
REVIEW

MRI is a powerful clinical tool that provides a range of 
image contrast mechanisms to assist in the identifi-

cation and evaluation of tumors. Many of these contrast 
mechanisms exploit fundamental biologic differences be-
tween cancer and normal tissue and use the signal gener-
ated from molecular protons (or hydrogen nuclei [1H]), 
which provide the highest signal of any naturally occurring 
nucleus. Other nuclei such as carbon could provide unique 
information on tissue biochemistry but yield extremely 
low signal with conventional MRI techniques. Most of the 
carbon in the human body is in the form of the carbon 
12 (12C) isotope, which is not detectable at MRI, while 
approximately 1.1% of naturally occurring carbon is in 
the magnetically active form of carbon 13 (13C). As a re-
sult, the signal from naturally abundant 13C is very low. 
One method for overcoming the low signal of 13C MRI 
is through the external hyperpolarization and injection of 
exogenous 13C-labeled molecules, thereby enabling the im-
aging of central metabolic pathways such as glycolysis and 
the tricarboxylic acid cycle in real time.

Hyperpolarization by Dynamic Nuclear 
Polarization
Hyperpolarization refers to a temporary increase in the 
proportion of nuclear spins aligned with the main mag-
netic field (B0). There are numerous techniques that can 
be used to achieve hyperpolarization, one of which is 
dynamic nuclear polarization. Dynamic nuclear polar-
ization involves the cooling of a 13C-enriched sample 

together with an electron-rich compound (electron 
paramagnetic agent) close to absolute zero (approxi-
mately 1 K) in the presence of a strong magnetic field 
(3.35–7 T) for approximately 2 hours. These extreme 
physical conditions cause the electrons in the mixture 
to approach unity polarization. Following irradiation 
of the sample with microwaves, the electron polariza-
tion is transferred to the 13C nuclei in the molecule of 
interest, thus increasing the detectable signal. In 2003, 
a breakthrough publication demonstrated that dynamic 
nuclear polarization increased the signal-to-noise ratio 
of 13C imaged using MR spectroscopy by more than 
10 000-fold. It was also shown that the frozen sample 
could subsequently be dissolved into liquid form for in-
jection while maintaining polarization levels that decay 
with a spin lattice relaxation time (T1) of approximately 
50–70 seconds ex vivo and 20–30 seconds in vivo (1). 
This advance meant that the dissolved hyperpolarized 
13C-labeled molecule could be injected into biologic sys-
tems and detected with a higher sensitivity, allowing for 
the investigation of in vivo metabolism.

Although alternative methods for 13C hyperpolariza-
tion such as parahydrogen-induced polarization have been 
described, no clinical 13C hyperpolarizer device using any 
method other than dynamic nuclear polarization has been 
developed to date. Techniques such as spin-exchange opti-
cal pumping and metastability-exchange optical pumping 
have, however, been used for clinical ventilation imaging 
with hyperpolarized helium 3 and xenon 129 gas (2).
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Hyperpolarized carbon 13 MRI (13C MRI) is a novel imaging approach that can noninvasively probe tissue metabolism in both normal and 
pathologic tissues. The process of hyperpolarization increases the signal acquired by several orders of magnitude, allowing injected 13C-labeled 
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must also undergo rapid quality control checks before clinical 
use, which includes measurements of pyruvate concentration, 
pH, residual radical levels, and temperature, as well as passing 
through a sterilized filter. A dedicated MRI coil sensitive to 13C is 
required to transmit and detect the signal, and the scanner must 
have multinuclear capabilities so that anatomic 1H images can be 
produced to assist with interpretation of the 13C images.

Due to the relatively low 13C signal and to facilitate spec-
tral separation of the signals  from each metabolite, a 3-T field 
strength MRI machine is typically used. The choice of the best 
magnetic field strength for hyperpolarization studies is compli-
cated by the nonlinear relationship between the T1 relaxation 
time and magnetic field strength. Field strengths above 3 T 
have not yet been investigated in a clinical setting but may lead 
to greater dephasing of the hyperpolarized state and chemical 
shift artifact.

The rapid decay of the 13C signal necessitates the use of a 
fast acquisition pulse sequence. Following dissolution, suffi-
cient signal for detection is present for only approximately five 
times the T1 of 13C, which is equivalent to a few minutes. Dur-
ing this short time frame, the hyperpolarized solution must be 
transferred to the scanner, be injected intravenously into the 
patient, perfuse to the region of interest in the body, and un-
dergo cellular uptake and metabolism within the tissue. There-
fore, hyperpolarized 13C MRI is particularly suited to imaging 
rapid chemical reactions.

