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Abstract. Biochemical reactions inside living cells often occur in the
presence of crowders - molecules that do not participate in the reac-
tions but influence the reaction rates through excluded volume effects.
However the standard approach to modelling stochastic intracellular re-
action kinetics is based on the chemical master equation (CME) whose
propensities are derived assuming no crowding effects. Here, we propose
a machine learning strategy based on Bayesian Optimisation utilising
synthetic data obtained from spatial cellular automata (CA) simulations
(that explicitly model volume-exclusion effects) to learn effective propen-
sity functions for CMEs. The predictions from a small CA training data
set can then be extended to the whole range of parameter space de-
scribing physiologically relevant levels of crowding by means of Gaussian
Process regression. We demonstrate the method on an enzyme-catalyzed
reaction and a genetic feedback loop, showing good agreement between
the time-dependent distributions of molecule numbers predicted by the
effective CME and CA simulations.

Keywords: inference · stochastic reactions · crowding.

1 Introduction

The empirical demonstration of stochasticity in gene expression [1] has had
a profound impact both on experimental and computational biology. Experi-
mentally, the last two decades have witnessed a flourishing of advanced tech-
nologies to measure stochastic effects in biology at unprecedented throughput
and spatial/temporal resolution [2,3,4]. Computationally, considerable effort has
gone towards developing algorithmic solutions to facilitate the in silico simula-
tion of stochastic biological systems, and their calibration to observational data
[5,6,7,8,9,10].

The vast majority of stochastic modelling work operates within the frame-
work of the classical Chemical Master Equation (CME), which describes the
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time evolution of the (single-time marginal) state probability distribution of a
discrete state, continuous-time Markovian system [11]. In this framework, each
reaction has associated with it a propensity function which is derived assuming
molecules are point particles diffusing fast enough such that well-mixed condi-
tions ensue [12,11,13]. The CME formulation provides a number of advantages,
including a transparent and elegant mathematical formalism, and efficient sim-
ulation and approximation algorithms [8]. In particular, the existence of an ex-
act Stochastic Simulation Algorithm (SSA) [5] has led to the wide use of this
formulation. However, the assumption that reactants freely diffuse inside cells
is clearly at odds with biological reality: the cellular environment is spatially
highly structured, and, for every given reaction, it contains large numbers of
particles that do not partake in the reaction, creating a crowding effect which
can significantly affect the dynamics of biochemical processes inside the cell
[14,15,16,17]. While the modelling community is keenly aware of this mismatch
in assumptions, there have been only a few attempts at modifying the propensi-
ties of the SSA/CME to take into account crowding [18,19,20]. These pioneering
studies have focused on simple biochemical systems but they do not provide
a general recipe applicable to all intracellular reaction systems of interest. In
contrast, particle-based algorithms (such as Brownian dynamics and cellular au-
tomata [21,22,23,18,24,25,26,27]) have been extensively used to study the effect
of crowding; these approaches while naturally suited to study crowding, are com-
putationally demanding since they model the movement of each particle (crowder
or reactant) in the system.

In this paper, we devise a computational approach based on machine learning
to adapt the efficiency of the CME approach to the reality of crowding. In a
nutshell, the idea is to learn CME propensity functions that lead to particle
number distributions which optimally match the ones resulting from particle-
based algorithms. This leads to a general computational recipe for constructing
effective CMEs that capture the stochastic dynamics of any biochemical system
in crowded conditions.

2 Connecting different mathematical descriptions of
stochastic kinetics using Bayesian optimization

In this paper, we shall be concerned with two different descriptions of stochas-
tic chemical kinetics: (i) Cellular automata (CA); (ii) Monte Carlo simulations
using the SSA. We next describe each in detail and then show how a Bayesian
optimization based procedure can be used to connect these different stochastic
descriptions.

