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Abstract

Surface Electromyography (sEMG) is a physiological signal to record the electrical

activity of muscles by electrodes applied to the skin. In the context of Muscle-

Computer Interaction (MCI), systems are controlled by transforming myoelectric

signals into interaction commands that convey the intent of user movement, mostly

for rehabilitation purposes. Taking the myoeletric hand prosthetic control as an

example, using sEMG recorded from the remaining muscles of the stump can be

considered as the most natural way for amputees who lose their limbs to perform

activities of daily living with the aid of prostheses. Although the earliest myo-

electric control research can date back to the 1950s, there still exist considerable

challenges to address the significant gap between academic research and industrial

applications. Most recently, pattern recognition-based control is being developed

rapidly to improve the dexterity of myoelectric prosthetic devices due to the recent

development of machine learning and deep learning techniques.

It is clear that the performance of Hand Gesture Recognition (HGR) plays an

essential role in pattern recognition-based control systems. However, in reality, the

tremendous success in achieving very high sEMG-based HGR accuracy (≥ 90%)

reported in scientific articles produced only limited clinical or commercial impact.

As many have reported, its real-time performance tends to degrade significantly

as a result of many confounding factors, such as electrode shift, sweating, fatigue,

and day-to-day variation. The main interest of the present thesis is, therefore,

to improve the robustness of sEMG-based HGR by taking advantage of the most
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recent advanced deep learning techniques to address several practical concerns.

Furthermore, the challenge of this research problem has been reinforced by only

considering using raw sparse multichannel sEMG signals as input.

Firstly, a framework for designing an uncertainty-aware sEMG-based hand ges-

ture classifier is proposed. Applying it allows us to quickly build a model with the

ability to make its inference along with explainable quantified multidimensional

uncertainties. This addresses the black-box concern of the HGR process directly.

Secondly, to fill the gap of lacking consensus on the definition of model reli-

ability in this field, a proper definition of model reliability is proposed. Based

on it, reliability analysis can be performed as a new dimension of evaluation to

help select the best model without relying only on classification accuracy. Our

extensive experimental results have shown the efficiency of the proposed reliability

analysis, which encourages researchers to use it as a supplementary tool for model

evaluation.

Next, an uncertainty-aware model is designed based on the proposed frame-

work to address the low robustness of hand grasp recognition. This offers an op-

portunity to investigate whether reliable models can achieve robust performance.

The results show that the proposed model can improve the long-term robustness

of hand grasp recognition by rejecting highly uncertain predictions.

Finally, a simple but effective normalisation approach is proposed to improve

the robustness of inter-subject HGR, thus addressing the clinical challenge of

having only a limited amount of data from any individual. The comparison results

show that better performance can be obtained by it compared to a state-of-the-art

(SoA) transfer learning method when only one training cycle is available.

In summary, this study presents promising methods to pursue an accurate, ro-

bust, and reliable classifier, which is the overarching goal for sEMG-based HGR.

The direction for future work would be the inclusion of these in real-time myo-

electric control applications.
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Chapter 1

Introduction

1.1 Background and Motivation

Gestures, particularly hand gestures, are the second most widely used type of in-

teraction in everyday life after speech. It plays a crucial role in Human-Computer

Interaction (HCI) systems. A hand gesture is commonly defined as the physical

movement of the fingers, hand, and arm. It is clear that Hand Gesture Recog-

nition (HGR) remains an important link to HCI because effective identification

of hand gestures can directly contribute to the flow of meaningful information

from users to devices. This can help HCI establish an intuitive and interactive

human-computer learning environment from which user input is provided easily

and naturally.

Generally, the observable manifestations of gestures used for recognition can

be captured by vision- and non-vision-based sensors. Vision-based HGR requires

cameras mainly, whereas non-vision-based one decodes the intention of hand mo-

tion by sensing physiological signals such as Electroencephalogram (EEG) and

Electromyography (EMG). Concisely, EEG and EMG capture electrical activity

from the brain and muscles, respectively. Leaving aside any discussion of sensor

selection, which depends on the scope of the application, one cannot deny that

6
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HGR based on physiological signals, especially EMG, is a natural or perhaps only

choice for rehabilitation applications required for intuitive control by people with

certain disabilities. For example, it is natural to control a prosthetic hand based

on EMG collected from the remaining muscles for patients who have their hands

amputated. Furthermore, it is clear that connecting dynamic hand gestures with

control commands can lead to various and broad applications in more general areas

such as robot manipulation, computer games, virtual reality, and smart home.

Recently, HGR based on Surface Electromyography (sEMG) has been exten-

sively investigated by many researchers, where sEMG refers to the collective elec-

trical signals of muscles collected by non-invasive electrodes. It has been used to

control the hand (Finley and Wirta 1967) since the late 1960s and has been in-

creasingly used to control robotic prostheses and exoskeletons over the last decade.

This is mainly due to the non-invasive characterisation of sEMG signals, which

has shown great commercial advantages over traditional invasive methods. How-

ever, the potential of myoelectric control, i.e., controlled by sEMG, can be severely

limited by the low robustness reported in the recent literature. Therefore, the de-

velopment of robust and reliable HGR for myoelectric control is a highly relevant

research priority.

1.2 sEMG-based HGR Overview

As a recognition problem, the typical pipeline of sEMG-based HGR includes six

phases in the proper order, shown in Figure 1. Here, only the relevant fundamental

information for each phase is mentioned for the purpose of providing a general

background of sEMG-based HGR.
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Figure 1: The typical pipeline of sEMG-based HGR.

1.2.1 Data Acquisition

There are two categories of sEMG signals, sparse multichannel sEMG (Atzori

et al. 2014; Atzori and Müller 2015; Pizzolato et al. 2017) and high-density (HD)-

sEMG (Rojas-Mart́ınez, Mañanas and Alonso 2012; Geng et al. 2016), from the

perspective of the electrode density used during data acquisition. Sparse multi-

channel sEMG signals are collected by a limited number of electrodes attached to

muscles based on an anatomic location strategy. Relatively, HD-sEMG signals are

recorded by a large number of electrodes that are generally spatially and densely

distributed around the forearm. Unfortunately, to our knowledge, there is no clear

clarification on how many electrodes can be considered HD-sEMG. According to

the sEMG datasets published so far, the number of electrodes used in the HD-

sEMG and sparse multichannel datasets are usually ≥ 128 and ≤ 16, respectively,

and HD-sEMG signals are often recorded using two-dimensional electrode arrays.

Although HGR based on HD-sEMG can directly improve recognition accuracy

due to the large amount of data collected, it requires additional computing efforts

and processing facilities. In other words, it can impose higher hardware require-

ments, leading to increased power consumption and high costs. If the recognition

performance of HGR with sparse multichannel sEMG signals can be improved,

it will result in a more efficient approach that can be implemented with low-cost

hardware resources. Therefore, this thesis aims to enhance HGR, particularly for

rehabilitation applications, by only focussing on sparse multichannel sEMG sig-

nals despite the added difficulty. Note that, unless otherwise stated, sEMG-based

HGR refers only to HGR with the sparse multichannel sEMG in this thesis.
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1.2.2 Data Preprocessing

Generally, the collected sEMG signals need to be pre-processed to remove noise

or reduce non-stationarity. Moreover, pre-processing techniques can help extract

serviceable information from sEMG for effective analysis or feature extraction.

Practical preprocessing techniques include, but are not limited to, relabelling,

smoothing, normalisation, and segmentation (Li, Shi and Yu 2021).

Relabelling is used to synchronise the movements performed by a participant

with the stimuli proposed by the acquisition software (Atzori, Cognolato and

Müller 2016), which can be implemented offline with a generalised likelihood ratio

algorithm (Kuzborskij, Gijsberts and Caputo 2012).

Smoothing is a widely used technique to counter the non-stationarity of sEMG

signals by means of rectification, which involves calculating the absolute values

of the signals and discarding any negative magnitudes. (Geng et al. 2016). To

further smooth the electrical activities of the muscles, a low-pass Butterworth

filter may be a good option in filter design (Atzori, Cognolato and Müller 2016;

Geng et al. 2016; Rahimian et al. 2021). Furthermore, power line interference can

be eliminated by a notch filter at 50Hz or 60Hz, depending on the location of data

acquisition.

Normalisation is one of the possible approaches to reduce the variability of

sEMG. It is known that sEMG is highly variable and can be affected by many

factors, such as electrode placement (Jensen, Vasseljen and Westgaard 1993; Har-

grove, Englehart and Hudgins 2006), skin-electrode contact impedance (Kacz-

marek, Mańkowski and Tomczyński 2019), limb position (Scheme et al. 2010), per-

spiration (Abdoli-Eramaki et al. 2012), skin temperature (Winkel and Jørgensen

1991), and muscle fatigue (Wan et al. 2010). Lehman and McGill (1999) have

reinforced the need for normalisation and recommended two normalisation ap-

proaches, that is, expressing sEMG as a percentage of an isometric maximum
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voluntary contraction or a reference voluntary contraction. Furthermore, normal-

isation approaches can be applied to reduce the variations between subjects in

the sEMG signals to improve subject-independent HGR accuracy (Wahid et al.

2018; Kerber, Puhl and Krüger 2017). Certainly, the choice of the normalisation

method determines the interpretation of the sEMG signals by changing their am-

plitude and pattern (Burden 2010; Halaki and Gi 2012). Unfortunately, there is

no universal rule to normalise sEMG until now.

To consider a real-time myoelectric control system to control rehabilitation

devices or assistive robots, the sEMG signals must first be segmented with a sliding

window for offline training and testing. Using a larger window could lead to longer

processing delays and introduce more non-stationarity, whereas a shorter window

may result in degraded recognition performance due to the limited information

available. Previous research has suggested that the length of the sliding window

should not exceed 300 ms (Hudgins, Parker and Scott 1993). More specifically,

Englehart and Hudgins (2003) have shown that 150 − 250 ms windows are the

optimal choices for sEMG sensors. Unlike disjointing windows, overlapping ones

are preferred because they can generate fast and dense decision flows.

1.2.3 Feature Extraction

The main goal of feature extraction is to increase the information density implicit

in sEMG signals, thus expecting to increase the distinction between gestures. The

discriminative characteristics of the sEMG signals can be extracted by designing

handcrafted features that fall into one of three categories in general: Time Domain

(TD), Frequency Domain (FD), and Time-Frequency Domain (TFD) (Oskoei and

Hu 2007). The TD features have the advantage of low computational complex-

ity. One of the most commonly used traditional TD feature sets consists of Mean

Absolute Value (MAV), Waveform Length (WL), Slope Sign Change (SSC), and

Zero Crossing (ZC) (Hudgins, Parker and Scott 1993). The FD features refer to
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features that describe spectral properties, which may be more robust than the TD

ones (Gu et al. 2018). Common features of FD include Frequency Ratio (FC) (Os-

koei and Hu 2007), Mean Frequency (MNF) (Thongpanja et al. 2013), Median

Frequency (MDF) (Thongpanja et al. 2013), and Power Spectrum (PS) (Bao et al.

2022). TFD features deemed a significant approach to feature extraction as they

examine the energy of the sEMG signals in both the time and frequency do-

mains (Karlsson, Yu and Akay 2000; Côté-Allard et al. 2019). They often employ

the wavelet transform, such as the Continuous Wavelet Transform (CWT), in their

calculations. Furthermore, the characteristics of sEMG can be extracted from the

perspective of time series modelling. For example, coefficients of the fourth or-

der Auto-regressive (AR) were suggested to be used as a feature vector based on

previous research work (Paiss and Inbar 1987; Phinyomark, Phukpattaranont and

Limsakul 2012).

In contrast to the traditional hand-crafted features presented above, the fea-

tures of sEMG can be learnt using deep learning, which is a multilevel repre-

sentation learning approach. Feature learning has the advantages of being less

labour-intensive and time-consuming since it does not require prior knowledge for

feature determination and extra computation for feature extraction. Unlike tak-

ing manually extracted features as input to deep learning models, feature learning

requires taking raw sEMG as input directly, which is called end-to-end learning.

1.2.4 Pattern Recognition

Extracted or learnt features are required to be classified into one of the prede-

fined hand gestures. An ideal sEMG-based hand gesture classifier is expected

to be accurate, robust, and reliable. Traditional HGR approaches rely on fuzzy

theory (Chan et al. 2000; Karlik, Tokhi and Alci 2003; Ajiboye and Weir 2005),

probabilistic models such as Gaussian Mixture Model (GMM) (Fukuda et al. 2003;

Huang et al. 2005) and Hidden Markov Model (HMM) (Chan and Englehart 2005)
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or machine learning algorithms such as Linear Discriminant Analysis (LDA) (Har-

grove et al. 2010; Scheme and Englehart 2011; Scheme, Hudgins and Englehart

2013; Phinyomark et al. 2013; Wahid et al. 2018; Campbell, Phinyomark and

Scheme 2019; Li et al. 2019; Kaczmarek, Mańkowski and Tomczyński 2019), Ran-

dom Forest (RF) (Atzori et al. 2014; Al-Timemy et al. 2016; Wahid et al. 2018),

Näıve Bayes (NB) (Chen et al. 2007; Scheme and Englehart 2011; Lu et al. 2017;

Wahid et al. 2018), k-nearest neighbor (kNN) (Scheme and Englehart 2011; Atzori

et al. 2014; Wahid et al. 2018; Li et al. 2019; Kaczmarek, Mańkowski and Tom-

czyński 2019) and Support Vector Machine (SVM) (Scheme and Englehart 2011;

Atzori et al. 2014; Tavakoli et al. 2018; Wahid et al. 2018; Li et al. 2019; Kacz-

marek, Mańkowski and Tomczyński 2019). It is known that the performance of

HGR with the traditional approaches presented above will be greatly affected by

the quality and quantity of the handcrafted features (Boostani and Moradi 2003;

Phinyomark, Phukpattaranont and Limsakul 2012; Côté-Allard et al. 2020a).

Therefore, the current focus has been on automated feature learning using deep

learning techniques. Despite more recently proposed deep learning structures

such as Long Short-Term Memory (LSTM) (He et al. 2018), Gated Recurrent

Unit (GRU) (Nasri et al. 2019), Temporal Convolutional Network (TCN) (Bet-

thauser et al. 2018; Zanghieri et al. 2020a), and Transformer (Montazerin et al.

2022), have been explored in this field, Convolutional Neural Network (CNN) re-

mains the most widely used deep learning structure in feature learning and by far

the most popular deep learning method for sEMG-based HGR (Phinyomark and

Scheme 2018; Li, Shi and Yu 2021).

1.2.5 Post-processing

The post-processing techniques are usually simple but effective options, which

can be applied to increase the robustness and accuracy of HGR regardless of the
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methods used in each stage introduced above. The most commonly seen post-

processing technique may be Majority Voting (MV) (Hudgins, Parker and Scott

1993; Amsüss et al. 2014; Geng et al. 2016; Du et al. 2017; Moin et al. 2018;

Betthauser et al. 2020; Wahid, Tafreshi and Langari 2020), which only outputs

a class that received the most votes based on consecutive predictions. Another

intuitive approach that requires information from multiple consecutive windows

is Bayesian Fusion (BF) (Khushaba et al. 2012). However, these methods can

stabilise the prediction stream but introduce a response delay in the meanwhile.

Note that although BF may only need two consecutive windows, a perceptible de-

lay can be caused by disjoint windows, which is a requirement to comply with the

independence condition assumed by Bayesian theory. A different category of post-

processing technique is confidence-based rejection, which is used to improve the

performance of HGR by not making uncertain predictions (Scheme, Hudgins and

Englehart 2013; Scheme and Englehart 2015; Robertson, Englehart and Scheme

2019; Krasoulis, Vijayakumar and Nazarpour 2020; Wu et al. 2021; Bao et al.

2022). This method does not introduce additional delay but is highly dependent

on determining the optimal rejection threshold.

1.2.6 Performance Evaluation

The offline performance of sEMG-based HGR is measured primarily on the basis

of classification accuracy. This can be biased if the data for each class in the test

set are not balanced. To avoid it, in addition to making the balanced test data set

available, unbiased accuracy metrics can be used, such as macro-average accuracy,

which weighs all classes equally (Hartwell, Kadirkamanathan and Anderson 2018).

Furthermore, more general evaluation metrics can be considered to fully measure

the accuracy of a HGR task, as summarised by Sokolova and Lapalme (2009).

From the perspective of the train test split, which refers to the training and test

sets partition, recognition accuracy can be divided into several situations. When



CHAPTER 1. INTRODUCTION 14

considering the subject-specific performance, accuracy can be calculated in an

intra-session or inter-session scenario, where each session comprises data collected

by a subject performing several hand gestures in several repetitions on the same

acquisition. Intra-session accuracy is computed when the training and test data

are from the same session, whereas inter-session accuracy is computed when the

training and test data are from different sessions. Similarly, inter-subject accuracy

is usually computed to evaluate the performance of subject-independent HGR,

which aims to construct a generic model trained by data collected from several

subjects and tested for a new user.

Unlike offline testing, the performance of the complete myoelectric control sys-

tem in real-time can be measured by evaluation metrics used to evaluate the target

performance of a prediction model in the real world based on Fitts’s law (Fitts

1992), including overshoot, throughout, path efficiency, completion rate, average

speed, and stopping distance (Scheme and Englehart 2013; Scheme, Hudgins and

Englehart 2013; Robertson, Englehart and Scheme 2019; Ameri et al. 2019).