In the clinical setting, fast gradient-echo approaches with ei-
ther a spiral or echo-planar imaging readout are used, although 
echo-planar imaging has some disadvantages because it may 
produce artifacts, including frequency shift artifacts, geometric 
distortion artifacts, and Nyquist ghost artifacts (8). The readouts 
are coupled either with spectral-spatial radiofrequency pulses or 
iterative decomposition of water and fat with echo asymmetry 
and least-squares estimation (ie, IDEAL) encoding to provide 
temporally resolved multisection or three-dimensional imaging 
(9). Although these imaging approaches usually require physi-
cist support, they are increasingly being made available as part 
of multinuclear packages that can be implemented on routine 
clinical systems.

Initial Human Imaging, Methods, and Safety
The first human study investigating hyperpolarized [1-13C]py-
ruvate MRI in cancer was published in 2013 and established 
the safety of the tracer, prepared using a prototype clinical hy-
perpolarizer device, and the method of delivery in patients with 
prostate cancer. In this proof-of-concept study, high prostatic 
[1-13C]lactate signal was demonstrated in a patient who had no 
abnormal signal intensity on conventional proton MR images. 
When this region of high signal intensity was subsequently bi-
opsied, it was found to represent a low-grade tumor (10). These 
results provided initial evidence that clinical hyperpolarized [1-
13C]pyruvate MRI could depict some tumors that are occult on 
conventional 1H MR images.

The prototype clinical polarizer was subsequently developed 
into a commercial clinical hyperpolarizer, termed a SPINlab (GE 
Research Circle Technology), which can be easily sited within a 
radiology department and includes automated dissolution and 

Technical Considerations in Clinical Imaging
Currently, clinical hyperpolarized 13C MRI is largely focused 
on using hyperpolarized 13C-labeled pyruvate as a tracer, where 
the first carbon position is labeled with the 13C isotope ([1-13C]
pyruvate). This is due to the favorable physical and chemical 
properties of [1-13C]pyruvate for hyperpolarization and the 
central biochemical role of pyruvate, which means 13C can be 
detected after incorporation of the label into several impor-
tant metabolic reactions in both normal tissue and cancer (3). 
Although the use of many hyperpolarized 13C molecules in 
addition to pyruvate has been reported, the majority of these 
molecules are used only in preclinical models. However, there 
is ongoing research into the clinical translation and applica-
tion of hyperpolarized molecules such as [2-13C]pyruvate for 
assessing tricarboxylic acid intermediates, fumarate for imaging 
necrosis, and urea for perfusion imaging (4–7).

A custom imaging setup is required for clinical hyperpolar-
ized [1-13C]pyruvate MRI where the hyperpolarizer is sited out-
side of the MRI room, but rapid transfer of the sample between 
the hyperpolarizer and scanner is still allowed to minimize the 
time between sample dissolution and imaging during which 
the hyperpolarized state decays. The hyperpolarized sample 

Abbreviations
FDG = fluorodeoxyglucose, kPL = apparent exchange rate constant 
for LDH, LDH = lactate dehydrogenase, MCT = monocarboxylate 
transporter, NADH = reduced nicotinamide adenine dinucleotide, 
NAD+ = oxidized NAD, PARP = poly (adenosine diphosphate–ri-
bose) polymerase 

Summary
Clinical hyperpolarized carbon 13 MRI has been shown to identify 
occult tumors, stratify lesions based on histologic grade, and detect 
early response to treatment in several cancers, suggesting its potential 
to improve cancer care in the future.

Essentials
 ■ Hyperpolarized carbon 13 (13C) pyruvate MRI is an emerging 

technique for imaging tissue metabolism that has been translated 
into the clinic, with initial human studies showing that it cor-
relates with important biologic properties of tissue, including 
hypoxia.

 ■ In many cancers, the formation of labeled tissue lactate from the 
injected pyruvate can be used to identify multifocal disease that is 
occult on proton MR images, as well as to determine tumor grade 
and detect early response to treatment.

 ■ Clinical research is ongoing to validate the biologic significance of 
the signal acquired with hyperpolarized 13C pyruvate in humans, 
to further verify repeatability and reproducibility, and to evaluate 
accuracy of the method for monitoring response to new targeted 
anticancer drugs.

 ■ Future technical developments are required to enable ease of use in 
radiology departments so that larger studies can be undertaken to 
assess clinical feasibility and advantages of hyperpolarized 13C py-
ruvate MRI compared with other metabolic imaging techniques, 
such as fluorine 18 fluorodeoxyglucose PET/CT.

Keywords
Hyperpolarized Carbon 13 MRI, Molecular Imaging, Cancer, Tis-
sue Metabolism
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and its products (lactate, bicarbonate, and alanine) depending 
on the tissue being imaged and the nature of the disease. The 
major metabolic pathways relevant to hyperpolarized [1-13C]
pyruvate MRI are summarized in Figure 1.