2.1 Cellular Automata

Cellular Automata (CA) can be characterized as a lattice of sites each holding a
finite number of discrete states plus some rules which describe the evolution of
the state of each site. Typically these update rules are a function of the states
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of the sites within a local neighbourhood. For a general introduction to CA in
the context of biological and chemical modelling see [28,29]. Many CA models
that study the influence of crowding in biochemical reactions [21,22,23] have
the following properties in common: (i) each lattice site is either occupied by
a molecule or empty; (ii) at each time step, a molecule is selected at random
and one of its neighbouring sites is also chosen at random; (iii) if the chosen
neighbouring site is empty then the molecule moves to it otherwise a reaction is
attempted (only if the site is occupied by a reactant). In Fig. 1(a) we illustrate
a CA modelling a simple enzymatic reaction.
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Fig. 1. Cartoon illustrating the learning procedure, exemplified by means of a simple
enzyme reaction. (a) First, we generate synthetic data using cellular automata simu-
lations of the enzyme reaction. We show reactants (substrate S in orange and enzyme
E in teal), enzyme-substrate complexes (ES in purple), products (P in green), inert
crowders (C in grey) and empty spaces (white). The particle movements are updated
according to a set of rules (see Appendix B). In general, particles may move in any
direction, but the arrows show a randomly chosen one; note that a particle can only
move if an empty space is available. (b) We collect ns CA sample trajectories of the
numbers of molecules of E, S, ES and P in time (a typical trajectory for the number
of P molecules is shown as red connected dots while the mean and standard deviation
over the trajectories are shown by a solid blue line and a shaded blue area, respec-
tively). The marginal distributions of the number of each species molecules sampled
at a number of discrete time points constitute our synthetic data (we show only those
for P). (c) Finally we use Bayesian optimization (BO) to minimize the Wasserstein
distance (WD) between the time-dependent particle number distributions generated
by the CA and the SSA; this leads to the propensities gi(n⃗) of the effective CME.
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The main advantage of CAs is their simplicity, in particular it is easy to
devise rules that mimic molecular movement and interaction in complex geome-
tries. Their disadvantages are (i) each molecule, independent of type, occupies
the same amount of space (equal to one lattice site); (ii) the regularity of the
lattice can influence the simulated dynamics. These main disadvantages can
be overcome by using Brownian-dynamics, a lattice-free approach [25,30,18,24],
however these simulations are much more computationally expensive and we do
not consider them further here.

2.2 The chemical master equation and the SSA

An alternative mathematical description to CA involves ignoring the spatial
information and deriving equations that characterize the statistics of the total
number of particles of each species in the volume of interest. Specifically, the
system may be described in terms of the state vector n = (n1, ..., nN ), where
ni indicates a number of molecules belonging to species Xi. The dynamics of
the reaction system can be described in terms of the probability distribution
P (n, t) = P (n, t|n0, t0) for the system to be in state n at time t when it was in
state n0 at time t0. The time evolution of this probability distribution obeys a
master equation

∂tP (n, t) =

R∑
r=1

gr(n− Sr)P (n− Sr, t)−
R∑

r=1

gr(n)P (n, t), (1)

where gr(n)∆t is the probability of reaction r occurring somewhere in the com-
partment in the time interval [t, t + ∆t). The propensity functions gr(n) have
been derived from first principles when the interacting particles are point-like
(no volume exclusion) and assuming that all species are well-mixed, i.e., when
the distance travelled by molecules between successive reactions is much larger
than the size of the system [12,13]. In this case, the master equation Eq. (1) is
known as the chemical master equation. In the well-mixed limit, this is formally
equivalent to the reaction-diffusion master equation [31] which has been shown
to provide an accurate approximation of microscopic simulations that track point
particle positions [32]. We note that there is no general closed-form solution to
the CME and hence in practice, one uses the SSA [33] to estimate P (n, t) in a
Monte Carlo setup. We refer the reader to [31,8] for comprehensive background
on the CME and the various methods to approximate its solutions.

2.3 Bayesian Optimisation (BO)

The CME presents considerable computational advantages over CA simulations,
however simply ignoring spatial effects will generally result in an inaccurate
prediction of the stochastic dynamics of the total number of particles for each
species in a compartment. Nevertheless, it is plausible that there exists a different
CME parametrisation which leads to a time-dependent probability distribution
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of molecule numbers that well approximates the same distributions calculated
from CA. The main purpose of this paper is to illustrate a machine-learning
strategy that automates the task of finding appropriate propensity functions.