1.3 Problem Statement

Despite promising results reported on sEMG-based HGR, especially with the aid

of deep learning, a significant gap remains between current research results and

clinical or commercial implementations. The reasons for this gap are summarised

from the perspectives of practical considerations and technical issues.

1.3.1 Practical considerations

Current research in the field of sEMG-based HGR is often confined to improving

the accuracy of offline recognition without considering the underlying issues that

may arise for commercial applications. From the perspective of controlling de-

vices such as prosthetic hands and hand exoskeleton robots based on myoelectric
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sensing, the HGR system should be designed considering not only maximising

recognition accuracy, but also minimising a series of costs, time spent on model

training, delay, and energy consumption. One of the challenges is to consider the

trade-off between these objectives. It is clear that recognition accuracy can be

improved by introducing more electrodes, more extracted features, more complex

models, or post-processing techniques that use information from more than one

window. However, these will cause more costs for hardware and software used

for data acquisition, data transfer, data storage, and data processing, together

with additional model training time, latency, and possible control delay. To stay

in focus and develop the system of sEMG-based HGR considering commercial

viability, we have the initiative to face the challenges of HGR under more strict

conditions, with only limited electrodes, no feature selection, simple architecture

of deep learning models, and post-processing techniques without using information

from more than one window.

Additionally, the black-box nature of machine learning or deep learning models

may pose clinical challenges. For example, rehabilitation users may have reliabil-

ity concerns about the myoelectric control system if recognition processing mech-

anisms cannot be easily interpreted from a safety perspective. Unfortunately, the

model reliability in the field of sEMG-based HGR has not been adequately defined

or investigated so far. Another clinical concern is due to the amount of training

data available. Specifically, one cannot expect to collect a large amount of sEMG

recordings from an end user in real life (Côté-Allard et al. 2019). Therefore, even

though deep learning algorithms may work well with a large amount of training

data, one of the clinical challenges comes from the fact that only limited data

from an user are available. This is also one of the main factors that can cause low

robustness of sEMG-based HGR in practical use.
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1.3.2 Technical challenges

Despite taking the input of sEMG signals from forearm muscle groups is a natural

and intuitive way for a prosthetic hand control system, the biggest challenge comes

from the variability in the nature of sEMG signals, which is caused by intrinsic and

extrinsic factors. Intrinsic factors include (i) the time-dependent, task-dependent,

and stochastic nature of the neural drive to muscles (Rahimian et al. 2021); (ii) the

alterations caused by muscle fatigue; (iii) the subject-dependent neural control

strategies. It becomes more complicated when it comes to amputation, as many

factors, such as the remaining percentage of the forearm and the sensation of the

phantom limb, can also cause the variability of sEMG. Furthermore, the long-term

robustness of sEMG-based HGR can be affected by several extrinsic factors, such

as electrode displacement and skin conductivity (Hargrove, Englehart and Hudgins

2006; Kaufmann, Englehart and Platzner 2010; Scheme et al. 2010; Scheme and

Englehart 2011; Young, Hargrove and Kuiken 2012). Note that even though the

quality and quantity of sEMG signals can be improved by collecting from gel-

based electrodes, its inconvenience may restrict practical application, as users

are usually required to shave and wash the skin for optimal skin conductivity.

For practical purposes, the sEMG signals used in this thesis are mainly collected

from dry electrodes, thus highlighting the challenge of improving the robustness

of sEMG-based HGR.

1.4 Aims and Objectives

For a noninvasive myoelectric sensing-based HCI system, sEMG-based HGR de-

termines the upper limit of the performance of gesture-based interaction and ob-

ject manipulation. This thesis focused on the problem of classifying hand move-

ments from sEMG with a main view towards myoelectric control applications,

but presents ideas relevant to other HCI applications as well. Therefore, the aim
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of this thesis is to improve the robustness of sEMG-based HGR under the strict

condition of considering practical needs for commercial applications by develop-

ing a set of methodologies and techniques to address the problems and challenges

described in Section 1.3. Consequently, the objectives are summarised below.

• Investigate and compare various models capable of automatic feature learn-

ing from sparse multichannel sEMG signals. The goal is therefore to design

end-to-end classifiers that directly take a limited amount of raw sEMG data

as input.

• Integrate deep learning techniques with improved interpretability to en-

hance the current state-of-the-art (SoA) in understanding the Hand Gesture

Recognition (HGR) process, aiming to explore and mitigate the black box

concern associated with current approaches.

• Establish a systematic evaluation framework that provides fair comparison

metrics to help design accurate, robust, and reliable sEMG-based hand ges-

ture classifiers.

• Develop a solution to enhance the robustness of sEMG-based HGR for long-

term usage, with a focus on minimising deterioration of inter-day perfor-

mance.

• Propose a method to improve the performance of sEMG-based HGR using

only limited data collected from the user.

1.5 Contributions

All the above practical considerations lead this thesis to address the challenges

of HGR with a limited number of sparse multichannel sEMG signals. The key

contributions of this thesis can be summarised as follows:
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• Proposing a framework to design a simple but effective uncertainty-aware

sEMG-based hand gesture classifier, that is, Evidential Convolutional Neural

Network (ECNN), which can make its inference along with explainable quan-

tified multidimensional uncertainties, given in Chapter 3, publications (Lin

et al. 2022, 2023). This can provide better model interpretability, which

mitigates the reliability concern of HGR directly.

• Providing reliability analysis for sEMG-based HGR by introducing a proper

definition of model reliability, as shown in Chapter 4, publication (Lin et al.

2023). This fills the gap of lacking consensus on the definition of model

reliability in this field and offers a new dimension of evaluation, which can

help model selection together with recognition accuracy.

• Improving the long-term robustness of sEMG-based hand grasp recognition

with proposed ECNN by rejecting uncertain predictions, as shown in Chap-

ter 5, publication (Lin et al. 2023). This presents a practical solution to

address the variability of sparse multichannel sEMG signals with almost no

extra costs.

• Proposing a normalisation approach to leverage large amounts of inter-

subject data for model training so that improving recognition accuracy of

sEMG-based HGR, as shown in Chapter 6, publication (Lin et al. 2020).

This practical solution addresses the clinical challenge of having only a lim-

ited amount of data from any individual.

To sum up, what we want readers to take away from this work is not just a

specific model, but a theoretical framework to design reliable models for sEMG-

based HGR.
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1.6 Publications

This section shows the list of articles published in leading international conferences

or journals in this field. The work in this thesis has resulted in the following papers:

(Journal Articles)

• Lin, Y., Palaniappan, R., De Wilde, P. and Li, L. (2022). Reliability analysis

for finger movement recognition with raw electromyographic signal by evi-

dential convolutional networks. IEEE Trans Neural Sys & Rehab Eng, 30,

pp. 96–107

• Lin, Y., Palaniappan, R., De Wilde, P. and Li, L. (2023). Robust long-term

hand grasp recognition with raw electromyographic signals using multidi-

mensional uncertainty-aware models. IEEE Trans Neural Sys & Rehab Eng,

31, pp. 962–971

(Conference Proceedings)

• Lin, Y., De Wilde, P., Palaniappan, R. and Li, L. (2018). Muscle connectivity

analysis for hand gesture recognition via sEMG. In 2018 Signal Inf Process

Assoc Annu Summit Conf APSIPA Asia Pac. (APSIPA ASC), IEEE, pp.

848–852

• Lin, Y., Palaniappan, R., De Wilde, P. and Li, L. (2020). A normalisation

approach improves the performance of inter-subject sEMG-based hand ges-

ture recognition with a ConvNet. In EMBC, IEEE, pp. 649–652
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1.7 Thesis Structure

The structure of this thesis is organised as follows:

Chapter 2 provides the necessary background information and a systematic

literature review for analysing state-of-the-art hand gesture recognition (HGR)

using sparse multichannel surface electromyography (sEMG) signals and deep

learning.

Chapter 3 addresses the following fundamental questions: 1. What does un-

certainty awareness mean in the context of sEMG-based hand gesture models?

2. Why is considering uncertainty crucial and worth contemplating in this do-

main? 3. How do we design uncertainty-aware sEMG-based hand gesture models?

Chapter 4 then addresses the following two key questions: 1. How to evaluate

the ability of an uncertainty-aware model in a fair and comparable way? 2. How

this can reform the current evaluation system of sEMG-based HGR.

Furthermore, the exploration of how to effectively leverage the uncertainty

inferred by uncertainty-aware models in practical use is presented in Chapters 4

and 5.

In Chapter 6, the subject-independent sEMG-based HGR is investigated with

a proposed normalisation method.

Finally, Chapter 7 concludes the thesis by providing a systematic summary of

the entire work and identifying potential directions for future research in this field

as an extension of this thesis.



Chapter 2

Literature Review

This chapter presents the necessary background information and a systematic

review of the literature to analyse state-of-the-art (SoA) Hand Gesture Recogni-

tion (HGR) using sparse multichannel Surface Electromyography (sEMG) signals

and deep learning. The key topics covered here are the fundamental description

of Electromyography (EMG) and the literature review of sEMG-based HGR. The

main goal is to identify recent trends and research gaps in the field of sEMG-based

HGR.

2.1 Electromyography

2.1.1 Discovery History

As shown in Figure 3, the era of bioelectricity began in the late 18th century,

with the first empirical evidence of energy production in the form of bioelectricity

approved by Luigi Galvani and the time course of the action potential was first

recorded by Julius Bernstein, with the help of Emil du Bois-Reymond (Schuetze

1983). While the possibility of recording electrical activity during voluntary mus-

cle contraction has been discovered, Étienne-Jules Marey made the first recording

of electrical muscle activity during voluntary contractions in 1890 and introduced

22
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Figure 3: A brief history of the discovery of Electromyography.

the term EMG (Kleissen et al. 1998; Chakrabarti et al. 2015). Since Gasser and Er-

langer had shown that nerve action currents can be easily and accurately recorded

with an oscilloscope in 1922, more advanced technology has been developed with

the main objective of improving the ability to collect electrical signals from mus-

cles with the little invention. In 1929, Adrian and Bronk (1929) had successfully
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designed and developed concentric needle electrodes to measure Motor Unit Ac-

tion Potentials (MUAPs) from a small volume of muscular tissue within deep

muscles. Such electrodes are still active for diagnostic neuro EMG today (Blanc

and Dimanico 2010). An alternative approach to collect EMG has been developed

by Basmajian and Stecko in 1962 to use fine-wire electrodes to record muscle ac-

tivity from deeper and smaller muscles. Since 1970s, thanks to the development

of modern computers and a number of EMG collection techniques, EMG signals

have become an effective tool in the field of clinical diagnostics and motor con-

trol. For example, Herberts et al. had employed sophisticated digital computer

techniques to improve hand prosthesis control using myoelectric patterns as early

as 1973.

2.1.2 Biological Basis

Generally speaking, the EMG signal measures the electrical activity produced by

the skeletal muscles, which refers to the muscle where its tissue is attached to

the bone and its contraction is responsible for the support and movement of the

skeleton. Electrical activity is generated directly by the central nervous system

during each muscle contraction and is highly dependent on the anatomical and

physiological properties of the muscles. Specifically, as shown in Figure 4, muscle

fibres produce muscular force by receiving an electrical impulse that is propagated

from the motoneuron to each motor endplate once the central nervous system

activates this motoneuron.

From the perspective of the neuromuscular system, the EMG signal measured

by the electrodes located in muscle mass during each voluntary or electrically

elicited contraction is comprised of the linear summation of MUAPs from all active

Motor Units (MUs) (Lowery 2009). Note that MU represents the anatomical and

functional element of the neuromuscular system and is formed by the alpha spinal
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Figure 4: The outline of the decomposition of the sEMG signal into its constituent
MUAPs. (Luca et al. 2006)

motor neurons and its innervated set of muscular cells (Rodŕıguez-Carreño, Gila-

Useros and Malanda-Trigueros 2012). In fact, what EMG signal records are the

electrical changes generated by the activity of MU, which is called MUAP. The

illustration of how the action potential of each fibre contributes to the EMG signal

can be seen in Figure 5. It clearly shows that the depth of the fibre is the main

factor that affects the contribution that the action potential of each fibre makes

to the EMG signal. Specifically, deeper muscle fibres contribute less to the sEMG

signal (Kamen 2013). It can be seen that muscle fibres 3, 4, and 5 are farther

away from electrodes than fibres 1 and 2 while actually contributing relatively

smaller action potentials.

Each motoneuron is known to innervate a group of muscle fibres where the

number varies from 10 to several thousand. The number of muscle fibres inner-

vated by a motoneuron is termed the innervation rate. This is one of the main

factors that can determine the amplitude of the MUAP. Generally, a larger MUAP
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Figure 5: The illustration of how the action potential of each fiber contributes
to the EMG signal. (Kamen 2013) There are 5 muscle fibers in this example as
labelled in the left panel while their corresponding action potentials are shown in
the right one. Furthermore, two MUs, αA and αB, are shown here. The amplitude
of each MUAP is represented as the algebraic sum of action potentials of the
contributed muscle fibers. Eventually, the recorded EMG signal is the algebraic
sum of all MUs.

is expected to be observed with a higher innervation rate. Another one is firing

rate, which is a term used to represent how frequently motor units are activated

by the nervous system. To better understand this process, a linear model of EMG

is presented as follows:

EMG(t) =
N−1∑
i=0

Hi ∗ Ui(t) + w(t) (1)

where N is the total number of MUs, Hi and Ui represent the MUAP and the

spike train or firing impulse of i-th MU, respectively, ∗ denotes convolution, w

accounts for noise, and the zero mean Additive White Gaussian Noise (AWGN)
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is commonly used for modelling. This model can be simply visualised in Figure 6.

Additionally, it is worth mentioning that the muscular force of a single muscle

Figure 6: The illustration of mathematical model of EMG signal. (Akhmadeev
2019)

is initiated by activating an increasing number of motor units. Moreover, during

the process of performing any muscular action, initially, smaller motor units are

recruited first, and then, as the force requirement increases, the larger motor units

are recruited successively. Therefore, it can be assumed that there is a positive

relationship between the firing rate and the amount of muscular force.

As a result, the amplitude of the signal EMG can reflect the extent of muscular

force. Since the EMG signal is a composite electrical sum of all active motor units,

a large peak shown at a specific time point could therefore be the result of the

activation of two or more motor units. In contrast, there are two possible reasons

that can explain the situation when the signal crosses the baseline, which is often

at zero volts. This could be either the number of activated motor units is low

or the result of the balance caused by positive and negative phases of different
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MUAPs. Under normal circumstances, it can be assumed that the amplitude

of EMG increases as the intensity of muscular contraction increases. Strictly

speaking, this is true only under an isometric condition, which is a condition

of muscle contraction where muscle tension changes but muscle length remain

the same (Widmaier, Raff and Strang 2010). For example, if a participant is

required to hold a dumbbell in a fixed position, incremental changes related to

the amplitude of the sEMG signal collected by an electrode attached to his or

her biceps would be observed when incremental changes in muscular force are

produced.

Understanding the relationship between EMG and muscular force is an impor-

tant research topic, which has direct benefits for applications of electromyographic

techniques. Taking the control of prosthetic limbs as an example, this can provide

a guide on how much electrical activation should be used to achieve the desired

level of force. To gain a better understanding of the EMG-force relationship, many

factors need to be considered, such as the type of muscle contraction, the size of

the muscles involved, and the potential role of various agonists and antagonists.

Currently, most of the literature has investigated only the relationship between

EMG activity and external force production, which mainly represents the action

of objects that contact the body. Correspondingly, a full understanding of the re-

lationship between muscle electrical activation and internal forces, which usually

refer to responses of our body to external forces, is lacking.

2.1.3 Influence factors

To avoid misuse or misinterpretation of the EMG signal, it is necessary to know

the myriad of sources that can influence the signal. Knowing these can also help us

to better record the EMG signal and optimise the signal analysis algorithm (Reaz,

Hussain and Mohd-Yasin 2006). Briefly, factors that affect the EMG signal can

be categorised as either intrinsic or extrinsic.
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Intrinsic Factors

Intrinsic factors include any influences from physiological, anatomical, or biochem-

ical perspectives. In addition to the previously introduced innervation rate and

firing rate, intrinsic influences include blood flow, muscle length and depth, the

thickness of the subcutaneous fat layer, and the tissue between the muscle and

surface electrodes. Both tissue and increased muscle blood flow have a low-pass

filtering effect, causing the result that the high-frequency characteristics of the

action potentials of deeper muscle fibres are attenuated appreciably at the sur-

face (Kamen 2013). Note that blood flow increases dramatically during muscle

contraction, which also leads to changes in muscle length. The amplitude of the

muscle action potential decreases as its length increases (Gerilovsky, Tsvetinov

and Trenkova 1986; Hashimoto et al. 1994).

Furthermore, as stated by Roeleveld et al., EMG amplitude decreases as the

distance between the surface electrodes and the muscle increases. Consequently,

the quality of the collected EMG can be affected by the thickness of the sub-

cutaneous fat layer. Higher levels of subcutaneous fat are commonly associated

with lower Signal-to-Noise Ratio (SNR). It is worth mentioning that this is one

of the most significant factors that can explain more than 50% of the variance

in the EMG signal (Nordander et al. 2003). There are many other underlying

intrinsic factors that can affect EMG signals, such as muscle fatigue, dehydration,

or interruption in muscle blood flow. All of these factors together are the reasons

why EMG signals are difficult to interpret properly, especially during dynamic

contractions.

