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Abstract: Machine Learning (ML), a subset of Artificial Intelligence (AI), is gaining popularity in the
architectural, engineering, and construction (AEC) sector. This systematic study aims to investigate
the roles of AI and ML in improving construction processes and developing more sustainable
communities. This study intends to determine the various roles played by AI and ML in the
development of sustainable communities and construction practices via an in-depth assessment of the
current literature. Furthermore, it intends to predict future research trends and practical applications
of AI and ML in the built environment. Following the Preferred Reporting Items for Systematic
Reviews (PRISMA) guidelines, this study highlights the roles that AI and ML technologies play in
building sustainable communities, both indoors and out. In the interior environment, they contribute
to energy management by optimizing energy usage, finding inefficiencies, and recommending
modifications to minimize consumption. This contributes to reducing the environmental effect of
energy generation. Similarly, AI and ML technologies aid in addressing environmental challenges.
They can monitor air quality, noise levels, and waste management systems to quickly discover and
minimize pollution sources. Likewise, AI and ML applications in construction processes enhance
planning, scheduling, and facility management.

Keywords: artificial intelligence; communities; sustainable construction; machine learning; roles

1. Introduction

Construction projects are complicated, and their success relies heavily on various
factors [1]. Traditionally, construction projects have faced numerous challenges, including
delays, cost overruns, and safety concerns. These issues often arise due to human error,
inefficient resource allocation, and inadequate planning. Similarly, human activities become
efficient in smart and sustainable communities [2]. Artificial Intelligence (AI) and Machine
Learning (ML) have the potential to significantly enhance construction processes and
contribute to the development of sustainable communities. Specifically, AI has the potential
to increase labour efficiency by 40% and quadruple yearly economic growth rates by
2035 [3]. AI, a branch of computer science, focuses on creating intelligent machines capable
of performing tasks that ordinarily need human intelligence. AI can find non-obvious
patterns in data while also producing reliable forecasts of the expected future in previously
unexplored circumstances [4]. ML is a key branch of AI [2] that allows a computer to learn
from data, uncover patterns, and ultimately make judgments and predictions with minimal
human intervention [5].

AI and ML are well-known for their effectiveness in construction automation [6].
AI technologies excel in data analysis and pattern recognition, allowing them to extract
valuable insights from vast amounts of information. Additionally, AI plays a vital role in
optimizing the allocation of resources in construction projects. In addition to enhancing
project management and resource allocation, AI also facilitates the creation of smarter,
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more sustainable communities. Furthermore, AI-powered systems can enhance safety on
construction sites by continuously monitoring and analyzing data from sensors, cameras,
and wearable devices. These technologies empower project stakeholders with valuable
insights, optimize resource allocation, and contribute to the development of energy-efficient
infrastructure. The current study focuses on identifying the roles of AI and ML in improving
construction processes and creating sustainable communities.

Emerging AI techniques, such as artificial neural networks (ANNs), can be used to
generalize hidden patterns and implicit associations from historical data, resulting in a
viable prediction model to assist the planner in analysing new cases in the issue area [4].
Artificial neural networks are a class of ML algorithms capable of modelling nonlinear
relationships between input vectors and target values [7]. More so, digital twins (DTs)
integrate AI, ML, and data analytics to create living digital simulation models that can learn
and update from multiple sources as well as represent and predict the current and future
conditions of physical counterparts [8]. Residential and commercial buildings account
for a significant portion of global energy consumption; therefore, hourly predictions of
electricity consumption in residential and commercial buildings are required to support
operational decisions, demand response strategies, and the installation of distributed
generation systems [7]. Thermal comfort is a key component of smart building control and
operation, as well as building design and modelling [9]. Also, the building and construction
sectors consume one-third of the total world’s final energy consumption and emit roughly
15% of CO2 [10].

Meanwhile, application programming interfaces (APIs) enable smart cities to share
huge amounts of data [11]. Predicting occupant thermal experience is an essential target for
architects, engineers, and facility managers in creating and maintaining pleasant interior
settings [12]. Thus, to promote energy sustainability, it is necessary to focus on the consumer
end rather than only the production end [13]. AI, particularly its ML branch, has the capacity
and roles to make buildings and communities smarter and more sustainable [14].