The task is akin to the inference of CME parameters from observations
[8,34,35], however in this case the CME parameters are not determined in order
to maximise a data likelihood, but rather to give rise to (transient and steady
state) particle number distributions that match the distributions generated from
CA. To do so, we use a machine learning technique called Bayesian optimisa-
tion (BO) [36,37]. BO is an efficient sequential algorithm to optimise objective
functions which are very expensive to evaluate. In our case, the task is

x∗ = argmin
x

f(x), (2)

where x ∈ Rd is a vector of CME parameters and the objective function f(x) is
a (rescaled) one-dimensional Wasserstein distance (WD) [38] between the em-
pirical marginal distribution of CA and CME trajectories (1); see Appendix A
for more details. BO works by using discrete evaluations of the expensive objec-
tive function f(x) to construct a statistical surrogate (the acquisition function)
which is easy to optimise and can be used to identify the next query point. Two
subsequent queries are shown in the top and bottom of Fig. 2, respectively. Gen-
erally, Gaussian process (GP) regression [39] is used to construct the surrogate
function. GP regression is a methodology to perform Bayesian inference over
functional spaces; given some training points (in our case estimates of the objec-
tive function at some parameter values), one can obtain a posterior predictive
distribution over function values everywhere in parameter space, in terms of a
mean posterior function µ(x) and posterior variance function σ(x), which pro-
vide a point-wise posterior distribution over the values of the expensive function
f(x). The acquisition function is then obtained as some analytical function of
the posterior mean and variance. In our case, we use the expected improvement
acquisition function

αEI(x) = (µn(x)− τn)Φ

(
µn(x)− τn

σn(x)

)
+ σn(x)ϕ

(
µn(x)− τn

σn(x)

)
, (3)

where τn is the optimal value (minimum in the minimisation setup) of the esti-
mated unknown function found after n steps (τ4 and τ5 on the left-hand side of
Fig. 2), µn(x) and σn(x) are the posterior mean and variance from GP regression
after n function evaluations, Φ is the standard normal cumulative distribution
function, and ϕ is the standard normal probability density function. The acqui-
sition function is analytically computable and can be optimised using standard
methods to provide an optimal query point for the next evaluation of the expen-
sive function f(x). We note that our choice of acquisition function is not unique;
other possible choices are upper confidence bound, probability of improvement
and knowledge gradient [36]. The expected improvement acquisition function
that we use is guaranteed to find the optimum of the target function under mild
assumptions [40].
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A cartoon summarizing the overall learning procedure is shown in Fig. 1 and
an illustration focusing on how BO works to minimize an objective function is
shown in Fig. 2.
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Fig. 2. Illustration of how BO works to find the minimum of an arbitrary function. The
GP prediction is characterized by its mean (dashed green line) and variance (shaded
green area). The true function of interest is shown using a red dashed line with shading
denoting an uncertainty range. After observing the function for 5 times (red dots x0,
..., x4) – see top left figure – we select the next observation point 6 by calculating
and maximizing the acquisition function estimated using τ4, µ4 and σ4 in Eq. 3 and
shown by the teal line – see top right figure. The bottom row of plots shows how the
prediction approaches the true function with more observations. In this paper, the BO
procedure is used to find the reaction rate values in the propensity functions of the
CME (the parameter vector x) which minimize the mean WD (the function) between
the time-dependent distributions computed by CA and the CME.

The computational recipe is as follows:

1. Generate a number ns of CA trajectories for some chosen set of parameter
values, and collect marginal probabilities of particle numbers by sampling
them from the simulated molecule numbers at a set of time points (Fig. 1(b)).

2. Generate initial estimates of f(x) by evaluating Wasserstein distances be-
tween CA distributions and CME distributions on a grid of CME parameters,
and obtain the optimal initial value τ0 as the minimum distance obtained.

3. Perform a sequential search which, at iteration n, selects a location xn at
which to query f(xn) by maximising the expected improvement acquisition
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function. Set τn = min{τn−1, f(xn)} and recompute the acquisition function
by including f(xn) among the training points.

4. Once the improvement in objective function becomes smaller than a pre-
defined threshold, the algorithm makes a final recommendation xp, which
represents the best estimate for the minimum of f(x).

We use the python BO implementation in scikit-optimize and in parallel we
confirm the results using the python package optuna. The BO procedure allows
us to associate with one set of CA parameters a parametrisation of an effective
CME which optimally matches (in a Wasserstein distance sense) the marginal
probabilities of the CA. To extend this to any parametrisation of the CA, we once
again appeal to smoothness and use CA/ CME pairs on a grid of CA parameters
(each obtained via a separate BO procedure) to train a GP regression map to
predict effective CME parametrisations also for unseen CA systems. This allows
us to avoid expensive CA simulations and to provide effective CMEs for any
setting of biochemical and crowding parameters in the CA system.

3 Applications

In this section, we apply our BO-based method to an enzyme system and a gene
regulatory network. The code to recreate the results as well as the CA data are
available at https://github.com/sb2g14/wasserstein time inference.

