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Abstract

This thesis explores two separate research avenues that both utilise stimulated Brillouin

scattering in order to achieve their goal. The first employs a phonon generated in diamond

by backwards Brillouin scattering in order to store and retrieve quantum information for

use in quantum computing. The second uses the physical hypersonic waves induced by

forwards Brillouin scattering in a null coupling fibre taper in order to switch light from

one output to another.

A number of experiments were completed along both paths, work was first done to find

the acoustic phonon lifetime in diamond which sets the lifetime of the quantum mem-

ory, however results for this experiment were inconclusive due to limitations regarding

the difficulty of executing such an experiment, a figure for the acoustic phonon lifetime

in diamond has since been established in the literature. A polarimetry experiment took

place on a fibre taper in order to confirm the presence of acoustic modes, which produced

good and expected results, however the following experiment that was designed to find

the specific frequency of the acoustic mode produced null results, the reason for which

are numerous.

A theoretical investigation into both devices’ feasibility was also completed on these sys-

tems using a finite-element method. Results from these simulations show that while

the potential for a functioning Brillouin-based diamond quantum memory is high as full

switching is possible at distances of 6.36cm with gain values of 63.3W−1m−1, the pos-

sibility of building a functioning photonic switch with this particular architecture and

switching system is unlikely, as taper fabrication parameters needed for a full transfer of

power require aspect ratios far higher than what is physically possible when considering

reasonable laser systems.
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Chapter 1

Introduction

Using light to process information has use in both classical and quantum applications.

Data centres are becoming larger and light provides the ideal mechanism for informa-

tion transfer as it moves quickly, does not rely on cumbersome copper wires, and has an

enhanced bandwidth. Light also has application in quantum computing, here, it takes

the form of individual photons which have low decoherence and the ability to entangle

remotely, and thus have some unique advantages over other quantum computing regimes.

This is not without issue, in both classical and quantum photonics the need arises for a

photonic switch, these are devices capable of re-routing light from one direction to another

and are integral to the operation of these systems.

Specific to quantum photonics is the need for a quantum memory, these are devices ca-

pable of storing quantum information for short amounts of time and have application in

a variety of quantum information systems including quantum computing and quantum

cryptography.

In this thesis, the feasibility of two devices that pertain to these ideas is investigated,

the first is a diamond-based quantum memory that uses acoustic phonons accessed via

Brillouin scattering to store quantum information, and the second uses a null-coupling

fibre taper along with Brillouin scattering to switch light from one output to another.



2

Also presented is a theoretical investigation into both of these systems.

Chapter one presents a literature review on the topic of both quantum and classical com-

puting, with a focus on how quantum memories and photonic switching are used in these

systems.

Chapter two gives a brief introduction into some of the technical issues that arise when de-

signing and building experiments, particularly when there is a significant overlap between

distinct research avenues. Some preliminary data is presented towards two switchable

cavity quantum memories that use rubidium to instigate the switching mechanism.

Chapter three provides the background information associated with Brillouin scattering,

which is the fundamental physics that underlies the ideas presented in the remainder of

the thesis. Both classical and quantum analyses are presented.

Chapter four introduces finite element analysis as the technique used to model the phys-

ical systems present in this thesis, as well as presenting results of the simulations of the

diamond experiment.

Chapter five describes the diamond-based quantum memory in both the details of the

final storage mechanism as well as some of the early experiments that have taken place

to achieve that goal.

Chapter six moves from diamond to fibre and from quantum memories to photonic switch-

ing, beginning with a theoretical description of stimulated Brillouin scattering in optical

fibre tapers using the same techniques present in chapter 4.

Chapter seven describes the details of the null-coupling fibre taper photonic switch, along

with a series of experiments that work in the direction of creating a functioning device.

This chapter also unites the theory presented in chapter six with an analytical description
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to analyse the feasibility of the device.

Chapter eight concludes the thesis and provides a summary of the novel information that

this thesis is built around.

1.1 Classical Computing

It is exceedingly rare these days to leave the house without interacting in some way with

a computer. They control almost everything, from alarm clocks to traffic lights, and most

people carry one around in their pocket everywhere they go in the form of a mobile phone.

The power and practicality of modern computers is unmatched, but on a fundamental

level they are simple machines that take user inputs translated into binary (i.e. chains of

ones and zeros, or bits, that can be used to describe numbers, letters, and other inputs),

stores and processes that information using a particular code, at which point the new

information is output to be viewed and analysed by the user [1].

Data is processed using Boolean logic operations which are often named explicitly after

what they do, for example, a NOT gate flips the input bit, the input is not equal to the

output. Other logic gates include AND, OR, and NOR gates [2], combinations of which

can be used to perform simple mathematics, this can be scaled up to perform useful op-

erations.

Physically, these gates are built using transistors which are electronic devices comprised

of a semiconductor, usually silicon, with three terminals, a small signal is applied to one

of these inputs and can control how current passes through the device through the other

two terminals. This is possible because of the particular doping architecture in the device.

Modern high end computers contain processors that have upwards of 39 billion transis-

tors [3], which is a good improvement over the early transistor computers of the 40s and

50s, whose transistor count sat at a humble 200 [4].
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The exponential growth of on-chip transistors over the past seven decades can be described

by Moore’s law, a very general rule which states that the number of on-chip transistors

double every 18 months, however, this growth is not sustainable. The cost of fabrication

of these devices also follows an exponential pattern, so left unchecked it would not take

long for the semiconductor chip industry to surpass gross world product [5]. Size of

transistors also needs to be considered, they grow smaller every generation and will soon

be comprised of only a handful of individual atoms, it is expected to reach this point by

2037 [6], and so another fundamental barrier to Moore’s law is found. The search for

more powerful computation hardware continues, and those at the forefront of research are

turning their heads to other means, one such way is quantum computing.

1.2 Quantum Computing

In order to fully understand the potential of quantum computing, the fundamental prin-

ciples that govern these ideas must first be established, starting with perhaps the most

publicly known quantum effect, a superposition. In simple terms, these can be described

as a quantum system that occupies various states simultaneously until a detection event

is undergone. This concept of being in two states at once is a common feature of quantum

mechanics, an example of which is the spin of an electron, which can either be up or down

or in a superposition of both. This can be represented mathematically as

|ψ⟩ = α0 |↑⟩ + α1 |↓⟩ , (1.1)

where |↑⟩ and |↓⟩ are the spin up and spin down states, α0 and α1 are complex coefficients

that represent the probability amplitude of a system being it its corresponding state, and

|ψ⟩ is the overall state of the electron.

The probability that an electron is in the |↑⟩ or |↓⟩ state is proportional to |α0|2 and |α1|2

respectively. The following equation is produced as a result of this and is the generalised

case for i states
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∑
i

|αi|2 = 1. (1.2)

This result shows that a system occupying a superposition is a unit vector, regardless of

what the values of αi are.

The base unit of quantum computing is the quantum bit, or the qubit, which similarly

to classical computing can represent either a 1 or a 0, but unlike classical computers the

qubit can also exist in a superposition state between 0 and 1. There are various systems

that can be used as qubits (described in section 1.2.4), but for now electron spin will

continue to be used to explore the ideas of quantum computing.

Continuing this example further, consider now a system of two electrons in a closed system

both of which are put into superpositions. When the system is observed, there are four

potential outcomes, both electrons are spin up, both electrons are spin down, electron

1 is spin up but electron 2 is spin down, and electron 1 is spin down but electron 2 is

spin up, this means that four different probability coefficients are needed to fully describe

the system. For quantum computing with electron spin, spin-up and spin-down can be

transcribed as 1 and 0 respectively, and so

|ψ⟩ = α0 |11⟩ + α1 |10⟩ + α2 |01⟩ + α3 |00⟩ . (1.3)

This equation shows that a 2-qubit system needs four complex coefficients in order to

fully characterise the potential outcomes, that is, four individual pieces of information

compared to a classical computers two using the same number of bits. The amount of

information that a qubit system can hold increases exponentially with an increasing num-

ber of qubits, for a system with N qubits, the amount of states that system is able to be

measured in is 2N . A system with 100 qubits can be measured 1.27 × 1030 states, the

equivalent to one hundred bits.

Entanglement is another useful tool in quantum computation, two systems are entangled



1.2 Quantum Computing 6

when the quantum state of each system cannot be described independently of the other.

Mathematically, this can be described as quantum states that cannot be factored as a

product of states of its local constituents. An interesting effect that arises as a result of

entanglement is that there is an individually random, yet correlated fluctuation of ob-

servables between entangled systems in a way that is impossible to reproduce classically.

Practical examples of entanglement have been shown in a variety of different ways, includ-

ing using photons [7], neutrinos [8], molecules [9], and even between living bacteria and

photons [10]. The upper limit to the scale of systems exhibiting quantum effects has re-

cently been pushed, with entanglement occurring between a pair of vibrating membranes

10µm in size [11]. Quantum entanglement has a variety of applications and some believe

it is an essential part of quantum computing [12], Bell states are a special case for two

qubit systems and are examples of maximal entanglement, they are given as

∣∣ϕ+
〉
≡ 1√

2
[|00⟩ + |11⟩] (1.4)∣∣ϕ−〉 ≡ 1√

2
[|01⟩ + |10⟩] (1.5)∣∣ψ+

〉
≡ 1√

2
[|00⟩ − |11⟩] (1.6)∣∣ψ−〉 ≡ 1√

2
[|01⟩ − |10⟩]. (1.7)

1.2.1 Single Qubit Operations

Single qubit rotations must be unitary operators as the qubit must remain on the surface

of the Bloch sphere as it undergoes an operation, states that exhibit this property are

known as pure states as they can be described by a single ket vector, counter to this are

mixed states, these are states that cannot be described by a single ket vector and as such

reside on the interior of the sphere [13]. The relation between input and output states

can be expressed as

|ψ′⟩ = A |ψ⟩ , (1.8)
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where ψ and ψ′ are input and output states respectively, with complex amplitudes α0 and

α1, and A is a unitary operator matrix. There are five primary single qubit gates [14],

namely the Pauli spin operations and the Hadamard matrix

σ0 =

1 0

0 1

 (1.9)

σX =

0 1

1 0

 (1.10)

σY =

0 −i

i 0

 (1.11)

σZ =

1 0

0 −1

 (1.12)

H =
1√
2

1 1

1 −1

 . (1.13)

The first of these is the identity matrix and will have no effect on a qubit it is applied

to, that is |ψ′⟩ = σ0 |ψ⟩ = |ψ⟩. It is used not as an operation it itself, but often becomes

useful when describing mathematically the effect of multiple gates on a qubit. The second

is the Pauli-X gate and is the equivalent to the classical NOT gate, it has the effect of

swapping the amplitude probabilities of the two states. Using column representation for

vectors, this is explained as

|ψ′⟩ = σX |ψ⟩ =

0 1

1 0

α0

α1


= α1 |0⟩ + α0 |1⟩ ,

(1.14)

where |ψ⟩ = α0 |0⟩ + α1 |1⟩. This can be represented on the Bloch sphere as a π rotation

about the x-axis. Next is the Pauli-Y gate, and acts to swap the amplitude probabilities,

just as in the Pauli-X gate and also introduce a π phase shift between the two states
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|ψ′⟩ = σY |ψ⟩ =

0 −i

i 0

α0

α1


= −i(α1 |0⟩ − α0 |1⟩) = eiγ(α1 |0⟩ + eiπα0 |1⟩),

(1.15)

where γ = −π/2 is an immeasurable phase constant. Similar to the Pauli-X gate, this is

represented on the Bloch sphere by a π rotation about the y-axis. The final of the Pauli

spin operations is the Pauli-Z gate and introduces a π phase shift between the two states

|ψ′⟩ = σZ |ψ⟩ =

1 0

0 −1

α0

α1


= α0 |0⟩ − α1 |1⟩ = α0 |0⟩ + eiπα1 |1⟩ .

(1.16)

Once again, this can be represented as a π rotation about the z-axis on the Bloch sphere.

Finally, there is the Hadamard matrix, which transforms the qubit into a superposition

|ψ′⟩ = H |ψ⟩ =
1√
2

(σX + σZ) |ψ⟩

= α0 |+⟩ + α1 |−⟩ ,
(1.17)

where |+⟩ and |−⟩ are superposition states.

1.2.2 Two-Qubit Operations

Only a single two-qubit operation is discussed here, the controlled-NOT (CNOT) gate.

As expected, the CNOT gate only operates on two qubit registers (|ψϕ⟩) which are made

up of control (|ψ⟩) and target (|ϕ⟩) qubits. A CNOT gate performs a Pauli-X operation

on the target qubit only if the control qubit is |ψ⟩ = |1⟩, for the case when the control

qubit is |ψ⟩ = |0⟩, the target qubit is left unchanged [15]. The matrix of this operation

takes the form
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ACNOT =

I 0

0 σX

 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (1.18)

Combinations of one, two, and although not discussed here, three and more qubit opera-

tions can be used to perform more complex logic operations [16], for example, a Bell state

can be generated using a Hadamard gate along with a CNOT gate another example is

that two CNOT gates along with the three qubit Toffoli gate can be used to create the

quantum counterpart to the classical ADDER gate, as show in figure 1.1.

Quantum circuits are used to express these operations as the matrix representation of

more complex operations quickly becomes unmanageable. Input states are shown on the

left of the diagram, each with their own channel that defines the sequence of events,

single qubit operations are shown by boxes on a given channel and two qubit operations

join two channels with a vertical line [17]. Figure 1.1 shows quantum circuits of the Bell

state generator and quantum ADDER gate described earlier, introduced in the ADDER

operations are Toffoli gates, similar to the CNOT gate but performed on 3 qubits, a

Pauli-X gate is applied to a qubit if the first two are in the state |1⟩ [18]. Not shown in

these diagrams are measurements which are denoted as needles on a gauge and classical

bits, represented as two parallel lines.

(a)

(b)

Figure 1.1: Two quantum circuits showing (a) Bell state generation using
a Hadamard gate and a CNOT gate and (b) a quantum ADDER gate that
makes use of CNOT and Toffoli gates.

All of this work would not be worthwhile if there isn’t any clear examples of quan-
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tum supremacy, situations where computation using quantum algorithms has the ability

to solve problems that ordinary computing cannot when given a reasonable amount of

time [19]. Thankfully there are many such examples, the first and most notable of these is

Shor’s algorithm, developed in 1994 by American mathematician Peter Shor. Shor’s algo-

rithm solves the simple problem of integer factorisation, it shows that for any integer with

d digits, the runtime will scale with d3, comparing this to classical computation where the

runtime for the most optimal integer factorisation algorithms scale with exp(d1/3) shows

that Shor’s algorithm provides a significantly more time efficient route to a solution [20].

Shor’s algorithm makes use of the efficiency of quantum Fourier transforms and modular

exponention by repeated squarings in order to achieve this goal.

1.2.3 Limitations

Decoherence occurs when the definite phase relation between different states described by

the wavefunction of a system changes, it happens as a result of the interaction between a

quantum system and its immediate classical surroundings [21,22].

Qubits will undergo bit flips, phase flips, or both due when decoherence acts against

them [23], these errors are equivalent to the Pauli-X, -Z, and -Y gates respectively and

will significantly disturb quantum computations, since they rely heavily on qubits being

unaltered as they move between operations. Quantum error correction is used to combat

against decoherence.

1.2.4 Quantum Computing Protocols

This section will provide a brief introduction to some of the more promising physical im-

plementations of quantum computing characterised by the form of their qubits along with

how far these protocols have progressed towards a fully functioning quantum computer.

• Superconducting Circuits - Quantum computers employing superconducting qubits
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in their architecture follow three primary archetypes, charge [25], flux [26], and phase [27],

each of these are cooled to 15mK in order to expose their superconducting properties and

|0⟩ and |1⟩ states are mapped to different energy levels in the system corresponding to an

integer number of Cooper pairs1 for charge qubits, an integer number of flux quanta for

flux qubits, and different charge oscillation amplitudes across a Josephson junction2 for

phase qubits. Gate operations are executed by applying microwave pulses to the qubits

and qubits are coupled together using an intermediate electronic circuit.

Superconducting quantum computing is considered the frontrunner, with the likes of

Google [30], IBM [31], and Intel [32] all working on building a fully functioning quantum

computer using these systems. In 2019, Google presented a 53 qubit superconducting

quantum processor that exhibited quantum supremacy for the first time, it did so by

solving a complex problem in 200 seconds, impressive considering it is calculated to take

a modern supercomputer 10, 000 years to solve the same problem [30].

• Trapped ions - Qubits in this regime are charged atoms which are able to be suspended

in free space by applying an electric field, the |0⟩ and |1⟩ states correspond to either two

ground state hyperfine levels or a ground state and an excited state. There are a variety

of specific elements that can be used in these systems including calcium, strontium, and

ytterbium [33], all of which have different qualities such as absorption spectra and coher-

ence times that may result in different outcomes. By applying short pulses of light to the

ions, single gate operations are able to take place as well as coupling between ions.

Trapped ions have outstanding coherence times, making them useful in a variety of quan-

tum applications, and in 2021, Pogorelov et al demonstrated a 20 qubit system making

use of trapped ions, with the claim that one 100 qubit system is soon to follow [34,35].

1A phenomena specific to superconductors, Cooper pairs are two weakly bound electrons with an
attractive force caused by an electron-phonon interaction [28].

2Another effect specific to superconductors, a Josephson junction consists of two superconducting
electrodes separated by an insulator, a current can be produced continuously without a voltage being
applied [29].
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• Nuclear spin - A less researched protocol that uses individual nuclear spins of atoms

within a material or molecule as qubits, such as nitrogen vacancy defects within diamond

and single alanine molecules. Qubit states are equivalent to up and down spin states, gate

operations are performed using radio frequency pulses generated by an electromagnet. In

2001, Vandersypen et al [36] were able to perform Shor’s algorithm on a 7 qubit NMR

system.

In a similar vain, the spin of charge carriers in semiconductors can be used as qubits,

specifically those found in quantum dots. Physical implementation of this, however, has

only reached a total of ten qubits [37]. Quantum computing with nuclear spin can be

distinguished into two categories, nuclear magnetic resonance and solid state. While the

latter sees ongoing successful research as described above, nuclear magnetic resonance

quantum computing has seen a stagnation in growth over the past decade.

• Topological Quasiparticles - Topological quantum computing provides an obscure in-

sight into quantum computing, qubits take the form of non-abelian anyons, 2-dimensional

topologically active quasiparticles consisting of collective excitations of many electrons

[38]. Qubit states are mapped to the presence or absence of an electron at a detection

event, and gate operations are applied by moving anyons around physically, leading to

braids in space-time. While anyons have been physically detected [40], the only investi-

gation into topological quantum computing is theoretical.

• Photons - Photons have the potential to have low decoherence [41] and their inherent

property of flight allows for control over qubit separation and non-local entanglement,

properties unavailable to solid-state protocols [42]. Photonic quantum computing forms

the inspiration for the devices presented in this thesis and so the following section will

provide a deeper explanation compared to those present in this section.
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1.2.5 Linear Optics Quantum Computing

In 2001, Knill, Laflamme, and Milburn proved that full quantum computation is possible

with only photons and linear optical elements such as mirrors, beamsplitters, and wave-

plates [43], this came to be known as the KLM protocol and forms the basis of linear

optics quantum computing (LOQC).

The KLM protocol defines qubits as individual photons, with horizontal and vertical po-

larisation mapping to |0⟩ and |1⟩ states respectively. A photon is put into a superposition

state (a Hadamard operation, resulting in states 1/
√
2(|0⟩ + |1⟩) and 1/

√
2(|0⟩ − |1⟩)) by

passing it through a half-wave plate, this has the physical effect of rotating the linear po-

larisation by 45◦, resulting in diagonally polarised light. If a measurement is then taken

in the horizontal-vertical basis, there is a 50/50 chance it will collapse into one of the

two linear polarisation states. Circular polarisations of opposite handedness represent

complex superposition states and can be achieved by passing a linearly polarised photon

through a quarter-wave plate.

Figure 1.2: A simple beamsplitter, featuring input modes a and b and output
modes c and d.

It is not just polarisation that can be used to express quantum information, spatial en-

coding, number encoding, and time-bin encoding have all been presented as potential

solutions [44]. For the remainder of this section, however, polarisation will be used to

describe LOQC.
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There is a need for qubits to interact with one another in order to accurately apply multi-

qubit gates, but this is not a function that light intrinsically has [45], photons usually

pass through each other unperturbed. There are, however, unique circumstances where it

is possible to engineer interactions using specific optical setups. There are four possible

outcomes when two photons are incident on different inputs of a 50:50 beam splitter

(shown in figure 1.2) at the same time, either both photons are reflected, both photons

are transmitted, and two outcomes where one photon is transmitted and the other is

reflected. Consider the quantum mechanical description of this interaction, two identical

photons incident on different inputs can be described as

â†b̂† |0, 0⟩ab = |1, 1⟩ab , (1.19)

where â† and b̂† are creation operators for input modes a and b, and |0, 0⟩ab and |1, 1⟩ab are

Fock modes for inputs a and b, states denoting the number of particles within a specified

state. There is a 50:50 chance that a photon will either reflect or transmit upon incidence

with the beam splitter, and so

â† → 1√
2

(ĉ† + d̂†)

b̂† → 1√
2

(ĉ† − d̂†),
(1.20)

where ĉ† and d̂† are creation operators for outputs c and d. By combining the above

equations, the output Fock states can be found for the case where two photons are incident

on different inputs of a 50:50 beam splitter at the same time
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|1, 1⟩ab = â†b̂† |0, 0⟩ab

→ 1

2
(ĉ† + d̂†)(ĉ† − d̂†) |0, 0⟩cd

=
1√
2

(|2, 0⟩cd + |1, 1⟩cd − |1, 1⟩cd + |0, 2⟩cd)

=
1√
2

(|2, 0⟩cd + |0, 2⟩cd).

(1.21)

This provides the interesting result that instances where one photon occupies each of the

output modes do not exist, instead, photons only exit in pairs.

Figure 1.3: All potential outcomes of two photons incident on a 50:50 beam
splitter, the middle two outcomes representing situations where one photon
exits from both outputs cancel each other out (as shown in equation 1.21)
leading to the Hong-Ou-Mandel effect. Reproduced from [46].

This effect has been proven to exist experimentally by Jachura et al [47], who placed

detectors at both outputs of a beam splitter and measured the coincidence time between

detection events, they measure a significant dip as coincidence tends to zero suggesting

that photons exiting the beam splitter do so only through the same output.

This is known as the Hong-Ou-Mandel effect after those who found the effect in 1987 [48]

and the associated measurement dip is known as the Hong-Ou-Mandel dip. This effect is

used as the primary tool for entangling photons in LOQC, since photons at the output

are indistinguishable.

There are many different architectures that are able to perform the same operation in

LOQC, presented in figure 1.4 is an example of a CNOT gate derived by Gottesman et
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al [49]. Present in the center is a 4-photon GHZ state (a maximally entangled multi-qubit

state) |ψ+⟩ whose production causes a single photon to be emitted into each channel 1 → 4,

the input target and control states |ϕ1⟩t and |ϕ2⟩c interfere on two separate polarising beam

splitters 3 of horizontal-vertical and orthogonal diagonal bases with two outputs form the

Bell state. Bell measurements, measurements that find which of the Bell states a photon

exists in, occur at all detectors in the system, and outputs 2 and 3 are only accepted

when there is one and only one detection event at each detector. This in combination

with the polarisation dependency of the beam splitters results in the photons exiting from

outputs 2 and 3 exhibiting the desired transformation. This gate has a success rate of

25% when the creation of the ancillary Bell state is guaranteed which is somewhat less

than desirable.

Figure 1.4: Physical implementation of a CNOT gate, a four qubit Bell state
is prepared and each photon is sent into different channels, when a photon
on each detector is measured the gate has succeeded. Reproduced from [50].

Processes within LOQC are often non-deterministic and so operations must be applied

numerous times in order for a successful outcome. This severely limits the scalability of

LOQC but can fortunately be eliminated with the inclusion of quantum teleportation-

based logic gates, an example of which is the CNOT gate described above.

3Beamsplitters that direct one polarisation in one direction and the orthogonal polarisation in the
other.
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This idea of repeating non-deterministic operations until there is a successful outcome is

known as multiplexing and can exist in a variety of forms. Multiplexing is split into three

categories, spatial multiplexing, where multiple operations are run in parallel on different

systems [53], temporal multiplexing, where operations are run successively on the same

system [54], and frequency multiplexing, where operations are run on the same system

at the same time but with different frequencies of light [55]. Physical implementation of

multiplexing systems plays a key role in realising scalable LOQC.

There are some severe limitations to the implementation of the KLM protocol, although

it has been shown to allow universal quantum computing and to be efficiently scalable the

costs associated with even simple gate operations are significant [41]. As a result, there

are a variety of protocols developed since KLM’s original work that improve on both the

scalability and the economic efficiency of LOQC. These improvements are largely based

on cluster states [56].

A cluster state is a group of qubits all connected via entanglement [56], cluster states can

take many different shapes as is shown in figure 1.5, where circles represent qubits and

the lines that connect them represent entanglement. Clusters are built by first initialising

all qubits into a superposition state, followed by performing a CZ operation on all qubits

that are to be linked. The CZ gate is a two-qubit gate that is represented mathematically

as |q1, q2⟩ → (−1)q1q2 |q1, q2⟩ [41] and has the physical effect of entangling the qubits that

are operated on [57].