According to [15], knowledge discovery in databases (KDD) and data mining (DM) are
techniques that enable construction managers to identify valid, valuable, and previously
unknown patterns in massive amounts of construction project data. Sadly, construction
is one of the most dangerous industries in many nations [16]. Construction accidents
are widespread; thus, developing prediction algorithms to detect severe accidents would
be beneficial [17]. Relatedly, contractors are responsible for the whole engineering, pro-
curement, and construction (EPC) project execution and are subject to many risks as a
result of various imbalanced contracting techniques such as lump-sum, turn-key, and
low-bid selection [18]. In the early stages of construction projects, estimating the project
cost is critical [19]. Optimization algorithms and ML approaches can be employed to
design and construct sustainably [20], focusing on all phases, from design to construction
and operation.

Several studies have reviewed the current applications and future directions of AI in
different domains of knowledge. On a broad note, the study [21] investigated the potential
uses of AI in health systems. Meanwhile, review [22] focused on ML applications in
neuroimaging. In the AEC domain, the scientometric study [23] on AI applications in the
AEC industry was based on science mapping.

Furthermore, Ref. [5] investigated potential research prospects in AI and robotics
for prefabricated and modular construction. However, additional research into the roles
of AI and ML in optimising construction processes and establishing more sustainable
communities is required. The current study, therefore, is unique in its approach to as-
sessing current practical applications of AI and ML in that it adopts SR methodology to
identify and expatiate the roles of AI and ML technologies in construction processes and
sustainable communities.

Therefore, this research aims to investigate the roles of AI and ML in improving
construction processes and creating more sustainable communities through a systematic
review (SR). The evaluation intends to identify not only the roles of AI and ML in the de-



Buildings 2023, 13, 2061 3 of 20

velopment of sustainable communities and construction processes but also future research
trends and practical applications of AI and ML in the built environment. Following the
introduction, this study discusses the research context, the materials and procedures for
review. The article then reports on the findings of the profile and content analysis. First,
the roles of AI and ML in developing sustainable communities are categorized as indoor
and outdoor communities [24] and discussed. The roles of AI and ML are then examined
in the preconstruction, construction, and post-construction phases [25]. Future directions
for using AI and ML to improve construction processes and sustainable communities are
investigated and discussed, and conclusions are drawn. Meanwhile, the major research
questions addressed in this study are as follows: (i) what is the primary emphasis and
application of AI and ML in the construction domain? (ii) how are AI and ML employed in
construction processes? (iii) what roles do AI and ML play toward ensuring sustainable
communities? (iv) what are the future trends for AI and ML in the construction industry?

2. Methods and Materials

In contrast to traditional literature reviews, SR examines current research, evaluates
scientific contributions, and synthesizes important data [26]. SR aids in comprehending
the best available evidence on a particular topic [27]. SR also undertakes a methodical
examination of the relevant literature to discover and discuss contemporary applications
of the subject area [28]. Furthermore, SR aids in presenting a comprehensive summary of
previously published investigations [29]. Finally, SR is a rigorous but time-consuming and
resource-intensive procedure [30]. As a result, the described technique (SR) is appropri-
ate for comprehensively determining the roles of AI and ML in improving construction
processes and sustainable communities. To minimize poor reporting, this study followed
five SR stages: question formulation, study identification, study screening, study critical
assessment, and data extraction and synthesis of studies [31]. This method is similar to the
Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines mentioned in [32]
and was used to meet the study’s aim. The PRISMA records selection flow chart utilized
in this study is depicted in Figure 1. The exact search queries and the overall research
flowchart are shown in Figure 2.

