
Springer Nature 2021 LATEX template

Imperfect chimera and synchronization in a
hybrid adaptive conductance based

exponential integrate and fire neuron model

Sathiyadevi Kanagaraj1, Irene Moroz2, Premraj
Durairaj1, Anitha Karthikeyan3,4 and Karthikeyan

Rajagopal1*

1Centre for Nonlinear Systems, Chennai Institute of Technology,
Chennai, 600 069, Tamilnadu, India.

2Mathematical Institute, Oxford University, Oxford, OX2 6GG,
United Kingdom.

3Department of Electronics and Communication Engineering,
Vemu Institute of Technology, Chitoor, 517112 Andhra Pradesh,

India.
4Department of Electronics and Communications Engineering

and University Centre for Research & Development, Chandigarh
University, Mohali, 140 413, Punjab, India.

*Corresponding author(s). E-mail(s): rkarthiekeyan@gmail.com;
Contributing authors: sathiyadevik@gmail.com;

Irene.Moroz@maths.ox.ac.uk; premraj2891@gmail.com;
Mrs.anithakarthikeyan@gmail.com;

Abstract

In this study, the hybrid conductance-based adaptive exponential inte-
grate and fire (CadEx) neuron model is proposed to determine the
effect of magnetic flux on conductance-based neurons. To begin with,
bifurcation analysis is carried out in relation to the input current,
resetting parameter, and adaptation time constant in order to com-
prehend dynamical transitions. We exemplify that the existence of
period-1, period-2, and period-4 cycles depends on the magnitude of
input current via period doubling and period halving bifurcations. Fur-
thermore, the presence of chaotic behavior is discovered by varying
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the adaptation time constant via the period doubling route. Follow-
ing that, we examine the network behavior of CadEx neurons and
discover the presence of a variety of dynamical behaviors such as
desynchronization, traveling chimera, traveling wave, imperfect chimera,
and synchronization. The appearance of synchronization is especially
noticeable when the magnitude of the magnetic flux coefficient or the
strength of coupling strength is increased. As a result, achieving syn-
chronization in CadEx is essential for neuron activity, which can aid
in the realization of such behavior during many cognitive processes.

1 Introduction

Computational neuroscience has recently received tremendous attention
among researchers since it helps to unravel numerous biological processes
[1, 2]. For instance, to better understand the neural activity during the
cognitive processes, various biological neuron models have been developed
including FitzHugh-Nagumo (FHN), Hindmarsh-Rose (HR), Hodgkin-Huxley
(HH), Izhikevich (IZH) and so on [3–7]. For instance, the dynamical patterns
in a network of FitzHugh-Nagumo oscillators have been examined using var-
ious network connectivities such as regular, random, nonlocal, small-world,
ring networks with fractal network connectivities [8–10]. Fitzhugh-Nagumo
oscillators with an empirical structural connection can exhibit spontaneous
synchronization similar to that found during epileptic seizures in humans [11].
The occurrence of lag synchronization has been demonstrated using a network
of time-delayed FHN with feedback control [12]. The reflection connection
among the nodes in the FHN network can result in chimera-like hybrid dynam-
ical behaviors with coexisting coherent and incoherent behaviors [13]. The
effect of bifurcation delay generated synchronization and desynchronization in
slow-fast systems has been studied by varying a slowly varying parameter [14].
The intermittent and anti-phase synchronization was recently discovered when
the FHN neurons were coupled by nonlinear memductance [15].

Recently, the filtering capabilities of HH neurons have been investigated
and the required band pass filtered signal can be witnessed by adjusting the
upper and lower cut-off frequencies [16]. The diagnosis of COVID-19 disease in
patients’ X-ray images has been revealed by developing a hybrid model of 2D
curvelet transform that employs the chaotic salp swarm algorithm and deep
learning technique [17]. Analogously, a hybrid classification model based on
swarm optimization has been implemented to diagnose the plant disease [18].
More recently, periodic/hyperchaotic spiking and bursting patterns have been
obtained by coupling two Morris-Lecar neurons via a memristor synapse [19].
A piecewise-linear Hopfield neural network with memristor synapse coupling
can exhibit multistability of coexisting chaos, periodic limit cycles, and stable
point attractors [20]. Moreover, it is revealed that memristive neurons are used
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in the development of neuromorphic sensing, computing systems, humanoid
robots with high energy efficiency, pattern recognition, and so on [21–23].