Extrinsic Factors

Extrinsic factors refer mainly to signal recording equipment, especially sEMG

sensors or electrodes. Specifically, both the amplitude and frequency of the EMG

signal can be affected by electrode characteristics, including the material used for
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conducting surfaces such as silver, gold, and stainless steel, the electrode size,

the electrode placement, and even the interelectrode distance. As defined in the

SENIAM1, electrode size is defined as the size of the conductive area of a sEMG

electrode. This is directly proportional to the amplitude of the detected sEMG

signal. However, the electrode becomes unwieldy as its size increases. Further-

more, an electrode with a larger size cannot be used to detect EMG signal from

relatively small muscles (Luca 2002). Therefore, a compromise often needs to be

established between increasing the signal amplitude and reducing the electrode

size.

Undoubtedly, electrode placement has the most straightforward effect on the

quality of the recorded EMG signal. As can be seen in Figure 4, the preferred

electrode location is between the motor point and along the longitudinal mid-

line of the muscle, to cover as many muscle fibres as possible. With regard to

the interelectrode distance, Mezzarane et al. pointed out that the selectivity of

the surface electrodes decreases as the electrodes are closer to each other. More

importantly, both the proper design of the electrodes and the carefully selected

placement of the electrode can help reduce the effect of crosstalk, which means

that the detected EMG signal will record muscle activity not only from the tar-

get muscle but also neighbouring ones. Cross-talk cannot be completely avoided,

which is one of the most important reasons why sEMG is more useful when the

global activity of the muscle is of interest.

In addition, the electrode-skin interface can affect the EMG signal. In detail,

a poor electrode-skin interface can lead to high electrode impedance, resulting in

poor biological signal quality, that is, a poorer SNR (Yamamoto and Yamamoto

1978; Neuman 2010). There are many factors that can affect the electrode-skin in-

terface, such as perspiration (Abdoli-Eramaki et al. 2012), humidity, and electrode
1The SENIAM project (Surface ElectroMyoGraphy for the Non-Invasive Assessment of Mus-

cles) project is a European concerted action in the Biomedical Health and Research Program
(BIOMED II) of the European Union.
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shifts.

2.1.4 Characteristics of sEMG

To sum up, there are a few key characteristics of sEMG. From the perspective

of the time domain, its amplitude is assumed to be stochastic in nature. Even

though the range of this depends on the muscle types and conditions, the peak-

to-peak amplitude can usually range from 0 to 10 mV (Luca 2002). Regarding

the electromyographic frequency characteristics, the frequency spectrum of the

sEMG signal is positively skewed (Kamen 2013). In general, the usable frequency

component can range from 0 to 500 Hz, while the most dominant spectrum is

in the 50-150 Hz range. Note that a signal is assumed to be stationary when

computing its spectral frequency content. However, the EMG signal recorded

during dynamic contractions violates the assumption of stationarity. This may be

solved by introducing traditional approaches for analysing nonstationary signals,

such as Short Time Fourier Transform (STFT) and Wavelet Transform (WT).

2.1.5 Applications

Electromyography signals have been widely used for clinical diagnosis and Human-

Computer Interaction (HCI) applications due to valuable information on the nerve

system they carry.

Clinical Diagnosis

For clinical applications, EMG signals are often used as a diagnostic tool to detect

muscular disorders, gait disorders, and seizures by recognising abnormal patterns.

As noted in a recent review (Papagiannis et al. 2019), gait analysis using sEMG

with kinematic and kinetic data is a significant diagnostic procedure for patients

who suffer from musculoskeletal disorders. Furthermore, as stated by Beniczky,
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Conradsen and Wolf, a specific seizure, i.e., bilateral tonic-clonic seizure, can be

detected by measuring the quantitative sEMG changes in the high-frequency com-

ponent. However, it should be noted that the needle EMG can be used more often

than sEMG for the purpose of clinical diagnosis, especially when the neurophys-

iological characteristics of neuromuscular diseases need to be evaluated. This is

because spontaneous activity occurring at the single fibre level, such as fibrilla-

tions, positive spikes, and myotonia, is difficult to measure from only the skin

surface of each individual (Drost et al. 2006).

Human-computer interaction applications

In contrast, sEMG has been widely exploited in the field of HCI in recent decades

owing to its non-invasive property and the development of sEMG data acquisi-

tion. For example, a low-cost portable device, Myo armband (Thalmic Labs), has

recently been proposed as a commercial sEMG acquisition that can send data to

computers easily by wireless communication. As can be seen in Figure 7, Myo

armband is a wearable device with eight EMG sensors and can be used to iden-

tify five hand gestures by internal algorithms. It is no exaggeration to say that

this significantly promotes research on sEMG-based HCI, as evidenced in a large

number of papers since 2014 (Samadani and Kulić 2014; Kutafina, Laukamp and

Jonas 2015; Morais et al. 2016; Kerber, Puhl and Krüger 2017; Pizzolato et al.

2017; Zia ur Rehman et al. 2018a; Wahid et al. 2018; Hartwell, Kadirkamanathan

and Anderson 2018; Sun et al. 2019; Prahm et al. 2019; Côté-Allard et al. 2019;

Hu et al. 2019; Betthauser et al. 2020; Fatimah et al. 2021).

Within the context of HCI, EMG signals, usually collected from the forearm

muscles, are regarded as a source of system input for either healthy subjects or

users with physical disabilities to the functionality offered by computer systems.

More specifically, such HCI systems, which are controlled by transforming my-

oelectric signals into interaction commands that convey the intent of the user’s
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movement, can be referred to as Muscle-Computer Interaction (MCI) (Saponas

et al. 2008; Chowdhury, Ramadas and Karmakar 2013; Geng et al. 2016; Du et al.

2017; Li et al. 2019; Wei et al. 2019).

Figure 7: The illustration of Myo armband sensor by Thalmic labs, which has
ceased production recently and no corresponding website is available now. The
bottom panel has shown all five possible hand gestures that can be classified from
built-in programs (Tatarian et al. 2018).

Improving the efficiency of communication is one of the main purposes of using

MCI. For example, Sign Language Recognition (SLR), which helps translate sign

language into text or speech, can be implemented by employing sEMG sensors

placed on the forearm. Compared with conventional approaches for SLR such

as employing a camera, this provides a wearable solution with both low-cost and

high-portable to overcome the communication barriers existing between the deaf

and hearers who are incompetent in sign language (Cheng et al. 2015; Abreu et al.

2016; Savur and Sahin 2016; Yang et al. 2017b).

Additionally, another primary purpose of using MCI is to control a device
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with the goal of rehabilitation in most cases, which is often also referred to as

myoelectric control. One specific example of it is to assist people with compro-

mised movement abilities by controlling exoskeletons, which are wearable robots

that exhibit close physical and cognitive interaction with users, to amplify their

movements so that normal functions can be restored (Khokhar, Xiao and Menon

2010; Leonardis et al. 2015; Lu et al. 2017; Trigili et al. 2019).

Another important application is to control a robotic prosthetic hand, espe-

cially for amputees who lose their limbs (Boostani and Moradi 2003; Khushaba

et al. 2012; Atzori and Müller 2015; Krasoulis et al. 2017; Beaulieu et al. 2017;

Tatarian et al. 2018; Akhmadeev 2019; Cognolato et al. 2020). Using sEMG

recorded from the remnant muscles of the stump can be considered the most nat-

ural way for them to perform activities of daily living with the aid of prostheses.

This is the reason why sEMG is virtually the only signal of control for the practical

use of multifunctional prosthetic prostheses with an upper limb since the 1950s

despite other signals such as Electroencephalogram (EEG) can also theoretically

be the choice (Jiang et al. 2012b).

A classic and conventional technique to activate a function of the myoelectric-

controlled prosthesis is to compare the sEMG amplitude to a predefined threshold.

This simple approach has been proposed more than 60 years ago and is still used

by the vast majority of commercially available powered prostheses. However, by

employing this on-off control approach, the prosthetic hand is always moving at

a constant speed (Moqadam et al. 2018; Mohebbian et al. 2021). To improve it,

proportional myoelectric control is raised to allow amputees control over speed

and force of grip by linking the mechanical output such as force, velocity, and

position with sEMG signals continuously (Sears and Shaperman 1991; Fougner

et al. 2012; Mohebbian et al. 2021). However, the main disadvantage of either on-

off or proportional control, is that controlled movements are limited to the number

of sEMG channels. To further improve the dexterity of myoelectric prosthetic
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devices and overcome the limitations of conventional control approaches, pattern

recognition-based control is recently developed based on feature engineering and

classification techniques. The core of pattern recognition-based control is the

sEMG-based HGR, which will be introduced in the next section.

2.2 sEMG-based Hand Gesture Recognition

In recent years, the research directions of sEMG-based HGR have undergone sig-

nificant shifts in three key aspects. Firstly, the focus has shifted from identifying

static hand gestures to recognising dynamic gestures. Secondly, the dominant

method has moved from traditional machine learning algorithms to more sophis-

ticated deep learning techniques. Lastly, the primary goal has shifted from merely

improving accuracy to achieving robustness in recognition performance. These

changes reflect the ongoing efforts to advance the SoA in sEMG-based HGR and

are a testament to the ongoing development and growth of this field.

2.2.1 Evolution from static to dynamic HGR

Hand movements can be categorised into dynamic and static types, based on the

type of skeletal muscle contraction involved (Jaramillo-Yánez, Benalcázar and

Mena-Maldonado 2020; Li, Shi and Yu 2021). Dynamic hand movements are

executed through isotonic contractions, which involve changes in muscle length.

Isotonic contractions generate force and movement, as the muscle shortens or

lengthens to produce motion. On the other hand, static postures are maintained

through isometric contractions, which do not involve any change in muscle length.

Isometric contractions generate force without movement, as the muscle remains

in a fixed position. When it comes to sEMG signals, there are also two states:

steady and transient. Briefly, sEMG signals in the steady state are generated when
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a hand gesture is sustained, while sEMG signals in the transient state are gen-

erated during the transition between gestures (Hudgins, Parker and Scott 1993).

Therefore, the static HGR classifier uses only steady-state sEMG signals, while

the dynamic HGR classifier utilises a combination of transient and steady-state

sEMG signals.

It is evident that recognising dynamic hand gestures using sEMG signals is

more challenging than recognising static hand gestures. This is because the tran-

sient part of the sEMG signal in dynamic gestures introduces more variability,

making the gesture recognition process more complex. Therefore, static HGR

used to be the mainstream, particularly when it comes to machine learning algo-

rithms. Jaramillo-Yánez, Benalcázar and Mena-Maldonado reviewed 65 studies

that utilised sEMG and machine learning for HGR and found that only one at-

tempted to recognise dynamic hand gestures. Furthermore, the HGR using sEMG

data in the steady state is more accurate than in the transient state. For exam-

ple, in as early as 2001, Englehart, Hudgins and Parker had already demonstrated

remarkable recognition accuracy of 99.5% for four hand classes and 98% for six

motion classes using only four channels of steady-state sEMG signals with the

Linear Discriminant Analysis (LDA) classifier.

Although the classier trained with steady-state sEMG signals performs well,

it may not be suitable for dealing with transient sEMG signals during muscle

contractions. This can result in unwanted mechanical vibrations during the tran-

sient state between movements, ultimately reducing the stability and lifetime of

the mechanical system (Yang et al. 2012). Moreover, dynamic hand movements

are considerably more advantageous than static ones, particularly in regards to

performing Activities of Daily Livings (ADLs). Consequently, with the progress

of deep learning, which is more adept at handling transient-state analysis (Li, Shi

and Yu 2021), an increasing number of studies have recently turned their atten-

tion to investigating dynamic HGR over the past decade (Scheme and Englehart
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2011; Chen et al. 2017; Phinyomark and Scheme 2018; Côté-Allard et al. 2020b;

Li, Shi and Yu 2021).

2.2.2 Advancement from feature engineering to feature

learning

Feature engineering refers to a set of techniques that are based on the manual

creation or selection of features, which are commonly used to represent data in a

machine learning system. It has traditionally been the main approach for sEMG-

based HGR, where hand-crafted features are designed and selected by researchers.

However, in recent years, feature learning has emerged as a powerful alternative,

with deep learning techniques that demonstrate superior recognition performance

compared to carefully designed hand-crafted features.

Feature learning involves automatically learning representations of the data

through a hierarchy of layers in a neural network. In the case of sEMG-based

HGR, this involves learning a set of features from the raw sEMG signals that are

optimised for the specific HGR task. As the field of sEMG-based HGR moves to

the era of “big data”, the paradigm is now rapidly shifting from feature engineering

to feature learning (Phinyomark and Scheme 2018).

The sEMG-based HGR is often treated as an image classification problem,

where each sEMG image is a frame of multichannel sEMG signals segmented by

a sliding window. As such, Convolutional Neural Networks (CNNs) have been

well investigated in the past decade and have achieved promising performance

regardless of testing conditions on many public benchmark datasets. Recently,

Temporal Convolutional Networks (TCNs) (Bai, Kolter and Koltun 2018) have

been found to substantially outperform typical deep neural network models for

modelling sequence data, such as Long Short-Term Memorys (LSTMs) and Gated

Recurrent Units (GRUs), in a wide range of tasks and datasets. Compared to

Recurrent Neural Network (RNN) models, the training process of a TCNs does
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not require backpropagation at each sequential input. Such a highly parallelisable

and light architecture allows TCN to mitigate the issues of gradient vanishing and

explosion and requires less memory to speed up training.

Taking sEMG decoding as a sequential modelling problem, Tsinganos et al.

first designed a TCN to address sEMG-based HGR and achieved an accuracy of

as high as 89.76% in classifying 53 movements. However, this promising result was

obtained by using only complete sequences instead of a sliding window (≤ 300ms),

which is not feasible for real-time implementation. Taking into account the tem-

poral dependencies within the input sequences where each sequence is taken by

a sliding window of 200ms, Betthauser et al. found that the proposed TCN

produces a more accurate and stable prediction performance, especially during

interclass transitions, compared to other five models including LSTM, k-nearest

neighbor (kNN), Support Vector Machine (SVM), Random Forest (RF), and Ar-

tificial Neural Network (ANN). The model stability was measured by evaluating

its class-switching behaviour relative to the ground truth one using the proposed

quantifiable stability metric. They also argued that addressing sEMG decoding

as a sequential modelling problem will lead to enhancements in the robustness,

responsiveness, and movement complexity available in prosthesis control systems

in their subsequent work (Betthauser et al. 2020).

Furthermore, Zanghieri et al. proposed a TCN topology (TEMPONet) to ad-

dress the temporal variability of sEMG-based hand grasp recognition by testing

both intrasession and intersession validation. To further validate the practical

performance of this model, they also proposed a real-time embedded platform

for sEMG-based HGR and tested the quantised TCN not only on classification

accuracy but also other practical metrics such as execution time and energy con-

sumption on each classification (Zanghieri et al. 2020a). As a result, TEMPONet

achieved SoA performance in Non-Invasive Adaptive Hand Prosthetics (NinaPro)

DB6, producing a classification accuracy in the intrasession and between sessions
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of 54.2% and 49.4%, respectively. Note that NinaPro DB6 involves different but

very similar grasps, and there exist strong transient states in the timing of class

switching.

2.2.3 Transition from accuracy to robustness

Over the past few decades, academic research in the field of sEMG-based HGR

has primarily concentrated on enhancing the accuracy of classification. However,

this has resulted in a disparity between the practical use of myoelectric control

systems and laboratory settings. As mentioned in Section 2.1.3, there are numer-

ous factors that can impact sEMG signals, which can alter the extracted features

and subsequently reduce the recognition performance over time. This highlights

the critical issue of robustness in sEMG-based HGR, particularly for applications

in myoelectric control (Jiang et al. 2012b).

To bridge this gap, researchers have shifted their focus towards studying the ro-

bustness of sEMG-based HGR. For example, several studies have highlighted that

variations in arm positions can result in a decline in HGR performance (Scheme

et al. 2010; Fougner et al. 2011; Jiang et al. 2012a). This is because the feature

extracted from the sEMG signals differ when performing hand movements in arm

positions that are distinct from those used to train the classifier.

To address this issue, one straightforward solution is to train a multiposi-

tion classifier using sEMG signals collected from as many arm positions as pos-

sible (Geng et al. 2012). This approach is expected to increase the robustness of

sEMG-based HGR by enhancing the generalisation ability of the classifier. An-

other solution is to design a two-stage cascade classifier (Geng et al. 2012; Geng,

Zhou and Li 2012). In the first stage, a classifier is trained to predict the arm

position of the amputee. In the second stage, each classifier is trained with data

collected in a specific arm position, and the classifier that best corresponds to the
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predicted arm position is selected to identify and track the specific hand move-

ments.

Both of these solutions have been further validated using a motion-test envi-

ronment, where the comparison results have shown that they outperformed the

standard classifier by improving the real-time performance across seven classes of

movements in five different arm positions (Geng et al. 2017). Specifically, the two-

stage cascade classifier and multiposition classifier achieved an 8.7% and 12.7%

increase in motion completion rate, respectively. These findings demonstrate the

potential of these solutions to enhance the robustness of sEMG-based HGR and

improve its practicality in real-world settings.