(a) (b)
(c)

(d)

Figure 1.5: Five different examples of cluster states used in LOQC, including
(a) a linear cluster of five qubits, (b) a cluster representing the Bell states,
(c) a four qubit cluster state, and (d) a 9 qubit GHZ state. Reproduced
from [41].



1.3 Quantum Memories 18

Cluster states allow for an alternative paradigm for quantum computing known as mea-

surement based quantum computing (MBQC). Here, a large cluster state is built resem-

bling a two-dimensional lattice, each row is equivalent to a single qubit in the circuit

model and each column represents a single step in the time basis, algorithms are then

applied sequentially by measuring all qubits in a single column from left to right. Single

qubit gates are applied by selecting the basis for each measurement, and two-qubit gates

are applied when two rows are connected by an edge in the cluster.

1.3 Quantum Memories

As described throughout this chapter, many of the processes that allow LOQC to perform

accurate quantum computation are probabilistic in nature and so the need for a quan-

tum memory arises as a result, devices capable of storing quantum information with on

demand storage and retrieval [58].

For example, consider the Gottesman CNOT shown in figure 1.4, it is important in this

system that both the input qubits and the 4-qubit Bell state are ready to be probed at

the same time. If this is not the case there would be delays in deciding whether or not the

output states are valid by which time the photons could travel huge distances. With the

inclusion of a quantum memory, the 4-qubit Bell state can be pre-prepared and stored,

so that when the input qubits are ready the Bell state can be released and the operation

can take place. There are also applications at the end of this process, with the gate being

probabilistic, successful attempts at a photonic CNOT gate can be stored and released

on demand when other probabilistic systems operating in tandem have all had successful

outcomes. Further still, for this gate to be considered single photons must be produced,

a task that is possible but unexpectedly non-deterministic [59]. Quantum memories then

play a vital role across various points in this process.

Applications for quantum memories are not limited to LOQC, quantum key distribution
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takes advantage of a variety of quantum effects to securely send publicly undisclosed

messages [60]. Qubits take the form of single photons as is the case for LOQC and are

transported through optical fibre. Losses are low but certainly apparent when transport-

ing light over long distances and so a need arises for quantum repeaters, devices capable

of boosting a quantum signal and a process made difficult by the no-cloning principle [61].

Quantum repeaters work on the basis of entanglement swapping (figure 1.6) and quantum

memories play an essential role, two photons that have never interacted are able to be-

come entangled by a suitable detection event involving photons that they themselves are

entangled to, leading to an unknown, but correlated variable between the two photons.

Thus, with frequent enough quantum repeaters, quantum information is able to propa-

gate indefinitely [62]. The likelihood of success of this multi-step deterministic process

is vastly increased with the presence of a quantum memory, as successful entanglement

events can be stored until the process is ready to go ahead [63].

Figure 1.6: Long distance entanglement is created between qubits at loca-
tions A and B (also C and D), information is then stored in memories Bh,
Bv, Ch, and Cv, which are read out together, combined, and detected. Sub-
scripts denote polarisation (vertical or horizontal), squares with vertical lines
are polarising beamsplitters, and the single square featuring a vertical line
and a circle is a polarising beam splitter in the 45 deg basis. Coincidence
between d+ and d̃+ modes heralds the storage of two excitations in either Ah

and Dh or Av and Dv. Reproduced from [65].

Ideally a quantum memory would not have any effect on the quantum information residing

within it, however in practise decoherence affects the stored qubit resulting in a different
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output state. The similarity between input and output states in known as fidelity and is

an important indicator of whether or not a quantum memory works [64].

Another important measure is storage lifetime, for some applications it is necessary to

store information for times on the order of tens of seconds. Should decoherence affect a

stored quantum state too much during that time then it would no longer be of any use

and so the addition of a memory in this circumstance is futile [64].

Other such characteristics include operation wavelength, bandwidth, and multi-photon

storage, all of which are important when considering the application of a memory.

1.3.1 Quantum Memory Protocols

The following section explores a non-exhaustive list of some of the recent implementa-

tions of quantum memories along with some of their benefits and detriments. Quantum

memories have been developed along two distinct paths, optically controlled memories

and engineered absorption [66]. The former takes place in a system with a particular

absorption architecture and the presence of a control field can dynamically couple ground

and storage states, resulting in an optically controlled memory. The latter engineers an

inhomogonous broadening of an energy level in rare earth ion-doped crystals allowing for

broadband absorption and on demand read out as the process is reversible. Each of the

following protocols will fit in to either one of these categories.

• Raman Scattering - The vibrational mode accessed by stimulated Raman scattering

provides a broadband and wavelength-independent storage state. Two co-propagating

pulses are able to couple ground and storage states when the frequency resonance condition

ΩStorage = ωSignal − ωPump is met, leading to the transfer of energy from the signal beam

to a vibrational mode in the material. A subsequent control pulse shortly follows and

is able to stimulate a emission process leading to the retrieval of the stored signal [67].

There are some intrinsic problems associated with this process,. Noise is introduced where

spontaneous Raman interactions take place due to a coupling between the strong control
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field and the transition intended for the signal field, the same control field can stimulate

an emission leading to a noise photon in the system. This occurs as the signal and control

fields are spectrally very close and is therefore difficult to eliminate entirely [66].

Figure 1.7: Energy level diagram describing the storage and retrieval of
quantum information using Raman scattering. A strong pump field (dashed)
and weak signal field (bold) interact to couple storage (|1⟩) and ground (|0⟩)
states.

Raman memories have been demonstrated in both diamond [67] and gas-filled hollow

core photonic crystal fibre [68] and show unfortunately short lifetimes of 50ns and 3.5ps

respectively. This is not to say, however, that Raman memories are useless, as it has

allowed for the study of light-matter interactions at the quantum level. Optical phonons

in diamond have demonstrated an emissive quantum memory [69], macroscopic entangle-

ment [70], heralded single photons [67], and the frequency/bandwidth manipulation of

single photons [71].

• Switchable Cavities - The most intuitive form of quantum memories takes its form

as switchable cavities, single photons are switched into a cavity where they can be stored

until needed, at which point they can simply be switched out. These systems are not truly

on demand as the storage time will be in multiples of l/c where c is the speed of light and l

is the path length of the cavity, leading to some level of determinism and they require an

efficient and reliable single photon switch. These are discussed further in section 1.4 but

in short a switch needs to have near unit efficiency in order to consistently operate the
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memory at the single photon level as any substantial loss leads to a lost photon. Storage

lifetimes are limited by this loss and are on the order of 1µs. The mechanism limiting

these memories is the switching mechanism, should a fast, fibre-based photonic switch

with low loss be developed these systems will see huge developments.

There are two primary implementations of switchable cavity quantum memories. The first

consists of two concatenated cavities with a switch that is able to change the resonant

frequency of one to allow common modes between both allowing for switching between

different outputs of the cavities [72]. The second uses a single cavity with a polarising

beam splitter and a switch that changes the polarisation of the contained light to either

reflect back into the cavity or to transmit out of it when incident on the polarising beam

splitter [73].

• Gradient Echo Memory (GEM) - These systems can take place in a variety of

materials with different methods but all work under the same principle. For this example,

Rubidium is considered and a diagram is presented in figure 1.8. A magnetic field gradient

is applied to a rubidium cell in order to change the transition energy so that it is able

to absorb a spectrally broad pulse. Each atom that absorbs a photon will then begin to

de-phase at a rate proportional to the strength of the applied magnetic field. At a time τs

the gradient is applied in the reverse direction, allowing the atoms to gradually re-phase

allowing for the re-emission of the input field at time 2τs [74].

Limiting this technique is its bandwidth, which is low and results in the speed of the

device being severely limited. Then, even if the storage time is significant, it is difficult

to fit in an appropriate number of clock cycles.
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Figure 1.8: Induced broadening of a transition using an external magnetic
field allows for broadband storage of a pulse. At time τs the field is reversed
allowing the emmision of the stored pulse at time 2τs. Reproduced from [73].

It is difficult to characterise the figures of merit for GEMs as there is a range of possi-

ble materials that can be used, all of which have varying figures for fidelity and storage

times. It is easy, however, to present some of the best results gained using this method.

Erbium doped Y2SiO5 is able to store information for up to 1.3s and fidelities of 0.97 are

achievable in cold rubidium atoms [75].

• Electromagnetically Induced Transparency (EIT) - A material will become trans-

parent when two fields (signal and control) resonant on separate transitions pass through

a material simultaneously, causing quantum interference and dressing of the higher en-

ergy state, as a result, propagating light will pass through unperturbed [76]. This can

be utilised as a quantum memory since a large change in absorption is correlated with a

change in dispersion, from Ma et al [77], the group velocity of the signal beam is given by

vg =
c

1 + g2 N
|Ω|2

, (1.22)

where g is the atom-field coupling constant, N is the total number of atoms, and Ω is

the optical field detuning. By appropriately changing the atomic density or the control

beam intensity it is possible to reduce the group velocity, slowing light down by 7 orders

of magnitude and in some cases, halting movement entirely [78]. In the latter case, the

control field intensity is reduced causing a proportionate reduction in group velocity and
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the quantum information held in the signal beam is mapped onto the atoms through ab-

sorption. The control field can then be turned back on to re-emit the stored light thereby

acting as a quantum memory [79].

Storage times are significant, with quantum memories lasting six hours in some circum-

stances [80], however the narrow linewidth of EIT severely limits the bandwidth of the

memory [81], resulting in a memory that is only useful for specific applications.

1.4 Photonic Switching

In their most basic form, photonic switches are devices capable of re-routing light from

one output to another, they have varying applications in both classical and quantum op-

tics [72,82,83]. There are two important figures when discussing the efficacy of a photonic

switch, these being switching time and optical power penalty. Ideally a switch will act

instantly and have zero loss during its operation. The architecture of individual switches

varies hugely, some of which are described further in section 1.4.1.

Large data centres used by technology companies such as Google, Facebook, and Amazon

have recently moved away from copper wiring as their means of data communication in

favour of fibre optics [84]. This progression is clear when considering the scalability of

data centres and the users that utilise them. Intra-centre link rates have values upwards of

100Gbps (Giga-bits per second) and have link lengths that extend well beyond 2km [85].

The number of active internet users has been consistently growing at a rate of 6% per

year [86], adding to the need for a scalable solution.

The inclusion of a photonic switch in these systems replaces the need to convert light into

electricity in order to undergo a switching mechanism. This provides a solution to huge

bottlenecks and is capable of limiting the power constraints of an electronic switch ASIC

(application specific integrated circuits) as well as reducing inefficiencies associated with
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opto-electronic conversions [87].

Photonic switching also has application in optical computing, where binary data is pro-

cessed using optics rather than electronics. Not only will switching itself be essential in this

process, but there are calls for optical transistors [88], whose functionality and physical

dynamics will have large overlap with photonic switches. Reducing power consumption of

photonic switches and transistors will lead to a viable competitor to electronic computing

and so there is deep interest in finding the lower limit to how much light is able to trigger

switching events. Photonic switching of coherent light using single photons was recently

achieved by a group at IBM [89], representing the lowest possible energy consumption a

switch can have.

There is also a great interest in finding a photonic switch for applications in LOQC,

however the requirements are different to those discussed already in this section. These

switches must be able to manage single photons at near unity efficiencies, any drop in

efficiencies will add yet more indeterimism to the system, increasing the resources needed

to accurately apply gate operations. This is a problem that is present in other switch

applications, but is usually overcome with the use of an amplifier, which is not available

when processing quantum information due to the no-cloning principle and the need for

single photons. Photonic switches will find quantum applications in switchable cavity

quantum memories (as already discussed) [72], the general re-routing of light as a system

develops, as well as being necessary in the implementation of spatial multiplexing sys-

tems [90].

1.4.1 Photonic Switching Protocols

The following section briefly describes a range of possible photonic switching architec-

tures, along with how useful their implementation will be for both classical and quantum

applications.
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• Free-Space Micro-ElectroMechanical Systems (MEMS) - The oldest of the pho-

tonic switches, they use arrays of micro-scale mirrors fabricated using etching techniques

and controlled by electrostatic drivers to switch light into various output fibres [91]. 2D

and 3D systems have been realised and are available commercially. Devices employing

this technique have shown high port counts, up to 1100 × 1100 (1100 input fibres and

1100 output fibres) with a maximum insertion loss of 4dB and switching speeds of 5ms [92].

• III-V Semiconductors - Indium-Phosphide (InP) switches exist in a unique position as

high performance optical amplifiers and lasers exist on-chip [93]. There are two switching

mechanisms making use of this material, semiconductor optical amplifiers (SOA) switches

and Mach-Zender interferometer (MZI) switches.

SOA switches work by broadcasting a pulse across a variety of outputs each with their

own SOA, powering selected SOAs means that gain is only experienced by certain out-

puts and the extinction ratio of un-powered SOAs is large enough as to eliminate cross

talk [94]. This has the potential to be entirely lossless and switches at speeds on the order

of ns, there is a limit, however, to how many ports can be used as the size of the device

has a square law increase in switch elements and a two-fold increase in 1×2 beam splitter

and combiners, meaning that scaling beyond 4 × 4 switches is challenging if monolithic

devices are to be fabricated [95]. The nature of the switching mechanism means that it

is not at all suitable for sustaining quantum information.

The basic function of a MZI switch uses a phase change applied to one arm of a MZI to

constructively or destructively interfere light at either output [96], leading to the effective

switching of light. The largest MZI switch developed has an 8×8 [97] port structure how-

ever these switches experience large amounts of crosstalk between channels [98], severely

degrading the output signal and limiting this architecture’s capability. Proposals have

been made to combine SOA and MZI structures in order to eliminate the crosstalk [99],

physical implementations provide strong results with crosstalk being reduced almost en-

tirely [100], drastically increasing the feasibility of III-V switches. These structures, how-
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ever, still do not allow for the switching of single photons.

• Silicon - The infrastructure for silicon fabrication already has massive grounds in

semiconductor chip manufacturing and as a result has generated huge interest in silicon

photonics [95], a field that has recently experienced substantial growth. Silicon-based

photonic switches can function in a variety of ways, three of which are discussed here and

build on the implementations already discussed in this section.

Silicon based MZI switches work in the same way to those discussed for III-V mate-

rials. Modern implementations use 1024 MZI structures to create a 32 × 32 photonic

switch [101, 102]. On-chip losses of > 23dB are experienced with switching speeds of

750µs [102].

Micro ring resonators (MRRs) are waveguide rings that guide light at specific wavelengths

according to the refractive index of the guiding material [103], this can function as a switch

if the material comprising the MRR is non-linear, in which case a strong pump beam can

be used to shift the refractive index and trigger coupling between MRRs and nearby

waveguides on and off [104]. Switches employing this technique require wavelength uni-

formity and losses depend on the route through the switch, averaging 0.9dB [105].

MZI and MRR based silicon photonic switches act as both the propagating and redirect-

ing element in the device, inducing loss and crosstalk at each event which harshly limits

the port count scalability. By separating these elements, independent control over optimi-

sation parameters is easily achieved [106, 107]. Some such systems are silicon integrated

MEMS switches, shown in figure 1.9, grids of silicon waveguides are fabricated with adia-

batic couplers above each intersection. Light can be switched easily by activating certain

adiabatic couplers, leading to a 90◦ redirection into a separate and selected output port.

The process is electrically controlled by adjusting the vertical spacing between propaga-

tion and redirection layers using a MEMS actuated cantilever.
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Figure 1.9: Light is able to be switched from through ports to specific drop
ports by activating intergrated MEMS waveguides that moves closer to the
device upon activation allowing for effective and low-loss switching between
output ports. Reproduced from [106].

MEMS based silicon switches present switching speeds of up to 0.91µs, extremely low

losses of 0.028dB, and port counts scaled up to 64 × 64. The total footprint of these

devices is small, at 49mm2 [107].

So far ignored in this discussion is a switch capable of switching individual photons reliably,

there exist a number of different options from different groups. Yoshikawa et al [72]

use an electro-optic modulator to change the resonance of a cavity, allowing photons to

escape [108] and Kupchak et al [109] induce a birefringence in 10cm of single mode fibre

using the Kerr effect (a non-linear effect, high powered light will change the refractive

index of a material) allowing for switching on a polarising beam splitter.
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1.5 Device Proposals

As described previously, the bulk of this thesis is dedicated to analysing the feasibility

of two different devices that utilise Brillouin scattering in their operation, the following

section seeks to give a detailed outline of these proposals.

1.5.1 Quantum Memory

A pump pulse and a single signal photon are incident on a diamond at the same time,

allowing the pump pulse to store the photon in the crystal through a stimulated Brillouin

interaction. After a time τ , a second pump pulse passes through the diamond stimulating

the emission of the stored photon and allowing for the retrieval of the quantum information

it holds. Figure 1.10 shows an energy diagram of this process, the interaction between the

pump (dashed) and signal (bold) beams couples the ground and storage states, allowing

for on demand storage and retrieval. Since the process is driven only by the detuning

between pump and signal beams this memory is wavelength independent in its operation,

but has an efficiency inversely proportional to the square of the wavelength, opening up

the possibility of telecom operation.

Figure 1.10: Energy level diagrams describing storage and retrieval of quan-
tum information using acoustic phonons in diamond accessed by backwards
stimulated Brillouin scattering. The dashed and bold arrows represent pump
and signal beams respectively. Since the intermediate energy level is imagi-
nary its location is not fixed, making this process wavelength independent.

In order to achieve this, a series of experiments must be completed in order to fully

characterise the memory, the first of these is to measure the acoustic phonon lifetime in

the diamond which sets the limit to the memories storage time. Physical realisation of
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this experiment can be achieved in two different ways, the first uses a single laser and a

modulator to achieve the necessary detuning needed for stimulated Brillouin scattering

and the second uses two separate lasers to achieve this detuning. Both of these options

are explored in chapter five and both produced unsuccessful results.

Once the value for acoustic phonon lifetime has been found, the infrastructure allowing

for the storage of quantum information can begin to be put in place. The first step is to

create a cavity for the sample, this has the effect of increasing the power in the diamond

leading to a higher Brillouin gain, this cavity must be small to ensure both pump and

signal beams are resonant and that the resonances have high enough bandwidths to incor-

porate short pulses. One way to achieve this is to fabricate small lenses into the surface

of the diamond that will act as of the mirrors that make up the cavity.

Although more difficult to fabricate than other cavity designs, ring cavities are preferable

as these allow for the interacting beams to be consistently counter-propagating, allowing

for efficient probing of the diamond and the elimination of noise sources such as four-wave

mixing.

Following the cavity enhancement of backwards stimulated Brillouin scattering in dia-

mond, pulses will be employed in a similar manner to England et al [67] in order to store

and retrieve light on demand. The delay between write and read pulses will be dictated

by the acoustic phonon lifetime measured in earlier experiments.

Pulses can be created using a pulse carver allowing for more control over pulse shape and

duration. This experiment will allow further characterisation of the quantum memory,

including measurements such as readout efficiency.

Finally, the move will be made to single photons encoded with quantum information to

analyse characteristics such as fidelity.
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1.5.2 Photonic Switch

In 1996, Tim Birks et al used a null coupling fibre taper, a fibre beam splitter with no

coupling between its cores consisting of two fused tapers with dissimilar diameters, along

with an acoustic field induced by a piezoelectric transducer to switch light from one out-

put to another. The second proposal present in this thesis analyses this system where

the acoustic field created due to Brillouin scattering is used in place of a piezoelectric

transducer. Such a device is expected to work at faster rates and higher efficiencies than

its predecessor.

Two co-propagating pump fields detuned by the Brillouin frequency are directed into the

two input ports of a null-coupling fibre taper inducing a high acoustic field amplitude via

Brillouin scattering, after a short delay, a signal pulse (or single photon) enters the device

through one arm, scatters off the induced acoustic mode into a higher order optical mode,

and leaves the device through the opposed fibre. A diagram of this setup is shown in

figure 1.11.

Figure 1.11: Launch conditions and mode of operation for a null-coupling
fibre taper switch.

Similar to the memory proposal, there is a series of experiments that can be done in order

to aid the progression of the device. The first of these, presented in chapter 7, is to mea-

sure Brillouin scattering through a single fibre taper. There is a trade off between length

and diameter when considering the design specifications of a taper to be used in this

experiment, lower diameters lead to a larger Brillouin gain but a reduced taper length, as

fabricating long tapers at lower diameters becomes much more difficult.
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The next step is to begin work on null-coupling fibre tapers, a simple experiment can take

place to determine if intermodal scattering is taking place within the device. Two fields

detuned by the acoustic field frequency are sent through the two separate input arms of a

null-coupling fibre taper, intermodal scattering can be measured by analysing the relative

power of the two output arms. If there is a significant change compared to the input

powers then the desired outcome is achieved.

Based on the results of this experiment, pulses achieved in a similar manner to the pro-

posed memory experiments can be used in the taper to confirm its efficacy at switching

pulses and a device can be manufactured that employs a null-coupling fibre taper as a

photonic switch. Finally, single photons can be used as a replacement for pulses to analyse

the device’s ability to switch quantum information. Such a device can be linked with a

cavity to form a switchable cavity quantum memory or used stand alone as a quantum

photonic switch.



Chapter 2

Laboratory Logistics and Rubidium

Vapour

A large portion of this project was spent handling the logistical issues that arise when

planning for multiple experiments using shared equipment, in total there are four major

experiments that need to be taken into account when planning the layout of the optical

setup. These are the two Brillouin scattering experiments that are described in this the-

sis featuring diamond and fibre tapers, and two quantum memory protocols that utilise

rubidium in order to store and retrieve light.

Both rubidium quantum memory proposals are based on switchable cavities and are shown

in figure 2.1, the first uses counter-propagating pump beams to form a spatially varying

dispersion through warm rubidium vapour forming a Bragg mirror. Light can then be

trapped in a cavity caused by this induced Bragg mirror and a permanent mirror, allowing

for on demand storage and retrieval of a signal beam.

The second uses warm rubidium vapour in a cavity (figure 2.1b). Pump and signal beams

are set to counter-propagate around the cavity, both fields interact with the rubidium in

a two photon process causing a dispersion change resulting in the effective lengthening of

the cavity and the changing of resonant frequencies,. Coupling this system to a second

cavity then allows for an on-demand switchable cavity memory. A full theoretical and
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experimental analysis of these systems is given by Page [110].

(a)

(b)

Figure 2.1: (a) Counter propogating pump beams induce a Bragg mirror
in a rubidium vapour cell, light reflecting between this induced mirror and
a fixed mirror is trapped and forms the basis for a quantum memory. (b)
A strong pump field propagating through in cavity containing a rubidium
vapour cell interacts with a signal field within the rubidium in a two pho-
ton process causing a dispersion change and the effective lengthening of the
cavity, coupling this to a second cavity forms the basis for another quantum
memory featuring rubidium. Recreated from [110].

Due to the complexity of the initial diamond experiment (discussed further in Chapter

5), significant time was spent performing preliminary experiments on rubidium as a pre-

requisite for the more complex diamond and rubidium experiments that were to come.

In this chapter, a detailed explanation of some of the experimental design decisions are

given and how they have been implemented in a number of preliminary rubidium ex-

periments along with an overview of the objectives associated with the various rubidium

projects and how far along in the process these have gone. The work presented here was

done in conjunction with Carlo Page and Tabijah Wasawo.
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2.1 Common Laboratory Equipment and Techniques

During the early stages of this project, decisions had to be made regarding the equipment

that was to be used for these experiments, with the additional caveat that it is to be shared

across multiple experiments. The most clear example of this is the laser system, these

had to be lasers with a tunability around 780nm−776nm to coincide with the D1 and D2

lines of rubidium, they had to have narrow linewidths so that experiments involving both

diamond and rubidium produced results as close as possible to the natural spectra of the

materials. An additional but non-essential feature was for the lasers to allow automatic

scanning across a range of frequencies, which would make both experiments significantly

easier to execute. Economic issues must also be taken into account, an unfortunate yet

very real aspect of academic research.

All three of these criteria were met with the tuneable cateye laser manufactured by

MOGLabs, it produces a highly tuneable and low linewidth beam (100kHz) with the

ability to scan over a region of 5GHz, these function by creating an external cavity us-

ing the rear reflecting surface of the semiconductor diode and a cat-eye reflector a few

centimetres from the diode. The cat-eye reflector is placed on a piezoelectric actuator

and so different cavity modes can be selected by applying various currents to the device,

enabling the fine control of emission wavelength. The laser also contains a high efficiency

ultranarrow filter in the external cavity that allows for the selection of a single external

cavity mode, the transmission wavelength is angle dependent and can be manually rotated

using a hex-bolt on the outside of the device [111]. Two of these lasers were purchased.

The laser, containing everything described here, is shown in figure 2.2.