To illustrate the dynamics of the brain network, the functional brain net-
work was built employing HR neurons as nodes in the brain regions [24].
The birth and death of spiral wave patterns were delineated in extended
HR neurons when applying external magnetic excitations and discontinuous
exponential flux coupling [25, 26]. Importantly, diverse bursting and spiking
patterns were discovered in modified fractional-order HR neurons [27]. The
Izhikevich neuron model can result in a variety of spiking patterns, such as
regular, resonance, chattering, fast, chaotic spiking, and chaotic bursts, when
subjected to external excitations and noise [28]. Using the fractional-order
Izhikevich neuron model, synchronization and FPGA realizations were also
delineated [29]. Similarly, the neural activities of cognitive systems were man-
ifested by utilizing distinct other neuronal models by incorporating various
factors such as external excitations, time-delay, memristor function, and so on,
as well as numerous complex network connectivities [31–33].

Additionally, a variety of current and conductance-based neuron models
have been developed due to their widespread applications in neural networks.
By taking into account leaky Integrate-and-fire (LIF) neurons, the compari-
son dynamics of the current (voltage-independent) and conductance (voltage
dependent)-based neurons have been examined [30]. It has been reported
that the generalized LIF with variable resister (leaking) and bias current
may precisely mimic the behavior of real neurons’ membrane voltage [34].
The emergence of the spike train has been noticed when implementing the
spike-frequency adaptation in such generalized LIF systems [35, 36]. The adap-
tive exponential IF neuron model was designed further to accurately mimic
neural activity and get around the drawbacks of strict voltage threshold, sub-
threshold adaptation, and conductance-based stimulation, which brings the
dynamics closer to the cortical neurons [37]. Increased adaptation currents
in the adaptive exponential integrate-and-fire neurons model promote syn-
chronization of the network of coupled excitatory neurons at low-frequency
oscillations, while inhibitory neurons exhibit coherent behaviors at higher fre-
quencies [38]. Neuron spike time adaptation was described using the fractional
Leaky Integrate-and-Fire Model [39]. The existence of chimera state with spike
and burst activity was identified depending on the nearest neighbors and cou-
pling strength of the nonlocally coupled adaptive exponential integrate-and-fire
(AEIF) neuron model [40]. The time-delay induced cluster synchronization
and firing rate oscillation were reported in randomly interacted Adaptive
Exponential Integrate-and-Fire (Ad-EIF) neurons [41].

Besides, the investigation reveals that conductance-based neuron models
are effective at simulating biological behaviors, hardware implementation, and
a digital programmable platform can be done at a low cost [42]. As a result,
numerous studies have been carried out using conductance-based neuron mod-
els. In particular, the Wilson conductance-based neocortical neuron model has
been employed to figure out the underlying mechanisms of the firing patterns,
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and it has been found that, depending on the stimuli, spiking, bursting, chaotic
firing, and subthreshold oscillations exist [43]. The presence of various collec-
tive behaviors, such as synchronization, chimera, and cluster states, has been
identified using the flux-coupled conductance-based neuron by adding propa-
gation noise to the system [44]. The emergence of various firing patterns has
been detailed using isolated CadEx neurons without magnetic flux [45]. Con-
sidering the aforementioned observations, it is clear that studies on the coupled
version of CadEx neurons is limited. Importantly, the dynamical properties of
CadEx neurons and their network behaviour have received little attention in
the literature. To investigate the dynamical properties, we therefore, take into
account CadEx neurons. In particular, we focus on the dynamical behavior of
the system in the presence of magnetic flux. Primarily, the dynamical transi-
tions with respect to input current, resetting parameter, and adaptation time
constant and its bifurcation routes are examined using bifurcation analysis.
Following that, we also discuss the network behaviors and transitions of the
proposed hybrid CadEx neurons. We demonstrate that the transition to syn-
chronization occurs via an imperfect transient chimera while increasing the
coupling strength or magnetic coupling coefficients.