3.1 Michaelis-Menten reaction in crowded conditions

Here we study the stochastic kinetics of Michaelis-Menten enzyme reaction sys-
tem

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P, (4)

where E, S, ES and P are enzyme, substrate, enzyme-substrate complex and
protein, respectively; k1, k−1 and k2 are bimolecular, reverse and catalytic rates,
respectively. Specifically, we consider this reaction in crowded conditions, where
the crowders are assumed to be immobile because normally these molecules are
large and inert [21,22]. The detailed set of rules for the CA simulations of this
system is described in Appendix B.

Similar to [22], the reaction rates may be estimated from the CA simulations
directly using the formulae

k1 =
dγ/dt

[E][S]
, (5)

k−1 =
dγ/dt+ d [S]/ dt

[ES]
, (6)

k2 =
d [P ]/ dt

[ES]
, (7)

https://github.com/sb2g14/wasserstein_time_inference
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where γ(t) is the average number of E + S −→ ES reactions that have occurred
in the time interval [0, t] divided by the number of grid points and [X] is the
concentration of species X, i.e. the average number of particles of species X
divided by the number of grid points. Note that averages are here understood
to be computed over an ensemble of independent CA simulations. The reactions
occur on a 2D square lattice of size 100× 100. The initial values of the molecule
numbers of each species are distributed uniformly and the boundary conditions
are periodic. The latter conditions are used since they typically give rise to small
finite-size errors in Monte Carlo simulations [41].

In Fig. 3, we show the calculation of the effective bimolecular rate k1 using
Eq. (5) as a function of time and of the concentration of crowders ϕ in the
system (dark grey points). Note that the effective rates of the other two reactions
k−1 and k2 (estimated using Eq. (6) and Eq. (7)) do not show any appreciable
variation with crowding levels and hence we do not discuss them any further
(the values of the estimated rates are in agreement with the probabilities of the
associated reactions in the CA). Clearly, crowding induces a bimolecular rate
that is monotonically decreasing with time – this is due to the increasing amounts
of product (and the decreasing amounts of the substrate) which reduces the
rate of encounter of substrate and enzyme molecules. We fit the time-dependent
bimolecular rates using the Zipf-Mandelbrot law k1 = k0

(t+τ)h
with parameters k0,

τ and h obtained from the least-squares fit of the data estimated from Eqs. (5) –
these are shown are orange lines in Fig. 3. Note that ϕ was limited to the range
0− 0.4 since this is the physiological range [22].

We next aim to learn the parameters k0, τ and h that characterise the effective
bimolecular reaction rate using BO. Specifically, we use BO to fit the time-
dependent distributions of all species calculated from the CA with those obtained
from SSA simulations where the propensity functions in the CME description
(Eq. (1)) are:

g1(n⃗) =
k0

(t+ τ)h
nSnE , (8)

g2(n⃗) = k−1nES , (9)

g3(n⃗) = k2nES , (10)

where nX is the number of molecules of species X. Since some of the propensities
have a time-dependent rate coefficient, the SSA simulations cannot be performed
using the standard Gillespie algorithm; rather we use the exact Extrande algo-
rithm [6] that takes into account time-dependent reaction rates. The objective
function minimized by BO (see Eq. (2)) is given by

f =

Nt∑
i=1

fi, fi =
|γref

i − γSSA
i |

γSSA
i

+

N∑
j=1

WD(P j
i , Q

j
i )

⟨Qj
i ⟩

, (11)

where γref
i and γSSA

i correspond to the sample averaged counter of bimolecular
reactions in the system at time interval [0, ti] in the CA and SSA simulations,
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Fig. 3. Variation of the bimolecular reaction rate with time and the concentration
of crowders (ϕ). The dark grey data points show the direct calculation of the rates
using Eq. (5) where the concentrations and γ are calculated from an ensemble of 2000
trajectories generated using CA simulations. The time-dependent rates are fit to the
functions k1 = k0

(t+τ)h
(following a Zipf-Mandelbrot law) using the method of least

squares (red lines). They are also estimated using 10 BO runs (green dashed lines
shows the average while the grey shaded area shows the standard deviation). The
initial values of the molecule numbers are NS = 2000, NE = 100, NC = 0 and NP = 0.
A detailed description of the CA simulations can be found in Appendix B. Note that
time is in arbitrary units.

respectively; ti are discrete-time points that split simulation time into equally
sized intervals; Nt is the number of time intervals; P j

i and Qj
i are the CA and

SSA marginal distributions at time ti for the number of molecules of species
j, respectively; ⟨Qj

i ⟩ is the mean of the SSA number distribution Qj
i ; N is the

total number of species. The first term in Eq. (11) helps to avoid parameters
indistinguishably in the unimolecular reaction rates k−1 and k2.