The laser is controlled using an external cavity diode laser controller also produced by

MOGLabs, this device is able to control the diode injection current and the tempera-

ture of the laser. The output power of the diode follows a linear relation with injection

current, the maximum current that the laser controller is able to apply to the diode is

200mA which results in an output power of around 140mW, output power can be finely
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tuned by applying different currents to the diode. Since output wavelength relies heavily

on cavity size, small thermal fluctuations will change the cavity length (and therefore

wavelength) due to thermal expansion at a rate of 30GHzK−1, a negative temperature

coefficient thermistor is used with a Peltier thermoelectric cooler to monitor and change

the temperature of the laser and the laser controllers low noise electronics contributes to

the low linewidth and high stability of the laser. The laser controller is also the means

by which a frequency scan can be achieved, by applying a sawtooth shaped current mod-

ulation to the piezoelectric actuator in the laser, the length of the cavity and therefore

wavelength changes, the frequency of this sweep can be tuned from 4Hz − 70Hz [112].

Light could be sent to various points in the lab through a simple setup consisting of a

polarising beam splitter, two quarter-waveplates, and a half-waveplate. The alternating

waveplate configuration provides full polarisation control allowing all power to be directed

in one of two directions regardless of input polarisation.

Figure 2.2: A diagram of the MOGLabs tuneable cateye laser, an external
cavity is generated using the reflective surface on the back of the diode and
a cateye reflector, wavelength can be changed coarsely using an in built
wavelength filter or finely using a piezoelectric actuator. Reproduced from
[111].

A means to frequently check the laser linewidth was found with the MOGLabs Econom-

ical Wavemeter, this is capable of measuring the input wavelength with an accuracy of

±0.0001nm at picowatt powers and has a measurement rate of 1250Hz, this allows for

the constant monitoring of the wavelength of light without sacrificing power and does not

require intricate fibre coupling setups [113]. The wavemeter functions using a high resolu-

tion diffraction grating in a Littrow configuration, this is where the first order diffracted
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beam is reflected at an angle equal to the angle of incidence, optical interference then

creates an image of a singlemode fibre core at a wavelength dependent position on a semi-

conductor imaging sensor, the wavelength spectrum is then generated from that image

and the peak power is found with a fitting procedure [113, 114]. All MOGLabs products

are able to work in conjunction with one another to automate the control of the wave-

length and lock to various spectral lines in rubidium, further increasing the stability and

convenience of the system.

Lock-in detection was used frequently throughout the project as a means to detect weak

signals produced by the experiments. A carrier frequency is added to the optical field,

when detected, the electronic signal is multiplied by a reference signal (equal to the carrier

frequency) and integrated over time, the result is a DC signal that only contains compo-

nents with the carrier frequency, anything else is attenuated to near zero [115].

A 160MHz carrier signal is applied to the signal beam using an acousto-optic modulator

(AOM) these are devices that use physical sound waves to modulate light. An acoustic

wave is set to propagate across a material using a piezo-electric transducer that causes a

periodic refractive index change in the material, light then inelastically scatters off this

refractive index modulation and a frequency sideband is added to the fundamental [116].

The modulator used here is the AOMO 3080-122 produced by Gooch and Housego, the

device is made from tellerium dioxide and is driven at 80MHz. With only a single pass

through the device, it is possible that the 80MHz sideband that is applied will interact

unfavourably with the system as it is spectrally too close to the fundamental, by doubling

this frequency to 160MHz through the use of a double-pass configuration it can be ensured

that the sideband only used for aiding detection will not interfere with the rubidium hy-

perfine splitting of the D-state or the Brillouin linewidth of diamond and contradictorily

add noise to the system.

Light passes into the AOM through one arm of a polarising beam splitter, a lens collimates
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the fundamental and scattered beams and a quarter-wave plate turns the linearly polarised

light into circularly polarised light which when incident on a mirror reverses polarisation

direction, the light then traces the same path back through the device and exits through

the second arm of the polarising beam splitter. There are different scattering efficiencies

depending on polarisation, however they can be made equal with the fine tuning of the

acoustic power caused by the transducer. This setup is shown in figure 2.3

Figure 2.3: Double pass configuration for the AOM setup, light passes
through the AOM twice to gain a 160MHz carrier frequency used later for
lock in detection. A - Polarising beam splitter, B - collimating lens, C -
quarter-wave plate, and D - planar mirror.

The final piece of shared equipment is the Liquid Instruments Moku:Lab, this is a recon-

figurable hardware platform featuring twelve separate instruments that is accessible via

an ethernet output or through an Apple iPad connected using Wi-Fi. The twelve devices

are a lock in amplifier, arbitrary waveform generator, oscilloscope, frequency response

analyser, waveform generator, PID controller, phasemeter, data logger, spectrum anal-

yser, laser lock box, digital filter box, and FIR filter box. The large utility was countered

by the relatively small bandwidth (250MHz), the low sampling rate (500MSas−1), and

the high input referred noise (60dBFS) [117]. The various experiments require different

detection schemes and so this device is able to act in place of other cumbersome and ex-

pensive hardware, even with these issues the device produced data that was clear enough

for the intended applications and the additional convenience due to the connected iPad

was appreciated when sharing equipment.

2.1.1 Saturated Absorption Spectroscopy

All experiments presented in this thesis require detection with a high frequency resolu-

tion in order to accurately characterise the materials. In diamond for instance, the large
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frequency detuning of 108GHz would usually require an ultrfast oscilloscope to accurately

probe, but these are hugely expensive and are therefore not a viable option. Instead, the

absorption spectrum of rubidium is probed at the same time as the signal frequency is

swept through the Brillouin linewidth and data sets are combined to form an accurate

frequency scale.

This is also necessary in the rubidium quantum memory experiments, having a separate

system with the specific goal of ensuring the fields are on resonance with these transi-

tions solves issues regarding guess work when experiments take place. Just as before, the

absorption spectrum of rubidium acts as a frequency fingerprint that allows for better

control over experimental systems. The hyperfine spectrum of rubidium can also be used

to calibrate the wavemeter, which drifts slowly.

The fine structure alone does not allow for a high enough resolution to accurately apply

these techniques, instead, the hyperfine structure of rubidium is looked at using a process

called saturated absorption spectroscopy. Further to spin-orbit coupling, there is an ad-

ditional splitting of degenerate energy levels that is orders of magnitude weaker, caused

by coupling between the nuclear spin and the angular momentum of electron orbitals [118].

Rubidium has two common isotopes, Rb85 and Rb87 that have different nuclear spin of

I = 5/2 and I = 3/2 and natural abundances of 72% and 28% respectively. This differ-

ence in nuclear spin results in the two hyperfine states of the 5S1/2 to have a splitting

of 3.04GHz and 6.83GHz respectively [119, 120]. Shown in figure 2.4 is the full energy

level diagram for the D2 line of Rb85, included are all possible transitions between the

hyperfine energy levels of the two states.
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Figure 2.4: Full energy level diagram of Rb85, featuring all hyperfine levels
and all possible transitions between the two states. Reproduced from [121].

Doppler broadening is a common effect in experimental atomic physics, emission lines are

broadened due the high speed at which atoms move and so the wavelength of the emitted

photon is either blue- or red-shifted depending on the direction of travel and the direction

of emission. This process leads to hyperfine emission lines becoming too broad to be de-

tected using conventional means, but with a saturated absorption setup, this broadening

can be overcome.

The rubidium used in the following experiments was purchased from Precision Glassblow-

ing, who manufacture a variety of vapour cells for use in academic research. This company

are able to supply isotopically pure samples as well as those with a natural abundance of

isotopes, end-caps can be covered in an anti-reflective coating and angled to reduce re-

flections as much as possible. Here, vapour cells containing rubidium at natural isotopic

abundance are used, with an anti-reflection coating for light of wavelength 780nm and

planar end-caps.

A high powered pump beam and a low powered signal beam of identical wavelength are

set to counter-propagate through a rubidium vapour cell, only atoms with a longitudinal

velocity of zero observe both pump and signal beams as having the same wavelength, when
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the signal beam encounters one of these atoms there is a high chance it has already been

excited by the pump beam allowing the signal beam to pass through and experience less

absorption. The resulting absorption profile experienced by the signal beam consists of

the Doppler broadened fine structure with hyperfine peaks at their associated frequencies.

It is these small and sharp atomic features that can be used in the above way. This optical

setup is shown in figure 2.5.

Figure 2.5: Saturated absorption spectroscopy setup, a strong pump beam
saturates the D2 transition allowing a weak signal beam to pass through with
fewer interaction, they are counter-propogating to reduce Doppler broaden-
ing and produce a spectrum exhibiting the hyperfine transitions as a result.
A - Polarisation control, B - Polarising beam splitter, C - rubidium vapour
cell, and D - photodiode.

The results of this experiment, given in figure 2.6, shows the absorption spectrum for a

signal beam sweeping frequency across the D2 line of Rb85 with both the pump beam on

and off and the hyperfine structure that arises as a result. Large dips on the left and right

of the spectrum show the transitions 5S1/2, F = 3 → 5P3/2 and 5S1/2, F = 2 → 5P3/2, also

shown are the transitions between 5S1/2 and 5P3/2 hyperfine states, these are 5S1/2, F =

3 → 5P3/2, F = 2, 3, 4 and 5S1/2, F = 2 → 5P3/2F = 1, 2, 3, labelled A, B, C, D, E, and F.

The spectrum gained here is enough to accurately calibrate the wavemeter and to act as

a frequency fingerprint for the fine probing of other experiments. This experiment was

made to produce larger and more distinct peaks later on by others working on the project

with the addition of a different detector and better experimental technique, allowing for

a more reliable way to apply this information to the associated applications.
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Figure 2.6: Absorption spectrum of rubidium as measured using a saturated
absorber, when a strong pump field saturates the transition, the underlying
hyperfine spectrum becomes clear.

2.1.2 Two-Photon Absorption

As well as the single-photon process described above, two-photon processes are also in-

trinsic to the rubidium based experiments and so two-photon absorption of rubidium

is observed as a precursor to larger, more complex rubidium experiments. Two-photon

absorption is a process analogous to single-photon absorption where two photons are ab-

sorbed by a material at the same time, the energies of the two photons linearly combine

to mediate a transition that would otherwise not occur.

In rubidium, both the D1 and D2 lines are excited simultaneously using light of wave-

lengths 776nm and 780nm (referred to as control and signal field respectively), electrons

in the excited state can decay through the original intermediate state or through the 6P3/2

state (as well as other, less common relaxation paths), the latter contains two transitions
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occupying the 5D5/2 → 6P3/2 and 6P3/2 → 5S1/2 states and emit photons of wavelengths

5.2µm and 420nm respectively. This is used to judge the efficacy of the process, with

strong blue light emitting from the rubidium cell when the fields are on resonance. An

energy level diagram showing the dynamics of two-photon absorption in rubidium is pre-

sented in figure 2.7.

Figure 2.7: Energy level diagram for rubidium featuring two-photon absorp-
tion from 5S1/2 to 6P3/2 states and the decay path through the 6P3/2 that
produces light of wavelength 5.2µm and 420nm.

Once again, two beams of appropriate wavelengths are set to counter-propagate through

a rubidium vapour cell in order to reduce Doppler broadening, there is a slight detuning

applied to the signal beam so that single-photon absorption does not dominate the process,

the control beam is also detuned by the same amount to induce the two-photon process.

Figure 2.8 shows the optical configuration of this experiment. This experiment produces

a positive result in the way of a clear blue glow being emitted from the vapour cell

(unfortunately not photographed).
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Figure 2.8: Diagram of the two-photon absorption set up, featuring A -
MOGLabs laser set to a wavelength of 780nm, B - polarising beam splitter,
C - rubidium vapour cell, and D - MOGLabs laser set to a wavelength of
776nm.

2.2 Current and Further Work

There has already been a substantial effort to advance the work detailed in this chapter,

but the author has not been directly involved with it.

The induced susceptibility in rubidium has been characterised and a ring cavity containing

a rubidium vapour cell has been built, early experiments have been completed to test the

change in transmission through the cavity when a pump beam is turned on and off. Both

of these experiments go a long way towards the goals described at the beginning of this

chapter, however they are far from complete. While these experiments were taking place,

progress was also being made towards the Brillouin memory and switching proposals,

which the remainder of this thesis is dedicated to.



Chapter 3

Non-Linear Optics and Stimulated

Brillouin Scattering

Light propagating through a material will occasionally scatter off localised non-uniformities

such as particles, molecules, density fluctuations, and other similar features, this scatter-

ing can take various forms depending on a variety of factors such as whether the process is

elastic or inelastic, and particle size relative to wavelength. Rayleigh scattering describes

the elastic scattering of light and is the most common type, induced when light scatters

off particles much smaller than its wavelength.

Raman scattering is the inelastic scattering of light [122], in this case the light incident on

a material produces an optical phonon when it is scattered, thereby losing a some of its

energy. The same process can also happen in reverse, where light scatters off an already

present phonon caused by thermal energy within the system and gains energy during the

process. These two scattering mechanisms are named Stokes and anti-Stokes scattering

respectively, anti-Stokes scattering happens more readily due to the excess number of

thermal phonons present in a material and the ratio of Stokes to anti-Stokes scattering

can be used to find the temperature of a material to a high degree of accuracy [123].

Brillouin scattering is another inelastic scattering event, this time interacting with acoustic

phonons in a material, as a result, Brillouin scattered light has a much lower frequency
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change compared to Raman scattered light, as the phonons themselves contain less energy.

These scattering mechanisms and the associated energies can be seen in figure 3.1.

Figure 3.1: Spectrum displaying Rayleigh, Brillouin, and Raman scattering
with the approximate changes in energy the light will undergo during a
scattering process. Recreated from [124].

It is Brillouin scattering that is of particular interest, as it makes up the foundational

physics for the devices presented in this thesis.

Essential to this process are phonons, quasiparticles consisting of large scale lattice vibra-

tions in a crystal. They arise as a result of the Lennard-Jones potential, each atom in a

crystal applies soft attractive and repulsive forces to atoms around it caused by Van der

Walls forces and the need to eliminate the overlapping of electron orbitals respectively,

the result of this is an array of potential wells in which each atom sits. Since these wells

are shallow, atoms are able to move freely within them which in turn affects the position

of nearby potential wells and causes waves to propogate through the material [125].

Phonons fall into two categories based on their movement patterns, optical and acoustic

phonons. For an ionic crystal with atoms of alternating charge, atoms in an optical phonon

will move against each other and will have a fixed center of mass, this type of motion

is able to be excited with the electric field of a light wave. The atoms in an acoustic
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phonon move with each other and have an oscillating center of mass much like in long

wavelength acoustic vibrations, hence their name. Figure A.5 shows a dispersion curve

of a 1-dimensional diatomic chain of atoms, which describes the relationship between

frequency and wavevector of acoustic and optical phonons.

Figure 3.2: Dispersion curve caused by a one-dimensional chain of atoms
with alternating high and low masses as described by equation 3.9. The
higher frequency band is caused by optical phonons and the lower is caused
by acoustic phonons. Recreated from [126].

Brillouin scattering will occur spontaneously, and is often the cause of noise in long dis-

tance fibre communications [127], however it is possible to stimulate the process under the

correct circumstances causing a resonant energy transfer between electromagnetic fields

mediated by a acoustic field. There are three components of Stimulated Brillouin Scatter-

ing (SBS), the combination of which produces the effect, these are bulk electrostriction,

boundary electrostriction, and radiation pressure.

Electrostriction is the the tendency of a dielectric material to compress under a high local

electric field leading to areas of higher density. It is a non-linear effect, meaning that

the strength of the interaction has a non-linear relation with electric field strength. More

precisely, it is a non-linear interaction between polarisation (in this context referring to

the induced electric dipole moment per unit volume) and electric field strength, described
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by expressing polarisation, P(t), as a power series in the field strength E(t)

P(t) = ϵ0(χ
(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...), (3.1)

here ϵ0 is the permittivity of free space, χ(1) is the linear susceptibility, and χ(2) and χ(3)

are the second- and third-order non-linear optical susceptibilities. The physical origin of

the various linear and non-linear susceptibilities comes from a materials symmetry and

how a atom is able to oscillate in a potential well, for condensed matter, χ(1) is unity, and

higher order susceptibilities χ(2) and χ(3) are on the order of 10−12 and 10−24 respectively.

An assortment of effects arises as a result of non-linear optics, including second harmonic

generation [128], optical parametric oscillation [129], and sum- and difference-frequency

generation [130].

Described first is bulk electrostriction. Consider two beams of different wavelength passing

through a bulk material and occupying the same spacial mode, a high powered pump beam

with amplitude, frequency, and wavevector (Ep, ωp, kp), and a low powered signal beam

with amplitude, frequency, and wavevector (Es, ωs, ks). As these two beams propagate

they will beat together to form a standing wave, which will induce a periodic density

variation caused by electrostriction. When the frequency difference between the pump

and signal beam is equal to the frequency of a phonon mode (u, Ω, q) in the material, a

resonant energy transfer takes place to dramatically boost the power of the signal beam.

There are a number of selection rules associated with this process accounting for the

conservation of energy and momentum

Ω = ωp − ωs (3.2)

q = kp + ks. (3.3)

The bulk electrostrictive force can be found using the electrostriction tensor, σij, and has

components

fES
x = −iqσxx − ∂yσxy − ∂zσxz (3.4)
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fES
y = −iqσxy − ∂yσyy − ∂zσyz (3.5)

fES
z = −iqσxx − ∂yσzy − ∂zσzz. (3.6)

For larger materials, the bulk electrostriction component of SBS far exceeds the bound-

ary electrostriction and radiation pressure components, however when devices begin to

reach nanometer scales the two boundary effects vastly outweigh the bulk electrostriction

component due to an excess of material boundaries. The discontinuity of optical pow-

ers and photoelastic constants generates stress (and therefore electrostrictive forces) that

contribute to the overall effect, the boundary electrostrictive forces can again be found

with the electrostriction tensor, this time with components

FES
i = (σ1ij − σ2ij)nj, (3.7)

where nj is a normal vector that points from material 1 to material 2. When an elec-

tromagnetic field is incident on a material interface, there is an exchange of momentum

between the field and the material resulting in a mechanical pressure being exerted on the

material, this is known as radiation pressure and makes up the final component of SBS.

The forces associated with radiation pressure can be derived from the Maxwell Stress

Tensor (MST), a second-order symmetric tensor that represents the interaction between

electromagnetic forces and mechanical momentum. The electric part of MST is

Tij = ϵ0ϵ(EiEj −
1

2
δijE

2), (3.8)

where δij is the Kronecker delta. The pressure between material 1 and 2 is

FRP
i = (T2ij − T1ij)nj. (3.9)

From these, Brillouin gain can be found, which is equal to the ratio of the input and

output signal field powers.

g =
2ωQm

Ω2νgpνgs

|⟨f ,um⟩|2

⟨Ep, ϵEp⟩⟨Es, ϵEs⟩⟨um, ρum⟩
, (3.10)
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where Qm is the mechanical quality factor, νgp and νgs are the group velocities of the pump

and Stokes fields respectively, f is the total optical force generated by pump and Stokes

fields, and u is the elastic deformation induced by f . SBS falls in to two categories de-

pending on launch conditions. When the pump and signal beams are counter-propagating

through a material, the process reverses the direction of travel of the scattered light, and

when the pump and signal beams are co-propagating through a material the process

does not reverse the direction of travel of the scattered light. This is known as back-

wards stimulated brillouin scattering (BSBS) and forward stimulated brillouin scattering

(FSBS) respectively.

BSBS and FSBS have slightly varying dynamics, where there are contributions to BSBS

from bulk electrostriction, boundary electrostriction, and radiation pressure, but FSBS

only has contributions from the boundary effects and so only interacts with transverse

acoustic fields.

Additionally, FSBS can be split into two further characterisations referred to as intramodal

and intermodal scattering, as the name implies, intramodal scattering happens when

pump and signal fields occupy the same spatial mode, whereas intermodal scattering hap-

pens when pump and signal fields occupy different spatial modes.

A full quantum mechanical description of stimulated Brillouin scattering can be given

that derives the Hamiltonian and the various equations of motion. Beginning with the

Hamiltonian, which is described as

H = Hph +Hopt +H int, (3.11)

where Hph, Hopt, and H int are the terms used to describe the acoustic field, optical field,

and the acousto-optic interaction respectively. Expanding this following the derivation in

Appendix A gives
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H =

∫
dzℏb†(z)Ω̂zb(z)

+
∑
γ

∫
dkℏω̂za

†
sas

+
∑
γ,γ′,α

∫
dk dk′dq

(2π)3/2
a†saasb

∫
V (γk; γ′k′;αq) ei(k

′−k+q)z dz

+
∑
γ,γ′,α

∫
dk dk′dq

(2π)3/2
b†a†asas

∫
V ∗ (γk; γ′k′;αq) e−i(k′−k+q)z dz

(3.12)

where z is the longitudinal position, b, as, and aas are the phonon, pump, and signal field

mode envelopes, G is the coupling parameter, α is the acoustic mode index, and γ is the

electromagnetic mode index. Using this, the Heisenberg equations of motion for pump,

signal, and acoustic fields can be derived, for backwards Brillouin scattering, ignoring the

anti-Stokes scattered field and obeying the selection rules (equations 3.2 and 3.3), the

equations of motion are then

∂B

∂t
− v0

∂b

∂z
= i (Ω − Ω0) b+ iG∗a†asas

∂as
∂t

+ vp
∂as
∂z

= iGaasb

∂aas
∂t

− vs
∂aas
∂z

= iG∗b†as.

(3.13)

Using the same criteria for forward Brillouin scattering, the equations of motion are

∂b

∂t
+ v0

∂b

∂z
= i (Ω − Ω0)B − iG∗a†asas

∂as
∂t

+ vp
∂as
∂z

= −iGaasb

∂aas
∂t

+ vs
∂aas
∂z

= −iG∗b†as,

(3.14)

where G is related to Brillouin gain g by the equation

g =
4 |G|2

vsvpΓmℏωp

(
Γm

2

)2
(Ω − Ω0)

2 +
(
Γm

2

)2 . (3.15)
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3.1 Applications of Stimulated Brillouin Scattering

The applications of SBS are numerous, presented here is a brief review of the various

avenues in which SBS can be used. Garmire [131] describes nine separate applications

of SBS that are characterised by how the process interacts with the medium, these are

spatial dependence, time dependence, frequency dependence, linewidth dependence, back-

ground noise, the physical hypersonic waves, SBS signal amplitude, micro devices, and

nanostructures.

• Spatial dependence refers to the control of the spatial phase front of a coherent beam.

A phase distortion is applied to a wavefront as it passes through a phase abberator such

as a laser gain medium which is unfortunate for systems in which a high powered beam

is necessary. This can be fixed by using an SBS Phase Conjugate Mirror (PCM), which

employs the phase shift gained from SBS to ‘reverse’ the phase distortion of the wavefront,

the beam then passes through the medium a second time resulting in an output wavefront

equal to the input wavefront. The scattered light introduces a π phase shift and induces

conjugation in the the light, the correction is caused by the selective amplification of a

wave that has a wavefront approximately conjugate to that of the incident pump field [132].

Figure 3.3: Diagram describing the effects of a stimulated Brillouin scattering
phase conjugate mirror on a distortion picked up by a plane wave as it passes
through a medium. Replaced from [133].

• Time dependence applications are able to shorten pulses significantly, experimental

data from Bai et al [134] shows pulses of 7.8ns being shortened to 450ps, this occurs in a

simple BSBS process where the long pump field is almost entirely converted into a short

signal field, thus reducing the pulse duration.



3.1 Applications of Stimulated Brillouin Scattering 53

• Frequency dependence is useful in sensing applications because of the frequency shift

dependence of SBS on refractive index. This results in small variations in refractive index

in a material to be easily detected, contributions to this refractive index change come

mainly from temperature or local stresses.

• Linewidth dependence. Counter to other methods in this list, the linewidth de-

pendence of SBS can be used to suppress the noise that occurs in long distance fibre

communications, rather than being the source of an application itself. Since the SBS re-

sponse is Lorentzian, a wider FWHM will lead to a lower peak value, drastically reducing

the gain a beam will experience.

• The background noise of SBS processes are incredibly low, as the spontaneous process

is negligible compared to the stimulated process. Instead it is the thermal phonons that

initiate the process, representing the final limit of low noise [131].

• The physical hypersonic waves that SBS produces have their own interesting proper-

ties and applications, often employed by material scientists, these physical acoustic waves

have enhanced spatial resolution and are able to separate strain and temperature leading

to diverse fibre sensors. They are also easy to induce, all that is needed is two interacting

electromagnetic fields [131].

• Amplitude of SBS signal can be used to enhance other non-linear signals. For ex-

ample, dynamic control of phase is possible using SBS, meaning that the phase matching

conditions for four wave mixing (FWM) can be easily met and controlled leading to longer

interaction lengths and lower powers [135].
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Figure 3.4: Various whispering gallery modes in 100µm diameter silica balls
cause a FSBS signal and generate an induced transparency. Replaced from
[135].

• Micro devices. The usefulness of microscale devices is exemplified by 100µm diam-

eter silica balls. Phase matched pump and signal fields travelling in whispering gallery

modes in these resonators produced acoustic fields as in FSBS leading to FSBS induced

transparency. This is usually an effect reserved for atomic physics, powerful enough light

passing through a material will excite atoms into higher energy levels leaving nothing for

the following light to interact with, this is the case as well for SBS but acts on acoustic

phonons instead of atoms [136].

• Nanostructures. The huge increase in radiation pressure forces, and therefore Bril-

louin gain, at nanoscale material geometries can lead to some interesting results, and

presents a huge opportunity for the future of this research [131,137].



