sights on the previously published mathematical model [159] and helped review and edit the
manuscript. Our clinical collaborators (SL and HW) contributed the data and insights on the
clinical relevance of the model. We also acknowledge Prof. Kim S. Thomas for sharing the
SWET dataset and constructive comments on the manuscript.

4.1 Introduction

AD typically has a fluctuating course characterised by inflammatory disease flares followed by
periods of remission. Treatment with topical corticosteroids or calcineurin inhibitors during
disease flares is aimed at controlling symptoms and skin signs, and emollients are typically used
to counteract the dry skin associated with AD. However, successful control of AD symptoms
has been challenging as responses to AD treatments vary considerably between patients.
Personalised treatment strategies may be more beneficial to individual patients rather than a
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“one-size-fits-all” approach to therapy [10] [11]. A first step toward developing personalised
treatment strategies is to better predict the consequences of possible treatments at an individual
level, rather than at a population level, to deal with the variability across patients.

Prediction of the consequences of treatments at an individual level is challenging also
because of the dynamic and sudden fluctuations of AD symptoms. It can be difficult to identify
reliable treatment responses, especially if a single endpoint is considered, since the responses
to a treatment can vary each time even for the same patient. Analysing the dynamic responses
to the repeated application of treatment can help identify consistent treatment effects for each
patient [18] and ultimately predict whether the chosen treatment is effective and whether the
disease is adequately controlled at an individual level.

While ML methods have been successfully applied to prediction tasks, they often lack
interpretability (cf. Section 1.3). Here we aimed to develop a biologically interpretable mecha-
nistic machine learning model that can predict the daily evolution of AD severity scores at an
individual level. We applied a model-based machine learning approach [55], which allowed us
to develop “Bayesian machine learning” models that can be tailored to the particular context
of a given study and the available dataset, and include biologically interpretable mechanistic
knowledge. Such approach has already been applied to a birth cohort data on allergic sensiti-
sation to uncover latent atopy classes [160] or to estimate asthma misclassification and risk
factors in yearly questionnaire data [161]. However, it has not been applied to predict daily
changes in disease outcome or in the field of AD.

We hypothesised that it is possible to decipher the apparent unpredictable dynamics of AD
severity scores from each patient’s data. Our research group previously published a mechanistic
model of AD pathogenesis, which provided a coherent mechanistic explanation of the dynamic
onset, progression, and prevention of AD, as a result of interactions between the skin barrier,
immune responses and environmental stressors [159] [162]. Our aim was therefore to adapt
the structure of the published mechanistic model to real patient data (Fig. B.2), and to develop
a Bayesian model that can make personalised predictions of the evolution of AD severity, given
past severity scores and treatment usage data.

4.2 Methods

4.2.1 General approach

Using the longitudinal data from two published clinical studies [163] [140] (example raw data
shown in Fig. B.2), we developed and validated a Bayesian model that can predict the next
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day’s AD severity score for each patient. Our Bayesian model explicitly describes within-
patient uncertainties in disease outcomes using probability distributions, and between-patients
heterogeneity in severity trajectory and treatment responses by patient-dependent parameters.

To develop the model, we firstly defined the underlying processes that could generate the
data as a probabilistic model (Fig. 4.1A), which adopted the structure of a previously published
mechanistic model of AD pathogenesis [159] [162] (Fig. 4.1B). The model was tailored to the
context of the clinical studies in which the data was collected. We then trained the model
(fitted to the data) using Bayesian inference, i.e. updating the probability distributions of the
unknown (latent) variables and model parameters through Bayes’ theorem, and validated the
model by assessing its predictive performance in a forward chaining setting with a horizon of
one week (cf. Section 2.3.1). The first dataset was used for model development and internal
validation, and the second dataset to test whether a similar predictive performance could be
achieved with a different cohort of patients.

Figure 4.1: Bayesian model of AD severity dynamics. A: Schematic diagram of the probabilistic
model. The arrows depict the relationships between state variables included in the model. B: A
schematic diagram of the published mechanistic model of AD pathogenesis from which the
structure of the proposed model was adopted. Flare triggers (𝑃 ) and AD flares (𝑅) are latent
variables, and AD severity score (𝑦) and treatment applied (𝑢) are the measured variables. The
variable 𝑢 corresponds to the daily binary stepping-up variable.

4.2.2 Data

We chose two datasets that included daily recording of symptoms and treatments over a
moderately long period (details in B.1).
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The first dataset, which we refer to as “Flares dataset”, is a part of the data collected in
an observational study that aimed to identify the triggers of AD flares for 59 children [163].
The Flares dataset included daily categorical “bother” scores over 6 to 9 months, totalling 6536
patient-day observations, graded from 0 (“no bother at all”) to 10 (“the most bother you can
imagine”) as a response to the question “how much bother did your eczema cause today?”. 38.8%
of the bother score was missing in Flares dataset (Fig. B.3). The Flares dataset also included
a daily binary “stepping up” variable, i.e. the answer to the question “have you had to step
up your treatment today because your eczema was worse?”. What constituted “stepping up”
treatment was defined for each child at the study outset.

The second dataset, which we refer to as “SWET dataset”, is a part of the data collected in a
randomised controlled trial that evaluated the effects of use of ion exchange water softeners
for AD control (the softened water eczema trial or SWET) for 334 children [140]. The SWET
dataset included the individual child’s daily categorical bother score over 16 weeks with only
1.9% of the bother score missing (Fig. B.4) for a total of 35854 patient-day observations. The
SWET dataset additionally contained information on potential risk factors or confounders,
such as the presence of filaggrin mutations, white skin type, age (in years), gender, and whether
the patient slept away from home. It also included details of the treatment used, such as the
type of treatment modalities used each day (topical corticosteroids, calcineurin inhibitors, and
stepping-up treatment), the estimated average dose used for each type of topical corticosteroids
(mild, moderate, potent or very potent) and calcineurin inhibitors (mild or moderate) over the
study period, together with the patient’s confidence in the estimated average dose (“not at
all sure”, “not sure”, “sure”, or “very sure”). We used all the available information in SWET
dataset and evaluated the contribution of each factor on daily evolution of the bother score at
an individual level.

4.2.3 Bayesian models

We developed a Bayesian model that predicts the AD severity score (𝑦(𝑘)(𝑡+ 1)) for the 𝑘-th
patient at day 𝑡+ 1, given two observables, the previous day’s score (𝑦(𝑘)(𝑡)) and the treatment
applied (𝑢(𝑘)(𝑡)) (Fig. 4.1A).

Our model assumes that AD severity (𝑦(𝑘)(𝑡+1)) is determined by the temporal accumulation
of inflammation caused by AD flares (𝑅(𝑘)(𝑡)), which result from the activation of innate
immune receptors by flares triggers (𝑃 (𝑘)), and is modified by the treatment applied (𝑢(𝑘)(𝑡)) (Fig.
4.1B). Flare triggers (𝑃 (𝑘)) and the resulting flares (𝑅(𝑘)(𝑡)) were modelled as latent variables1.

1We deviate a bit from our convention here, as 𝑅(𝑘)(𝑡) and 𝑃 (𝑘) are unknown and scalar rather than observed
matrices. This is to be consistent with the notation of flare triggers and flares introduced in [159].
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They depend on the complex interactions between the skin barrier, immune responses and
environmental stressors. 𝑃 (𝑘) for the 𝑘-th patient was assumed to be constant for the duration
of the data collection.

We first modelled the severity score measurement process by assuming that a continuous
latent severity score, 𝑦(𝑘)(𝑡) ∈ [0, 10], is rounded to the nearest integer to derive the discrete
severity score reported by patients as:

𝑦(𝑘)(𝑡) = Round
(︀
𝑦(𝑘)(𝑡)

)︀
(4.1)

We then described the dynamics of 𝑦(𝑘)(𝑡) by an exponentially modified Gaussian distribu-
tion truncated between 0 and 10:

𝑦(𝑘)(𝑡+ 1) ∼ 𝒩[0,10]

(︀
𝛼(𝑘)𝑦(𝑘)(𝑡) + 𝜃(𝑘)𝑢(𝑘)(𝑡) +𝑅(𝑘)(𝑡) + 𝛽0, 𝜎

2
)︀

(4.2)

𝑅(𝑘)(𝑡) ∼ Exp
(︀
𝛽 = 𝑃 (𝑘)

)︀
(4.3)

𝑦(𝑘)(𝑡 + 1) follows a Gaussian autoregressive process perturbed by exponentially dis-
tributed AD flares 𝑅(𝑘)(𝑡) with scale 𝛽 = 𝑃 (𝑘), which reflects the assumption that flares occur
more frequently in the presence of flare triggers. The autoregression is characterised by the
patient-dependent autocorrelation or persistence of the severity score (𝛼(𝑘)), patient-dependent
responsiveness to treatment (𝜃(𝑘)), and population-level intercept (𝛽0) and variance (𝜎2). The
patient-dependent parameters, 𝛼(𝑘), 𝜃(𝑘) and 𝑃 (𝑘), are given hierarchical priors, with population
mean (𝜇𝛼, 𝜇𝜃) and dispersion parameters (𝜎𝛼, 𝜎𝜃, 𝜎𝑃 ):

𝛼(𝑘) ∼ logit𝒩 (𝜇𝛼, 𝜎
2
𝛼) (4.4)

𝜃(𝑘) ∼ 𝒩 (𝜇𝜃, 𝜎
2
𝜃) (4.5)

𝑃 (𝑘) ∼ 𝒩+(0, 𝜎2
𝑃 ) (4.6)

We also developed an extended version of this Bayesian model for the SWET dataset
(details in Appendix B.2). The extended model allowed us to analyse the effects of potential
risk factors (the presence of filaggrin mutations, age, sex, white ethnicity, and sleeping away
from home) on the severity score, with their respective weighting parameters, 𝛽FLG , 𝛽Age ,
𝛽Sex , 𝛽White , and 𝜃Home . We also investigated heterogeneity of treatment responsiveness by
replacing the term 𝜃(𝑘)𝑢(𝑘)(𝑡) with 𝜃

(𝑘)
SU𝑢

(𝑘)
SU (𝑡) + 𝜃

(𝑘)
𝐶𝑆𝑢

(𝑘)
CS (𝑡) + 𝜃

(𝑘)
CI 𝑢

(𝑘)
CI (𝑡), where 𝑢(𝑘)

SU (𝑡), 𝑢
(𝑘)
CS (𝑡)

and 𝑢
(𝑘)
CI (𝑡) are binary variables that indicate whether the 𝑘-th patient stepped-up, applied

topical corticosteroids and calcineurin inhibitors, respectively, with their respective weights,
𝜃
(𝑘)
SU , 𝜃(𝑘)CS and 𝜃

(𝑘)
CI . The weights, 𝜃(𝑘)CS and 𝜃

(𝑘)
CI , include dose-independent effects (intrinsic
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responsiveness 𝛾(𝑘)
CS and 𝛾

(𝑘)
CI ) and dose-dependent effects that are functions of the quantity and

the potency of the treatment (Fig. B.5).

Our model did not require imputation of missing values for 𝑦(𝑘)(𝑡), since the absence of
measurements is naturally accepted by the measurement process of 𝑦(𝑘)(𝑡) separately modelled
from the dynamics of 𝑦(𝑘)(𝑡). Imputation of missing values for other covariates is described
in Appendix B.3. We chose weakly informative priors and confirmed that our priors were
reasonable by conducting prior predictive checks and that our results were not sensitive to the
choice of realistic priors (details in Appendix B.4).

4.2.4 Model fitting

Model training was performed using the Hamiltonian Monte-Carlo algorithm in the probabilistic
programming language Stan [56]. The posterior distribution was sampled by 6 Markov chains for
3000 iterations (including 50% burn-in). Convergence of the chains was monitored by inspecting
the trace plots, checking the Gelman-Rubin convergence diagnostic �̂� and computing effective
sample sizes. We conducted fake-data check, by fitting the model with samples from the prior
predictive distribution, to verify that the inference algorithm could retrieve known parameters.

4.2.5 Model validation

The predictive performance of the model was assessed in a forward chaining setting. Model
calibration (whether forecast probabilities are accurate) was assessed by an ordinal quadratic
scoring rule (ranked probability score, RPS) and a local logarithmic scoring rule (log predictive
density, lpd). These metrics were plotted against training days (equivalently training data size)
to produce learning curves (details in Appendix B.5).

We compared our model to four reference models: a discrete uniform forecast, 𝑦(𝑘)(𝑡+1) ∼
𝒰(0, 10), where each outcome is assigned with the same probability; a historical forecast where
the probability of each outcome is equal to their relative occurrence in the past; a Gaussian
random walk, 𝑦(𝑘)(𝑡+ 1) ∼ 𝒩 (𝑦(𝑘)(𝑡), 𝜎2), where the next score is assumed to be around the
previous score; and a mixed effect autoregressive model with treatment effects (our model
without flares triggers), 𝑦(𝑘)(𝑡+ 1) ∼ 𝒩[0,10]

(︀
𝛼(𝑘)𝑦(𝑘)(𝑡) + 𝜃(𝑘)𝑢(𝑘)(𝑡) + 𝛽0, 𝜎

2
)︀
.
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4.3 Results

4.3.1 Model fitting

The model was trained on each of the two datasets and the convergence was checked. Population-
level parameters (parameters shared across patients) were estimated with a good precision and
their 95% credible intervals (in which the parameter lies with 95% probability) were narrow
compared to their prior, did not include 0 and were similar for the two datasets, suggesting
support for the model structure (Tables B.1 and B.2).

Three main model parameters that describe patient-dependent dynamics of the severity
score are the autocorrelation parameter 𝛼(𝑘) for the short-term persistence of the AD severity
score, the parameter 𝜃(𝑘) for the responsiveness to treatment, and 𝑃 (𝑘) for the amount of flares
triggers, of the 𝑘-th patient. 𝛼(𝑘) −→ 1 or 𝛼(𝑘) −→ 0 means that the predicted severity is close
to or does not depend on the previous day’s severity, respectively. 𝜃(𝑘) < 0 or 𝜃(𝑘) > 0 implies
that the patient is responsive to treatments or the treatment has an adverse effect on the patient,
respectively. A larger 𝑃 (𝑘) suggests more severe and frequent flares. These estimates greatly
varied from one patient to another, confirming their patient-dependence (Figs. B.6 and B.7).

Posterior predictive checks demonstrated that the developed model captured diverse pat-
terns of the dynamic trajectories of the severity score, despite the presence of missing values
(representative patients’ score dynamics in Fig. 4.2). Typical trajectories observed included
fluctuations of the severity score with a return to a healthier state (Figs. 4.2A and 4.2C) or
without (Figs. 4.2B and 4.2D). However, the model does not always capture changing data
distribution over time (in Fig. 4.2A the severity fluctuates more at the beginning), which could
suggest that our assumption that 𝑃 (𝑘) remains constant during the length of the trial is not
always true.

4.3.2 Model validation

We then validated the model to assess its generalisability beyond the training data. The learning
curves demonstrated an improvement in both RPS and lpd, as more data becomes available
(Fig. 4.3), confirming that the model learned the dynamic patterns of the severity scores from
the data. Similar or better performance was achieved with the SWET dataset, compared to
the Flares dataset, confirming the predictive ability of the model on multiple cohorts. Our
model outperformed or performed as well as the four reference models in terms of RPS and
lpd for both datasets. Our model demonstrated approximately 60% of improvement in RPS
than the chance-level (uniform) forecast for both Flares and SWET datasets (Fig. 4.3). For
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Figure 4.2: Posterior predictive distribution of AD severity scores for four representative
patients from Flares dataset. (A, C) Bother score returns to a healthier state. (B, D) Bother score
does not improve. The plots show the time evolution of the posterior predictive probability
mass function as a heatmap. Darker colour represents outcomes with higher probabilities.
Black and grey lines show the observed scores and the posterior mean estimate for the missing
scores, respectively.

example, we achieved a lpd of log(0.25) with SWET dataset, which could be interpreted as
if the model assigns a 25% probability to the true outcome on average, compared to 9% for a
chance-level forecast. Calibration curves (Fig. B.8) suggested that the predicted probabilities
were reasonably calibrated up to 30-40% in Flares dataset and up to 50-60% in SWET dataset.

We estimated that the RPS was increased (performance decreasing) by 0.001773 (SE =

0.000299) in Flares and 0.0057378 (SE = 0.0001741) in SWET when the prediction horizon (𝑡)
is increased by one day (e.g. one day forecast versus two days forecasts; the order of magnitude
of the RPS is 0.1). Similarly, we estimated that the lpd was decreased (performance decreasing)
by 0.016555 (SE = 0.002372) in Flares and 0.081664 (SE = 0.001917) in SWET when the
prediction horizon (𝑡) is increased by one day. These results confirm the expectation that
the performance is decreasing with increasing prediction horizon. We can observe that the
performance loss seems more pronounced in the SWET compared to the Flares dataset, but
estimates from the Flares dataset may be over-optimistic considering that SWET data is of
better quality than the Flares data. Using the SWET estimates, and with the assumption that the
performance loss remains linear, we can extrapolate these results to conclude that the model
performance is not much better than chance after around 10-12 days.

Similar results were obtained from the model we fitted using the daily scratch score recorded
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in the observational study for Flares dataset2 (Fig. B.9).

Figure 4.3: Comparison of predictive performance between the “Our Model” and four reference
(“Uniform”, “Historical”, “Random Walk” and “Autoregression”) models. The performance
is evaluated for one-day-ahead predictions and plotted as a function of the training week.
Confidence bounds correspond to ±SE . A-B: Evolution of the ranked probability score (RPS,
lower the better) for the Flares dataset (A) and the SWET dataset (B). C-D: Evolution of the log
predictive probability (lpd, higher the better) for the Flares dataset (C) and the SWET dataset
(D).

4.3.3 Effects of treatment modalities and risk factors on predictions

The extended model with additional covariates was also successfully fit to SWET dataset (Table
B.3). The posterior predictive checks confirmed that the model could capture diverse patterns
of the severity score trajectories, such as large and rapid fluctuations (Fig. 4.4A), large but slow
fluctuations (Fig. 4.4B), and controlled AD (Fig. 4.4C). The model could not predict previously
unseen patterns, such as transitions of the score from 1 to 10 in a day (Fig. 4.4D at around 70
days), as the model learned the dynamic patterns from past data.

2The scratch score was not recorded in SWET.
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Figure 4.4: Fitting of the extended model. Posterior predictive distribution of AD severity scores
for four representative patients from SWET dataset: (A) large and rapid fluctuations, (B) large
but slow fluctuations, (C) controlled AD, and (D) controlled but with transitions of the score
from 1 to 10 in a day (at around 70 days). The plots show the time evolution of the posterior
predictive probability mass function as a heatmap. Darker colour represents outcomes with
higher probabilities. Black and grey lines show the observed scores and the posterior mean
estimate for the missing scores, respectively.

Analysis of the model parameters suggested that older age, absence of filaggrin gene
mutations, and sleeping at home were associated with greater improvement (decrease) in
severity scores at the 95% credible level (Fig. 4.5A), as the 95% credible interval of the relevant
parameters did not contain 0 and by 𝛽Age < 0 (older age decreases the severity score), 𝛽FLG > 0

(the presence of filaggrin mutations increases the severity score), and 𝜃Home < 0 (sleeping at
home decreases the severity score). The estimated effects may appear small in absolute terms,
compared to the range of the bother score (0-10), but their effects on the severity score may
become practically significant as they accumulate over time. White skin type and sex were not
found to be associated with changes in the severity score at the 95% credible level (Fig. 4.5A;
95% credible interval of 𝛽Sex and 𝛽White in both sides of 0, suggesting that their effects on the
severity score could be both negative or positive).

Further analysis of the parameters, 𝜃(𝑘)SU , 𝛾(𝑘)
CS and 𝛾

(𝑘)
CI , which describe the dose-independent

effects of the treatment on the severity score, demonstrated that none of the treatments appears
to have a significant effect at the population level (grey shaded areas in Fig. 4.5B spans from
negative to positive values). However, treatments could have a significant effect at the patient-
level. For example, the parameter estimates for one of the patients (orange shaded areas in
Fig. 4.5B) suggest that the use of corticosteroids has a significant and consistent effect on the
severity score for this patient at the 95% credible level. That is, the posterior probability for
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𝛾
(𝑘)
CS (the dose-independent responsiveness to corticosteroids) being negative (i.e. the use of

corticosteroids reduces the severity score) is greater than 95%. Interestingly, this 95% criterion
for the consistent treatment effect was not met for calcineurin inhibitors (𝛾(𝑘)

CI ) and step-up (𝜃(𝑘)SU )
for the same patient. Following this criterion, we confirmed significant effects of corticosteroids
in 90 individuals (out of 295 who used corticosteroids) and of step-up in 25 individuals (out of
284 who stepped-up). However, we did not find evidence of an intrinsic responsiveness in any
of the 92 patients who used calcineurin inhibitors, although 6 of them showed a significant
dose-dependent responsiveness.

Figure 4.5: Estimated effects of potential risk factors and responsiveness to treatments on
the severity score. A: Population-level estimates of the parameters (𝛽Age , 𝛽FLG , 𝜃Home , 𝛽Sex ,
𝛽White ) for potential risk factors (age, presence of filaggrin mutation, sleeping at home, sex,
and white skin). The values represent the contribution of the relevant factor to the severity
score. Negative and positive values represent a decrease and an increase in severity score
(improvement and worsening), respectively, while null values suggest an absence of an effect.
Black circles and the line segments represent the mean posterior and the 95% credible interval,
respectively. B: Estimated distribution of the parameters for dose-independent responsiveness
to different treatment modalities (𝛾(𝑘)

CS , 𝛾(𝑘)
CI ), 𝜃

(𝑘)
SU for corticosteroid, calcineurin inhibitors and

step-up) at a population-level (grey) and for a specific patient (orange).

4.4 Discussion

4.4.1 Main findings

This study demonstrated a proof-of-concept that predicting the evolution of eczema severity is
possible. We developed a novel mechanistically-inspired Bayesian machine learning model that
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can predict patient-specific daily evolution of the AD bother score. The model is biologically
interpretable and describes the mechanistic assumption that the AD severity is a result of
temporal accumulation of flares (Fig. 4.1). The model learned rich, heterogeneous, and dynamic
patterns in the daily evolution of AD severity scores that may otherwise appear random and
noisy (Figs. 4.2 and 4.4). Our method extracted information on whether the chosen treatment
is effective (responsiveness to treatment), whether the AD score is persistent and susceptible to
flares, at an individual level (Figs. 4.5B, B.6 and B.7). The use of longitudinal data enabled us to
look for consistent treatment responses within each patient, rather than a population average
response evaluated at a single time point. We estimated population-level risk factors associated
with slower improvement of the severity score, such as the presence of a filaggrin mutation and
younger age (Fig. 4.5A). The model was validated using the data from two published clinical
studies to confirm its generalisability and the possibility to learn and predict the short-term
dynamics of AD severity scores from each patient’s data (Fig. 4.3).

4.4.2 Strengths of our approach

Our Bayesian approach could be useful to make predictions for new patients outside of the two
cohorts we considered. For instance, we could use the population posterior distributions of the
patient-dependent parameters obtained in this study as priors for new patients (cf. Chapter
8). The priors will then be updated as more data becomes available, to make personalised and
more accurate predictions.

In addition, our model-based Bayesian approach is appropriate to develop models for clinical
use, especially when the data is not as controlled as in a clinical trial. Our model explicitly
describes uncertainties in disease outcomes (severity scores) using probability distributions
rather than point estimates, as well as uncertainties in the measurements. This enabled us to
deal with the missing data (about 40% of scores were missing in the Flares dataset) naturally
by assuming that the measurement process of the observed score was absent when the score
is missing, while still being able to infer the dynamics of the latent severity score from the
available data. This method is particularly appropriate for incomplete and partially missing
data, for example when patients miss clinical visits.

The model-based approach allows us to design models by taking prior clinical and mechanis-
tic knowledge into account, and by tailoring them to the available data and study context. For
example, our model was extended by incorporating the additional information (on potential risk
factors and treatment doses) available in SWET dataset but not in Flares dataset. Similarly, our
model could be expanded to include additional predictors such as environmental triggers (e.g.
air pollution, weather, cf. Chapter 5), host factors (e.g. compliance to daily bathing, allergies)
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or biological markers (cf. Chapter 6).

These features entail that the developed model cannot be made readily available as a
“plug-in” formula, as it is described by a set of context-dependent equations on probability
distributions and patient-specific parameters that need to be updated to provide personalised
predictions.

4.4.3 Limitations of the study and future directions

The datasets we used in this study contained daily measurements of the bother score, a subjective
global measure of distress caused by AD that has previously been used as a reference for
developing asthma severity instruments [164] and validating AD symptom measures such as
POEM [85]. While using objective and quantitative measurements would be preferable, this
study can serve as a proof-of-concept that predicting the evolution of eczema severity is possible.
When collecting daily measurements of objective severity scores becomes less challenging,
similar models could be developed to predict scores such as EASI [78], (o)SCORAD [80], or
their self-assessed versions (cf. Chapter 7). It will allow us to evaluate the dynamics of scores
that capture different aspects of AD symptoms and to compare the predictive performance for
different scores. It is also possible to investigate longer time horizons with weekly (instead
of daily) measurements. Appropriate evaluation of the effects of data frequency on severity
prediction will help designing more effective and informative clinical trials towards personalised
medicine.

The predictive capabilities of the model could be potentially improved by incorporating more
data, or by using better-quality data, i.e. with fewer missing values or more precise information
about treatments. For example, our model assumes that the same amount of treatment was
applied every day, when treatment was used. This assumption might not always hold in reality
and could result in a difficulty with estimating the dose-dependent responsiveness to treatments
(Table B.3). The daily record of the quantity of treatment applied could resolve this issue and
lead to a better estimate of treatment responsiveness.

The model proposed in this paper adopted a structure that was tailored to the available
datasets. The model structure was inspired by the previously published mechanistic model
of AD development [159] [162], while mechanisms of disease onset may differ from those
relevant to disease persistence. As this work focuses on the evolution of AD severity, we
interpret the model as describing the onset of AD flares triggered by infiltrated pathogens. The
model structure was also much simpler than that of the mechanistic model. If longitudinal
measurements of interactions between environmental stressors, the skin barrier and immune
responses become feasible in future, such data can be incorporated to develop a more detailed

79 of 217



CHAPTER 4. A STATISTICAL MODEL TO PREDICT AD SEVERITY

mechanistic machine learning model that provides deeper biological interpretation.

