
 

3 

 

AI for Climate Science 

Philip Stier, Department of Physics, University of Oxford, UK 

(philip.stier@physics.ox.ac.uk) 

1.  Introduction 

While the introduction of AI has been a recent step change in many areas 

of science, the beginnings of AI in climate research are much less well 

defined. This is because climate research is by scale inherently big data 

intensive so that its research community had to develop automated tools 

for prediction and statistical data analysis from the onset, without 

knowledge that these approaches will be considered as AI or Machine 

Learning (ML, application of AI to learn from data without instruction) in 

the future (or even without being aware now). For example, regression and 

clustering have been applied for decades to understand associations 

between climate variables in observational and modelling data. 

Probabilistic methods and Bayes’ theorem have been widely used to tackle 

inverse problems in the inference of climate parameter from Earth 

Observations, as e.g. in optimal estimation retrievals of atmospheric 

properties (e.g. temperature, clouds, composition) from satellite data [2]. 

Clustering techniques, such as k-means, have been widely used to identify 

and attribute weather patterns and cloud regimes [3]. Causal attribution 

techniques have been developed to isolate anthropogenic climate signals 

from natural variability, generally requiring significant dimensionality 

reduction e.g., through Principal Component Analysis [4]. 

Building on this early work, recent advances in AI are now 

transforming climate science, across all fields, which we will investigate 

in the following. The focus of this chapter is less on the specific AI/ML 

methods applied to each problem – there are plenty of choices, they are 



rapidly evolving, and there generally exists limited consensus on the 

optimal method for each task – but rather on the key application areas and 

opportunities for AI/ML to transform climate science.  

2.  Climate modelling 

Climate models span a wide range of complexities, from simple zero-

dimensional energy balance models with analytical solutions, to complex 

numerical Earth System Models predicting the transient evolution of the 

key Earth system components. In the following, we will be focusing on 

the latter type of models with an emphasis on the physical climate system. 

A climate model can be generalized as a map C, mapping the climate state 

vector x(t), from its initial state x(t0) through time t, typically with 

prescribed spatiotemporally varying boundary conditions, such as natural 

(e.g. volcanic emissions, solar radiation) and anthropogenic (e.g. 

concentrations of CO2, aerosols, land use) perturbations, represented here 

as vector b(t). C includes structural (due to the formulation of the 

underlying equations representing climate processes) and parametric (due 

to inexact knowledge of parameters 𝛉 in these equations) uncertainties:  

 

𝐱(t)  =  𝐶( 𝐱(𝑡0) , 𝐛(𝑡), 𝛉) 

 

C here represents a wide range of complex physical and, in Earth 

System Models, bio-chemical processes. A climate model generally 

discretizes Earth spatially (e.g. structured or unstructured grids, spherical 

harmonics) and physical conservation laws (of momentum, energy, mass), 

represented as systems of coupled partial differential equations, are 

numerically integrated forward in time. However, to maintain numerical 

stability [5], this time integration must be performed with short integration 

timesteps; for a typical climate model with 1 degree × 1 degree 

(approximately 100km) resolution, the timestep is typically O(10min), 

which has to be further reduced for higher spatial resolutions as will be 

discussed below. For a typical transient climate simulation from year 1700 

to 2100 this requires O(107) time-integration steps solving a complex set 

of equations for O(106) grid-points. Note that climate models effectively 

integrate random manifestations of weather over time and are structurally 
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often very similar to weather forecasting models so that many applications 

of AI discussed below apply to both domains.  

However, key climate processes occur on small scales that cannot be 

explicitly resolved in such climate models. For example, clouds form 

droplets microscopically on a scale of O(10-6 m), which grow by diffusion 

and collisions to form precipitation of O(10-3 m). Macroscopically, clouds 

typically occur on scales of O(102 m) to O(105 m). As it is computationally 

not possible to globally resolve all of these scales, such processes are 

parametrized, i.e., approximated from the explicitly resolved large-scale 

climate variables. While tremendously successful in weather and climate 

prediction, such simplified parametrizations introduce structural 

deficiencies by construction, which contribute significantly to the 

remaining overall model uncertainty.  

Another, often overlooked, problem is that climate models contain 

many such parameterizations to represent e.g., clouds, radiation, 

turbulence, gravity waves, oceanic mesoscale eddies. Due to the 

underlying complexity these are generally solved sequentially via operator 

splitting, separately computing the solution for each, and combining these 

separate solutions to calculate the overall tendency for each variable that 

is then integrated forward in time. In fact, typical climate models have 

three operator-split parameterizations for clouds alone: i) calculating the 

cloud amount, ii) the convective transport of momentum, water and 

tracers, and iii) the cloud microphysics, i.e., the evolution of droplets of 

crystals.  

Physical climate modelling has pushed the envelopes of 

supercomputing from its inception; hence, it is not surprising that the 

climate modelling community now embraces the opportunities provided 

by the advancement of AI and machine learning as we will discuss below.  