In order to address the decline in recognition accuracy that occurs over time,

adaptive learning strategies can be implemented. These strategies involve using

incremental learning schemes to update classifiers whenever new data is collected.

Additionally, instead of simply adding all new data to the training set, it may be

more effective to select a new sample set carefully. For instance, gu2018robust pro-

posed an adaptive learning method that employs selectively chosen samples with

ground-truth labels, and demonstrated its effectiveness in mitigating recognition

degradation over one day.

Maintaining the accuracy of HGR using sEMG is a challenging problem, even

when assuming the arm position is fixed. It has been reported by several studies

that the classification accuracy can vary significantly over time due to day-to-day

variations (He et al. 2015a; Huang et al. 2017; Zia ur Rehman et al. 2018b,a).

Recently, deep learning techniques have been employed to tackle this issue. For

instance, Bao et al. proposed a CNN with a novel confidence estimation mecha-

nism that improves the long-term robustness of recognition by rejecting uncertain

predictions. The proposed approach achieved an inter-session between-day accu-

racy of 73.33% under the rejection scheme.
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2.3 Summary

In conclusion, the comprehensive analysis of current research directions in sEMG-

based HGR has revealed significant shifts in focus, methodology, and objectives

within this rapidly evolving field. As highlighted in the Literature Review, the

transition from static to dynamic gesture recognition signifies a response to the

demand for more natural and nuanced interactions. Moreover, the adoption of so-

phisticated deep learning techniques showcases the recognition of their potential

in tackling complex sEMG signal analysis tasks. More importantly, the paradigm

shift from accuracy-oriented approaches to prioritising robustness addresses the

practical challenges of real-world applications. The Literature Review serves as a

foundation for the subsequent chapters in this thesis, where we endeavor to build

upon these insights and address specific gaps in the field. The ensuing chapters

will explore uncertainty-aware models, a systematic evaluation framework to in-

vestigate the model reliability, and long-term robustness analysis to contribute

to the advancement of SoA sEMG-based HGR. By leveraging these evolving re-

search directions, we aim to pave the way for more reliable, interpretable, and

adaptable HGR systems, ultimately enhancing user experiences and enabling new

possibilities in myoeletric control applications.



Chapter 3

Methods

This chapter presents the framework proposed to design a simple but effective

uncertainty-aware Surface Electromyography (sEMG)-based hand gesture classi-

fier. Applying it allows us to quickly build a model with the ability to make its

inference along with explainable quantified multidimensional uncertainties. This

addresses the black-box concern of the Hand Gesture Recognition (HGR) process

directly with better model interpretability.

3.1 Introduction

The Convolutional Neural Network (CNN), as the most popular deep learning

model for sEMG-based HGR, has been successful in achieving better recognition

accuracies compared to other machine learning algorithms. However, it has no

ability to make inferences along with an explainable uncertainty about it. In

other words, it is not an uncertainty-aware model (Kaplan et al. 2018). To extend

CNN to accommodate uncertainty-awareness, we propose Evidential Convolu-

tional Neural Network (ECNN) that integrates CNN with Evidential Deep Learn-

ing (EDL) (Sensoy, Kaplan and Kandemir 2018), which was developed based on

the theoretical framework of Subjective Logic (SL) (Jøsang 2016). This allows

42
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ECNN to be explicitly trained so that having the ability to infer understand-

able multidimensional uncertainties include vacuity (Sensoy, Kaplan and Kan-

demir 2018), expressing whether there is sufficient evidence to support model

predictions, and dissonance, presenting the uncertainty derived from conflicting

evidence (Jøsang, Cho and Chen 2018).

3.2 Subjective Logic

In Dempster-Shafer Theory of Evidence (DST) (Dempster 2008), a frame of dis-

cernment Θ is defined as a finite set of mutually exclusive elements in a domain,

where a subset of Θ is referred to as a hypothesis or proposition, and a singleton

is used to represent it if the cardinality of this subset is equal to 1. The belief

of a proposition could be quantified by belief functions based on available evi-

dence, which allows us to not follow the additivity principle of probability theory

strictly, thus providing an additional “dimension of uncertainty” to make igno-

rance explicit (Reineking 2014). Based upon DST’s notion of belief assignment

over Θ, SL (Jøsang 2016) provides a structured approach to connect beliefs to

Dirichlet distributions so that we can approximate second-order Bayesian reason-

ing in a computationally efficient way. The second-order uncertainty of a multi-

class classifier is represented by a Dirichlet Probability Density Function (PDF)

over a multinomial distribution, which refers to the first-order uncertainty repre-

senting the predicted class probabilities. In other words, the first-order logic can

be incorporated into the higher layer reasoning so as to enrich the uncertainty

representation with extra information from beliefs.

Let Y = (Y1, Y2, ..., YK) be a discrete variable in a domain Y, representing

the class label. For a multiclass classification problem, the number of classes

K = |Y| > 2. A multinomial opinion over Y in SL is then defined as an ordered

triplet wY = (bY , uY ,aY ) where
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• bY refers to a belief mass distribution over Y;

• uY is the uncertainty mass that expresses the vacuity of evidence, which

decreases as more observations in terms of statistical events are found;

• aY represents a base rate distribution over Y, which is known as prior prob-

ability in classic Bayesian theory.

The projected probability distribution of a multinomial opinion in SL defined as

follows (Jøsang 2016):

PY = bY + aY uY . (2)

SL demonstrates clearly that there is a specific bijective mapping between

a multinomial opinion and a Dirichlet PDF over the same domain Y. Before

proceeding further, let us recall the definition of a Dirichlet PDF over the same

discrete variable Y on domain Y (Ng, Tian and Tang 2011):

Dir(pY ) =
Γ
∑K

j=1 αj


∏K
j=1 Γ(αj)

K∏
j=1

p
(αj−1)
Yj

, (3)

where pY represents the probability distribution for the discrete variable Y , such

that each pYj
∈ (0, 1) and ∑K

j=1 pYj
= 1; α = (α1, ..., αK) is a strength vector

of positive-valued Dirichlet parameters; Γ(·) is the standard Gamma function.

Since the Dirichlet distribution belongs to the exponential family, its conjugation

property allows us to consider the Dirichlet parameter α as prior and observation

evidence. From the perspective of SL, each singleton can have an arbitrary ad-

ditive base rate distribution aY over the domain Y rather than the default value

1/K if no additional information is provided (Jøsang 2016), as can be seen below:

α = r + aYW, (4)

where r is a vector of evidence over variable Y ; W is a constant expressing the
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non-informative prior weight. The evidence representation of Dirichlet PDF can

then be obtained by substituting the above equation into Equation (3) and the

expected probability distribution over Y is (Jøsang 2016):

EY = α∑
α

= r

W +∑
r

+ aY
W

W +∑
r
. (5)

Intuitively, to build such a bijective mapping, the projected probability distri-

bution defined in Equation (2) is supposed to equal the expected probability

distribution defined in Equation (5). More specifically, the observed evidence in

Dirichlet PDF could be simply mapped to the belief mass distribution, inferring

that:

bY = r

W +∑
r
, uY = W

W +∑
r
. (6)

Note that the total belief mass approaches 1 (or 0) while the uncertainty

of vacuity reaches 0 (or 1), as the total evidence goes to infinity (or 0). These

properties match the additivity requirement of a multinomial opinion over Y , that

is, ∑
bY + uY = 1. (7)

3.3 Evidential Deep Learning

Based on the well-developed theoretical framework of SL, EDL was proposed

to help extend a deep learning model to accommodate uncertainty-awareness by

introducing explicitly training process (Sensoy, Kaplan and Kandemir 2018). In

EDL, the term evidence e has been defined as a measure of the amount of support

collected from the extracted features in favour of an input sample to be classified

into a certain class. Recall that a discrete variable Y = (Y1, ..., YK) represents the

class label for a K-classification problem. The non-informative prior weight W is

equal to K since a uniform prior PDF is required when there is no observation.
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Naturally, each element of the base rate vector aY is equal to 1/K without any

extra information. Therefore, one can easily compute the belief mass vector as

follows:

bY = eY
K +∑

eY
. (8)

It is noted that the denominator is referred to as total evidence S, as evidenced

by the mathematical expression presented below:

K +
∑
eY =

∑
(eY + 1) = S. (9)

Accordingly, the belief mass vector bY is expressed as the normalisation of the

observed evidence vector eY . Furthermore, there is a mapping between the pa-

rameter vector of Dirichlet distribution and the evidence vector, as revealed by

the following equation:

α = eY + 1. (10)

By substituting it into Equation (5), the predicted probability vector can be com-

puted from the mean of the corresponding Dirichlet distribution, as

pY = eY + 1∑(eY + 1) (11)

In practical scenarios, each item of eY has the lower limit of 0 and no upper

limit. When there is no observation, that is, the total evidence is equal to 0, the

predicted probability for each class is the same as 1/K.

3.4 Evidential Convolutional Neural Network

EDL considers the output of a neural network as the evidence vector. Therefore,

to satisfy the property of the evidence vector, i.e., the collected evidence for each

class should be greater or equal to 0, EDL takes the non-negative output of a
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neural network after replacing the Softmax layer with an activation layer such

as ReLU as the evidence vector for the predicted Dirichlet distribution. This

actually builds a bridge between deep learning models and the theoretical theory

of SL. As such, ECNN can be simply designed by integrating a CNN (Côté-Allard

et al. 2019) with EDL.

The design of ECNN represents an innovative application of EDL in the do-

main of sEMG-based HGR. Our contributions go beyond the mere design of ECNN

architecture; instead, they primarily stem from the comprehensive framework es-

tablished for the design and optimisation of ECNN models. It is clear that the

performance of the model is profoundly influenced by the choice of loss func-

tions and the effectiveness of hyperparameter determination. First and foremost,

the proposed framework of designing ECNN allows us to investigate and explore

various loss functions tailored to the specific requirements of sEMG-based HGR.

This exploration is crucial as it sheds light on the diverse regularisation techniques

and their impact on model performance. More details are presented in section 3.5.

Moreover, our extensive investigation of hyperparameter optimisation plays a piv-

otal role in enhancing model performance and fine-tuning ECNNs for optimal re-

sults. For example, instead of solely relying on ReLU as the activation function,

we treat it as a hyperparameter and incorporate other potential activation func-

tions, thereby providing researchers with a more diverse toolkit to enhance model

expressiveness and flexibility. More details can be found in section 3.6.

Overall, with the aid of this framework, ECNN can be trained to learn to collect

the evidence that leads to a subjective opinion used to predict hand gestures with

the support of explicit uncertainty estimates.
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3.5 Loss functions

For a K-class supervised HGR problem, given a sample i and let yi be a one-hot

encoding of the ground-truth class of it with yij = 1 and yim = 0 for all j 6= m

where j andm are class labels. The evidence vector generated based on the learned

features after taking the sample i as input to ECNN can be expressed as f(xi|Θ),

where Θ refers to the model parameters of ECNN. Based on Equation (11), the

predicted probability of sample i for jth hand gesture is computed as

pij = f(xij|Θ) + 1∑(f(xi|Θ) +K
. (12)

The sum-of-squares loss LSSL can be computed by using the Euclidean distance

between the one-hot encoding yi and the predicted class probabilities pi, as shown

below:

LSSL(ei,yi) = 1
K

K∑
j=1

(yij − pij)2, (13)

where yij represents the true probability that the sample i belongs to class j,

and pij denotes the predicted probability assigned by the model for class that the

sample i for class j. The sum is taken over all K classes, and then divided by K

to compute the average squared difference between the one-hot encoding and the

predicted class probabilities.

The potential of ECNN can be further explored by employing different learn-

ing strategies which are based on the sum-of-squares loss LSSL. For the sake of

convenience, only three ECNN variants will be investigated and referred to as

ECNN-A, ECNN-B, and ECNN-C, where each employs a specific variant of loss

function for training. Assume that there are N training samples in total, ECNN-A

is trained by minimising the mean of LSSL directly, as seen in Equation (14):

L(A) = 1
N

N∑
i=1
LSSL(ei,yi). (14)
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Furthermore, ECNN-B and ECNN-C will be trained by minimising the loss func-

tion L(B), and L(C) respectively, as seen in Equations (15) and (16):

L(B) = 1
N

N∑
i=1

(LSSL(ei,yi) + λ(B)E(xi,yi)∼D[KL [Dir (p−k;α−k) ‖Dir (p−k; 1)]]),

(15)

where λ(B) = min(1.0, t/s); t is the current training epoch number and s is an

annealing step used to control the annealing effect of the Kullback-Leibler (KL)

divergence term, Dir(·) is the Dirichlet distribution, p−k stands the predictive

probabilities for all wrong classes while α−k refers to the predicted Dirichlet pa-

rameters except the one that is attributed to the ground truth class k;

L(C) = 1
N

N∑
i=1

(LSSL(ei,yi) + λ(C)E(xi,yi)∼D[KL [Dir (p−k;α−k) ‖Dir (p−k; 1)]]),

(16)

where λ(C) is a constant and the others are the same as Equation (15).

It is clear that the sole distinction between L(A) and the other two loss func-

tions lies in the introducing of a regularisation term. Incorporating the KL diver-

gence term in the loss functions L(B) and L(C) introduces a crucial regularisation

mechanism in the model. This term ensures that the model not only focuses on

improving overall training accuracy but also guards against overconfidence in its

predictions. The objective is to encourage the predictive probability of the true

label to be higher than other classes while minimising the predictive probabili-

ties assigned to incorrect classes. In other words, by including the KL divergence

term, the loss function guides the model towards more calibrated and reliable pre-

dictions, preventing the occurrence of extreme probabilities for incorrect classes.

This regularisation mechanism plays a pivotal role in promoting well-calibrated

confidence scores and enhancing the model’s robustness, especially in scenarios

with limited training data or imbalanced class distributions. The intuition behind
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is to address the issue of overconfidence and ensure the model strikes an appropri-

ate balance between accuracy and uncertainty in its predictions, thereby yielding

more trustworthy results in sEMG-based HGR.

Furthermore, the distinction between L(B) and L(C) lies in the parameter λ,

which governs the effect of the KL term. In L(B), λ is designed to scale the

KL divergence term dynamically. Specifically, it allows the KL term to exert

a lesser influence during the early stages of training and gradually increase its

impact as the model’s performance improves. Notably, λ(B) remains fixed at 1

once the training epoch reaches s. On the other hand, in L(C), λ(C) is a constant

hyperparameter set to maintain the effect of the KL at a consistent and reasonable

level throughout the training process.

One of the pivotal contributions of this thesis is the thorough exploration

and comparison of these loss functions, which provides a comprehensive guide on

designing efficient ECNNs for sEMG-based HGR. By delving into the differences

between L(A), L(B), and L(C), we gain valuable insights into the implications of

their respective regularisation techniques and their effects on model performance.

The investigation not only highlights the significance of the introduced regular-

isation terms but also demonstrates the influence of varying λ values in L(B) and

L(C). The dynamic scaling of λ in L(B) effectively adapts the strength of the KL

divergence term as the model evolves through different training epochs, offering

a balanced regularisation effect. On the other hand, L(C) introduces a constant

and reasonable λ value, ensuring consistent regularisation throughout training,

suitable for scenarios where maintaining a steady level of KL regularisation is

preferred.

Understanding the differences and relative merits of these loss functions em-

powers researchers and practitioners to make informed decisions when designing

ECNNs for sEMG-based HGR tasks. The insights gained from this exploration

serve as a roadmap for enhancing model performance, optimising hyperparameter
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settings, and tailoring the loss function to the specific requirements of diverse ap-

plications. This contribution significantly advances the state-of-the-art (SoA) in

sEMG-based HGR, enabling more accurate and robust models, ultimately foster-

ing the development of innovative myoelectric control applications and Human-

Computer Interaction (HCI) paradigms.

3.6 Hyperparameters

Model performance depends not only on model training but also on Hyperpa-

rameter Optimisation (HPO), where hyperparameters are the parameters that

control the learning process and must be determined before finding the optimal

model parameters. The most commonly seen hyperparameters include batch size

and learning rate. Batch size refers to the total number of samples used for train-

ing to update the model parameters. The learning rate controls the amount of

change in the direction towards minimising the loss function in response to the es-

timated error when updating the model parameters. As mentioned in section 3.4,

the activation layer ReLU can be used to replace Softmax to generate nonnegative

evidence vector. However, this is not the only option since its similar function

can be achieved by using other activation layers, such as SoftPlus. As such, the

activation layer can be considered as a hyperparameter when training ECNN,

which is referred to as evidence function. Additionally, the annealing step s pre-

sented in Equation (15) is a hyperparameter for ECNN-B while the λ presented

in Equation (16) is a hyperparameter for ECNN-C.

3.7 Evidential uncertainty

The power of ECNN comes from its ability to generate multidimensional evi-

dential uncertainty, including vacuity and dissonance, which are referred to as
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evidential uncertainty of ECNN. This can help us to understand the source of the

uncertainty. Vacuity denotes uncertainty due to lack of evidence or knowledge

and can be calculated based on Equations (8) and (9), see below:

uvac = uY = K∑
eY +K

, (17)

where K is the number of classes and eY is the vector of observed evidence for each

class. Dissonance represents the uncertainty due to conflicting evidence, derived

from a sufficient number of conflicting evidence by comparing each two singleton

belief masses (Zhao et al. 2020):

udiss =
K∑
j=1

(
bj
∑K
m=1,m 6=j Bal(bj, bm)∑K

m=1,m 6=j bm

)
, (18)

where K is the number of classes and Bal(bj, bm) represents the relative mass

balance between a pair of belief masses bj and bm for the sample i, equals 0 when

bj + bm = 0 and 1− |bj−bm|
bj+bm

otherwise.