The model-based machine learning approach demonstrated here is applicable to help quan-
tify patient responses to treatment, and may be suitable as a computational method for therapeu-
tic stratification by identifying treatment responses for each individual [16]. The prediction of
daily evolution of severity scores could be further used to suggest optimal treatment strategies
for individual patients (cf. Chapter 8), in addition to conventional computational methods
using optimal control theory and bifurcation analysis [165].
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Chapter 5

The role of environmental factors in AD
severity prediction

In Chapter 4, we developed a proof-of-concept predictive model of AD severity and witnessed its
limitations. One avenue to better predict the evolution of AD severity is to consider additional
factors beyond severity measurements and treatment usage. In this chapter, we investigate
whether measurements of environmental factors such as weather or air pollution can help
predict AD severity.

This chapter is adapted from our paper “Impact of environmental factors in predicting daily
severity scores of atopic dermatitis”, published in 2021 in Clinical and Translational Allergy [61]
under the terms of the Creative Commons CC BY license. In this paper, we reanalysed the data
from a study that found that weather and air pollution were associated with AD symptoms
[166], in order to investigate whether these associations are really predictive of future AD
severity. The model developed in this study is designed as a tool to investigate environmental
factors, and does not attempt to replicate the models developed in Chapter 4, even though they
share similarities (autoregression, patient-dependence of parameters).

The code written for this project is available at
https://github.com/VDelorieux/AD-environmental factors.

This research project is a collaborative work with Valentin Delorieux (VD), Dr. Young-
Min Kim (YK), Dr. Kangmo Ahn (KA), and Prof. Hywel C. Williams (HW). VD and I jointly
contributed to the analysis, the computer code, design of models and writing the manuscript.
YK and KA gratefully shared the data and their perspectives regarding the re-analysis of their
data. HW contributed his insights on the clinical relevance of the model and helped reviewing
and editing the manuscript.
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5.1 Introduction

AD patients often suffer from symptoms that fluctuate every day, resulting in a decreased quality
of life due to the unforeseeable dynamic nature of the symptoms. AD affects almost 20% of the
paediatric population worldwide and the prevalence of AD in children is still increasing globally
[69]. The rising prevalence of AD coincides with increased urbanisation and industrialisation
worldwide [167], and the assessment of the effects of environmental factors on AD has gained
a growing importance.

AD pathophysiology is considered to be affected by external environmental factors, such
as air pollution from particulates, ultraviolet radiation, temperature and humidity - collectively
known as the skin exposome [168] [169]. Environmental factors have been shown to be
associated with AD development and aggravation [170] [171], as well as other aspects of AD
including barrier dysfunction [71] or care visits [172]. Prior studies investigated whether
environmental factors were associated with the current AD severity [166] [173] [174] [175], but
none have considered the dynamic nature of the severity nor have they investigated whether
the future AD severity can be predicted by environmental factors. Despite this evidence gap,
a profusion of smartphone eczema apps have emerged offering to track disease severity and
environmental factors with bold claims of being able to predict AD flares [12].

We have previously developed statistical machine learning models to predict daily AD
severity scores at an individual level (Chapter 4). The models demonstrated that it was possible
to decipher much of the apparent unpredictable dynamics of AD severity scores from each
patient’s longitudinal data. The models investigated the effects of age, filaggrin mutations and
the treatments used, such as calcineurin inhibitors and corticosteroids, on daily changes of AD
severity scores. However, environmental stressors were only modelled as latent variables due
to the lack of availability of such data in the training datasets.

In this chapter, we aim to assess the impact of environmental factors in predicting future AD
severity scores. We developed a statistical machine learning model to predict daily AD severity
scores for individual patients using a longitudinal dataset with high-quality environmental and
AD symptom data. We used that model to evaluate whether environmental factors including
weather and air pollutants are important determinants in predicting the next day’s AD scores
from today’s scores.
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5.2 Methods

5.2.1 Data

We used the longitudinal data from a published panel study [166] that investigated the short-
term impact of environmental factors on AD symptoms in Seoul, South Korea. The cohort
included 177 Korean paediatric patients (67 girls and 110 boys) aged five or younger (average
age of 2.0 years old, SD = 1.6) with mild to severe AD (mean SCORAD at enrolment of 31.1,
SD = 12.8). The data contained the daily recording of the atopic dermatitis symptom score
(ADSS) [176] over 17 months (Figs. 5.1 and C.1). ADSS is a sum of scores for six AD signs
(dryness, edema, itching, oozing, redness, and sleep disturbance), each on a discrete scale from
0 (none) to 4 (severe). In this study, we used the six AD sign scores, rather than their sum
(ADSS), to extract more information from the data. 18.9% of the daily AD sign scores were
missing. We removed five patients with less than ten daily observations, resulting in a total of
34921 patient-day observations.

The use of topical corticosteroids (binary) was recorded daily. Weather variables (mean
temperature, relative humidity, total rainfall, diurnal temperature range) and the concentration
of air pollutants (PM10, NO2, O3) were collected daily for each patient. A binary AD symptom
state was derived in [166] from the sign scores: the state was one when the sum of itching and
sleep disturbance scores was greater than or equal to two, and the scores of at least two of
redness, dryness, edema, or oozing were non-zero; and the state was zero otherwise (Fig. 5.1).

Figure 5.1: Example trajectories of the six AD sign scores and the derived AD symptom state
for a representative patient.
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5.2.2 Mixed effect autoregressive ordinal logistic regression model

We developed a mixed effect autoregressive ordinal logistic regression model to predict the
patient-dependent dynamics for each of the six AD sign scores. The model is described by:

𝑦(𝑘)(𝑡+ 1) ∼ OrderedLogistic
(︀
𝛽
(𝑘)
0 +

3∑︁
𝑖=0

𝛼𝑖𝛿𝑦(𝑘)(𝑡),𝑖, 𝑐
)︀

(5.1)

Where 𝑦(𝑘)(𝑡) is a sign score for the 𝑘-th patient at day 𝑡, 𝛽(𝑘)
0 is the patient-dependent

intercept (the random effect), 𝛼𝑖’s are the regression coefficients, 𝛿𝑥,𝑦 is the Kronecker delta,
and 𝑐 is the vector of cut-off values of the ordered logistic distribution (details in Section 2.4).
We also considered a model that includes all covariates of interest (environmental variables and
TCS usage at 𝑡), for evaluation of the impact of environmental factors in the linear predictor,
and models with one covariate each. Cross-correlation analysis did not support the inclusion
of higher order time lags for sign scores or covariates in the model. The models were fitted
using the “lme4” package in R1, to pairs of successive scores

(︀
𝑦(𝑘)(𝑡+ 1) , 𝑦(𝑘)(𝑡)

)︀
. Pairs with

at least one missing value were removed from the training set.

5.2.3 Model validation

We evaluated the predictive performance of our models in a forward-chaining setting with
a horizon of one day. The performance of predicting AD sign scores was quantified by the
ranked probability score (RPS), a proper scoring rule for ordinal probabilistic forecasts. The
performance of predicting binary AD symptom states was evaluated with the Brier score.

We compared the performance of our models to that of two benchmark models: the
uniform forecast model that predicts each of the five possible outcomes of a sign score with
the probability of 1/5, and the historical forecast model where the probability of each possible
outcome is equal to its occurrence in the patient’s training data. We also compared our model
to the logistic regression model proposed in [166] for the prediction of AD symptom states.

1We obtained the logit to calculate the ordered logistic distribution by jointly fitting the cumulative distribution
(𝑃 (𝑦 ≤ 0), 𝑃 (𝑦 ≤ 1), 𝑃 (𝑦 ≤ 2) and 𝑃 (𝑦 ≤ 3)) with logistic regressions.
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5.3 Results

5.3.1 Model validation

We trained six mixed effect autoregressive ordered logistic regression models without covariates,
one for each of the AD sign scores. The models learnt the patient-dependent dynamics of the
sign scores as more data came in and outperformed the benchmark models in predicting the
next day’s score for all AD signs (Fig. 5.2). The performance of the benchmark models varied
between signs, confirming that the scores of some signs are more imbalanced than others (Fig.
C.1) and easier to predict. For instance, the historical forecast model (and our model) achieved
an almost perfect prediction for edema, for which the outcome is 0 nearly 90% of the time. For
other signs, such as dryness, the RPS of our model was about 60% lower (i.e. achieved a better
performance) than that of the historical forecast model after 200 days of training.

Figure 5.2: Comparison of the predictive performance of our model (the mixed effect autore-
gressive ordinal logistic regression without covariates) to that of the uniform forecast and
the historical forecast models, for prediction of each of the six AD signs. The performance of
predicting AD sign scores is measured by the RPS (the lower RPS indicates the better predictive
performance). Learning curves were obtained using locally weighted scatterplot smoothing
(LOWESS). Shaded areas correspond to ±1.96 standard error.

We derived a prediction for the binary AD symptom state from the six mixed effect autore-
gressive logistic regression models for AD sign scores (Fig. 5.3), assuming their predictions are
independent random variables. Our model outperformed the two benchmark models and the
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logistic regression model proposed in [166]. The Brier score of our model was about 40% lower
(i.e. achieved a better performance) than the logistic regression model, whose performance
matched that of the historical forecast.

Figure 5.3: Comparison of the predictive performance for the models predicting the AD
symptom state. Our model (without covariate and for which the prediction for the AD symptom
state is derived from the predictions for each AD sign) is compared to the uniform and the
historical forecast models, and the logistic regression model proposed in Kim et al. (2017) [166].
The performance is measured by the Brier score (the lower Brier score corresponds to the better
predictive performance). Learning curves were obtained using LOWESS smoothing. Shaded
areas correspond to ±1.96 standard error.

5.3.2 Effect of environmental factors on the model’s predictions

To assess the effects of exogenous factors (weather, air pollution, TCS usage) on the prediction
of AD sign scores, we computed the pairwise difference in the RPS between the model without
covariates, the models with a single covariate, and the model with all covariates (Fig. 5.4).

No evidence was found to support that the inclusion of exogenous factors improved the
predictive performance of the model for all signs (Fig. 5.4a). Even though some of the coefficients
associated with the covariates have confidence bounds that do not cross 0, all of them were small
in magnitude, accounting for approximately only 1% of the linear predictor (Fig. 5.4b). These
small coefficients result in the lack of a noticeable improvement in the predictive performance
of the model by addition of the covariates.
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Figure 5.4: Effects of environmental factors (mean temperature (“Temp” ), relative humidity
(RH), total rainfall (RF), diurnal temperature range (DTR), and the concentration of air pollu-
tants (PM10, NO2, O3)) and treatment usage (topical corticosteroids (TCS)) on AD sign score
prediction. (a) The pairwise difference in predictive performance between the model without
covariate (RPS) and the model with covariates (single or all, RPS cov). RPS −RPS cov > 0 indi-
cates that the model with covariates has a higher predictive performance. (b) The coefficients
for the covariates in the single-covariate models (± SE). A positive coefficient means that an
increase in the covariate is associated with a higher probability for more severe outcomes.

5.4 Discussion

The assessment of the effects of environmental factors on AD has gained a growing importance.
Many prior studies investigated whether environmental factors were associated with current
AD severity, but they have failed to consider the dynamic nature of the severity nor investigated
whether future AD severity can be predicted by real-time data on environmental factors.

We developed a mixed effect autoregressive ordinal logistic regression model that can
predict the next day’s AD severity scores, using the longitudinal data from a published panel
study [166]. Our model successfully made daily predictions of the AD severity scores: it
outperformed two benchmark models for the prediction of AD sign scores (Fig. 5.2) and
outperformed the benchmark models and the logistic regression model for the prediction of an
AD symptom state proposed in [166] (Fig. 5.3). The inclusion of environmental factors did not
improve the predictive performance of our model (Fig. 5.4).

Our results from a comprehensive dataset of South Korean children do not present any
convincing evidence to support a claim that AD symptoms were associated with weather or
air pollutants on a short-term basis. The short-term influence of environmental factors on AD
sign scores was outweighed by the previous scores’ persistence, and the next day’s score for a
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patient is more accurately predicted using the patient’s today’s score than using environmental
data. Neglecting the time-dependence of AD severity as in previous studies [172] [173] [174]
[175] may misguide inferences about the effect size of environmental associations. The extent
to which AD severity can be predicted from the measurement of environmental factors remains
unclear. Our results throw serious doubts into the claim of many AD apps that purport to use
real-time environmental measures to inform AD users when their AD symptoms are likely to
flare.

It is possible that other “internal” factors, such as the development of skin autoimmunity,
may be more important than external factors in determining disease fluctuations over time
[177]. Factors that determine disease incidence may also be different from those that determine
disease chronicity, so it is still possible that environmental factors may be more predictive of
the AD onset and long-term disease trajectories rather than short-term symptom fluctuations.

This study used a high-quality dataset on South Korean children with high rates of data
completion. Modelling each of the six AD signs enabled to extract more information from the
data and to generate predictions for any quantity of interest to the practitioner, be it ADSS or
any combination of the sign scores. In terms of study limitations, the AD sign scores used in
this study were obtained by subjective assessment by the patients (or their carers) on a discrete
scale. Further investigation of the seemingly small effects of environmental factors on AD
severity scores may benefit from more data or better quality data, for example by recording
time-series of SCORAD or EASI, or their self-assessed version, as they are more objective and
may offer better responsiveness to environmental changes. However, dichotomisation of AD
sign scores into a binary AD symptom state as proposed in [166] reduces the power of the
analysis [97] and is not recommended. Our model might be improved by taking measurement
errors into account using state-space models or by modelling the correlations between AD
signs in a multi-outcome regression. However, we believe the additional complexity in the
model would only result in marginal improvements in the already solid predictive performance.

Whilst this study focused on the association between environmental factors and future
AD severity scores, whether environmental factors cause a change in AD scores is of more
interest to the AD community. Estimating causal effects is challenging, as causal inference
methods assume the absence of unobserved confounders [178], an assumption that is deemed
unrealistic. For example, “staying indoors” was not recorded in the original study [166] but
could lead to reverse causation if patients decided to stay indoors during a pollution peak.
Estimation of non-linear interactions may also be required, if patients react differently to
environmental triggers depending on their severity: mild patients could be less sensitive than
severe patients who may be subject to a “ceiling effect”. Constructing causal diagrams using
specialist background knowledge could be a promising approach.
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We will not consider environmental factors in the rest of this thesis, as the limited availability
of such data is not outweighed by significant gains in predictive performance.
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Chapter 6

The role of biomarkers in AD severity
prediction

In this chapter, we continue our investigation of features that could help the prediction of AD
severity by questioning whether biomarkers, measured before the start of a therapy, can help
predict its outcome. In particular, we analyse whether serum cytokines and chemokines can be
predictive of the outcome of a systemic immunosuppressive therapy in AD adults.

This chapter is adapted from our paper “Can serum biomarkers predict the outcome of
systemic immunosuppressive therapy in adult atopic dermatitis patients?”, published in 2022
in Skin and Health Disease [62] under the terms of the Creative Commons CC BY license. The
models presented in this study are designed as tools to investigate biomarkers rather than as
extensions of the models developed in Chapters 4 and 5, although they share similar aspects. The
code written for this project is available at https://github.com/ghurault/ssm-eczema-biomarkers.

We are grateful to our clinical collaborators (Dr. Evelien Roekevisch, Dr. Mandy E. Schram,
Dr. Krisztina Szegedi, Dr. Sanja Kezic, Prof. Maritza A. Middelkamp-Hup and Prof. Phyllis I.
Spuls) for sharing the data and their insights on the clinical relevance of our findings.

6.1 Introduction

Atopic Dermatitis is a chronic skin disease with a considerable variation in the clinical pheno-
type and response to treatments among patients [69]. Current treatments aim to manage AD
symptoms, such as inflammatory flares and dry and itchy skin, mainly by topical application of
emollients and corticosteroids. However, systemic therapy using traditional immunosuppres-
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sants is needed for patients with moderate-to-severe AD that do not respond to topical therapy.
It is desirable to identify patients who are likely to respond to a systemic immunosuppressive
therapy, as the decision to initiate such therapy can be difficult given its known risks [74].

It has been hypothesised that biomarker measurements could help predict therapeutic
responses and be used as a tool to stratify patients [10]. Previous studies on AD biomarkers
have mainly focused on severity biomarkers, i.e. biomarkers that could be used as surrogates
for AD severity: thymus and activation-regulated chemokine (TARC) was suggested to be the
single best biomarker to assess disease severity [179] and panels of biomarkers were proposed as
“objective” substitutes for EASI [180] and SCORAD [181]. However, the reliability of “severity”
biomarkers have been questioned [182] [183], and “severity” biomarkers are different from
“predictive” biomarkers that are expected to be predictive of future outcomes1.

Some previous studies aimed to explore “predictive” biomarkers for several AD treatments.
In [184], predictive biomarkers for systemic immunosuppressants (methotrexate or azathio-
prine) were sought by investigating whether baseline levels of some cytokines/chemokines
were statistically different between responders (who achieved > 50% reduction in SCORAD)
and non-responders of the therapy. In [185], a high level of serum total IgE was found to
be associated with poor response to the maintenance treatment by topical tacrolimus and/or
corticosteroids. A clinical trial is underway to explore predictive biomarkers for dupilumab
that are most strongly associated with improvement in EASI [186]. However, those studies
did not investigate whether the biomarkers can predict treatment outcomes. Instead, they
investigated how much the biomarkers were associated with treatment outcomes, but an asso-
ciation does not imply prediction since associations often do not generalise to unseen data [19].
Predictions need to be generated and evaluated on out-of-sample data, beyond quantification
of associations.

In this study, we explored predictive biomarkers for systemic immunosuppressive therapy
for AD (by methotrexate or azathioprine) using the same data as in [184] and investigated
whether serum cytokines/chemokines measured for each patient pre-treatment can be used
as predictive biomarkers. Here, biomarkers are considered predictive only if their inclusion
improves the performance of the best available predictive model (without those biomarkers)
for AD severity scores (the primary outcomes of clinical trials). Using model comparison to
evaluate the predictive potential of biomarkers can be useful to offset the effects of other factors,
such as historical data (Chapter 4), that can also contribute to the prediction of future AD
severity scores. We also considered multiple biomarkers in a multivariable regression setting.

1In fact, there is little reason to believe “severity” biomarkers are also predictive, since if a biomarker is a perfect
surrogate of (current) AD severity, it cannot carry additional information about future AD severity. An alternative
approach, if perfect “severity” biomarkers existed, would be to predict the evolution of these biomarkers and then
transform these predictions into predictions for AD severity scores. However, we are sceptical of this approach,
as biomarker data is expensive to collect compared to severity data, and may be noisier.
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Specifically, we developed a statistical machine learning model that can predict the patient-
dependent dynamic evolution of AD severity scores. Our model predicts continuous AD
severity scores rather than arbitrary dichotomies of “responders” vs “non-responders” to avoid
potential information loss that may demand more data to reach a reliable conclusion [18]. Using
the model, we explored predictive biomarkers that can reliably predict AD severity scores at
different timepoints, rather than a single timepoint after treatment, to reduce the impact of
the variability in treatment responses at an individual patient-level. A mere comparison of
AD severity scores before and after treatment is indeed unsuitable to determine patient-level
treatment responses and whether biomarkers are predictive of those responses, because AD
severity scores can fluctuate over time regardless of treatment or biomarkers [18]. These
fluctuations can be stochastic (unpredictable), due to unobserved/unrecorded factors (e.g.
environmental factors) or measurement error (cf. inter- and intra-rater variability of severity
scores).

6.2 Methods

6.2.1 Data

We used longitudinal data from a published clinical study [184], in which 42 adult AD patients
received systemic therapy (azathioprine or methotrexate) for over 24 weeks. The data includes
the baseline concentrations of 26 serum cytokines and chemokines (listed in Fig. 6.4) measured
before the start of the treatment (week 0), the status of the filaggrin gene (FLG) mutation
(yes/no), age and sex for each of the 42 patients. Therapeutic responses were assessed by EASI,
SCORAD, oSCORAD (the objective component of SCORAD) and POEM at weeks 0, 2, 4, 8, 12
and 24 from the start of the therapy, for each patient.

Concentrations of the serum biomarkers were log-transformed and standardised to have
zero mean and unit variance for each biomarker. Three out of 1092 (= 26 x 42) measurements of
the serum biomarkers were missing and imputed by the population mean of the corresponding
biomarker. The missing FLG mutation status for six patients was imputed by a default status
of “no mutation”. The patients’ age was standardised to have a population mean of 0 and a
variance of 1. Our model (detailed below) considers the dynamics of the severity scores with a
constant interval of two weeks up to week 24. Therefore, we treated the absence of AD severity
measurements at weeks 6, 10, 14, 16, 18, 20, and 22 as missing. It resulted in 56% missing values
for EASI, (o)SCORAD and POEM.
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6.2.2 Model overview

We developed a Bayesian state-space model to make probabilistic predictions of future AD
severity scores (either EASI, SCORAD, oSCORAD or POEM) for each patient. The model for
each severity score assumes that the true latent (unobserved) severity score follows its own
latent dynamics, and that the measured severity score is obtained as a result of an imperfect
measurement of the latent severity score at each timepoint (Fig. 6.1). Missing values were
treated in our model as an absence of measurement. As a Bayesian model, our model describes
uncertainties in parameters and severity scores as probability distributions. Quantifying
uncertainties in parameters is especially suitable when dealing with small datasets, where the
estimates are likely to be noisy.

Figure 6.1: An overview of the Bayesian state-space model for probabilistic predictions of AD
severity scores. The model describes the latent dynamics of a latent severity score (white ovals)
and the measurement of the latent severity scores (grey ovals).

We modelled the latent dynamics of the latent score, 𝑦(𝑘)(𝑡), for the 𝑘-th patient at time 𝑡

(with a constant interval of 2 weeks) by a mixed effect autoregressive model:

𝑦(𝑘)(𝑡+ 1) ∼ 𝒩
(︀
𝛼(𝑘)𝑦(𝑘)(𝑡) + 𝛽

(𝑘)
0 + (𝑥(𝑘))𝑇𝛽, 𝜎2

l
)︀

(6.1)

Where 𝛼(𝑘) is the autocorrelation parameter, 𝛽(𝑘)
0 is the intercept, 𝑥(𝑘) is an optional covariates

vector for the 𝑘-th patient (including biomarkers) with their coefficients 𝛽, and 𝜎l is the
standard deviation of the latent dynamics. We performed feature selection on the covariates
𝑥(𝑘) by assuming a regularised horseshoe prior for 𝛽 [187]. The horseshoe prior shrinks small
coefficients toward 0 while allowing strong signals to remain large, thus limiting overshrinkage,
unlike 𝐿1 or 𝐿2 regularisations [188].
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Measurement of the latent score 𝑦(𝑘)(𝑡) is modelled by a truncated2 Gaussian distribution
centred around the measured severity score 𝑦(𝑘)(𝑡) for the 𝑘-th patient at the 𝑡-th timepoint:

𝑦(𝑘)(𝑡) ∼ 𝒩[0,𝑀 ]

(︀
𝑦(𝑘)(𝑡), 𝜎2

m
)︀

(6.2)

The standard deviation of the measurement process 𝜎m quantifies the measurement error.
Here, we use the term “measurement error” as if the proposed state-space model was the true
data-generating mechanism. In practice, this is unlikely to be true and 𝜎m would quantify both
the uncertainty due to the data collection process (aleatoric uncertainty, the measurement
uncertainty as it is usually understood) and the uncertainty due to an imperfect modelling
of the latent dynamic (epistemic uncertainty). In other words, if a better model of the latent
dynamic were proposed, 𝜎m would be reduced accordingly. With that in mind, 𝜎m can be used
to compute a (model-dependent) minimum detectable change (MDC), that is “the smallest
change that can be considered above the measurement error with a given level of confidence”
[99]. For the default 95% confidence level, the MDC is determined by MDC = 1.96𝜎m.

We assumed hierarchical priors for 𝛼(𝑘) and 𝛽
(𝑘)
0 and weakly informative priors for the other

parameters (detailed in Appendix D.1). Model inference was performed using the Hamiltonian
Monte-Carlo algorithm in the probabilistic programming language Stan [56], with four chains
and 2000 iterations per chain, including 50% burn-in. Prior predictive checks were performed to
confirm our choice of priors was reasonable, and fake data checks were conducted to validate
the computational method. Convergence and sampling were monitored by looking at trace
plots, checking the Gelman-Rubin convergence diagnostic �̂�, and computing effective sample
sizes.

6.2.3 Model validation

The predictive performance of our model was assessed by K-fold cross-validation (𝐾 = 7,
stratified by patients), where we applied forward chaining to the “test” fold to reflect how the
model would be used in a clinical setting3 with the model being updated after each measurement
(Fig. D.1). The probabilistic predictions of AD severity scores were evaluated by a logarithmic
scoring rule, the log predictive density (lpd), and compared to that of four reference models
(details of the reference models in 2.3.3 and their priors in D.1): a uniform forecast model, a
random walk model, an autoregressive model and a mixed effect autoregressive model. We also

2The distribution is truncated between 0 and the maximum value, 𝑀 , of the severity score (72 for EASI, 83 for
oSCORAD, 103 for SCORAD and 28 for POEM).

3In a practical clinical setting, we would expect the model to be pre-trained (cf. 𝐾 − 1 training folds) and then
updated as more data comes in (cf. forward chaining). We implement this validation procedure in this chapter
because the small size of the dataset makes it computationally reasonable.
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report the root mean squared error (RMSE) of the expected prediction for ease of interpretation.

6.3 Results

6.3.1 Model fit and validation

We first developed a Bayesian state-space model that predicts the evolution of AD severity scores
without covariates (i.e. without demographics, types of treatment, cytokines/chemokines) as
a baseline model. The baseline model that predicts future EASI was fitted successfully to the
data without evidence of an absence of convergence (Table D.1). Population-level parameters
were estimated with good precision, with posterior distributions narrower than their prior
distributions (Table D.1). We confirmed that the patient-dependent parameters, 𝛼(𝑘) and 𝛽

(𝑘)
0 ,

vary between patients, within the range of [0.37, 0.99] for the expected autocorrelation (𝛼(𝑘))
and [0.03, 2.3] for the expected intercept (𝛽(𝑘)

0 ). The measurement process is responsible for
94.7% (90% credible interval 87.3% - 99.1%) of the total variance for prediction. The posterior
mean of the minimum detectable change (MDC) is 8.6 (90% credible interval 7.6-9.6). The
posterior predictive distribution of EASI trajectories demonstrated that the model could capture
different patterns, despite the absence of several measurements (Fig. 6.2).