The inclusion and exclusion criteria must be specified to filter the retrieved research
and preserve the relevant ones [33]. Articles concentrating purely on mobility, remote
sensing, and smart cities without a practical connection to the construction sector were
eliminated from the current research. Studies based primarily on experiments, question-
naire surveys, scientometric analyses, and reviews were also removed. Non-English articles
were similarly excluded. The study ensured that the query was not confined to certain
journals, and the date range was selected to collect all relevant publications. The selection
of keywords and databases in SR impacts the comprehensiveness of research trends find-
ings [34]. Hence, the keywords and databases for this review have been carefully chosen
to ensure their completeness. The articles for this study were retrieved from the Web of
Science (WoS) and Scopus databases. While WoS is considered the most comprehensive
and has the most significant and influential journals in its record [35], the Scopus database
encompasses a wide range of articles [36] relevant to this study. The Scopus database’s
“Advanced search” tool was used. This function contains pre-generated searches that
return articles relating to UN Sustainable Development Goal 11: “Sustainable Cities and
Communities”. Through the Scopus and Web of Science databases, these pre-generated
search queries were utilized to obtain papers on the roles of AI and ML in enhancing
sustainable communities.

Content analysis is a research approach that uses a series of procedures to draw
meaningful conclusions from text [37]. An in-depth content analysis of the included articles
was carried out to find publications that particularly explore the roles of AI and ML in
improving processes for construction and creating sustainable communities.
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Profile of Publications

A total of 725 journal articles were retrieved from the databases, of which 222 duplicate
articles were removed. Next, the unique 503 articles were inspected based on their titles
and abstract. Based on the PRISMA standard, non-relevant articles were then removed. The
present study included a total of 97 articles based on their relevance to the aim and research
questions the study seeks to answer. Figure 3 outlines the included articles in this study
per the year of publication and publishers. About 63% (61) of the included publications
were published between 2021 and 2023, indicating an increase in research interest and
applications of AI and ML in the built environment in recent years. Also, Table A1 shows
the sources of the included articles.
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Figure 3. (a) Number of articles by year; (b) Number of articles by publishers.

Most of the featured publications were published by Elsevier, MDPI, ASCE, Springer,
and IEEE. Aside from Wiley, Emerald, and IOS Press, which published eight articles
included in this study, seven articles from seven additional publishers were also included.

Furthermore, keywords retrieved from the article titles indicated that the frequently
used keyword is “energy”, “air quality”, and “construction safety”. Also, the common
authors’ keywords are “machine learning”, “artificial intelligence”, and “deep learning” as
shown in Figures 4 and 5. The articles included in the study stem from different educational
institutions across the globe. The countries were based on the authors’ institutions. Figure 6
shows that the United States and China have the largest publications in the research corpus.

Other commonly used keywords derived from article titles include “project manage-
ment,” “Real estate price estimation,” “Waste management,” “Construction management,”
“Load prediction,” and “Accident prediction” (Figure 4). Other top keywords used by the
authors include “Smart cities”, “Smart city”, “Support vector machine”, “Artificial neural
network”, “Smart buildings”, and “Neural network”, among others (Figure 5).

According to Figure 6, the number of the included article(s) per country shows that
Egypt and Morocco are the two African countries having notable research papers (six
and three, respectively) included in this study. Angola, Ecuador, Iraq, Ireland, Japan,
Kazakhstan, Mexico, Pakistan, Poland, Russia, Sweden, and Thailand are among the
“others” countries with only one representative article in the research. More so, Asia and
Europe have the largest number of publications included in the study, while the most
productive authors are Kerim Koc and Asli Pelin Gurgun, with five publications each, as
shown in Figure 7.
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The authors’ institutions determined the number of countries and continents. Further-
more, most of the articles had several authors. As shown in Figure 7a, most of the authors
representing various institutions are from Asia, Europe, and America. Africa and Oceania
have the least representative institutions per continent.
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3. Roles of AI and ML in Sustainable Communities
3.1. Indoor Environment
3.1.1. Energy Management