Chapter 4

A Finite-Element Analysis of

Brillouin Scattering: Diamond

Theoretical work is often used alongside experiments to gain information that sometimes

isn’t possible in a laboratory environment, parameters can be changed easily and physical

systems can be created that would take months of planning and significant resources to

create.

In the following chapter, finite element analysis is introduced and applied to BSBS in

diamond in order to simulate the experiments outlined in Chapter Five. The results

of these simulations show what is expected to be found when looking for the Brillouin

linewidth in the diamond, and allows for an analysis of the feasibility of a device utilising

this effect.

4.1 FeNICS and PySBS

FeNICS (Finite Elements nurtured in Computer Science, or For Everything new in Com-

putational Science) is open source software used for automatically finding solutions to

differential equations. While the vast majority of the computation is done in C++,

FeNICS provides a python front end to allow for a low barrier of entry and for easy in-

tegration into other systems. There are various components of FeNICS that are used to
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achieve this goal, these are; DOLFIN (Dynamic Object-oriented Library for Finite Ele-

ment Computation) - the high performance C++ backend of FeNICS and functions as

the primary problem solving environment, it also compiles the various other components

of the package and communicates with external libraries, UFL (Unified Form Language)

- this implements the often complex mathematical language that is expressed in Python

and used in problems FeNICS is adept at, FFC (FeNICS Form Compiler) - acts as a code

compiler, taking UFL inputs and outputting UFC, UFC (Unified Form-assembly Code) -

takes inputs from FFC and compiles them into simple C++ code used for evaluating and

assembling finite element variational forms, FIAT (Finite element Automatic Tabulator)

- this is the finite element backend of FeNICS. There are other, less essential components

as well that account for jobs such as meshing algorithms and linear algebra.

FeNICS has been used for a range of different applications in both industry and academia,

including simulating thermomechanical problems of turbomachinery which until the im-

plementation of FeNICS was not considered a problem accurately solved by FEA [138],

high accuracy simulations of jet engines [139] and full aeroplane flight [140], and biomed-

ical fluid modelling of patients [141].

PySBS is a Python package that works in conjunction with FeNICS to provide a complete

simulation of Stimulated Brillouin Scattering events in waveguides [142]. It is split into

four primary sections, an elastic mode solver, an electromagnetic solver, an electrostric-

tion forces solver, and a Brillouin gain solver, the package can also handle both forwards

and backwards Brillouin interactions.

In a head to head comparison to another more popular FEA software, COMSOL, PySBS

was able to produce identical results while saving significant amounts of time and com-

putational power [142], as a result PySBS was chosen over COMSOL for the simulations

present in this thesis.

Both the elastic mode solver and the electromagnetic mode solver use FeNICS in order to
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solve for various geometries, specifically they use a weak form approximation. In order to

save computation time, exact solutions to complex differential equations can be ignored

in favour of weak solutions with respect to certain test functions, these weak formulations

allow the transfer of concepts from linear algebra to solve problems that arise when solv-

ing differential equations. This is in contrast to strong formulation, where exact solutions

are necessary. Weak formulation provides near-perfect solutions with the benefit of saving

computation time, and so is standard practise in the FEA field.

Acoustic resonances depend on crystal orientation, while previous computational analyses

of acoustic modes in materials have assumed an isotropic medium ensuring that computa-

tion times are kept low, which is well justified as it results in values that are qualitatively

acceptable, there is some variation in the frequency shift for the same acoustic mode

at different crystal orientations. The Brillouin gain that is experienced by a particular

acoustic mode is inversely proportional to the Brillouin frequency, and so variations in

Brillouin frequency will result in variations in the Brillouin gain, an important figure

when discussing the efficacy of Brillouin based quantum memory and photonic switching

systems. The constitutive equation of motion for an elastic medium is [143]

∇ · σ = ρ
∂2u

∂2t
, (4.1)

where σ is the stress, ρ is the density, u is the displacement vector, and t is time. This

is translated into a weak form approximation allowing the eigenvalues to be calculated,

which correspond to the frequency of a particular acoustic mode to be calculated, as well

as the power of a particular mode to be calculated, both of which are necessary in order

to calculate Brillouin gain, as per equation A.31.

The electromagnetic mode solver works in much the same way, using the electric compo-

nent of the electromagnetic wave equation [144]

(
c2

n2
∇2 − ∂2

∂t2

)
E = 0, (4.2)
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where c is the speed of light, and E is the electric field. Once again, this is translated into

a weak form approximation and both electric field power and eigenvalues are calculated,

this time corresponding to the effective refractive index of a particular electromagnetic

mode.

With an electric mode profile accurately found, the various electrostriction components

can be calculated as described in Chapter 3. Since for most systems both the pump

and signal fields occupy the same mode, only one solution needs to be found in order to

accurately apply these equations. Finally, equation A.39 can be applied for each of the

three Brillouin gain components using the forces each one produces along with the electric

and acoustic fields, to find gain values for each component.

4.2 Results

In the following section there is a large amount of variation in how modes are visually

presented, here is a short guide on how to read these plots correctly. Material domains are

represented with two colours, yellow and purple, representing areas of high and low refrac-

tive index respectively, meshes are simple line drawings that outline the elements within

a structure, electromagnetic modes are shown with a yellow to purple colour gradient,

with yellow areas representing high electric field strength and purple areas representing

low electric field strength, and finally, acoustic modes are shown with a red to blue colour

gradient, with red areas representing an overall positive displacement, blue areas repre-

senting an overall negative displacement, and white areas representing no displacement

at all.

4.2.1 Diamond

As previously mentioned, PySBS is useful for simulating SBS dynamics specifically in

waveguides, this is in contrast to the physical experiment presented in chapter 5 which

does not take place in a waveguide, but in a bulk crystal. Thankfully, the simulation can

be manipulated into presenting results that accurately model that experiment and useful
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information can be gleaned as a result.

The elastic and electromagnetic mode solvers rely heavily on the geometry of the system in

order to accurately find solutions, and so the geometry is set as a circle with the material

parameters of diamond [145, 146] surrounded by air, this results in what is effectively a

Gaussian beam profile within a bulk diamond and a beam width that is adjustable simply

by changing the radius of the circle. An elastic mode is then chosen with wavevector

and Brillouin shift that mimics the response that would occur in a bulk diamond. The

domain, mesh, electric field mode, and acoustic field mode is presented in figure 4.1.

(a) (b) (c)

Figure 4.1: The various parameters used in the simulation of BSBS in dia-
mond, featuring (a) the domain and the mesh, (b) the electric field mode,
and (c) the acoustic field mode.

Although BSBS gain does have transverse components, the boundary electrostriction and

radiation pressure components of BSBS gain can be ignored, as these effects are not

present when focussing into the center of a bulk medium.

There are two lenses focussing light into the diamond to increase intensity leading to a

higher Brillouin gain, the waist size determines the diameter of the circle use in the model

and can be calculated using the equation [147]

w0 =
λ

π arctan(wI

f
)
, (4.3)

where λ is the wavelength, ωI is the initial beam diameter, and f is the focal length of
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the lens. For a wavelength of 780nm, an initial beam diameter of 6mm, and a lens with

a focal length of 25mm, the beam waist is 4µm. There are several important figures that

first must be calculated in order for the model to behave accurately, the first of which is

Brillouin shift, which is present in equation A.39 and is therefore an important figure to

know. Brillouin shift can be found analytically, using the equation [148]

ΩB =
2vnωp

c
, (4.4)

where v is the speed of sound in diamond, and ωp is the angular frequency of the pump

field. The second of these figures is the Brillouin linewidth, Bai et al [149] showed that the

Brillouin linewidth at with a pump wavelength of 532nm is 12MHz. There is a frequency-

squared law [150] relating wavelength and Brillouin linewidth, starting with

( ΩB

Ωref
B

)2

=
Γ

Γref
. (4.5)

Substituting in equation 4.4, λ = c/ω, and rearranging gives

Γref
( 2vn/λ

2vrefn/λref

)
= Γ, (4.6)

where Ωref
B , λref , vref , and Γref are the angular frequency, pump wavelength, speed of

sound in diamond, and linewidth respectively, from Bai et al [149]1. The speed of sound

varies depending on the direction it travels through a crystal, three directions are chosen

to be analysed representing cubic (100), dodecahedral (110), and eight sided octohedral

(111) surface structures [151], these are the most common morphological structures and

therefore represent a potential physical system well.

Figure 4.2b shows the Brillouin shift and gain of the [100], [110], and [111] directions

in a single crystal diamond as described by the simulation parameters stated above. It

is clear that there is both a significant gain and frequency shift difference between all

three propagation directions caused by the variation in the speed of sound, those who

1Finding this value was the primary goal of the first set of diamond experiments This paper was
published in March 2020, after the majority of diamond experiments had been completed.
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wish to probe Brillouin scattering in diamond must choose a direction to fit their own

needs, however the increase in gain is a far more valuable addition and the small change

in frequency shift can easily be accounted for. These values are comparatively similar to

those seen in the literature [152].

(a) (b)

(c) (d)

(e)

Figure 4.2: (a) A diagram of the (100), (110), and (111) planes of diamond,
Reproduced from Taillandier et al [151]. (b) Gain frequency against Brillouin
frequency for the [100], [110], and [111] directions. Brillouin gain profiles for
the (c) [100], (d) [110], and (e) [111] crystal directions.
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Table 4.1

Direction v(ms−1) ΩB(GHz) Γ(MHz) g(W−1m−1) τ(ns)
[100] 17520 108 10.6 63.3 93.7
[110] 18320 113 11.7 60.6 85.7
[111] 18580 114 12.0 59.7 83.3

From these values for gain and the linewidths found by equation 4.6, full gain profiles

of each propagation direction can be , representing the results that would be present in

the physical experiment. These are summarised in figure 4.2. The all important figure

of phonon lifetime can be calculated using τ = 1/Γ, this, along with all other direction

dependent figures are summarised in table 4.1.

The units presented here, W−1m−1, describe the ratio of signal and control output powers

at a peak power, w, with interaction length m. The acoustic phonon lifetimes genberated

here are not large when compared with other quantum memory protocols, but still provide

a good amount of potential storage time and warrant further investigation. Using the

values of gain produced by these simulations, it is possible to predict the distance at

which full storage of an input signal pulse occurs. Boyd [148] presents an analytical

solution to this problem that accounts for pump depletion effects

I2(L) =
I1(0) [I2(0)/I1(0)] [1 − I2(0)/I1(0)]

exp {gI1(0)L [1 − I2(0)/I1(0)]} − I2(0)/I1(0)
, (4.7)

where I1 and I2 are the intensities of the pump and signal fields, L is the total length of

the interaction medium, and z is the lateral distance along that length. Equation 4.8 is

an analytical solution to the coupled equations describing the intensity evolution of pump

and signal fields, however, this is not the case for the system presented in this thesis as

it is concerned with Brillouin absorption and not gain. Small variations in the above

equation changed the result to allow a more accurate description of Brillouin absorption

I2(L) =
I1(0) [I2(0)/I1(0)] [1 + I2(0)/I1(0)]

exp {gI1(0)L [1 + I2(0)/I1(0)]} + I2(0)/I1(0)
. (4.8)

For an initial pump-signal intensity ratio of 5 and a diamond oriented along the [100]



4.2 Results 63

direction, 99% of the signal field is scattered at a distance of 6.36cm as shown in figure

4.3. In 2020, Aiello et al [153] produced a CVD diamond wafer of radius 180mm and

thickness 2mm, meaning the environment simulated and the overall quantum memory

architecture presented here has genuine experimental prospects.

Figure 4.3: Portion of scattered signal field as a function of distance as
described by equation 4.8. The signal field is depleted by 99% at a distance
of 6.36cm.

Macroscopic crystals are hard to model and so corners were cut by adjusting simulation

parameters in order to describe the desired effect and PySBS does not lend itself to

deriving acoustic modes that are independent of material geometry as is the case with the

diamond experiments, however the results produced here are in line with those found in

the literature and allow for an analysis of how feasible this device is.



Chapter 5

Backward Brillouin Scattering in

Diamond for use in Quantum

Memories

In the following chapter a series of early experiments are presented with the goal of creating

a diamond-based quantum memory that uses acoustic phonons accessed via stimulated

Brillouin scattering as the storage mechanism. Although there are no explicit results given,

the experiments show that a variety of preliminary experiments have been explored and

that some of the more difficult technical problems have been overcome, paving the way

for this research avenue to be explored further in the future.

5.1 Material Properties of Diamond

Diamond is an allotrope of carbon, each atom is bonded tetrahedrally to four nearest

neighbours via sp3 hybridised covalent bonds of length 1.51Å [156]. The resulting struc-

ture is a face-centred cubic lattice with a two-atom basis and 8 atoms in the unit cell,

characterised by the space group Fd3̄m [157]. This structure is seen in other materials

such as sphalerite, a form of zinc sulphide and is known as the zinc-blende structure [156].

The combination of element, structure, and bond type produces a material that holds

extreme values of almost every measurable property, a list of these is presented in table
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5.1 and a diagram of the structure of diamond is shown in figure 5.1.

Figure 5.1: A single unit cell of diamond. Reproduced from [158].

5.1.1 Applications of Diamond

Hinted at already is the large number of useful properties that diamond possesses, they

can be characterised into six different categories, electronic, photonic and quantum, me-

chanical, chemical, thermal, and optical. Diamond research has a rich history largely

focussed around making use of these unique properties, presented here is a brief intro-

duction into this research and some of the practical applications that have subsequently

been developed.

Some of the properties come as a direct result of doping, adding to the crystal lattice

with various other atoms and impurities gives rise to additional absorption lines in the

medium and changes the electronic and optical properties, sometimes drastically. Dopants

come in two forms depending on whether they act as an acceptor (P-type) or as a donor

(N-type) of electrons. Both dopant types have been found for diamond but the primary

N-type dopant s, phosphorus and nitrogen, have deep donor levels giving diamond a low

conductivity, this eliminates its use in semiconductor computing [160]. Doping is achieved

by introducing the doping material into the growth chamber, it then naturally occupies
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Table 5.1: Principle Properties of Diamond [159].

Property Value Units

Hardness 1.0 × 104 kgmm−2

Strength, tensile > 1.2 GPa

Strength, compressive > 110 GPa

Coefficient of friction (Dynamic) 0.03 Dimensionless

Density 3.52 gcm−3

Young’s modulus 1.22 GPa

Poisson’s ratio 0.2 Dimensionless

Thermal expansion coefficient 1.1 × 10−6 K−1

Thermal conductivity 2000 Wm−1K−1

Thermal shock parameter 3.0 × 108 Wm−1

Debye temperature 2200 K

Optical index of refraction (at 591nm ) 2.41 Dimensionless

Optical transmissivity (from nm to far IR) 225 Dimensionless

Loss tangent at 40Hz 6.0 × 10−4 Dimensionless

Dielectric constant 5.7 Dimensionless

Dielectric strength 1.0 × 107 Vcm−1

Electron mobility 2200 cm2V−1s−1

Hole mobility 1600 cm2V−1s−1

Electron saturated velocity 2.7 × 107 cms−1

Hole saturated velocity 1.0 × 107 cms−1

Bandgap 5.45 eV

Resistivity 1013 − 1016 Ωcm
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carbon sites as the crystal grows1.

• Electronic - When heavily doped with boron, diamond becomes electrically conduc-

tive due to the holes provided by the boron atoms. This in combination with diamonds

chemical inertness makes heavily boron doped diamond a strong contender for electrodes

in electrochemistry [161]. The importance of electrochemistry itself should not be under-

stated, with applications in waste-water treatment [162], electroanalysis [163], synthesis of

both organic [164] and inorganic [165] compounds, and biomolecule sensing [166]. Heavily

boron doped diamond has also been shown to exhibit some superconductivity [167].

• Photonic and Quantum - When nitrogen is introduced into diamond and the mate-

rial is heated up, vacancies (empty lattice sites) migrate and form stable defects with the

nitrogen that take up two carbon sites, this is known as a Nitrogen-Vacancy (NV) defect.

These defects have a long coherence time and can be initialised easily by pumping with

green light [168], this allows for applications in quantum sensing and means the defect

can be used as a qubit for quantum computing. NVs also have been shown to act as

a single photon source [169], a quantum memory [170], and in 2015 Hensen et al [171]

probed the principles of Bell’s inequality using two entangled NV defects separated by

1.3km. Chen et al [172] have recently shown the possibility of writing NV defects straight

into diamond using a laser annealing method on nitrogen doped diamond, this opens up

huge opportunity for applications in quantum photonics by eliminating the defects spatial

randomness when it is produced.

• Mechanical - The extreme hardness of diamond is perhaps the most publicly known

property of diamond, defining the Mohs hardness scale [173] it is the hardest known

natural material. This property is employed in the oil and natural gas mining industry,

used specifically are polycrystalline diamond plugs [174] that provide the ideal trade-off

between hardness and toughness2, rather than the conventional percussive drilling, these

1An interesting side effect of doping in diamond is that the colour of the crystal is able to be tuned when
polished, different dopants produce different colours, nitrogen - yellow, boron - blue, nitrogen-vacancy
centres - pink, and various others.

2Often confused with hardness, toughness is a similar material property that characterises the ability
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diamond plugs use the more effective method of shear cutting the rocks, providing better

cost/performance values for mining companies [175,176].

This property is due to the strong, directional covalent bonds that make up diamond, as

a result diamond has a large sound velocity, which directly contributes to Brillouin gain.

• Chemical - Nano-diamonds are nano-scale diamonds, they can be manufactured easily

using contained explosions [177] and importantly for this section they are bio-inert, mean-

ing they do not react with biological tissue. In addition, they are also capable of crossing

the blood brain barrier, a mechanical barrier that prevents cells and molecules from enter-

ing the brain, the blood brain barrier has the unfortunate side effect of preventing drugs

from crossing into the brain and represents the largest limiting factor for the progression

of neurotherapeutics. By adsorbing drugs onto the surface of nano-diamonds, it has been

shown that drugs can be effectively delivered beyond the blood brain barrier providing

solutions to combat brain diseases such as Alzheimer’s and Parkinson’s [178,179].

• Thermal - The strong and directional covalent bonds in diamond leads to some ex-

ceptional thermal properties, natural diamonds have been measured to have thermal con-

ductivities of 2200Wm−1K−1 [159] and isotopically pure single crystal diamond reaches

values exceeding 40000Wm−1K−1 at low temperatures [180], making it one of the best

solids for thermal conductivity. This has applications in effective heat removal for high

power electronics [181].

• Optical - Diamond has a high refractive index of 2.4 [159], the high contrast with air

gives diamond the ability to strongly guide light when it is formed into waveguides [182], a

somewhat useless but interesting side effect of this property is that the gemstone is sparkly

when polished. Diamond also has a very strong Raman response at 1332cm−1 [183] corre-

sponding to the sp3 bonds, making the characterisation of the material straightforward.

to absorb energy and plastically deform without fracturing.
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5.1.2 Diamond-Based Quantum Memories

This would not be the first attempt at providing a functional quantum memory using

diamond, so far attempts have been made that utilise bulk optical phonons accessed via

Raman scattering, the nuclear spin of nitrogen in an NV defect, and the nuclear spin of

silicon in an SiV− defect [?, 67, 185].

England et al [67] have shown that light storage in diamond using optical phonons is not

only possible, but can be used to store non-classical information. Trains of pump pulses

separated by time τ interact with signal pulses to facilitate a resonant energy transfer

between ground and storage states separated by 40THz (1332cm−1), when resonance con-

ditions are met the signal pulse is stored and retrieved with subsequent pulses. Results

show that although the storage and retrieval of quantum information is possible, decoher-

ence of the high frequency phonons results in a loss of information within 3ps, limiting the

usefulness of this storage mechanism in quantum computing (see section 1.3.1 for more).

The spin of the nitrogen nucleus in an NV defect has been shown to provide an accurate

storage mechanism that has a total storage fidelity of 88 ± 6% at a storage time of 10µs,

the nuclear spin of the nitrogen is used as the storage state and is manipulated using an

external magnetic field [186]. Systems have been built with this in use, Bradley et al [184]

have built a ten-qubit register combining the nuclear spin states of nine nearby carbon-13

atoms with an NV quantum memory entanglement is generated between all 45 possible

qubit pairs, and the system can behave as a multiqubit memory, with a coherence time

of 75s, the longest of any solid-state qubit.

The negatively charged Silicon-Vacancy (SiV−) defect has recently emerged as a competi-

tor to the NV defect for its bright, narrowband transitions that exhibit small inhomoge-

neous broadening, and it has a coherence time that is protected by its inversion symmetry.

It consists of a single silicon atom occupying the space caused by two vacancies. Spin-

orbit coupling and crystal strain splits the ground level of the system, the lower band of

which is split further by an external magnetic field and it is these energy levels that are
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mapped to |0⟩ and |1⟩ states and are used as the storage states [185]. Coherence times of

13ms are achieved and fidelity reaches 89%.

5.2 Light Storage in Diamond via Stimulated Bril-

louin Scattering

In order to realise this proposal, a series of experiments must be performed to fully charac-

terise the memory, the first of these is to measure the acoustic phonon lifetime in diamond

which sets the limit to storage time of the memory.

Diamond is chosen as the storage medium for a variety of reasons, equation A.20 shows

that the electrostriction tensor has a dependency on refractive index to the fourth power,

therefore the large refractive index of diamond will result in a much higher Brillouin gain

factor compared to other materials, increasing the likelihood of effective storage. The

diamond used in these experiments is a mono-sectoral3 HPHT, single-crystal diamond

manufactured by Element 6 that has been polished on the [100] faces and has been en-

gineered to reduce impurities and crystal imperfections that act as phonon scattering

centres, by creating a crystal that is near-perfect the phonons lifetimes are extended,

which leads to a greater memory storage time. The large Brillouin frequency (108GHz, as

shown in chapter 4) adds to the utility of using diamond in this experiment, as it results

in a sparsely populated phonon band at room temperature reducing noise in the system.

The sample along with 3D printed sample mount is shown in figure 5.2

3Cut from the same growth sector.



5.2 Light Storage in Diamond via Stimulated Brillouin Scattering 71

(a)

(b)

Figure 5.2: (a) The diamond sample used in the experiments presented in
this chapter, and (b) the 3D printed mount that was used to hold it in place.

Pump and signal beams detuned by the Brillouin shift are set to counterpropogate through

the diamond sample, the signal beam is swept through a range of frequencies and measured

to produce a full gain spectrum as a function of detuning. The full-width half-maximum

(FWHM) of the Brillouin gain peak can then be extracted, the inverse of which is the

phonon lifetime, as per the equation τP = Γ−1
m . Beams are continuous wave to provide a

constant SBS signal and to provide a spectrum, experiments take place at 780nm to align

with the rubidium experiments shown in chapter 2 and to increase Brillouin gain.

There are two options for how to generate the Brillouin response corresponding to Stokes

and anti-Stokes scattering, both processes produce the desired effect but at different in-

tensities. It is Stokes scattering that is primarily investigated, as the dynamics of the

interaction closely resemble that of information storage.

Two separate attempts were made at generating this 108GHz shift, using a single laser
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with a 108GHz modulation and using two separate lasers. Both options have their pros

and cons, the former adds stability to the system as when the laser inevitably drifts

due to local temperature fluctuations both signal and pump beams would drift by the

same amount leaving the detuning unaffected and the latter has a much simpler physical

implementation. Unfortunately, both attempts ended with null results.

(a)
(b)

Figure 5.3: Two different methods used to achieve the necesary 108GHz
frequency shift between pump and signal beams, using (a) a single laser
with a modulator and (b) two separate lasers.

5.2.1 Detuning With an Electro-optic Modulator

In order to generate a 108GHz sideband the beam (produced by a MOGLabs tuneable

cat-eye laser) is passed through an electro-optic modulator (EOM), these devices come in

a variety of types that modulate phase, frequency, amplitude, or polarisation.

An oscillating electric field will induce a birefringence in a non-centrosymmetric crystal

such as lithium niobate as it passes through the crystal, any subsequent light passing

through the device will then experience a phase shift between orthogonal polarisations,

resulting in sidebands with intensities proportional to the applied electric field and fre-

quency shifts at integer multiples of the applied frequency. This is the basic function of

a phase modulating EOM and is the kind that is used in this experiment. By including

other optical instruments such as waveplates and polarisers, the various EOM types can

be converted between one another.

The NIR-MPX800-LN-20 electro optic phase modulator produced by iXblue receives drive

frequencies of up to 22GHz, the desired frequency shift is then possible using the fifth
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sideband. The intensities of the various sidebands follow a Bessel function as applied

voltage (and therefore phase shift) increases, at a phase shift of 6.4rad the fifth sideband

is the most prominent, however some further filtering must be done to remove the funda-

mental along with sidebands one to four in order to reduce noise in the system. Figure

5.4 shows the fundamental along with the first 5 sidebands as a function of phase delay,

the vertical line shows the amplitudes of the various sidebands at the desired phase shift.

Figure 5.4: The first six bessel functions representing the fundamental and
first 5 sidebands produced by and electro-optic phase modulator. The first
maximum of the desired fifth sideband resides at a phase shift of 6.4rad.