Metabolism of hyperpolarized [1-13C]pyruvate to hyperpo-
larized [1-13C]lactate has now been demonstrated in humans for 
a number of tumors, including those of the prostate, pancreas, 
kidney, breast, and brain (15–19). Figure 2 shows an example 
of hyperpolarized [1-13C]pyruvate being metabolized into lactate 
and bicarbonate in a glioblastoma. The figure additionally dem-
onstrates the metabolic heterogeneity within the tumor on the 
maps of hyperpolarized [1-13C]pyruvate, hyperpolarized [1-13C]
lactate, and hyperpolarized [1-13C]bicarbonate that have been 
summed over time (20).

The high lactic acid concentration in and surrounding tu-
mors is not only a metabolic byproduct of increased metabo-
lism and proliferation but is also thought to aid tumor invasion 
through acidification of the extracellular environment. Con-
sequently, lactate concentration in tumors has a strong cor-
relation with aggressiveness, metastatic potential, and overall 
prognosis (21–23). Evidence is now emerging that hyperpolar-
ized [1-13C]lactate imaging may be able to serve as a surrogate 
marker of tumor grade, for example, in prostate cancer and 
breast cancer (18,24–26).

There are several biologic processes and tissue characteristics 
that may determine the hyperpolarized 13C MRI signal, includ-
ing tracer delivery, expression of the transmembrane pyruvate 
transporter, and levels of the enzymes that catalyze pyruvate 
metabolism. Tumor perfusion, vascular density, and vascular 
permeability can affect the early stage in signal generation and 
delivery of the tracer to the organ of interest. Figure 3 shows 
an example of hyperpolarized [1-13C]pyruvate and hyperpo-
larized [1-13C]lactate images at 15 time points with 4-second 
gaps between them (Fig 3F and 3G) and summed (Fig 3C and 
3D) in a patient with breast cancer. The T1-weighted dynamic 
contrast-enhanced images for comparison (Fig 3A and 3B) il-
lustrate that gadolinium enhancement reflects vascularity and 
pyruvate delivery.

With hyperpolarized [1-13C]pyruvate MRI, as the metabolism 
of pyruvate is intracellular, transmembrane transport is required 
and facilitated by the monocarboxylate transporters (MCTs). The 
MCT family of transmembrane proteins transport pyruvate and 
lactate in both directions across the cell membrane (27,28). There 
are four subtypes of MCTs, 1–4, which exhibit different kinet-
ics and substrate specificity. MCT-1 and MCT-4 have increased 
expression in tumors and lead to higher uptake of pyruvate and 
higher efflux of lactate. MCT expression has been shown to be 
important for the conversion of extracellular pyruvate to lactate in 
some cell studies (29) and several animal studies, and recent clinical 
work has now also demonstrated that MCT expression correlates 
with lactate-to-pyruvate signal ratio in humans (18,26,30,31).

Tumor activity of the enzyme LDH is another key deter-
minant of the rate of conversion of pyruvate into lactate and 
therefore the hyperpolarized [1-13C]lactate signal. LDH activity, 
and specifically the expression of the LDH-A subunit, is higher 
in most tumor subtypes compared with healthy tissue (32–35). 
The metabolism of hyperpolarized [1-13C]pyruvate has been 

quality control checks. A sterile fluid path or pharmacy kit was 
designed for use with the SPINlab as a single-use, disposable 
unit containing the chemical components required to hyperpo-
larize and dissolve a sample before delivery into the patient. The 
path must be assembled and filled in a clean room or pharmacy 
environment, with the details of the approach dependent on the 
local and national regulatory framework under which the work 
is being undertaken. The first human study reported injection 
of tracer at a pH of 7.3–8.0, temperatures of 28.8°–36.4°C, and 
volumes of 31.9–53.5 mL with no major adverse events (10). 
Typically, approximately 250 mM of hyperpolarized [1-13C]
pyruvate is injected at 0.4 mL/kg at a rate of 5 mL/sec using 
a power injector, followed by a 25-mL saline flush. At present, 
spatial resolution is at around 1 × 1 × 1 cm for most tumors.

Clinical Data Analysis
The analysis of hyperpolarized [1-13C]pyruvate spectra includes 
analysis of the pyruvate and lactate peak intensities within a re-
gion of interest dynamically over time, similar to the approaches 
used in modeling PET or dynamic contrast-enhanced MRI 
data. For example, with hyperpolarized [1-13C]pyruvate MRI, 
the modeled parameter kPL represents the apparent exchange rate 
constant for the enzyme lactate dehydrogenase (LDH), which 
serves as a marker for cytosolic nonoxidative metabolism, and 
can be derived from the fitting of kinetic parameters to an ex-
change model mathematically. In comparison, the area under 
the receiver operating characteristic curve of the lactate-to-py-
ruvate ratio represents a simple surrogate of metabolic activity. 
Exchange models can be time-consuming to calculate and very 
sensitive to the early parameter values in the model (11), whereas 
the area under the receiver operating characteristic curve meth-
ods have the advantage of being independent of the shape of 
pyruvate inflow (12). There is a movement in the radiology com-
munity to develop a best-practice approach for the analysis of 
data sets, and the comparison of models with different imaging 
setups is an important area of current and future research.