Ref. [38] employed AI to turn the Europoint Towers in Rotterdam into self-sufficient
buildings by taking into account energy use and food production (lettuce crops). The
study looked into optimizing high-rise buildings for self-sufficiency in food production
and energy usage based on daylight availability. Unlike the majority of AI models now
used in energy forecasting, which is traditional and deterministic, ‘transformer,’ a novel
deep learning paradigm, leverages the idea of self-attention [39]. The study developed
a transformer-based model to predict the energy consumption of a real-world university
library and compare it to a baseline model. Ref. [40] delved into pilot systems and proto-
types that demonstrate how AI may aid in the process of achieving energy sustainability
in smart cities. The study investigated smart metering and non-intrusive load monitoring
(NILM) to establish a case for the latter’s utility in profiling electric appliance power usage.
Using ML approaches, Ref. [41] investigated the energy consumption trends of residential
assessment units. Ref. [42] focused on creating an energy management approach that
combined photovoltaics and storage systems, using a multi-story building with a high
density of families as the major case study to provide data that allows feasibility forecasting.
Ref. [43] aimed to reduce the computation required to determine the energy consumption
of various combinations by identifying suitable training samples, computing their energy
consumption with EnergyPlus, and estimating the rest of the data’s energy consumption
with ML techniques.

Based on the experts’ competence, ref. [44] attempted to analyse the electrical energy
usage in Mashhad, Iran, using ML methods to offer dynamic solutions for encouraging
residents’ interest in renewable energy generation. Ref. [45] used machine learning inter-
pretability approaches to predict whether a room is occupied or unoccupied, resulting in
energy savings in buildings. Ref. [46] developed an AI-based framework for addressing
various scientific issues in green buildings, such as providing clean energy, developing
a smart and sustainable biogas production control system, and integrating solid waste
management with the Sustainable Development Goals (SDGs). The AI techniques used
were Random Tree (RT), Random Forest (RF), artificial neural network, and Adaptive-
Network-based Fuzzy Inference System (ANFIS). Ref. [13] provided a bottom-up strategy
for creating heat load analysis and forecasting utilizing ML techniques such as support
vector machines, feed-forward neural networks, multiple linear regression, and regres-
sion trees. [47] unveiled a new simulation environment created by combining CitySim, a
building energy simulator, and TensorFlow, a powerful ML library capable of developing
building energy scenarios in which ML algorithms are applied to the major problems and
opportunities that modern cities face. Ref. [48] developed a novel ensemble model based
on actual data to estimate energy consumption in residential buildings.

The ensemble model combines two supervised learning machines—least squares sup-
port vector regression and the radial basis function neural network—and incorporates
symbiotic organism search to automatically discover its best tuning parameters. The study
by [49] developed a technique for estimating domestic energy demand that included statis-
tical data matching, ML, and household/population synthesis. Through the combination
of data-driven methodologies with physics-based model ML algorithms, ref. [50] created
a hybrid model to handle the problem of residential electricity consumption forecasting.
Using an AI model, ref. [10] forecasted residential building energy use and greenhouse gas
emissions. Ref. [51] addressed the need to develop methods for accurately modelling and
characterizing building energy consumption in cities by proposing a novel data-driven ur-
ban energy Simulation (DUE-S) framework that integrates a network-based ML algorithm
with engineering simulations to better understand how buildings consume energy across
multiple temporal and spatial scales in a city.
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3.1.2. Thermal Comfort, Power, and Cooling

Ref. [52] built an automated platform that offers data on home power consumption in
each Taiwanese city. To anticipate future domestic electricity consumption, ML was em-
ployed. Furthermore, to improve the accuracy of the top machine learner, a nature-inspired
optimization strategy was used, resulting in an even superior hybrid ensemble model. The
suggested approach in [53] is a hybrid of artificial neural networks and stochastic fractal
search (SFS-ANNs) designed to handle the problem of early cooling demand prediction in
buildings. To forecast indoor temperature more correctly and effectively, Ref. [54] presented
a hybrid model based on feature selection approaches such as feature significance and sup-
port vector regression (SVR). Ref. [7] created a recurrent neural network (RNN) model with
a one-hour resolution to produce medium-to-long-term predictions of power consumption
profiles in commercial and residential buildings. Ref [9] employed ML to bridge the gap
between controlled building factors and thermal comfort. The study demonstrated that
neural networks are good ML approaches for simulating comfort levels.