There are a number of ways to spatially distinguish between different wavelengths such as

reflective diffraction gratings, unfortunately for these applications the wavelength change

is too fine for any of the traditional methods to effectively and efficiently separate the

sidebands. Instead, two etalons with varying free spectral ranges are used, they have

transmission windows that overlap only once within the 108GHz range and so with some

fine tuning it is possible to only extract the desired sideband. Etalons consist of two planar

partially reflective mirrors creating a cavity, only certain resonance modes are supported

by this cavity and therefore only certain wavelengths can pass through. The various

properties of the device, such as reflectivity of the mirrors and mirror spacing affect how

frequently resonance conditions are met, this is known as the free-spectral range.

The two etalons used here both have mirrors with reflectivities of 80% and the cavity
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is filled with fused silica, they have separation distances of 6.35mm and 10mm resulting

in free spectral ranges of 16.08GHz and 10.21GHz respectively. Although this will not

limit light from other sidebands entirely, the degree to which non-useful light is reduced

is enough to see minimal disturbance in the experiment.

Signal and probe beams need to be connected and separated to stimulate the process

and to allow for accurate detection, both beams occupy orthogonal linear polarisation

states that enter and exit from separate arms on two polarising beam splitters on either

side of the diamond sample. The overlap integral of the electric field components of two

orthogonal linearly polarised beams is zero, placing quarter-wave plates on either side of

the diamond converts these beams into orthogonal circular polarisations allowing them to

interact before converting them back into linear polarisations so that they can once again

be separated on a polarising beam splitter. The Brillouin interaction between orthogonal

circular polarisations is 50% as intense as the Brillouin interaction between beams with

identical polarisation states [187], however the reduction in the pump field leaking into

that mode increases the SNR despite this loss in scattering efficiency.

An 818-bb-21 high speed (1.2GHz) photo detector produced by Newport optics is used to

detect the signal beam, this was chosen as an economic solution that was used for multiple

experiments that make use of the large bandwidth. The Brillouin interaction is expected

to be very small relative to the intensity of the probe beam and so lock-in detection is

used to boost sensitivity of the measurement.

A custom driver for the EOM was built that allowed the applied frequency (and therefore

the frequency of the sideband) to be linearly swept, contributing the final piece of the

experiment. A full diagram of the above experiment is shown in figure 5.5.
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Figure 5.5: A full schematic of the diamond BSBS experiment featuring a
single laser and a modulation technique. Light is first split into signal and
pump beams (A), the signal field passes through an AOM making use of
a collimating lens (C), quarter-wave plate (D), planar mirror (E), and a
polarising beam splitter (B) to gain a frequency sideband used for lock-in
detection, it then passes through an EOM to gain five sidebands at 21.6GHz
intervals, filtering of the fundamental and first four sidebands is done using
a series of etalons (F), and finally the light passes through the diamond to
interact with the pump field and undergo the BSBS process before the signal
beam is detected (H) and excess light from the pump beam is discarded (G).

The individual components of this experiment all worked in isolation, however bringing

them together to form a functioning system proved incredibly difficult. Optical power loss

was the primary issue, there is a significant drop in power as light passes through each

component due to the intrinsic losses associated with performing these operations, which

in combination with the delicate alignment of the etalon system produced a modulated

beam with an optical power far below the capabilities of the detector.

Each component had an effect on the power of the beam, the AOM reduced the power by

30%, the EOM reduced power by 40%, the etalons reduced power by 60%, a further 25%

was lost due to imperfect polarisation controlled beam splitting, 17% due to the reflec-

tions off the diamond crystal, and 50% due to the necesary polarisation system within the

crystal. This results in a total reduction of 95% of laser power not considering the initial

splitting of beams nor the reduction that comes as a result of sharing the laser with other

experiments. For a initial power of 2mW, the power at the detector would be 0.1mW

which will produce a signal of 2mV with the detector used and is a value below the noise



5.2 Light Storage in Diamond via Stimulated Brillouin Scattering 76

floor of the Moku Oscilloscope. All percentages presented here are approximate.

Even with a functioning lock-in system, these powers are too low to reliably detect a scat-

tering signal, in addition, alignment of etalons was imprecise and was frequently subject

to drift requiring near constant monitoring and adjustment adding to the difficulty of

executing this experiment. A tapered amplifier could have been used to amplify the weak

signal beam, but even without considering the financial detriment that would have, a ta-

pered amplifier would introduce noise to the signal beam that would significantly effect the

Brillouin interaction. Even with these negative effects, however, the inclusion of a tapered

amplifier in this experiment could be necessary as without it no response can be measured.

To conclude, although the premise for this experiment was well thought out, the physical

implementation requiring the cooperation of multiple different complex systems and the

engineering challenges associated with it were too great to overcome. Rather than con-

tinuing the fruitless attempts at solving some of these issues, the simpler setup involving

separate lasers was explored.

5.2.2 Detuning With Two Lasers

By including a second laser in this experiment, all of the problems associated with the

modulation can be eliminated. In place, problems surrounding stability arise, as the de-

tuning between pump and signal beams can now drift away from each other.

A second tuneable cateye laser manufactured by MOGLabs was used to replace the various

instruments that allowed for the modulation of the pump beam, the main sources of optical

power loss (the EOM and the etalons) were subsequently removed from the experiment.

The double pass AOM configuration remained in place as it was still in use as a carrier

frequency for lock-in detection. The polarisation control as light enters the diamond was

also kept from the previous experiment, the increase in power is large enough such that

the 50% reduction in Brillouin gain is off set. A full schematic of this experiment is shown

in figure 5.6.
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Figure 5.6: A full schematic of the diamond BSBS experiment featuring two
separate lasers. The signal beam passes through an AOM making use of a
collimating lens (B), a quarter-wave plate (C), a planar mirror (D), and a
polarising beam splitter (A) to gain a frequency sideband used for lock in
detection. The pump and signal beams are then incident on the diamond
sample where BSBS takes place, the signal beam is detected (F) and excess
light from the pump field is discarded (E).

By applying a sawtooth-shaped current variation to the piezoelectric actuator in the laser,

the wavelength of the laser can also be made to follow a sawtooth pattern, this is achieved

by the laser controller. Sweeps of 5GHz can be achieved in this way, care must be taken

when initialising this sweep as mode-hops are frequent and easily disturb the otherwise

clean sweep. MOGLabs claim sub-MHz stability, however the more complicated nature

of using these devices in a research environment shows that this is not always the case

even in temperature and humidity controlled environments.

Despite these changes, a Brillouin response was unable to be detected, once again due to

a loss of optical power. Mentioned frequently throughout this report, the setup used had

to be designed in a way such that tools could be shared between diamond and rubidium

experiments, this includes the second laser and means that light had to be passed through

a fibre patch cable before becoming available for use in the experiment, instantly resulting

in a 20−30% drop in optical power. There was also issue with the sample itself, although

diamonds high refractive index has a large influence on Brillouin gain, it also has the

undesirable effect of reflecting 17% of the light that is incident on the material, this is a

problem that also affected the previous experiment but was unnoticeable with such low
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light levels. Including the power reductions mentioned in the previous section that also

apply here, this resulted in an overall power reduction of 70% which on a beam of 2mW

will mean the power at detection is 0.6mW producing an electrical signal of 1.2mV. Once

again this is below the noise floor of the Moku oscilloscope.

These issues combined meant that the predicted Brillouin gain fell beneath the noise floor

of the detector. A solution to this issue exists in the form of a more sensitive detector,

however the implementation of this was unable to be completed.

Towards the end of this project, a Spectra-Physics Tsunami Ultrafast Titanium-Sapphire

laser became available for use in this experiment as a replacement for the pump beam, the

laser produces pulses at a repetition rate of 80MHz, with a (somewhat) tunable duration

ranging from 10ps to 50ps, and has a tunable wavelength. This laser is capable of produc-

ing pulses with a peak power of 375W, this will comfortably generate acoustic phonons

in the material and will make detecting them significantly easier in comparison to the

previous setup. The pump beam produced by the Ti:Sapph was set to propagate through

the diamond sample, detection of a signal beam was done using the same polarisation set

up as before that results in orthogonal circular polarisations between pump and signal

beams in the diamond, the frequency of the signal beam was swept through the expected

Brillouin frequency and the output was measured.

Heavy time restraints meant that this experiment was rushed and once again ended be-

fore any results could be seen, the source of issue is varied. One of the benefits of the

MOGLabs lasers is that the linewidth of the laser is expected to be small in comparison

to the Brillouin gain linewidth allowing for high resolution probing of the Brillouin gain

linewidth. The Tsunami, however, produces short pulses with high spectral bandwidths,

any Brillouin response seen here is therefore more ambiguous as it is unclear how the low

linewidth signal beam interacts with the pump beam. This generates noise in the system

and adds the need for post-processing techniques to accurately extract the Brillouin gain

linewidth.
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In order for Brillouin scattering to occur as efficiently as possible there must be a high

spatial mode overlap between pump and probe beams, in previous experiments this prob-

lem had been solved with the use of fibre, if both beams enter and exit from fibre on either

side of the diamond, it is ensured that they will remain in the same spatial mode as they

propagate through the material, however due to these time constraints this technique was

omitted in favour of using a series of irises to align the two beams, which may explain

why a signal was not able to be detected.

The Ti:Sapph laser allowed light with up to 300mW of average power to be used, optical

filters could not be used as they would cut the signal beam out of the experiment that sat

only 100GHz away and so relied upon was filtering using a series of waveplates and polar-

ising beam splitters. High extinction ratios can be achieved using this method but even at

lower powers some light leaked through into the detection scheme, making analysing the

output of the signal beam difficult. Other filtering techniques such as etalons, diffraction

gratings, and virtually imaged phase arrays were considered but either did not perform

well enough or required space that was unavailable. Upgrading to a more sensitive de-

tector in an attempt to locate a smaller Brillouin response meant this problem was made

worse, the leaking pump field saturated the detector with ease.

5.3 Further Work

In the time since these experiments took place, the phonon lifetime in diamond has been

established in the literature [149] with a value of 12MHz at a wavelength of 532nm, how-

ever it is still useful to find here as it will be different for the diamond used in these

experiments and is necessary to characterise the quantum memory ready for when it is in

operation. In addition, the value presented was at a fixed wavelength of 532nm [149] and

so far there is no experimental analysis of how the Brillouin gain linewidth changes with

operation wavelength.
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When that experiment has been completed, work will begin in the way outlined in chap-

ter 1. First, a cavity will be built around the diamond that incorporates mirrored lenses

fabricated into the sample which results in a low volume cavity and high resonant band-

widths, this allows for both pump and signal fields to be resonant with the cavity and

for the propagation of short pulses. A sample featuring mirrored lenses has already been

fabricated (figure 5.7), however experiments on this sample are yet to take place.

Figure 5.7: The second diamond sample available, this sample features an
array of micro-lenses fabricated onto the surface that will act as part of the
ring cavity planned for later experiments. This sample was fabricated by Dr.
Erdan Gu at Strathclyde University.

Pulses can then be used to simulate the storage and retrieval of quantum information,

before the move is made to single photons. Doing so will help further characterise the

memory and gain values such as readout efficiency and fidelity.



Chapter 6

A Finite-Element Analysis of

Brillouin Scattering: Fibre Tapers

The following set of simulations exhibit forward Brillouin scattering in optical fibre tapers

using the same method described in chapter four, both intra and intermodal scattering

is analysed to simulate the experiments that have taken place in the lab as well as the

planned experiments that work towards a functioning photonic switch.

As was the case in previous simulations, acoustic modes in a taper can be found by

calculating eigenmodes for the constitutive equation of motion for an elastic medium

with appropriate boundary conditions

∇ · σ = ρ
∂2u

∂2t
, (6.1)

where σ is stress, ρ is density, u is the displacement vector, and t is time. These solutions

are assigned azimuthal and radial mode numbers, n and m, and are classified according

to the character of their motion as torsional, radial, longitudinal, flexural, or mixtures of

these motions. Recall from Chapter 3 that for FSBS, q = 0, and so only acoustic modes

with zero wavevector are Brillouin active, these are the R0m and TR2m acoustic modes,

corresponding to radial and mixed torsional radial motions [188]. The frequency of these

modes is gained by applying the free-surface boundary condition to a cylindrical rod and
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is represented by the equation

f(GHz) =
y1vt

πd(µm)
=
pm
d
, (6.2)

where y1 is the first root of the transcendental equation representing the free-surface

boundary condition, vt is the acoustic velocity in silica, d is the diameter, and pm = y1vt/π

is a constant that is particular to a certain mode. For the R01 and TR01 modes, pm is

equal to 3.82GHzµm−1 and 2.79GHzµm−1 respectively.

The simulation geometry consists of a circle with the material properties of silica glass

from [189–191] surrounded by air, and a diameter of 2.5µm to match that of the experi-

ment this simulation is attempting to recreate. Applying these conditions to the acoustic

mode solver provides accurate results that can be used in simulations. The electromag-

netic mode solver requires no alterations and can consistently provide accurate results.

Contributions to Brillouin gain from FSBS are purely transverse, and so only boundary

electrostriction and radiation pressure is considered for these simulations, these two forces

act in opposite directions on the taper and so partly cancel each other out, this is taken

into account when calculating overall gain values.

The X, Y, and Z components of each acoustic mode can be viewed individually to confirm

the calculated eigenmodes are correct. Figure 6.1 shows the X, Y, and Z components of

the R01 and TR01 modes found by the mode solver, it is easy to recognise radial modes

due to the consistent displacement acting away from the centre of the fibre, and torsional

radial components show displacements acting at a tangent to the fibre-air interface. Both

of these modes have little or sparse displacement in the Z direction, meaning these modes

are purely transverse.

Due to limitations in computational power, the mesh density in the following simulations

was not able to be increased to an appropriate level which led to fluctuations in results

for fibres of near identical diameter. In an attempt to mitigate these errors as much as

possible, simulations are ran for a diameter of ±10−4µm surrounding the target diameter
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and an error presented. Although this does not provide full detail of the simulations, it

allows for further analysis to take place and represents the most accurate solutions under

these conditions.

(a)

(b)

(c) (d)

Figure 6.1: Figures (a) and (b) show the X, Y, and Z components of the
R01 (c) and TR21 (d) acoustic modes respectively. From these, an analysis
of overall displacement directions can be done to confirm the accuracy of
these modes. Physical displacement is exaggerated to aid understanding of
the forces a system is under, this is especially true in (d).

6.1 Intramodal FSBS

Beginning with intramodal FSBS, a fixed taper diameter of 2.5µm is used and pump wave-

length is kept at 780nm. Figure 6.2 shows the domain, the mesh, and the electromagnetic

mode, and figure 6.1 shows the R01 and TR01 acoustic modes which were used in these

simulations. The fundamental electromagnetic mode is used for both the pump and signal

beams. Brillouin gain for the R01 acoustic mode is 4.37× 10−4± 6.32× 10−8W−1m−1 due
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to electrostrictive forces, and 5.29× 10−4± 6.91× 10−7W−1m−1 due to radiation pressure

forces, resulting in an overall gain of 9.20 × 10−5 ± 6.93 × 10−7W−1m−1. Brillouin gain

for the TR01 acoustic mode is 3.72 × 10−8 ± 1.01 × 10−8W−1m−1 due to electrostrictive

forces, and 9.51 × 10−5 ± 2.08 × 10−5W−1m−1 due to radiation pressure forces, resulting

in an overall gain of 9.51 × 10−5 ± 2.08 × 10−5W−1m−1. Brillouin gain is significantly

higher for the R01 acoustic mode compared to the TR01 acoustic mode, this is in line with

experimental results presented in the literature [192,193].

(a) (b)

Figure 6.2: The (a) domain, mesh, and (b) electric field mode used in in-
tramodal FSBS simulations.

Diameter can be swept while maintaining mode structures, giving insight into how gain

varies as diameter changes. Figure 6.3 shows how gain for both boundary electrostriction

and radiation pressure components varies as the diameter increases from 0.125µm to 3µm.

The graphs begin at a diameter of 0.125µm as this is the cut-off beyond which the funda-

mental electromagnetic mode does not propagate. Overall gain is maximum at 0.125µm

with a gain of 3.46×103±22.7W−1m−1 for the R01 acoustic mode, and 0.125µm with a gain

of 37.2±7.66W−1m−1 for the TR21 acoustic mode, gain caused by both acoustic modes de-

creases by 7 orders of magnitude before reaching the end of the simulation. This dramatic

decrease in gain is due to the cross sectional area of the taper increasing, the power of a

beam is therefore distributed more evenly across a mode which has a large effect on the
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non-linear nature of electrostriction and specifically the interactions occurring at the fibre

boundaries. It is believed that the dip at 0.5µm is an artefact of low computational power.

(a)

(b)

Figure 6.3: Graphs indicating how the boundary electrostriction and ra-
diation pressure components of intramodal FSBS gain vary as diameter is
increased from 0.25µm to 3µm for (a) R01 and (b)TR21 acoustic modes
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6.2 Intermodal FSBS

Next, intermodal FSBS is analysed using the same domain, mesh, and acoustic modes

shown in figure 6.2, but changing the electromagnetic modes for the pump and signal

beams to those corresponding to the fundamental (LP01) and first order (LP11) modes of

the fibre, as shown in figure 6.4. Brillouin gain for the R01 acoustic mode is 6.52×10−11±

2.05×10−11W−1m−1 due to electrostrictive forces, and 1.96×10−9±4.90×10−10W−1m−1

due to radiation pressure forces, resulting in an overall gain of 1.90 × 10−9 ± 4.90 ×

10−10W−1m−1. Brillouin gain for the TR21 acoustic mode is 2.73 × 10−11 ± 8.95 ×

10−12W−1m−1 due to electrostrictive forces, and 2.013×10−9±6.76×10−10W−1m−1 due to

radiation pressure forces, resulting in an overall gain of 1.96×10−9±6.76×10−10W−1m−1.

These values are considerably lower than that of intramodal FSBS and expectedly so, due

to the low overlap between LP01 and LP11 electromagnetic modes.

(a) (b)

Figure 6.4: (a) Fundamental (LP01) and (b) First order (LP11) electromag-
netic modes of a fibre taper with a diameter of 2.5µm.

This again can undergo a diameter sweep, the results of which are presented in figure

6.5. Once again, the results from this series of simulations are just as expected, in-

termodal FSBS has consistently lower gain than intramodal FSBS due to the smaller

overlap between the two electromagnetic modes. Overall gain peaks at 0.5µm with a
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value of 1.16 × 10−6 ± 5.19 × 10−7W−1m−1 for the R01 mode, and 0.5µm with a value of

7.50 × 10−7 ± 2.38 × 10−7W−1m−1 for the TR21 mode. Even though the individual gain

components in intermodal FSBS are much lower compared to that of intramodal FSBS,

the relative difference between boundary electrostriction and radiation pressure is much

higher and therefore don’t counteract each other as much as in intramodal FSBS.

(a)

(b)

Figure 6.5: The boundary electrostriction and radiation pressure components
of intermodal FSBS gain vary as diameter is increased from 0.25µm to 2.0µm
for (a) R01 and (b)TR21 acoustic modes.

The first order mode begins guiding light at a taper diameter of 0.5µm, hence the data
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for the case of intermodal scattering begins slightly later than previously.

Frequency must be taken into account when analysing these results for use in exper-

iments, equation 6.2 shows that at smaller diameters the frequency of the R01 mode

exceeds 15GHz, and so there is a stark trade off between high Brillouin gain and low

frequencies that are much easier to measure physically. This issue is less important as a

direct measurement of Brillouin frequency is not important for the final devices operation.

These results, like all theoretical work, are to be taken lightly. This model assumes that

the tapers have a circular cross section which isn’t always true especially for a null cou-

pling fibre taper, which depending on fabrication parameters could be oval in shape, this

would result in the two degenerate LP11 modes to split and nullify the results gained

here. Tapers also tend to have a diameter that varies slightly across its length that is

again due to the intricacies of the fabrication process and is not considered here. Despite

these issues PySBS was able to produce values for gain in keeping with those found in

the literature, and so provided a valuable tool to analysing these systems.

This work can be expanded and made more accurate with more powerful computer hard-

ware, this would allow for higher density meshes and finer resolution diameter sweeps.

The next chapter describes the physical implementation of these systems and uses some

of the information gained here to analyse why the experiments did not produce desirable

results as well as assessing the feasibility of the end device.



Chapter 7

A Proposal for A Photonic Switch

Using Brillouin Scattering Induced

Acoustic Modes in Null-Coupling

Fibre Tapers

Optical fibre is used in both academia and industry as a means to transport light without

encountering problems concerning the safety and impracticality associated with a free

space laser beam. Most commonly this exists as step-index fibre as shown in figure 7.1

and consists of a high refractive index core with a low refractive index cladding, this allows

for total internal reflection at the interface between the core and cladding allowing light

to easily propagate through the fibre. Many other types of fibre exist, including but not

limited to graded index fibre, where the refractive index of the core decreases as the radius

increases allowing for the minimisation of modal dispersion, and polarisation maintaining

fibre, which include stress rods in their cladding to induce a directional birefringence

resulting in the minimisation of cross talk between degenerate polarisation modes [194].
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Figure 7.1: Cross section of a step-index fibre with the refractive index as a
function of fibre radius, the sharp change at the interface between core and
cladding causes light to undergo total internal reflection when it enters the
fibre at a maximum angle of θ.

7.1 Fibre Tapers

Optical fibre tapers are fibres that have been stretched to create a section with a smaller

diameter. Tapers have unique properties that can be utilised for a range of applications,

as shown in figure 7.2, they consist of a normal section with the diameter equal to that of

regular fibre (usually 125µm) followed by a transition, an area where the diameter of the

fibre is slowly decreasing along its length, once the transition reaches the desired diameter

it is maintained for a certain predetermined length. There are certain instances where

this is enough and the fibre is cleaved to form a usable end, or another transition takes

place to return the diameter to its original size.

7.1.1 Taper Fabrication

Tapers are fabricated using a flame brush technique (figure 7.2), heat is applied to the

fibre by a small oxybutane flame that is hot enough to cross the glass transition tem-

perature of the material, leading to the fibre becoming soft and malleable, the fibre is

attached to two linear translation stages at each end that pull and narrow the fibre at the

point where heat is being applied. This, in combination with the flame sweeping across

the length of the fibre allows for tight control of a variety of taper parameters, such as

transition length, waist length, and taper diameter.
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Figure 7.2: Applying heat to a fibre takes it across its glass transition tem-
perature, it is then pulled from both ends to stretch and thin the heated
section, the result is a fibre taper. Recreated from [195].

As well as creating basic taper structures, it can also be used to make complex struc-

tures, such as photonic lanterns and null coupling fibre tapers, the latter of which will be

discussed in more detail in section 7.1.2

(a) (b)

Figure 7.3: (a) The custom taper mount, designed to encase a taper to reduce
dust from settling on the sample and to make transporting tapers easier, and
(b) the taper rig, which was used to create tapers.

Commercial taper rigs are available, however the tapers fabricated for experiments pre-

sented in this thesis were made by Ross Challinor using a bespoke system developed in

the 90s by Tim Birks for early taper experiments. A custom taper holder was built using

clear plastic that allowed for the seamless transport of tapers between laboratories and so
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that dust would not settle on the device and disturb the acoustic vibrations. This worked

well, however, it was found that a simple bracket made out of cardboard worked just as

effectively, and in some cases better. Photos of the taper rig and the bespoke sample

holder are shown in figure 7.3

7.1.2 Fibre based Couplers and Null Coupling Fibre Tapers

When two tapers of suitable diameter are brought into close confinement, evanescent fields

from both fibres interfere and optical power is able to couple between the cores of each

taper, this provides the basis for a fibre optic directional coupler and has applications in

various fibre based communication systems.

Figure 7.4: When two tapers are brought in close proximity light propagating
through one will couple to the core of the second, resulting in an all optical
fibre beamsplitter. Reproduced from [196].

From [196], consider two non-identical fibre tapers supporting LP01 modes with propaga-

tion constants β1 and β2, the power in each fibre can be shown to be

P1(z)

P1(0)
= 1 − C2

γ2
sin2(γz)

P2(z)

P1(0)
=
C2

γ2
sin2(γz),

(7.1)

where P1 and P2 are the powers of the two modes, C is the coupling coefficient, z is the

lateral distance, γ2 = C2 + 1
4
(∆β)2, and ∆β = β1 − β2. The following equation can then

be built
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C2

γ2
= F 2 =

1

1 + ∆β2

4C2

, (7.2)

which describes, F , the maximum power fraction and denotes the fractional power that

is transferred from one core to another. The sinusoidal dependence results in optical

power moving back and forth along the length of the interaction, devices employing this

behaviour must therefore carefully consider the length of the device.

Maximal coupling occurs when β1 = β2. Before beginning to transfer back, as ∆β in-

creases, the fraction of power that is transferred into the second fibre decreases, until ∆β

is large enough to completely stop the transfer of power. The latter case described here

is called a null coupling fibre taper.

Fabrication of directional couplers is done using two main techniques, the first is called

polished coupling and involves polishing a fibres cladding to expose the core, doing this to

two fibres and bringing them close together allows for a highly tunable maximum power

fraction but is a labourious process. Instead, fused couplers are often used, which are

formed by tapering two twisted single mode fibres together, causing the cores to fuse

together. Fused couplers can also be tuned, albeit not actively, by pre-tapering one of the

fibres, this causes a change in β and therefore a change in F 2. Reducing the size of one of

the fibres to 80µm is enough to create a large enough disparity in propagation constants

to form a null coupler.