Learning curves for two-weeks ahead predictions of EASI by our Bayesian state-space model
(SSM in Figs. 6.3A and D.2) demonstrated that the predictive performance improved as more
training data (newer measurements for the same patient) came in, and that it outperformed all
reference models, supporting the model’s structure. The RMSE of the mean prediction for EASI
at the next clinical visit (e.g. from week 0 to 2, 2 to 4, 4 to 8, etc.) was 6.3±0.62 (mean ± SE) for
our model, compared to 9.9± 0.43 for the random walk model. The performance of our model
and the mixed autoregressive model for EASI prediction tended to improve as the prediction
horizon increased (Figs. 6.3B and D.3), while we normally expect the predictive performance
decreases for a longer prediction horizon. It is possible that this counter-intuitive observation
is the result of most patients recovering before the end of the study, making predictions easier.

Similar results, with lower performance relative to the reference models, were obtained for
the model predicting oSCORAD, SCORAD and POEM (Fig. D.2). The posterior means (and 90%
credible intervals) of the MDC were 9.1 (7.4-10.7) for oSCORAD, 11.4 (9.1-13.5) for SCORAD
and 7.7 (6.7-8.9) for POEM. This implies similar amount of measurement error for EASI and
(o)SCORAD relative to the range of the score 𝑀 (between 8% and 12%) and substantially more
measurement error for POEM (≈ 28%, cf. Table D.2).

95 of 217



CHAPTER 6. THE ROLE OF BIOMARKERS IN AD SEVERITY PREDICTION

Figure 6.2: The posterior predictive distribution of four representative patients (A-D) by our
model predicting EASI. Each of the representative patients demonstrates different dynamics:
slow recovery from a moderate EASI (A), persistence of severe EASI (B), rapid recovery from a
severe EASI (C), and slow recovery from a severe EASI (D). Dots indicate the measured EASI
scores, and the coloured ribbons represent stacked credible intervals of highest density. Lighter
and darker ribbons correspond to wider and narrower intervals, respectively.
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Figure 6.3: Predictive performance for EASI by our Bayesian state-space model (SSM, black)
and the reference models, measured by the lpd (higher the better). A: Learning curves (mean ±
SE) for two-weeks ahead prediction after adjusting for different prediction horizons in a linear
model. B: Changes in lpd as the prediction horizon is increased by two weeks. The reference
models include a mixed effect autoregressive model (MixedAR, orange), an autoregressive
model (AR, blue), a random walk model (RW, green), and a uniform forecast (Uniform, yellow).
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6.3.2 Effects of biomarkers on the model’s predictions

As our Bayesian state-space model outperformed the reference models, we used it to evaluate
whether the inclusion of biomarkers improves its predictive performance, thus identifying
predictive biomarkers. The covariates included were the 26 serum cytokines/chemokines mea-
sured at week 0, the status of FLG mutation, the type of systemic therapy applied (azathioprine
or methotrexate), sex and age. Our analysis demonstrated that none of the covariates had a
practically significant effect on the model’s prediction, as indicated by a small magnitude of the
posterior mean and 90% credible intervals for the coefficients 𝛽, on both sides of 0 (Fig. 6.4A),
and a resulting small and not practically significant contribution of the covariates ((𝑥(𝑘))𝑇𝛽)
to the EASI prediction (Fig. 6.4B). As a result, the predictive performance of the model was not
improved by including covariates. Similarly, we found no practically significant covariates for
the predictive models of SCORAD, oSCORAD and POEM.

Figure 6.4: Effects of covariates in our model’s predictions of EASI (mean and 90% credible
intervals). A: Estimates of the coefficients for the biomarkers (26 serum cytokines/chemokines,
FLG, sex, age) and the treatment applied. A change of one standard deviation in a covariate
corresponds to a change of 1.0 in EASI score. B: Total contribution of all covariates ((𝑥(𝑘))𝑇𝛽)
to EASI prediction for each patient.
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6.4 Discussion

Prediction of whether a patient is likely to respond to a specific therapy is of high clinical
importance, especially if the therapy may have risks of side effects. In this study, we examined
whether serum cytokines/chemokines measured for each patient before the start of the therapy
can be used as predictive biomarkers for systemic immunosuppressive therapy (methotrexate
or azathioprine) for AD.

We developed a Bayesian state-space model that can predict AD severity scores (EASI,
SCORAD, oSCORAD, and POEM) two-weeks ahead in the future, at the individual level. The
model describes the dynamics of the latent severity for each patient, and the measurement
process of the severity scores (Fig. 6.1). The model was trained on the data from 42 adult AD
patients who received systemic immunosuppressive therapy in a published clinical study [184]
(Fig. 6.2). Our model outperformed standard reference models for time-series forecasting (Fig.
6.3) and was used for further analysis to test the predictive ability of biomarkers. The results
revealed that the predictive performance was not improved by including some biomarkers as
covariates (Fig. 6.4), suggesting that the biomarkers measured before the start of the therapy
did not carry additional information for the prediction of future AD severity scores.

While an absence of evidence for predictive biomarkers of the therapies should not be
interpreted as evidence of an absence, our results suggest that the effect of biomarkers on
the prediction of severity scores, if any, is likely to be small or too subtle to be captured by
our linear model. This is because the prediction errors of future scores by our model was
mostly attributed to errors in the score measurement process. Further investigation of the
effect of biomarkers on severity score prediction may therefore require data from a larger
cohort. However, it is unclear how much new information we can expect to obtain by including
more biomarkers, because the biomarkers included in this study have been claimed to be most
related to AD [179] and biomarkers are often highly correlated with each other. In addition,
the biomarkers’ concentrations measured at a single timepoint are likely to be noisy and may
not capture the dynamic heterogeneity of a complex disease such as AD. Whether the benefit
of potentially more accurate predictions with biomarkers outweighs the cost of collecting data
for such models remains an open question.

By explicitly describing measurement errors in severity scores in our model, we also
estimated the minimum detectable change for the AD severity scores. The estimated MDC
suggested that it may be easier to predict objective scores such as EASI and (o)SCORAD than
subjective scores such as POEM. Even though these estimates are model-dependent, they are
larger than already published estimates of the minimal important difference (MID) for EASI,
(o)SCORAD and POEM [102] (Table D.2), indicating that it is possible that the changes in an
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outcome that a patient identify as important are not always detectable. Further research is
needed to elucidate how we ensure that clinically important changes cannot be attributed to
measurement errors, and to validate the results from this study on different cohorts of patients.

While the data used in this study is from a small cohort of patients (𝑁 = 42), the AD
severity scores were measured at six time-points for each patient. The repeated measurements
of severity scores enabled us to capture the dynamic nature of the AD severity scores for each
patient and to investigate consistent effects of biomarkers and treatments on AD severity scores
within each patient, as it reduces the impact of the variability in treatment responses (including
measurement errors).

The analysis of the data in this study did not identify any predictive biomarkers for systemic
immunosuppressive therapy for AD, and validation on different cohorts of patients is still
required. Until then, we will not consider biomarkers as potential predictors for AD severity in
the rest of this thesis. The method proposed in this study may help to re-analyse previously
collected individual longitudinal data to test the predictive ability of potential predictive
biomarkers.
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Chapter 7

The role of measurements in AD severity
prediction

In Chapters 5 and 6, we explored factors that could help predict the evolution of AD severity,
beyond previous AD severity and treatment usage. Another alternative to improve the predic-
tion of AD severity, as noted in Chapter 4, is to rely on better quality measurements of AD
severity. In this chapter, we investigate to what extent using better quality measurements can
help the prediction of future AD severity. This chapter is composed of two parts, corresponding
to the investigation of two severity scores: an “objective” score, PO-SCORAD, and a “subjective”
score, POEM.

First, we develop models to predict PO-SCORAD and package our approach in a computa-
tional framework “EczemaPred” and its corresponding R package. This part corresponds to a
paper “EczemaPred: A computational framework for personalised prediction of eczema severity
dynamics” [63], which has been published in Clinical and Translational Allergy between the first
(January 2022) and the final submission (May 2022) of this thesis, under the Creative Commons
CC BY license. The code is written for this part is available at https://github.com/ghurault/
EczemaPred (package) and https://github.com/ghurault/EczemaPredPOSCORAD (analysis).

Then, we used the same approach for predicting another severity score, POEM, to test
whether our results could be generalised to a score with different characteristics. In this second
part, we also suggested improvements to the models developed for PO-SCORAD. The results
for PO-SCORAD and POEM prediction are thus obtained from slightly different versions of the
models1. The code written for this part is not released at the time of writing (January 2022).

1The next chapter will include the improvements introduced for the POEM models to the models developed
for PO-SCORAD.
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The first part of this project (development of EczemaPred and PO-SCORAD prediction) was
done in collaboration with Pierre Fabre Laboratories, which provided the data. We thank Sophie
Mery, Alain Delarue, Dr. Markéta Saint Aroman, Dr. Gwendal Josse, Dr Sébastien Barbarot,
Dr. Thérèse Nocera and Yann Kling for their inputs and help editing the manuscript. We also
thank our clinical collaborator, Prof. Jean-François Stalder, for sharing his clinical expertise.
The second part of this project (POEM prediction) was done in collaboration with Prof. Kim
Thomas and Prof. Hywel Williams who contributed the data used for fitting the models.

7.1 Introduction

We have previously developed a Bayesian model of the evolution of AD severity and demon-
strated that predicting the patient-specific evolution of AD was possible (Chapter 4). The
model captured the patient-specific heterogeneity in dynamic trajectories of AD severity and
responsiveness to treatment. However, its predictive performance and clinical applicability
were limited because the model was developed using a daily bother score, which is a subjective
global measure of distress caused by AD and is not suitable to capture different aspects of AD
symptoms reliably. Using a validated objective severity score that combines multiple severity
items could improve the predictive performance and make predictive models more relevant for
clinical practice.

The Harmonising Outcome Measures for Eczema (HOME) initiative recommended EASI as
the core outcome instrument for clinical signs of eczema to be measured in clinical trials [79],
and POEM to measure patient-reported symptoms [86]. SCORAD and its objective component
oSCORAD have also been validated as outcome instruments [81], and other scores such as Six
Area Six Signs AD (SASSAD) are still routinely used in clinical practice. All these instruments
report AD severity as a single score obtained by aggregating the severity scores for multiple
severity items, including intensity signs, subjective symptoms, and extent (cf. Section 2.1.3).
The severity items capture different aspects of AD severity and may therefore follow their own
dynamic.

In this chapter, we introduce EczemaPred, a computational framework to predict patient-
specific dynamic of AD severity. It is based on the idea that modelling the evolution of each
relevant severity item and aggregating the predictions could improve the performance and
the clinical relevance of the prediction of AD severity dynamics. EczemaPred consists of a
collection of Bayesian state-space models that describe the item-dependent dynamic of each
severity item. The predictions for any AD severity score can be obtained by aggregating the
predictions for the relevant severity items made by their Bayesian state-space models.
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First, we developed EczemaPred using the Patient-Oriented SCORAD (PO-SCORAD) [87],
a validated self-assessment of SCORAD [91] that can be recorded on a smartphone app. Self-
assessments of AD severity are more suitable to track the short-term (daily to weekly) evolution
of the severity dynamics compared to clinical assessments that can be performed only during
clinical consultations of a limited frequency. In particular, PO-SCORAD is one of the core
instruments recommended by the HOME initiative to measure patient-reported symptoms in
clinical practice [88]. We validate the EczemaPred models to predict the dynamic evolution
of PO-SCORAD using the longitudinal datasets from two clinical studies, a dataset from a
published study [189] and another dataset we collected in an observational study.

Then, we extended EczemaPred models to predict POEM, the other instrument recom-
mended by HOME to measure patient-reported symptoms [88], using the longitudinal data
from a published clinical trial [190]. Prediction of POEM is deemed to be more challenging
than of PO-SCORAD, because it is measured weekly and considered as a “subjective” score
for self-assessments, whereas PO-SCORAD is considered as an “objective” score that can be
recorded daily.

7.2 Methods

7.2.1 Datasets

Observational study

An observational study (ClinicalTrials.gov, NCT04553224) was conducted from November 2019
to February 2020 in Toulouse (France) following the approval by IEC (CPP Ile de France V, Saint
Antoine Hospital, n°582211). We recruited 16 adult AD patients (mean age 25 y.o., SD=5) whose
SCORAD were between 20-40 (mean SCORAD 34.6, SD=4.4 at inclusion). Patients recorded
PO-SCORAD using an app (https://www.poscorad.com) for up to 12 weeks every day, while
continuing their usual treatment. In the case of AD flare (𝑁 = 8 patients), medication was
changed by the investigators. Informed consent was obtained from all study participants.

PO-SCORAD datasets

We used two datasets with daily to weekly measurements of PO-SCORAD and its severity items
over a moderately long period. The first dataset, referred to as dataset 1, is from a published
study that investigated the role of an emollient in children (mean age 3.6 y.o., SD = 1.3) with
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mild to moderate AD [189]. Dataset 1 consists of PO-SCORAD recorded for 347 children
approximately twice weekly (usually every 3 or 4 days) for up to 17 weeks (119 days), resulting
in 9943 observations. 11 children with less than five observations in the original study were
excluded. The second dataset, referred to as dataset 2, was obtained from the observational
study described in the previous subsection. The data consists of PO-SCORAD recorded daily by
16 adult AD patients for up to 12 weeks (84 days), resulting in 1136 patient-day observations
with 13.6% missing values.

Dataset 1 had 70.3% missing values if it was expected to have daily recordings. Compared
to dataset 2, dataset 1 had more missing values due to less frequent recordings (3 to 4 times
fewer observations) per patient, but contained about nine times more observations in total as it
was collected from 21 times more patients (Table 7.1). The severity dynamics appeared to be
relatively more stable in dataset 1 than in dataset 2 (Fig. 7.1).

Table 7.1: Characteristics of PO-SCORAD datasets

Dataset 1 Dataset 2
Number of subjects 347 16
Age (mean ± SD) 3.6± 1.3 24.7± 5.0
PO-SCORAD recording Twice weekly Daily
Duration Up to 17 weeks Up to 12 weeks
Missing values for daily recording 70.3% 13.6%
Observations 9943 1136
PO-SCORAD at inclusion 31.2± 7.7 34.6± 4.4
Data collection Subject notebook Smartphone app

We recall that PO-SCORAD is defined by 0.2𝐴+ 3.5𝐵 + 𝐶 . 𝐴 ∈ [0, 100] corresponds to
the extent (the percentage of the area affected by eczema in the whole body); 𝐵 ∈ [0, 18] is the
sum of six intensity signs, each of which is assessed on a representative area for that sign using
an ordinal scale from 0 to 3; and 𝐶 ∈ [0, 20] is the sum of two subjective symptoms (more
details in Section 2.1.3). In both datasets 1 and 2, the extent (𝐴) takes discrete values (0, 1, …,
100; i.e. with a resolution of 1), and each subjective symptom score takes discrete values (0.0,
0.1, …, 10.0; i.e. with a resolution of 0.1).

We did not use demographics or treatment information in our models because our results
in Chapter 4 suggested that their inclusion does not result in a noticeable improvement in
performance when predicting the patient-specific daily evolution of AD severity. In this study,
we aimed to develop simple models with a good predictive performance that could be extended
later to investigate other factors (effects of treatment in Chapter 8).
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Figure 7.1: Example trajectories of PO-SCORAD and its severity items for representative
patients from datasets 1 (A) and 2 (B).
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POEM dataset

To develop predictive models for POEM, we used data from the published CLOTHES clinical
trial [190], which investigated the effectiveness of silk garments for the management of eczema.
The data consisted of the weekly recordings of POEM for up to 24 weeks by 271 children with
moderate to severe AD (Fig. 7.6B). The number of missing values during the follow-up time
was 11% resulting in a total of 5478 patient-week observations.

We recall that POEM is the sum of the self-reported answers to 7 questions, each of which
asks how many days a symptom (itchy skin, sleep disturbance, bleeding skin, weeping skin /
oozing clear fluid, cracked skin, flaking skin, dry skin) occurred in the past week, graded on a
discrete scale from 0 to 4 (0 = “no days”, 1 = “1 or 2 days”, 2 = “3 or 4 days”, 3 = “5 or 6 days”, 4
= “7 days”; more details in Section 2.1.3).

7.2.2 EczemaPred

We introduce EczemaPred, a collection of (Bayesian state-space) models that can be used to
describe the data-generating mechanisms of each severity item. Each model assumes the
existence of a true latent (unobserved) severity that follows its own latent dynamics and that
the recorded severity was obtained as a result of imperfect measurement of the latent severity
(Fig. 7.2A). Predictions for the different severity items can then be aggregated to produce
predictions for the severity scores. Missing values were treated as an absence of measurement
in the state-space models.

PO-SCORAD model

EczemaPred to predict SCORAD (and PO-SCORAD as its self-assessment version) consists
of nine independent (sub-)models, each corresponding to one of the nine severity items for
SCORAD (Fig. 7.2B). We tailored the state-space models to each component of SCORAD (Fig.
7.2C).

The extent model assumes that we can subdivide the body area into 100 patches, each
with a probability, 𝑦(𝑘)(𝑡), of being classified as lesional, and that each patch can transition
between lesional and non-lesional states, the transitions being described by a two-state Markov
chain (the latent dynamic). Parameters of the Markov chain latent dynamic were made patient-
dependent with hierarchical priors. The measurement is specified as a binomial distribution to
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count the number of lesional patches to produce the extent score (𝑦 = 𝐴):

𝑦(𝑘)(𝑡) ∼ ℬ
(︀
100, 𝑦(𝑘)(𝑡)

)︀
(7.1)

We propose a general purpose state-space model for intensity signs and subjective symp-
toms, because we do not have much insights regarding their data-generating mechanisms. The
model is described by:

𝑦(𝑘)(𝑡) ∼ 𝒟
(︀
𝑦(𝑘)(𝑡)

)︀
(7.2)

𝑦(𝑘)(𝑡) = 𝑔
(︀
𝑦(𝑘)(𝑡)

)︀
(7.3)

𝑦(𝑘)(𝑡+ 1) ∼ 𝒩
(︀
𝑦(𝑘)(𝑡), 𝜎2

)︀
(7.4)

𝑦(𝑘)(𝑡0) ∼ 𝒩 (𝜇0, 𝜎0) (7.5)

Where 𝒟 is the measurement distribution, 𝑦 is the latent score, 𝑦 is a transformation of 𝑦 by
the link function 𝑔−1(.) and follows a random walk dynamic with standard deviation 𝜎. 𝜇0 and
𝜎0 are the population mean and standard deviation of 𝑦 at the initial condition 𝑡0, respectively.

For the subjective symptoms, considering the high number of categories (𝑀 +1 = 101), we
chose a Binomial measurement distribution with a logit link. For intensity signs, considering
the small number of categories (𝑀 + 1 = 4), we preferred to choose an ordered logistic
measurement distribution, which is more flexible than a Binomial (cf. Section 2.4) with a linear
link function.

POEMmodel

To predict POEM, we extended the choice of measurement distribution and latent dynamics.

1. We proposed a measurement distribution (ℬDay) that is adapted to the POEM scoring
system, where the number of days a symptom occurred in the past week is counted with
a Binomial distribution before applying the 0-4 categorisation.

2. We introduced a novel parametrisation of the ordered logistic measurement that is more
interpretable and scales well to multiple categories2.

3. We modelled the evolution of the symptoms jointly by assuming correlations between
changes in the latent scores. This means replacing the independent univariate random
walk dynamics described in Eq. (7.4) by a multivariate random walk dynamic3 with

2This ordered logistic distribution parametrisation will allow us to fit extent and subjective symptoms in the
next chapter, but will not be applied to PO-SCORAD predictions here. We refer to this parametrisation as v2 in
the appendix.

3With independent dynamics, we could consider the model for POEM to be made of seven sub-models, one for
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Figure 7.2: PO-SCORAD model overview. A) Bayesian state-space models in EczemaPred. Each
model describes the dynamics of a latent severity (white ovals) and the measurement of the
latent severity to obtain the recorded severity (grey ovals). B) Use of EczemaPred for SCORAD
prediction. Predictions from nine models (coloured rectangles), each of which corresponds to
one of the nine severity items for SCORAD, are aggregated to provide predictions for SCORAD.
C) Latent dynamics and measurement distributions for the three severity components of
SCORAD.
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covariance Σ: 𝑦(𝑘)(𝑡+ 1) ∼ 𝒩 (𝑦(𝑘)(𝑡),Σ).

We considered different combinations of the measurement distributions and latent dynamics,
with the most flexible model a priori being the one with an ordered logistic measurement
distribution and a latent multivariate random walk dynamics (“OrderedMRW+corr”).

Priors for the PO-SCORAD and POEM models were chosen to be weakly informative. Details
of the models, parametrisations, and choice of priors are described in Appendix E.1.

Model inference was performed using the Hamiltonian Monte Carlo algorithm in the
probabilistic programming language Stan [56], with four chains and 2000 iterations per chain,
including 50% burn-in. Prior predictive checks and fake data checks were conducted.

7.2.3 Model validation

We evaluated the predictive performance of our models in a forward-chaining setting (see
Section 2.3.1), with a horizon of four days for PO-SCORAD and one week for POEM .

The probabilistic predictions of individual severity items and aggregate severity scores
were evaluated using a logarithmic scoring rule, the log predictive density (lpd) [125]. We
also computed an accuracy metric for PO-(o)SCORAD predictions, defined as the probability
that the predictions were within 5 units of the measured score. We plotted the lpd and the
accuracy as a function of the number of training observations (equivalently the number of
training days/weeks) to produce learning curves. Details of the performance metrics are given
in Appendix E.2.

We compared the predictive performance of EczemaPred with that of reference models,
including a uniform forecast, a historical forecast, and a random walk model (which provides a
flat forecast, i.e. centred on the last observed value). For the six intensity signs and the seven
POEM symptoms that respectively take discrete values in [0, 3] and [0, 4] (4 and 5 categories), we
used Markov chain models instead of random walk models as references. For PO-(o)SCORAD
and POEM predictions, we also compared the performance of EczemaPred to that of standard
time-series forecasting models, including an exponential smoothing model, an autoregressive
model and a mixed effect autoregressive model. Details of the reference models are given in
Appendix E.3.

each symptoms, that could be ran independently. This is not the case with a multivariate dynamic since all the
symptoms are modelled jointly: there is only one model.
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7.3 Results of PO-SCORAD models

All EczemaPred models and reference models were fitted successfully for all severity items on
the two datasets. We found no evidence for an absence of convergence by monitoring trace
plots and by checking the potential scale reduction factor �̂�. We conducted posterior predictive
checks and found no clear discrepancies between the data and the models’ simulations.

7.3.1 Predictions of severity items

We confirmed EczemaPred models learned the dynamics of severity items as more data came in
(Figs. E.4 to E.12, top). A similar predictive performance was confirmed for the models trained
with dataset 1 and those with dataset 2, supporting the generalisability of the models. However,
predictions of extent and itching appeared to be more difficult with dataset 2 than with dataset
1 (Figs. 7.3, E.4 and E.11). For example, the lpd for predicting extent is much higher for the
EczemaPred model trained with dataset 1 than with dataset 2 (−1.53± 0.07 vs −2.62± 0.14)
after training with 80% of the data.

EczemaPred models outperformed the reference models for the two datasets in terms of
predictive performance (Figs. 7.3 and E.4 to E.12, top). EczemaPred models showed only
marginally better predictive performance than the historical forecasts for thickening, swelling
and oozing. The lpd of the historical forecast was already close to the maximum lpd of 0 for
these intensity signs that had a low prevalence (Figs. E.2 and E.3) and thus were easier to
predict than other signs. A historical forecast tended to outperform a random walk model for
extent and subjective symptoms, as they do not demonstrate persistent dynamics. For intensity
signs whose dynamics are often persistent, a Markov chain model performed almost as well as
the EczemaPred model with an ordinal logistic measurement and latent random walk.

The predictive performance decreased as the prediction horizon increased for all models.
The decrease in lpd when the prediction horizon is increased by a day was similar or smaller
for EczemaPred models compared to the reference models with a non-constant forecast (Figs.
E.4 to E.12, bottom).

7.3.2 Predictions of PO-(o)SCORAD

Predictions for PO-SCORAD were derived by aggregating the predictions of the severity
items by their respective models (example predictive trajectories in Fig. 7.4). The prediction
intervals capture the evolution of the observed severity, but appear shifted/lagged compared
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Figure 7.3: Predictive performance for 4-days-ahead forecasts by EczemaPred models (empty
circles) and reference models (filled circles) measured by lpd (the higher, the better). EczemaPred
models are a binomial Markov chain model (BinMC) for extent, an ordered logistic random
walk model (OrderedRW) for intensity signs, and a binomial random walk model (BinRW)
for subjective symptoms. Reference models include a uniform forecast (uniform), a historical
forecast (historical), a random walk model (RW), and a Markov chain model (MC). The per-
formance was calculated after training with approximately 80% of the data (77 days’ data for
dataset 1 and 65 days’ data for dataset 2).
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to the observed data. This is because the model is only updated every four days, there are no
mechanisms to predict short-term trend (the model is more reactive than proactive), and the
prediction intervals likely lack coverage because correlations between severity items were not
modelled (see Section 7.4).

Figure 7.4: PO-SCORAD prediction by EczemaPred for four representative patients from dataset
1 (A) and dataset 2 (B). The patients whose data is depicted on the top plots are the same as
the patients in Fig. 7.1. Coloured ribbons correspond to stacked prediction intervals of highest
density (darkest ribbon corresponds to the mode), and black dots are the recorded PO-SCORAD.
The model is updated, and new predictions are issued every four days (vertical dashed lines).

We confirmed that the performance of PO-SCORAD prediction by EczemaPred improved as
more data came in but did not plateau (Fig. 7.5). It suggests a possibility of further improvement
of the performance if more training data were available and a need for more accurate estimation
of some model parameters. In contrast, the performance of the reference models stopped
improving, suggesting that the improvement observed for EczemaPred was not due to a change
in the data distribution (e.g. due to patients dropping the study early).

EczemaPred outperformed the reference models that predict PO-SCORAD directly (rather
than aggregating the prediction of severity items as in EczemaPred), supporting our approach.
The difference in the lpd between EczemaPred and the reference models is less evident in dataset
2 than in dataset 1 for PO-SCORAD prediction. However, the difference is more evident for
PO-oSCORAD prediction (Fig. E.13), because of the lower predictive performance for subjective
symptoms with dataset 2 than dataset 1. Otherwise, similar results with comparatively better
predictions were obtained for PO-oSCORAD.
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The exponential smoothing and the (mixed) autoregressive models achieved similar pre-
dictive performance to the random walk model (Fig. 7.5) as they tend to emulate a random
walk behaviour. That is, the exponential smoothing model has a smoothing factor of 1, and
the autoregressive models have an autocorrelation parameter of 1 and an intercept of 0. The
fact that complex models emulate a simpler random walk model highlights the difficulty of
developing accurate predictive models using only the aggregate PO-SCORAD data.