3.1.3. Circulation and Automation

The study [55] takes advantage of the image collecting and processing system’s knowl-
edge of passenger group sizes and waiting durations. The objective was to create a decision
engine that could govern the elevator’s movements while increasing user satisfaction.
Ref. [56] investigated edge AI-enabled technology and suggested a fully featured IoT and
edge computing-based cohesive system for smart home automation.

3.2. Outdoor Environment
3.2.1. Pollution—Air, Noise, and Waste

• Air pollution

Ref. [57]’s study on AI-based air quality early warning systems is expected to play a
vital role in its future accuracy and usefulness. Ref. [58] suggested an improved ML strategy
for predicting urban ambient particulate matter (PM2.5) concentrations that combines
cascade and PCA algorithms to reduce data dimensionality and investigate nonlinear
relationships across variables. Ref. [59] proposed a novel algorithm based on cloud model
granulation (CMG) for air quality forecasting. Ref. [60] developed a system that monitors
and forecasts urban air pollution by using ML algorithms to construct credible forecasting
models for various air pollutant concentrations. Ref. [61] suggested a network that predicts
future air quality, resulting in cutting-edge performance in urban air quality prediction.
Ref. [62] presented an ML technique based on six years of meteorological and pollutant data
analysis to forecast PM2.5 concentrations from wind (speed and direction) and precipitation
levels. Ref. [63] presented a cost-effective and efficient air quality modelling framework
that incorporates various elements while utilizing cutting-edge AI-based approaches.

Using environmental monitoring data and meteorological observations, Ref. [64]
developed an ML-based strategy for reliably predicting the air quality index. Ref. [65]
created a regression model of daily air quality forecast using the SVM approach at the
local scale in the Gijón metropolitan region of Northern Spain. Ref. [66] investigated a new
technique of daily air pollution prediction based on observed carbon mono oxide (CO)
concentrations utilizing a combination of Support Vector Machine (SVM) as a predictor
and Partial Least Square (PLS) as a data selection tool.

• Waste

Ref. [2] created a rule-based ML model to assess the influence of city and nation vari-
ables on the disposal of waste. The findings identified municipal government, employment,
and technical research as key factors influencing sustainable waste management. To choose
waste-to-energy plants, Ref. [67] created and used a hybrid framework that included the
analytical hierarchy method with ML approaches. Ref. [68] offered an investigation of three
AI-related models as tools for forecasting the development of urban solid waste in the city
of Bogota to learn the behaviour of such types of waste.
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• Noise

Renaud [14] investigated the capacity of Gradient Boosting and Deep Learning to
produce long-term noise level forecasts using noise data gathered in a suburb of an En-
glish metropolis and then offered a strategy for identifying noise level anomalies based
on predictions.

3.2.2. Real Estate and Prices

Ref. [69] offered an overview of ML approaches for forecasting property values.
Ref. [70] provided an experiment on estimating real estate prices using seven ML ap-
proaches and five years of historical data on real estate transactions in major French cities.
A unique ML approach was presented in [71] to address the complexity of real estate mod-
elling. The study investigated the possibility of call detail data for forecasting real estate
prices using AI. Ref. [72] used ML approaches to forecast house prices in two Italian cities.
Ref. [73] developed an innovative and complete model for calculating the price of new
houses during the design or early construction phase by combining a deep belief-restricted
Boltzmann machine with a unique non-mating genetic algorithm. Ref. [11] employed
location-based services APIs as an urban data source to assess the attractiveness of a resi-
dential area for users looking for long-term rental apartments by developing a machine
learning model to forecast days on the market. As a research approach, ML algorithms
were employed in the study [74] to construct a house price forecast model.