Fundamental modes within each fibre occupy the lowest two modes of the taper, the LP01

and LP11 modes, if all transitions are adiabatic, the light entering from one fibre will

evolve to only a single mode in the waist and the input and output modes should be

identical.
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7.2 Null-Coupling Fibre Taper as a Photonic Switch

A paper published in 1996 by Birks et al [197] describes a photonic switch based on a

null coupling fibre taper. A mechanical vibration induced by a piezoelectric transducer

couples the two lowest order modes when certain resonance conditions are met, allowing

for a transfer of energy between the first two optical modes in the null coupling fibre. The

mechanical vibration causes a periodic refractive index perturbation, resonance occurs

when the wavelength of this mechanical vibration is equal to the the beat length of the

two optical modes. Figure 7.5 shows a schematic for this experiment, and how it could

be used as a photonic switch.

(a) (b)

Figure 7.5: (a) The mode of operation for the null-coupling fibre based
photonic switch and (b) the results. Reproduced from [197].

This switching mechanism produced strong results, with the piezoelectric transducer ca-

pable of coupling electromagnetic modes well enough to facilitate an almost complete

power transfer. Since it takes time for the acoustic wave to propagate along the fibre

before any switching can occur, the speed of this switch is relatively low (it takes around

50µs), additionally, the need for an external driving force results in a cumbersome device

that is not easily marketable. It is possible to describe this switch using forward Brillouin

scattering as the dynamics of the two systems are starkly similar.

Birks et al produced a device that relies on spontaneous1 intermodal forward Brillouin

1This is a poor use of the word spontaneous as significant work was done to drive this process, however
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scattering, light entering from one arm occupies the fundamental mode in the taper and is

scattered into the second order mode as it spontaneously interacts with the induced me-

chanical wave, allowing it to exit the device through the opposite fibre to which it entered.

Presented in this chapter is the first in a set of experiments that build upon the work

done by Birks et al [197], where instead of using a piezoelectric transducer, the acoustic

modes generated by FSBS are used to couple electromagnetic modes.

7.3 Proof-of-Concept Experiments

To realise this proposal a series of experiments need to be completed, the first of those is

to confirm the presence of acoustic modes in a single mode 1 × 1 taper, this is done with

a polarimetry experiment.

Consider the TR2m acoustic mode, the vibration of this mode will naturally have an effect

on the strain within the taper, this in turn will induce photoelastic perturbations to the

local dielectric tensor, ∆ϵ2m(r, ϕ, z, t) [198]. As was shown in chapter 3, the effect of the

dielectric perturbations on the propagation of optical waves is dependent on their spatial

overlap with the optical mode ET (r), leading to the equation

∆ϵ2,m(z, t) =

∫∫
∆ϵ2,m(r, ϕ, z, t) |ET (r)|2 rdrdϕ. (7.3)

For a TR2m acoustic mode with principal axes x̂ and ŷ, the position-averaged dielectric

perturbation tensor is then

∆ϵ2,m(z, t) = ∆ϵ2,m(Ω)ei(qz−Ωt)

 1 0

0 −1

 + c.c. (7.4)

Such dielectric perturbations suggest that the TR2m acoustic mode induces a birefringence

in the material when it is excited, it is therefore possible to determine the presence of an

the dynamics of the interaction are much more similar to those found in spontaneous interactions than
those utilising stimulated Brillouin scattering.
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acoustic mode within the taper by analysing the polarisation state of the output light.

Figure 7.6: Diagram of the polarimetry experiment, the TR2m modes that
are excited by the high powered pump beam induce a birefringence that is
probed by the signal beam, this has an effect on the output polarisation
states. A - Titanium-Sapphire pulsed laser, B - MOGLabs continuous wave
laser, C - polarising beam splitter, D - fibre coupling stage, E - fibre taper,
F - quarter- and half-waveplates, G - optical filters, and H - detector.

A high powered pump beam of wavelength 805nm and a low powered signal beam of

wavelength 780nm are set to co-propagate through a fibre taper of diameter 2.5µm and

length 6cm made from 780HP single-mode optical fibre produced by Thorlabs, this taper

was designed to be long and thin to greatly increase Brillouin gain. The high powered

pump beam is from a Spectra-Physics Tsunami Ultrafast Titanium-Sapphire laser, pro-

ducing pulses at a rate of 80MHz with a (somewhat) tuneable duration ranging from 10ps

to 50ps and has a tuneable wavelength.

This experiment operates in a different regime to previous SBS experiments, here, the

short pulses result in a large frequency bandwidth that is larger than the Brillouin fre-

quency and can therefore stimulate a light-matter interaction without the need for a signal

beam. This is known as impulsive SBS, as opposed to transient SBS that has taken place

in previous experiments.

This pump field has an average power of 100mW in the taper and the pulses have a maxi-

mum power of 62.5W at the minimum pulse duration, this allows the pump field to excite

large numbers of strong acoustic modes in the taper, the signal beam of power 15mW

then scatters off these acoustic modes and undergoes the previously described phase shift

caused by the induced birefringence of the TR2m modes.
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At the output of the taper, the pump beam can be to be filtered out with polarisation

control and a polarising beam splitter due to the orthogonal polarisation of the pump

and signal fields at launch. Further filtering comes in the form of an FB790-10 bandpass

filter and an FESH0800 shortpass filter, both produced by Thorlabs, that allow for the

transmittance of the signal field and the reflectance of the pump field.

A set of waveplates then sets the remaining signal beam to circular polarisation, so that

when it is incident on a polarising beam splitter the light is equally distributed between

the two output modes. Two PDA8A2 silicon amplified photodetectors, also produced by

Thorlabs, were used on each arm of the polarising beam splitter, these amplified detec-

tors have sensitivities of 0.56AW−1 and an amplification of 50kVA−1 and so are capable

of measuring the small changes caused by SBS.

Both detectors are connected to an oscilloscope and the ratio of the signals is taken, when

the pump field is on, there will be a strong induction of acoustic modes in the fibre and

the signal field will exhibit a polarisation change that is visualised by a change in the ratio

of the two output arms of the polarising beam splitter compared to when the pump field

is off. A visual description of this setup is shown in figure 7.8, and the results in figure

7.7, here, blue and orange markers correspond to the status of the pump beam and are

classified as on and off respectively, the crosses and triangles represent the output from

the two different output modes of the beamsplitter.

These results show that the ratio between the two output arms of the polarising beam

splitter when the pump is on against when the pump is off have a difference of 0.169.

The output arm of a polarising beam splitter has a sinusoidal dependence on input po-

larisation, from this it is possible to workout applied phase change to the signal beam,

which in this case is 0.244rad. In total, 2.33mW was switched from one output arm of

the beamsplitter to the other.
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Figure 7.7: The results from this experiment, showing a difference in the
ratios of the two arms of a polarising beam splitter equal to 0.169. Crosses
and triangles represent the two arms of the polarising beam splitter, blue
and orange symbols represent the pump being on and off respectively. Error
bars are omitted as they are small (±0.00760) and were measured using the
standard deviation of the time trace.

Although this is a positive and expected result, it is not enough to confirm the presence of

Brillouin scattering within the taper as the polarisation change could instead be caused by

the Kerr effect, which is another second order non-linear effect that changes the refractive

index of a material in response to an applied electric field. This effect could therefore in-

duce a birefringence that would result in a polarisation change, this idea has been studied

extensively. The next step is therefore to repeat the experiment but this time attempt to

observe the frequency of the scattered light, this observation will guarantee the presence

of the desired effect.

Initial experiments functioned in a similar way to those presented in Chapter 5, two

MOGLabs lasers detuned by the resonant frequency are set to co-propagate through an

optical fibre taper to drive FSBS. This regime unfortunately produced a signal far too

small to be measured and so the experiment was adjusted in order to boost the Brillouin

response. This system can be analysed in the same way as the analysis of the diamond

experiment using the analytical solution to the pump-depletion coupled equations pre-
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sented by Boyd [148] in combination with the values of gain produced by the simulations

in the previous chapter. For a taper of length 6cm, diameter 2.5µm (and therefore of gain

1.87×10−4W−1m−1), and an initial pump-signal power ratio of 2, 1.12×10−5% (or for an

initial signal field power of 15mW , 1.68 × 10−7W) of the signal field is scattered, which

sits below the noise floor of the electronic spectrum analyser (−100dBm) when detected

by an 818-BB-21 photodetector.

A second attempt was made at finding this frequency and changes were implemented in a

way to resemble the polarimetry experiment, a strong pulsed pump beam induces acoustic

modes which is then filtered off to allow only the detection of a weak signal beam, this

time the polarimetry detection system is replaced with a single high-speed detector that

is capable of measuring the Brillouin shift.

The taper used here was again made from 780HP fibre produced by Thorlabs, and the

detector was 818-BB-21 high-speed (1.2GHz) silicon photodetector produced by Newport

optics. Data was visualised with an Agilent 4396B network/spectrum/impedance anal-

yser. A visual description of this setup is shown in figure 7.8.

Figure 7.8: Diagram of the experiment used to measure the Brillouin fre-
quency of a fibre taper. A - Titanium-Sapphire pulsed laser, B - MOGLabs
continuous wave laser, C - polarising beam splitter, D - fibre coupling stage,
E - fibre taper, F - quarter- and half-waveplates, G - dichroic filter, H - de-
tector.

A variety of variables were changed in an attempt to initiate the required interaction,

including the power and polarisation of the pump and signal fields and the wavelength of

the Ti:Sapph laser which ranged from 800nm to 805nm.
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The results of this experiment are inconclusive as a frequency pertaining to Brillouin scat-

tering within the taper could not be observed, there are several reasons for this which are

described below.

As soon as fabrication is complete, a fibre taper will begin degrading, gradually reducing

the transmittance of light through the fibre until none at all can pass through. There are

two primary mechanisms that cause this, water absorption and dust, even with control

measures such as enclosing the fibre and monitoring relative humidity tapers will degrade

to an unusable level within a matter of days. This made experiments significantly more

difficult as the age of the taper increased and could be a contributing factor towards the

lack of substantial results.

The process through which tapers are fabricated is controlled with a software that was

built in-house, this software takes taper parameters and builds a fabrication process to

match, it is unfortunately not always accurate. The various tapers that were fabricated for

these experiments could therefore have two potential problems, the first is that the taper

parameters were not equal to those that were entered into the software, however this issue

is easy to check with the use of a microscope and since tapers have been fabricated for a

variety of projects, if this were a serious problem there is a varied group of people that

would have noticed something was wrong and corrected it. The second and more likely

issue with taper fabrication is that the taper does not have a uniform diameter across its

length, this would have the effect of broadening the Brillouin linewidth and decreasing

the intensity of the Brillouin peak, perhaps below the noise floor of the detector, as the

varying diameter would have a varying Brillouin frequency.

This final point can be modelled using a series of Lorentzian peaks corresponding to

Brillouin resonances at different frequencies, each peak is weighted differently based on

an error associated with the diameter of the fibre taper so that the summation over

all individual peaks produces the expected Brillouin response. This model assumes a
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Gaussian distribution of diameters centred around 2.5µm, the standard deviation is equal

to 1%, 5%, 10%, and 50% of the total diameter. Results show that there is a significant

decrease in max intensity as the error in diameter increases, shown in figure 7.9.

Figure 7.9: Brilllouin response as the error in fibre diameter increases from
σ = 1% to σ = 50%. These results were achieved analytically.

The signal analyser used to observe beat frequencies was old and did not perform well,

in particular the electronic noise spectrum that it produced made locating small peaks

difficult.

Another issue was the detector that was used, since Brillouin gain increases greatly with

lower taper diameter it is desirable to reduce this value as much as possible, however,

since the frequency of the mechanical wave increases as taper diameter decreases the

bandwidth of the detector severely limits this. It also has a low sensitivity that is not

ideal for measuring the subtle frequency changes caused by Brillouin scattering. Brief ex-

periments were completed with an FPD310-FS-VIS silicon PIN amplified photodetector

with a bandwidth of 1.5GHz, a sensitivity of 0.5AW−1, and a gain of 2 × 104VW−1, this

detector would allow for smaller diameter tapers and would be sensitive enough to find

low power scattering signals.

Using the values of gain presented in the previous chapter, it is possible to make predic-
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tions for the optical power that is scattered by an acoustic field, doing so provides insight

into why that experiment didn’t produce results and suggestions to changes in experiment

design can be made as a result. Beginning with the analysis presented earlier, the total

power of scattered light is 10.157µW.

For the vast majority of experiments, an 818-BB-21 photodetector was used which has a

responsivity of 0.47AW−1, a resistance of 50Ω, and produces a voltage of 2.51×10−6V when

the scattered signal is detected. Towards the end of this project an amplified photode-

tector became available for use in experiments, a FPD310-FS-VIS produced by ThorLabs

which has a responsivity of 0.5AW−1, a resistance of 50Ω, and a gain of 2 × 104VW−1,

following the same process, this detector produces a voltage response of 5.35 × 10−2V.

The electronic spectrum analyser used for experiments, an Agilent 4396B, has a noise floor

of −145dBm (1.26 × 10−8V) at its highest resolution which is low enough to produce a

SNR enough to yield an accurate peak using either detector. However, in practise the time

it takes in order to produce a full spectrum at these resolutions is on the order of hours,

in which time lasers drift and stop producing pulses and since the Brillouin frequency has

an error associated with it due to fabrication limitations, multiple scans must be taken,

making it an unviable option. Increasing the resolution to a manageable level raises the

noise floor to −100dBm (2.24× 10−6V) meaning that the lower sensitivity detector is not

capable of producing a measurable response, but the higher sensitivity detector is.

7.4 Switching Speed

An equation can be built to analyse the switching speed of the device, the first term in

this equation accounts for the time it takes for the light to propagate through the taper

and the final term accounts for the delay between pump and signal beams.
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tswitch =
n

2c
L(Γ̄) + τ, (7.5)

There is a certain condition for this process, which states that the delay between pump

and signal fields must be greater than a quarter of the time period of the acoustic field,

τ ≥ 1/4f . The need for this arises as a result of the reliance of intermodal scattering on

acoustic field amplitude, time scales are short and so if this condition were to be broken

(τ < 1/4f) then scattering will not occur at the beginning of the fibre and a full power

transfer will not take place.

For a taper length equal to the switching distance, Λ (the extraction of these values will

be described in the section 7.5), and τ = 1/4f , the switching speed can be described

by figure 7.10. This graph shows that for tapers with diameters less than 2.6µm, this

switching scheme provides an increase in switching speed that increases dramatically at

lower diameters over the device this work was based on (Birks et al [197], who built a

switch that took 50µs). It also shows, however, that for tapers with diameters larger than

2.6µm the switching speed is lower than previous work, something to be considered when

building a device.

Figure 7.10: Switching speeds calculated from equation 7.5 using switching
distances calculated later in the chapter.
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7.5 Length Analysis

There are some interesting dynamics that occur as the light propagates down the length

of a fibre taper and in order to present an accurate design for a switch these dynamics

must be analysed.

The first step is to recap how a switch might operate, as these dynamics will affect how

the following simulation is undergone. Two co-propagating pump fields detuned by the

Brillouin frequency are directed into the two input ports of a null-coupling fibre taper

inducing a high acoustic field amplitude via Brillouin scattering, after a short delay, a

signal pulse (or single photon) enters the device through one arm and leaves the device

through the opposed fibre. A diagram of this setup is shown in figure 7.11.

Figure 7.11: Launch conditions and mode of operation for a null-coupling
fibre taper switch.

The equations of motion that are derived in chapter 3 are returned to and applied for the

case of intermodal forward Brillouin scattering, which are identical to those of intramodal

forward Brillouin scattering as they share launch conditions and selection rules

∂b

∂t
+ v0

∂b

∂z
= i (Ω − Ω0) b− iG∗a†asas (7.6)

∂as
∂t

+ vp
∂as
∂z

= −iGaasb (7.7)

∂aas
∂t

+ vs
∂aas
∂z

= −iG∗b†as. (7.8)

The phonon dissipation rate, Γ̄/2, is introduced as the delay between initial pump pulses
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and the signal pulse allows for some relaxing of the acoustic field. For the forward Brillouin

scattering case, this dissipation rate is high (in the range of MHz) and the group velocity

is near zero, the spatial evolution can then be ignored [199]. This in conjunction with the

desire to find steady state solutions means that ∂b/∂t = ∂b/∂z = ∂aas/∂t = ∂as/∂t = 0. The

equations then become

0 = i (Ω − Ωs) b+
Γ̄

2
b− iG∗a†asas, (7.9)

∂as
∂z

= − 1

vp
iGaasb, (7.10)

∂aas
∂z

= − 1

vs
iG∗b†as, (7.11)

where G is the coupling strength of the electromagnetic and acoustic fields

|G|2 =
1

4
vsvpΓ̄ℏωpg. (7.12)

Now only considering 7.10 and 7.11, the differential of these equations are

∂

∂z

∂as
∂z

= − 1

vp
iGb

∂aas
∂z

(7.13)

∂

∂z

∂aas
∂z

= − 1

vs
iG∗b†

∂as
∂z

. (7.14)

Substituting in equations 7.10 and 7.11 gives

∂

∂z

∂as
∂z

= (− 1

vp
iGb)(− 1

vs
iG∗b†as) = − 1

vsvp
G2b2as (7.15)

∂

∂z

∂aas
∂z

= (− 1

vs
iG∗b†)(− 1

vp
iGaasb) = − 1

vpvs
G2b2aas. (7.16)

These equations take the form of the simple harmonic oscillator and therefore have solu-

tions

as(z) = A cos
(√G2b2

vpvs
z
)

(7.17)
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aas(z) = A cos
(√G2b2

vsvp
z
)
. (7.18)

Returning now to equation 7.9, setting the detuning to zero and rearranging gives an

equation for B

b =
2

Γ̄
iGa†saasw. (7.19)

Using this equation it is possible to find the amplitude of the acoustic field generated by

the two pump fields in the first stage of the switching mechanism, consequently equations

7.17 and 7.18 can then be used to find how the power distribution between LP01 and LP11

vary as a function of taper length z for the propagation of the signal beam.

Earlier in this chapter it was found that there is a non-linear dependence on gain as taper

diameter varies and that for the specific case of intermodal Brilllouin scattering of both

the TR21 and the R01 acoustic modes, the gain has a maxima at 1.91×10−6W−1m−1 with

a diameter of 0.5µm. The standard relation between intensity, power, and electric field

strength is

I =
P

A
=
cnϵ0

2
|E|2. (7.20)

In order to achieve a switching distance (Λ) that is as short as possible, the pump lasers

must produce pulses with high peak powers. Commercially available systems at the higher

end of what is available can produce pulses with a peak power of 40kW, and so this figure

will be used in the following simulation. The pump system operates in the transient

regime.
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Figure 7.12: Power of a signal beam distribution between LP01 and LP11
modes as a function of taper length for a taper of diameter 2.5µm. In this
simulation the acoustic wave has already been excited by two high powered
pump beams.

This result shows that there are periodic lengths where a complete transfer of power

between LP01 and LP11 modes in the fibre taper is possible, null-coupling fibre taper

photonic switches of diameter 2.5µm must therefore have length equal to n201m, where

n = 1, 3, 5, ... to achieve complete switching of an input pulse (photon).

Tapers of this length will not be possible to fabricate with the facilities available for this

project (or at all, for that matter). However, the gain values for intermodal scattering

from both the R01 aand TR01 modes produced in Chapter six can be used in conjunction

with the aspect ratio (defined as equal to the ratio of length to diameter) of already fab-

ricated tapers to find taper diameters that could produce viable devices.

The results presented here assume a phonon decay rate, Γ̄ of zero, as the instantaneous

acoustic field amplitude caused by the pump fields is used. With the addition of a decay

rate, full power transfer is still possible but occurs at an increasing length that is propor-

tional to the delay between pump and signal beams, τ .

Many tapers were produced during this project with varying aspect ratios, that with the

highest was of length 6cm and diameter 2.5µm, producing an aspect ratio of 2.4 × 104.
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This will be used as a figure of merit to judge whether a taper is capable of being pro-

duced or not. Figure 7.13 shows the distance required for a full transfer of power (Λ)

as a function of taper diameter, with a black line corresponding to the aspect ratio of

the best performing taper that was able to be fabricated, diameters sitting beneath this

line are those that fit this criteria. This model assumes that there is a linear dependence

on maximum aspect ratio as a function of taper diameter, which needs further study to

confirm.

This result shows that fibres up to a diameter of 0.905µm can be fabricated in order to

achieve a device capable of full switching. Tapers of this diameter can be comfortably

fabricated using the taper rig available.

Figure 7.13: Switching distance presented as a function of taper diameter,
the black line indicates an aspect ratio equal to that of the best performing
taper that was able to be produced during this project. Points sitting below
this line are those that can be reliably fabricated as per this figure of merit.

Although the figure of merit used here was for the best performing taper fabricated dur-

ing this project, it does not represent the physical limit of what is possible. Should work

be done to improve the aspect ratio, the potential for higher diameter devices increases

which is desirable as they are much more durable.

The strong pump fields used here produce powers in the taper and the high mode confine-

ment at lower diameters means that the intensity of light in a taper is large. The optical
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damage threshold for silica is 1.3GWcm−1 [200], plotting the absolute power threshold as

a function of taper diameter produces the following graph.

Figure 7.14: Shown here is the maximum possible absolute power that a
taper of certain length is able to transmit without being damaged.

From this it is clear to tell that the lasers used in this simulation will critically damage

any device considered viable by the previous analysis. This can be overcome with the use

of lower powered lasers, but this change comes at the cost of Λ, which will increase as

a result and negatively affect the aspect ratio, pushing more taper diameters above the

criteria.

Repeating the aspect ratio simulation (figure 7.15) with pump powers capable of being

produced in house (62.5W peak power, from the Spectra Physics Ti:Sapph) shows that

even at the shortest taper distances, a full transfer of power occurs at a distance several

orders of magnitude larger than what is physically capable of being fabricated.
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Figure 7.15: Switching distance presented as a function of taper diameter,
the black line indicates a aspect ratio equal to that of the best performing
taper that was able to be produced during this project and teh blue line
indicates teh distance necessary for a full switching event to occur. Points
sitting below this line are those that can be reliably fabricated as per this
figure of merit.

From this, it can be deduced that this is not a feasible device. Even with the high powered

pump scheme, which is difficult to implement both physically and economically, using light

at such high powers is enough to comfortably destroy any device it is used in conjunction

with, moving then to a more realistic pump system shows that Λ is consistently greater

than the limit of what is physically capable of being fabricated.

7.6 Further Work

There are many ways in which the experiments presented in this chapter can be improved

upon. Beginning with the polarimetry experiment, the Kerr effect is instantaneous in

nature whereas an acoustic mode will continue to impose birefringence on the taper for

a time after the pulse has passed through the taper, this left over birefringence depends

on the phonon decay rate, Γ. It is possible to use this in order to deduce the source of

the polarisation change with the addition of a high-pass filter into the system, the pulsed

laser has a repetition rate of 80MHz and so the Kerr effect and the polarisation rotation

will share this frequency, blocking out signals below this frequency will then eliminate

contributions from the Kerr effect leaving only those from the presence of acoustic modes,

and therefore Brillouin scattering in the frequency spectrum. If it is the acoustic mode
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producing this result, the expected outcome of this experiment will look identical to the

results already presented in this chapter, as the addition of a filter eliminates the possi-

bility of the effect being the result of the Kerr effect

Even with this addition to the polarimetry experiment, it is still not enough to determine

whether or not Brillouin scattering is taking place within the taper, there are a number

of changes that could be made to the second experiment presented here in order to aid

the detection of the Brillouin frequency.

The first of those is to move from free-space optics to fibre optics, this would allow for the

fine control of polarisation before the taper and to achieve higher extinction ratios of the

pump beam. Although the stimulation of acoustic modes is achievable with orthogonally

polarised pump and signal beams, it is less efficient than the case of identical polarisation

states between pump and signal beams. A diagram of this proposed experiment is given

in figure 7.16

There should also be greater care taken to ensure the uniformity of the taper diameter,

this can be done easily with post-fabrication analysis using a microscope and if taper

diameter does indeed vary enough to have a significant effect on FSBS then the taper can

be made shorter to ensure a higher degree of uniformity.

Figure 7.16: Proposed experiment to measure the Brillouin frequency of a
fibre taper featuring an all-fibre optics design. A - Titanium-Sapphire pulsed
laser, B - MOGLabs continuous wave laser, C - fibre polarisation control, D
- fibre taper, E - bandpass filter, F - detector.

Naturally, the next step is to examine Brillouin interactions in a null-coupling fibre taper,

this would require a similar setup to the previous experiment but this time light would be
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focussed into the two input arms of the device and the ratio of the output arms compared

to the ratio of the input arms, a difference in these values when the pump is turned on

and off would suggest that light in the taper is undergoing intermodal FSBS.

From here, based on the results of the previous experiment, single photons can be used

in the taper to confirm its efficacy at switching quantum information and a device can be

manufactured that employs a null-coupling fibre taper in order to switch quantum infor-

mation. Such a device can be linked with a cavity to form a switchable cavity quantum

memory.