The learning curves (Fig. 7.5) indicate that EczemaPred achieved the accuracy of 71.8±1.0%
(mean ± standard error) after training with 77 days’ data from dataset 1 (60.2 ± 2.8% with
65 days’ data from dataset 2). That is, the 4-days-ahead prediction by EczemaPred is within 5
units of the measured PO-SCORAD with 71.8% probability, on average. The accuracies of the
reference models were much lower, with 39.4± 0.5% for the historical forecast with dataset
1 (34.9 ± 1.4% with dataset 2), 47.9 ± 0.5% (43.1 ± 1.2%) for the random walk model, and
51.9± 0.7% (49.5± 1.9%) for the mixed effect autoregressive model. It is worth noting that
the improvement of the accuracy from the random walk model to EczemaPred (+23.9%, +17.1%)
is much larger than that from the historical to the random walk model (+8.5%, +8.2%), although
“the marginal gain from complicated models is typically small compared to the predictive power
of the simple models” [53].

The predictive performance of EczemaPred with dataset 1 appeared to be better than that
with dataset 2 (Fig. 7.5), although the predictions do not always appear qualitatively different
between the two datasets (Fig. 7.4). Several data characteristics (e.g. dataset size, frequency
of measurements, demographics) may explain the difference, but it is difficult to pinpoint the
main factors without a meta-analysis. It is also possible that the performance with dataset
2 becomes comparable or superior to that with dataset 1, if we allow for a more prolonged
training phase, given that the performance did not plateau.

The predictive performance of EczemaPred models and the reference models decreased
as the prediction horizon increased (Figs. E.14 and E.15), similarly to what was observed
for individual severity items. The accuracy of EczemaPred was estimated to decrease by
approximately 3.0± 0.2% on average when the prediction horizon was increased by a day in
dataset 1 (3.9±0.5% in dataset 2). It leads to the accuracy of 80.7±1.2% and 62.8±1.1% for one-
day-ahead and one-week-ahead forecast, respectively, for dataset 1 (71.9±2.9% and 48.6±3.4%
for dataset 2). These results suggest that EczemaPred performance would become equivalent
to a historical forecast for 15.2 days-ahead predictions and 10.4 days-ahead predictions for
datasets 1 and 2, respectively, assuming that the extrapolation of accuracy loss is valid. A
similar decrease in accuracy was estimated for the reference models.
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Figure 7.5: Learning curves for 4-days-ahead forecasts of PO-SCORAD, evaluated by lpd (top)
and accuracy (bottom), as a function of the number of training observations (training days),
for datasets 1 (left) and 2 (right). EczemaPred models perform better than reference models,
including an exponential smoothing model (Smoothing), a mixed effect autoregressive model
(MixedAR1), an autoregressive model (AR1), a random walk model (RW), a historical forecast
(historical) and a uniform forecast (uniform).
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7.3.3 Decomposition of prediction uncertainty in EczemaPred

We investigated which of the three components of PO-SCORAD (0.2𝐴, 3.5𝐵 or 𝐶) contributed
to the uncertainty in PO-SCORAD prediction the most, by computing the proportion of the
variance of each component to the variance of the PO-SCORAD, for each prediction. On
average, 7% of the uncertainty in PO-SCORAD prediction could be attributed to the extent
(0.2 A), 79% to the intensity signs (3.5 B) and 14% to the subjective symptoms components (C)
for dataset 1 (5%, 72% and 23% for dataset 2). In contrast, the intensity signs component is
63/103 ≈ 61% of the total SCORAD with extent and subjective symptoms each contributing to
20/103 ≈ 19%. Accordingly, improving predictions for intensity signs is the most promising
option to improve predictions for PO-SCORAD. The intensity signs that contribute to the
prediction uncertainty the most were calculated to be dryness, redness, and scratching, the
other signs being less prevalent.

7.4 Results of POEM models

All models were fitted successfully, except for the models with the ℬDay measurement distri-
bution, for which numerical errors (divergences) were observed during inference. This may
suggest that the ℬDay distribution does not describe the measurement process well for this
dataset, although it was tailored to the a priori data-generating process of the symptom scores
for POEM. Instead, an ordered logistic measurement distribution may be preferred. By using
multivariate models for POEM, we inferred that changes in the latent symptom scores were
strongly positively correlated (Fig. 7.6A), which implies that when a symptom increases or
decreases, it is likely that the intensities of the other symptoms change in the same direction.
Posterior predictive checks did not indicate clear failings in the data models (Fig. 7.6B for the
model with ordered logistic measurement distributions and latent multivariate random walk).

The predictive performance of the EczemaPred models increased as more data came in (Fig.
E.16). EczemaPred models outperformed or performed similarly to all reference models when the
predictive performance was stable (Fig. 7.7). However, the difference in performance between
EczemaPred models and reference models is small and does not always appear practically
significant.

Nonetheless, we observe a systematic benefit of modelling correlations between symptoms
when predicting POEM, regardless of the measurement distribution4. This is likely because

4While modelling the correlations between changes in latent scores is of interest for inference purposes
(quantifying correlations) and results in a small gain predictive performance, it comes at a high computational
cost (50 times longer than running independent models for each symptom, more if we consider that independent
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Figure 7.6: Results of the model with an ordered logistic distribution and multivariate latent
random walk dynamic. (A) Correlation of changes between latent symptoms scores. The
lower part of the diagonal indicates the expected correlation coefficients, and the upper part
illustrates the correlation as an ellipsoid. (B) Data of a representative patient and corresponding
predictive distribution (colour) for one-week-ahead forecast, for all symptoms and the aggregate
POEM score. For this patient, even though 4/7 symptoms are easy to predict because they
do not change a lot, the fluctuations of the 3 other symptoms make the prediction of POEM
challenging. Symptom changes appear correlated, for example at week 4, or at week 14, when
a few symptoms decrease, resp. increase, in intensity.
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modelling correlations between symptoms, rather than assuming they are independent, results
in better uncertainty estimates (calibration). More specifically, the variance of POEM with
positively correlated errors between symptoms is higher than the variance of POEM assuming
independent errors, suggesting that the latter model was overconfident in its uncertainty
estimates. This is likely why POEM prediction intervals in Fig. 7.6B appear to have better
coverage than PO-SCORAD prediction intervals in Fig. 7.4, because changes in PO-SCORAD
are often due to changes in multiple severity items (cf. Fig. 7.1). We also observe that the
models with ordered logistic measurement distributions tend to perform better than those
with Binomial distributions, probably because the former has a more flexible shape than the
latter. We do not observe a difference in performance between the models with a Binomial
measurement distribution on days (ℬDay, prefix “BinDay” in Fig. 7.7) and the models with a
Binomial measurement distribution on the symptom scale (prefix “Bin”), further suggesting
the additional complexity of predicting the number of days may not be useful here.

The predictive performance is roughly similar across the seven symptoms, except for
weeping skin/oozing clear fluid (question 4) for which predictions are more accurate because
this is the least prevalent symptom (absent in 75% of observations, resulting in a higher
historical forecast). All symptoms have a similar marginal contribution to the POEM prediction
uncertainty.

models can be parallelised), which may be prohibitive if the model is deployed “as is” in the real world.
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Figure 7.7: Predictive performance estimates (lpd, ± SE, x-axis, the higher the better) for
one-week-ahead of the different symptoms and POEM (facet) by several models (y-axis). The
models are broadly classified by their measurement distribution (colour), with green estimates
corresponding to the reference models and other columns to different setups of EczemaPred
models; and whether their dynamic is univariate or multivariate (filled or unfilled circle). The
performance was calculated after training with the data up to 23 weeks (96% of the data).
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7.5 Discussion

7.5.1 Main findings

This chapter introduced EczemaPred, a computational framework to predict the patient-
dependent dynamic evolution of AD severity (Fig. 7.2). We used EczemaPred to predict
PO-SCORAD using two independent datasets with different characteristics, and to predict
POEM using a third dataset. Our approach consisted in modelling the evolution of individual
severity items (9 items for PO-SCORAD: extent, 6 intensity signs and 2 subjective symptoms; 7
symptoms for POEM) using Bayesian state-space models. Predictions for the severity scores (PO-
SCORAD and POEM) could then be produced by aggregating the predictions of the constituent
severity items.

For PO-SCORAD, EczemaPred models outperformed the reference models we considered
for all the severity items and the aggregate PO-SCORAD (Figs. 7.3 and 7.5). The prediction
accuracy was approximately 72% and 60% for 4-days-ahead forecasts for datasets 1 and 2,
respectively. Most of the prediction uncertainty in PO-SCORAD (79% and 72% for datasets
1 and 2, respectively) could be attributed to the intensity signs component, suggesting that
improving predictions of the intensity signs is the most promising approach to improve PO-
SCORAD predictions. In contrast to our model predicting PO-SCORAD, the performance of
our EczemaPred model for predicting POEM was low, relative to the reference models (Fig. 7.7).
This may suggest that POEM is harder to predict than PO-SCORAD, and if it is predictable,
more sophisticated models would be required for POEM compared to PO-SCORAD.

7.5.2 Choosing the right score for severity prediction

Our results highlight that not all severity scores are equivalent when it comes to predictions.
In particular, PO-SCORAD may be a better alternative than POEM for developing accurate
prediction models using observational data. PO-SCORAD may nonetheless come at a cost
to patients, as it is more time-consuming to assess compared to POEM, although assessment
duration tend to decrease with experience [91].

We can speculate on why POEM appears harder to predict than PO-SCORAD. First, POEM
consists of subjective symptoms that do not necessarily correspond to a true clinical disease
state, whereas PO-SCORAD, or at least PO-oSCORAD (the objective part of PO-SCORAD),
consists of objective physical signs. Supporting this, we have observed limited performance
when predicting a subjective “Bother” score (Chapter 4) and the subjective symptoms (itch and
sleep disturbance) of PO-SCORAD. The difficulty in predicting POEM could also be explained
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by the characteristics of the scoring system. POEM is less responsive to changes [102] and
subject to more measurement errors than other scores such as SCORAD (Chapter 6). POEM
is a weekly score and its one-week ahead predictions are more challenging than predictions
of only a few days ahead for PO-SCORAD. POEM can also be subject to recollection bias as
it is assessed based on the presence of symptoms in the last seven days. In addition, POEM
assigns equal weights to the presence of symptoms during the past week, even though recent
measurements (e.g. yesterday) tend to be more informative than old measurements (e.g. seven
days ago) for prediction. By compressing the daily presence or absence of symptoms into a
weekly average, potentially useful information for prediction is lost in POEM. The severity of
symptoms is also missing in POEM, even though distinguishing mild and severe symptoms, for
example, could be useful for predictive models.

7.5.3 Strengths of our approach

Modelling the dynamics of each severity item has several advantages when the breakdown of
the aggregate severity score is available. It enables us to extract more signals from the data,
as the AD severity dynamics for each patient are described by multiple time-series, one for
each severity item (nine with PO-SCORAD, seven with POEM) instead of one for the aggregate
score. This approach also reduces the uncertainty in the aggregate score prediction when
some severity items are easier to predict than others (e.g. when they are not very prevalent or
do not vary much over time). The models can be tailored to each severity item to reflect the
item-dependent data generating mechanisms with relevant measurement processes and latent
dynamics (cf. extent). The models are thus more interpretable and transparent, as predictions
for aggregate severity scores can be decomposed into predictions for their components [36].
The models could be used to predict any combination of the severity items (e.g. PO-oSCORAD)
without potential inconsistencies in predictions that could arise if each severity score of interest
(e.g. oSCORAD and EASI with overlapping severity items) is modelled separately. EczemaPred
can thus be applied to develop predictive models for other AD severity scores, such as EASI.

EczemaPred has some further advantages, especially for clinical use. The Bayesian frame-
work enables us to make probabilistic predictions by explicitly quantifying uncertainties in
parameters and predictions. The state-space models explicitly describe potential and often
inevitable errors in the measurement of the severity items. For example, the estimation of the
body area affected by eczema is subject to high inter-rater variability [93], potentially even
more so when it is self-assessed as in PO-SCORAD [87]. Modelling the measurement processes
separately from the latent dynamics of the disease severity also allows us to deal with missing
values efficiently as an absence of measurement, while still inferring the latent dynamics. In a
practical application of the model, the posterior distributions obtained in this study could be
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used as a prior for new patients to “pre-train” the model, shortening the training phase to only
a few measurements (this will be done in Chapter 8).

7.5.4 Limitations and future directions

Limitations of this study include the subjective assessment of PO-SCORAD and POEM by
patients. For instance, the reliability of PO-SCORAD assessment was shown to improve
with experience, as patients may need time to learn how to use the PO-SCORAD instrument
properly [91]. The severity item models may therefore benefit from specifying a time-varying
measurement error (this will be done in Chapter 8). Computational limitations also have
prevented us from modelling the correlations between PO-SCORAD items5. Even though the
components of SCORAD (extent, intensity signs and subjective symptoms) are thought to be
uncorrelated by design [80], the six intensity signs may be correlated. For instance, dryness,
thickening and scratching may covary as they mainly characterise the chronicity of the disease;
and redness, swelling and oozing may covary as they represent acute flares [80]. Validation of
EczemaPred in a real-world evidence study is also required, as the data used in this study were
taken from patients involved in a clinical study, where they may have had a better follow-up
than usual.

In summary, this chapter introduced EczemaPred as a computational framework to pre-
dict the patient-dependent dynamic evolution of AD severity. Patients could benefit from
EczemaPred in managing their disease and anticipate the change of their symptoms. For
example, the models could be extended to quantify patients’ responsiveness to treatment and
suggest personalised treatment strategies using Bayesian decision theory, as shown in Chapter
8.

5For instance, dataset 1 is much bigger than the POEM dataset, making inference longer. Correlations will be
modelled using dataset 2 in Chapter 8.
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Chapter 8

Towards generating treatment
recommendations

In Chapter 7, we presented EczemaPred, a principled approach to developing predictive models
of AD severity scores. After having successfully validated the predictive models for PO-
SCORAD, in this chapter, we turn our focus towards generating treatment recommendations
and use the EczemaPred models as a starting point to estimate treatment effects. In this chapter,
we also aim to provide useful inferences and make the models more relevant to clinical practice,
by integrating other sources of information beyond severity scores.

We are grateful to Pierre Fabre Laboratories for sharing the data used in this study. The
code written for this project is not released at the time of writing (January 2022).

8.1 Introduction

AD cannot be cured, but the condition can be managed using treatments such as topical
corticosteroids and emollients. Yet, responses to treatment vary from patient to patient and
more research is needed to go beyond the “one-size-fits-all” approach to therapy and towards
designing personalised treatment strategies for AD [11].

In Chapter 7, we presented EczemaPred, a computational framework to predict the evolution
of eczema severity, and used it to develop models for PO-SCORAD and POEM. EczemaPred
consists of a collection of Bayesian state-space models that are used to predict individual
severity items, which can then be aggregated to produce consistent predictions for different
severity scores. EczemaPred models address multiple challenges of working with eczema
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severity data, that are usually longitudinal data of discrete scores, and contain irregular and
imperfect measurements (including missing values). The models can quantify uncertainty and
are modular, with the possibility to specify different combinations of latent dynamics and
measurement distributions. As such, the models can be used as a starting point to analyse
time-series of eczema severity data and then be adapted to the specific aims of an analysis.

Here, we extend EczemaPred models to investigate treatment effects and generate per-
sonalised treatment recommendations. Making predictions, treatment effect inferences and
recommendations with the same model has the benefit of producing consistent results1, which
would not necessarily be the case if we used different models/analytical methods, or inter-
preted a posteriori the decisions of a black-box treatment recommendation algorithm [35]. In
the context of making decisions (treatment recommendations) under uncertainty, where the
decisions cannot be postponed until more evidence is collected, it is also desirable for models
to integrate and combine all available information to support decision-making [191].

In this chapter, we build upon the EczemaPred model to predict PO-SCORAD shown
in Chapter 7, to demonstrate how to generate treatment recommendations for AD, while
integrating multiple sources of information into a comprehensive and coherent Bayesian
model. In particular, we estimate the efficacy of topical corticosteroids and emollient cream
and produce treatment recommendations using Bayesian decision theory. We also incorporate
evidence from prior studies into our model to reach more robust conclusions and kickstart
model training. Finally, we use clinical assessments (SCORAD) to calibrate self-assessments2

(PO-SCORAD), to improve the quality of training data and build trust in the model’s output.
While PO-SCORAD (assessed by patients) can be measured daily, it is supposedly less accurate
than SCORAD (assessed by clinicians) which can only be measured infrequently when patients
visit a clinic. Calibrating PO-SCORAD with SCORAD measurements can thus get the best of
high quality (SCORAD) and high-frequency measurements (PO-SCORAD), providing estimates
of measurement biases and what would have been SCORAD if measured daily.

8.2 Methods

We used data containing PO-SCORAD, SCORAD and treatment usage as well as knowledge
from a prior study to fit a model using EczemaPred (Fig. 8.1A). The model produces inferences
about treatment effects, the dynamics of AD severity items, measurement biases, as well as

1For example, if we investigate two treatments A and B and found that A is more effective than B on average,
we would expect a better prognostic for A than B, and that A is more likely to be recommended compared to B.
This consistency of results can be seen as a minimum requirement for the reproducibility of results.

2Here we use the term “calibration” to refer the calibration of measurements, as opposed to calibration of
probabilities, which refers to accuracy of probabilistic forecasts.
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predictions for future PO-SCORAD and SCORAD scores. Predictions can then be used to
generate treatment recommendations. A summary of this pipeline is given in Fig. 8.1B.

Figure 8.1: A) Schematic of the Bayesian state-space model. Grey and white circles correspond
to observed and latent variables, respectively. B) Overview of the method. The data (PO-
SCORAD, SCORAD, treatment) and existing knowledge, in the form of a power prior, are given
as inputs to the model to produce inferences about treatment effects, the dynamics and biases
between SCORAD and PO-SCORAD. Predictions can also be generated, and when a utility
function is supplied, they can be used to generate treatment recommendations.

8.2.1 Data

In this chapter, we used “dataset 2” from Chapter 7, which has been described in Section
7.2.1. Briefly, in this dataset, 16 patients recorded PO-SCORAD daily for up to 12 weeks (84

124 of 217



CHAPTER 8. TOWARDS GENERATING TREATMENT RECOMMENDATIONS

days), resulting in 1136 patient-day observations (13.6% missing values between the first and
last observations). The dataset also includes SCORAD, measured monthly by trained clinical
staff. Whether treatment was used within the past two days was also recorded daily in the
PO-SCORAD application, for topical corticosteroids and emollient cream. Example data from a
representative patient is shown in Fig. 8.2.

Figure 8.2: Data from a representative patient. On the left the trajectories of the aggregate
PO-SCORAD severity score, emollient cream and topical corticosteroids usage within the
past two days. On the right, the trajectories of the different severity items of PO-SCORAD.
Orange dots correspond to the monthly SCORAD measurements. The lines are broken when
the measurements are missing.

8.2.2 Model

We used the previously developed EczemaPred PO-SCORAD model (Chapter 7), and extended
it by integrating clinical (SCORAD) measurements and treatment usage data, and modifying
the latent dynamics of AD severity items (Fig. 8.1A).

The original EczemaPred PO-SCORAD model consisted of nine independent Bayesian state-
space models, one for each severity item, where the observed severity items are the imperfect
measurement of a latent score (representing a “true severity”) for which we assumed a latent
random walk dynamic. In this chapter, we modelled the severity items jointly (there is one
model) by assuming a multivariate latent dynamic, where changes in the latent severity items
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are correlated (as we did for POEM prediction in Chapter 7). We also decided to model the mea-
surement of all severity items using ordinal logistic distributions, as it provides a way to control
the variance/precision of the measurements (cf. Section 2.4), without degrading performance.
This was not the case when using Binomial distributions for extent and subjective symptoms
in Chapter 7. We adopted the second parametrisation of the ordinal logistic distribution used
for POEM prediction in Chapter 7, as the parametrisation scales well to a higher number of
categories, a requirement for modelling extent and subjective symptoms.

We integrated SCORAD measurements in the model by assuming that they are derived from
the same latent score as PO-SCORAD items (𝑦(𝑘)𝑖 (𝑡)), but are biased compared to PO-SCORAD
(the location of the distribution 𝑦

(𝑘)
𝑖 (𝑡) is shifted by the bias term). This bias depends on the

severity item and can decrease with time, since it was found that PO-SCORAD assessments
become closer to SCORAD’s with experience [91]. Our model also assumed SCORAD measure-
ments are more precise than PO-SCORAD measurements, by specifying a smaller variance for
the measurement of SCORAD compared to PO-SCORAD. We did not calibrate PO-SCORAD
subjective symptoms as they are the same as for SCORAD.

We included a trend and treatment response components to the latent dynamic of each
severity item. The trend component corresponds to an exponential smoothing of the difference
between consecutive latent severities. To obtain the treatment response component, first, we
deconvolved the time-series of usage of corticosteroids and emollients within the past two
days, using deterministic and probabilistic inference, to obtain the respective time-series of
daily treatment usage. Then, we used the deconvolved time-series of daily treatment usage to
model item-dependent treatment effects for corticosteroids and emollients, assuming treatment
usage at 𝑡 only influences the severity at 𝑡+ 1.

Details of the model are available in Appendix F.1.

8.2.3 Priors

We used a power prior for the parameters corresponding to the measurement and latent
dynamics [112]. The power prior is an informative prior constructed from historical data.
Informative priors are useful when working with small data and can help kickstart the training
of the model (the model is “pre-trained”). We used “dataset 1” described in Chapter 7 as historical
data, which originates from an already published study investigating the role of an emollient
in 337 children with AD [189]. The power prior was derived from the marginal posterior
estimates of the population parameters of independent state-space models, with ordinal logistic
measurement and latent random walk for each severity item. The power prior requires the
selection of a discounting parameter 𝑎0 ∈ [0, 1], which quantifies how much information is
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borrowed from the historical data (0 means no borrowing and 1 full borrowing). Considering
that the historical data is much bigger (9943 patient-day observations) than the dataset in this
study (1136 patient-day observations), we chose a small value 𝑎0 = 0.04 to ensure that the
final posterior is mostly determined by the data used in this study rather than the historical
data (Fig. 8.3A).

Treatment parameters and those corresponding to the calibration of PO-SCORAD with
SCORAD were given weakly informative priors. The correlation matrix and trend parameters
were given priors that penalise the model complexity. Details of the priors, including the power
prior, are given in Appendix F.2.

8.2.4 Treatment recommendation

Having developed a Bayesian model that can make predictions under different treatment
conditions (actions), Bayesian decision analysis is the natural approach to balance the costs
and benefits of using treatments and make optimal recommendations under uncertainty [58]
[105]. Bayesian decision analysis consists of choosing a utility function that quantifies the
“value” of taking a particular action, making predictions corresponding to different actions
and recommending the action that maximises the expected utility (objective function) of
the associated predictions3. The objective function can also include a risk-sensitive criterion
to balance the benefit of the action (expected utility) and its risk (variance of utility, i.e. its
uncertainty), which is also a way to balance the exploration-exploitation trade-off. A patient can
be risk-averse (penalising uncertainty, or pessimistic), risk-neutral, or risk-seeking (welcoming
uncertainty, or optimistic).

We used a simple utility function:

𝑈(𝑦, 𝑎) = −
(︀
𝑦 + cost(𝑎)

)︀
(8.1)

Here, 𝑦 is the predicted SCORAD, 𝑎 corresponds to the action of using/not using topical
corticosteroids/emollient cream and cost(𝑎) corresponds to the “perceived” cost of action 𝑎.
The “perceived” cost could represent the fear of side-effects [76], the inconvenience or monetary
cost of using treatment, and more generally any mechanisms that drive poor adherence. For
example, if the cost of using no treatment is 0 and the cost of using corticosteroids is 1, a
risk-neutral patient would only use corticosteroid if the expected improvement after taking
corticosteroids is at most 1 point of SCORAD.

3The objective function is not the utility function itself, because the predictions are probabilistic, which implies
a distribution of utilities.
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We generated next-day treatment recommendations by successively training the model
every day, and considered different decision profiles corresponding to different “perceived”
costs of using treatment (no cost, normal cost, or high cost) and risk tolerance (risk-averse,
-neutral or -seeking). More details are given in Appendix F.3.

8.2.5 Inference and validation

Model inference was performed using the Hamiltonian Monte Carlo algorithm in the probabilis-
tic programming language Stan [56], with four chains and 2000 iterations per chain, including
50% burn-in. Prior predictive checks and fake data checks were conducted.

We consider as a base model the original EczemaPred model with ordinal logistic mea-
surement distribution for all severity items (i.e. our model described in Section 8.2.2 but with
independent dynamics and without calibration trend, treatments and power prior). In this
study, we evaluate the contribution of each new model component in a stepwise approach,
starting from the base model and successively adding the power prior, the correlation between
severity items, the calibration of PO-SCORAD with SCORAD, treatment effects and the trend4.
We report the performance of uniform and historical forecasts to serve as references, but do
not repeat the comparison with standard time-series forecasting models, as it was already
conducted in Chapter 7 for all severity items and aggregate scores. Predictions are generated
in a forward chaining setting where the model is retrained every four days, and are evaluated
with the logarithmic scoring rule (log predictive density, lpd).

8.3 Results

When fitting the models, we found no evidence for an absence of convergence by monitoring
trace plots and checking the potential scale reduction factor �̂�. We conducted posterior predic-
tive checks and found no clear discrepancies between the data and the models’ simulations.

8.3.1 Multivariate dynamic

By fitting the nine severity items of PO-SCORAD jointly, we can estimate how the severity
items covary. We found that changes of severity items were positively correlated (Fig. 8.3B).

4Although subjective, this order is not arbitrary and corresponds to the iterative improvements of our Bayesian
workflow, where we deemed the power prior to be the first improvement to consider, and including the trend the
last one.
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This implies more uncertainty in the prediction of PO-SCORAD, as changes accumulate rather
than cancel out, compared to a situation with independent severity items. In particular, the
changes in scratching, oozing, and redness appear strongly correlated, and itching is moderately
correlated with all intensity signs. However, extent is only mildly correlated with subjective
symptoms or intensity signs.

The uncertainty in the evolution of the latent dynamic was found to be strongly item-
dependent, implying that some items are easier to predict than others (Fig. F.1). For instance,
the evolution of oozing is more uncertain than the evolution of thickening. We also note from
Fig. F.1 that the uncertainty of the measurement process is always bigger than the uncertainty
of the latent dynamics, meaning that most of the prediction uncertainty can be explained by
the uncertainty of the measurement process. This highlights the difficulty in extracting signal
from the data. Similarly, no trend was detected for any of the severity items (Fig. F.2). This
means that if the severity increases or decreases at a given time, there is no indication that it
will move in the same direction in the near future.