We repeat the BO-based estimation multiple times leading to a set of Zipf-
Mandelbrot law curves – in Fig. 3, dashed green lines show the mean of these
functions while the shaded areas show their standard deviation. These are in
good agreement with the least square estimates (orange lines) calculated previ-
ously. In Tab. 1 (Appendix C) we show the inferred parameters and the objective
function f for two different initial conditions.

To learn the functional dependence of the parameters of the effective bimolec-
ular propensity g1(n⃗) defined in Eq. (8) with the crowding level ϕ, we obtain
effective parameters (k0, τ, h) by minimisation of the objective function (11) for
a set of training values of ϕ and then we use Gaussian Process (GP) regression
to extend our predictions to a whole range of values of ϕ not covered by the
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training set. This approach has a huge computational benefit because we can
obtain predictions of effective rates in the whole range of ϕ without running
computationally demanding CA and BO at each point of the parameter space.
Here we use the python GP implementation in scikit-learn with a sum of Neural
Network kernel and white kernel, the latter term to model the noise induced by
finite simulation samples. In Figs. 4 (a), (b) and (c) we show the results of this
procedure. The GP regression line (blue line) was here learnt from 5 training
points (shown in teal stars and each obtained using BO trained with ns = 2000
CA samples) evenly chosen in the space ϕ = 0 − 0.4. To test the accuracy of

Fig. 4. Learning the effective CME parameters for an enzyme system (4) in crowded
conditions. (a), (b) and (c) show the GP regression (blue line) of parameters of the
Zipf-Mandelbrot law k̃0 = k0Ω (here we rescale k0 to avoid computational errors), τ
and h, respectively; the prediction was built from 5 training points (teal stars) each
obtained from BO trained with ns = 2000 CA simulation samples shown in Fig. 3
and Tab. 1 (Appendix C). The shaded blue area shows the error in GP prediction. A
number of test points (teal diamonds) each obtained from BO trained with ns = 6000
CA simulation samples fall on or close to the GP regression line showing its accuracy.
(d) Relative testing errors in the effective rate as estimated indirectly by GP regression
or directly by BO for 4 different testing points. Error is computed relative to the ground
truth rates evaluated by BO from 6000 CA samples. (e) CPU runtimes of 2000 CA
samples (teal diamonds) in comparison to the CPU time of drawing a new sample from
the function learnt with GP regression (black stars).

GP regression, we calculated k0, τ and h for another set of values of ϕ; these
testing points are shown as teal diamonds and are close to the GP regression
curve calculated from training data.

To further test the accuracy of the GP regression line, we calculated the
relative errors between the GP’s estimates of k̃0 = k0Ω, τ and h for 4 test points
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and a direct prediction from BO using 6000 CA samples at the same points (the
ground truth). The results are shown by the open crosses in Fig. 4 (d) – the
relative errors are relatively small showing the accuracy of the GP regression.
We also compute the relative errors between the ground truth and the k̃0, τ and
h directly predicted from BO using the same number of CA samples as used to
train the GP. We see that this relative error (shown by the open circles) is of
comparable magnitude to the one obtained earlier for the GP prediction; in other
words, GP predictions appear to be of a similar quality to ab initio re-learning
of the effective rates from a new batch of CA simulations.

Finally, in Fig. 4 (e) we show the time of calculating a value of parameter
k1 for selected ϕ from GP regression predictions (black stars) in comparison to
running 2000 CA samples (red diamonds) calculated on the single core. Note
that while we previously found that the errors of GP prediction are comparable
to the CA errors, the training time for a new GP sample is more than 6 orders of
magnitude smaller. The BO training time for this system is ∼ 103 s, thus, giving
a significant computational advantage to our approach compared to evaluating
CA samples for a range of ϕ. All the experiments were performed using a single
core of Intel Xeon 3.5 GHz and 16 GB RAM.