2.1 Emulating climate model parameterizations 

Based on a long heritage of climate model development, most AI 

applications in climate modelling have focused on the emulation of 

climate model parameterizations in existing climate modelling frameworks 

with two main objectives:  



i) Speedup, implementing emulators of existing parameterizations for 

reduced computational cost. Applications include: 

- Emulation of atmospheric radiative transfer using neural 

networks: it has been demonstrated that a neural network 

emulation of a longwave radiation code in a climate model 

achieved a speedup by 50-80 times faster than the original 

parameterization [6], an approach which has subsequently been 

extended to the shortwave radiation and improved in accuracy 

[7].  

- Emulation of aerosol microphysics: testing various ML 

approaches, such as neural networks, random forests and 

gradient boosting: it has been shown that a neural network can 

successfully emulate an aerosol microphysics module in a 

climate model, including physical constraints, with a speedup of 

over 60 times than the original model [8]. 

ii) Accuracy: the speedup provided by AI/ML allows for replacing 

(computationally affordable) simplified parameterizations with 

emulations of (previously computationally unaffordable) higher 

accuracy reference models. Applications include:  

- Replacement of uncertain atmospheric convective cloud 

parameterizations with neural networks, e.g., emulating 2D 

cloud resolving models for each column 

(superparameterization).  [9] use a nine-layer deep, fully 

connected network with 256 nodes in each layer with around 0.5 

million parameters to successfully replace the convection 

scheme in a climate model with multiyear simulations closely 

reproducing the mean climate of the cloud-resolving simulation 

as well as key aspects of variability. Interestingly, their neural 

network conserves energy approximately without incorporating 

this as a physical constraint during the training. Remaining 

problems with stability can be overcome by the explicit 

incorporation of physical constraints [10]. 

- Emulation of gravity wave drag parameterizations: training on 

an increased complexity version of an existing  scheme 

emulators have been built that produce more accurate weather 
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forecasts than the operational version while performing 10 times 

faster on GPUs than the existing scheme on a CPU [11].  

- Representation of unresolved ocean mesoscale eddies: 

computationally efficient parameterizations of ocean mesoscale 

eddies have been developed based on relevance vector machines 

and convolutional neural networks from high-resolution 

simulations [12]. Physical constraints are explicitly embedded in 

the design of the network: the architecture forms the elements of 

a symmetric eddy stress tensor so that exact global momentum 

and vorticity conservation can be achieved, and the results are 

interpretable. 

Based on the long heritage of specialized parameterization development, 

it is not entirely surprising that current approaches primarily focus on the 

speedup and improvement of parameterization in existing structural 

frameworks. However, the incorporation of AI/ML provides significant 

opportunities to overcome structural limitations of current climate models. 

Firstly, key climate processes are coupled on timescales much faster 

than the climate model integration timestep, for example the interaction 

between aerosols and clouds. However, under current operator splitting 

approaches these processes can only interact every host model timestep, 

typically O(10min). AI/ML offers the opportunity to emulate such coupled 

processes jointly, eliminating structural operator splitting errors – an 

opportunity that has not yet been widely capitalized on. Secondly, AI/ML 

also provides an opportunity to develop entirely new parameterizations, 

under incorporation of observational constraints, as we will now discuss.  

2.2 Development of new climate model parameterizations 

The development of climate model parameterizations generally 

combines theory with either detailed process or high-resolution modelling 

or observed relationships between small scale processes and resolved scale 

variables (e.g., cloud fraction parameterized as a function of grid-scale 

atmospheric humidity [13]). However, the systematic incorporation of 

observational constraints in the parameterization development has 



remained challenging. Consequently, observations are often primarily 

used for model evaluation and parameter tuning after the structural model 

development and often only based on aggregate statistics, such as gridded 

monthly means of satellite observations. It is surprising –and concerning 

– that current climate model development and evaluation make use of only 

a small fraction of the information content from an unprecedented amount 

of Earth observations available.  

However, new approaches to systematically incorporate observations 

and high-resolution simulations in the development of parameterizations 

are being developed. A framework for machine-learning based 

parameterizations to learn from Earth observations and targeted high-

resolution simulations has been outlined [14]. In this framework, 

parameters and parametric functions of parameterizations are learned by 

minimizing carefully chosen (yet still subjective) objective functions that 

penalize the mismatch between the simulations and observations or 

between the simulations and targeted high-resolution simulations. It 

should be noted that such methods still incorporate structural errors 

introduced by the specific formulation of the parametrization itself and its 

spatiotemporal coverage. For example, current convection 

parameterizations in climate models suffer from their restriction to a single 

model column, which makes it difficult to accurately represent larger 

organized cloud systems.  