Figure 8.3: A) Approximate contribution of our dataset to the posterior distribution as a
function of the number of observations in the training set, for different values of the power
prior forgetting parameter 𝑎0. We use 𝑎0 = 0.04 (in black), which is as if the model was
pre-trained with 𝑎0 × 𝑁historical = 0.04 × 9943 ≈ 400 observations. B) Visualisation of the
expected correlation matrix of the changes between the nine latent severity items. The strength
of the correlations is represented by an ellipse in the upper diagonal matrix and the lower
diagonal matrix displays the expected correlation coefficients.
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8.3.2 Calibration of PO-SCORAD with SCORAD

By integrating SCORAD measurements into the model, we can estimate the difference (bias)
between patient assessments and clinical assessments. We found that the direction and am-
plitude of the biases were strongly item-dependent (Fig. 8.4A). For example, patients tend to
overestimate extent and scratching, but underestimate dryness, redness, swelling and oozing,
compared to clinicians, on average. The biases mostly stayed constant over time, except for
scratching for which the bias is nearly 0 after the second measurement at week 4 (Fig. F.3).
We would have expected the biases to decrease with time if patients were becoming better
at assessing the severity of their symptoms. However, it is possible that the patients in this
dataset were already familiar with PO-SCORAD assessments, or that learning does not happen
if no feedback is given.

With the estimation of the measurement biases, we can convert PO-SCORAD predictions
into SCORAD predictions (i.e. forecasting SCORAD), and infer SCORAD values if it had been
measured daily (i.e. backcasting and nowcasting SCORAD, cf. Fig. 8.4B). For example, the
severity trajectory in Fig. 8.4B demonstrates that the expected value of SCORAD would have
been higher than the observed PO-SCORAD, for this patient. This is consistent with our
estimates that clinicians tend to score intensity signs higher than patients (Fig. 8.4A), and the
fact that intensity signs are the predominant component of SCORAD (cf. Section 2.1.3).

8.3.3 Treatment effects and recommendations

We estimated the parameters corresponding to treatment effects to be negative, confirming that
treatment tends to improve severity (Fig. 8.5A). We found that topical corticosteroids were more
effective than emollient cream, but estimates of treatment effect were small in absolute values.
Treatment effects are also uncertain, as nearly half of patients always/never use treatment. In
addition, treatment effects were highly heterogeneous across severity items. For example, all
else being equal, a patient with severe scratching but no thickening of the skin would tend to
respond more to corticosteroids than a patient with no scratching but severe thickening.

Using the model, we generated treatment recommendations for different decision profiles
(Fig. 8.5B). We confirmed that a high perceived cost of treatment is associated with no treatment
being recommended. Conversely, a null perceived cost of treatment is associated with both
treatments being recommended, which was anticipated considering the expected treatment

5In practice, there are non-linearities between the latent and measurement spaces, even if they have approxi-
mately the same range. For example, a change of −13 in the latent space does not necessarily correspond to a
change of −13 in the measurement space. If the latent score is 0, meaning that the corresponding measurement is
likely 0 as well, a change of −13 in the latent space would only reduce the uncertainty that the measurement is 0.
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Figure 8.4: Calibration of PO-SCORAD measurements using SCORAD. A) Estimates of the
initial bias (at day one) between the SCORAD and PO-SCORAD (mean and 90% CI), normalised
by the range of the score. For example, the mean extent bias is −0.13 and extent takes values
in [0, 100], therefore patients are expected to overestimate by 0.13× 100 = 13 the score given
by the clinician5. B) PO-SCORAD trajectories and the corresponding estimates of SCORAD a
posteriori (the distribution is represented by stacked credible intervals in shades of blue). For
this representative patient, SCORAD (i.e. what a clinician would have measured) would be
higher than PO-SCORAD (assessed by the patient), on average.

effects are all negative. For a “normal” perceived cost of treatment, if the patient is risk-
averse (pessimistic), it is more likely that the algorithm recommends “using both treatments”,
compared to when the patient is risk-seeking (optimistic), where the algorithm recommends
“using no treatments” more. In any case, for a “normal” perceived cost of treatment, the most
recommended action is using corticosteroids but not emollient. This is consistent with the
result that corticosteroids are more effective than emollients (Fig. 8.5A): the additional benefit
of using emollients may not be worth their “perceived” cost, in the “normal” cost scenario.

Recommendations can change depending on how much the model has learnt from the
data, as illustrated by the fact that the algorithm recommends less of the “using both treat-
ment” action and more of the “using corticosteroids and not emollient” action, as more data
comes in (Fig. 8.6A). It is worth noting that recommendations can be “personalised”, even
though treatment parameters are not patient-dependent. For example, recommendations can
be different even for patients with the same SCORAD (Fig. 8.6B), probably because the same
SCORAD can correspond to different values of the severity items, which are associated with
different treatment responses. In addition, more treatment tends to be recommended when
the severity is high, even though a severity dependence is not explicitly assumed in the utility
function. This may be a side effect of more signs being present for severe AD, resulting in
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more potential for improvement and better responses to treatment. The severity dependence
of the recommendations could also be confounded by the fact that patients tend to have a
higher severity at the beginning of the study, when the algorithm recommends “using both
treatments” more often. These possible explanations illustrate the difficulty of interpreting the
descriptive summaries of recommendations post-hoc. Nonetheless, every recommendation can
be transparently explained by examining the utility function of the patient and their tolerance
to risk.

Figure 8.5: A) Average treatment effects on each severity item for topical corticosteroids and
emollient cream, normalised by the range of the score (mean and 90% CI). For example, the ex-
pected effect of corticosteroids on the latent sleep loss item, defined in [0, 10], is −0.02, meaning
that taking corticosteroids will on average decrease the sleep loss score by 0.20. B) Distribution
of “next-day” recommended actions for different decision profiles corresponding to a no/nor-
mal/high “perceived” cost of treatment (vertical facets) and a risk-averse/neutral/seeking patient
(horizontal facets). 𝐶 and 𝐶 correspond to the action of using and not using corticosteroids,
respectively; 𝐸 and �̄� correspond to the action of using and not using emollients, respectively.

8.3.4 Model validation

We validated the model to assess whether its new features were associated with improvements
in predictive performance (Fig. F.4). We did not find evidence that using extra information
(power prior, SCORAD measurements, treatments) was associated with noticeable long-term
improvements in predictive performance. This may not be surprising as the main contribution
of the power prior is to accelerate the learning process; the addition of at most four SCORAD
measurements is unlikely to change the performance of twelve-week-long daily time-series by
much; and treatment effects were expected to be small (cf. Chapter 4). Similarly, modelling the
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Figure 8.6: Analysis of treatment recommendations for a risk neutral patient and a “normal”
perceived cost of treatments. 𝐶 and 𝐶 correspond to the action of using and not using corti-
costeroids, respectively; 𝐸 and �̄� correspond to the action of using and not using emollients,
respectively. A) Frequency of recommended actions as a function of training day, smoothed by
LOWESS. B) Distribution of SCORAD at the time of the recommendation, for each action.

trend in the latent dynamics did not improve performance, as the trend was estimated to be
null. Modelling correlations did not change the predictive performance as measured by the
lpd6. The benefit of modelling correlations was also small for POEM prediction in Chapter 7.

8.4 Discussion

In this chapter, we used EczemaPred (Chapter 7) to predict the evolution of eczema severity
while integrating complex multi-dimensional data (Fig. 8.2) to make inferences, predictions and
treatment recommendations (Fig. 8.1). We leveraged existing knowledge about the dynamics of
the disease by designing an informative prior derived from historical data, to accelerate model
training (Fig. 8.3A). We showed that changes in eczema severity items are positively correlated
(Fig. 8.3B), but found no evidence that eczema severity trajectories exhibit any short-term trend
(Fig. F.2). We calibrated self-assessed PO-SCORAD using SCORAD measurements, assessed by
clinical staff, to adjust for the patient biases in the measurement process (Fig. 8.4). Finally, we
estimated the effects of using topical corticosteroids and emollient creams, and demonstrated a
proof-of-concept for generating personalised treatment recommendations (Fig. 8.5).

6The lpd of individual predictions differs for the model with correlated severity items and the model with
independent severity items, but when averaged over predictions, the lpd of the two models are similar.
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One of the main insights from this study is the strong heterogeneity across severity items
when estimating parameters of the latent dynamics, PO-SCORAD measurement biases and
treatment effects. For example, we found that patients are expected to overestimate extent
but underestimate redness, and that topical steroids are more effective to reduce scratching
than the thickening of the skin (lichenification). As a result, the treatment effects measured
with an aggregate severity score such as SCORAD may appear different between two patients
with the same SCORAD but different clinical phenotypes (e.g. patients with different intensity
of scratching and thickening), even if the treatment effects are not patient-dependent [18].
The fact that an effect may be confounded by the clinical phenotype of patients highlights the
importance of modelling severity items rather than the aggregate scores.

By integrating multiple sources of information in a single model, we show how EczemaPred
can provide a unified framework for predictions, inference and decision-making under uncer-
tainty. The developed model can then be used to simultaneously answer multiple research
questions in a consistent way. For example, our treatment recommendations are consistent with
the inferred treatment effects and the model’s predictions for PO-SCORAD and SCORAD, take
into account the correlations between severity items, and benefits from the existing knowledge
of prior studies, while quantifying uncertainty in measurements, parameters and predictions.
Having a flexible model that can integrate all the available information is clinically relevant for
medical decision-making, can provide more precise inference, reduce confounding, and build a
more comprehensive understanding of the disease from imperfect data.

Our study is not without limitations. First, our proposal to generate treatment recommenda-
tions is very much a proof-of-concept. The estimated treatment effects are small and uncertain,
so even if the recommendations were optimal and reliable, they would only be associated with
a small improvements in severity. More importantly, the model is not causal, and this is why we
did not attempt to evaluate the quality of the recommendations. Potentially many confounding
factors are indeed missing, making counterfactual inference not possible. For example, better
quality treatment data would be required, such as the daily usage, potency, and quantity of
treatment applied. The suggested treatment recommendations are also illustrative, as the utility
function and decision parameters would need to be adjusted to match patients’ preferences7.
Second, we did not detect any improvement of the predictive performance despite the ad-
ditional complexity implemented in the model, highlighting the difficulty of predicting the
evolution of eczema severity accurately. A larger cohort would also be required to investigate
patient-dependence (in treatment effects, measurement biases, or even dynamical parameters)
and ensure our results can be generalised.

7Patient’s preferences could also change with time. For example, a risk-seeking behaviour (welcoming
uncertainty) at the beginning of a study will encourage the exploration of new treatments. Then, the behaviour
could be gradually changed, as more data comes in, to become risk-averse (penalising uncertainty), to encourage
the “exploitation” of the acquired knowledge that some treatments are more effective than others.
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A potentially interesting use of the model would be to reduce the dimensionality of the
latent space to search for common patterns in the severity trajectories and cluster patients into
different endotypes [10]. We can indeed hypothesise that the latent trajectories associated with
different severity items may be somewhat redundant and the manifestation of a few, potentially
independent mechanisms, that could stratify patients. This type of model-based clustering has
notably been applied to investigate whether the “atopic march” hypothesis was supported by
data [192].
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Chapter 9

Conclusion

9.1 Summary

This thesis aimed to explore the feasibility of a data-driven personalised management of Atopic
Dermatitis severity, including the automatic assessment of AD severity from camera images,
the prediction of the short-term evolution of AD severity, and the generation of treatment
recommendations. Our results have highlighted the challenges of this endeavour.

9.1.1 Collecting AD severity data

In Chapter 3, we developed a computer vision pipeline to automatically detect and assess
eczema severity from camera images. While promising, our proof-of-concept only achieved
a fair performance for predicting regional severity scores. In particular, our results have
highlighted the marginal gain in predictive performance achieved by changing the model
architecture and the limitations of our medium-size dataset of images of varying quality. More
work would be required to enable reliable machine assessments of AD severity (see Section
9.2).

9.1.2 Predicting AD severity

In Chapters 4, 5, 6 and 7, we developed models and investigated requirements for predicting
the short-term evolution of AD severity.

Our first approach (Chapter 4) was to focus our modelling efforts on the dynamic of AD
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severity, by taking inspiration from an existing mathematical model that describes the biological
mechanisms of AD [159]. However, we quickly realised that the severity measurements were
noisy, and that it was difficult to achieve good prediction and extract signal from the data.
In particular, additional features beyond severity measurements were not found useful to
predict future AD severity, with only small and practically not significant effects of treatments
(Chapter 4), environmental factors (Chapter 5) and biomarkers (Chapter 6) on predictions.
While “negative”, our results illustrated and addressed common pitfalls in AD research in the
context of personalised medicine, such as conflating predictions and associations, dichotomising
continuous variables or failing to consider uncertainty in measurements and outcomes [18].
Our results suggested that it would be more effective to focus our modelling efforts on the
measurement processes, as opposed to the dynamics of AD severity. This idea led to modelling
and quantifying measurement errors explicitly using state-space models1 (Chapters 6 and 7). For
example, we achieved a good predictive performance with a more faithful representation of the
measurement processes despite assuming a naive latent dynamic in the form of a random walk
(simply assuming the future score is around the present score in Chapter 7). In particular, we
found that the ordered logistic distribution was an efficient way of modelling the measurement
of severity items (Chapters 5 and 7).

We also highlighted the importance of using high-quality measurements for prediction
(Chapter 7), although we acknowledge a trade-off between the easiness of collecting the mea-
surements and how much information they carry (notably to what extent they are predictable).
On one hand, patient global assessments (e.g. bother score in Chapter 4) are usually easy and
fast to collect for patients, but are subjective and do not differentiate the multiple symptoms or
signs of AD2. On the other hand, severity scores such as SCORAD (used in Chapters 6 and 7)
have been validated and are based on multiple severity items, but are more time-consuming
to record (even with the help of computer vision algorithms). Other scores such as EASI or
SASSAD potentially carry even more information than SCORAD as they assess the severity of
AD on different body regions rather than on a representative site, and could therefore be useful
to integrate spatial information into predictive models, at the cost of an even longer collection
time.

We also demonstrated the benefits of working with individual severity items as opposed to
aggregate severity scores (Chapters 5 and 7). Severity scores such as SCORAD, EASI, or POEM
were originally designed as summary tools for clinicians and patients. However, aggregating
multiple severity items in a single score is inefficient for fitting models due to information
loss. This has implications beyond predictive modelling, for example to optimise mathematical

1Measurement error in Chapter 4 was limited to the rounding process, to model how the discrete score was
generated.

2Although the AD symptom state in Chapter 5 can be seen as a global assessment, it is derived from multiple
severity items and is therefore not as fast to collect as a score like bother.
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models using aggregate severity score data. In particular, it would be challenging to fit SCORAD
to the previously developed mathematical model of AD pathogenesis [159], because SCORAD
aggregates severity items that relate to potentially different aspects of the model. For example,
the extent of AD may be seen as a proxy for the skin barrier integrity, whereas intensity signs
would correspond to the accumulation of flares, and subjective symptoms may not be well
represented in any state variables.

Some scores may thus be more appropriate for developing models than others. In Chapter 7,
we found that objective scores that measure physical signs of eczema (SCORAD) led to models
with better predictive performance, compared to subjective scores that measure symptoms as
experienced by patients (POEM).

9.1.3 Generating treatment recommendations

In Chapter 8, we made the model developed in Chapter 7 more relevant to clinical practice,
and proposed a proof-of-concept for generating personalised treatment recommendations.
Specifically, we demonstrated how to integrate information from previous studies to pre-train
the model, therefore avoiding the cold-start problem. We also showed how to use clinician
measurements to calibrate patients self-assessments, thus building more trust in the model
predictions. We estimated treatment effects and demonstrated a method to generate person-
alised treatment recommendations. However, evaluating the validity of these recommendations
is challenging, as it requires causal considerations (cf. Section 1.3.2). Even if the treatment
recommendations were proven to be valid, they would result in marginal improvements of AD
severity considering the small treatment effect size.

We found that treatment effects could be confounded by the clinical phenotype of patients,
i.e. different patients with the same aggregate severity but with different physical signs
could exhibit different treatment responses. This further highlights the importance of severity
measurements in data-driven AD research, and that using aggregate scores could result in
biased inferences. Choosing an appropriate score is also important when designing treatment
recommendations, as different patients may have different views on which signs/symptoms are
the most bothersome to them (e.g. some patients may prefer to reduce itch and others redness).

9.2 Future directions

We can identify several areas for future work, which we broadly classify into research and
engineering. In this dichotomy, research work would aim to to better understand the disease
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dynamics. Conversely, engineering work would aim to complete the data-driven personalised
pipeline for managing AD severity, with which patients would take photos of their eczema,
receive the likely evolution of their condition, as well as recommendations on the best course
of actions to take. In the longer term, the pipeline will also have to be validated in a real clinical
setting to demonstrate its clinical utility.

9.2.1 Research

We believe there is little gain to be made in the predictive performance of our models describing
the evolution of AD severity. We have indeed shown throughout this thesis that making
good predictions of future AD severity is challenging, and that a priori important factors
such as treatments, environmental factors or biomarkers do not have practically significant
contributions to the predictive performance. As a result, we also believe the potential for
making treatment recommendations is currently limited.

However, we do not claim that environmental factors, treatments, or biomarkers are ir-
relevant for AD research. It would be valuable to better understand their role in the disease
dynamics and pathogenesis, even if they are not predictive of AD severity. We thus believe it is
more promising to focus on inference, including causal inference, rather than prediction or
recommendations3.

For example, it would be interesting to formally investigate the causal relationship between
environmental factors and AD severity. While causal treatment effects can be estimated in
randomised controlled trials, where patients are randomised into different treatment groups, it is
more difficult to organise similar interventions for studying the causal effects of environmental
factors, as it would be unethical to deliberately expose some patients to high levels of pollution,
for example. Causal effects of environmental factors on AD severity must then be studied
using observational data. This would require the explicit and transparent specification of a
causal diagram, for example in the form of a directed acyclic graph (DAG), beyond relying
on statistical significance (or predictive criteria) and a convincing causal story [193]. The
causal diagram can be used to identify which variables need to be controlled for and which
ones should not [194] [195], and serves as a guide for data collection. Once the confounding
variables are identified and measured, flexible techniques such as Bayesian additive regression
trees (BART) could be used to estimate causal effects, without the need to specify how these
variables are parametrically related [196]. The causal diagram can also serve as a basis for a
generative model to conduct full Bayesian inference [197], even in the presence of missing

3We may reassess the potential for personalised recommendations, if we can reliably estimate causal effects
and find a disagreement with the estimates from the predictive models.

139 of 217



CHAPTER 9. CONCLUSION

confounders, where missing variables are described by probability distributions (e.g. flares in
Chapter 4) or inferred using proxies (e.g. daily quantities of treatment from the total reported
quantities in Chapter 4) [193].

Studying the dynamics of AD severity could also be useful for patient stratification, i.e.
identifying subgroups of patients with similar disease characteristics. We are not convinced
by the idea that biomarkers measured at a single timepoint could help uncover subgroups
of patients with different outcomes (endotypes, investigated in Chapter 6), nor that they are
causally related to changes in severity (cf. Section 1.3.2). Instead, we hypothesise that severity
trajectories are more likely to identify patient subgroups. For example, the evolution of severity
items may exhibit similar patterns across patients, which could be a manifestation of different
mechanisms of AD. Unsupervised learning, including clustering analysis, could help uncover
such patterns using time-series of the short-term evolution of AD severity, similarly to what
has been done to uncover developmental profiles of eczema [192] [198]. The models presented
in this thesis could serve as a basis for model-based clustering. Other approaches for clustering
AD severity trajectories could also be explored, for example using Gaussian Processes that
require fewer assumptions about the data-generating mechanisms [199] [200].

Better understanding the long-term dynamics of AD could be another promising area of
research, considering that we have only studied the evolution of AD severity over a few months,
in this thesis. For example, dynamical parameters are likely to change on a long timescale,
and may reflect changes in the disease phenotype. Studying these long-term dynamic changes
would require the analysis of long time-series (e.g. daily to weekly measurements over a few
years), which may be challenging to collect. However, the length of the time-series may balance
the need to collect data from many patients. In particular, valuable preliminary insights could
potentially be found by analysing the severity trajectory of even a single patient. This could
be achieved using change-point detection methods [201], regime-switching models [202], or
dynamical model averaging [203].

9.2.2 Engineering

We believe the main limitation for developing accurate algorithms to automatically assess AD
severity from camera images does not lie in the architecture of the neural network, but in the
quality and quantity of available data [158]. In the current absence of publicly available labelled
images of AD severity, our efforts should thus be directed towards organising data collection
and promoting data sharing. In particular, it is desirable to collect images of eczema for diverse
skin tones, as the presentation of disease signs can be different in dark compared to light skin,
for example.
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In parallel, it may be interesting to investigate at what frequency patients should collect
severity measurements to ensure good predictive performance, while minimising the inconve-
nience of collecting such data. We can imagine that patients would first record their severity
regularly (e.g. every day) for a short period (e.g. a few weeks) to tune the patient-dependent
parameters of the model, and then collect measurements only when the time to the last measure-
ment becomes too long to ensure a minimal predictive accuracy. Investigating the frequency of
data collection would ideally include elements of experimental design, to maximise the learning
rate and the accuracy of the predictive model, as well as choice modelling to understand the
patients’ perceived trade-off between predictive performance and the inconvenience of data
collection.

Finally, a computationally efficient implementation of the predictive models would be
required for their large-scale deployment. Such implementation may involve simplifying the
models, making approximations, deriving analytical solutions to speed up the computation (cf.
Kalman filter), or using faster inference methods for time-series models and online training
settings, such as Sequential Monte-Carlo (SMC, aka particle filters), variational inference or
expectation-maximisation algorithms.

Our vision for a data-driven personalised management of AD severity offers many opportunities
and challenges, and there is still a long way to go before it becomes a reality in clinical practice.
By laying the first stones towards this goal, we hope this thesis will inspire future work in this
area.

141 of 217



References

[1] S. Weidinger and N. Novak, “Atopic dermatitis,” The Lancet, vol. 387, no. 10023, pp. 1109–
1122, 2016, issn: 1474547X. doi: 10.1016/S0140-6736(15)00149-X.

[2] S. Nutten, “Atopic Dermatitis: Global Epidemiology and Risk Factors,”Annals of Nutrition
and Metabolism, vol. 66, no. Suppl. 1, pp. 8–16, May 2015, issn: 0250-6807. doi: 10.1159/
000370220.

[3] A. M. Drucker, A. R. Wang, W. Q. Li, E. Sevetson, J. K. Block, and A. A. Qureshi, “The
Burden of Atopic Dermatitis: Summary of a Report for the National Eczema Association,”
Journal of Investigative Dermatology, vol. 137, no. 1, pp. 26–30, Jan. 2017, issn: 15231747.
doi: 10.1016/j.jid.2016.07.012.

[4] J. I. Silverberg, J. P. Thyssen, A. S. Paller, et al., “What’s in a name? Atopic dermatitis
or atopic eczema, but not eczema alone,” en, Allergy: European Journal of Allergy and
Clinical Immunology, vol. 72, no. 12, pp. 2026–2030, Dec. 2017, issn: 13989995. doi:
10.1111/all.13225.

[5] T. Bieber, “Why we need a harmonized name for atopic dermatitis/atopic eczema/eczema!”
Allergy: European Journal of Allergy and Clinical Immunology, vol. 71, no. 10, pp. 1379–
1380, 2016, issn: 13989995. doi: 10.1111/all.12984.

[6] C. Frainay, Y. Pitarch, S. Filippi, M. Evangelou, and A. Custovic, “Atopic dermatitis or
eczema? Consequences of ambiguity in disease name for biomedical literature mining,”
Clinical and Experimental Allergy, vol. 51, no. 9, pp. 1185–1194, Sep. 2021, issn: 13652222.
doi: 10.1111/cea.13981.

[7] S. G. Johansson, T. Bieber, R. Dahl, et al., “Revised nomenclature for allergy for global
use: Report of the Nomenclature Review Committee of the World Allergy Organization,
October 2003,” Journal of Allergy and Clinical Immunology, vol. 113, no. 5, pp. 832–836,
May 2004, issn: 00916749. doi: 10.1016/j.jaci.2003.12.591.

[8] T. Zuberbier, S. J. Orlow, A. S. Paller, et al., “Patient perspectives on the management of
atopic dermatitis,” Journal of Allergy and Clinical Immunology, vol. 118, no. 1, pp. 226–
232, Jul. 2006, issn: 00916749. doi: 10.1016/j.jaci.2006.02.031.

142 of 217

https://doi.org/10.1016/S0140-6736(15)00149-X
https://doi.org/10.1159/000370220
https://doi.org/10.1159/000370220
https://doi.org/10.1016/j.jid.2016.07.012
https://doi.org/10.1111/all.13225
https://doi.org/10.1111/all.12984
https://doi.org/10.1111/cea.13981
https://doi.org/10.1016/j.jaci.2003.12.591
https://doi.org/10.1016/j.jaci.2006.02.031


REFERENCES

[9] J. Krejci-Manwaring, M. G. Tusa, C. Carroll, et al., “Stealth monitoring of adherence to
topical medication: adherence is very poor in children with atopic dermatitis.,” Journal
of the American Academy of Dermatology, vol. 56, no. 2, pp. 211–6, Feb. 2007, issn:
1097-6787. doi: 10.1016/j.jaad.2006.05.073.

[10] T. Bieber, A. M. D’Erme, C. A. Akdis, et al., “Clinical phenotypes and endophenotypes
of atopic dermatitis: Where are we, and where should we go?” eng, Journal of Allergy
and Clinical Immunology, vol. 139, no. 4, S58–S64, Apr. 2017, issn: 10976825. doi:
10.1016/j.jaci.2017.01.008.

[11] S. J. Galli, “Toward precision medicine and health: Opportunities and challenges in
allergic diseases,” Journal of Allergy and Clinical Immunology, vol. 137, no. 5, pp. 1289–
1300, May 2016, issn: 00916749. doi: 10.1016/j.jaci.2016.03.006.

[12] L. S. van Galen, X. Xu, M. J. Koh, S. Thng, and J. Car, “Eczema apps conformance with
clinical guidelines: a systematic assessment of functions, tools and content,” British
Journal of Dermatology, vol. 182, no. 2, pp. 444–453, Feb. 2020, issn: 13652133. doi:
10.1111/bjd.18152.