Clinical Applications of Hyperpolarized [1-13C]
Pyruvate MRI in Oncology

Metabolic Profiling of Tumors
Malignant transformation is associated with a metabolic shift 
in the cellular handling of glucose which manifests as an in-
crease in glucose uptake, glycolysis, and lactate formation. 
Tumor cells generate substantial amounts of lactate even in 
the presence of oxygen, partly due to the anabolic demands of 
rapid proliferation (13), and this phenomenon is referred to as 
aerobic glycolysis or the Warburg effect. Both fluorine 18 fluo-
rodeoxyglucose (18F-FDG) PET and hyperpolarized 13C MRI 
can be used to investigate these changes in glucose metabolism, 
although at different levels in the metabolic pathways (14). 
Furthermore, while 18F-FDG PET allows for only a combined 
signal to be detected from the labeled glucose analog and its 
phosphorylated product, individual hyperpolarized 13C-labeled 
molecules can be discriminated using MR spectroscopy. Fol-
lowing injection of hyperpolarized [1-13C]pyruvate, the hy-
perpolarized signal can be detected from the injected pyruvate 

http://radiology-ic.rsna.org


4 radiology-ic.rsna.org ■ Radiology: Imaging Cancer Volume 5: Number 5—2023

Hyperpolarized Carbon 13 MRI 

ized lactate signal intensity (25). For example, in prostate can-
cer, hyperpolarized [1-13C]pyruvate MRI findings were shown 
to identify intermediate-risk subtypes not detectable with 1H 
MRI (16,26). In clear cell renal cell carcinoma, hyperpolarized 
[1-13C]pyruvate MRI revealed intratumoral metabolic hetero-
geneity and was found to act as a surrogate for grade and po-
tentially outcome (17,31). Figure 4 depicts results of a study on 
renal cell carcinoma confirming an increase in hyperpolarized 
13C signal in higher grade tumors, with the grade 4 tumor pro-
ducing the highest pyruvate, lactate, and kPL, followed by the 
grade 3 and grade 2 tumors (31).

Early Diagnosis and Earlier Detection of Successful 
Response to Treatment
During malignant transformation, metabolic changes precede 
structural and functional changes as glucose is diverted away 
from aerobic metabolism to provide the larger molecular build-
ing blocks required to support cell growth and division in the 
tumor. These biochemical changes may be detected with meta-
bolic imaging before conventional imaging-based treatment 
response assessment criteria such as the Response Evaluation 
Criteria in Solid Tumors, or RECIST. Clinical hyperpolarized 

correlated with the increased expression of LDH in human pros-
tate cancer, breast cancer, and glioblastoma (16,30,20)

Several hyperpolarized [1-13C]pyruvate MRI studies have 
shown that increased 13C lactate signal may be related to LDH 
and MCT expression, and that there are differences in the 
importance of these molecules between tumors (18,20,30). 
One human breast cancer study also showed that lactate for-
mation may additionally be driven by tumor hypoxia as 13C 
signal correlated with expression of hypoxia inducible factor 
(HIF)–1α, a transcription regulator that is dependent on oxy-
gen tension (18).

There are multiple new anticancer drugs that target MCT, 
HIF-1α pathways, and even LDH activity (36–39). Hyperpo-
larized [1-13C]pyruvate MRI could find a role in the metabolic 
profiling of tumors to identify possible patient candidates for 
these types of drugs in the future.

Tumor Stratification: Assessment of Disease Aggression and 
Grade
Clinical results have now demonstrated that hyperpolarized [1-
13C]pyruvate MRI findings can stratify tumors according to 
grade, with higher grade lesions producing higher hyperpolar-

Figure 1: Simplified schematic of the major metabolic pathways that can be investigated with hyperpolarized [1–carbon 13]
pyruvate MRI. ALT = alanine transaminase, CA = carbonic anhydrase, CoA = coenzyme A, LDH = lactate dehydrogenase, PDH = 
pyruvate dehydrogenase, TCA = tricarboxylic acid.
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Figure 2: Hyperpolarized carbon 13 MR images in a patient with glioblastoma that demonstrate heterogeneity in metabolism. 
(A) Axial contrast-enhanced T1-weighted fast spoiled gradient-echo image through the center of the lesion and (B) overlaid with 
the pyruvate, (C) lactate, and (D) bicarbonate color maps all summed over the imaging time course. (Reprinted, under a CC BY 4.0 
license, from reference 20.)