A particular challenge for observation-data driven approaches in 

climate modelling is that, by construction, we expect the climate system 

to change between the training period, for which observations are 

available, and under future climate change. Reliable satellite-based Earth 

Observations are available from about 1980 to present day, i.e., from a 

period that has already undergone significant climate change. Such dataset 

shifts arising from non-stationarity of the climate processes differ from 

most traditional machine learning applications, for which the underlying 

distributions are assumed to remain the same between training and test 

sets. In addition, there exists a risk of introducing selection biases due to 

the incompleteness of Earth Observations.  

Machine learning strategies to limit the impact of dataset shifts from 

non-stationarity include active learning [15], querying for additional 

constraints from observations or process modelling when dataset shifts are 
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detected [14]. Common approaches based on feature dropping, i.e., 

removing features underlying the dataset shifts, are undesirable in the 

presence of real physical shifts in the distribution of climate state variables 

under climate change. [16] develop “climate-invariant” mappings of 

thermodynamic variables in the emulation of sub-grid scale processes by 

physically rescaling the inputs and outputs of ML models to facilitate their 

generalization to unseen climates. However, it is not yet entirely clear how 

such methods generalize to state-dependent and potentially discontinuous 

feedback process, such as phase dependent cloud feedbacks [17] or 

potential bifurcation points [18].  

2.3 Calibration of climate and climate process models 

Climate models contain a significant number of uncertain model 

parameters 𝛉. For example, the convective rate of mixing of clouds with 

their environment is highly uncertain, due to the large uncertainty 

associated with small-scale turbulent processes, but has a profound impact 

on upper tropospheric humidity, cloudiness and ultimately climate 

sensitivity [19]. During the model development phase, such climate model 

parameters are generally tuned ad-hoc to minimize biases against a sub-

set of present-day observations. However, it is possible to create climate 

model variants with different parameter combinations that evaluate 

reasonably against present day observations and still simulate very 

different climate sensitivity [20]. Perturbed Parameter Ensembles (PPE), 

varying climate model parameters within their uncertainty bounds, have 

been proposed as a way to probe the full parametric uncertainty [21]. 

However, due to the large number of uncertain climate model parameters 

– e.g. 47 key parameters have been identified in the HadGEM3 climate 

model [22] – a very large number of simulations would be required to 

probe uncertainty in this 47-dimensional parameter space. This approach 

has been pioneered in the citizen-science project climateprediction.net [19, 

21] based on the distributed computing power provided by a large number 

of volunteers. However, the computational demand limits application to 

lower resolution models of limited complexity or requires reducing the 

number of parameters through sensitivity analysis [e.g. 22].  



The availability of AI/ML based emulation of climate model outputs 

provides an alternative approach for uncertainty estimation and calibration 

for climate models. A Bayesian framework for the calibration of numerical 

models with atmospheric applications has been introduced [23], based on 

Gaussian Processes [24]. In this framework, an ensemble of climate model 

simulations is performed that probe the parametric uncertainty in all 

parameter dimensions. Latin hypercubes [25] provide an efficient 

sampling of the parameter space, reducing the number of simulations to 

perform. Emulation, e.g., using Gaussian Processes, is performed on a set 

of model outputs both for observational constraint, as well as to assess the 

impact of this constraint on key climate metrics, such as radiative 

perturbations to the global energy balance. Calibration of the model 

corresponds to the inverse problem of finding the optimal combination of 

parameters 𝛉 that best match a set of observations corresponding to the 

emulated model output, which can be densely sampled (as opposed to the 

sparsely performed climate model simulations). Due to structural model 

uncertainties and representation errors, a model will never exactly match 

a comprehensive set of observations. Hence, the goal of calibration is 

generally to minimize a suitably chosen objective function, commonly 

some form of distance metrics between the model output and 

corresponding observations taking into account observational errors, such 

as those used in history matching [26] using techniques, such as 

Approximate Bayesian Computation (ABC) or Markov-Chain Monte 

Carlo (MCMC). These approaches to climate model calibration have been 

pioneered in the context of constraining the highly uncertain effect of 

aerosols (air pollution particles) on clouds and climate [27]. 

Open-source tools providing a general workflow for emulating and 

calibrating climate models with a wide range of heterogeneous 

observations are now becoming available [28].  

2.4 Digital Twin Earths  

Through confluence of advances in high-performance computing and 

efficient computational solvers for non-hydrostatic equations of fluid flow 

at small scales it is now possible to numerically simulate the global Earth’s 

atmosphere at cloud-resolving kilometer scales [29]. Combination with 
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Earth Observations at similar scales would allow to exploit a much larger 

fraction of the information content from observations than previously 

possible – and to avoid key structural deficiencies associated with 

parameterizations, in particular for deep convective clouds or ocean 

mesoscale eddies, that can be removed as the associated flows are now 

explicitly resolved. The computational challenge is immense: e.g., the 

ICON model with 2.5km resolution has 84 × 106  grid columns with 90 

levels and, for numerical stability, requires integration over climatological 

timescales in 4.5s timesteps. Storage of just 10 climate variables 

approaches 1 Tb per output timestep [29] and several Pb per day. Novel 

AI based approaches for data compression e.g., using autoencoders 

learning the underlying physics, encoding the data to a lower dimensional 

space for output and subsequent decoding during the analysis, could make 

data analysis tractable again [30].  