3.2.3. Infrastructure Development

Sousa et al. [75] combined semantic modeling and data-driven AI methodologies to
deliver autonomous assessments for the operation of a public street lighting network to
maximize energy usage while maintaining light quality patterns. To optimize the waste
management process, ref. [76] presented an AI-based Hybridized Intelligent Framework
(AIHIF) for automated recycling. The system introduced using ML and graph theory will
maximize waste collection within a limited distance. Ref. [77] suggested an ML-based
technique that could be utilized to extract elements of regional architectures and assess
architectural forms in the process of urban redevelopment. Ref. [78] offered a novel AI-
based technique for an urban-scale application that quantifies both subjective and objective
human-scale streetscape perceived quality. Ref. [79] used ML algorithms to create models to
aid in quick decision-making for optimal resource allocation in the aftermath of disruption
and to assist investment decisions for the structural reconfiguration of urban systems.

Ref. [80] created a unique hybrid AI model that predicted building destruction in South
Korean redevelopment zones by combining standalone algorithms with architectural and
engineering technologies. Ref. [20] demonstrated how the multi-zone optimization (MUZO)
methodology developed in the first phase of their research project could improve the overall
performance of a high-rise building in crowded metropolitan neighbourhoods. Ref. [81]
explored the various challenges in the formulation and execution of overall country-specific
urban planning by combining big data technology and ML to build a virtual design model
of urban planning and develop the functional structure of the model based on actual
demands. Ref. [82] presented the MUZO methodology that supports decision-making for
high-rise buildings per floor levels and performance aspects.

3.2.4. Life Cycle Assessment and Rainfall Prediction

Koyamparambath et al. [83] explored AI techniques to forecast the environmental
performance of a product or service per life cycle assessment (LCA). The data is processed
using natural language processing (NLP), which is then taught to the random forest method,
an ensemble tree-based machine learning approach. Ref. [84] combined fuzzy cognitive
maps with a metaheuristics-based rainfall prediction system (FCMM-RPS). The FCMM-RPS
approach aims to predict rainfall in an automated and efficient manner.
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3.2.5. Other Applications

Bui et al. [85] offered an ML approach to replace traditional testing for determining
the coefficient of soil compression. The novel method combines the Multi-Layer Percep-
tron Neural Network (MLP Neural Nets) with Particle Swarm Optimization (PSO). Using
AI/ML approaches, ref. [86] focused on environmental injustice. Ref. [87] investigated
a metamodel-based method that included simulated data gathering and data-driven ap-
proaches for forecasting and optimizing heating and cooling loads in three different climates
in Morocco.

4. Roles of AI and ML in Construction Processes

The roles of AI and ML are discussed in this section. The roles are discussed per
the classification of the construction phases, namely preconstruction, construction, and
post-construction phases. The detailed discussions follow next.

4.1. Pre-Construction Phase
4.1.1. Risk and Cost Estimation

Ref. [88] used ML to predict contractor risk and support decision-making at each
project step, based on data gathered during the project development stages. Ref. [19]
introduced the XGBoost model as an input selector and predictor to improve cost estimation
accuracy. Ref. [18] described two main modules, Critical Risk Check (CRC) and Term
Frequency Analysis (TFA), that were developed as a digital contract risk analysis tool
for contractors by merging AI and text-mining techniques. Ref. [16] proposed an ML
technique to create leading indicators that identify building sites based on their safety risk.
Cost overrun difficulties in construction projects can be addressed by focusing on cost
overrun risk relationships throughout the risk assessment process [89]. Ref. [90] sought
to improve the efficacy of risk management (RM) in construction projects by building a
knowledge-based RM tool using case-based reasoning.

4.1.2. Other Applications

Rashidi et al. [91] compared the efficacy of various ML approaches for detecting three
typical construction materials: concrete, red brick, and oriented strand board (OSB). Using
ML approaches, ref. [92] offered a model for estimating carbon footprint at an early design
stage. Ref. [93] developed an ensemble approach to improve building cooling and heating
load prediction. Using AI-based technologies, the study [94] aimed to answer the problem
of determining the professional adaptive capacities of construction management employees.
Ref. [95] aimed to identify the features of competent project managers using expert opinion
and to evaluate their competence level using a questionnaire survey to create a prediction
model using a supervised ML methodology.