[13] Y. Bengio, Y. Lecun, and G. Hinton, “Deep learning for AI,” Communications of the ACM,
vol. 64, no. 7, pp. 58–65, Jul. 2021, issn: 0001-0782. doi: 10.1145/3448250.

[14] G. D. Magoulas and A. Prentza, “Machine Learning in Medical Applications,” in Machine
Learning and Its Applications, Advanced Lectures, London, UK, UK: Springer-Verlag,
2001, pp. 300–307, isbn: 978-3-540-42490-1. doi: 10.1007/3-540-44673-7{∖ }19.

[15] T. Ching, D. S. Himmelstein, B. K. Beaulieu-Jones, et al., “Opportunities and obstacles
for deep learning in biology and medicine,” Journal of The Royal Society Interface, vol. 15,
no. 141, p. 20 170 387, Apr. 2018, issn: 1742-5689. doi: 10.1098/rsif.2017.0387.

[16] K. Eyerich, S. J. Brown, B. E. Perez White, et al., “Human and computational models of
atopic dermatitis: A review and perspectives by an expert panel of the International
Eczema Council.,” The Journal of allergy and clinical immunology, vol. 143, no. 1, pp. 36–
45, Jan. 2019, issn: 1097-6825. doi: 10.1016/j.jaci.2018.10.033.

[17] J. Schmitt, M. Meurer, U. Schwanebeck, X. Grählert, and K. Schäkel, “Treatment follow-
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Supplementary figures to Chapter 3

Figure A.1: Data inclusion, exclusion and validation splits
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Figure A.2: Architectures of EczemaNet, baselines and ablations
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Figure A.3: Base architecture comparisons. RMSE (mean ± 1 standard error over cross-
validation) on EASI across models.

Figure A.4: SASSAD prediction. A) RMSE (mean ± 1 standard error over cross-validation
across models. B) Calibration of highest density prediction intervals (coverage).

Figure A.5: TISS prediction. A) RMSE (mean ± 1 standard error over cross-validation) across
models. B) Calibration of highest density prediction intervals (coverage).
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Appendix to Chapter 4

B.1 Clinical data

B.1.1 Flares dataset

The data comes from a study of 60 children (53% male) with moderate to severe eczema, fulfilling
the U.K. refinement of the Hanifin and Rajka diagnostic criteria. The patients were recruited
consecutively from the Queen’s Medical Centre paediatric dermatology outpatient department,
Nottingham, England. The patients had a median age at enrolment of 6.5 years (IQR 8.5 years)
and 63% of them were from white ethnicity.

B.1.2 SWET dataset

The data comes from a study of 336 children (57% male) who were identified through secondary
care referral centres, primary care, or in response to publicity. All had a diagnosis of eczema
according to the UK working party’s diagnostic criteria and a minimum eczema severity score
of ten points using the Six Area Six Sign Atopic Dermatitis severity score (SASSAD). Patients
were aged from 6 months to 16 years and 77% of them were from white ethnicity.

B.2 Description of the extended model

We extended our mechanistic Bayesian model to consider information present in the SWET
dataset that was not available in the Flares dataset, notably to investigate the effects of potential

164 of 217



APPENDIX B. APPENDIX TO CHAPTER 4

risk factors on severity scores and heterogeneity in treatment responsiveness.

The extended model consists of the measurement process (Eq. (4.1)), and an exponentially
modified Gaussian distribution:

𝑦(𝑘)(𝑡+ 1) ∼ 𝒩[0,10]

(︀
𝛼(𝑘)𝑦(𝑘)(𝑡) + (𝜃(𝑘))𝑇𝑢(𝑘)(𝑡) + (𝑥(𝑘))𝑇𝛽 +𝑅(𝑘)(𝑡) + 𝛽0, 𝜎

2
)︀

(B.1)

𝑅(𝑘)(𝑡) ∼ Exp
(︀
𝛽 = 𝑃 (𝑘)

)︀
(B.2)

• (𝜃(𝑘))𝑇𝑢(𝑘)(𝑡) represents the contribution of exogenous factors, including treatments
and whether the patient “slept at home” 𝑢(𝑘)

Home(𝑡), with:
𝜃(𝑘) =

(︀
𝜃
(𝑘)
SU , 𝜃

(𝑘)
CS , 𝜃

(𝑘)
CI , 𝜃Home

)︀𝑇 and 𝑢(𝑘)(𝑡) =
(︀
𝑢
(𝑘)
SU (𝑡), 𝑢

(𝑘)
CS (𝑡), 𝑢

(𝑘)
CI (𝑡), 𝑢

(𝑘)
Home(𝑡)

)︀𝑇 .
The contribution of treatments corresponds to the linear combination of treatment usage
(Fig. B.5) for step-up (𝑢(𝑘)

SU (𝑡)), topical steroid (𝑢(𝑘)
CS (𝑡)) and calcineurin inhibitors (𝑢(𝑘)

CI (𝑡)).
• (𝑥(𝑘))𝑇𝛽 represents the contribution of demographics factors, including the presence of

filaggrin mutation (𝑥(𝑘)
FLG ), sex (𝑥(𝑘)

Sex ), age (𝑥(𝑘)
Age ), and “white” ethnicity (𝑥(𝑘)

White ), such as:
𝑥(𝑘) =

(︀
𝑥
(𝑘)
FLG , 𝑥

(𝑘)
Sex , 𝑥

(𝑘)
Age , 𝑥

(𝑘)
White

)︀𝑇 and 𝛽 =
(︀
𝛽FLG , 𝛽Sex , 𝛽Age , 𝛽White

)︀𝑇 .

We assumed a hierarchical prior for 𝜃(𝑘)SU :

𝜃
(𝑘)
SU ∼ 𝒩 (𝜇SU , 𝜎

2
SU ) (B.3)

And we expressed 𝜃
(𝑘)
CS and 𝜃

(𝑘)
CI as a function of the daily quantity of treatment of different

potencies used. For 𝑇 ∈ {CS ,CI } and P ∈ {Mild,Moderate, Potent,Very Potent}:

𝜃
(𝑘)
𝑇 = 𝛾

(𝑘)
𝑇 +

∑︁
𝑃

𝜃𝑇,𝑃 𝑞
(𝑘)
𝑇,𝑃 (B.4)

• 𝑞
(𝑘)
𝑇,𝑃 is the estimated daily quantity of treatment 𝑇 of potency 𝑃 used (detailed below).

• 𝜃𝑇,𝑃 is the relative contribution of treatment 𝑇 of potency 𝑃 to the severity score.
• 𝛾

(𝑘)
𝑇 is the intrinsic responsiveness of the 𝑘-th patient to treatment 𝑇 . We assumed a

hierarchical prior for 𝛾(𝑘)
𝑇 :

𝛾
(𝑘)
𝑇 ∼ 𝒩 (𝜇𝑇 , 𝜎

2
𝑇 ) (B.5)

Finally, the daily quantity of treatment used by the 𝑘-th patient, 𝑞(𝑘)𝑇,𝑃 , is estimated from the
reported total quantity of treatment used, 𝑄(𝑘)

𝑇,𝑃 :

𝑞
(𝑘)
𝑇,𝑃 =

⎧⎪⎨⎪⎩
0 if 𝑄(𝑘)

𝑇,𝑃 = 0

�̂�
(𝑘)
𝑇,𝑃

𝑁
(𝑘)
𝑇,𝑃

otherwise
(B.6)
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Where 𝑁
(𝑘)
𝑇,𝑃 is the number of treatment applications and �̂�

(𝑘)
𝑇,𝑃 is the total quantity of

treatment used and estimated by a multiplicative error model:

log
(︀
�̂�

(𝑘)
𝑇,𝑃

)︀
∼ 𝒩

(︂
log
(︀
𝑄

(𝑘)
𝑇,𝑃

)︀
,

𝜎2
𝑄

Conf (𝑘)

)︂
(B.7)

Where the quantity 𝑄
(𝑘)
𝑇,𝑃 is reported by the 𝑘-th patient with a confidence level, Conf (𝑘) ∈

{1 = “not all sure”, 2 = “not sure”, 3 = “sure”, 4 = “very sure”}.

B.3 Missing value imputation

As is often the case with real-world data, especially clinical data, the Flares and SWET datasets
contain missing values in the bother score 𝑦(𝑘)(𝑡) (38.8% and 1.9%, respectively). Ignoring
missing values, for example by removing them entirely, could result in a drastic reduction of
the available data and information, especially when we deal with time-series data where the
observations are related to each other. Our model explicitly accepts the absence of measure-
ments without requiring prior imputation of 𝑦(𝑘)(𝑡), as we model the measurement process
of 𝑦(𝑘)(𝑡) and the dynamics of the latent score 𝑦(𝑘)(𝑡) separately. In other words, 𝑦(𝑘)(𝑡) is a
parameter to be inferred regardless of whether 𝑦(𝑘)(𝑡) is observed or not.

We did not let the model impute the missing values for the other covariates (treatment
and risk factors for the extended model) to avoid reverse causality. If the model was imputing
the missing values for treatment data, it may determine the value a posteriori based on the
knowledge that the severity is decreasing. Instead, we made a conservative assumption to
replace missing values for treatment 𝑢(𝑘)(𝑡) (including 𝑢

(𝑘)
CS (𝑡), 𝑢

(𝑘)
CI (𝑡), 𝑢

(𝑘)
SU (𝑡)) with 0 (no use

of treatment). As a result, the effects of treatment on future severity scores are more likely to be
underestimated than overestimated. Similarly, missing Conf (𝑘) (2/327 patients) were imputed
by “not at all sure”, missing 𝑥

(𝑘)
FLG (22/327 patients) were imputed by 0 (absence of mutation),

missing 𝑥
(𝑘)
White (2/327 patients) were imputed by 0 (non-white or do not wish to declare) and

missing 𝑢
(𝑘)
Home(𝑡) were imputed by 1 (“slept at home”, the most common answer).

B.4 Choice of priors

We chose the following weakly informative priors for the population parameters:

• 𝛽0 , 𝛽0 + 𝜃(𝑘) ∼ 𝒩 (0, 22), for the constant term (intercept, intercept + responsiveness
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when 𝑢(𝑘)(𝑡) = 1 (a similar prior is given to the constant term in the extended model).
• 𝜇𝜃 , 𝜇SU , 𝜇CS , 𝜇CI ∼ 𝒩 (0, 1) for the population mean of responsiveness to treatment.

We expect the effect to be less than two points of bother in absolute value.
• 𝜎𝜃 , 𝜎SU , 𝜎CS , 𝜎CI ∼ 𝒩 (0, 0.52) for the population-level standard deviation of respon-

siveness to treatment. We expect the standard deviation of responsiveness to be less
than one point of bother, which could imply a difference of 4 points between the most
responsive and the least responsive patients.

• 𝜇𝛼 ∼ 𝒩 (0, 1) and 𝜎𝛼 ∼ 𝒩 (0, 1.52) for the population mean and standard deviation of
the autocorrelation (in logit scale). These priors resulted in an approximately uniform
distribution for 𝛼(𝑘).

• 𝜎𝑃 ∼ 𝒩+(0, 1). As a rule of thumb, this prior indicates that the most plausible values
are ≤ 2, which would imply that the most plausible values for 𝑃 (𝑘) would be ≤ 4, and
𝑅(𝑘)(𝑡) could take values from 0 to 10 (maximum value of the score).

• 𝜎 ∼ 𝒩+(0, 1.52). As a rule of thumb, this prior indicates the most plausible values for 𝜎
are ≤ 3, which implies that the width of the distribution could be equal to 12 (compared
to a score that ranges from 0 to 10).

• 𝛽FLG , 𝛽Sex , 𝛽White , 𝜃Home ∼ 𝒩 (0, 0.52) for the binary risk factors in the extended
model. We expect the absolute effect to be less than 1 point.

• 𝛽Age ∼ 𝒩 (0, 0.12) for age (in years) in the extended model. We expect that a 10-year
difference would have an effect of less than 2 points.

• 𝜃CS ,Mild , 𝜃CS ,Moderate , 𝜃CS ,Potent , 𝜃CS ,Very Potent , 𝜃CI ,Mild , 𝜃CI ,Moderate ∼ 𝒩 (0, 0.52) for the
contribution of quantity in the responsiveness to treatment. This implies that we expect
the change in bother per daily gram of treatment is less than 1.

The priors for the parameters of the reference models (𝛼, 𝛽0, 𝜎) are the same as the priors
for the mechanistic Bayesian model.

We originally set a prior for 𝜎𝑄, the standard deviation that controls how accurate the
reported quantity of treatment is, but the parameter was not identifiable with our data. As
a result and to ease the computational burden of the inference algorithm, we chose to set
𝜎𝑄 = 0.25, a value that we considered conservative. With 𝜎𝑄 = 0.25, the 95% CI of the true
quantity of treatment used is between 60% and 165% of the reported quantity, when patients
reported that they were “not at all sure” in their reported quantity of treatment 𝑄(𝑘)

𝑇,𝑃 .

Computational problems can arise if most of the mass of the non-truncated distribution
predictive distribution of 𝑦(𝑘)(𝑡+ 1) is outside the support of the score ([0, 10]). For example,
when 𝜇 = 20 and 𝜎2 = 1, the normalisation constant, 𝑍 =

∫︀ 10

0
𝑓𝒩 (𝑥;𝜇, 𝜎2)𝑑𝑥, is infinitesimal

and identifiability issues may arise because the shape of 𝒩[0,10](20, 1) is very similar to the
shape of 𝒩[0,10](15, 1), for example. To overcome these potential problems, we implemented

167 of 217



APPENDIX B. APPENDIX TO CHAPTER 4

a “soft-uniform” prior on the linear predictor term, 𝛼(𝑘)𝑦(𝑘)(𝑡) + 𝜃(𝑘)𝑢(𝑘)(𝑡) + 𝑅(𝑘)(𝑡) + 𝛽0,
to reflect our expectation that the predicted score, 𝑦(𝑘)(𝑡+ 1), should not be “too much” out-
side [0, 10]. The “soft-uniform” prior is defined by the probability density function 𝑓(𝑥) =
logit−1(𝑥+1)−logit−1(𝑥−11)

12
, resulting in an approximately constant density between 0 and 10 (there-

fore not prioritising any values in this range) with a slow convergence to a density of 0 (i.e.
penalising values) outside this range.

B.5 Learning curves

To investigate whether the model learns/improves its performance as more data comes in,
we plotted the evolution of the RPS and lpd as a function of the training iterations of the
forward chaining (Fig. 4.3). However, these metrics are not computed on the same population
at each iteration due to missing observations (especially in the Flares dataset). Specifically, the
sub-populations at a later time were not representative of the entire population, as patients
with controlled AD tended to drop out earlier in clinical trials than patients with uncontrolled
AD1. The fact that patients with controlled AD are easier to predict (low noise, low RPS, high
lpd) than patients with uncontrolled AD (high noise, high RPS, low lpd) resulted in Simpson’s
paradox, where the RPS averaged over available subpopulations hit a minimum then increase,
although individual RPS may decrease (Fig. B.1, Section 2.3.2).

We therefore decided to control for this patient-dependency by computing the performance
metric 𝑚 ∈ {RPS , lpd} at the observation-level, proposing a model for 𝑚 and taking the mean
fit as an unbiased estimate of 𝑚. We used a Generative Additive Model (GAM) with cubic
splines to achieve a flexible fit to the evolution of 𝑚 while avoiding overfitting. The model was
fitted using the gamm4 package in R to the formula:

𝑚 ∼ [𝑖 = 0] + [𝑖 > 0] : 𝑡+ [𝑖 > 0] : 𝑠(𝑖) + (1|Patient) (B.8)

• [.] is the Iverson bracket: [𝐴] = 1 if A is true and 0 otherwise.
• The coefficient for [𝑖 = 0] corresponds to estimate for 𝑚(𝑖 = 0).
• [𝑖 > 0] : 𝑡 represents the interaction between [𝑖 > 0] (1 if 𝑖 > 0 and 0 otherwise) and the

prediction horizon 𝑡 (the corresponding coefficients measures how much performance is
lost as t increases).

• 𝑠(𝑖) represents a cubic spline on 𝑖, a linear combination of piecewise cubic polynomial
basis function 𝑏𝑗(𝑖) and coefficients 𝛽𝑗 , 𝛽1𝑏1(𝑖) + 𝛽2𝑏2(𝑖) + ... + 𝛽𝑙𝑏𝑙(𝑖), to model the
evolution of RPS as more data comes in.

• (1 |Patient) represents a random effect on the intercept for different patients.
1In other words, missing values due to patients dropping the study early are not missing at random.
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Figure B.1: Learning curves of RPS (smoothed by LOWESS) for the model trained on the Flares
dataset. The orange and blue circles correspond to the patients who dropped out of the study
after and before the 29th iteration, respectively. The total RPS (black) is the average of the two
curves weighted by the proportion of the patients in each group at a given time. The orange
and blue curves can both decrease (i.e. the performance improves), while the average increases
(Simpson’s paradox).

The performance for the first training iteration (𝑖 = 0) was estimated separately because
the model has not started learning yet (the predictive distribution is thus the prior predictive
distribution). We also controlled for the prediction horizon ([𝑖 > 0] : 𝑡), since predictions at
each iteration were made for the entire week, but the performance was expected to decrease
as the prediction horizon increased. We further introduced a mixed effect on the intercept
((1 |Patient)) to adjust for patient-dependence.
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B.6 Supplementary tables

Table B.1: Posterior summary statistics for the population-level parameters of the model trained
on the Flares dataset

Parameter �̂� Neff mean SD SE 2.5% 50% 97.5%
𝛽0 1.000 1080 -0.194 0.030 0.001 -0.253 -0.193 -0.136
𝜎 1.007 191 0.654 0.025 0.002 0.605 0.654 0.702
𝜇𝛼 1.005 956 0.211 0.251 0.008 -0.286 0.216 0.698
𝜎𝛼 1.000 3637 1.841 0.217 0.004 1.465 1.826 2.314
𝜇𝜃 1.001 6480 -0.235 0.069 0.001 -0.371 -0.234 -0.101
𝜎𝜃 1.002 3269 0.367 0.063 0.001 0.253 0.364 0.503
𝜎𝑃 1.009 937 1.669 0.156 0.005 1.389 1.658 2.003

Table B.2: Posterior summary statistics for the population-level parameters of the model trained
on the SWET dataset

Parameter �̂� Neff mean SD SE 2.5% 50% 97.5%
𝛽0 1.001 2905 0.087 0.013 0.000 0.062 0.087 0.113
𝜎 1.008 840 0.575 0.005 0.000 0.565 0.575 0.585
𝜇𝛼 1.015 581 1.813 0.071 0.003 1.675 1.813 1.948
𝜎𝛼 1.005 1181 1.108 0.052 0.002 1.011 1.106 1.213
𝜇𝜃 1.001 1896 -0.207 0.024 0.001 -0.253 -0.207 -0.161
𝜎𝜃 1.004 1468 0.341 0.024 0.001 0.296 0.340 0.389
𝜎𝑃 1.010 448 0.904 0.037 0.002 0.834 0.903 0.981
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B.7 Supplementary figures

Figure B.2: Example data from SWET dataset. Discontinuities represent missing values. Data
from the Flares dataset is similar but with only bother score and step-up, and with more missing
values.
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Figure B.3: Missing bother scores in Flares dataset. Black and orange indicate observed and
missing scores, respectively. The x-axis indicates the date of the measurement.
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Figure B.4: Missing bother scores in SWET dataset. Black and orange indicate observed and
missing scores, respectively. The x-axis indicates the date of the measurement.
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Figure B.5: Factor graph of the treatment term from the extended model (Appendix B.2). The
grey and white circles represent the observed and latent variables, respectively. The variables
are connected to factors (square nodes) that represent the operations or conditional probability
distributions. For instance, 𝑏(𝑘)𝑇 is normally distributed with mean 𝜇𝑇 and variance 𝜎2

𝑇 , and
𝑞
(𝑘)
𝑇,𝑃 is defined by �̂�

(𝑘)
𝑇,𝑃

𝑁
(𝑘)
𝑇

. Plates (squared ovals) represent the variables that are repeated in the
model. For example, all variables in the 𝑇 ∈ {CS ,CI } plate are duplicated for corticosteroids
(CS) and calcineurin inhibitors (CI).
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Figure B.6: Estimates of the patient-dependent model parameters (𝛼(𝑘), 𝜃(𝑘), 𝑃 (𝑘)) fitted to
Flares dataset. Black circles and the line segments represent the mean posterior and the 90%
credible interval, respectively. Estimates greatly vary from one patient to another, confirming
their patient-dependence. A: 𝛼(𝑘) (persistence of the severity score). The closer 𝛼(𝑘) is to 1, the
more persistent the severity score is. B: 𝜃(𝑘) (responsiveness to treatment). The value of 𝜃(𝑘)
quantifies the expected change in the severity score by the treatment. C: 𝑃 (𝑘) (flare triggers).
Higher 𝑃 (𝑘) is associated with more severe and frequent flares.
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Figure B.7: Estimates of the patient-dependent model parameters (𝛼(𝑘), 𝜃(𝑘), 𝑃 (𝑘)) fitted to
SWET dataset. Black circles and the line segments represent the mean posterior and the 90%
credible interval, respectively. Estimates greatly vary from one patient to another, confirming
their patient-dependence. A: 𝛼(𝑘) (persistence of the severity score). The closer 𝛼(𝑘) is to 1, the
more persistent the severity score is. B: 𝜃(𝑘) (responsiveness to treatment). The value of 𝜃(𝑘)
quantifies the expected change in the severity score by the treatment. C: 𝑃 (𝑘) (flare triggers).
Higher 𝑃 (𝑘) is associated with more severe and frequent flares.
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Figure B.8: Calibration curves for the models trained by Flares dataset (a) and SWET dataset
(b), obtained using locally weighted scatterplot smoother (LOWESS).
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Figure B.9: Performance (A-C) and fit (D) of the model predicting the “scratch” severity score
that was only available in Flares dataset. A-B: Learning curves for RPS (A) and lpd (B) for
our model (black) compared to the benchmark models. C: Calibration curves. D: Posterior
summary statistics of the main parameters.

179 of 217



Appendix C

Supplementary figure to Chapter 5

Figure C.1: Distribution of the AD signs scores across time and patients.
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Appendix to Chapter 6

D.1 Choice of priors

D.1.1 Priors for the baseline model

We chose to parametrise the model with 𝜎t =
√︀
𝜎2

m + 𝜎2
l , the standard deviation for two-weeks-

ahead predictions, and 𝜌2 = 𝜎2
m

𝜎2
t

, the ratio of the measurement variance to the total variance. 𝜌2

can be interpreted similarly to an R-squared (coefficient of determination), as the proportion
of the explained variance (the variance of the measurements) in the total variance. We found
that a parametrisation in terms (𝜎t , 𝜌

2) resulted in more robust computation and increased
effective sample sizes, as opposed to a parametrisation in terms of (𝜎m , 𝜎l). The priors for 𝜎t

and 𝜌2 are given by:

𝜎t

𝑀
∼ log𝒩

(︁
− log(20),

(︀
0.5 log(5)

)︀2)︁ (D.1)

𝜌2 ∼ Beta(4, 2) (D.2)

The prior for 𝜎t is a lognormal distribution with a 95% confidence interval that corresponds
to [0.01𝑀, 0.25𝑀 ]. The prior for 𝜌2 is Beta distribution to reflect our expectation that future
severity scores are predictable (i.e. 𝜎l < 𝜎m).
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We assumed a hierarchical prior for the autocorrelation parameter 𝛼(𝑘):

𝛼(𝑘) ∼ Beta
(︀
𝜇𝛼𝜑𝛼, (1− 𝜇𝛼)𝜑𝛼

)︀
(D.3)

𝜇𝛼 ∼ Beta(2, 2) (D.4)

𝜑𝛼 ∼ log𝒩
(︁
log(10),

(︀
0.5 log(10)

)︀2)︁ (D.5)

𝜇𝛼 is the population mean of the Beta distribution, and is given a symmetric prior which
slightly favours values around 0.5, as opposed to 0 or 1. 𝜑𝛼 is the population pseudo-sample
size of the Beta distribution, and is given a lognormal prior with a 95% confidence interval
being approximately [1, 100], allowing a wide variety of distributions for 𝛼(𝑘), from well spread
to concentrated. The resulting marginal prior for 𝛼(𝑘) is approximately uniform.

We defined the prior for the intercept 𝛽(𝑘)
0 by introducing the expected value of the au-

toregressive process 𝑦(𝑘)∞ , such that 𝛽(𝑘)
0 = (1− 𝛼(𝑘))𝑦

(𝑘)
∞ . We assumed a Gaussian hierarchical

prior on 𝑦
(𝑘)
∞ :

𝑦(𝑘)∞ ∼ 𝒩 (𝜇∞, 𝜎2
∞) (D.6)

𝜇∞

𝑀
∼ 𝒩 (0.5, 0.252) (D.7)

𝜎∞

𝑀
∼ 𝒩+(0, 0.1252) (D.8)

𝜇∞ is the population mean of 𝑦(𝑘)∞ and is given a normal prior that covers the range of the score
([0,𝑀 ]). 𝜎∞ is the population standard deviation, and is given a half-normal prior that reflects
our assumption that 𝜎∞ is at most 0.25𝑀 , which would result in the width of the distribution
for 𝑦(𝑘)∞ to be at most 𝑀 . The resulting marginal prior for 𝑦(𝑘)∞ is approximately uniform in
[0,𝑀 ].

Finally, we implemented a soft-uniform prior on the latent score 𝑦(𝑘)(𝑡) (similarly to Chapter
4) to avoid the situation where most of the mass of the non-truncated distribution for 𝑦(𝑘)(𝑡)
is outside of the range [0,𝑀 ], which can cause computational problems for the (truncated)
measurement distribution. The soft-uniform prior is defined by the probability density function,
𝑓(𝑥) = logit−1(𝑥+0.01𝑀)−logit−1(𝑥−1.01𝑀)

1.02𝑀
, resulting in an approximately constant density between

0 and 𝑀 (i.e. not prioritising any values in this range) with a slow convergence to 0 (i.e.
penalising values) outside this range.
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D.1.2 Regularised horseshoe prior

We assumed a regularised horseshoe prior [187] for the coefficients 𝛽𝑖 (𝑖 = 1 , ... , 30 = 𝐷),
defined by:

𝛽𝑖 ∼ 𝒩 (0, �̃�2
𝑖 𝜏

2) (D.9)

�̃�𝑖 =
𝑐2𝜆2

𝑖

𝑐2 + 𝜏 2𝜆2
𝑖

(D.10)

𝜆𝑖 ∼ 𝒞+(0, 1) (D.11)

𝜏 ∼ 𝒞+
(︀
0,

𝑝0
𝐷 − 𝑝0

𝜎l√
𝑁

)︀
(D.12)

𝑐2 ∼ Inv-𝜒2(𝜈, 𝜎2
𝜒) (D.13)

Where:

• �̃�𝑖 is the local shrinkage parameter.
• 𝜏 is the global shrinkage parameter.
• 𝑐 represents the scale of the signal. It is given a scaled-inverse chi-squared prior, where

we assume the degree of freedom, 𝜈 = 5, and the scale, 𝜎𝜒 = 1. This scale-inverse
chi-squared prior translates to a Student-t slab with 𝜈 degrees of freedom and scale 𝜎𝜒

for coefficients far from 0. This prior reflects the assumption that the order of magnitude
of non-zero coefficients is around 1 but could be higher.