The entrance of models with superior physical realism opens the doors 

for the development of digital twins of Earth [31]. Digital Twin Earths 

combine coupled physical and biogeochemical models of Earth system 

components, such as the atmosphere, oceans, the carbon cycle or even the 

biosphere, with Earth observations using data assimilation.  Data 

assimilation aims for the optimal combination of observations with 

simulations in a physically consistent framework, which allows to 

compensate for observational gaps, while observations constrain model 

uncertainties due to remaining structural and parametric errors. Such Twin 

Earths will allow to timely assess the impacts of societal decisions under 

the impacts of climate change over timescales from days to decades.  

While broad agreement currently exists that a solid physical basis is a 

precondition for the interpretability and trustworthiness of Digital Twin 

Earths [32], AI/ML will have a big part to play in their development. Key 

applications will include the emulation of remaining sub-grid scale 

parameterizations (e.g., turbulence, cloud microphysics, radiation), data-

driven development of new parameterizations and model components as 

well as tools to analyze and query the vast datasets created by such models.  

In the longer-term future, progress in physics-constrained machine 

learning and explainable artificial intelligence (XAI) could lead to a 

paradigm shift away from computationally expensive numerical 



integration in short timesteps – but this will require a step-change in 

trustworthy AI and its broader perception.  

3.  Analysis of climate model data 

3.1 Emulation 

Current climate model intercomparisons create vast amounts of data, so 

big that they can no longer simply be queried to provide guidance to policy 

makers. The sixth phase of the Coupled Model Intercomparison 

Experiment (CMIP6) [33], the main international climate modelling 

exercise, includes several ten thousand simulation years from individual 

climate models; the size of its output is estimated to be around 18Pb [34]. 

Consequently, current climate model ensembles can only explore a very 

limited subset of the socio-economic scenarios [35] available to policy 

makers. Therefore, key policy decisions are generally based on simple 

global-mean climate parameters, most famously the goal to “limit global 

warming to well below 2, preferably to 1.5 degrees Celsius, compared to 

pre-industrial levels” in the Paris Agreement. Real-time information for 

policy makers, e.g., during United Nations Conference of the Parties 

(COP) negotiations, is generally provided by reduced complexity 

Integrated Assessment Models [e.g. 36]. While such models can be 

physically consistent and evaluated against complex climate models, they 

by construction neglect the complex regional variations of climate change 

and its impacts.  

The availability of AI/ML techniques for the emulation of large-scale 

datasets provides opportunities to develop a new generation of reduced 

complexity climate model emulators for key climate parameters. These 

tools remain fully traceable to the output of large ensembles of complex 

climate models, e.g., CMIP6, and predict the global patterns of regional 

climate change.  

From an AI/ML perspective, the emulation of climate model output is 

not dissimilar from climate modelling itself. Such an emulator can be 

generalized as a map E, mapping the climate state vector x(t), through time 

t in dependence of transient boundary conditions b(t).  
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𝐱(t)  =  E ( 𝐛(𝑡), 𝛉𝒎𝒍) 

 

However, there exist a few conceptual differences: because E is 

learning the machine learning model parameters 𝛉𝒎𝒍 from fitting of a 

precalculated training dataset 𝕏 (the climate model output), no explicit 

integration in time is necessary. Further, because climate is defined as the 

longer-term average of individual weather patterns, it is generally possible 

to aggregate over larger temporal timescales, such as annual or even 

decadal means, although it may be desirable to also emulate the seasonal 

cycle as well as shorter term extremes or even full probability 

distributions. Finally, the primary application as a decision-making tool 

for choices of socio-economic scenarios means that boundary conditions, 

such as CO2 emissions, can generally be aggregated to global means. 

However, it should be kept in mind that this may limit the applicability to 

e.g., regional precipitation response to short-lived climate forcers, such as 

aerosols, for which the emission location impacts on the response [37].  

A benchmarking framework based on CMIP6 [33], ScenarioMIP [35] 

and DAMIP [38] simulations performed by a full complexity climate 

model has been developed [39], combined with a set of machine-learning 

based models. A range of emulators based on Gaussian Processes [24], 

Random Forests [40], Long short-term memory (LSTM) [41] neural 

networks as well as Convolutional Neural Networks (CNNs) [42] are 

available in a common framework suitable for emulation of Earth System 

components [28]. These emulators can predict annual-mean global 

distributions of key climate parameters, including extreme values, given a 

wide range of emissions pathways and allow to efficiently probe 

previously unexplored scenarios, a concept that could become invaluable 

in (computationally expensive) Digital Twin Earths.  