Figure 3: Hyperpolarized [1–carbon 13]pyruvate MR images in a patient with triple-negative breast cancer. (A) Coronal T1-weighted three-dimensional spoiled 
gradient-echo (SPGR) image. (B) Coronal reformatted dynamic contrast-enhanced (DCE) image at peak enhancement after injection of a gadolinium-based contrast 
agent. (C) Summed hyperpolarized carbon 13 pyruvate images. (D) Summed hyperpolarized carbon 13 lactate images. (E) Lactate:pyruvate (LAC/PYR) ratio map.
 (F, G) Dynamic hyperpolarized carbon 13 pyruvate and lactate imaging with a 12-second delay after injection over 15 time points at 4-second intervals. (Reprinted, with 
permission, from reference 18.)
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[1-13C]pyruvate MRI is thought to depict the early biochemi-
cal changes of carcinogenesis and treatment response that are 
driven by increased pyruvate uptake, LDH activity, and lactate 
production. Figure 5 shows a case from a recently published 
study of histologically proven prostate cancer with a tumor 
focus in the right peripheral zone (red region of interest on 
histologic image) that was detectable on hyperpolarized [1-13C]
pyruvate MR images (red arrow) but not with proton MRI 

sequences (16).
Preclinical research has shown 

that hyperpolarized [1-13C]pyru-
vate MRI can depict biochemi-
cal responses to chemotherapy 
as early as 24 hours after treat-
ment (40). More recently, hu-
man trials have provided initial 
evidence that hyperpolarized 
[1-13C]pyruvate MRI may also 
depict treatment response in the 
clinical setting such as in breast 
cancer after neoadjuvant therapy 
(30,41). Although most preclini-
cal studies have found a reduction 
in lactate labeling following suc-
cessful treatment, a clinical breast 
cancer study in the neoadjuvant 
setting showed that an increase 
in the lactate-to-pyruvate ratio 
of approximately 20% occurred 
7–11 days after commencing 
treatment and identified those 
patients who went on to have a 
pathologic complete response at 
surgery. Figure 6 is taken from 
this study and gives examples of 
the changes that can be observed 
in lactate:pyruvate ratio with 
hyperpolarized [1-13C]pyruvate 
MRI following treatment of two 
different patients. Figure 6A and 
6B depict images of a patient 
with human epidermal growth 
factor receptor 2–positive breast 
cancer before standard-of-care 
chemotherapy treatment who 
had a decrease in lactate:pyruvate 
ratio following treatment (Fig 6C 
and 6D), corresponding to a his-
tologic nonresponse. Figure 6F 
and 6G depict baseline images 
of another patient with triple-
negative breast cancer who had 
an increase in lactate:pyruvate 
ratio after treatment with che-
motherapy and a poly (adenosine 
diphosphate–ribose) polymerase 
(PARP) inhibitor (Fig 6H and 

6I), corresponding to a confirmed histologic response (30). 
The contrast in results between clinical and preclinical studies 
here was hypothesized to be due to differences in the timing of 
posttreatment imaging in humans compared with animals or to 
differences in the onset of hypoxia or immune infiltration, re-
flecting the importance of translational studies from animals to 
humans in understanding the clinical role of this new technique 
for response monitoring.

Figure 4: Carbon 13 (13C) pyruvate and 13C lactate signal intensity summed over all time points superimposed on an 
axial T1-weighted (T1

w) image of the largest tumor cross-section for three different grade renal cell carcinomas. The border 
of the tumor is outlined in blue. ccRCC = clear cell renal cell carcinoma, kPL = apparent exchange rate constant for lactate 
dehydrogenase, Lac/Pyr = lactate:pyruvate ratio, WHO/ISUP = World Health Organization/International Society of Uro-
logical Pathology. (Reprinted, under a CC BY 4.0 license, from reference 31.)
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PARP inhibitors are a class of anticancer drugs that may be 
particularly suitable for imaging with hyperpolarized [1-13C]py-
ruvate, as PARP activity depletes oxidized nicotinamide adenine 
dinucleotide (NAD+) and reduced nicotinamide adenine dinu-
cleotide (NADH), the cofactors for the LDH enzyme (42,43). 
PARP inhibition has been shown to increase lactate signal rela-
tive to pyruvate when used with standard-of-care neoadjuvant 
treatment in breast cancer which may be due to restoration of 
NAD+ and NADH levels (30). Other new areas for therapy that 
could likely be monitored with hyperpolarized 13C MRI include 
the effect of new cancer therapies that specifically target me-
tabolism, as well as immunotherapy which may also indirectly 
modulate immune cell metabolism and increase metabolic activ-
ity (44–46).

Challenges and Future Directions for 
Hyperpolarized [1-13C]Pyruvate MRI
Key clinical and preclinical studies investigating hyperpolarized 
[1-13C]pyruvate MRI are listed in Tables 1 and 2, respectively, 
along with brief descriptions of the advances in knowledge they 
have provided. While clinical hyperpolarized [1-13C]pyruvate 
MRI has many conceivable roles for improved management 
of patients, the current complexity of the imaging method, re-
quirement of initial facility setup, and high running costs have 

limited translation of this technique into more widespread 
clinical use. Improving the technology to simplify translation, 
such as by streamlining delivery of tracer to the patient, is an 
area of active research that can help facilitate future multicenter 
trials and potentially routine clinical applications. This in turn 
could improve the feasibility of mass production of equipment 
and tracer similar to 18F FDG and lead to reductions in the 
prices of study initiation and maintenance.