• 𝑝0 = 5 is the expected number of covariates with non-zero coefficients.
• 𝐷 = 30 is the number of covariates.
• 𝑁 = 42 is the number of patients.

D.1.3 Reference model priors

• For the random walk model, the prior for 𝜎 is the same as that for 𝜎t in our SSM.
• The autoregressive is an extension of the random walk model, with a uniform prior for
𝛼 ∼ 𝒰(0, 1) and a prior for 𝑦∞ that is the same as the prior for 𝜇∞ in the SSM.

• The mixed effect autoregressive model extends the autoregressive model, and priors for
𝛼(𝑘) and 𝛽

(𝑘)
0 are the same as those for the SSM.
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D.2 Supplementary tables

Table D.1: Posterior summary statistics of the population-level parameters for the model
predicting EASI without covariates.

Parameter Interpretation �̂� 𝑁eff Mean SD 2.5% 50% 97.5% PS*
𝜎𝑡 Square root of the total variance 1.000 1760 4.499 0.283 3.976 4.488 5.094 0.988
𝜌2 Proportion of the 𝜎2

m in the total vari-
ance

1.002 1055 0.947 0.037 0.853 0.955 0.993 0.955

𝜎l Standard deviation of the latent dy-
namic

1.003 1089 0.968 0.340 0.371 0.946 1.671 0.939

𝜎m Standard deviation of the measure-
ment process

1.001 1453 4.379 0.310 3.794 4.372 5.013 0.982

MDC Minimum Detectable Change for a
95% confidence level

1.001 1453 8.582 0.607 7.436 8.568 9.826 0.982

𝜇𝛼 Population mean of the autocorrela-
tion parameter 𝛼

1.002 1572 0.688 0.042 0.600 0.691 0.765 0.961

𝜑𝛼 Population “pseudo-sample size” of
the autocorrelation 𝛼

1.004 1174 3.664 1.094 2.026 3.504 6.187 0.999

𝜇∞ Population mean of the autoregressive
process

1.002 1597 3.574 0.588 2.446 3.561 4.789 0.997

𝜎∞ Population standard deviation of the
autoregressive process

1.002 2017 0.507 0.405 0.017 0.421 1.489 0.986

* The Posterior Shrinkage (PS) of the parameter 𝜃 is defined as 1 − Var(𝜃post)
Var(𝜃prior)

. PS near 0 indicates that the data
provides little information beyond the prior and PS near 1 indicates that the data is much more informative than
the prior.

Table D.2: MCID and MDC comparison

EASI SCORAD oSCORAD POEM
MCID [102] 6.6 8.7 8.2 3.4
MDC
(mean and 90% CI)

8.6
[7.6, 9.6]

11.4
[9.1, 13.5]

9.1
[7.4, 10.7]

7.7
[6.7, 8.9]

E(MDC) / M 8.6/72 = 12% 8.7/103 = 8.4% 9.1/83 = 11% 7.7/28 = 28%
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D.3 Supplementary figures

Figure D.1: K-fold cross-validation (𝐾 = 5 in this example) in a forward chaining setting,
which reflects how the model would be used in a clinical setting. For each fold, the model was
pre-trained with (𝐾 − 1) subsets of patients and validated on the remaining subset of patients
in a forward chaining setting.

Figure D.2: Performance of our model (SSM) and reference models (MixedAR, AR, RW and
Uniform) to predict EASI, evaluated by the lpd (the higher the better). Estimates of lpd are
displayed as a function of the prediction horizon for various training weeks (panels) and models
(colours).
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Figure D.3: Predictive performance of our model (SSM) and reference models (MixedAR, AR, RW
and Uniform) for oSCORAD (A), SCORAD (B) and POEM (C). The performance was evaluated
by lpd (higher the better). Left: Learning curves (mean ± SE) for two-weeks-ahead predictions,
after adjusting for different prediction horizons in a linear model. Right: Change in lpd as the
prediction horizon is increased by two weeks.
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Appendix to Chapter 7

E.1 EczemaPred models

E.1.1 Binomial Markov chain

The extent model assumes that we can subdivide the body area into 100 patches, each with a
probability, 𝑦, of being classified as lesional, and that each patch has fixed transition probabilities
between lesional and non-lesional states. The measurement is specified as a binomial distribu-
tion to count the number of lesional patches to produce the extent score, 𝑦 = 𝐴 ∼ ℬ(100, 𝑦).

Two-state Markov chain models for latent dynamics

We model the transition from non-lesional to lesional or from lesional to nonlesional for any
given patch of the skin with a two-state Markov chain (Fig. E.1) characterised by the transition
matrix:

𝑇 =

(︃
𝑝00 𝑝01

𝑝10 𝑝11

)︃
=

(︃
1− 𝑝01 𝑝01

𝑝10 1− 𝑝10

)︃
(E.1)

Where:

• 𝑝10 is the transition probability from lesional to non-lesional states, i.e. the probability
that a lesional patch is classified as non-lesional at the next step.

• 𝑝11 = 1− 𝑝10 is the probability that a lesional patch stays lesional and can be interpreted
as a measure of eczema persistence.

• 𝑝01 is the transition probability from non-lesional to lesional states, i.e. the probability
that a non-lesional patch is classified as lesional at the next step, and can be interpreted
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as a measure of the sensitivity to develop eczema symptoms.

Figure E.1: Two state Markov Chain (0 = “healthy skin”, 1 = “lesional skin”)

The probability, 𝑦(𝑡), of a given patch being lesional is computed by:

𝑦(𝑡+ 1) = 𝑝11 𝑦(𝑡) + 𝑝01
(︀
1− 𝑦(𝑡)

)︀
(E.2)

If the state of a skin patch at time 𝑡 is denoted by 𝑥𝑡 =
(︁
1 0

)︁
when it is non-lesional,

and 𝑥𝑡 =
(︁
0 1

)︁
when it is lesional, then the predictions of the state at time 𝑡+ ℎ is given by

𝑥𝑡+ℎ = 𝑥𝑡𝑇
ℎ with:

𝑇 ℎ =

(︃
1− 𝜋 𝜋

1− 𝜋 𝜋

)︃
+ 𝜆ℎ

(︃
𝜋 −𝜋

−(1− 𝜋) 1− 𝜋

)︃
(E.3)

𝜆 = 1−𝑝01−𝑝10 is one of the eigenvalues of 𝑇 (the other one is 1) and 𝜋 = 𝑝01
𝑝01+𝑝10

characterises
the steady state (limiting) distribution, 𝑥∞ =

(︁
1− 𝜋 𝜋

)︁
, to which the Markov chain converges

if the prediction horizon ℎ is long enough. The value of 𝜆 indicates the mobility of the Markov
chain, i.e. how fast it converges to the steady-state distribution, with |𝜆| → 0 indicating faster
convergence.

We assume that the probabilities 𝑝01 and 𝑝10 are patient-dependent, and that either one or
both probabilities are time-dependent, given that the Markov chain converges to the steady
state distribution, 𝜋 = 𝑝01

𝑝01+𝑝10
, which is likely to evolve over a long enough time. We further

assume that 𝑝10 (= 1− 𝑝11, where 𝑝11 is a measure of eczema persistence) does not exhibit a
strong time-dependence and that 𝑝01 (a measure of the sensitivity to develop eczema symptoms)
dynamically changes due to endogenous and exogenous factors such as the skin barrier integrity
and environmental stressors, respectively. We therefore parametrise the Markov chain by a
time (𝑡)- and patient (𝑘)-dependent 𝜋(𝑘)(𝑡) and a patient-dependent 𝑝(𝑘)10 , from which we can
derive:

𝑝
(𝑘)
01 (𝑡) = 𝑝

(𝑘)
10

𝜋(𝑘)(𝑡)

1− 𝜋(𝑘)(𝑡)
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Summary and priors

The evolution of the extent, 𝑦(𝑘)(𝑡), for the 𝑘-th patient at time 𝑡 is modelled with a binomial
measurement model and latent Markov chain model described above1:

𝑦(𝑘)(𝑡) ∼ ℬ(100, 𝑦(𝑘)(𝑡)) (E.4)

𝑦(𝑘)(𝑡+ 1) = 𝑝
(𝑘)
11 𝑦(𝑘)(𝑡) + 𝑝

(𝑘)
01 (𝑡)

(︀
1− 𝑦(𝑘)(𝑡)

)︀
(E.5)

𝑝
(𝑘)
11 = 1− 𝑝

(𝑘)
10 (E.6)

𝑝
(𝑘)
01 (𝑡) = 𝑝

(𝑘)
10

𝜋(𝑘)(𝑡)

1− 𝜋(𝑘)(𝑡)
(E.7)

𝜋(𝑘)(𝑡) =
�̃�(𝑘)(𝑡)

1 + 𝑝
(𝑘)
10

(E.8)

logit
(︀
�̃�(𝑘)(𝑡+ 1)

)︀
∼ 𝒩

(︁
logit

(︀
�̃�(𝑘)(𝑡)

)︀
, 𝜎2
)︁

(E.9)

With the priors:

𝜎 ∼ 𝒩+
(︁
0,
(︀
0.25 log(5)

)︀2)︁ (E.10)

𝑝
(𝑘)
10 ∼ logit𝒩 (𝜇10, 𝜎

2
10) (E.11)

�̃�(𝑘)(𝑡0) ∼ logit𝒩 (−1, 1) (E.12)

𝜇10 ∼ 𝒩 (0, 1) (E.13)

𝜎10 ∼ 𝒩+(0, 1.52) (E.14)

The priors are chosen to be weakly informative and translate to reasonable prior predictive
distributions:

• The prior on 𝜎 translates to an odd ratio increment for �̃� of at most 5. For example, if
�̃�(𝑡) = 0.1 (OR(𝑡) = 1/9), it can evolve up to �̃�𝑖(𝑡+1) = 0.36 (OR(𝑡+1) = 5OR(𝑡) ≈
0.56), which could be considered as an unusually important change.

• The prior for the initial condition �̃�𝑘(𝑡0) of the first data point (at 𝑡0) is set to be slightly
skewed toward 0, as high values of extent are very unlikely.

• The priors on 𝜇10 and 𝜎10 translate to an approximately uniform prior on 𝑝
(𝑘)
10 .

Compared to the binomial random walk described below, the Markov chain latent dynamic
implies a delay (quantified by |𝜆|) between changes in the steady state-distribution 𝜋 and

1The model equations include �̃�(𝑘)(𝑡) since the upper bound of 𝜋(𝑘)(𝑡) conditioned on 𝑝
(𝑘)
10 is 1

1+𝑝
(𝑘)
10

, because
𝑝01 is between 0 and 1.
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changes in the latent scores 𝑦. In particular, if we assume 𝜆 = 0 (no delay), then 𝑦 = 𝜋 = 𝑝01 =

1 − 𝑝01, and the model is equivalent to the Binomial random walk if 𝑦 = logit(𝑦) follows a
random walk latent dynamic as in Eq. (7.4). In addition, the binomial Markov chain introduces
an upper bound for the steady-state distribution 𝜋, resulting in a more realistic prior predictive
distribution for extent, since high values (e.g. 90% of the body covered by eczema) are very
unlikely.

E.1.2 Binomial random walk

The “Binomial random walk” state-space model is characterised by a binomial measurement
distribution 𝒟

(︀
𝑦(𝑘)(𝑡)

)︀
= ℬ

(︀
𝑀, 𝑦(𝑘)(𝑡)

)︀
, with success parameter 𝑦(𝑘)(𝑡) that follows a latent

random walk on the logit scale (𝑔 = logit−1). The priors are given by:

𝜎 ∼ 𝒩+
(︁
0,
(︀
0.25 log(5)

)︀2)︁ (E.15)

𝜇0 ∼ 𝒩 (0, 1) (E.16)

𝜎0 ∼ 𝒩+(0, 1.52) (E.17)

The priors are chosen to be weakly informative and translate to reasonable prior predictive
distributions:

• The prior on 𝜎 translates to an odd ratio increment for 𝑦 of at most 5. For instance,
if 𝑦(𝑡) = 0.1 (OR(𝑡) = 1/9 ≈ 0.11), then the prior assumes it is unusual, but not
impossible, that the next value is 𝑦(𝑡+ 1) = 0.56 (OR(𝑡+ 1) = 5OR(𝑡) = 5/9 ≈ 0.56).

• The priors on 𝜇0 and 𝜎0 have a reasonable range and translate to a marginal prior for
𝑦(𝑘)(𝑡0) that is approximately uniform.

Binomial measurement on the number of days for POEM symptoms

POEM symptoms are graded on a discrete scale from 0 to 4 (0 = “no days”, 1 = “1 or 2 days”,
2 = “3 or 4 days”, 3 = “5 or 6 days”, 4 = “7 days”). Rather than predict this 0-4 categorisation,
we follow the data-generating process by modelling the number of days a symptom occurred,
then aggregating the probabilities to obtain predictions in the 0-4 scale.

Let 𝑝 be the probability of experiencing symptoms on a given day. We assume this probability
remains constant during a week. Then, the number of days 𝐷 a patient experienced symptoms
during a week follows a binomial distribution with probability mass function: 𝑃 (𝐷 = 𝑑) =

ℬ(𝑑|7, 𝑝) for 𝑑 ∈ {0, ..., 7}. We define the distribution ℬDay(𝑦|𝑝) for 𝑦 ∈ {0, 1, 2, 3, 4}, which
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corresponds to the measurement process of POEM symptoms:

ℬDay(𝑦|𝑝) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℬ(0|7, 𝑝) if 𝑦 = 0

ℬ(1|7, 𝑝) + ℬ(2|7, 𝑝) if 𝑦 = 1

ℬ(3|7, 𝑝) + ℬ(4|7, 𝑝) if 𝑦 = 2

ℬ(5|7, 𝑝) + ℬ(6|7, 𝑝) if 𝑦 = 3

ℬ(7|7, 𝑝) if 𝑦 = 4

(E.18)

This distribution replaces the binomial distribution in the “Binomial random walk” model,
the rest of the model (latent dynamic) being unchanged.

E.1.3 Ordered logistic random walk (v1)

The ordered logistic random walk state-space model is characterised by an ordered logistic
measurement distribution (Eq. (2.17)), parametrised by a location parameter (latent score)
𝑦(𝑘)(𝑡) and cut-offs 𝑐 (𝑐1 = 02 < 𝑐2 < ... < 𝑐𝑀 ):

𝑦(𝑘)(𝑡) ∼ OrderedLogistic
(︀
𝑦(𝑘)(𝑡), 𝑐

)︀
(E.19)

The scale 𝑦 depends on 𝑐, and is approximately 𝑐𝑀 − 𝑐1 = 𝑐𝑀 , so we choose to express
priors and the latent dynamic with 𝑦(𝑘)(𝑡) = 𝑦(𝑘)(𝑡)𝑐𝑀 , a normalised version of 𝑦 (𝑔(𝑥) = 1

𝑐𝑀
𝑥),

following a latent random walk (Eq. (7.4)).

Rather than setting priors on 𝑐, we parametrise the model with 𝛿, corresponding to the
differences between consecutive cutpoints, i.e. 𝛿𝑖 = 𝑐𝑖+1 − 𝑐𝑖 for 𝑖 ∈ [1,𝑀 − 1], and assume
the priors:

𝛿 ∼ 𝒩+
(︀
0, (2𝜋/

√
3)2
)︀

(E.20)

𝜇0 ∼ 𝒩
(︀
0.5, 0.252

)︀
(E.21)

𝜎0 ∼ 𝒩+
(︀
0, 0.1252

)︀
(E.22)

𝜎 ∼ 𝒩+
(︀
0, 0.12

)︀
(E.23)

The priors are chosen to be weakly informative and translate to reasonable prior predictive
2We set 𝑐1 = 0 without loss of generality since the ordered logistic distribution model is invariant by translation

(adding 𝜆 to 𝑦 and 𝑐 does not change the distribution).
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distributions:

• The prior on 𝛿 translates to values less than the width of the standard logistic distribution3,
allowing the possibility of 𝑃

(︀
𝑦(𝑘)(𝑡) = 𝑖) ≈ 1.

• The priors on 𝜇0 and 𝜎0 translate to an approximately uniform (within the range of 𝑦)
prior for the initial latent score 𝑦(𝑘)(𝑡0).

• The prior on 𝜎 assumes it is possible to go from a state where 𝑦 = 0 is the most likely
outcome, to a state where 𝑦 = 𝑀 is the most likely outcome, in two transitions.

E.1.4 Ordered logistic random walk (v2)

When developing models for POEM, we proposed a different parametrisation of the ordered
logistic distribution compared to the one above. As noted above, the cutpoints are unknown,
which implies that the range of the latent score (𝑐𝑀 − 𝑐1 = 𝑐𝑀 ) varies depending on the
measurement error of the symptom. As a result, it was difficult to interpret the latent score,
and compare and quantify the amount of measurement error for different severity items. The
distribution was also parametrised by the difference 𝛿 between two consecutive cutpoints,
which implies that the variance of the marginal distribution of cutpoints increased with the
cutpoint index, even though there is no reason to expect this a priori.

We propose to parametrise the ordered logistic distribution using a logistic distribution with
an unknown standard deviation 𝜎 (which is related to the scale 𝑠 of the logistic distribution
by 𝜎 = 𝜋√

3
𝑠) and unknown cutpoints but for which the range (difference between first and

last cutpoint) is fixed (cf. scale invariance as noted in Section 2.4). For 𝑦 ∈ {0, ...𝑀} (𝑀 + 1

categories):

OrderedLogistic
(︀
𝑦|𝜂, 𝜎, 𝛿) =

⎧⎪⎨⎪⎩
1− logit−1

(︀
𝜂−𝑐1
𝑠

)︀
if 𝑦 = 0

logit−1
(︀𝜂−𝑐𝑦

𝑠

)︀
− logit−1

(︀𝜂−𝑐𝑦+1

𝑠

)︀
if 0 < 𝑦 < 𝑀

logit−1
(︀
𝜂−𝑐𝑀

𝑠

)︀
if 𝑦 = 𝑀

(E.24)

Where:

• 𝛿 is a simplex4 vector of size 𝑀 − 1.
• 𝑐 is a vector of size 𝑀 such as 𝑐1 = 0.5 and 𝑐𝑖+1 = 𝑐𝑖 +(𝑀 − 1)𝛿𝑖 for 𝑖 > 0. This implies
𝑐𝑀 = 𝑀 − 0.5.

Defining 𝑐 as above implies that the range of the latent score is approximately the same as
3The standard deviation of the standard logistic distribution is 𝜋/

√
3.

4i.e. ∀𝑖, 𝛿𝑖 > 0 and
∑︀𝑀−1

𝑖=1 𝛿𝑖 = 1.
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the range of the score [0,𝑀 ], and that if cutpoints are equally spaced, the expected value of
the distribution when 𝜂 ∈ {1, ...,𝑀 − 1} is equal to 𝜂. In addition, we assumed a symmetric
Dirichlet prior on 𝛿, which specifies a joint prior on 𝑐 to regularise the cutpoints, making the
model scale well to a high number of categories:

𝛿 ∼ Dirichlet(2) (E.25)

And we assumed a lognormal prior on 𝜎, which translates to a 95% CI that is approximately
[0.02𝑀, 0.40𝑀 ], thus allowing very precise or very imprecise measurement that covers the
entire range of the score:

𝜎

𝑀
∼ log𝒩

(︁
− log(10),

(︀
0.5 log(4)

)︀2)︁ (E.26)

In the context of the ordered logistic random walk model, we now refer to the standard
deviation of the measurement distribution as 𝜎m and the standard deviation of the latent
dynamic as 𝜎l. The link function is now the identity, such that 𝑦 = 𝑦, i.e. 𝑦 follows a Gaussian
random walk. For consistency, we change the prior 𝜎l so that it follows the same distribution
as the prior for 𝜎m, still allowing fast or slow transitions from a state where 𝑦 = 0 is the most
likely outcome to a state where 𝑦 = 𝑀 is the most likely outcome. We otherwise keep the
same priors for 𝜇0 and 𝜎0.

E.1.5 Multivariate dynamics

For the binomial random walk and ordered logistic random walk models, we assumed that
𝑦(𝑘)(𝑡) followed a Gaussian random walk (Eq. (7.4)). These dynamics are univariate, i.e. the
latent dynamics of different symptoms are independent.

For 𝐷 > 1 severity items, we can consider the vector 𝑦(𝑘)(𝑡) containing the transformed
latent scores for the 𝐷 severity items for the 𝑘-th patient at time 𝑡 and generalise the latent
dynamic of Eq. (7.4) by making it multivariate, using a multivariate Gaussian random walk
with covariance matrix Σ:

𝑦(𝑘)(𝑡+ 1) ∼ 𝒩 (𝑦(𝑘)(𝑡),Σ) (E.27)

We can express Σ as a function of the correlation matrix Ω and diag(𝜎), the diagonal
matrix with values 𝜎 =

(︀
𝜎1, ..., 𝜎𝐷

)︀𝑇 containing the marginal standard deviation of the latent
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dynamics of each severity item:

Σ = diag(𝜎) Ω diag(𝜎) (E.28)

We assume a LKJ prior on the correlation matrix Ω5, with shape parameter equal to 1, which
corresponds to a “uniform” distribution over correlation matrices:

Ω ∼ LKJ(1) (E.29)

We assume independent priors for all 𝜎𝑖, 𝑖 ∈ {1, ..., 𝐷}, where the priors for each 𝜎𝑖 is
the same as the prior given in the univariate models.

We also generalise the distribution of the initial condition 𝑦(𝑘)(𝑡0) (Eq. (7.5)) by making it
multivariate:

𝑦(𝑘)(𝑡0) ∼ 𝒩
(︀
𝜇0 , Σ0 = diag(𝜎0) Ω0 diag(𝜎0)

)︀
(E.30)

With:
Ω0 ∼ LKJ(1) (E.31)

And each element of 𝜇0 and 𝜎0 following independent priors that are the same as the priors
for the univariate models.

E.2 Performance metrics

This study used probabilistic models whose predictions are distributions. Severity items are
considered to be discrete with their predictions described by probability mass functions, and
PO-(o)SCORAD is treated as a continuous variable6 with its predictions described by probability
density functions.

E.2.1 Accuracy

In addition to the log predictive density introduced in Section 2.2.5, we compute an accuracy
metric to facilitate the interpretation of the performance of PO-(o)SCORAD predictions. Since
the accuracy is not a proper scoring rule, it is used only for model interpretation but not for

5For computational efficiency, the model is parametrised by the Cholesky factor decomposition 𝐿 of the
correlation matrix Ω = 𝐿𝐿𝑇 , where 𝐿 is a lower triangular matrix.

6Otherwise, PO-SCORAD is a discrete ordinal variable with 1031 categories.
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model selection.

We define the accuracy Acc𝑑𝑛 for a single data-point 𝑦𝑛 and a fixed threshold 𝑑 by the
probability that the absolute error |𝜖𝑛| = |𝑦𝑛 − 𝑦𝑛| is less than 𝑑, where 𝑦𝑛 denotes the random
variable whose distribution is the predictive distribution with density 𝑝(𝑦),

Acc𝑑𝑛 = 𝑃 (|𝑦𝑛 − 𝑦𝑛| < 𝑑)

=

∫︁ 𝑦𝑛+𝑑

𝑦𝑛−𝑑

𝑝(𝑦)𝑑𝑦.
(E.32)

Here, the threshold 𝑑 represents a maximum acceptable error, and should ideally be a Minimal
Important Difference (MID) or a Minimal Detectable Change (MDC). In this study, we arbitrarily
chose 𝑑 = 5, which is smaller than published estimates of the MID of 8.7 for SCORAD and
8.2 for oSCORAD [102]. We preferred to take a smaller value than the published estimate of
MID, especially because the uncertainty around these estimates were not reported in [102],
and because of the limitations of the MID described in Section 2.1.4.

The accuracy values of single data points are then averaged to produce the accuracy for
a set of predictions. The accuracy is defined in [0, 1]. However, it should be noted that the
maximum accuracy could be less than 100% if 𝑑 < MDC . Conversely, if a 100% accuracy is
achieved for a certain value 𝑑, it suggests that MDC ≤ 𝑑.

E.2.2 Learning curves

To address the potential confounding of the average lpd (resp. the accuracy) by patient IDs and
prediction horizon (cf. Section 2.3.2), we propose a meta-model to estimate the mean lpd (resp.
the mean accuracy) of the test dataset. We fitted a model to explain the lpd as a function of
the number of observations in the training set, the prediction horizon and the patient IDs, and
used the mean fit as the lpd (resp. accuracy) estimate. We used a Generative Additive Model
(GAM) with cubic splines to achieve a flexible fit to the evolution of the lpd, while limiting
overfitting. The model was fitted using the gamm4 package in R, with the formula:

lpd ∼ 𝑠
(︀
𝑁(𝑖)

)︀
+ 𝑡+ (1 |Patient), (E.33)

Where:

• 𝑠
(︀
𝑁(𝑖)

)︀
corresponds to a cubic spline on the number of observations 𝑁(𝑖) in the training

set, at the 𝑖-th iteration. 𝑁(𝑖) is proportional to 𝑖 except for late iterations, when a
significant fraction of patients have dropped out of the study in Dataset 1.
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• 𝑡 corresponds to the prediction horizon. For simplicity, we assume that the decrease in
performance is linear and does not interact with 𝑖.

• (1 |Patient) represents a mixed effect on the intercept for different patients.

E.3 Reference models

E.3.1 Markov chain model

When the number of discrete categories is small (e.g. for intensity signs), a Markov chain model
may be more appropriate than a random walk model to provide a somewhat flat forecast.