3.2 Downscaling 

The resolution of global climate models is generally too coarse to predict 

local climate impacts on scales of relevance e.g., for critical infrastructure, 

such as solar or wind power plants, or for river catchment areas, for the 

assessment of flood risk. Such higher resolution predictions have 



traditionally been made using regional climate models, which simulate 

regional climate in high resolution based on the boundary conditions from 

global climate models or using statistical downscaling, developing 

statistical relationships between resolved scale coarse climate variables 

and local or regional climate variables of interest [43, 44]. 

Treating a two-dimensional climate dataset as an image, the 

downscaling problem is closely related to the concept of super-resolution 

in machine learning, aiming to generate consistent high-resolution images 

from low-resolution input images. While this is in principle an ill-posed 

problem, machine learning based super-resolution methods take advantage 

of prior knowledge about the structure of the high-resolution images and 

have achieved remarkable accuracy. For climate downscaling, prior 

knowledge about high-resolution orography (in particular for 

precipitation, often triggered by flow over mountains) and surface 

characteristics (in particular for temperature as it affects absorption of 

sunlight and surface fluxes) are expected to improve the prediction. These 

and other physical constraints can be included explicitly or implicitly as 

part of high-resolution training datasets.  

In supervised super resolution downscaling, a machine learning model 

is trained using high resolution climate datasets from observations, (e.g., 

precipitation data from radar networks or high-resolution models to 

predict high-resolution climate data from low resolution inputs, such as 

low-resolution climate models. Successful applications include: use of 

CNNs for continental-scale downscaling of temperature and precipitation 

[45, 46]; use of Generative Adversarial Networks (GANs) to downscale 

wind velocity and solar irradiance outputs from global climate models 

scales representative for renewable energy generation [47]. 

However, reliable high-resolution training datasets do not exist for all 

applications. For example, the assessment of climate impacts over Africa 

is of crucial societal importance but very limited observational networks 

exist that could be used as high-resolution training data. Hence, the 

development of unsupervised downscaling methods has a large potential.  

[48] treat downscaling as a domain alignment problem and develop an 

unsupervised model to learn a mapping between two random variables 

based on their shared structure with a predictive performance comparable 

to existing supervised methods.  
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4.  AI for Earth Observations in Climate Science 

Observations have played a key role for the discovery and our 

understanding of key climate processes ever since the discovery of the 

importance of water vapor and carbon dioxide for atmospheric radiation 

by Eunice Foote [49]. Robust constraints from Earth Observations are of 

vital importance for trust in climate models and their predictions. Today, 

with an unprecedented amount of Earth Observation data available from 

spaceborne and ground-based observing systems, the role of observations 

in climate science is becoming increasingly limited by our ability to extract 

the relevant information content at scale.   

For decades, the exploitation of Earth Observations for climate science 

has focused on pixel-by-pixel retrievals of relevant climate parameters, 

such as temperature profiles, atmospheric composition, and cloud 

properties, primarily from spectral radiance measurements. This approach 

has been tremendously successful but rejects a significant fraction of the 

information content available in Earth Observations arising from spatio-

temporal structures beyond the single pixel. The advent of reliable and 

scalable AI/ML for feature detection and classification provides a unique 

opportunity to explore the full potential of Earth Observations to increase 

our understanding of climate process as well as for climate model 

constraint and evaluation.  

4.1 Remote sensing retrievals 

The retrieval of climate relevant parameters, represented as a state vector 

𝐱, from remote sensing observations is an inverse problem for which often 

no unique solutions exist. Generally, a forward radiative transfer model 

𝐅(𝐱) is used to simulate observations 𝐲 of spectral radiances (passive 

instruments) or backscatter (active instruments) in the presence of 

measurement errors 𝛆 under assumption of prior knowledge 𝐱𝐚 about the 

state vector. The retrieval aims to minimize the difference, generally 

expressed as cost function comprising of a data-fit term measuring the fit 

between the forward model 𝐅(𝐱) and the observation 𝐲, and a regularizer 

measuring the fit between the best estimate of the state vector �̂� and the 



prior 𝐱𝐚. Such retrievals, often performed in the Bayesian framework of 

Optimal Estimation [2], have been successfully deployed in satellite 

remote sensing of climate parameters such as temperature and humidity 

profiles, cloud properties and atmospheric composition, and allow to 

systematically take into account multiple error sources [50]. However, 

significant uncertainties remain in the estimation of fundamental climate 

parameters; in fact, the uncertainty in our estimates of total ice water in 

the atmosphere is nearly as large as the total amount itself [51], as well as 

of associated cloud properties, such as the cloud droplet number 

concentration [52], severely limiting our ability to constrain current 

climate models. There remains significant potential to advance on current 

retrievals using AI, including multi-sensor fusion and the use of invertible 

neural networks. However, it should be noted that the retrieval problem is 

generally highly under-constrained. See further details in Chapter 17.  