These steps will still be useful even with the negative outcome of the feasibility analysis,

as confirming parameters such as switching length physically will help confirm this. The

maximum aspect ratio of a taper could be increased which may open up the possibility

of a feasible device.



Chapter 8

Summary and Conclusions

Throughout this thesis, progress has been made towards using Brillouin scattering as a

tool to achieve two different devices that contribute to the field of photonic computing

and linear optics quantum computing.

In order to begin these experiments, preliminary data was taken regarding the saturated

absorption and two-photon absorption of rubidium vapour, which allows further exper-

iments to be completed that measure the induced susceptibility. With the completion

of this measurement, two switchable cavity quantum memories will be built. The first

uses the induced susceptibility change caused by two counter-propagating pump fields to

create a Bragg grating in the material, light is then trapped between a staionary mirror

and this induced Bragg grating. The second changes the susceptibility of rubidium in a

ring cavity, which in turn changes the resonances of the cavity.

Two (formal) attempts have been made to measure the Brillouin linewidth of diamond,

using a single laser with a sideband created by an electro-optic modulator equal to the

Brillouin frequency and by using two separate lasers detuned by the Brillouin frequency.

Neither of these attempts were successful, and since these experiments took place this

figure has been established in the literature. Further experiments will employ cavities to

increase intra-diamond power, increasing Brillouin interactions and finally pulses will be

used in an attempt to store and retrieve light.
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Further Brillouin scattering experiments have taken place in fibre tapers with the goal

of creating a photonic switch made of a null-coupling fibre taper that uses the acoustic

field induced by Brillouin scattering to switch light from one electromagnetic mode to an-

other. The first of these experiments measures the polarisation change that a signal field

experiences due to the induced birefringence of a TR2m acoustic mode, results showed a

significant change in polarisation suggesting the presence of these modes but the polari-

sation change experienced here is indistinguishable from the birefringence induced by the

Kerr effect and so further experiments must be completed to confirm this.

The second of these experiments functions in a similar way to how the Brillouin interac-

tion in diamond was measured, two fields with a detuning equal to the Brillouin frequency

are set to co-propagate through a taper and measured to observe the frequency of the

acoustic field, also similar to the diamond experiment were the results, which did not give

the desired outcome. Finally, a high powered pulsed laser is used to drive high powered

acoustic fields which scatters light of dissimilar wavelength, once measured, the result

should produce a beat frequency equal to that of the acoustic field, but no such frequency

was detected.

Finite-element analysis was used to simulate Brillouin scattering in both diamond and

fibre tapers, two Python packages were used called FeNICS and PySBS that took input

geometries and material properties and produced electromagnetic modes, acoustic modes,

and Brillouin gain. The results of these simulations produced full Brillouin linewidths for

three different crystal orientations of diamond, and allowed for the analysis of taper di-

ameters effect on Brillouin gain.

This work culminates in the ability to analyse the feasibility of both of these devices.

From the simulation work, values for gain for specific crystal orientations of diamond

were found and were used to analyse the distance over which information can be stored,

this happened to be 6.36cm which is short in comparison to what is available. This,
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along with the acoustic phonon lifetimes presented in Chapter 4, indicated that a quan-

tum memory utilising Brillouin scattering is feasible and that work should be continued

towards this goal.

Again from the simulation work, the intermodal Brillouin gain could be found as a function

of fibre taper diameter, which in turn could be used to analyse the dynamics of light as

it passes along the length of the taper. It was found that for realistic pump powers that

could be achieved in the lab, full switching of light could not occur in tapers with aspect

ratios capable of being produced in-house. However, this limit could be pushed with an

increase in aspect ratio, which could be possible with significant work.



Appendix A

A Mathematical Model of Brillouin

Scattering

This appendix describes some of the background material necessary for a full understand-

ing of the ideas presented in the bulk text, it begins with a derivation of both optical

and acoustic phonons and goes on to describe classical and quantum characterisations of

stimulated Brillouin scattering in a more detailed manner to that presented in chapter 3.

A.1 Lattice Vibrations in Crystals

The Lennard-Jones potential is a mathematical model that describes the soft attractive

and repulsive forces between two electronically neutral atoms or molecules [125], as a result

of these forces atoms will equilibrate at a set distance from each other where the energy

that the system occupies is at a minimum. The attractive force is described by the Van der

Walls forces acting on the atoms and follows a 1/r6 relation with separation distance, the

repulsive force is described by electron orbitals overlapping (i.e. Pauli exclusion principle)

and follows a 1/r12 relation with separation distance. Combining these terms gains the

following

ELJ =
A

r12
− B

r6
, (A.1)
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where ELJ is the potential energy of the system, r is the separation between the two

atoms, and A and B are material constants. Figure A.1 shows both terms and how in

combination they create a system with a minimum energy at a finite distance away from

the atom.

Figure A.1: Graph describing Van der Walls attractive forces, orbital overlap
repulsive forces, and the resulting Lennard-Jones potential.

In a crystal, this potential is associated with every atom in the lattice, the potential

energies add up and produce an array of wells in which each atom is able to stably sit,

however, these wells are shallow and as such the atoms within them are able to oscillate

freely. When one atom moves position it will effect the position of the potential field

surrounding it, causing atoms nearby to move in a way as to prevent the potential energy

increasing, and causes waves to propagate through the material. The energy of these waves

is quantised, and so it is often easier to think of them as quasiparticles called phonons.

Following is a derivation of the mechanics of these phonons taken from Kittel [125].
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Figure A.2: One-dimensional chain of identical atoms, a small displacement
on one will influence the position of nearby atoms, creating regular oscilla-
tions known as phonons.

The frequency, ω of a phonon is proportional to its wavenumber, k, the associated depen-

dency is called the dispersion relation and describes the dispersive effects of a medium on

waves that propagate through it [201]. Simplifying a crystal to a linear chain of identical

atoms of mass m, connected via spring-like bonds with force constant C, the position of

the central atom is denoted as xs, and its nearest neighbours as xs−1 and xs+1 as shown

in figure A.2. The force, Fs, acting on an atom is given by

Fs = m
d2xs
dt2

. (A.2)

Hooke’s law, Fs = Cxs, can be used to express the force applied in terms of the displace-

ment of the atoms and the force constant, taking into account the relative displacements

between the central atom and its nearest neighbours gives

Fs = C(xs−1 − xs) + C(xs+1 − xs) = C(xs+1 + xs−1 − 2xs). (A.3)

These oscillations can be represented as a wave using the equation

xs = Aeiωt = Aeiksa, (A.4)

where ω is the angular frequency, t is time, A is the amplitude, and a is the equilibrium

lattice spacing. Differentiating the second term twice with respect to time gives

d2xs
dt2

= −ω2Aeiωt = −ω2xs. (A.5)

This allows an expression for force independent of time
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−mω2xs = C(xs+1 + xs−1 − 2xs). (A.6)

Replacing the coordinate values with the final term of eq. A.4

−mω2eiksa = C(eik(s+1)a + eik(s−1)a − 2eiksa) = Ceiksa(eika + e−ika − 2). (A.7)

This simplifies to

ω2 =
2C

m
(1 − cos(ka)) =

4C

m
sin2

(
ka

2

)
. (A.8)

One final step gives the dispersion relation for a monatomic chain

ω(k) =

√
4C

m

∣∣∣∣sin(
ka

2

)∣∣∣∣ . (A.9)

This produces the graph shown in figure A.3, wavenumber along the horizontal axis is

normalised to a. Only the wavenumbers from −π
a

to π
a

(or those within the Brillouin zone)

need to be presented as any oscillation outside of this area is indistinguishable from one

within it.

Figure A.3: Dispersion curve caused by a one-dimensional chain of identical
atoms as described by equation A.9. The dotted line describes k = ω to
show the linearity of the dispersion curve at low k. Reproduced from [126].

The monatomic chain model is only effective for crystal structures with a single atom in
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their unit cell, for a full description of phonon propagation in crystals the case where there

are two atoms per unit cell must also be examined. Consider the case of a diatomic chain,

where atoms of high and low mass (M and m) alternate along a linear, one-dimensional

plane. In this case, the position of the atoms are u and v for each mass respectively, s

encapsulates one atom of each mass, all bonds have the same force constant, C, and the

lattice parameter, a, is the distance between two identical atoms.

Figure A.4: One-dimensional chain of atoms with alternating high and low
masses, a small displacement on one will influence the position of nearby
atoms, creating regular oscillations known as phonons.

Similar to the case of a monatomic chain, the first step is to take the relative difference

in displacement between the central atom and its two nearest neighbours, this must be

done for both atoms in the unit cell.

Fu =M
d2us
dt2

= C(vs + vs−1 − 2us),

Fv =m
d2vs
dt2

= C(us+1 + us − 2vs).

(A.10)

Once again, the oscillating atoms can be described as waves in space and time, but this

time the two atoms will have different amplitudes, u and v

us =ueiskae−iωt,

vs =veiskae−iωt.
(A.11)

Differentiating twice with respect to time gives
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d2us
dt2

= −ω2ueiskae−iωt,

d2vs
dt2

= −ω2veiskae−iωt,

(A.12)

which can be substituted into equations A.10 and simplified to produce a pair of coupled

equations

 −ω2Mu = Cv(1 + e−ika) − 2Cu

−ω2mv = Cu(1 + eika) − 2Cv

 . (A.13)

These equations can be rearranged, written as a determinant, and solved to get the

solution

Mmω4 − 2C(M +m)ω2 + 2C2[1 − cos (ka)] = 0. (A.14)

Finally, solving for ω and simplifying gives the equation used to describe the phonon

dispersion relation

ω2(k) =
C(M +m)

Mm
± C

√
(M +m)2

M2m2
− 4

Mm
sin2

(
ka

2

)
. (A.15)

This equation gives rise to two branches, representing to two different types of phonon

in a material, the higher frequency band corresponds to optical phonons and the lower

frequency band corresponds to acoustic phonons (figure A.5). Optical phonons are named

as such because of their movement patterns, for an ionic crystal with atoms of alternating

charge the atoms of an optical phonon will move against each other and will have a fixed

center of mass, this type of motion is able to be excited with the electric field of a light

wave. The atoms in an acoustic phonon move with each other and have an oscillating

center of mass much like in long wavelength acoustic vibrations, hence their name.
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Figure A.5: Dispersion curve caused by a one-dimensional chain of atoms
with alternating high and low masses as described by equation A.9. The
higher frequency band is caused by optical phonons and the lower is caused
by acoustic phonons. Reproduced from [126].

Waves in a crystal can move in both transverse and longitudinal patterns, and so more

lines in a dispersion relation will arise as a result of the number of degrees of freedom a

particular crystal has. If there are p atoms in the primitive cell, there will be 3p branches

to the phonon dispersion relation: 3 acoustic branches and 3p− 3 optical branches [125].

The primary mechanism by which phonons arise in a material is due to the random

motion of atoms induced by their temperature, as a result phonons play a pivotal role in

the transfer of heat across a material, effecting material properties such as heat capacity.

There will therefore be phonons present in any material above 0K, noise caused by phonons

can be reduced by cooling the sample to near this level.

A.2 The Three Contributions to Brillouin Scattering

Consider two beams of different wavelength passing through a bulk material and occupy-

ing the same spacial mode, a high powered pump beam with amplitude, frequency, and

wavevector (Ep, ωp, kp), and a low powered signal beam with amplitude, frequency, and
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wavevector (Es, ωs, ks). As these two beams propagate they will beat together to form a

standing wave, which will induce a periodic density variation caused by electrostriction.

When the frequency difference between the pump and signal beam is equal to the fre-

quency of a phonon mode (u, Ω, q) in the material, a resonant energy transfer takes place

to dramatically boost the power of the signal beam. There are a number of selection rules

associated with this process accounting for the conservation of energy and momentum

Ω = ωp − ωs, (A.16)

q = kp + ks. (A.17)

Electrostriction is the the tendency of a dielectric material to compress under a high local

electric field leading to areas of higher density. It is a non-linear effect, meaning that

the strength of the interaction has a non-linear relation with electric field strength. More

precisely, it is a non-linear interaction between polarisation (in this context referring to

the induced electric dipole moment per unit volume) and electric field strength, described

by expressing polarisation, P(t), as a power series in the field strength E(t)

P(t) = ϵ0(χ
(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...), (A.18)

where ϵ0 is the permittivity of free space, χ(1) is the linear susceptibility, and χ(2) and χ(3)

are the second- and third-order non-linear optical susceptibilities. The physical origin of

the various linear and non-linear susceptibilities comes from a materials symmetry and

how an atom is able to oscillate in a potential well, for condensed matter, χ(1) is unity, and

higher order susceptibilities χ(2) and χ(3) are on the order of 10−12 and 10−24 respectively.

An assortment of effects arises as a result of non-linear optics, including second harmonic

generation [128], optical parametric oscillation [129], and sum- and difference-frequency

generation [130].

Following the derivation presented in [202], electrostriction is a third order non-linear

effect and the potential energy in a material caused by the phenomena is given by
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u =
1

2
ϵϵ0E

2, (A.19)

where ϵ is the relative dielectric constant and E is the electric field strength. The magni-

tude of electrostrictive forces can be found using the electrostriction tensor

σij = −1

2
ϵ0n

4pijklEkEl, (A.20)

where n is the refractive index, pijkl is the photoelastic tensor, the total electric field

for two waves in the same spatial mode is given by (Epe
i(kpx−ωpt) + Ese

i(ksx−ωst))/2 + c.c.

Inserting this into equation A.20 and filtering out the components with frequency Ω, the

time-harmonic electrostrictive tensor of the form σije
i(qx−Ωt) is given, with components

σxx
σyy
σzz
σyz
σxz
σxy

 = −1

2
ϵ0n

4


p11 p12 p13
p12 p22 p23
p13 p23 p33

p44
p55

p66




EpxE

∗
sx

EpyE
∗
sy

EpzE
∗
sz

EpyE
∗
sz + EpzE

∗
sy

EpxE
∗
sz + EpzE

∗
sx

EpxE
∗
sy + EpyE

∗
sx

 . (A.21)

The divergence of the electrostrictive tensor gives the bulk electrostrictive force, and so

equation A.41 becomes fESei(qx−Ωt) with components

fES
x = −iqσxx − ∂yσxy − ∂zσxz, (A.22)

fES
y = −iqσxy − ∂yσyy − ∂zσyz, (A.23)

fES
z = −iqσxx − ∂yσzy − ∂zσzz. (A.24)

For larger materials, the bulk electrostriction component of SBS far exceeds the bound-

ary electrostriction and radiation pressure components, however when devices begin to

reach nanometer scales the two boundary effects vastly outweigh the bulk electrostriction

component due to an excess of material boundaries. The discontinuity of optical pow-

ers and photoelastic constants generates stress (and therefore electrostrictive forces) that

contribute to the overall effect, taking the divergence of equation A.20 in a similar way to

before the boundary electrostrictive forces between material 1 and 2 becomes FESei(qx−Ωt)
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with components

FES
i = (σ1ij − σ2ij)nj, (A.25)

where nj is a normal vector that points from material 1 to material 2. When an elec-

tromagnetic field is incident on a material interface, there is an exchange of momentum

between the field and the material resulting in a mechanical pressure being exerted on the

material, this is known as radiation pressure and makes up the final component of SBS.

The forces associated with radiation pressure can be derived from the Maxwell Stress

Tensor (MST), a second-order symmetric tensor that represents the interaction between

electromagnetic forces and mechanical momentum. The electric part of MST is

Tij = ϵ0ϵ(EiEj −
1

2
δijE

2), (A.26)

where δij is the Kronecker delta. The pressure between material 1 and 2 is

FRP
i = (T2ij − T1ij)nj. (A.27)

When the normal and tangential components of the electric field are resolved with respect

to the dielectric interface E = Enn + Ett, and using the boundary conditions ϵ1E1n =

ϵ1E1n = Dn and E1t = E2t = Et, it can be shown that

FRP = −1

2
ϵ0E

2
t (ϵ2 − ϵ1)n +

1

2
ϵ−1
0 D2

n(ϵ−1
2 − ϵ−1

1 )n. (A.28)

Like with both electrostriction components, if the total electric field, (Epe
i(kpx−ωpt) +

Ese
i(ksx−ωst))/2 + c.c., is inserted into equation A.28 and the components with frequency

Ω are filtered out, the result is a time-harmonic radiation pressure of the form FRP ei(qx−Ωt),

with components

FRP = −1

2
ϵ0EptE

∗
st(ϵ2 − ϵ1)n +

1

2
ϵ−1
0 DpnD

∗
sn(ϵ−1

2 − ϵ−1
1 )n. (A.29)

This equation shows that the forces caused by radiation pressure are always normal to

the dielectric interface, pointing from the high to the low index medium.
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The Brillouin gain is an important figure when discussing the efficiency of SBS processes,

it is defined as the ratio of input to output power of the signal field. Brillouin gain can be

found using the overlap integral between the optical forces and the elastic displacement,

the first step in deriving this is to describe how power is transferred between pump and

signal fields along the axis of propagation direction (x) [148]

dPs

dx
= gPpPs − αsPs, (A.30)

where Pp and Ps is the power of the pump and signal fields respectively, g is the SBS

gain, and αs is the sound absorption coefficient. By utilising particle flux conservation,

SBS can be expressed as

g(Ω) =
ωs

2ΩPpPs

Re

〈
f,
du

dt

〉
, (A.31)

where f is the total optical forces generated by the interaction of the pump and signal

waves, and u is the elastic deformation caused by f. The inner product between two

vector fields is defined as the overlap integral over the material cross-section

⟨A,B⟩ ≜
∫

A∗ ·Bds. (A.32)

The optical power, P = νg⟨E, ϵE⟩/2, where νg is the optical group velocity can be substi-

tuted into equation A.31 to give

g(Ω) =
2ωs

νgpνgs

Im⟨f,u⟩
⟨Ep, ϵEp⟩⟨Es, ϵEs⟩

. (A.33)

This can be further simplified by considering the ideal case, neglecting the elastic loss,

with a elastic response ue−iΩt caused by a force fe−iΩt. From Royer [203],

− ρΩ2ui =
∂

∂xj
cijkl

∂ui
∂xk

+ fi, (A.34)

where ρ is the mass density, and cijkl is the elastic tensor. There two important properties

of the elsatic tensor that are worth noting, first, it is symmetric with respect to the first
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two and last two indices (cijkl = cjikl, cijkl = cijlk), and the interchange of the first two

and last two indices does not affect the value (cijkl = cklij) [203]. Using these properties it

is possible to show that the operator on the left hand side of equation A.34 is Hermitian,

since without a driving force, f, equation A.34 becomes the eigen-equation for elastic

waves. Therefore, the eigen-mode ume
−iΩmt satisfies the orthogonality condition

⟨um, ρun⟩ = δmn⟨um, ρum⟩. (A.35)

When including f, u can be decomposed in terms of it’s eigenmodes u = Σmbmum. Using

equation A.35,

bm =
⟨um, f⟩

⟨um, ρum⟩
1

Ω2
m − Ω2

, (A.36)

where Ωm is frequency of the mechanical wave. Consider now the case with elastic loss.

The first-order effect of loss can be found by changing Ωm to a complex value, Ωm−iΓm/2.

Assuming a quality factor Qm = Ωm/Γm much larger than one,

bm =
⟨um, f⟩

⟨um, ρum⟩
1

Ω2
m − Γm

Γm/2

Ωm − Ω − iΓm/2
. (A.37)

Γm is the Brillouin linewidth, relating to the damping parameter by Γm = q2Γ̄. Inserting

equation A.37 into equation A.33 shows that the total SBS gain is the sum of SBS gains

of individual elastic modes, expressed as

g(Ω) =
∑
m

Gm
(Γm/2)2

(Ω − Ωm)2 + (Γm/2)2
, (A.38)

where Gm is the peak value, defined by

Gm =
2ωQm

Ω2
mνgpνgs

|⟨f, um⟩|2

⟨Ep, ϵEp⟩⟨Es, ϵEs⟩⟨um, ρum⟩
. (A.39)

SBS falls in to two categories depending on launch conditions. When the pump and signal

beams are counter-propagating through a material, the process reverses the direction of

travel of the scattered light, and when the pump and signal beams are co-propagating

through a material the process does not reverse the direction of travel of the scattered
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light. This is known as Backwards Stimulated Brillouin Scattering (BSBS) and Forward

Brillouin Scattering (FSBS) respectively. Both BSBS and FSBS are explored thoroughly

in this thesis, and so it is useful to examine the varying mechanics of these processes.

In BSBS, electromagnetic fields are travelling in opposite directions, and so Ep = E,Es =

E∗, and q = 2k since kp = ks to good approximation. Equation A.41 then becomes
σxx
σyy
σzz
σyz
σxz
σxy

 = −1

2
ϵ0n

4


p11 p12 p13
p12 p22 p23
p13 p23 p33

p44
p55

p66




E2

x

E2
y

E2
x

2EyEz

2ExEz

2ExEy

 . (A.40)

All components of the electrostriction tensor are non-zero and so the electrostriction force

generates both longitudinal and transverse components.

Figure A.6: Dispersion diagram for backwards Brillouin scattering. Repro-
duced from Wolff et al [204].

In FSBS, electromagnetic fields are travelling in the same direction, and so Ep = Es = E,

and equation 3.3 becomes q = 0. Equation A.41 becomes
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σxx
σyy
σzz
σyz
σxz
σxy

 = −1

2
ϵ0n

4


p11 p12 p13
p12 p22 p23
p13 p23 p33

p44
p55

p66




|Ex|2
|Ey|2
|Ex|2

2Re(EyE
∗
z )

0
0

 . (A.41)

It is shown here that σxz and σxy are both zero, using this in equations A.23, and A.25,

gives fES
x = FES

x = 0. This shows that any electrostrictive forces are purely transverse.

While forward Brillouin scattering can occur in bulk media, the increase in the surface

area to volume ratios for nanoscale systems such as waveguides lends itself to forward

Brillouin scattering and so devices employing this effect are often very small.

Figure A.7: Dispersion diagram for forwards Brillouin scattering. Repro-
duced from Wolff et al [204].

A.3 Quantising SBS

There are various interpretations of quantum mechanics that attempt to explain how the

mathematical descriptions of quantum systems correspond to reality, one such interpreta-

tion is the Heisenberg interpretation, which takes state vectors as time-independent and

therefore constant and operators to have a time dependence. This is in contrast to the

Schrodinger interpretation, where state vectors have a time dependence but observables

do not, this difference can be thought of as a change of reterence frame in Hilbert space.
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The Heisenberg interpretation is gained from the Schrodinger interpretation by applying

a unitary operator Û on state vector |ψ(t)⟩H , the result is the Heisenberg equation of

motion which describes how a system changes in time

dÂH

dt
=

1

iℏ

[
ÂH , Ĥ

]
, (A.42)

where ÂH is an operator in the state |ψ(t)⟩H and Ĥ is the Hamiltonian, an expression

that amounts to the total energy contained within a system. The square brackets in this

case denote a canonical commutation relation, which describe the fundamental relation

between canonical conjugate quantities (quantities where the Fourier transform of one is

equal to the other) and can be expanded as
[
ÂH , Ĥ

]
= ÂHĤ − ĤÂH . From this, the full

equations of motion for both forward and backward SBS can be derived, the first step of

which is find the systems Hamiltonian, this takes the form

H = Hph +Hopt +H int , (A.43)

where Hph, Hopt , and H int are the Hamiltonian’s used to describe the acoustic field,

optical field, and the acousto-optic interaction respectively. The following section provides

a brief derivation of all three of these Hamiltonian’s and applies them to find the equations

of motion for backward and forward Brillouin scattering in terms of envelope operators.

This derivation is for the generalised case of Brillouin scattering in a waveguide, however

can be applied to bulk optical systems. The acoustic Hamiltonian can be represented by

the sum of the kinetic and potential energy

HA =

∫
πi(r)πi(r)

2ρ(r)
dr +

1

2

∫
Sij(r)cijkl(r)Skl(r)dr, (A.44)

and can be quantised as

Hph =

∫
dqℏΩ(q)b†qbq, (A.45)

where b†q and bq are the creation and annihilation operators for the qth phonon mode that

encapsulates the time evolution of each mode amplitude, π(r) is the conjugate momenta,
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ρ(r) is density, Sij(r) is the is the linearised strain tensor operator, and cijkl(r) is the

stiffness tensor. The full Hamiltonian includes the sum over all branches of acoustic

dispersion, but focussed on here is a single acoustic field with dispersion Ω(q). Since the

acoustic field given here is driven, it has a well defined carrier wavevector q0, and so the

phonon-mode envelope operator is introduced b(z) = 1/
√

2π
∫

dqbqe
i(q−q0)z which peaks

around the carrier wavevector allowing the the acoustic field to evolve in space. be(z)be(z)†

then represents the phonon number per unit length. Substituting the inverse Fourier

transform bq = 1/
√

2π
∫

dzb(z)e−i(q−q0)z into equation 3.45, the Hamiltonian becomes

Hph =

∫
dzℏb†(z)Ω̂zb(z), (A.46)

where the tailor expansion of Ω(q) around q0 results in the operator

Ω̂z =
∞∑
n=0

1

n!

∂nΩ

∂qn

∣∣∣∣∣
qD

(
−i

∂

∂z

)n

. (A.47)

A caveat of this definition is that this linewidth must be small, which is indeed the case

for Brillouin interaction.