The following is the structure of the manuscript: Sec. 2 introduces a hybrid
conductance-based neuron model. In Sec. 3, the dynamical characteristics and
transitions are investigated using bifurcation analysis with respect to the input
current, adaptation time constant, and resetting threshold. Following that, the
dynamical behavior of the CAdEx network is explored in Sec. 4. Finally, the
overall results are summarized in Sec. 5.

2 Conductance neuron model

The adaptive exponential integrates and fire neuron model (AdEx) is famil-
iar because of its low-cost implementation probability. But as this model
depends on current-based adaptation, it shows some non-biophysical behaviors
which are unrealistic to a neuron model. Hence in [45] the authors proposed a
conductance-based adaptive exponential integrate and fire neuron model which
they named as CadEx. Though this model can overcome the drawbacks of the
AdEx model, it still can’t consider the magnetic field effects. Applying exter-
nal stimuli beyond the threshold can sometimes trigger static and dynamic
charges. These dynamic moving charges can create magnetic fields and can
have a significant effect on the neuron model. Hence, we modify the CadEx
model to include the variation of magnetic field and electromagnetic induction
by describing an additional state variable to the original CadEx model. The
new modified CadEx model can be defined as,

Cv̇ = GL(vL − v) +GLMstexp(
v − vτ
Mst

) + gA(EA − v)

+Is − k0M(ϕ)v,
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τAġA =
ḠA

(1 + exp( vA−v
δA

))
− gA,

ϕ̇ = k1v − k2ϕ, (1)

where v, gA, and ϕ are the state variables of the hybrid CadEx neuron that rep-
resent membrane voltage, conductance-based adaptation, and magnetic flux,
respectively. Typically, the memristors can exhibit the memory effect, which
is used to recall the magnetic flux across the membrane of neurons or cells.
Here, the magnetic flux induction is replicated using the memductance func-
tion of a memristor described by M(ϕ) = α + 3βϕ2 where α and β are the
fixed parameters [46–48]. k0 is the flux coupling co-efficient. The terms k1v
and k2ϕ denote the membrane potential induced changes on magnetic flux and
leakage of magnetic flux, respectively. k1 and k2 are constant parameters. The
resetting mechanism after the spike is defined by the rule

v ≥ v
Th

,

{
v → vR,

gA → gA + δgA .
(2)

We specifically set the parameter of the system(1) to chaotic like spik-
ing [45] as given in Table (1). The other fixed parameters are set as α =
0.01; β = 0.01; k0 = 0.1; k1 = 0.1; k2 = 0.5. Unless otherwise specified,
the parameters values of the system (1) are defined as follows throughout the
text.

Table 1 Physical meaning of the parameters and its magnitudes

Parameters Magnitudes
Membrane capacitance, C 200 pF
Leak conductance, GL 10.0 nS
Reversal potential, vL -58 mV
Spike threshold, vτ -50 mV
Slope of the spike initiation, Mst 2.0
Reversal potential of the adaptation
conductance, EA

-70 mV

Input current, Is 90 pA
Time constant of adaptation, τA 25.0 ms
Maximal subthreshold adaptation
conductance, ḠA

10.0 nS

Subthreshold adaptation activation
voltage, vA

-40 mV

Slope of subthreshold adaptation, δA 5.0 nS
Reset potential, vR -47 mV
Reset voltage, vTh -40 mV
Incremented quantal conductance after
each spike, δgA

1.0 nS

In this study, the Runge-kutta fourth order algorithm with a step size of
h = 0.01 is used for numerical simulations.