4.2 Feature detection and tracking 

Driven by a vast number of commercial applications, the availability of 

large-scale labeled training datasets [e.g. ImageNet: 53] as well as of open 

source platforms for machine learning, and the development of robust and 

reliable machine learning models, the detection and classification of 

features in images has rapidly advanced and now influences most aspects 

of modern life.  

Maybe surprisingly, the use of observable features from Earth 

Observations, such as cloud patterns or ocean eddies, has so far remained 

a niche area for the systematic evaluation and constraint of climate models. 

One reason is that current low-resolution climate models have, by 

construction, limited skill in simulating such small-scale features and are 

therefore primarily evaluated based on aggregate statistics. But equally, 

the task may have simply felt too daunting as manual detection of features 

in vast Earth Observation datasets is simply not practical, except for low 

frequency events, such as tropical cyclones.  

However, the availability of reliable and scalable AI/ML based feature 

detection (detecting objects) and semantic segmentation (classifying each 

pixel) techniques has started to rapidly transform the analysis of Earth 

Observations for climate science, as evident from the following examples 
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centered on the role of clouds for climate, noting that there are similar 

applications across many areas of climate research:  

Quasi-linear tracks from well-defined pollution sources, such as ships, 

volcanoes, cities or industrial areas, have been extensively used to study 

the effect of air pollution to brighten clouds [54] – but their manual 

detection has remained challenging. Deep convolutional neural networks 

with skip connection architecture (U-Net) have been trained based on 

hand-labeled ship-track data from the MODIS satellite instrument [55] and 

applied in a case study for the stratocumulus cloud deck off the coast of 

California. Applying a similar technique, it has recently been possible to 

catalogue all ship-tracks globally since 2002 and find marked reductions 

under emissions control regulations introduced in 2015 and 2020 [56]. 

Such AI based approaches allow the global assessment and continuous 

monitoring of anthropogenic climate perturbations. 

Cloud feedbacks are the dominant contributor of inter-model spread in 

climate sensitivity among current climate models [57] and often involve 

subtle transitions between cloud regimes and morphologies that are 

difficult to simulate and need to be observationally constrained:  

Low stratocumulus clouds scatter sunlight back to space, have large 

cloud fractions and therefore cool the Earth. It is therefore important to 

understand the transition from stratocumulus clouds to cumulus clouds 

with lower cloud fraction and therefore a weaker cooling effect and how 

this might be affected by climate change. Such transitions can occur as a 

pocket of open cells (POCs) in a closed stratocumulus cloud field and the 

effect of air pollution on this process had been hypothesized to have a 

significant effect on climate. However, such prior work was limited to case 

studies with a small number of POC occurrences. Training a modified 

ResNet-152 which has been pre-trained on ImageNet, it has been possible 

to analyze a 13-year satellite record to identify >8000 POCs globally [58]. 

This allowed for the first time to conclude that the overall radiative effect 

of POCs on climate is small.  

To understand cloud feedbacks, it is key to understand which 

environmental factors control cloud regimes and morphology. A labeled 

dataset of mesoscale cloud organization crowd-sourced from the 

Zooniverse platform [59] has been used [60] to train deep learning 



algorithms for object detection [Resnet: 61] and subsequent image 

segmentation [Unet: 62, from fastai library]). The application to an 11-

year satellite dataset then allowed to derive heat maps for individual cloud 

morphologies and to link them to the presence of their physical drivers, 

which may change under climate change.  

However, the vast scale of climate datasets often makes hand-labelling 

impossible, so the development and deployment of unsupervised 

classification techniques has great potential. An unsupervised 

classification scheme for mesoscale cloud organization based on the 

ResNet-34 CNN residual network feeding the produced embeddings into 

a hierarchical clustering algorithm has been developed and trained on and 

applied to GOES-16 satellite images [63]. It was shown the derived cloud 

clusters have distinct cloud structures, radiative and morphological 

properties with unique physical characteristics. 

4.3 Extreme event and anomaly detection 

While much of the attention to climate change focuses on global mean 

temperature rise, the most severe impacts occur through the associated 

shift in the likelihood and strength of extreme events, such as heatwaves, 

flooding, synoptic storms, tropical cyclones, or droughts. 

It would therefore seem expected that reliable objective techniques for 

the detection, quantification and prediction of extreme events were readily 

available. However, this is not the case, as illustrated for the case of 

observed changes in heavy precipitation shown in Figure 1. In fact, for 

large parts of the globe, including most of Africa and South America, there 

exists limited data or literature to even quantify observed changes, let 

alone robust methodologies. The selection of extreme weather events to 

be attributed to climate change [64, 65] has been generally performed 

heuristically, with the potential to introduce selection biases (and 

potentially ignoring less-developed and less-observed parts of the world). 