With hyperpolarized [1-13C]pyruvate MRI, the detection of 
an early response to cancer treatment could be integrated into 
the patient management pathway, allowing targeted therapies 
and combinational treatments to be rapidly tailored for each 
patient as part of a personalized medical approach. Hyperpolar-
ized [1-13C]pyruvate MRI may also be used for the noninvasive 
evaluation of tumor grade or aggressiveness in selected patients 
where biopsy is challenging or to target biopsies to areas of high 
lactate to derive more accurate results (47).

Other promising applications of hyperpolarized 13C MRI 
with potential for more immediate use involve combination 
with complementary imaging modalities such as 18F-FDG PET 
(48) or emerging techniques such as deuterium metabolic imag-
ing, where glucose is labeled with the 2H isotope of hydrogen, 
thereby providing a more complete picture of cellular metab-
olism than each of these individual techniques alone (49,50). 

Figure 5: Images in a 64-year-old patient who underwent robot-assisted radical prostatectomy. (A) Postsurgical histopathologic assessment confirmed the diagnosis 
of adenocarcinoma of the prostate. The red region of interest represents an International Society of Urological Pathology (ISUP) grade 1 lesion in the right peripheral zone, 
and the black region of interest represents a ISUP grade 3 lesion in the left peripheral zone. (B) T2-weighted MR (T2WI) image demonstrates a single marked area of low 
signal intensity corresponding to the target lesion in the left peripheral zone (yellow arrow). (C) Apparent diffusion coefficient (ADC) map demonstrates a corresponding fo-
cus of markedly restricted diffusion in the left peripheral zone (blue arrow). (D) Dynamic contrast-enhanced (DCE) MR image demonstrates the area of early enhancement 
in the left peripheral zone (green arrow). (E) Pyruvate signal-to-noise ratio (SNR) map with two areas of high pyruvate signal intensity, with the red and black arrows cor-
responding to the grade 1 and grade 3 histopathology-confirmed tumor foci, respectively. (F) Lactate SNR map demonstrates high [1–carbon 13]lactate signal intensity 
in the left peripheral zone lesion. (G) Total carbon SNR map shows higher signal intensity in the left peripheral zone tumor. (H) The apparent exchange rate constant for 
lactate dehydrogenase (kPL) map (presented as sec-1) shows a higher rate of pyruvate-to-lactate conversion in the more aggressive left peripheral zone lesion. (Reprinted, 
under a CC BY 4.0 license, from reference 16.)
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The standardized uptake value of 18F FDG is higher in tumors 
because of an increase in metabolic activity, glucose transporter 
expression, and activity of the enzyme hexokinase which phos-
phorylates and traps the tracer intracellularly. Standardized up-
take value is already used in clinical practice for treatment re-
sponse monitoring as well as for the detection of new cancer and 
recurrence (51,52). 18F-FDG PET and hyperpolarized [1-13C]
pyruvate MRI depict tissue metabolism in complementary ways 
and are sensitive to different steps in the metabolism of glucose, 
allowing these modalities to investigate different enzymes and 
transporters (3).

Where available, hybrid PET/MRI scanners can be used 
with 18F-FDG and hyperpolarized [1-13C]pyruvate MRI to 
further improve the metabolic phenotyping of tissue. 18F-
FDG PET images can be more accurately coregistered to hy-
perpolarized [1-13C]pyruvate MRI with PET/MRI scanners 
than with PET/CT. Simultaneous 18F-FDG PET and hyper-
polarized [1-13C]pyruvate MRI has already been performed 
in a canine cancer model which showed that hyperpolarized 
[1-13C]pyruvate MRI was more specific for the Warburg ef-
fect, while 18F-FDG PET could not differentiate between 
increased glucose uptake and the processes of oxidative phos-
phorylation and glycolysis (53).

Validation of the measurements of pyruvate and its metabo-
lites in tissue using hyperpolarized [1-13C]pyruvate MRI is chal-
lenging due to the large number of biologic covariates and the 

difficulty of rapidly halting chemical reactions in biologic sys-
tems to facilitate ex vivo quantification. To date, only few studies 
have provided tissue validation for the imaging measurements 
(16,20,54). Larger biologic and technical validation studies are 
required to understand the changes that drive signal generation 
in hyperpolarized 13C MRI and to further evaluate the repeat-
ability and reproducibility of the results, for which there have 
already been a few promising reports in specific tumors such as 
prostate cancer (26).