Springer Nature 2021 LATEX template

6 Imperfect chimera and synchronization in...

2.1 The nullclines of the CadEx Model

Because of the exponential terms in Eq. (1), it is not possible to determine
the exact analytical expression for the fixed points. Instead we follow Gorski
(2021) and plot the v and gA nullclines as functions U1 = gA and U2 = gA
respectively, as v varies after substituting for the equilibrium value of ϕ = k1v

k2

into evolution equation for v(t) [45].

U1a =
(GL(vL − v) +GLMstexp(

v−vτ
Mst

) + Is)

(v − EA)
,

U1b =
−k0M(ϕ)v

(v − EA)
,

U1 =
(GL(vL − v) +GLMstexp(

v−vτ
Mst

) + Is − k0M(ϕ)v)

(v − EA)
,

U2 =
ḠA

(1 + exp( vA−v
δA

))
. (3)

The equilibrium states of Eq. (1) are then obtained by noting the points
of intersection of U1 with U2. Figure 1 shows plots of the U1 (red curve) and
U2 (black) nullclines as varies, v for Is = 90. Unlike the Gorski et al (2021)
case, the presence of the magnetic induction term ϕ means the two nullclines
do not intersect for our choice of parameter values. This figure is analogous to
Fig. 2(a) in Gorski et al [45]. Gorski et al (2021) also plot the function Is as a
function of v [45]. If we write:

Is1 = −GL

(
(vL − v) +Mstexp(

v − vτ
Mst

)
)

+
GA

(1 + exp( vA−v
δA

))
(v − EA)

Is2 = k0M(ϕ)v (4)

Then we can take Is1 to be SV 1, the ϕ independent part of the total current,
Is, while the linear sum of Is1 + Is2 is SV or Is with ϕ included. Figure 2
shows those plots for our set of parameter values. The plots of SV 1 (in black)
are for the ϕ-independent systems, while SV (in red) are for the ϕ-dependent
systems. In Figure 2 the curves of SV 1 and SV 2 intersect the lines of constant
Iext twice (indicating two possible fixed points). Figure 2(b) shows a blow-up
of these plots near the maxima of the two curves. These maxima occur for
Is ≈ 86.814 in the absence of ϕ (SV 1: black curve), and at Is ≈ 72.7045 for
SV (red curve). When we compare with the parameter choice for Is = 90, this
means that no fixed points are possible, since Is = 90 lies above the maxima
of both curves. This corroborates the results, shown in Fig. 1. If we anticipate
the results from the bifurcation plots in the next section, we see that steady-
state solutions are found in the lowest branch of the bifurcation plot. And so,
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Fig. 1 The nullclines for the Cadex equations as v varies for the current set of parameter
values, with Is = 90. The red curve corresponds to the U1 nullcline, and the black curve
corresponds to the U2 nullcline.

Fig. 2 The curves of the current Is as functions of v. SV 1 (in black) is for the ϕ-independent
system, while SV (in blue) is when ϕ- is included. The lower plot is a blow-up of the region
near the maxima of the two curves. For SV 1 this occurs for Is ≈ 86.814, while for SV , this
occurs forIs ≈ 72.7045. Also shown are the two fixed points FP1 and FP2 when Is = 70.

for example, we indicate the location of the two fixed points in Fig. 3(b) for
Is = 70: FP1 occurs at v ≈ −49.79, while FP2 occurs at v ≈ −48.09.

3 Dynamical behaviors and its transition of a
CadEx neuron

In order to comprehend the dynamical behaviors and its transition of sys-
tem(1), we choose three different parameters including current (Is), the
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Fig. 3 As in Figure 1, but showing the nullclines for Is = 70, v varies. There are now two
fixed points, shown as FP1 and FP2 in Figure 3b.
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Fig. 4 The bifurcation transition plot of successive maxima of gAmax is obtained by fixing
the resetting threshold vR = −47.0 and adaptive time constant τa = 25.0, as Is is decreases
between 70 ≤ Is ≤ 100. The values for the other parameters are set as given in Table (1).
The dynamical transitions via period doubling to period halving as a function of Is.