The secretary-general of the United Nations, António Guterres, has tasked 

the World Meteorological Organization in 2022 “to ensure every person 

on Earth is protected by early warning systems within five years” [66].   
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The capability of AI to detect changes in large-scale datasets provides 

an opportunity to transform our ability to detect, quantify and predict 

changes in extreme climate events.  

As a first step, AI is now being used to objectively detect weather 

patterns associated with extreme events, such as detection of tropical 

cyclones, atmospheric rivers (as cause of heavy precipitation), or the 

detection of fronts, primarily using supervised or semi-supervised 

machine learning methods [67, 68]. Such methods rely on training datasets 

and toolkits are being developed to curate expert-labeled datasets for 

tropical cyclones and atmospheric rivers based on high-resolution model 

simulations [69].  

However, such curated datasets remain limited in scope and only 

capture a limited subset of extreme event types. They currently do not 

capture key sources of extreme weather in the developing world, such as 

mesoscale convective systems and associated dust-storms.  

The significant potential of AI to develop unsupervised techniques for 

the objective detection and classification of extreme events and in 

particular of their response to a changing climate remains underexplored. 

Figure 1: Intergovernmental Panel on Climate Change synthesis of current assessment 

of observed changes in heavy precipitation and confidence in human contribution to 

these changes [IPCC AR6 Summary for Policymakers: 1].  



4.4 Learning relationships between climate variables and 

climate processes  

Traditionally, the vast majority of use cases of Earth Observations in 

climate science have focused on specific climate variables. However, key 

climate processes involve multiple variables so methods to discover and 

exploit the relationship between such variables could provide additional, 

and potentially more direct, constraints on the underlying physical 

processes.  

For example, the linear ML method of ridge regression has been used 

to quantify how clouds respond to changes in the environment from Earth 

Observations and climate model simulations [70]. This allows the 

identification of key processes underlying cloud feedbacks and to provide 

a tighter constraint on the amplifying effect of clouds on global warming. 

Using a wider range of cloud controlling factors and a non-linear approach 

based on gradient boosting decision trees [LGBM: 71], regimes of cloud 

controlling environmental variables from Earth Observations have been 

identified [72] that provide a new constraint on the representation of 

clouds in global climate models.  

However, it should be noted that the climate system is a coupled 

dynamical system so that care must be taken when evaluating statistical 

relationships between climate variables as correlation does not necessarily 

imply causation.  

4.5 Causal discovery and attribution 

In a large-scale dynamical system such as the Earth, inevitably many 

climate variables are coupled. Consequently, when observing 

relationships between climate variables, e.g., through regression or 

correlation, it is generally not clear which relationships are causal and 

which are driven by a common driver (confounder) [73]. 

In climate modelling, mechanism denial, perturbed parameter 

ensembles or adjoint methods are widely used to identify and quantify 

causal relationships related to the importance of specific processes.  

Optimal fingerprinting methods have been developed for the detection 

of climate impacts and their attribution to specific anthropogenic forcers 

[4]. This typically involves comparison of model-simulated spatio-
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temporal patterns of the climate response to external forcings to the 

observational record in a reduced dimensional space, e.g., from Principal 

Component Analysis. Both simulated and observed response are 

normalized by internal variability to improve the signal to noise ratio. The 

observed climate change is regarded as a linear combination of signals 

from climate forcers, such as greenhouse gases or air pollution, and the 

internal climate variability and the magnitude of the response to each 

forcing is estimated using linear regression [cf. 74]. However, such 

fingerprinting methods rely on climate models accurately representing the 

key climate processes.   

Hence, methods that allow for causal discovery and attribution solely 

from observations are required. As it is generally not desirable to conduct 

large-scale control experiments with the climate system, there exists 

significant potential for advanced statistical and AI causal methodologies. 

Recent advances in causal inference based on graph-based structural 

causal models, where climate variables are the nodes, edges indicate 

causal connections and arrows include causal directions, are now being 

increasingly applied in climate science [cf. 75]. New methods combining 

conditional independence tests (to identify potential causal links) with a 

causal discovery algorithm (to remove false positive links) have been 

developed to estimate causal networks from large-scale time-series 

datasets [76]. However, it is worth pointing out that many climate 

observations are discontinuous. For example, most satellite-based Earth 

observations stem from sun-synchronous polar orbiting satellites with a 

fixed overpass time, generally providing only one measurement per day 

(for retrievals relying on solar wavelengths) so with a temporal resolution 

that is lower than e.g., the lifetime of most individual clouds. New causal 

inference methods suitable for discontinuous observations based on causal 

forests and neural networks are being developed in the context of the effect 

of air pollution on clouds and climate [77]. 

5.  How AI/ML will transform climate science  

Climate change is one of the greatest challenges facing Planet Earth. 