4.2. Construction Phase
4.2.1. Safety Management

The study [6] centred on the application of AI to develop a better hybrid model for
narrating construction accidents, which included the Gated Recurrent Unit (GRU) and
Symbiotic Organisms Search (SOS). Ref. [96] evaluated the identification of safety vests
using colour information in construction-site photos. The study employed six different
types of ML algorithms to classify safety vest pixels based on colour models of safety vests
created from data sets. Ref. [97] presented a less expensive accident-avoidance method that
detects the presence of mobile equipment using auditory signals. The study addressed the
issue by enhancing the auditory situational awareness of construction workers exposed
to loud noises using a unique sound detection model that employs AI to detect the sound
of collision hazards hidden in a plethora of ambient noises. The study was divided into
three phases:

1. gathering audio data from construction equipment;
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2. constructing a novel audio-based ML model for the automated identification of
collision hazards; and

3. performing field trials to assess the system’s efficiency and latency.

Ref. [98] aimed to forecast occupational accident outcomes using ML approaches com-
bined with various resampling procedures based on national data. Baker et al. [99] verified
the prior study’s NLP and ML strategy by demonstrating that qualities still have excellent
predictive power when the safety outcomes are external and independent. Ref. [100] aimed
to create a nationwide data-driven safety management system based on accident outcome
prediction, which can help anatomize fatality precursors and hence reduce fatal accidents
on construction sites. Ref. [101] created a thorough framework for predicting construction
employees’ post-accident impairment status. Ref. [102] used ML models to forecast injury
kinds and then developed safety measures in construction. Ref. [103] aimed to enhance
construction safety management by using discrete wavelet transform (DWT) and other
ML approaches to estimate the frequency of occupational accidents using time series data.
Ref. [17] developed a scenario-based automated pre-processing algorithm that identifies
the best scenario for forecasting the severity of construction accidents.

4.2.2. Planning, Scheduling, and Construction Equipment

Ref. [104] used text-clustering approaches and neural network language models to
cluster construction activity names. The research revealed ways to pre-process activity
names from building schedules for subsequent AI-based quantitative analysis. To deter-
mine class membership among major construction equipment categories, ML techniques
such as k-nearest neighbours and support vector machines are used [105]. Using point
cloud data, the study developed a new principle axis descriptor for construction-equipment
classification. Following an NLP-based multi-stage ranking formulation, Ref. [106] offered
the first attempt to automate tying look-ahead planning tasks to master-schedule activities.
To improve the practicability of package-based constraint management (PCM) knowledge
bases [107] addressed the identified incompleteness issue in previous similar studies.

4.2.3. Construction Management, Human Resources, and Conflict Resolution

The study [15] looked at the process of knowledge discovery in databases to uncover
the reasons for construction delays. Ref. [108] suggested an ontology-based, multilabel
text classification (TC) technique for categorizing environmental regulation phrases in
construction to facilitate automated compliance checks. Ref. [109] introduced a support vec-
tor machine (SVM) learning strategy for automated progress monitoring for construction
projects, which tracks, analyses, and displays the as-built status of buildings under devel-
opment. Per [110], the opportunity to automate monitoring for construction management
processes using AI facilitated the development of an automated construction management
system aimed at improving management and remote monitoring of substation construction.

Naumets and Lu [4] presented a situation in which AI algorithms were used to antici-
pate project labour hours based on prebid estimate data. Ref. [1] employed ML techniques
using empirical data to forecast the occurrence of conflicts in the construction process.
Ref. [111] presented a unique way for creating and testing a low-cost, ubiquitous con-
struction worker activity detection system capable of identifying a variety of behaviours
common on construction sites. By combining generative adversarial networks, autoencoder,
ML, and robot adaption approaches, Ref. [112] offered a unique physiological comput-
ing system that enables the collaborative robot to efficiently assess construction workers’
psychological states and manage its performance.