resetting parameter (vR) and adaptation time constant (τa). Figure 4 shows
the bifurcation transition plot as Is is decreased from Is = 100 to Is = 70
when all the remaining parameters of Eq. (1) are kept constant. Bifurcation
transition is obtained by finding the successive gAmax

maxima of each cycle
with respect to Is. We can note that the branch of periodic solutions extends
from Is = 100, undergoing a period-doubling bifurcation at Is = 91.59. When
decreasing the value of Is further period-four cycle occurs at Is = 85.8, which



Springer Nature 2021 LATEX template

Imperfect chimera and synchronization in... 9

t

v

(a)

5004003002001000

-40

-45

-50

v

g
A

(b)

-40-45-50

4

3

2

t

v

(c)

5004003002001000

-40

-45

-50

v
g
A

(d)

-40-45-50

4

3

2

t

v

(e)

5004003002001000

-40

-45

-50

v

g
A

(f)

-40-45-50

4

3

2

Fig. 5 Time evolutions and phase portrait trajectories for (a) period-1 orbit for Is = 95,
(b) period-2 orbit for Is = 90, and (c) period-4 orbit for Is = 85, where the resetting
threshold is fixed at vR = −47.0 and the adaptive time constant is set at τa = 25.0. The
values for the other parameters are set as given in Table (1). The occurrence of period-1,
period-2, and period-4 orbits by varying the magnitude of the input current.

disappears at Is = 83.63, leaving a period-two cycle, which itself disappears
at Is = 72.71. Therefore, the results clearly illustrate that the occurrence of
period-1, period-2, and period-4 orbits dependent on the magnitude of Is.

Figure 5 shows a section of the time series for the state variable v and the
corresponding phase portraits in the (v, gA)-plane. From Figs. 5 (a)-(b), it is
clear that the emergence of period-1 cycle for Is = 95. When decreasing the
current to Is = 90, we observed that the existence of period-2 cycle as shown
in Figs. 5 (c)-(d). Further, decreasing Is = 85 give rise to the period-4 cycle
which is shown in Figs. 5 (e)-(f). From the phase portrait images displayed in
Figs. 5(b), 5(d), and 5(f), respectively, it is easier to grasp the presence of the
period-1, period-2, and period-4 cycles.

If we fix Is = 80 and reduce the resetting parameter from vR = −40 to
vR = −70, we get the bifurcation transition plot shown in Fig. 6(a). The inset
denote the portion of bifurcation transition showing the period doubling tran-
sition to chaos as increasing vR. When the range of vR is increased further, the
transition from chaotic to periodic state occurs via period halving bifurcation.
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In addition, the bifurcation diagram is plotted in Fig. 6(b) to show the dyam-
ical transition for Is = 90. Importantly, we can observe that the decreasing of
chaotic regions when increasing current (Is). A periodic cycle loses its stabil-
ity as vR decreases to a period-two cycle at vR = −46.76, which persists until
it is lost in a period-halving bifurcation at vR = −47.55. When the resetting
parameter is vR = −47, we can observe a period-two cycle.
The two parameter diagram is plotted in (Is, vR) space in Fig. 6(c) to help
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Fig. 6 The bifurcation transition plot of successive maxima of gAmax , as vR decreases
between vR = −70 and vR = −40 for τa = 25.0, (a) Is = 80 and (b) Is = 90. The inset
in (a) and (b) denote the zoomed in view of the portion of bifurcation transition in a red
dashed line. (c) Two parameter diagram in (Is, vR) space by fixing τa = 25. P, 2P, and 4P
denote the one-periodic, two-periodic and four-periodic orbits, respectively. C denote the
chaotic region. The values for the other parameters are set as given in Table (1).