Achieving the goals of the Paris Agreement requires the fastest 



transformation of the world’s economy that has ever been attempted. It is 

therefore vital that the underpinning scientific evidence is robust, 

interpretable, and trustworthy. Physical understanding will always remain 

at its core.  

At the same time, advances in climate research are held back by our 

ability to simulate climate at sufficiently small scales that resolve key 

processes explicitly, as well as by our ability to interpret the vast amount 

of data from climate models and Earth observations. It is becoming 

increasingly clear that AI and Machine Learning will make 

transformational contributions to both areas – with the challenge to deliver 

physically constrained, trustworthy, and explainable results.  

For climate modelling, it seems inconceivable that anything else than 

hybrid models, combining numerical solutions of fundamental physical 

equations with faster and/or more accurate AI components will dominate 

the short- to medium-term future. And AI will dominate for heuristic 

model components for which no closed set of physical questions exist, 

such as models of biogeochemical cycles and ecosystems. The question 

remains primarily what fraction of the physical climate models will 

ultimately be replaced by AI, which in turn depends on its physical 

consistency and interpretability, underpinning trust. Challenges include 

the optimal incorporation of physical constraints; the development of 

climate invariant model components to deal with non-stationarity as the 

climate system will change between the training period and future climate; 

and, importantly, interpretability: as the climate system does not allow for 

control experiments, it is fundamental that climate predictions remain 

interpretable as basis for trust. In addition to speedup by fast emulation, 

specific opportunities to improve climate models with AI include: the 

emulation of parameterizations from more accurate reference models and 

observations; the possibility to avoid operator splitting between different 

climate processes by emulating multiple climate model components 

together; the potential to overcome locality of current parameterizations 

through consideration of non-local inputs to the emulation [78]; the 

potential to introduce memory through approaches such as LSTM, e.g., for 

convection parameterizations; as well as exploiting the opportunities 

provided by the coevolution of AI based and reduced-precision climate 

model components [79].  
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Already, AI is transforming our ability to analyze the vast output of 

climate model simulations and this impact is only going to increase in the 

future. AI based emulation of climate model scenarios will provide easily 

accessible spatio-temporal guidance to policy makers that remains fully 

traceable to the underpinning complex climate model simulations. Future 

opportunities include the emulation of the full probability distribution of 

climate variables to flexibly assess extreme events as well as the inclusion 

of regional emission variations in the emulators to provide guidance on 

their regional and global impacts. Combination of emulation of climate 

model output with AI based downscaling techniques, as well as further 

advances in unsupervised downscaling techniques could ultimately 

provide accessible high-resolution data of climate change and impacts for 

local and regional decision making.  

While much of the current attention on AI in climate science focuses 

on modelling, AI will entirely transform our ability to interpret Earth 

Observations to exploit the full information content available. This is not 

without challenges: climate observations are heterogeneous, 

discontinuous, on non-Euclidian spaces, and big – with each snapshot 

being vastly bigger than typical image resolutions used in standard 

machine learning applications and total data volumes increasing by many 

Pb each year. The general presence of a multitude of confounding factors 

makes causal attribution from observations alone challenging. However, 

future opportunities are plentiful: AI will make it possible to detect, track 

and label climate phenomena all the way to individual clouds or ocean 

eddies. Combination with causal discovery tools will allow identification 

and quantification of key drivers of climate change. It will facilitate the 

objective detection of climate impacts and changing extreme events, e.g., 

flooding, wildfires, droughts, and heatwaves, across the full observational 

record and its attribution to anthropogenic activities, for example replacing 

prevailing linear methods with non-linear neural networks in detection and 

attribution applications.  

Ultimately, the challenge will be to optimally combine physical models 

and Earth observations with AI to accelerate climate science.  

For the foreseeable future, the O(1km) resolution of even storm-

resolving Digital Twin Earths currently in planning will not be sufficient 



to resolve key processes, such as low-cloud feedbacks that dominate 

current climate model uncertainty so they will need to be informed, 

possibly by AI, by even higher-resolution Large Eddy Simulation (LES) 

or Direct Numerical Simulation (DNS) models. Likewise, it will not be 

possible to routinely run storm-resolving Digital Twin Earths for a large 

number of scenarios over the wide parameter space explored in current 

climate model intercomparisons so they may need to be complemented 

with low-resolution twins for long-term climate scenario simulations. 

Biases introduced by the low-resolution twin parameterizations could be 

systematically corrected for using ML learned correction terms derived 

from the high-resolution twins, as has been recently successfully 

demonstrated [80]. And data from the high-resolution twins could be used 

as training data for supervised super-resolution downscaling of low-

resolution twin to predict climate impacts and in particular extreme events 

on scales relevant for decision making. Such a vision of twin Digital Twin 

Earths (let’s call it DTE2) is presented in Figure 2 – and would not be 

possible without AI for climate science.   
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Figure 2: Applications of AI for Climate Science in the context of Digital Twin Earths.  
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