In Fig. 5 we compare distributions drawn from CA simulations of the enzyme
reaction system (4) (our ground truth; teal histograms) and the distributions
generated with SSA using effective rates calculated using BO (orange outline
histograms). We compare the marginal distributions of products P obtained in
the enzyme reaction. The left column in Fig. 5 compares distributions sampled at
the beginning of the experiment (t = 40) while the middle and the right columns
compare the distributions in the middle (t = 480) and the end (t = 1000) of the
experiment, respectively. The lower row of figures is for ϕ = 0, the middle row
is for ϕ = 0.2 (middle row) and the top row is for ϕ = 0.4. In the corner of
each subplot, we show the WD between the marginal distributions (obtained
from the CA and SSA+BO) and the value of fi (as defined by Eq. (11)) for the
respective time interval. Curiously, the distribution at ϕ = 0 and t = 480, and
the one at ϕ = 0.2 and t = 480 look similar in the plot, but the difference in
the WDs is significant at 2.3 vs 10.9. This is due to a systematic discrepancy
between the CA and the SSA marginal distributions in the upper subplot that
is not easily visible by eye but can be picked by zooming into the subplots. Also,
we can see that the quality of the approximation degrades with an increase in ϕ
(larger values of WD). This might happen because with an increase in crowding,
the dynamics of the system become non-Markovian (time between successive
reaction events is not any more exponential).

3.2 Gene network with negative feedback

Next, we study the stochastic kinetics of a gene network with negative feedback
in the presence of crowding (a well-mixed, non-crowded version of this system
was studied in [42]).

The CA simulations for this system proceed via a set of rules and boundary
conditions, akin to those used previously for enzyme kinetics. We consider a
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Fig. 5. Comparing the marginal distributions of products of the enzyme reaction gen-
erated with the SSA using rates learned with BO (orange lines obtained with ns = 500)
and data generated by CA (teal bars obtained with ns = 2000) at ϕ = 0, ϕ = 0.2 and
ϕ = 0.4 for three different times t = 40, 480, 1000. The WDs between both distributions
as well as the value of fi (as given by Eq. (11)) are shown in the corner of each subplot.
Note that fi varies from f1 to f25 because we divide the period [0, 1000] into Nt = 25
subintervals.

fictitious 2D cell defined by a square lattice of points (100 × 50) with periodic
boundary conditions (to reduce finite-size effects). One (immobile) lattice point
is the gene which can have one of three states: G (unbound to a protein), GP
(bound to a protein) and GP2 (bound to two proteins). The rest of the lattice
points are either empty or occupied by an mRNA (M), a protein (P), a crowder
(C), a free degrading enzyme (E) or a protein-enzyme complex (EP). All of these
molecules are mobile, i.e. can jump to a neighbouring empty lattice point, except
the crowders which are immobile at all times similarly to Sec. 3.1. M is produced
when the gene is in state G or GP (transcription); subsequently, M can produce
P (translation) or else it is removed from the system (mRNA degradation). P
can bind to the enzyme E to form the complex EP which can then decay to E
(protein degradation). P can also bind to the gene G to form GP and this can
bind to another P to form GP2. G and GP are assumed to produce M at the
same rate but GP2 is transcriptionally silent – hence this is a negative feedback
loop since the gene-product (the protein) represses its own production. In all
cases, the initial number of molecules of each species are nG = 1, nGP = 0,
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nGP2 = 0, nM = 0, nP = 0, nE = 100, nEP = 0. In Fig. 6 we show a cartoon of
this system.
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Fig. 6. Cartoon illustrating the setup for the CA simulations of a genetic negative
feedback loop inside a cell. The colours represent the following: G (dark orange), GP
(orange) and GP2 (light orange) are different states of the gene with different numbers
of protein-bound 0, 1, 2, respectively; protein P (green), mRNA M (teal), enzyme E
(purple), complex EP (blue) and crowders C (grey). White represents empty space.
All molecules can move except crowders and the gene which are immobile. The arrows
show possible directions of movement of the molecules – movement is only possible if a
neighbouring space is empty thus enforcing volume exclusion. For the possible reactions
between molecules see the main text.

The procedure leading to an effective CME, approximating the spatial CA
dynamics, is the same as before. We use BO to fit CA generated time-dependent
marginal distributions of all species to those generated by an SSA. In this case
the reactions modelled by the SSA are given by

G
k0−→ G+M, M

ks−→ P +M, P + E
k3−−⇀↽−−
k−3

EP
k4−→ E, M

kdM−−−→ ∅,

P +G
k1−−⇀↽−−
k−1

GP, P +GP
k2−−⇀↽−−
k−2

GP2, GP
k0−→ GP+M. (12)

Note that the objective function minimized by BO is same as Eq. (11) but
without the (first) γ dependent term; to lighten the computational burden, we
choose to infer only the three bimolecular rates (k1, k2, k3) and assume that the
unimolecular reaction rates are fixed to the ones set in the CA simulations. This
is a reasonable assumption since crowding tends to primarily affect bimolecular
rates. Note that while the inferred bimolecular rates were time-dependent in
the previous enzyme example, for the feedback loop they are found to quickly
converge to a time-independent non-zero value and hence we do not need to
assume a Zipf-Mandelbrot law for the rates – this is because for the feedback
loop, in steady-state all species numbers fluctuate around a non-zero value.