understand the dynamical transitions in parameter space. When the range of
stimuli current is between 75 ⪅ Is ⪅ 86, increasing the resetting threshold
exhibits the transition from one-periodic (P) state to two periodic (2P), four
periodic (4P) to chaos (C), then increasing vR exhibits the inverse transition
from Chaos to 4P, 2P and 1P. The 4P state is suppressed while increasing the
Is in the range 86.1 ⪅ Is ⪅ 91.7. It is observed periodic state for entire range
of vR at large values of Is. While nearly all of the parameter values of Eq. (1)
are similar to those of Gorski et al (2021), apart from Is, the other parameter
that differs widely is τa, the time constant of adaptation. Gorski et al (2021)
take τa = 500, while we take τa = 25. It is therefore of interest to see what
the consequences are for the dynamics of the system by varying τa between
these two extremes. Figure 7 shows a portion of the bifurcation transition dia-
gram between 20 ≤ τa ≤ 80. We actually increased τa to τa = 500. Apart from
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Fig. 7 The bifurcation transition plot of successive maxima of gAmax , as τa decreases
between τa = 20 and τa = 80 by fixing vR = −47.0 and Is=90. The scattered points
represent the presence of chaotic attractors. The values for the other parameters are set as
given in Table (1). The transition to chaotic dynamics via period doubling bifurcation while
increasing the time adaptation constant (τa).

a lengthening of the period of oscillations as τa increases, we found no more
transitions. For τa = 23.85 the period-two cycle loses stability to a period-
four cycle (τa = 28.33), which in turn loses stability to a period-eight cycle at
τa = 29.95. As τa is increased further, we could see the chaotic behaviour that
displays the scattered points in the bifurcation diagram.
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Fig. 8 The temporal evolution of chaotic state for the state variables (a) v, (b) gA, and (c)
ϕ, by fixing τa = 40, Is = 90, and vR = −47.0. (d) The phase portrait trajectory of chaotic
state in (v, gA) space. The values for the other parameters are set as given in Table (1).

In Fig. 8, we presented the temporal evolution of the system in terms of the
state variables to demonstrate the occurrence of chaotic spiking while fixing
τa = 40. The formation of chaotic spiking is seen from Figs. 8(a) - 8(c) in terms
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of the state variables v, gA, and ϕ, respectively. For a better understanding of
the trajectory of chaotic spiking behaviors, we also plotted the phase portrait
diagram in (v, gA) space, which also manifests the chaotic behavior of the
system for the specified set of parameters. With this understanding of CadEx
neuron dynamical behaviors, we extend the analysis to the network case in the
following.

4 Collective dynamics of a network of cadex
neurons

In a realistic situation, the neurons must communicate with one another in
order to perform specific cognitive tasks. Thus, it is intriguing to investigate the
collective behavior of a large set of neurons when they are coupled together. As
consequence, we consider a ring network of nonlocally coupled CadEx neurons,
and the corresponding dynamical expressions can be written as

Cv̇j = GL(vL − vj) +GLMstexp(
vj − vτ
Mst

) + gAj
(EA − vj)

+Is − k0W (ϕj)vj +
D

2P

l+P∑
k=l−P

(vk − vj),

τAġAj
=

ḠA

(1 + exp(
vA−vj

δA
))

− gAj
,

ϕ̇j = k1vj − k2ϕj , (5)

where, W (ϕj) = α + 3βϕ2
j . P is the nonlocal coupling range, which is set to

P = 10 for this study. The magnitude of other parameters are fixed as in
Table (1).