Conclusion
Hyperpolarized [1-13C]pyruvate MRI has been extensively 
studied preclinically and has been successfully implemented in 
human studies at multiple clinical sites and across several can-
cers. The biologic mechanisms underlying the changes in imag-
ing are tumor-specific and have been shown to include expres-
sion of the pyruvate transporter and the enzyme converting it 
into lactate as well as the endogenous tissue concentration of 
lactate. Early human research suggests that clinical hyperpolar-
ized [1-13C]pyruvate MRI may have the potential to fulfill the 
promise of preclinical results. In the human studies performed 
thus far, the technique has produced findings that have dem-
onstrated an ability to stratify tumors based on their metabolic 
phenotype, more accurately detect multifocal disease, assist in 
tumor grading, and detect early response to therapy.

Hyperpolarized [1-13C]pyruvate MRI remains a developing 

Figure 6: Two patients with human epidermal growth factor receptor 2–positive (HER2+) breast cancer (top row) and triple-negative 
breast cancer (TNBC) (bottom row). (A, F) Hyperpolarized carbon 13 MRI lactate:pyruvate (LAC/PYR) maps for both patients superim-
posed on hydrogen 1 MR images. (B, G) Diffusion images at baseline. Early follow-up (C, H) hyperpolarized and (D, I) diffusion images. 
Differences between baseline and follow-up images were significant for tumor volume and diffusivity. (Reprinted, under a CC BY 4.0 license, 
from reference 30.)
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and improving technology. In the future, it may find use in clini-
cal drug trials for monitoring responses to new treatments and 
in the identification of successful combinational regimens. The 
technique may also be improved by combination with 18F-FDG 
PET and deuterium metabolic imaging to provide rich meta-
bolic phenotypic information on tumors. Nevertheless, there re-
mains a need for studies to undertake further biologic and tech-
nical validation as well as for larger multicenter trials to confirm 
results obtained from the proof-of-concept and small patient 
number studies that have been performed to date.
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Chen et al 2022 (56) Prostate cancer Proof-of-concept guide for fusion imaging in transrectal biopsies
Sushentsev et al 2022 (16) Prostate cancer HP [1-13C] MRI had higher sensitivity at detecting intermediate grade 

prostate cancer than proton MRI
Zaccagna et al 2022 (20) Glioblastoma Tumor lactate heterogeneity demonstrated

Tumor bicarbonate lower than surrounding brain
Ursprung et al 2022 (31) Renal cell carcinoma Differentiation of tumor by aggressiveness

Expression of MCT-1 may be related to survival
Woitek et al 2021 (30) Breast cancer Detection of response to neoadjuvant chemotherapy
Autry et al 2020 (57) Pediatric CNS cancers Safety of imaging of pediatric population with CNS cancer
Woitek et al 2020 (41) Breast cancer Breast cancer response detected after one cycle of neoadjuvant chemo-

therapy
Autry et al 2020 (58) Glioma Rate constants elevated following bevacizumab treatment

Progressive disease demonstrated elevated kPL

Gallagher et al 2020 (18) Breast cancer Breast cancer demonstrated metabolic heterogeneity
Lactate correlated with MCT-1 and hypoxia

Chen et al 2019 (59) Prostate cancer metastases Detected metabolism in metastases and changes following treatment
Tran et al 2019 (17) Renal cell carcinoma Assessment of metabolism and cancer heterogeneity
Gordon et al 2019 (8) Prostate cancer and brain cancer EPI acquisition provided whole-organ coverage while retaining high 

SNR and resolution
Larson et al 2018 (60) Prostate cancer Inputless kPL fitting method for quantification of metabolism of HP 

[1-13C]pyruvate demonstrated
Chen et al 2018 (61) Prostate cancer Feasibility of characterization of metabolism in animals and patients 

demonstrated
Park et al 2018 (62) Brain tumor Demonstrated safety and feasibility when evaluating in vivo brain 

metabolism
Aggarwal et al 2017 (63) Prostate cancer Illustrated potential as a biomarker of response
Nelson et al 2013 (10) Prostate cancer Confirmation of safety and demonstration of elevated [1-13C]lactate 

and [1-13C]pyruvate levels in cancer

Note.—13C = carbon 13, CNS = central nervous system, EPI = echo-planar imaging, HP = hyperpolarized, kPL = apparent exchange rate 
constant for lactate dehydrogenase, MCT-1 = monocarboxylate transporter 1, SNR = signal-to-noise ratio. 
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Table 2: Selected Preclinical Hyperpolarized Carbon 13 Pyruvate Studies in Oncology and Key Findings

Study Tumor Studied Model Focus of Study and/or Key Findings

Lai et al 2021 (64) Squamous cell carcinoma Cell Glycolytic alterations occur in response to irradiation
Park et al 2021 (65) Glioma Rodent Distinct metabolic profiles for enhancing and nonenhancing 

gliomas
Choi et al 2021 (66) Breast metastases to brain Cell Metformin therapy may affect kPL in adjuvant treatment
Rao et al 2021 (67) Pancreatic cancer, breast cancer Cell Injections of pyruvate may inhibit LDH activity
Kawai et al 2021 (68) Glioblastoma Cell Increase in lactate:pyruvate ratio after irradiation
Macdonald et al 2021 