3.8 Summary

In this chapter, the background and theory of EDL have been introduced and it

has been shown how ECNN can be easily designed using EDL. In addition, the

details of HPO, model training, and explainable multidimensional uncertainties

were presented to illustrate the framework to design uncertainty-aware sEMG-

based hand gesture classifier.



Chapter 4

Reliability Analysis of Finger

Movement Recognition

4.1 Introduction

As introduced previously, Surface Electromyography (sEMG)-based Hand Ges-

ture Recognition (HGR) is a practical application of sEMG that has found wide

usage in advanced prostheses control (Rezazadeh et al. 2012; Atzori and Müller

2015) and other rehabilitation applications (Ghassemi et al. 2019). It is crucial

that the development of such a classification-based control scheme is highly depen-

dent on the accurate and robust hand gesture predictions of users. As a result, cur-

rent research on sEMG-based HGR has focused on improving its accuracy (Shen

et al. 2019; Côté-Allard et al. 2019; Wei et al. 2019) and robustness (Gu et al.

2018; Zia ur Rehman et al. 2018a; Côté-Allard et al. 2019; Lin et al. 2020) with

recent deep learning techniques. Note that model robustness can be summarised

as the ability to remain accurate in practical scenarios under many factors that

can affect prediction performance, such as electrode shifts, sweating, limb posture

53
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and force changes, and day-to-day variation (Hargrove, Englehart and Hudgins

2008; Young, Hargrove and Kuiken 2011; Farina et al. 2014; Khushaba et al. 2014;

Hwang, Hahne and Müller 2017; Gu et al. 2018; Prahm et al. 2019). A special case

of robustness is to address subject variability when considering user-independent

sEMG-based HGR (Côté-Allard et al. 2019; Lin et al. 2020).

Recently, the rejection of hand movements based on uncertainty measures has

shown good potential as a general practical solution to improve the usability of

sEMG-based myoelectric control by boosting both the accuracy and robustness

of HGR (Scheme and Englehart 2015; Robertson, Englehart and Scheme 2019;

Wu et al. 2021). Ideally, most inaccurate ambiguous predictions could be re-

jected by introducing additional information, such as entropy or the normalised

maximum probability of the predictive distribution, for the indication of the confi-

dence level. The intuition behind this is to address the concern where the gesture

recognition process is considered as a ‘black box’ for myoelectric control (Scheme

and Englehart 2015). In this chapter, we provide a definition of reliability R of an

sEMG-based hand gesture classifier as the quality of its uncertainty measures that

produce confidence scores on the predictions of test samples. Its reliability anal-

ysis then refers to the evaluation of R. This is supported by the commonly held

opinion that accurate and robust HGR is considered reliable (Gu et al. 2018; Zia ur

Rehman et al. 2018a), and the statement that accurate uncertainty estimation is

one of the essential factors for the reliable application of deep learning (Kopetzki

et al. 2021).

Although deep learning models, particularly those based on Convolutional

Neural Networks (CNNs), have achieved state-of-the-art (SoA) performance by

reporting high sEMG-based HGR accuracy, the reliability analysis of CNNs in

this field has remained unexplored, which has become a growing necessity due to

the vulnerability of deep learning models reported recently (Szegedy et al. 2014;
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Kurakin, Goodfellow and Bengio 2016; Su, Vargas and Sakurai 2019). The reli-

ability analysis has direct benefits for current studies, including latent concerns

about model reliability in rejection-based HGR. For example, Wu et al. recently

proposed a metric-learning guided CNN to enhance the robustness of myoelec-

tric control systems by effectively rejecting novel patterns, i.e., no new classes

were included in the training. It is evident that there is a positive correlation

between the defined reliability R and the performance of the rejection-capable

sEMG-based HGR. This implies that quantifying R could provide a useful indi-

cation of model performance without suffering from the limitations of evaluating

its rejection-capable recognition performance, such as introducing extra evalua-

tion measures (e.g., accuracy-rejection curve (Nadeem, Zucker and Hanczar 2010),

false activation error (Hargrove et al. 2010)) and highly relying on determining

the optimal rejection threshold (Robertson, Englehart and Scheme 2019).

Additionally, current uncertainty measures used in sEMG-based HGR do not

provide meaningful insight into the predictions. Recent studies in the field of pre-

dictive uncertainty estimation have shown that evidential neural networks (Sen-

soy, Kaplan and Kandemir 2018; Zhao et al. 2020) modelled with Dirichlet-based

uncertainty (Kopetzki et al. 2021) are more efficient in explicitly measuring uncer-

tainties such as vacuity and dissonance (Jøsang, Cho and Chen 2018) with almost

no additional computational cost, unlike other approaches such as Bayesian neural

networks (Blundell et al. 2015) or ensemble models (Lakshminarayanan, Pritzel

and Blundell 2017). The potential of applying Evidential Convolutional Neu-

ral Network (ECNN) to the sEMG-based HGR will be further explored in this

chapter.

The main goal of this chapter is to propose a framework to directly quantify

R, with a specific focus on the reliability analysis of individuated finger move-

ment recognition with raw sEMG. Such movements are highly complex and ver-

satile (Scherberger 2009), naturally raising the real need for reliability analysis.
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We first employ an existing end-to-end CNN model (Côté-Allard et al. 2019)

and propose an uncertainty-aware model, that is, the ECNN by integrating it

with evidential deep learning. As a pilot study towards the reliability analysis

of sEMG-based finger movement classifiers, the discussion begins by illustrating

how multidimensional uncertainties generated by ECNN, such as vacuity and dis-

sonance, can be accurately quantified and utilised to recognize finger movements

that are difficult to classify, as compared to CNN.

Furthermore, a brief comparison of the performance of rejection-capable finger

movement recognition between CNN and ECNN is provided as empirical evidence

to support the intuition behind this research. Finally, and most importantly,

we first recommend using a threshold-free evaluation metric called normalised

Area Under Precision-Recall Curve (nAUPRC) (Boyd et al. 2012) to evaluate the

task of misclassification detection, which is introduced to quantify R, to avoid

the pitfall that current related evaluation metrics such as Area Under Receiver

Operating Characteristic (AUROC) (Fawcett 2006) and Area Under Precision-

Recall Curve (AUPRC) (Boyd, Eng and Page 2013) can only be used to assess the

misclassification detection performance of a single model rather than to compare

directly between different models (Ashukha et al. 2020). To further reduce the

bias of the results and ensure a fair comparison, extensive empirical evaluations

are provided by employing the stratified nested cross-validation (CV) with the

Tree-structured Parzen Estimator (TPE), which is one of the SoA hyperparameter

optimisation algorithms.

4.2 Problem Statement

Reliability analysis for finger movement recognition relies on a framework that

can explicitly measure the model reliability R, i.e., the quality of its uncertainty

estimates. The challenges are manifold: it must be quantifiable and ideally located
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in a fixed interval [0, 1]; it must be consistent for any classifier and uncertainty

measure; the results must be comparable in a fair way regardless of the model

accuracy. Inspired by studies on the evaluation of uncertainty quantification,

the reliability of sEMG-based finger movement recognition could be evaluated by

measuring the performance of the task of misclassification detection, which aims

to detect wrong predictions with quantified uncertainty estimates as scores. An

ideal reliable classifier enables the assignment of higher uncertainty measures when

incorrect predictions are being made compared to correct predictions. In other

words, the reliability R assesses the discrimination level of uncertainty quantifi-

cation assigned to the wrong and correct predictions.

The misclassification detection can be considered as a binary classification

problem where wrong predictions are positive samples and correct predictions re-

fer to negative samples. The quantified uncertainty is taken as the score, and

any samples with scores higher than a threshold will be assigned to positive sam-

ples, and negative ones otherwise. To avoid providing arbitrary results with a

user-defined score threshold, the AUROC and AUPRC are commonly used as

threshold-free evaluation summary metrics, which can overcome most of the chal-

lenges addressed above. However, these are incomparable since each model has its

own accuracy in each test set, yielding different positive and negative samples re-

garding misclassification detection. More details of our proposed framework with

a solution to address this challenge are presented in section 4.6.

4.3 Database

Our evaluations in this chapter were carried out on the Non-Invasive Adaptive

Hand Prosthetics (NinaPro) Database 5 (NinaPro DB5), which was recorded with

a double Myo setup in one session consisting of six repetitions of 52 hand move-

ments (plus rest), which were divided into exercise sets A (finger movements), B
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(hand and wrist movements), and C (other functional movements), performed by

10 healthy subjects (Atzori and Müller 2015). It should be noted that each repeti-

tion of all complete movements is sometimes referred to as trial (Wei et al. 2019)

or cycle (Côté-Allard et al. 2019). Here, the term ‘cycle’ is employed to avoid

confusion from the term ‘trial’ used in the hyperparameter optimisation process.

Since we are particularly interested in sEMG-based finger movement recognition,

only exercise A is used, which covers 12 finger movements that involve flexion and

extension of five fingers plus thumb adduction and abduction. The illustration of

these finger movements can be seen in Figure 25. To meet the real-time demands

of controlling devices such as prostheses, i.e., the 300 ms constraint (Hudgins,

Parker and Scott 1993), the raw sEMG data were segmented by applying a slid-

ing window of 250 ms with a non-overlap length of 25 ms. This high overlap was

used for data augmentation (Côté-Allard et al. 2019). Hence, each frame has a

dimension of 16 electrode channels × 50 sEMG sample points since the sampling

frequency of NinaPro DB5 is 200 Hz. It should be noted that no additional signal

preprocessing was performed here.

4.4 Models

To reduce bias, in our work, the enhanced raw ConvNet architecture, which

was first proposed by (Côté-Allard et al. 2019), was used here to evaluate finger

movement recognition performance in terms of both accuracy and reliability as

a baseline method. It was modified to adapt for this task, which was to classify

12 finger movements by taking a frame of raw sEMG signals with a dimension

of 16× 50. In essence, the CNN architecture was composed of two convolutional

layers and two fully connected layers which have 2304 and 500 hidden units,

respectively. The 3× 5 kernels with a stride of 1 and valid padding were used in

the convolutional layers. Note that valid padding is a type of padding in which
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no padding is added to the input. By increasing the number of channels from 32

to 64, the convolutional layer is able to apply more complex filters and capture

more abstract features of sEMG signals. Furthermore, recent techniques such as

Batch Normalisation (BN) (Ioffe and Szegedy 2015), Parametric Rectified Linear

Unit (PReLU) activation function (He et al. 2015b), and dropout were applied.

For a fair comparison, ECNN has the same network architecture as CNN

except for the way of interpreting the model output and the loss functions used

to train the network. It was designed by integrating CNN with Evidential Deep

Learning (EDL) followed by the framework presented in Chapter 3. More details

are shown in Figure 8.
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4.5 Illustration

This section aims to briefly illustrate the power of ECNN with its meaningful

evidential uncertainty in classifying finger movements with raw sEMG. This was

accomplished by conducting a comparison between ECNN-A and its conventional

counterpart (CNN) through the use of equivalent main models, thereby guaran-

teeing a fair and straightforward evaluation. Briefly, the models were trained and

tested only for the first subject from NinaPro DB5 to classify 12 finger move-

ments with 16-channels raw sEMG signals, which was segmented using a 250 ms

window with a 90% overlap. Therein, the models were trained by the 1st, 3rd,

4th and 6th cycles, whereas the 2nd cycle was used as a validation set for early

stopping and the 5th cycle was used to test performance. To facilitate a more con-

venient comparison, we established a uniform training setting with a batch size

of 256, a learning rate of 0.002, and the Adaptive Moment Estimation (ADAM)

optimization method (Kingma and Ba 2015) for both ECNN-A and CNN mod-

els. Moreover, the cross-entropy loss was used for training the CNN, whereas the

sum-of-squares loss as shown in Equation (14) was used for training the ECNN-A.

We first illustrate the power of the evidential uncertainty of ECNN-A by tak-

ing an example of classifying ‘thumb adduction’, which is easily confused during

classification as ‘thumb flexion’ due to the similarity of movements. The top

and bottom panels of Figure 9 show that CNN starts making wrong predictions

during transient movements. This is consistent with the finding that the offline

transient-state sEMG-based HGR accuracy is usually less than the steady-state

one as the transient-state sEMG has more variance than the steady-state one

over time (Englehart, Hudgins and Parker 2001; Jaramillo-Yánez, Benalcázar and

Mena-Maldonado 2020). The evidential uncertainty of ECNN reveals this clearly

by presenting either high uvac or udiss during the transient phase, seen in the

middle panel of Figure 9.

More importantly, it shows a clear understanding of the uncertainty sources
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Figure 9: Sequential predictions of the ‘thumb adduction’ (class 10) on offline
testing. Note that the sequential predictions of a wrong class are presented only
if the predictive probability for at least one of them is above 0.5. Note that the
ECNN refers to ECNN-A in this figure. Top: The predicted probabilities of the
CNN; Class 3 and 12 refer to ‘middle flexion’ and ‘thumb flexion’. Middle: The
predicted probabilities of the ECNN with its evidential uncertainty. Bottom: The
sum of moving averages of 16-channel raw rectified sEMG signals with absolute
values regarding the dynamic finger movement of ‘thumb adduction’. The u.a.
denotes ‘unitless’ activation since sEMG recorded by Thalmic Myo armbands is
claimed to be ‘unitless’ with an unknown conversion from mV.



CHAPTER 4. RELIABILITY ANALYSIS FOR HGR 63

in this example, which implies ECNN can provide better model interpretability.

What CNN attempts to show is that the uncertainty at the beginning comes from

conflicting evidence since its predicted probabilities for the 12th finger movement

‘thumb flexion’ are high at this stage. This is exactly what ECNN-A has revealed

by giving high values of udiss. Similarly, CNN shows ignorance at the end since it

assigns high predicted probabilities for ‘middle flexion’, which seems unrelated to

the ground truth ‘thumb adduction’. Again, this has been disclosed by ECNN-A

via presenting high values of uvac. From Figure 9, it can be seen that ECNN-

A does not make overconfident predictions compared to CNN, especially when

predictions may go wrong. Note that for ease of viewing, the focus is only on

those classes with likely incorrect predictions, the sequential predictions of a wrong

class will be presented in Figure 9 only when the probability for at least one of

those wrong predictions is greater than 0.5. Based on this criterion, it can be

observed that ECNN-A only displays the sequential predictions for the true class

in Figure 9. This crucial evidence supports the assertion that ECNN-A avoids

making overconfident predictions, at least for this example.

In summary, Figure 9 illustrates that ECNN-A has the potential to precisely

quantify predictive uncertainties with understanding of the uncertainty sources.

A natural question that arises is: how could we better leverage this for improving

sEMG-based HGR performance? One straightforward solution is to allow a classi-

fier to reject making a prediction when whichever dimension of uncertainty is con-

sidered as high. Assuming that high uncertainties are only generated when wrong

predictions are made, making rejections under such conditions is then definitely

a benefit to boost the HGR accuracy and make the accepted predictions more

reliable. This is the intuition behind rejection-capable sEMG-based finger move-

ment recognition. To briefly compare the classification performance of CNN and

ECNN-A when allowing a model to reject making predictions by leveraging the

uncertainty estimate, we first calculated unEntropy for CNN and max(uvac, udiss)



CHAPTER 4. RELIABILITY ANALYSIS FOR HGR 64

for ECNN regarding uncertainty estimates.

By setting a confidence threshold δ, where its range is set to [0, 0.5], for dis-

crimination between certain and uncertain predictions, the model is allowed not

to make a prediction whenever its quantified uncertainty is larger than (1 − δ).

When δ = 0, it simply refers to the standard recognition where no rejections will

be made. The upper limit of δ was set to 0.5 as a value of more than 0.5 is

perceived to be too strict, which might lead to a situation in which no predictions

are made. Inspired by studies of rejection-capable sEMG-based HGR, the three

evaluation metrics used here are defined as follows: Rejection Rate (RR) is the

percentage of predictions that are rejected (Nadeem, Zucker and Hanczar 2010;

Scheme and Englehart 2015); True Acceptance Rate (TAR) refers to the rate at

which a classifier correctly makes active predictions while True Rejection Rate

(TRR) refers to the rate at which a classifier correctly makes inactive predictions.

Note that False Acceptance Rate (FAR) and False Rejection Rate (FRR) were

previously defined in (Scheme and Englehart 2015), and the sum of FAR/FRR

and TAR/TRR equals to 1.

In terms of rejection-capable sEMG-based finger movement recognition, Fig-

ure 10 shows how ECNN-A outperforms CNN in this example. First, even though

more predictions will be rejected as the confidence threshold δ increases, the blue

lines show that the gradient of RR for ECNN-A is much smaller than CNN. When

the threshold reaches 0.5, CNN almost stops making any predictions, but the RR

of ECNN-A remains at about 10% only. This gives additional support to the

proposed statement that CNN is considered overconfident. Second, the TAR of

ECNN-A remains constant, whereas it drops for CNN as δ increases. Recall that

TAR can be considered as accuracy in finger movement recognition but under

the condition that the model is allowed not to make uncertain predictions. The

standard recognition accuracy of ECNN-A is also higher than CNN, as shown in

pink points when δ = 0.
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Finally, it shows that ECNN-A is making more valid rejections generally than

CNN, supported by the TRR shown in orange. It is observed that ECNN-A has a

lower TRR when the δ varies from 0 to 0.1, which may be caused by the extremely

low RR of ECNN-A, that is, very few predictions are rejected when δ is small.