Firstly, the collective behavior of a system (5) is investigated by fixing
k0 = 0.2 in Fig. 9(i) and (ii) denote the spatiotemporal and snapshots of
the dynamical states. At lower coupling strength D = 0.01, we observed the
desynchronization behavior as shown in Fig. 9a(i), and the neurons are ran-
domly distributed is evident from the snapshot, Fig. 9a(ii). When the coupling
strength is increased, it is noticed that transition to traveling wave (TW) (see
Figs. 9 c(i)-c(ii)) via traveling chimera (TC) pattern (see Figs. 9 b(i)-b(ii)).
In the traveling chimera state, partial oscillators follow the coherent traveling
wave pattern while the remaining oscillators exhibit incoherent behaviors in
the TW state. Increasing the coupling strength still more, we found that the
emergence imperfect traveling chimera (ITC) as depicted in Figs. 9 d(i)-d(ii).
The incoherent behavior in the ITC state is suppressed when increasing the
coupling strength to D = 0.35 (see Figs. 9 e(i)-e(ii)), resulting we observed
imperfect traveling wave (ITW). At strong coupling D = 0.9, all the neurons
result in a coherent synchronization state as illustrated in Figs. 9 f(i)-f(ii).
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Fig. 9 Space-time (i) and snapshot (ii) images of CadEx neurons, for k0 = 0.2 and P = 10,
(a) desynchronization (D = 0.01), (b) traveling chimera (D = 0.2), (c) traveling wave
state (D = 0.22), (d) imperfect traveling chimera (D = 0.25), (e) imperfect traveling wave
(D = 0.35), and (f) synchronization state (D = 0.9). The values for the other parameters
are set as given in Table (1). The transition from desynchronization to synchronization via
traveling chimera, traveling wave, imperfect traveling chimera and imperfect traveling wave
while increasing the nonlocal coupling strength.

Fig. 10 Space-time (i) and snapshot (ii) images of cadEx by fixing D = 0.25 and P = 10,
(a) imperfect traveling wave for k0 = 0.09, (b) imperfect traveling wave for k0 = 0.25,
(c) imperfect chimera for k0 = 0.3, (d)synchronization state for k0 = 0.35. The values for
the other parameters are set as given in Table (1). The transition from imperfect traveling
wave to synchronization via imperfect traveling chimera while increasing the flux coupling
co-efficient.
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Analogously, the dynamical transition of system (5) is examined for cou-
pling strength D = 0.25 and by fixing different magnitudes of k0. At lower
values of k0, for k0 = 0.09 and k0 = 0.25, there exist imperfect traveling wave
patterns which is evident from Figs. 10 a(i)-a(ii) and Figs. 10 b(i)-b(ii). Fur-
ther, for k0 = 0.3, the emergence of imperfect chimera behavior is noticed as
in Figs. 10 c(i)-c(ii) [49]. Increasing the magnitude of k0 to 0.35, it is observed
that the synchronization state (Figs. 10 d(i)-d(ii)). From the observation, it
is clear that the network of CadEx neurons can result in distinct collective
dynamics including imperfect chimera and synchronization state depending on
the magnitude of flux coupling coefficient and coupling strength.

Fig. 11 Space-time images of chimera states by fixing (a) k0 = 0.2 and D = 0.2, and (b)
k0 = 0.25 and D = 0.25. The values for the other parameters are set as given in Table (1).
The lower portion of the space-time image represents the dynamics at lower transients, while
the upper portion governs the dynamics at longer time periods.

Additionally, we found that as the transient period is increased, the
observed traveling chimera and imperfect traveling chimera behaviors disap-
pear. In Figs. 11(a) and 11(b), we showed both chimera states over two distinct
time periods to provide additional clarity about the transient behaviors. It
is important to notice that chimera behaviors, both coherent and incoher-
ent, were seen at lower transients but vanished as soon as the traveling waves
appears. As a result, the chimera states that have been seen are transient
chimeras.

5 Conclusion

We have proposed the hybrid adaptive conductance-based exponential inte-
grate and fire neuron model. For a clearer understanding of the dynamical
transitions, the bifurcation analysis is carried out with respect to the input
current. The bifurcation of period doubling and period halving is observed as
the magnitude of the input current decreases, and the existence of period-1,
period-2, and period-4 cycles was identified. The bifurcation analysis was also
carried out by varying the resetting parameter as well as the adaptation time
constant to get a better understanding of the impact of such parameters.
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Concerning the adaptation time constant, it is observed that the transition
to chaotic behavior is through the period-doubling route. Following that, the
network dynamics of hybrid CadEx are examined by varying the flux coupling
coefficient or coupling strength, which has yet to be extensively studied in
the literature. When increasing the coupling strength, the transition from a
desynchronized state to a traveling wave takes place through the traveling
chimera. Increasing the coupling strength further gives rise to the transition
from an imperfect traveling chimera to synchronization through an imperfect
traveling wave. Analogously, the transition from imperfect traveling wave
to synchronization was identified through imperfect chimera as varying the
flux coupling coefficient. As a result, increasing coupling strength or flux
coupling coefficient gives rise to synchronization behaviors via an imperfect
chimera state. We demonstrated that introducing memristive effects in CadEx
neurons can result in various dynamical transitions depending on the input
current, time adaptation constant, and resetting parameter. Furthermore, we
demonstrated the presence of rich collective dynamics in a network of coupled
CadEx neurons for the first time. The findings of conductance-based neurons
might shed insight into the dynamical behavior observed during many cogni-
tive activities in biological systems.