(69)
Breast cancer Cell Potential for AUCL/P as biomarker of glycolytic metabolism

Perkons et al 2021 (70) Hepatocellular carcinoma Rat Quantification of intratumoral metabolism is repeatable and 
reflective of intracellular processes

Park et al 2021 (71) Glioma, metastases, and radiation 
necrosis

Mouse Differentiation between radiation necrosis and brain tumors 
demonstrated

Fala et al 2021 (72) Lymphoma Mouse Exchange between pyruvate and lactate correlates more with 
pyruvate delivery and less with endogenous lactate

Martinho et al 2020 
(73)

Pancreatic cancer Mouse Higher lactate:pyruvate ratio in tumor
Concern over distinguishing tumors from pancreatitis

van Heijster et al 2020 
(74)

Prostate cancer Mouse and 
cell

Metabolism in cell models differs from that in other tumor 
models such as mouse

Perkons et al 2020 (75) Hepatocellular carcinoma Rat Quantification of intratumoral LDH pharmacodynamics and 
therapeutic efficacy prediction

Qin et al 2020 (76) Prostate cancer Mouse HP 13C-MRI findings can help monitor radiation-induced 
physiologic changes

Müller et al 2020 (77) Breast cancer Rat Multiecho balanced SSFP improves resolution when
compared with spectroscopy and FID

Lee et al 2020 (78) Breast cancer Rat Lactate-to-pyruvate ratio correlates positively with [1-13C]lactate 
measured from tissue extracts and negatively with tumor wet 
weight

Nivajärvi et al 2020 
(79)

Glioma Rat Metabolic information gives a more comprehensive picture of 
gene therapy response

Acciardo et al 2020 (80) Melanoma Mouse BRAF inhibition induced an increase in pyruvate-to-lactate ratio 
and in vivo conversion is influenced by tumor microenviron-
ment

Mignion et al 2020 (81) Head and neck SCC Mouse HP 13C-pyruvate is a potential marker for response to cetux-
imab

Michel et al 2019 (82) Glioma Mouse Pyruvate metabolism can monitor treatment response
Feuerecker et al 2019 

(83)
Bladder carcinoma Cell Lactate:pyruvate ratio detected early treatment response

Bachawal et al 2019 
(84)

Prostate cancer Canine Simultaneous 13C/PET/mpMRI and fusion-guided biopsy is 
feasible in a canine model

Radoul et al 2019 (85) Glioblastoma Mouse Decrease in lactate production could serve as a biomarker of 
response to histone deacetylase inhibitors

Hundshammer et al 
2018 (86)

Breast cancer Rat Variations in cell density affect PET and 13C-MRI similarly
Metabolic data may reflect both biochemistry and cellularity

Park et al 2019 (87) Glioblastoma Rat HP 13C MRI may be used to assess blood volume
Autry et al 2018 (88) Pediatric DIPG Rat HP 13C MRI may monitor biochemical processes in diffuse 

intrinsic pontine glioma
Lee et al 2019 (89) Prostate cancer Mouse HP 13C MRI in optimizing focal high-intensity focused ultra-

sound deserves further testing
Hansen et al 2018 (90) Multiple canine cancers Canine Lactate and fluorine 18 FDG uptake can be related and depends 

on cancer type
Scroggins et al 2018 

(91)
Prostate cancer Mouse HP [1-13C]-pyruvate MRI findings help predict efficacy of 

targeting of the Warburg effect
Serrao et al 2018 (92) Lymphoma Mouse Exchange between pyruvate and lactate can provide an estimate 

of the true isotope flux
(Table 2 continues)
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Table 2 (continued): Selected Preclinical Hyperpolarized Carbon 13 Pyruvate Studies in Oncology and Key Findings

Study Tumor Studied Model Focus of Study and/or Key Findings
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Chaumeil et al 2016 
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Glioma Mouse Metabolic imaging profile of mutant IDH1 gliomas could be 
used to detect the presence of the IDH1 mutation

Serrao et al 2016 (95) Lymphoma Mouse The fasted state may be preferable for the measurement of 13C 
label exchange

Düwel et al 2016 (96) Hepatocellular carcinoma Rat Qualitative perfusion information can be extracted from fuma-
rate and pyruvate imaging alone

Rajeshkumar et al 2015 
(97)

Pancreatic cancer Mouse p53 status in pancreatic cancer can be a biomarker to predict 
sensitivity to LDH-A inhibition
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Measurement of T1 values provides information about the 
environment of metabolites and can improve assessment of 
kinetics
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bicarbonate in tumor-bearing rat brain
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brain tumors

Witney et al 2009 (101) Lymphoma Mouse Comparison of HP [1-13C]pyruvate MRI and fluorine 18 FDG 
PET/CT for measuring response to treatment
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loss of NAD and decreases in tumor lactate and LDH
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