Although ECNN-A has shown its superiority in this example, it must be un-

derstood that one example alone may not prove that ECNN-A is more reliable

than CNN. Therefore, the illustration here can only be considered as a supple-

ment for the readers to better understand the special properties of ECNN-A with

evidential uncertainty. This small example also indicates how to investigate the

rejection-capable sEMG-based finger movement recognition performance with un-

certainty measures in a traditional way. The proposed proper reliability analysis

for both models will be presented in detail later.

4.6 Experimental Setup

All experiments were implemented in PyTorch v.1.1.0 and Python 3.7.3. The ex-

perimental sequences were constructed by data loading, data segmentation, model

training, and model testing. A standard CV procedure may cause biased results

when assessing classification models (Varma and Simon 2006; Krstajic et al. 2014).

To reduce bias and to better compare finger movement recognition performance

between CNN and ECNN, a stratified nested CV procedure (Stone 1974; Krstajic

et al. 2014) was employed in this work, where an inner CV loop was used to de-

termine the best hyperparameters for model training, while an outer CV was then

applied to test and compare the results. Stratification allows each fold divided

from the data to have similar proportions of samples with the same label. This

could be done by simply splitting the data via the repetition number here. The

detailed algorithm for model training with stratified nested CV can be seen in

Algorithm 1.



CHAPTER 4. RELIABILITY ANALYSIS FOR HGR 67

Algorithm 1 Model Training with Stratified Nested CV
Input: D = {Xi,Yi}N

i=1, dataset includes segmented raw sEMG signals with labels, which has been divided by

the repetition number from 1 to N . Define loss function J .

Output: Model parameters θ = {θ1, ..., θN} after training

1: for Each Repetition i do {Outer Loop CV}

2: Load testing set D(test) = {X(test)
i ,Y(test)

i }

3: (Hyperparameter Optimisation)

4: for Each trial of hyperparameter study k do

5: Define the objective function of hyperparameter study with proposed hyperparameter search space

6: Initialise a list O for collecting the objective values

7: Initialise a list L for collecting the validation losses from the inner loop CV {Inner Loop CV}

8: for Each repetition j (j not i) do

9: Load validation set D(val) = {X(val)
j ,Y(val)

j }

10: Let the remaining dataset be the training set D(train)

11: Initialise θij with random values

12: best val = inf

13: for Each epoch do

14: Update the θij

15: if J(X(val),y(val)) < best val then

16: best val = J(X(val),y(val))

17: counter = 0

18: else

19: counter += 1

20: end if

21: Stop training when counter reaches to 10

22: end for

23: if the pruning is activated then

24: Break the inner loop and move to the next hyperparameter study trial

25: else

26: Add best val to the list L

27: end if

28: end for

29: Add the objective value mean(L) to the list O

30: end for

31: Load retraining dataset by combining both D(val) and D(train),

i.e., D(retrain) = {X(retrain),y(retrain)}

32: Initialise the model parameters θi with random values

33: Apply the optimal hyperparameter set which yields min(O)

34: for Each epoch do

35: Update the θi

36: Stop training when J(X(retrain),y(retrain)) reaches to min(O)

37: end for

38: Save model parameters θi to θ

39: end for

40: return θ
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Since each subject performed six repetitions of all gestures in the NinaPro

DB5, the split ratio of training, validation, and testing datasets was set to 4 : 1 : 1

regarding cycle number to maximise the data used for training. This data split

method could also prevent data leakage between training and testing. Recall

that the raw sEMG signal was segmented by a sliding window and the overlap

between every two consecutive frames was as high as 90%. Therefore, randomly

splitting the sample set may cause such a leakage scenario in which a sample falls

into the training set while its adjacent segments could be found in the testing

set. Furthermore, early stopping was employed to avoid overfitting by setting the

patience term at 10. Specifically, to ensure the training process did not continue

unnecessarily, we stopped the training when no improvement was detected in the

validation set after waiting for 10 epochs, or when the training epoch reached

1000.

Unlike conventional Hyperparameter Optimisation (HPO) algorithms such

as Grid or Random Search, we applied one of the SoA HPO algorithms, the

TPE (Bergstra et al. 2011; Bergstra, Yamins and Cox 2013), to reduce the com-

putation burden. Being an approach based on sequential model-based global

optimisation algorithms (Hutter, Hoos and Leyton-Brown 2011; Bergstra et al.

2011), the TPE organises hyperparameters into a tree-like space so that the avail-

able values of a specific hyperparameter will be determined based on the pre-

vious search results. With the help of Optuna (Akiba et al. 2019), which is

a powerful hyperparameter optimisation framework, the unpromising trials will

be terminated at an early stage where each trial refers to each evaluation of

an objective function. Such a strategy is also referred to as pruning, and the

‘MedianPruner’ constructed by the Median Stopping Rule (Golovin et al. 2017)

was used here. Specifically, the objective value is then the mean of the valida-

tion losses collected from the inner CV loops. Moreover, the number of study

trials was set to 25 and the pruning was enabled after 5 trials were completed
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in each process of HPO. The source code for this study is available on GitHub

(https://github.com/YuzhouLin/ECNN-RAnal), and the determined optimal hy-

perparameters of each model on each test trial of CV for each individual can be

found here as well.

Table 1: Hyperparameter Search Space

Hyperparameters CNN ECNN-A ECNN-B ECNN-C
batch size {128, 256}
learning rate [1e-3, 1e-2]
optimizer {”ADAM”, ”RMSprop”, ”SGD”}
evidence func × {”ReLU ”, ”SoftPlus”, ”Exp”}
s × × [10, 60] ×
λ × × × [0.1, 1.0]

The hyperparameter search space is listed in Table 1. The common hyper-

parameters used for training both CNN and ECNN include batch size, learning

rate, and optimiser method. To better explore the potential of ECNN, we in-

vestigated different functions to generate the evidence vector (called ‘evidence

func’ in Table 1) and train the model. Instead of employing ReLU as the last

activation function for ECNN to turn the model outputs into the nonnegative

evidence vector for the predicted Dirichlet distribution, other functions such as

SoftPlus and the exponential function (Exp) can be investigated. Note that any

value larger than 3 would be limited to 3 when using the exponential function

for training convergence. Recall that ECNN-B and ECNN-C are trained by in-

corporating a Kullback-Leibler (KL) divergence term into the sum-of-squares loss

function. Based on the training strategies employed, a specific hyperparameter for

ECNN-B and ECNN-C is the annealing step s and λ, respectively. Eventually, the

determined optimal hyperparameters of models employed for reliability analysis

of finger movement recognition can be found in Appendix B.

https://github.com/YuzhouLin/ECNN-RAnal


CHAPTER 4. RELIABILITY ANALYSIS FOR HGR 70

4.7 Performance Evaluation

4.7.1 Evaluation of Accuracy

First, we use the recall to evaluate the general efficacy of sEMG-based finger

movement recognition. As a multiclass classification problem, recall can be cal-

culated by taking the macroaverage and microaverage. The macroaverage recall

is calculated as:

rM = 1
K

K∑
j=1

tpj
tpj + fnj

, (19)

where rM is the macroaverage recall; tp and fn represent the number of true

positives and false negatives; K is the number of finger movements and j refers to

a specific one. It was employed here to measure the average per-class accuracy of

such recognition because each finger movement is considered equally important,

whereas the microaverage one favours bigger classes (Sokolova and Lapalme 2009).

It would be further averaged over subjects for overall comparison. Second, to

further investigate the accuracy of rejection-capable sEMG-based finger movement

recognition, and for the sake of consistency with its related studies, the evaluation

metric of Accuracy-Rejection Curve (ARC) (Nadeem, Zucker and Hanczar 2010;

Scheme and Englehart 2015) was used here to compare the performance of CNN

and ECNN variants in terms of their rejection rates. By varying the rejection

threshold δ from zero to one, different pairs of RR and the corresponding accuracy

(i.e., TAR) could be achieved when testing a trained classifier. For the overall

comparison, we calculated the mean ARC for each model using the 20 bins of RR

under the CV scheme.
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4.7.2 Evaluation of Reliability

As indicated in section 4.2, the reliability of the sEMG-based finger movement

recognition could be evaluated by measuring the performance of the misclassifi-

cation detection. The AUROC and AUPRC can then be used to calculate the

model reliability and are noted as RAUROC and RAUPRC , which can be simply

computed using the trapezoidal rule and Average Precision (AP) shown in (20),

respectively. Consider a testing data set D(test) with n samples and the number

of positive (incorrect predictions) and negative samples (correct predictions) is

represented by npos and nneg, respectively,

AP = 1
npos

npos∑
i=1

p(i), (20)

where n samples will be sorted from high to low based on uncertainty estimates

and i is the rank in the sequence of sorted positive samples; p(i) is the precision

at cut-off i. It has been proven to be one of the most robust estimators for

summarising information in Precision-Recall Curve (PRC) (Boyd, Eng and Page

2013).

Since each model has a specific class skew π in the detection of misclassifica-

tion, defined as npos/n, it is inappropriate to use RAUROC and RAUPRC for direct

comparison between models. We recommend measuring the model reliability by

RnAUPRC for a robust and fair comparison, which is a normalised AUPRC. In

this paper, we will present the results of RAUROC and RAUPRC for all models as

a reference only and those of RnAUPRC for performance comparison. Boyd et al.

first proved that there is a region of PRC that is not achievable, and the area of

such an unachievable region depends on π. The nAUPRC was therefore proposed

to account for this using normalisation. As such,

RnAUPRC = AP − APmin
APmax − APmin

, (21)
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where APmax = 1, that is, the theoretical maximum AUPRC; APmin is the theo-

retical minimum AUPRC proved by (Boyd et al. 2012), see below:

APmin = 1
npos

npos∑
i=1

i

nneg + i
, (22)

where npos and nneg represent the number of positive and negative samples; i is

the rank in the sequence of sorted positive samples.

4.7.3 Evaluation under Cross-Validation

There are two incompatible ways to compute the proposed evaluation metrics

under nested CV. It can be calculated by either taking the mean of the results

from each fold in the outer loop CV or aggregating the data from all folds into one

first and then followed by the equations. Since merging assumes that the models

are calibrated (Forman and Scholz 2010), which is not the case here, all evaluation

metrics will be computed using the former approach here.

4.8 Results

In all experiments, unless otherwise stated, the performance of CNN is taken as

the baseline and compared with ECNN variants using statistical analysis with the

Wilcoxon signed rank test, where the null hypothesis assumes that there is no

difference in the evaluation results between the two models and will be rejected

when the p-value < 0.05. The difference in performance among ECNN variants

will also be investigated.

4.8.1 Accuracy Analysis

Here we first verified the accuracy of CNN and three ECNN variants.



CHAPTER 4. RELIABILITY ANALYSIS FOR HGR 73

Without rejection

It can be seen that ECNN-A and ECNN-C outperformed CNN overall in terms of

classification accuracy on the NinaPro DB5 in Table 2. The average improvements,

which were statistically significant, reached 1.72% and 1.46% respectively. It

should be noted that the difference of accuracy between ECNN-A and ECNN-C

was not statistically significant, and CNN significantly outperformed ECNN-B but

with a difference of only 2.17% on accuracy. As such, one could notice that the

rank of model accuracy was ECNN-A ≈ ECNN-C > CNN > ECNN-B. Details of

the model performance from the perspective of nested CV are shown in Figure 11

and the same finding can be observed on each fold in the outer loop CV from it.

It is interesting to note that all models achieved the lowest accuracy in the 1st

fold, indicating that there is significant variability between the first trial of sEMG

and others. This may be because subjects need time to accommodate the Myo

band to perform hand gestures.

Table 2: Macroaverage Recall of the ConvNets with Comparisons

Models ECNN-A ECNN-C CNN ECNN-B
M±STD (%) 76.34±21.1 76.08±20.9 74.62±21.7 72.45±22.3
H0 (p) * - 1 (7e-02) 0 (2e-06) 0 (6e-22)
H0 (p) 0 (2e-06) 0 (7e-05) - 0 (2e-04)
* The Wilcoxon signed rank test was employed to compare the ECNN-A, which

yields the highest mean macro average recall, with other models. The same
test was used to compare the CNN with ECNN variants, where the statistical
results are presented below this line.

- The M and STD refer to the mean and standard deviation of macroaverage
recall under nested cross-validation over 10 subjects.

Furthermore, the average confusion matrices for CNN and three ECNN vari-

ants are presented in Figure 12, where each annotated score represents the per-

class normalised accuracy averaged over six outer CV trials across 10 subjects. It

can be seen that all models perform similarly. For example, they all performed

well in the classes ‘2 (Middle flexion)’, ‘3 (Middle extension)’, ‘7 (Little finger
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Figure 11: Accuracy comparisons of the CNN and ECNN variants with nested
cross validation. 0 is CNN and 1− 3 refer to ECNN-A, ECNN-B and ECNN-C.

extension)’, ‘9 (Thumb adduction)’ and ‘11 (Thumb flexion)’, while the pair (8,

10) is found to be more closely related than the other classes. Note that the class

8 (‘Thumb abduction’) and the class 10 (‘Thumb extension’) are commonly con-

fused with each other. Regarding the per-class performance comparison of models

for finger movement recognition, it can be observed that ECNN-A and ECNN-C

performed better than CNN and ECNN-B in all classes except ‘Ring flexion’ (class

4) and ‘Thumb extension’, where ECNN-C achieved a slightly lower accuracy than

CNN in these two classes, with the differences of 0.05% and 0.26% only. Further-

more, CNN outperformed ECNN-B in most classes except for ‘Middle extension’,

‘Ring extension’ (class 5), and ‘Thumb adduction’.
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Figure 12: Confusion matrices averaged over all subjects with nested cross vali-
dation of the CNN and ECNN variants. Note that 0, 2, 4, 6, 10 are the flexion
movements of finger Index, Middle, Ring, Little finger and Thumb; The extension
movements of each finger are then represented as class 1, 3, 5, 7, 11. Furthermore,
8, 9 refer to Thumb adduction and abduction.
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With rejection

As shown in Figure 13, the recognition accuracy comparison of rejection schemes in

the form of ARC reveals the trade-off relationship between the proportion of rejec-

tions and the resulting accuracy of the active predictions. It could be clearly seen

that ECNN-A was not substantially greater than ECNN-C and both outperformed

CNN and ECNN-B in terms of recognition accuracy under the rejection condi-

tion, where the latter two also had approximately the same performance. With a

specific focus on the regions where the models had low RRs (i.e., 0 < RR ≤ 15%),

which may be a reasonable target range in practical scenarios, all ECNN variants

obtained higher accuracy than CNN.
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Figure 13: The mean ARC plots of all models under CV scheme when considering
the ‘overall’ uncertainty estimate.
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4.8.2 Reliability Analysis

Here, we investigate the reliability analysis of CNN and three ECNN variants

regarding different uncertainty estimates. In addition to considering evidential

uncertainties including uvac and udiss specifically for ECNN variants, the utilisation

of entropy and negative maximum probability serves as two common uncertainty

measures for all models (Scheme and Englehart 2015).

The entropy H for the sample i can be simply defined as:

Hi = −
∑

pij ln pij, (23)

where pij represents the predicted probability assigned by the model that sample

i belongs to class j. Since the maximum probability across classes can be inter-

preted as the confidence level, it could be used as an uncertainty score by taking

its negative value, i.e., −max(p). However, the range of entropy and negative

maximum probability is [0, ln(1/K)], and [−1, 0] respectively, where K repre-

sents the number of classes. For consistency, they will be normalised to a range

from 0 to 1 and noted as unEntropy (normalised Entropy) and unnmp (normalised

negative maximum probability). Furthermore, from the perspective of practical

use, the overall uncertainty was noted as ‘overall’ in Table 3 and calculated by

max([unEntropy, unnmp]) for CNN and max([unEntropy, unnmp, uvac, udiss]) for ECNN

variants. Recall that the reliability analysis directly measures the quality of un-

certainty estimates and only RnAUPRC can be used for performance comparison

between models.
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From Table 3, our first finding regarding the quality of uncertainty estimates

was that all models with the uncertainty estimate unnmp achieved an overall high-

est R measured by either RAUROC , RAUPRC , or RnAUPRC compared to other types

of uncertainty estimate. Moreover, ECNN variants with the uncertainty estimate

of either uvac or udiss alone generally obtained poor results of R. Our second

finding regarding the R comparison between CNN and ECNN variants was that

ECNN-B significantly outperformed CNN under any condition, where the highest

improvement of reliability RnAUPRC of 19.33% was achieved with the uncertainty

estimate unEntropy and 15.90% for the ‘overall’ uncertainty estimate. However,

the difference in RnAUPRC between CNN and ECNN-A was not significant under

any condition, while that between CNN and ECNN-C was not with unnmp alone.

Regarding the comparison of ECNN variants, ECNN-B achieved the highest R

when using vacuity as the uncertainty estimate. Despite ECNN-A performed best

when using dissonance as the score of misclassification detection, the results of

RnAUPRC for all ECNN variants were generally quite low (no more than 36.98%).