The electromagnetic Hamiltonian can be derived in a similar way. Standard arguments

in electromagnetic theory lead to an expression for the energy density

Hed =

∫
H · dB +

∫
E · dD, (A.48)

where H is the magnetising field, B is the magnetic flux density, E is the electric field,

and D is the electric displacement field. This can be expanded and split into linear and

non-linear terms. The quantised solution is then

H =
∑
α

ℏωαa
†
αaα, (A.49)

where a†α and aα are the photon creation and annihilation operators, and ωα is frequency

of a mode α. The photon-mode envelop, as(z) = 1/
√

2π
∫

dkaγkei(k−kγ)z, is introduced in

a similar fashion as with the acoustic Hamiltonian, the inverse Fourier transform aγk(z) =
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1/
√

2π
∫

dkas(z)e−i(k−kγ)z is substituted into equation 3.49

HEM =
∑
γ

∫
dkℏω̂za

†
sas. (A.50)

Over all modes γ and with the corresponding spatial operator

ω̂z =
∞∑
n=0

1

n!

∂nω

∂kn

∣∣∣∣∣
k

(
−i

∂

∂z

)n

. (A.51)

The light matter interaction is introduced with the new quantity βij(r), which is the total

inverse relative dielectric tensor

βij(r) = δijβref (r) + β̄ij(r; [u(r)]). (A.52)

The coupling between optical and acoustic fields arises as a result of the dependence of

βij(r) on displacement field u(r) through its reliance on on the strain in the material and

and the motion of the interfaces. The opto-acoustic coupling can then be written as

H int =
1

2ϵ0

∫
Di(r)β̃ij(r; [u(r)])Dj(r)dr, (A.53)

where ϵ0 is the permittivity of free space. Neglecting two-photon interactions and only

taking the significant terms of the above equation (those that contain creation and anni-

hilation operators of photons, which have a much greater energy than those of phonons),

the interaction Hamiltonian reduces to

H int =
∑
γ,γ′,α

∫
dk dk′dq

(2π)3/2
a†saasb

∫
G (γk; γ′k′;αq) ei(k

′−k+q)z dz

+
∑
γ,γ′,α

∫
dk dk′dq

(2π)3/2
b†a†asas

∫
G∗ (γk; γ′k′;αq) e−i(k′−k+q)z dz

(A.54)

Where primed operators indicate their belonging to the signal field, and for a acoustic

mode α. The coupling parameter introduced here includes contributions from bulk elec-

trostriction and surface effects such as boundary electrostriction and radiation pressure,

it can be reduced for convenience
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Ḡ (γk; γ′k′;αq) =
1√

(ℏωγk) (ℏωγ′k′) (ℏΩαq) |vγkvγ′k′vαq|
G (γk; γ′k′;αq) (A.55)

Where vγk , vγ′k′ , and vαq are the velocities of the pump, signal, and acoustic fields respec-

tively. And expanded to include separate expressions for bulk and surface effects

Ḡ (γk; γ′k′;αq) = Ḡbullk (γk; γ′k′;αq) + Ḡsurf (γk; γ′k′;αq) (A.56)

Which, in turn, can be described by the following

Ḡbulk (γk; γ′k′;αq) =
1

ϵ0

1

2
√

2 |νγkvγ′k′vαq|

×
∫

dx dy
(
diγk(x, y)

)∗
djγ′k′(x, y)pijm(x, y)slnαq(x, y)

Ḡsurf (γk; γ′k′;αq) = − 1

ϵ0

1

2
√

2 |vγkvγ′kvαq|

×
∫

dx dy
(
diγk(x, y)

)∗
diγrk(x, y)

(
∂βref(x, y)

∂rj

)
ujαq(x, y)

(A.57)

The full Hamiltonian can then be built, featuring acoustic, electromagnetic, and acous-

tooptic interaction contributions

H =

∫
dzℏb†(z)Ω̂zb(z)

+
∑
γ

∫
dkℏωza

†
sas

+
∑
γ,γ′,α

∫
dk dk′dq

(2π)3/2
a†saasb

∫
G (γk; γ′k′;αq) ei(k

′−k+q)z dz

+
∑
γ,γ′,α

∫
dk dk′dq

(2π)3/2
b†a†sas

∫
G∗ (γk; γ′k′;αq) e−i(k′−k+q)z dz,

(A.58)

With the full Hamiltonian of this system fully derived, it is possible to apply it to equation

3.42 in order to retrieve the full Heisenberg equations of motion for pump, signal, and

acoustic fields. These equations follow the same basic form for both forward and backward

Brillouin scattering, differing only on the launch conditions of the optical fields. For
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acoustic, pump, and signal fields of the form

U = b(z, t)y(x, y)ei(qz−Ωt) + c.c.

Ep = as(z, t)e1(x, y)ei(kpz−ωpt) + c.c.

Ea = aas(z, t)e2(x, y)ei(kxz−ωxt) + c.c.

(A.59)

For backwards Brillouin scattering, ignoring the anti-Stokes scattered field and obeying

the selection rules (equations A.16 and A.17), the equations of motion are then

∂B

∂t
− v0

∂b

∂z
= i (Ω − Ω0) b+ iG∗a†asas

∂as
∂t

+ vp
∂as
∂z

= iGaasb

∂aas
∂t

− vs
∂aas
∂z

= iG∗b†as.

(A.60)

Using the same criteria for forward Brillouin scattering, the equations of motion are

∂b

∂t
+ v0

∂b

∂z
= i (Ω − Ω0)B − iG∗a†asas

∂as
∂t

+ vp
∂as
∂z

= −iGaasb

∂aas
∂t

+ vs
∂aas
∂z

= −iG∗b†as,

(A.61)

Where G is related to Brillouin gain g by the equation

g =
4|G|2

vsvpΓmℏωp

(
Γm

2

)2
(Ω − Ω0)

2 +
(
Γm

2

)2 (A.62)



Appendix B

Finite Element Analysis

The Finite Element Method (FEM) is a numerical method that is designed to solve dif-

ferential equations for large geometries. Finite Element Analysis (FEA) is the process by

which this mathematical model is applied to a system. FEM was developed 60 years after

Lord Rayleigh presented basic solutions for finding the first natural frequency of simple

structures which formed the basis for modern solutions, and quickly developed into a

hugely useful tool for both engineers and physicists [205].

Typical applications of FEA include structural analysis, heat transfer, fluid flow, mass

transport, and electromagnetic potential, but can be applied to a huge range of problems

that are described by differential equations.

A geometry comprising of different materials and unique shapes is divided up into a num-

ber of discrete sections known as elements1 that are joined only via nodes that exist at

the vertices of the elements, the complete set of elements is known as the mesh and the

process by which a geometry is split up is known as a discretisation. Once a geometry

has undergone an appropriate discretisation algorithm, the chosen equations are applied

to each individual element and assembled to give system equations, and a macroscopic

picture of the system is built. Post-processing checks can then be applied manually to

1This forms the latter part of the name Finite Element, the former refers to the number of degrees of
freedom used to model each element.
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ensure results are correct, as there are a large number of variables that can derail what

could be accurate results, these include poor meshing, inaccurate approximations, incor-

rect material parameters, etc. This describes the three primary stages, discretisation,

solution analysis, and post processing of a finite element simulation.

Presented here is a detailed example of how stress and strain of a simple 1-dimensional

structure can be obtained using FEA. Beginning with Hooke’s law,

F = −kx, (B.1)

where F is the force, k is the stiffness constant, and x is the displacement. This can easily

be adjusted in order to apply it to a element, F becomes f , the nodal forces, k becomes

[k], the stiffness matrix, and x becomes [u], the nodal displacements.

Figure B.1: A single 1-dimensional element with two nodes, each with linear
translational elements x and y, and a torsional translational element θ.

For a single 1-dimensional element with two nodes, 1 and 2, each with linear translational

elements x and y, and a torsional translational element θ, as shown in figure B.1, equation

B.1 becomes 
fx1
fy1
m1

fx2
fy2
m2

 =


k11 k12 k13 k14 k15 k16
k21 k22 k23 k24 k25 k26
k31 k32 k33 k34 k35 k36
k41 k42 k43 k44 k45 k46
k51 k52 k53 k54 k55 k56
k61 k62 k63 k64 k65 k66




u1
v1
θ1
u2
v2
θ2

 . (B.2)

The equilibrium equation governing the lateral deflection of a beam is given by [206]

EI
d4w(x)

dx2
= q(x), (B.3)
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where E is the Young’s modulus, I is the area moment of inertia, w(x) is the deflection of

the beam, and q(x) is the distributed load applied to the beam. By solving this equation

the stiffness matrix can be found

[k] =



AE
L

0 0 −AE
L

0 0
0 12EI

L3
6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L

0 −6EI
L2

2EI
L

−AE
L

0 0 AE
L

0 0
0 −12EI

L3 −6EI
L2 0 12EI

L3
6EI
L2

0 6EI
L2

2EI
L

0 −6EI
L2

4EI
L

 , (B.4)

where A is the cross sectional area and L is the length of the beam. This can be substituted

into equation B.2 and simplified into a series of linear equations

fx1

fy1

m1

fx2

fy2

m2

=

=

=

=

=

=

AE
L
u1 − AE

L
u2,

12EI
L3 v1 + 6EI

L2 θ1 − 12EI
L3 v2 + 6EI

L2 θ2,

6EI
L2 v1 + 4EI

L
θ1 − 6EI

L2 v2 + 2EI
L
θ2,

−AE
L
u1 + AE

L
u2,

−12EI
L3 v1 − 6EI

L2 θ1 + 12EI
L3 v2 − 6EI

L2 θ2,

6EI
L2 v1 + 2EI

L
θ1 − 6EI

L2 v2 + 4EI
L
θ2.

(B.5)

It is possible to apply a linear force to node two in the x direction while all other degrees

of freedom remain fixed, and are therefore equal to zero, this results in

fx1

fy1

m1

fx2

fy2

m2

=

=

=

=

=

=

0,

−12EI
L3 v2,

−6EI
L2 v2,

0,

12EI
L3 v2,

−6EI
L2 v2.

(B.6)

And so the forces acting on other nodes that are caused by the initial displacement can

easily be calculated. From this, a simple set of equations can be applied to find stress,
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strain, and displacement, first by using equation B.1 to find [u], and then using equations

ϵ = ∆L/L0 and σ = Eϵ to find strain and stress respectively, where L0 is the original size

of the beam.

Figure B.2: Three 1-dimensional elements with a total of 4 nodes, each with
linear translational elements x and y, and a torsional translational element
θ.

Expanding this example into a chain of 1-dimensional elements each with 2 nodes, as

in figure B.2, it is possible to form a stiffness matrix that represents the entire system,

since adjacent elements share nodes there is significant overlap between the corresponding

elements in the stiffness matrix, Hooke’s law therefore becomes equation B.7.

With the addition of only two extra elements this equation has become unmanageable

to do by hand, and so systems with huge numbers of elements need complex software to

accurately analyse. Many such packages exist, one of which is FeNICS.
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fx1

fy1

m1

fx2

fy2

m2

fx3

fy3

m3

fx4

fy4

m4



=



A1E1

L1
0 0 −A1E1

L1
0 0

0 12E1I1
L3
1

6E1I1
L2
1

0 −12E1I1
L3
1

6E1I1
L2
1

0 6E1I1
L2
1

4E1I1
L1

0 −6E1I1
L2
1

2E1I1
L1

−A1E1

L1
0 0 A1E1

L1
+ A2E2

L2
0 0

0 −12E1I1
L3
1

−6E1I1
L2
1

0 12E1I1
L3
1

+ 12E2I2
L3
2

−6E1I1
L2
1

+ 6E2I2
L2
2

0 6E1I1
L2
1

2E1I1
L1

0 −6E1I1
L2
1

+ 6E2I2
L2
2

4E1I1
L1

+ 4E2I2
L2

0 0 0 −A2E2

L2
0 0

0 0 0 0 −12E2I2
L3
2

−6E2I2
L2
2

0 0 0 0 6E2I2
L2
2

2E2I2
L2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−A2E2

L2
0 0 0 0 0

0 −12E2I2
L3
2

6E2I2
L2
2

0 0 0

0 −6E2I2
L2
2

2E2I2
L2

0 0 0

A2E2

L2
+ A3E3

L3
0 0 −A3E3

L3
0 0

0 12E2I2
L3
2

+ 12E3I3
L3
3

−6E2I2
L2
2

+ 6E3I3
L2
3

0 −12E3I3
L3
3

6E3I3
L2
3

0 −6E2I2
L2
2

+ 6E3I3
L2
3

4E2I2
L2

+ 4E3I3
L3

0 −63I3
L2
3

2E3I3
L3

−A3E3

L3
0 0 A3E3

L3
0 0

0 −12E3I3
L3
3

−6E3I3
L2
3

0 12E3I3
L3
3

−6E3I3
L2
3

0 6E5I3
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3
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u1

v1

θ1

u2

v2

θ2

u3

v3

θ3

u4

v4

θ4


(B.7)



Appendix C

Electromagnetic Modes in an

Optical Fibre

Electromagnetic waves propagating through a spatially confined waveguide such as an

optical fibre exist in modes, unvarying intensity distributions that are found by solv-

ing Maxwell’s equations with appropriate boundary conditions, each solution has a field

distribution, ψ(x, y), and a propagation constant, β, a value characterising the change

of amplitude and phase as an electromagnetic wave propagates. For an arbitrary non-

magnetic dielectric medium of refractive index n(x, y) with no point sources, Maxwell’s

equations become

∇ · (n2E) = 0,

∇ ·B = 0,

∇× E = −∂B
∂t
,

∇×B = ϵ0n
2∂E

∂t
.

(C.1)

Beginning with Gauss’ equation and using the product rule ∇ · (fv) = f(∇ · v) + v · (∇f)

∇ · E = −E · ∇n2

n2
= −E · ∇ lnn2. (C.2)
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At the same time, using Faraday’s Law of Induction and the vector identity ∇2f = ∆f

obtains

∇× (∇× E) = −µ0
∂∇×H

∂t
. (C.3)

Substituting in Ampere’s Circuital Law on the right hand side to remove the magnetic

field and using µ0ϵ0 = 1/c2 gives

∇(∇ · E) −∇2E =
n2

c2
∂2E

∂t2
. (C.4)

As a result of this substitution, the solution will be only in terms of electric field. Substi-

tuting equation C.2 into C.4 gives

∇2E − n2

c2
∂2E

∂t2
= −∇(E · ∇ lnn2). (C.5)

n does not depend on z or t, so modes are sought of the form

E(x, y, z, t)

H(x, y, z, t)

}
=
E(x, y)

H(x, y)

}
ei(βz−ωt), (C.6)

such that ∂/∂z → iβ, and ∂/∂t → −iω, equation C.5 along with k = ω/c becomes the vector

wave equation

∇2
TE + (K2n2 − β2)E = −(∇T + iβẑ)(E · ∇T lnn2), (C.7)

where ∇T = (∂/∂x, ∂/∂y, 0) is the transverse component of the grad operator and ẑ is

the unit vector along z. The solutions for this equation are satisfied by eigenfunctions

E(x, y) with eigenvalues β, however, the right hand side makes finding these solutions

difficult as the x and y components of the electric field are coupled together by the right

hand side, this can be conveniently eliminated with the weak guidance approximation,

∆n(x, y) << n, because ∇T lnn2 is proportional to the variation in n. The weak guidance

approximation applied to the majority of optical fibres and despite its name fibres with

this characteristic can guide light well. The resulting equation is the scalar wave equation
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∇2
Tψ(x, y)ê+ (K2n2 − β2)ψ(x, y)ê = 0, (C.8)

where ψ(x, y) is the scalar field distribution, ê is a unit vector, and the propagation

constant, β, varies and obeys the condition, kn2 ≥ β ≥ kn1, resulting in the constant

being positive in the core and negative in the cladding. This is possible since the remaining

part of the vector wave equation becomes independent of vector direction, Ex and Ey are

no longer coupled. Moving into polar coordinates, separation of variables can be used to

convert the scalar wave equation into radial and angular dependent ordinary differential

equations

ψ(r, ϕ) = R(r)F (ϕ). (C.9)

The angular equation for F (ϕ), from simple harmonic motion, is

d2F

dϕ2
+ l2F = 0. (C.10)

This produces two answers with sine and cosine dependencies

F (ϕ) = cos(lϕ), F (ϕ) = sin(lϕ), (C.11)

where l = 0, 1, 2, ... is a separation constant. The radial equation for R(r) is

r2
d2R

dr2
+ r

dR

dr
+ r2

(
k2n2 − β2

)
R− l2R = 0. (C.12)

This is simply the Bessel functions of order l in the core, and the solution that is finite

as r → 0 is

R(r) = AJl

(
Ur

a

)
, (C.13)

where Jl(x) is the Bessel function of the first kind of order l. For the cladding, the radial

equation is Bessel’s modified equation of order l, the solution that is finite as r → ∞ is
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R(r) = BKl

(
Wr

a

)
, (C.14)

where Kl(x) is the modified Bessel function of the second kind of order l. Bessel functions

of the first kind and modified Bessel functions of the second kind are presented graphically

in figure C.1.

(a) (b)

Figure C.1: First, Second, and third order (a) Bessel functions of the first
kind (Jl(x)) and (b) Bessel functions of the second kind (Kl(x)). These are
the solutions to the radial equation C.12 for the core and cladding respec-
tively.

Introduced in equations C.13 and C.14 are the normalised parameters U and W , they are

dimensionless values that aid in the simplification of the solutions corresponding to the

core and cladding respectively. They are defined as

U = a
√
k2n2

1 − β2,

W = a
√
β2 − k2n2

2.
(C.15)

The quadratic summation of parameters U and W , U2 + W 2 = V 2, leads to a third

parameter, V , which is considered a normalised frequency and is colloquially known as

the V-number, expressed as

V = ak
√
n2
1 − n2

2, (C.16)
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where a is the radius of the fibre core, and n1 and n2 are the refractive indices for the core

and cladding respectively. Only a single mode (eigenfunction) will be present in a fibre

when V < 2.405, corresponding to the first zero of the Bessel function used to describe

the mode, this is known as a single mode fibre and has its own unique applications when

compared with multimode fibre, characterised as a fibre with V > 2.405. For large values

of V , the number of modes in a fibre can be approximated with the equation [207]

N ≈ V 2

4
(C.17)

The first three modes in a multimode, step index fibre for light that is linearly polarised

(LPl,m modes) are presented in figure C.2, each mode has two parameters, l and m that

influence the shape of the mode, these correspond to how the field distribution varies with

angle and radius as per equations C.11 and C.12. For modes where l ̸= 0, two degenerate

orthogonal solutions are present corresponding to the two sinusoidal solutions for equation

C.11, for modes where l = 0, only one solution is present since F (ϕ) = sin(0ϕ) = 0.

Figure C.2: The first three linear polarisation (LP ) modes for a step-index
fibre are presented here, including both of the two degenerate forms of modes
LP11 and LP21. Reproduced from [195].

LPl,m modes are not the only ones to exist in this kind of fibre, Transverse Electric and

Transverse Magnetic (TE and TM) modes designate modes where there is no electric

or magnetic field component in the z-direction respectively, Transverse ElectroMagnetic

(TEM) designate modes without any electric nor magnetic field components in the z-
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direction, and hybrid modes, where there is non-zero electric and magnetic field in the

z-direction. Due to the weak guidance approximation, combinations of solutions for these

various modes correspond directly to the scalar solutions for linear polarisation modes

and are often presented as LP modes. A full correspondence between the first ten LP

modes and the contingent TM , TE, EH, and HE modes is shown in the following table.

LP-mode designation Mode designation and quantity Number of degenerate modes

LP01 HE11 × 2 2

LP11 TE01,TM01,HE21 × 2 4

LP21 EH11 × 2,HE31 × 2 4

LP02 HE12 × 2 2

LP31 EH21 × 2,HE41 × 2 4

LP12 TE02,TM02,HE22 × 2 4

LP41 EH31 × 2,HE51 × 2 4

LP22 EH12 × 2,HE32 × 2 4

LP03 HE13 × 2 2

LP51 EH41 × 2,HE61 × 2 4

For modes with propagation constants that fall outside of the condition kn2 ≥ β ≥ kn1,

the light is no longer strictly confined to the core of the fibre. When β < kN2, the as-

sociated mode is a ‘cladding mode’, which occurs due to refraction from the core and

propagates in the cladding [208].

C.1 Loss

Optical fibres are far from perfect and exhibit various types of loss as light moves through

them, some such loss mechanisms are bend loss, insertion loss, and attenuation.

As light moves through a curved fibre with radii of curvature on the order of 1cm, light

will pass through the cladding and leak out of the core due to the change in angle of
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incidence at the core-cladding interface.

Insertion loss comes when light in free space is focussed into a fibre, if there is not a com-

plete overlap between the field distribution in free space and the superposition of modes

within a fibre then some of the light will not enter the fibre and instead, this also applies

to when light leaves one fibre to enter another (i.e. splicing).

Finally, attenuation occurs due to absorption and scattering processes as light propagates

through the fibre and is highly dependent on wavelength. At wavelengths below 1350nm

the main contributor to atenuation is Rayleigh scattering, which effects lower wavelengths

far more readily than higher ones and the rate of which is inversely proportional to

wavelength to the fourth power, a large spike then occurs around 1400nm corresponding

to absorption due to O-H (water) bonds in the fibre, there is then a brief dip at 1550nm

before a large increase in attenuation due to absorption by Si-O bonds in the material.

This is summarised in figure C.3. As a result, long distance telecommunications that

use fibre in their operation use wavelengths around 1550nm, since light is able to travel

significantly further without attenuating.



C.2 Mode Development in Transition Regions 147

Figure C.3: Graph showing the attenuation in a fibre as a function of wave-
length, there are various intrinsic properties of silica that result in the atten-
uation of light. There is a natural dip at 1550nm and so long distance fibre
communications operate at this wavelength. Reproduced from [209].

C.2 Mode Development in Transition Regions

As a result of the large change in diameter, various properties of the fibre undergo dra-

matic changes. As light passes through the transition region of the taper, loss occurs

due to the field distribution being unable to change rapidly enough to keep up with the

changing field distribution which has a dependency on the fibre diameter, light will enter

higher order and cladding modes as a result. Loss is a function of taper angle and a

transition with a suitably low loss is considered adiabatic.

There are two criteria for determining whether or not a transition is adiabatic or not,

the length scale criterion and the weak power transfer criterion, both derived by Love et

al [210]. Modelling the transition as a right circular cone with height (transition length)

zt and an apex angle (taper angle) Ω(z) = arctan |dρ/da| where z is the distance along the

taper and a = a(z). Since Ω(z) >> 1, then
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zt ≈
a

Ω
. (C.18)

The local coupling length between the fundamental and second order modes is taken to

be

zb =
2π

β1 − β2
, (C.19)

where β1 and β2 both have a dependency on z. It is therefore intuitive that negligi-

ble coupling between the two modes occurs when zt >> zb and the fundamental mode

will propagate adiabatically through the transition, and complete coupling between the

two modes will occur when zt << zb. The condition zt = zb will then give an approxi-

mate boundary between adiabatic and lossy transitions, this is equivalent to the following

equation and concludes the derivation of the length scale criterion.

Ω =
a(β1 − β2)

2π
. (C.20)

Next is the weak power transfer criterion, which is derived by expressing the field along the

taper as a superposition of the fundamental and cladding local modes and then formally

solving a set of coupled local mode equations which relate the amplitude of each mode,

thereby quantifying the loss from the fundamental mode due to tapering. Assuming

small loss and a transfer of power from the fundamental to the mode with the most

similar propagation constant, then the coupled equations have analytical solutions and

the amplitudes of these two modes have approximate solutions

a1(z) = a1(0)exp
{

i

∫ z

0

β1(z
′)dz′

}
, (C.21)

a2(z) = a1(0)exp
{

i

∫ z

0

β2(z
′)dz′

}
×
∫ z

0

C(z′)exp
{

i

∫ z′

0

(β1(z
′′) − β2(z

′′))dz′′
}
dz′, (C.22)

where a1 and a2 are the amplitudes of the two modes, and C is the coupling coefficient

between two modes, given by
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C =
1

2

k

β1 − β2

dρ

dz

1

nco

∫
A∞

ψ1ψ2
∂n2

∂ρ
dA(∫

A∞
ψ2
1dA

∫
A∞

ψ2
2dA

)1/2
, (C.23)

where nco is the maximum core index, A∞ is the infinite cross section, and ϕ1, ϕ2 are the

scalar field distributions for the two modes. It can be reasoned that the power transfer

between modes is small when the final term of equation C.22 is significantly less than one

when z = L, the end of the transition region. The exponential in this equation causes the

integral to oscillate in phase, and so if the taper is slowly varying the maximum power

transfer occurs after half a beat length (π/β1 − β2). The integrand and the coupling coef-

ficient are approximately constant over these small length scales, and so the inequality

reduces to Czb/π << 1 where the fraction of power lost from the fundamental is given

by the square of the left hand side. Assuming that Czb = 1, the loss becomes 1/π2, or

approximately 10% per half beat length.

This criterion is more accurate as it includes the field distributions of both modes, a detail

that is omitted in the length scale criterion, but is unfortunately harder to implement for

the same reason.
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