Acknowledgments. We gratefully acknowledge this work is funded by the
Center for Nonlinear Systems, Chennai Institute of Technology (CIT), India,
vide funding number CIT/CNS/2023/RP-005.

Data availability statement. Data generated during the current study
will be made available at reasonable request.

Author Contribution Statement. All the authors contributed equally
to the preparation of this manuscript.

References

[1] Trappenberg, T. (2009). Fundamentals of computational neuroscience.
OUP Oxford.

[2] Feng, J. (2003). Computational neuroscience: a comprehensive approach.
Chapman and Hall/CRC.

[3] Rocsoreanu, C., Georgescu, A., & Giurgiteanu, N. (2012). The FitzHugh-
Nagumo model: bifurcation and dynamics (Vol. 10). Springer Science &
Business Media.



Springer Nature 2021 LATEX template

16 Imperfect chimera and synchronization in...

[4] Storace, M., Linaro, D., & de Lange, E. (2008). The Hindmarsh–Rose
neuron model: bifurcation analysis and piecewise-linear approximations.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(3), 033128.

[5] Nelson, M., & Rinzel, J. (1998). The hodgkin—huxley model. In The book
of genesis (pp. 29-49). Springer, New York, NY.

[6] Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans-
actions on neural networks, 14(6), 1569-1572.

[7] Kanagaraj, S., Durairaj, P., Prince, A. A., & Rajagopal, K. (2022).
Local and Network Dynamics of a Non-Integer Order Resistor–Capacitor
Shunted Josephson Junction Oscillators. Electronics, 11(18), 2812.
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J., Lehnertz, K. & Schöll, E. (2020). FitzHugh–Nagumo oscillators on
complex networks mimic epileptic-seizure-related synchronization phe-
nomena. Chaos, 30(12), 123130.

[12] Ibrahim, M. M., Kamran, M. A., Mannan, M. M. N., Jung, I. H., & Kim, S.
(2021). Lag synchronization of coupled time-delayed FitzHugh–Nagumo
neural networks via feedback control. Scientific reports, 11(1), 1-15.

[13] Rontogiannis, A., & Provata, A. (2021). Chimera states in
FitzHugh–Nagumo networks with reflecting connectivity. The European
Physical Journal B, 94(5), 1-12.

[14] Premraj, D., Suresh, K., & Thamilmaran, K. (2019). Effect of processing
delay on bifurcation delay in a network of slow-fast oscillators. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 29(12), 123127.

[15] Paul Asir, M., Sathiyadevi, K., Philominathan, P., & Premraj, D. (2022).
A nonlinear memductance induced intermittent and anti-phase synchro-
nization. Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(7),
073125.



Springer Nature 2021 LATEX template

Imperfect chimera and synchronization in... 17

[16] Yu, D., Wang, G., Li, T., Ding, Q., & Jia, Y. (2023). Filtering properties of
Hodgkin–Huxley neuron on different time-scale signals. Communications
in Nonlinear Science and Numerical Simulation, 117, 106894.

[17] Altan, A., & Karasu, S. (2020). Recognition of COVID-19 disease from X-
ray images by hybrid model consisting of 2D curvelet transform, chaotic
salp swarm algorithm and deep learning technique. Chaos, Solitons &
Fractals, 140, 110071.
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