Eventually, the observed order of RnAUPRC obtained with the uncertainty estimate

of ‘overall’ was ECNN-B > ECNN-C > ECNN-A ≈ CNN.

4.9 Discussion

The current study had a particular focus on improving model efficiency and

robustness, but not directly investigating model reliability. To fill this gap, we

defined the model reliability R as the quality of its uncertainty estimate and

proposed an offline framework to quantify it. We focused our examination on

the model reliability, and one implication of the results is that ECNN has great

potential for complex and versatile finger movement recognition. Specifically,

ECNN-C outperformed CNN with p < 0.05 in both accuracy and reliability with

a difference of 1.46% in rM (Table 2), and 2.54% in RnAUPRC with the ‘overall’
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uncertainty (Table 3), respectively. This suggests that training ECNN with a

constant effect of KL should be applied when both model efficiency and reliability

are weighted equally. Additionally, the loss function excluding the KL term is

suggested for training the ECNN if the efficiency of the model matters more than

the reliability. This is supported by the finding that ECNN-A achieved the best

rM of 76.34%, which was 1.72% higher than CNN with p < 0.001 (Table 2) - but

no significant differences of RnAUPRC were found between them (Table 3).

Note that ECNN-A has shown its efficiency by presenting the SoA performance

on NinaPro DB5 (Exercise A) since the best accuracy reported in the literature

was 76.02%, achieved by taking an input of 300 ms sEMG signals to an ensemble

classifier of three CNNs (Shen et al. 2019). On the contrary, ECNN is recom-

mended to be trained by taking the annealing effect of KL term when there is a

serious concern about model reliability, e.g., controlling a prosthetic limb for daily

tasks to meet the needs of transradial amputee users. Our findings indicate that

ECNN-B was determined to be the most reliable one by showing improvements

ranging from 14.25% to 19.33% in RnAUPRC with different uncertainty measures

(Table 3), compared to CNN. Although it was found to be less accurate than CNN

where the difference in rM was approximately 2% (Table 2), its accuracy under

the rejection scheme was approximately equal to CNN in general and even better

than CNN when RR is in a low range of 0% to 15% (Figure 13).

Defining the comparable model reliability has implications for understanding

how much an sEMG-based hand gesture classifier knows about its predictions,

thereby providing us with general guidelines for designing such a reliable model

which has the potential to improve its efficiency by rejecting wrong predictions

with the aid of its uncertainty estimate. The proposed framework of reliability

analysis measures R by evaluating the performance of misclassification detection

using the score of uncertainty estimate. Therefore, a model with a higher R could

generate more discriminate uncertainty estimates, i.e., lower uncertainty estimates
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are assigned to correct predictions and vice versa. This implies that the value of

R indicates how easily an optimal rejection threshold can be found for rejection-

capable sEMG-based HGR. By measuring it, one can easily check the reliability

of a model without the need to test its performance when allowing rejection by

measuring several evaluation metrics such as RR, TAR, and TRR across a range

of rejection thresholds.

Furthermore, we highly recommend using nAUPRC to measure R, although

AUROC and AUPRC are commonly used to test the performance of a misclas-

sification detection task. The following order could be observed in each relia-

bility analysis of a model with an uncertainty estimate: RAUROC > RAUPRC >

RnAUPRC . This finding is consistent with other research showing that Receiver Op-

erating Characteristics (ROCs) usually make innocent impressions, whereas PRCs

reveal the bitter truth, especially in unbalanced data sets (Saito and Rehmsmeier

2015). We argue that the general low value of RnAUPRC may just exactly repre-

sent the situation in reality, since the averaging of nAUPRC under CV can further

reduce the effect of the skew (Boyd et al. 2012).

There are a few limitations that are important to note. First, one cannot in-

vestigate the R of a model when it is tested with a classification accuracy of 100%

or 0% because there are no positive or negative samples for misclassification detec-

tion in this case. We suggest setting R to 0 since such unusual results imply that

the model needs to be further investigated and cannot be easily trusted. Second,

even though we have demonstrated the potential of ECNN, the implications of

its understandable evidential uncertainty remain to be explored. Hypothetically,

understanding the source of uncertainty is helpful to improve the robustness of

the model by making valid rejections. A potential research direction would then

be to investigate the relationship between the proposed reliability analysis and

current studies on model robustness. Third, measuring the performance of mis-

classification detection with nAUPRC may not be the only way to investigate R.
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For example, it could be investigated by computing the area under ARC or mea-

suring the performance of out-of-domain data detection (e.g., unseen gestures or

adversarial samples). We encourage researchers to address the problem of sEMG-

based HGR from the perspective of model reliability together with model efficacy

and robustness.

4.10 Summary

This chapter has raised concerns about the reliability of the sEMG-based HGR

models. The great potential of our proposed uncertainty-aware model, i.e. ECNN,

has been demonstrated to classify 12 individual finger movements. This was done

using the reliability analysis, which is based on the proper definition of the model

reliability R we provided. In short, the R of a model is defined as the quality of its

inferred uncertainty measures. The experimental results on a benchmark dataset,

NinaPro DB5 (Exercise A), show that ECNN is more reliable than CNN in general,

where the highest reliability improvement of 19.33% is observed. Furthermore, it

has been illustrated that the best mean accuracy achieved by ECNN over 10

subjects is 76.34%, which is slightly higher than the SoA performance. This

work demonstrates the potential of ECNN and recommends using the proposed

reliability analysis as a supplementary measure to evaluate sEMG-based HGR.



Chapter 5

Improve the Long-Term

Robustness of Hand Grasp

Recognition

5.1 Introduction

Hand Gesture Recognition (HGR) with Surface Electromyography (sEMG), which

reveals neuromuscular activities by collecting electrical signals from muscles via

non-invasive electrodes, has been widely acknowledged as a natural way to ex-

press intuitive intention, thus providing a control command for Human-Machine

Interaction (HMI) (Hakonen, Piitulainen and Visala 2015; Jaramillo-Yánez, Be-

nalcázar and Mena-Maldonado 2020). As such, designing an accurate, robust, and

reliable hand gesture classifier can help build a solid bridge between computers and

humans. This is extremely valuable for transradial amputees in controlling pros-

thetic limbs, allowing them to perform Activities of Daily Living (ADL) through

hand movements, including various hand grasps. As an independent module in

83
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HMI, sEMG-based HGR has often been studied offline with publicly available

datasets (Atzori and Müller 2015; Cognolato et al. 2020; Côté-Allard et al. 2021).

Recently, deep learning approaches have been extensively investigated to im-

prove the performance of sEMG-based HGR, and state-of-the-art (SoA) results

have been reported on a series of benchmark data sets achieved by different deep

learning models, particularly Convolutional Neural Networks (CNNs) (Wei et al.

2019; Côté-Allard et al. 2019). However, the challenge remains to obtain the long-

term robustness of the sEMG-based HGR. As many have reported, the recognition

accuracy of a well-trained sEMG-based hand gesture classifier may vary or even

decrease significantly over time (He et al. 2015a; Zia ur Rehman et al. 2018a;

Côté-Allard et al. 2021). Various possible factors responsible for the poor long-

term robustness of HGR have been studied and could be summarised as muscle

fatigue, skin conductivity, limb position, electrode displacement, and signal varia-

tion over days (Hargrove, Englehart and Hudgins 2006; Kaufmann, Englehart and

Platzner 2010; Scheme et al. 2010; Scheme and Englehart 2011; Young, Hargrove

and Kuiken 2012). To address these issues, we believe that rejecting uncertain pre-

dictions (Robertson, Englehart and Scheme 2019; Wu et al. 2021; Bao et al. 2022)

is the most straightforward approach compared to others such as multimodal ap-

proaches (Krasoulis et al. 2017; Wei et al. 2019; Cognolato et al. 2022), adaptive

learning (Tommasi et al. 2013; Vidovic et al. 2016; Zhu et al. 2017; Betthauser

et al. 2018; Côté-Allard et al. 2020b), and alternative training protocols (Beaulieu

et al. 2017; Yang et al. 2017a; Zanghieri et al. 2020a; Côté-Allard et al. 2020b).

Our previous work (Lin et al. 2022) has investigated the reliability (i.e., the

quality of uncertainty measures) of the uncertainty-aware models that were pro-

posed for the recognition of finger movement with raw sEMG. Furthermore, we

have shown that a classifier can be considered more reliable if it knows what it

does not know. The promising results encouraged us to pursue further research

on the long-term robustness of hand grasp recognition with the same design of
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uncertainty-aware models. In this study, we focus on the very challenging Non-

Invasive Adaptive Hand Prosthetics (NinaPro) Database 6, as it (i) was first re-

leased for the repeatability analysis of hand grasp recognition with sEMG collected

in data acquisitions across days; (ii) was found to require more investigations com-

pared to other benchmark data sets; (iii) was ideal for validating the long-term

robustness of the proposed uncertainty-aware models on sEMG-based hand grasp

recognition. We first design end-to-end 2D CNN and 3D CNN as baseline models

for the specific task of classifying hand grasps. Then uncertainty-aware models,

that is, 2D Evidential Convolutional Neural Network (ECNN) and 3D ECNN, are

proposed by integrating them with Evidential Deep Learning (EDL) respectively.

Despite the fact that the potential of ECNN can be investigated by reliability

analysis without optimal rejection threshold determination, one may be eager to

know how the performance of HGR can be improved under rejection schemes in

practical use. Therefore, the primary objective of this study is to present a practi-

cal way to determine a rejection threshold using only validation sets and to provide

a comprehensive analysis of the long-term performance of rejection-capable hand

grasp recognition with raw sEMG. Furthermore, ECNN could generate multidi-

mensional uncertainties such as vacuity and dissonance as a result of the nature

of EDL (Lin et al. 2022). A secondary objective of this study is to investigate

its potential to improve the rejection-capable performance with multidimensional

uncertainties by comparing it with a single uncertainty.

5.2 Related Work

The NinaPro DB6 (Palermo et al. 2017) is an undervalued benchmark data set to

test the repeatability of hand grasp recognition, where repeatability was defined

as the variation in repeated measurements made on consecutive days by the same
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subject under identical conditions. For each individual of 10 healthy intact sub-

jects, 10 sessions were recorded in the morning (AM) and afternoon (PM) on five

days, where each session involved 12 repetitions of seven hand grasps. Further-

more, each subject was required to sit in front of a table with the forearm leaning

on it to grasp an object for approximately four seconds in one repetition and rest

for approximately four seconds afterward. The detailed illustration of these hand

grasps with different objects can be found in Figure 26. Muscle activity was mea-

sured with 14 Delsys Trigno Wireless electrodes at a sampling frequency of 2 kHz,

attached to the upper half of the forearm in two rows with equal space.

This section outlines two key findings from the summary of the research work

on NinaPro DB6, which is presented in Table 4. One is that NinaPro DB6 has been

underexplored in the literature due to the difficulty of improving its recognition

accuracy, as evidenced by the observation of generally poor recognition accuracy.

As evaluated by (Chang, Phinyomark and Scheme 2020), the signal quality of

this data set was acceptable. Despite the fact that some signals suffer from low

Signal-to-Noise Ratio (SNR) values and incorrect labelling, we can argue that poor

accuracy was due to highly confused hand grasps along with large and various

variabilities. In addition to the variability between steady and transient states

and the temporal variability, at least two more variabilities must be taken into

account in NinaPro DB6 namely the variability between data acquisitions and

the variability between objects for each hand grasp. Note that electrodes were

not required to be attached at the exact same position on each data acquisition,

and two objects were used in turn when each individual performed the same hand

grasp. Most studies reported intra-session accuracy in NinaPro DB6 to validate

their proposed algorithms. Our argument is that the primary focus when working

with the NinaPro DB6 dataset should be on enhancing inter-session recognition

accuracy rather than intra-session accuracy.
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More importantly, Table 4 shows that the previous SoA inter-session accuracy

was achieved as 49.6% using a proposed Temporal Convolutional Network (TCN)

with multi-session training (Zanghieri et al. 2020a). Recently, Bao et al. proposed

a new confidence estimate used for a CNN to improve the long-term robustness

of recognition and reported an SoA inter-session between-day accuracy of 73.33%

under the rejection scheme.

5.3 Multidimensional uncertainty-aware models

The proposed multidimensional uncertainty-aware models are shown in Figure 14.

We first proposed simple but efficient 2D CNN and 3D CNN for sEMG-based

hand grasp recognition as baseline models in this project. Based on these model

structures, 2D ECNN and 3D ECNN were constructed to improve the long-term

robustness of sEMG-based HGR. In this work, two dimensions of uncertainty were

mainly considered: vacuity and dissonance. Recall that the uncertainty of vacuity

(or known as belief vacuity) is due to insufficient or unreliable information received

from sources, while the uncertainty of dissonance (or known as belief dissonance)

reflects the situation where a model holds simultaneous contradicting beliefs about

a given prediction, which is usually caused by valid but conflicting evidence derived

from the model output (Jøsang, Cho and Chen 2018).

5.3.1 Baseline model

Taking into account the trade-off between model efficiency and training compu-

tation cost, we first proposed a baseline model that was based on a previously

proposed enhanced ConvNet (Côté-Allard et al. 2019) by adding a third convo-

lutional layer and two more fully connected layers for high-level reasoning. We

refer to this baseline model simply as 2D CNN. To further optimise the efficiency
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of the model, a second baseline model was designed by integrating 3D convolu-

tional layers and presenting 14 channels of the sEMG as a matrix format of 2× 7

to learn characteristics taking into account both spatial and temporal informa-

tion. We refer to the second baseline model simply as 3D CNN. The intuition

behind this design is to represent input sEMG signals by considering the physical

information of electrode placement. It is important to note that the electrodes

are arranged in two rows, and using a 3D CNN structure can help approximate

the channel relationship as the kernel moves through the data. If a more pre-

cise representation of the channel relationship is required, a Graph Convolutional

Network (GCN) could be a potential approach, which will be discussed in the

future work, seen in subsection 7.2.2, and the detailed information of electrode

placement for NinaPro DB6 is presented in Figure 23. Note that the classifiers in

this task are required to output predictive probabilities of 8 classes (including the

rest posture). The size of each frame of the raw sEMG signals for 2D CNN and

3D CNN is 14× 400 and 400× 2× 7, respectively.

5.3.2 Uncertainty-aware models

We constructed uncertainty-aware models by integrating two baseline models with

EDL (Sensoy, Kaplan and Kandemir 2018). For the sake of consistency, they will

be referred to as 2D ECNN and 3D ECNN, respectively. Initially, EDL was

proposed based on the framework of Subjective Logic (SL) to help explicitly train

a model that can make a prediction along with the quantified uncertainty of it,

i.e., vacuity in the context of SL, indicating whether there is sufficient evidence

to support model predictions (Sensoy, Kaplan and Kandemir 2018). Due to the

SL framework, ECNN is capable of inferring dissonance, which is another type of

explainable uncertainty derived from conflicting evidence (Jøsang, Cho and Chen

2018). They can be regarded as evidential uncertainty, and more details can be

found in section 3.7.
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5.4 Experiments

The versions of PyTorch and Python used in this study are 1.10.2 and 3.9.7,

respectively. The experimental sequences were constructed by data loading, data

segmentation, hyperparameter determination, model training, and model testing.

Due to the stochastic nature of deep learning algorithms, all models were trained

10 times with the determined hyperparameters. The source code for this study is

available on GitHub (https://github.com/YuzhouLin/3dECNN-NinaProDB6).

5.4.1 Data Preprocessing

To satisfy the constraints of real-time control of prosthetic limbs, a sliding win-

dow of 250 ms (< 300ms (Hudgins, Parker and Scott 1993)) was selected with

an increment of 25ms. The overlap was set to as high as 90% to increase the

decision density and reduce the prediction delay. For fair consideration, the rest

movement was treated identically to that of the other hand grasps. Specifically,

each trial of ‘rest’ was taken after the first 0.5s to avoid incorrect labelling and

only about 1/7 duration of its previous hand grasp to guarantee a balance in data

for all classes.Note that the signals in NinaPro DB6 were pre-processed data that

had been filtered by a bandpass filter (20 − 450Hz) and a notch filter (50 Hz).

Therefore, no additional signal pre-processing was required, and each segmented

sEMG would be taken as a model input directly. Furthermore, the sEMG signals

used in training and testing included both steady and transient states.

Since the main objective of this study was to investigate the long-term perfor-

mance of sEMG-based hand grasp recognition, the data collected on day 1 and

day 2 for each individual were used as training and validation sets, while the rest

were used as test sets. To capture more generalised features, the last two cycles of

each acquisition were used as validation sets. Specifically, the 11th and 12th cycles

recorded at AM and PM of the first two days were used as validation sets. The

https://github.com/YuzhouLin/3dECNN-NinaProDB6
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ratio of training data to validation data was 5 : 1. For consistency, the 2nd and

9th subjects were not be studied in this project, and the reasons are listed below.

• Only two labels of sEMG signals were found instead of 8 on the morning of

day 2 for the subject 2. This may be caused by label noise or a mistake in

data acquisition.

• Only 13 valid channels were found instead of 14 on the morning of day 1 for

the subject 9. Specifically, you can only observe 0 on channel 7 (that is, the

8th channel).