4.3. Post-Construction Phase

Lu et al. [8] emphasized using AI-enabled digital twins in facility management.
Ref. [113] highlighted the potentials, restrictions, and possible solutions of employing
ML/AI techniques at the design stage of deep renovation building projects using As-Built
BIM models as input to enhance decision-making toward the adoption of energy-saving
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measures. The compressive strength of alkali-activated construction demolition waste
geopolymers (CDWG) was predicted by [114] using random forest (RF), gradient boosting
(GB), and extreme gradient boosting (XGB). Cakir and Akbulut [12] aimed to assist build-
ing managers in predicting the heat experience of occupants under specified conditions.
The study created and tested a deep neural network (DNN) for accurately forecasting
temperature sensations independent of building characteristics.

5. Conclusions
5.1. Overview of Current Applications of AI and ML

AI and ML technologies play crucial roles in creating sustainable communities, both
in indoor and outdoor environments. In the indoor environment, they contribute to en-
ergy management by optimizing energy usage, identifying inefficiencies, and suggesting
improvements to reduce consumption. This helps to minimize the environmental impact
associated with energy generation. Similarly, AI and ML technologies help address pollu-
tion concerns. They can monitor air quality, noise levels, and waste management systems
to promptly detect and mitigate pollution sources. This information can be used to develop
effective strategies for reducing pollution and improving the overall environmental quality
of the community.

Furthermore, AI and ML technologies have significant roles in various stages of the
construction process, from pre-construction to post-construction phases. These technologies
enhance efficiency, safety, and sustainability throughout the construction lifecycle. Through
the SR, this study attempts to evaluate the roles of AI and ML in optimizing construction
processes and developing more sustainable communities. The review aims to identify not
only the roles of AI and ML in facilitating the development of sustainable communities and
construction processes but also future research trends and practical applications of AI and
ML in the built environment. Figures 8 and 9 outline the present roles and applications of
AI and ML technologies in enabling sustainable communities and construction processes,
as presented in this study.
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The roles of AI and ML in the construction of sustainable communities that have been
recognized are centred on both indoor and outdoor environments. The former includes
applications such as energy management, thermal comfort, electricity, cooling, circulation,
and automation, whereas the latter includes applications in reducing pollution, estimation
of real estate prices, and LCA, among others. Similarly, the applications of AI and ML
technologies in construction processes have been highlighted at all stages, namely pre-
construction, construction, and post-construction.

5.2. Study’s Contribution to Practices and Future Direction

This study’s relevance spans practice and research in the AEC domain. As a result of
the study’s emphasis on the critical roles of AI and ML technologies in both indoor and
outdoor environments, as well as at all stages of construction processes, valuable insights
for construction professionals facilitating informed decisions regarding the implementation
of these technologies for sustainable development abound. Similarly, as technology plays
an increasingly crucial role in the built environment, it is critical to harness its power for
the benefit of society and the environment. The study adds to the developing field of
sustainable development by highlighting the key applications of AI and ML in sustainable
construction and giving a roadmap for future research and development in this area.

The study’s main shortcoming is the lack of a detailed depiction of AI and ML tech-
niques. However, the findings emphasize that AI and ML technologies play a vital role in
advancing global efforts toward a sustainable and environmentally friendly built environ-
ment. AI and ML technologies are critical in sustainable construction, notably in energy
management. Furthermore, by monitoring and detecting pollution sources in real time,
these technologies help in tackling environmental concerns such as pollution. Finally, the
future trends of AI and ML in construction processes and sustainable communities revolve
around enhanced automation, optimization, and decision-making capabilities. These tech-
nologies will continue to revolutionize the construction industry, driving efficiency, safety,
and sustainability in the built environment.
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Appendix A

Table A1. Sources of included articles.

Source Number

Automation in Construction 9

Sustainability 7

Energies 6

Journal of Construction Engineering and Management 6

IEEE Access 5

Journal of Computing in Civil Engineering 4

Energy 3

Expert Systems with Applications 3

Sustainable Cities and Society 3

Applied Energy 2

Energy and Buildings 2

Journal of Building Engineering 2

KSCE Journal of Civil Engineering 2

Solar Energy 2

Others 41

Total 97
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