The results of the parameter inference averaged over 5 BO runs are shown
in Tab. 2 in Appendix C (here we also show the probabilities of the individual
reactions in the CA). The standard deviation in the inferred parameters in most
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of the cases is smaller than 20% of the mean, therefore, we can conclude that
the parameters are inferred fairly well. In Fig. 7 we compare distributions drawn
from CA simulations (our ground truth; teal histograms) and the distributions
generated with SSA using effective rates calculated using BO (orange outline
histograms). Note the same tendency as in the previous example, where the

Fig. 7. Comparing the marginal distributions of mRNA and protein in a genetic feed-
back loop generated with the SSA using rates learned with BO (orange lines obtained
with ns = 500) and data generated by CA (teal bars obtained with ns = 2000) at
ϕ = 0, ϕ = 0.2 and ϕ = 0.4 for three different times t = 200, 2400, 5000. The bimolecu-
lar reaction rates are inferred while the unimolecular rates are fixed at the same values
as the CA (see Tab. 2 in Appendix C). The WDs between the distributions are shown
on the top of each subplot.

WDs increase with the level of crowding probably because of the breakdown of
the Markovian assumption behind the CME. Interestingly, as shown in Fig. 8,
the CME starts to fail as a good approximation of the CA for increased mRNA
production rate k0 even in the case where there is no crowding. Presumably, this
happens because of increased mRNA production close to the gene which causes
a large degree of volume exclusion due to self-crowding of mRNA molecules (the
CA sample average of the fraction of occupied volume in steady-state is quite
low at 0.023).
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Fig. 8. Comparing the marginal distributions of mRNA and protein in a genetic feed-
back loop generated with the SSA using rates learned with BO (orange lines obtained
with ns = 500) and data generated by CA (teal bars obtained with ns = 2000) at
ϕ = 0 for three different times t = 200, 2400, 5000. The inferred bimolecular reaction
rates are k1 = 0.0018, k2 = 0.0025, k3 = 0.0002, while the unimolecular rates are fixed;
the latter have the same values as in Tab. 2) (Appendix C) except that k0 = 0.05.

4 Conclusions

As advances in measurement technology probe deeper into the spatial stochas-
ticity of biochemical reactions, novel computational tools are needed to formu-
late quantitative theories of cellular function. Existing frameworks for modelling
spatial stochastic effects such as Brownian Dynamics simulations and Cellular
Automata (CA) inescapably suffer from a high computational load. This is fur-
ther aggravated by the frequent need to explore a range of parametrisations for
the models as biochemical parameters are seldom accessible, creating the need
for even larger-scale simulation studies. In this paper, we propose an automatic
approach to generate simpler effective CME models which can recapitulate the
statistical behaviour of spatially crowded stochastic systems. Given a (limited)
number of expensive spatial simulation runs, our approach can provide a fast
CME-based simulator for any parametrisation of the spatial system which op-
timally matches its statistical properties. Our approach focussed on CA spatial
systems, but in principle, the same procedure can be deployed for any spatial
simulator.

As well as providing an efficient simulation tool, our approach opens po-
tential new directions. As a first application, its computational efficiency would
easily allow the analysis of 3D systems, as the scaling of the CME is clearly
independent of the dimension of the space in which the reactions happen. Sec-
ondly, the availability of efficient simulation tools opens the way to the use of
simulator-based inference tools to estimate the parameters of spatial crowded
systems from data [43], therefore enabling a formal statistical link between com-
putational methodology and experimental technology.
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Appendix

A Wasserstein Distance (WD)

In principle any distance measure between distributions may be used as an ob-
jective function but WD has proven to be one of the most effective [35]. Consider
two distributions P and Q of datasets P1, ..., Pn and Q1, ..., Qn, then the Wasser-
stein distance between them is

WD(p) =

 n∑
i=1

||Pi −Qi||p
 1

p

, (13)

where p ≥ 1 is the dimensionality of the original data distribution. In this paper,
we always use p = 1.