This model assumes that the evolution of 𝑦 is described by a Markov chain with 𝑀+1 states
and 𝑃

(︀
𝑦(𝑡+1) = 𝑗 | 𝑦(𝑡) = 𝑖

)︀
= 𝑝𝑖,𝑗 . More generally, 𝑃

(︀
𝑦(𝑡+ℎ) = 𝑗 | 𝑦(𝑡) = 𝑖

)︀
= (𝑇 ℎ)𝑖,𝑗 , for

a ℎ-steps-ahead transition, where 𝑇 is the transition matrix, (𝑇 )𝑖,𝑗 = 𝑝𝑖,𝑗 . As a baseline model,
the transition probabilities, 𝑝𝑖,𝑗 , are assumed to be patient- and time-independent. For the
vector, 𝑝𝑖 = 𝑇𝑖,., representing the transition probability distribution from state 𝑖, we assume an
uninformative uniform prior over 𝑝𝑖 using a symmetric Dirichlet distribution,

𝑝𝑖 ∼ Dirichlet(1). (E.34)

E.3.2 Priors for the other reference models

The likelihood of the other reference models is given in Section 2.3.3.

Random walk model

𝜎 ∼ 𝒩+
(︀
0, (0.1𝑀)2

)︀
. (E.35)

The scale of the prior was set to be 10% of the range, 𝑀 , of the score. That is, we expect 𝜎 to be
approximately at most 0.2𝑀 , which further translates in a width of the 95% prediction interval
to be 0.8𝑀 (i.e. almost the range of the score, considering the approximations).
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Exponential smoothing model

We used the same prior for 𝜎 as the random walk model, and assume a log-normal prior for
the time constant 𝜏 , which spans several orders of magnitude between 10−1 and 102 days:

𝜏 ∼ log𝒩
(︁
0.5 log(10),

(︀
0.75 log(10)

)︀2)︁ (E.36)

Autoregressive model

We used the same prior for 𝜎 as the random walk model, and assume the following priors for
the autocorrelation coefficient 𝛼 and the expected value of the series 𝑦∞:

𝛼 ∼ 𝒰(0, 1) (E.37)

𝑦∞ ∼ 𝒩
(︀
0.5𝑀, (0.25𝑀)2

)︀
(E.38)

The prior for 𝛼 is uniform and the prior on 𝑦∞ covers the range of the score.

Mixed autoregressive model

We used the same prior for 𝜎 as the random walk model, and assume hierarchical priors for
the patient-dependent parameters 𝛼(𝑘) and 𝑦

(𝑘)
∞ :

𝛼(𝑘) ∼ logit𝒩 (𝜇𝛼, 𝜎
2
𝛼), (E.39)

𝜇𝛼 ∼ 𝒩 (0, 1) (E.40)

𝜎𝛼 ∼ 𝒩+(0, 1.52) (E.41)

𝑦(𝑘)∞ ∼ 𝒩 (𝜇∞, 𝜎2
∞) (E.42)

𝜇∞ ∼ 𝒩
(︀
0.5𝑀, (0.25𝑀)2

)︀
(E.43)

𝜎∞ ∼ 𝒩+
(︀
0, (0.125𝑀)2

)︀
(E.44)

The priors are chosen to be weakly informative and translate to reasonable prior predictive
distributions:

• The priors on 𝜇𝛼 and 𝜎𝛼 have reasonable ranges and translate to a marginal prior for 𝛼(𝑘)

that is approximately uniform.
• The prior for 𝜇∞ spans the range [0, M] in which 𝑦 is defined.
• The prior for 𝜎∞ implies that the range of the distribution of 𝑦∞ is at most 𝑀 .
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E.4 Supplementary PO-SCORAD figures

Figure E.2: Distribution of the nine severity items and PO-(o)SCORAD in dataset 1.

Figure E.3: Distribution of the nine severity items and PO-(o)SCORAD in dataset 2.
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Figure E.4: Predictive performance of the Extent model with datasets 1 (left) and 2 (right),
evaluated by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predictions
as a function of the number of training days (top axis) and the number of training observations
(bottom axis). Bottom: Change in lpd as the prediction horizon is increased by a day.

Figure E.5: Predictive performance of the Dryness model with datasets 1 (left) and 2 (right),
evaluated by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predictions
as a function of the number of training days (top axis) and the number of training observations
(bottom axis). Bottom: Change in lpd as the prediction horizon is increased by a day.
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Figure E.6: Predictive performance of the Redness model with datasets 1 (left) and 2 (right),
evaluated by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predictions
as a function of the number of training days (top axis) and the number of training observations
(bottom axis). Bottom: Change in lpd as the prediction horizon is increased by a day.

Figure E.7: Predictive performance of the Swelling model with datasets 1 (left) and 2 (right),
evaluated by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predictions
as a function of the number of training days (top axis) and the number of training observations
(bottom axis). Bottom: Change in lpd as the prediction horizon is increased by a day.

200 of 217



APPENDIX E. APPENDIX TO CHAPTER 7

Figure E.8: Predictive performance of the Oozing model with datasets 1 (left) and 2 (right),
evaluated by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predictions
as a function of the number of training days (top axis) and the number of training observations
(bottom axis). Bottom: Change in lpd as the prediction horizon is increased by a day.

Figure E.9: Predictive performance of the Scratching model with datasets 1 (left) and 2 (right),
evaluated by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predictions
as a function of the number of training days (top axis) and the number of training observations
(bottom axis). Bottom: Change in lpd as the prediction horizon is increased by a day.
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Figure E.10: Predictive performance of the Thickening model with datasets 1 (left) and 2
(right), evaluated by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead
predictions as a function of the number of training days (top axis) and the number of training
observations (bottom axis). Bottom: Change in lpd as the prediction horizon is increased by a
day.

Figure E.11: Predictive performance of the Itching model with datasets 1 (left) and 2 (right),
evaluated by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predictions
as a function of the number of training days (top axis) and the number of training observations
(bottom axis). Bottom: Change in lpd as the prediction horizon is increased by a day.
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Figure E.12: Predictive performance of the Sleep loss model with datasets 1 (left) and 2 (right),
evaluated by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predictions
as a function of the number of training days (top axis) and the number of training observations
(bottom axis). Bottom: Change in lpd as the prediction horizon is increased by a day.

Figure E.13: Learning curves of models predicting PO-oSCORAD, measured by lpd (top) and
accuracy (bottom), as a function of the number of training observations (and the number of
training days), for datasets 1 (left) and 2 (right). EczemaPred model performs better than the
reference models.
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Figure E.14: PO-SCORAD predictive performance changes as the prediction horizon is increased
by one day, measured by Accuracy (left) and lpd (right), for datasets 1 (top) and 2 (bottom). The
predictive performance for PO-SCORAD decreases with an increase in prediction horizon, for
all models.

Figure E.15: PO-oSCORAD predictive performance changes as the prediction horizon is in-
creased by one day, measured by Accuracy (left) and lpd (right), for datasets 1 (top) and 2
(bottom).
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E.5 Supplementary POEM Figures

Figure E.16: lpd (± SE, the higher the better) learning curves for one-week-ahead forecasts as a
function of the number of training observations (bottom x-axis), or equivalently training week
(top x-axis). A) Symptom prediction. B) POEM prediction.
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Appendix to Chapter 8

F.1 Model

We extended the Bayesian state-space model with an ordered logistic measurement distribution
and multivariate latent random walk dynamic developed for POEM prediction in Chapter 7.
We call “ScoradPred” the model with independent latent random walks1.

We define the vector 𝑀 such that the 𝑖-th severity item takes values in [0,𝑀𝑖] where
𝑀𝑖 = 3 for intensity signs and 𝑀𝑖 = 100 for extent and subjective symptoms (subjective
symptoms have a resolution of 0.1 so are scaled to take integer values in [0, 100] and scaled
back to [0, 10] for predictions).

We will use the following notation:

• Latent score: 𝑦(𝑘)(𝑡) is the vector containing the latent score for each severity item for
the 𝑘-th patient at time 𝑡 (dimension 9× 1).

• Treatment: �̂�(𝑘)(𝑡) is the vector containing the probability that treatment was used (0 or
1 when inferred deterministically, otherwise unknown), for each treatment, for the 𝑘-th
patient at time 𝑡 (dimension 2× 1).

• Trend2: 𝑏(𝑘)(𝑡) is the vector containing the trend for each latent score for the 𝑘-th patient
at time 𝑡 (dimension 9× 1).

• PO-SCORAD measurements: 𝑦(𝑘)(𝑡) is the vector of measured PO-SCORAD items for
the 𝑘-th patient at time 𝑡 (dimension 9× 1).

1Which is the same as fitting independent univariate models with an ordered logistic measurement distribution
and latent random walk dynamic.

2We deviate from our convention here, as 𝑏(𝑘)(𝑡) are transformed parameters rather than data. This is to be
consistent with the time-series forecasting literature.
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• SCORAD measurements: 𝑞(𝑘)(𝑡) is the vector of measured SCORAD items for the 𝑘-th
patient at time 𝑡 (dimension 9× 1).

F.1.1 Latent dynamics

We assume that the evolution of 𝑦 follows a multivariate normal distribution, defining a vector
autoregressive model:

𝑦(𝑘)(𝑡) ∼ 𝒩
(︀
𝑦(𝑘)(𝑡− 1) + 𝑏(𝑘)(𝑡− 1) + Θ�̂�(𝑘)(𝑡− 1),Σ

)︀
(F.1)

Where:

• Σ = diag(𝜎l)Ω diag(𝜎l) is the 9 × 9 covariance matrix of the multivariate normal
distribution.

• 𝜎l is the vector of marginal standard deviation (for each severity item) of the multivariate
normal distribution.

• Ω is the 9× 9 correlation matrix of the multivariate normal distribution.
• Θ is the 9× 2 matrix containing the treatment effects of each treatment (columns) for

each severity item (rows).

Initial conditions

We also assume that the initial conditions (at 𝑡 = 𝑡0) follow a multivariate normal distribution:

𝑦(𝑘)(𝑡0) ∼ 𝒩
(︀
𝜇0,Σ0

)︀
(F.2)

Where:

• 𝜇0 is the vector of population mean of the initial latent score for each severity item
(dimension 9× 1).

• Σ0 = diag(𝜎0)Ω0 diag(𝜎0) is the 9× 9 covariance matrix of the initial latent score.
• 𝜎0 is the vector of marginal population standard deviation of the latent score for each

severity item (dimension 9× 1).
• Ω0 is the 9× 9 correlation matrix for the initial latent score.
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Trend

We model the trend of the latent score using exponential smoothing [129]:

𝑏(𝑘)(0) = 0 (F.3)

𝑏(𝑘)(𝑡) = 𝜑 *
(︀
𝑦(𝑘)(𝑡)− 𝑦(𝑘)(𝑡− 1)

)︀
+ (1− 𝜑) * 𝑏(𝑘)(𝑡− 1) (F.4)

Where:

• * denotes the element-wise multiplication.
• 𝜑 is the vector containing the smoothing trend parameter for each severity item (di-

mension 9 × 1). If 𝜑𝑖 = 0 then the trend is constant. If 𝜑𝑖 = 1 then the trend is not
smoothed.

It is worth noting that we do not define a double exponential smoothing as the measurement
process already acts as if the latent score was a smoothed version of the observations. Moreover,
to keep things simple, we do not assume any damping or that the smoothing parameter is
patient-dependent.

Daily treatment usage inference

The dataset contains the information of whether treatment “was used within the past two days”,
that we deconvolve to obtain daily treatment usage information.

For any of the two treatments (we drop the subscript 𝑗 indexing treatments out of concision),
let:

• 𝑢W2 be the time-series of “treatment usage within the past two days”
• 𝑢 the time-series of daily treatment usage
• �̂�(𝑡) = 𝑃

(︀
𝑢(𝑡) = 1

)︀
the probability that treatment was used at time 𝑡

We can use logic to deterministically infer some values of �̂� given the time-series 𝑢W2 .
More specifically, we identify three cases where deterministic inference is possible:

𝑢W2 (𝑡) = 0 ⇒ �̂�(𝑡− 2) = �̂�(𝑡− 1) = �̂�(𝑡) = 0 (F.5)

𝑢W2 (𝑡) = 0 & 𝑢W2 (𝑡+ 1) = 1 ⇒ �̂�(𝑡+ 1) = 1 (F.6)

𝑢W2 (𝑡) = 1 & 𝑢W2 (𝑡+ 1) = 0 ⇒ �̂�(𝑡− 2) = 1 (F.7)
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The values of �̂�(𝑡) that cannot be inferred deterministically are treated as parameters to be
inferred by the model, given the likelihood:

𝑃
(︀
𝑢W2 (𝑡) = 1

)︀
= 1−

(︀
1− �̂�(𝑡)

)︀(︀
1− �̂�(𝑡− 1)

)︀(︀
1− �̂�(𝑡− 2)

)︀
(F.8)

In addition, we assume a patient-dependent Markov Chain likelihood (when known) /
hyperprior (when unknown) for �̂�(𝑡), in order to reduce the parameter space:

�̂�(𝑡+ 1) = 𝑝
(𝑘)
11 �̂�(𝑡) + 𝑝

(𝑘)
01

(︀
1− �̂�(𝑡)

)︀
(F.9)

With �̂� initialised to the steady state distribution of the Markov Chain:

�̂�(𝑡0) =
𝑝
(𝑘)
01

𝑝
(𝑘)
01 + 𝑝

(𝑘)
10

(F.10)

F.1.2 Measurements

We assume two measurement distributions:

• For PO-SCORAD items:

𝑦
(𝑘)
𝑖 (𝑡) ∼ OrderedLogistic

(︀
𝑦
(𝑘)
𝑖 (𝑡), (𝜎y)𝑖, 𝛿𝑖

)︀
(F.11)

• For oSCORAD items (except subjective symptoms, as they are the same regardless of
whether the score is self-assessed or assessed by a clinician):

𝑞
(𝑘)
𝑖 (𝑡) ∼ OrderedLogistic

(︀
𝑦
(𝑘)
𝑖 (𝑡) + 𝜆𝑖(𝑡), (𝜎q)𝑖, 𝛿𝑖

)︀
(F.12)

Where:

• (𝜎y)𝑖 and (𝜎q)𝑖 are the standard deviation of the logistic distribution.
• 𝛿𝑖 is a vector of normalised distances between consecutive cutpoints.
• 𝜆𝑖(𝑡) are the measurement biases between SCORAD and PO-SCORAD (see next section).

Calibration

To calibrate PO-SCORAD measurements using SCORAD, we assume:

• SCORAD measurements are more precise than PO-SCORAD measurements (but they
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are not perfect)3:
𝜎q = 0.5𝜎y (F.13)

• The biases 𝜆(𝑡) decrease exponentially from 𝜆𝑖(𝑡0), with a characteristic time 𝜏𝑖 (in days):

𝜆𝑖(𝑡) = 𝜆𝑖(𝑡0) exp (−
𝑡− 𝑡0
𝜏𝑖

) (F.14)

As a rule of thumb, when 𝑡− 𝑡0 = 2𝜏𝑖, then the bias is equal to 14% of the original bias.
Considering that SCORAD measurements occur every four weeks, the last one being at
week 12, as a rule of thumb, if 𝜏𝑖 < 15 (days), then the bias at the second measurement is
almost null; and if 𝜏𝑖 > 200 (days), we can consider the bias to be almost constant over
the duration of the study.

F.2 Priors

F.2.1 Power prior

Background

According to Bayes’ theorem, the posterior of a (set of) parameter 𝜃 given the data 𝒟 is:

𝑝(𝜃|𝒟) =
𝑝(𝒟|𝜃)𝑝(𝜃)

𝑝(𝒟)
∝ 𝑝(𝒟|𝜃)𝑝(𝜃) (F.15)

• 𝑝(𝒟|𝜃) is the likelihood.
• 𝑝(𝜃) is the prior.
• 𝑝(𝒟) is the evidence (normalisation constant).

If we have previously obtained the posterior distribution 𝑝(𝜃|𝒟0) after observing the his-
torical data 𝒟0, we can use this posterior as a new prior:

𝑝(𝜃|𝒟,𝒟0) ∝ 𝑝(𝒟|𝜃)𝑝(𝜃|𝒟0) ∝ 𝑝(𝒟|𝜃)𝑝(𝒟0|𝜃)𝑝(𝜃) (F.16)
3We may wonder why we do not let 𝜎q be inferred by the model. First, when calibrating measurements,

we often assume the calibrated measurements are perfect, i.e. 𝜎q = 0. As such, we do not think deciding that
𝜎q = 0.5𝜎y is more arbitrary than deciding the measurements are perfect, and is motivated by the fact that we
know clinician measurements are not perfect (cf. Section 2.2.5). Second, there is an identifiability issue between
𝜎q and 𝜎y, as 𝑦 and 𝑞 are mathematically equivalent. Indeed, ignoring the bias term for the sake of argument,
when 𝑞 is observed, the latent score 𝑦 will be determined by 𝑦, 𝑞, and the prior that the latent score is around the
previous latent score (itself informed by previous observations of 𝑦). As a result, the latent score will mechanically
be closer to 𝑦 a priori, but specifying the ratio 𝜎q

𝜎y
indicates to the model “how close” the latent scores should be to

𝑞 as opposed to 𝑦.
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If we assume that data𝒟 contains𝑁 observations, data𝒟0 contains𝑁0 observations, and the
observations are independently distributed, then 𝑝(𝒟|𝜃) contains 𝑁 terms and 𝑝(𝒟0|𝜃) contains
𝑁0 terms. Since observations in 𝒟 and 𝒟0 are weighted equally, the relative contribution of
data 𝒟 to the posterior is 𝑁

𝑁+𝑁0
.

The power prior [112] introduces a parameter 𝑎0 that weights the contribution of the
historical data 𝒟0:

𝑝(𝜃|𝒟0) ∝ 𝑝(𝒟0|𝜃)𝑎0𝑝(𝜃) (F.17)

𝑎0 quantifies how much information is borrowed from the historical data, with 𝑎0 = 0

implying no borrowing and 𝑎0 = 1 implying full borrowing. Put it another way, as a rule of
thumb, the relative contribution of data 𝒟 to the posterior in the presence of the power prior is

𝑁
𝑁+𝑎0𝑁0

.

Construction of the power prior

To construct the power prior, we made several assumptions and approximations that we describe
in this section.

As historical data, we used “dataset 1” from Chapter 7, i.e. the data from an already
published study investigating the role of an emollient in 337 children with AD [189]. The
historical data contains 9943 patient-day observations of PO-SCORAD, compared to 1136
patient-day observations in our dataset.

To ensure that the posterior is mostly determined by our dataset rather than the historical
dataset, we chose 𝑎0 = 0.04 (Fig. 8.3A).

To construct the power prior, first we used the historical data to fit the ScoradPred model,
consisting of independent state-space models with ordered logistic measurement distribution
and latent random walk dynamic.

Then, we exponentiate the posterior distribution rather than the likelihood to construct
the power prior, resulting in initial priors being weighted by 1 + 𝑎0 instead of 1 (increasing
weights results in sharper distribution). Considering that 𝑎0 ≪ 1 and that the initial priors are
weakly informative, this choice has little influence on the posterior, but is more convenient
to implement. We also restrict the posterior distribution to the marginal distribution of the
population parameters (𝜎l, 𝛿𝑖, 𝜎y, 𝜇0, 𝜎0) rather than the full joint distribution. Finally, since
distribution is represented by samples (cf. MCMC), we approximated the marginal distributions
by Gaussian distributions with moment matching.
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We used the same initial priors for (𝜎l, 𝛿𝑖, 𝜎y, 𝜇0, 𝜎0) as defined in Chapter 7.

F.2.2 Correlations between severity items

We used an LKJ prior for the correlation matrix Ω of the changes in latent severity items and
for the correlation matrix Ω0 of the initial latent severity items. We selected a shape parameter
greater than 1, thus penalising the complexity of the model by putting more density towards
the identity correlation matrix (cf. independent severity items):

Ω , Ω0 ∼ LKJ(10) (F.18)

F.2.3 Trend

For the trend component, we only need to define the prior for the smoothing parameter 𝜑 and
chose a prior that penalised slightly the complexity of the model, i.e. assuming more density
toward a constant trend (𝜑 = 0):

𝜑𝑖 ∼ Beta(1, 3) (F.19)

F.2.4 Inference of daily treatment usage

In the following, since we used the same priors for both corticosteroids and emollient cream,
we drop the subscript 𝑗 indexing treatment, out of concision.

We used the same priors for the Markov Chain parameters 𝑝(𝑘)10 = 1 − 𝑝
(𝑘)
11 and 𝑝

(𝑘)
01 . We

defined a hierarchical prior for 𝑝
(𝑘)
10 and 𝑝

(𝑘)
01 , and chose weakly informative priors for the

population mean (𝜇10, 𝜇01) and standard deviation (𝜎10, 𝜎01) parameters, that translate to
approximately uniform distribution for 𝑝(𝑘)10 and 𝑝

(𝑘)
01 :

𝑝
(𝑘)
10 ∼ logit𝒩 (𝜇10, 𝜎

2
10) (F.20)

𝑝
(𝑘)
01 ∼ logit𝒩 (𝜇01, 𝜎

2
01) (F.21)

𝜇10 , 𝜇01 ∼ 𝒩 (0, 1) (F.22)

𝜎10 , 𝜎01 ∼ 𝒩+(0, 1.5) (F.23)
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F.2.5 Treatment effects

We used the same priors for both treatment and all severity items, assuming that treatment
effects are approximately within ± 20% the range of the score:

Θ𝑖,𝑗/𝑀𝑖 ∼ 𝒩 (0, 0.12) (F.24)

F.2.6 Calibration

We assumed the prior for initial bias 𝜆𝑖(𝑡0) to be within ± 20% the range of the severity item:

𝜆𝑖(𝑡0)/𝑀𝑖 ∼ 𝒩 (0, 0.12) (F.25)

We assumed a lognormal prior for the characteristic learning time 𝜏𝑖, such as most of its
mass is between 1 day and ≈ 250 days, which allows very fast learning (bias null for at the
second SCORAD measurement) or no learning (constant bias for the duration of the study):

𝜏𝑖 ∼ log𝒩
(︁
1.2 log(10),

(︀
0.6 log(10)

)︀2)︁ (F.26)

F.3 Treatment recommendations

F.3.1 Utility function

We consider two binary actions (using or not using topical corticosteoroids TC or emollient
cream EC ), not mutually exclusive, that we denote with 𝑎 = {TC ,EC} ∈ {0, 1}2.

We define the utility function as a function of the predicted SCORAD 𝑦 and the action 𝑎 by:

𝑈(𝑦, 𝑎) = −
(︀
𝑦 + cost(𝑎)

)︀
(F.27)

Where cost(a) is the “perceived” cost of action 𝑎, that we define by:

cost(𝑎) = costTC × TC + costEC × EC + costboth × TC × EC (F.28)

• costTC and costEC are the costs of using topical corticosteroids and emollient cream,
respectively.
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• costboth is the additional cost when using the two treatments.

It is worth noting that:

• The cost of using “no treatment” is set to 0 without loss of generality.
• cost(𝑎) is in the same unit as 𝑦 (i.e. SCORAD), and can be interpreted as the minimum

improvement in 𝑦 the patient would require to use treatment.

F.3.2 Objective function

We chose to maximise the following objective function, which includes a risk-sensitive criterion:

𝐸
(︀
𝑈(𝑦, 𝑎)

)︀
− 𝑞
√︁

𝑉
(︀
𝑈(𝑦, 𝑎)

)︀
(F.29)

Where 𝑞 quantifies the tolerance to risk (uncertainty):

• 𝑞 can be interpreted as a z-score, assuming the utility is normally distributed. For example,
if 𝑞 = 1.96, the objective function is the lower bound of the 95% CI of the utility, i.e. the
2.5% quantile.

• 𝑞 > 0 corresponds to a patient that is risk-averse (penalising uncertainty) or pessimistic
(maximise the worst case).

• 𝑞 < 0 corresponds to a patient that is risk-seeking (welcoming uncertainty) or optimistic
(maximise the best case). 𝑞 < 0 encourages the exploration of new treatments with
uncertain effects.

• 𝑞 = 0 corresponds to a patient that is risk neutral.

F.3.3 Decision profiles

In our situation, the decision profile of a patient is fully determined by its sensitivity to risk 𝑞

and its “perceived” cost of using treatment, parametrised by costTC , costEC and costboth .

We defined three risk profiles (risk-averse, risk-neutral and risk-seeking) and three cost
profiles (no cost, normal cost, high cost) for a total of nine decision profiles (Table F.1). The
cost profiles assume the same costs for topical corticosteroids and emollient cream.

Even though we believe these decision profiles to be relevant, they are only illustrative
and do not claim to represent the preferences of an actual patient. In particular, the decision
parameters may be changed to reflect changes in patients’ preferences. For example, 𝑞 could
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be negative at the beginning of a trial to encourage the exploration of new treatments and be
increased gradually to exploit a treatment that has been proved to be effective.

Table F.1: Decision profiles for treatment recommendations

Decision
profile Cost profile Risk Profile Treatment costs Risk tolerance

costTC costEC costboth 𝑞
1 No cost Risk averse 0 0 0 1.5
2 No cost Risk seeking 0 0 0 0
3 No cost Risk neutral 0 0 0 -1.5
4 Normal cost Risk averse 0.5 0.5 0 1.5
5 Normal cost Risk seeking 0.5 0.5 0 0
6 Normal cost Risk neutral 0.5 0.5 0 -1.5
7 High cost Risk averse 3 3 3 1.5
8 High cost Risk seeking 3 3 3 0
9 High cost Risk neutral 3 3 3 -1.5
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F.4 Supplementary figures

Figure F.1: Estimates of the measurement (𝜎y) and latent dynamic (𝜎l) standard deviations for
all severity items. Estimates are normalised by the range of the score.

Figure F.2: Minimum and maximum of the expected trend component, for each patient and
each severity item. The estimates are normalised by the range of the score. For example, if the
maximum is 0.01, for extent (defined in [0, 100]) this would mean that the maximum expected
trend is 0.01×100 = 1. We can consider that the trend is always zero as the order of magnitude
of the amplitude of the trend is around 0.001.
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Figure F.3: Mean and 90% credible interval of the characteristic learning time 𝜏 of the calibration
process (in days). Since SCORAD measurements are every four weeks, estimates less than ≈ 15
days translate to a bias of 0 for the second measurement. Any estimates greater than ≈ 200
days (longer than the study follow-up) can be interpreted as a constant bias (no learning).

Figure F.4: Predictive performance (lpd) estimates (mean ± SE) for four-days-ahead predictions
after training the model with 65 days (79%) of data. “ScoradPred” corresponds to the base
model with independent state-space models for each severity item, no power prior, calibration,
treatment effects or trend. The suffixes indicate the additions made to the base model, where
“h004” corresponds to the power prior with 𝑎0 = 0.04, “corr” to the correlation between
severity items, “cal” to the calibration data, “treat” to treatment effects and “trend” to the trend
component. A) Severity items predictive performance. B) (o)SCORAD predictive performance.
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