B CA rules modelling enzyme kinetics in crowded
conditions

At the beginning of each simulation, the counter γ is reset to zero, and E, S
and crowder molecules are randomly placed on the square lattice. At each time
step, a “subject” molecule is randomly chosen and it is moved or participates in
a reaction according to the following rules:

1. Choose randomly one of 4 nearest neighbouring “destination” sites.
2. If the destination site is empty and the “subject” molecule is E, S or P then

move the molecule (simulates diffusion).
3. Otherwise:

(a) If the “subject” molecule is E or S and the molecule occupying the “des-
tination” site (“target” molecule) is, respectively, S or E then generate a
uniform random number between 0 and 1. If this is lower than the reac-
tion probability P1 = 1, replace the “target” molecule with ES, remove
“subject” molecule and increase the counter γ by one. This step models
the reaction E + S → ES.

(b) If the “subject” molecule is ES, check if there are any molecules placed
on the neighbouring sites. If at least one nearest neighbour site is empty,
randomly choose a vacant “destination” site and generate a uniform
random number between 0 and 1.
i. If the generated number is less than P−1 = 0.02, place E on “subject”

site and S on “destination” site (ES → E + S).
ii. If the number is greater than P−1 but lower than P−1 + P2, where

P2 = 0.04, then place E on the “subject” site and P on the “desti-
nation” site (ES → E + P).

iii. If the number is greater than P−1+P2 move ES to the “destination”
site (only diffusion occurs).

4. Otherwise, if the “destination” site is occupied, reject the move (simulates
volume exclusion effects).
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C Supplementary tables

Parameter ϕ = 0 ϕ = 0.1 ϕ = 0.2 ϕ = 0.3 ϕ = 0.4

BO tmax = 1000, NS = 2000, NE = 100, ns = 2000,
estimated from the mean over 10 runs

k0 5.3 · 10−4 5.4 · 10−4 5.4 · 10−4 6.7 · 10−4 7.4 · 10−4

τ 157.6 114.5 82.5 53.0 24.7
h 0.27 0.3 0.35 0.46 0.6

k−1 1.9 · 10−2 2.0 · 10−2 1.9 · 10−2 1.9 · 10−2 1.9 · 10−2

k2 4.0 · 10−2 4.0 · 10−2 3.9 · 10−2 3.9 · 10−2 3.7 · 10−2

f 1.6 1.5 1.4 1.4 1.6

BO tmax = 4000, NS = 3000, NE = 20, ns = 4000,
estimated from the mean over 10 runs

k0 8.2 · 10−4 8.6 · 10−4 5.5 · 10−4 1.0 · 10−3 1.0 · 10−3

τ 585.9 551.2 236.4 248.7 62.0
h 0.27 0.3 0.29 0.48 0.67

k−1 2.0 · 10−2 2.0 · 10−2 1.9 · 10−2 1.8 · 10−2 1.7 · 10−2

k2 4.0 · 10−2 3.9 · 10−2 3.8 · 10−2 3.7 · 10−2 3.4 · 10−2

f 1.4 1.4 1.8 1.7 1.6

Table 1. Parameters k0, τ and h are estimated from the mean prediction of k1 (as a
function of time) over 6 or 10 BO runs for different ϕ in the CA simulations; k−1, k2
and f are mean predictions. The estimates are for two different initial conditions; the
top table is for the data shown in Fig. 3.

Para- ϕ = 0 ϕ = 0.1 ϕ = 0.2 ϕ = 0.3 ϕ = 0.4
meter

BO tmax = 5000, ns = 2000,
estimated mean and standard deviation over 5 runs

k1 · 10−4 17.7± 3.0 23.3± 3.4 31.8± 3.1 44.6± 5.1 66.8± 3.8
k2 · 10−4 15.9± 1.5 22.6± 3.8 32.3± 3.2 50.4± 5.6 97.8± 3.8
k3 · 10−5 21.3± 2.4 21.5± 1.6 20.6± 0.7 16.4± 0.6 11.5± 0.4

Table 2. Parameters k1, k2 and k3 are estimated from the mean predictions and
standard deviation over 5 BO runs for different ϕ in the CA simulations, unimolecular
rate are fixed at k0 = 0.01, ks = 0.01, k−3 = 0.05, k4 = 0.01, kdM = 0.01, k−1 = 0.02,
k−2 = 0.05. Note that the probability of each first-order reaction in the CA is the same
as the corresponding rate constant above; the probability of each bimolecular reaction
is set to 1 for simplicity.
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