5.4.2 Model training

To reduce the computational burden, we used Tree-structured Parzen Estimator

(TPE) (Bergstra et al. 2011; Bergstra, Yamins and Cox 2013), which is one of the

SoA Hyperparameter Optimisation (HPO) algorithms, to search for optimised

hyperparameters. Taking advantage of sequential model-based global optimisa-

tion algorithms (Hutter, Hoos and Leyton-Brown 2011; Bergstra et al. 2011), the

available values of each hyperparameter can be determined based on the previous

search results because the hyperparameters have been organised into a tree-like

space. The hyperparameters for each model were determined using Optuna (Ak-

iba et al. 2019), which is a powerful HPO framework. Each HPO search stopped

after running five study trials, where each trial refers to each evaluation of an

objective function to minimise validation loss. Additionally, early stop was used

to avoid overfitting in each training. When no improvement was found in the

validation set after waiting for 10 epochs or when the training epoch reached 200,

the model stopped training. Furthermore, we use Adaptive Moment Estimation

(ADAM) (Kingma and Ba 2015) as an optimiser for training and the ReduceL-

RonPlateau schedule with patience for five epochs and the decay factor of 0.8 to

decrease the learning rate during training.
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Eventually, the results of the search for the hyperparameters determined of all

the models used for each individual can be seen in Table 5 and Table 6.

5.4.3 Rejection-capable performance evaluation

Assume there is an uncertainty threshold δ, a prediction can be considered un-

certain when its quantified uncertainty is greater than or equal to δ and certain

otherwise. By determining δ, a model is capable of making only confident pre-

dictions by rejecting uncertain ones. When δ = 1, it simply refers to standard

recognition since no rejections will be made. Here, the rejection threshold of

a model for each individual in each run was determined by validating its per-

formance in misclassification detection in the validation set. In more detail, a

rejection threshold was selected when it achieved the best Fβ-Score,

Fβ-Score = (1 + β2) Precision · Recall
(β2 · Precision) + Recall , (24)

where β was chosen as 2 in this study, which means that recall was considered 2

times as important as precision. As shown in Figure 15, the purpose of this setting

was to maximise True Acceptance Rate (TAR) as much as possible in testing data

sets with a determined rejection threshold. When the number of True Positive

(TP) and True Negative (TN) remains the same, a higher recall can only be

achieved with fewer False Negatives (FNs), thus indirectly producing a higher

TAR. Furthermore, to avoid setting extremely low thresholds so that no active

predictions would be made in the testing phase, the determined threshold had to

be checked first on the validation sets. If the number of active predictions was

less than the 10% of the total number of validation samples in each acquisition,

the threshold was selected again on the value which has the second best Fβ-Score

and et cetera.

In all experiments, the results would be reported as an average of 10 runs,
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Figure 15: The confusion matrix of misclassification detection. TAR can be con-
sidered the accuracy of rejection-capable sEMG-based hand grasp recognition and
Precision is actually the True Rejection Rate (TRR) defined in this chapter.

and the Wilcoxon signed rank test was used to compare the performance of CNN

(baseline model) and ECNN variants. There was a significant difference in the re-

sults between the two models when the p-value < 0.05, that is, the null hypothesis,

which assumed that two related paired samples come from the same distribution,

was rejected. The calculations of all the evaluation metrics used in this section

can be found in Figure 15.

5.4.4 Recognition Performance - No rejections

To investigate the long-term robustness of sEMG-based hand grasp recognition

with the proposed uncertainty-aware models, we first present their recognition



CHAPTER 5. IMPROVE THE LONG-TERM ROBUSTNESS OF HGR 97

Table 7: Inter-Session Cross-Day Standard Recognition Accuracy
of ConvNets with Comparisons

Models Day3 Day4 Day5 Ave.

2D CNN 52.5±11.8 54.7±11.2 48.1±13.5 51.8±12.5

2D ECNN-A 53.1±11.4* 55.2±10.5* 49.0±12.6 52.4±11.8

2D ECNN-B 50.5±10.8 53.6±08.9 47.7±11.6 50.6±10.8

2D ECNN-C 52.0±11.9 55.2±10.1* 47.7±13.0 51.6±12.1

3D CNN 52.0±13.5 52.2±11.6 48.3±11.7 50.8±12.3

3D ECNN-A 52.4±12.8* 53.1±10.1* 48.8±11.4* 51.4±11.6

3D ECNN-B 47.4±10.2 49.2±08.5 44.3±09.7 47.0±09.5

3D ECNN-C 51.0±13.2 51.8±10.7 47.4±11.7 50.1±11.9
1 All results were reported as the mean and standard deviation of classi-

fication accuracy for 10 runs over 8 subjects.
2 The Wilcoxon signed rank test is applied to compare CNN with the

ECNN variants, and the null hypothesis (H0) assumes that the median
of the differences between two distributions is zero, which will be rejected
when the p-value < 0.05. For conciseness, the asterisk (*) is used when
H0 is not rejected here.

accuracy when there was no rejection option. Recall that the proposed CNN was

considered a baseline model so that its performance could be compared with the

ECNN variants. As shown in Table 7, the recognition accuracy of all 2D models

increases slightly (about 5.1%) on day 4 and decreases greatly (about 12%) on day

5. Similarly, 3D models present the same performance, but with fewer changes,

i.e., their average recognition accuracy increases slightly (only about 1.7%) on

day 4 and decreases greatly (only about 6.9%) on day 5. In terms of 2D models,

the best average accuracy was observed in the 2D ECNN-A, which outperformed

2D CNN with a small but statistically significant difference of 0.67%. Again, 3D

ECNN-A also achieved the best accuracy among all 3D models, outperforming

3D CNN with a small but statistically significant difference of 0.6%.
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5.4.5 Recognition Performance - With Rejections

To better investigate the rejection-capable performance of sEMG-based hand

grasp recognition with respect to all proposed models, we employed three evalu-

ation metrics, including the TAR, the TRR, and the Rejection Rate (RR). The

rejection-capable performances of models with different uncertainty scores are

summarised in Table 8 and Table 9. Recall that TAR can be considered the

recognition accuracy under the rejection scheme.

First, the same commonly seen uncertainty estimate was used for a fair com-

parison between the 2D/3D CNN and 2D/3D ECNN variants. It can be seen that

both 2D and 3D ECNN variants significantly outperformed 2D and 3D CNN with

unEntropy or unnmp by presenting higher TARs. In terms of 2D models, 2D ECNN-

B achieved the highest TAR of 77.77%, which was 3.57% higher than 2D CNN

when using unnmp as an uncertainty estimate. Correspondingly, 3D ECNN-B also

achieved the highest TAR of 76.77%, which was 7.07% higher than 3D CNN when

using unnmp as an uncertainty estimate. Taking into account the use of evidential

uncertainty, both 2D and 3D ECNN-B achieved the best performance with uvac

compared to other 2D and 3D variants of ECNN.

Furthermore, it was found that the difference between 2D/3D ECNN-B and

2D/3D ECNN-A in TAR was not statistically significant but either 2D or 3D

ECNN-B made fewer incorrect rejections, as evidenced by the observation of a

5.74%/8.56% higher TRR and a 4.81%/4.35% lower RR. When using udiss as the

uncertainty score, it is important to note that both 2D and 3D ECNN-B achieved

the lowest RR, which was only about 50%. With more predictions accepted, they

produced the lowest but acceptable TAR of 68.31% and 65.83%.
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Special attention was paid to the use of multidimensional uncertainties (that is,

predictions were accepted when their uvac and udiss were found to be smaller than

their respective predetermined thresholds simultaneously). Under this condition,

2D ECNN-A achieved the highest TAR (83%) while 2D ECNN-B obtained the

best comprehensive performance by presenting a lower TAR (81.04%) but with

3.14% more active predictions. Correspondingly, 3D ECNN-A also achieved the

highest TAR (83.51%) while the best comprehensive performance was achieved

by 3D ECNN-B since it presented a lower TAR (80.32%) but with 4.79% more

active predictions.

To investigate the repeatability of sEMG-based hand grasp recognition with

the proposed ECNN models with respect to multidimensional uncertainty, the

grouped violin plot was drawn to visualise their differences in TAR in several

data acquisitions over days. A violin plot (Hintze and Nelson 1998) is a hybrid

of a box plot and a kernel density plot, which can be used to compare the distri-

butions of several groups. As shown in Figure 16, the median difference in TAR

between acquisitions for each 2D/3D ECNN variant was not pronounced until

the afternoon of day 5. Furthermore, in terms of 2D models, both ECNN-A and

ECNN-B obtained robust long-term sEMG-based hand grasp recognition perfor-

mance, and ECNN-A was slightly more robust than ECNN-B from observation

of its fewer position shifts of wider sections as time passes. This finding could

also be observed in 3D ECNN models. Note that a wider section of the violin

plot represents a higher probability that a model will appear on the given TAR.

To further investigate the rejection-capable sEMG-based hand grasp recognition

performance of ECNN-A and ECNN-B on each class, the confusion matrix re-

sults of ECNN-A and ECNN-B were plotted, where the 2D versions can be seen

in Figure 17 and 3D versions in Figure 18. Both of them will be discussed later

in section 5.5.
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5.4.6 Comparison with SoA

The comparison of the inter-session cross-day recognition accuracy in terms of

non-rejection and rejection with the previous study was presented in Table 10. It

is observed that our proposed uncertainty-aware models outperformed SoA mod-

els under all conditions. Under the non-rejection scheme, 2D ECNN-A achieved

the best performance, which significantly improves the previous SoA recognition

accuracy by 5.72%. When allowing rejecting uncertain predictions, the best per-

formance was achieved by 3D ECNN-A, which significantly improves the previous

SoA recognition accuracy by 13.88%.

5.5 Discussion

NinaPro DB6 as a valuable benchmark dataset deserves more research because

it was built to be challenging by including variability from data acquisitions over

days and aimed at improving the long-term robustness of hand prostheses control

systems. It is worth noting that electrodes were not required to be placed in

expected locations exactly during each data acquisition, which approaches real-

life scenarios and brings the challenge of remaining the long-term robustness of

sEMG-based hand grasp recognition to the table. In this study, we proposed

uncertainty-aware models (2D and 3D ECNNs) to address this challenge by re-

jecting doubtful predictions with multidimensional uncertainties. The potential

of ECNN has been explored with three training strategies implemented by slightly

different loss functions. The main implication of our results is that a CNN can

be easily modified as an uncertainty-aware model by integrating with EDL. Leav-

ing aside the training strategies used by ECNN, all ECNN variants statistically

significantly outperformed CNN under the rejection scheme, even if the overall

mean recognition accuracy of 2D/3D CNN was found to be 1.16%/3.80% and

0.14%/0.7% higher than those of 2D/3D ECNN-B and ECNN-C when there is no
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rejection option. It should be noted that both 2D and 3D ECNN-B achieved the

best TAR and TRR with a common uncertainty unEntropy or unnmp, although the

lowest standard accuracy were achieved by them under the non-rejection scheme.

This suggests that model selection based on standard recognition accuracy is not

sufficient, especially when rejection is introduced.

Table 11: Reliability Comparison of 2D and 3D ConvNets by Evaluating the
Misclassification Detection regarding Uncertainty Estimates

Models Scores
unEntropy unnmp uvac udiss

2D CNN 54.75± 2.61 54.39± 2.80 - -
2D ECNN-A 53.87± 3.09 53.40± 2.93 50.43± 4.86 45.89± 3.13
2D ECNN-B 57.46± 2.98 57.61± 3.04 57.24± 3.45 40.80± 7.64
2D ECNN-C 55.09± 3.16 54.67± 3.02 50.69± 5.40 45.89± 5.85

3D CNN 54.65± 3.44 54.38± 3.69 - -
3D ECNN-A 55.29± 3.59 54.50± 3.50 50.91± 5.69 45.35± 4.46
3D ECNN-B 58.82± 3.06 59.88± 4.12 59.76± 4.27 40.91± 7.44
3D ECNN-C 56.56± 4.27 56.18± 3.95 55.61± 4.86 45.54± 5.18

Each cell refers to the reliability (RnAUP RC) of a model with an uncertainty score
in a format of mean and standard deviation, which were calculated for 10 runs
over 8 subjects.

Following our previously proposed reliability analysis (Lin et al. 2022), the

reliability of each model with an uncertainty score was obtained by using the

normalised Area Under Precision-Recall Curve (nAUPRC) to indicate the per-

formance of its misclassification detection. It can be seen in Table 11, ECNN-B

achieved the best mean reliability under most conditions. In terms of 2D mod-

els, ECNN-B outperformed CNN in model reliability where the largest difference

was observed as 3.22% with unnmp. Regarding the reliability comparison between

it and other ECNNs with uvac, 2D ECNN-B achieved the best mean reliability

of 57.24%, which was 6.81% and 6.55% larger than 2D ECNN-A and ECNN-C,



CHAPTER 5. IMPROVE THE LONG-TERM ROBUSTNESS OF HGR 106

respectively. In terms of 3D models, ECNN-B achieved the same performance in

model reliability. These match the comparison result of rejection-capable recog-

nition performance, indicating that ECNN-B is more reliable than others. Fur-

thermore, it can be observed that 3D ECNN-B achieved the model reliability of

59.76% with uvac, which was 2.52% higher than 2D ECNN-B. However, it did not

obtain better rejection-capable recognition performance than 2D ECNN-B. This

may indicate the potential of 3D ECNN-B has not been fully explored. An in-

direct evidence can be brought from observations of rejection-capable recognition

performance with multidimensional uncertainties, presenting that 3D ECNN-B

obtained the mean TAR of 80.32%, which was only 0.72% lower than 2D ECNN-

B, but obtained the mean TRR of 62.82%, which was 2.88% higher than 2D

ECNN-B. Under any circumstances, these findings are consistent with previous

research showing that reliability analysis can be considered a useful supplementary

measure for studying sEMG-based HGR.

The outstanding rejection-capable hand grasp recognition performance achieved

by ECNN variants with multidimensional uncertainties confirms that evidential

uncertainties are not only understandable, but also useful in practical terms. By

rejecting predictions with either insufficient or conflicting evidence, ECNN vari-

ants are able to produce robust long-term hand grasp recognition. This implies

that model reliability is associated with model robustness. However, it may be

quite difficult to determine which model yields the best rejection-capable perfor-

mance, as this is actually a trade-off problem. Ideally, if a model has a standard

accuracy of 50% and knows exactly what it does not know, it will obtain 100%

TAR and 100% TRR with 50% RR by an optimal rejection threshold under the

rejection scheme. A comprehensive analysis is required to consider the efficiency

of an uncertainty-aware model by making a comparison between the ideal and

practical recognition performances. For example, 2D ECNN-B can be considered

more efficient than 2D ECNN-A because it obtained an improvement of 60.16%
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in recognition accuracy by making 24.92% more rejections, while 2D ECNN-A

obtained an improvement of 58.40% in recognition accuracy by making 29.80%

more rejections compared to the ideal situation.

One concern shown in Figure 16 was that 2D ECNN-C would achieve 0% TAR

on some runs because no accepted predictions were found. This indicates that the

approach used in this paper to determine the rejection threshold may sometimes

yield a very strict threshold. If the results with 0% TAR and 100% RR were

excluded, the mean TAR, TRR and RR obtained by 2D ECNN-C were 80.76%,

58.06% and 69.63%, respectively. This shows clearly that 2D ECNN-C can obtain

better rejection-capable recognition with appropriate rejection thresholds. On the

contrary, it can be said that the rejection-capable performance of a model suffers

from the limitation that it is highly dependent on optimal rejection thresholds.

The confusion matrices of the predictions made by 2D ECNN-A and 2D

ECNN-B under no rejection and rejection scheme can be seen in Figure 17, while

the same but for 3D ECNN-A and 3D ECNN-B can be seen in Figure 18. The first

finding from these figures is that it is difficult to improve the recognition accuracy

of some classes, which were confused with others, by rejections. For example, one

can observe that G2 and G4 were difficult to be classified correctly. When the

highest number of rejections (≥ 90% RR) was made in the samples labelled G4,

only a limited improvement in TAR was noticed for all models. The recognition

accuracy of G4 even decreased by approximately 50% after making approximately

93% rejections in 3D ECNN-B. Associated with (i) the relatively poor rejection–

capable performance achieved by the ECNN variants with udiss shown in Table 8

and Table 9, (ii) poor model reliability with udiss shown in Table 11, it reveals a

limitation in the training of ECNN variants.
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The second finding from these confusion matrices is that there is a positive

correlation between baseline performance and rejection-capable performance. For

example, 3D ECNN-B obtained the highest classification accuracy on ‘rest’ as

86.07% and 95.21% with respect to the non-rejection options and with rejection.

This example also shows that not surprisingly, the ‘Rest’ is considered the easiest

class. Leaving the easiest and hardest classes (‘Rest’, G2 and G4) aside, it was

found that about 20% improvements in hand grasps could be obtained by allowing

uncertain rejections with multidimensional uncertainties regarding both 2D or

3D ECNN-A and ECNN-B. This implies that one can focus on improving the

straightforward baseline performance first without suffering from the limitations

of investigating its rejection-capable performance when designing an uncertainty-

aware model integrated by evidential deep learning.

5.6 Conclusion

This study uses a very challenging benchmark dataset, NinaPro DB6, to demon-

strate the potential of designing an uncertainty-aware model to improve the long-

term robustness of hand grasp recognition with raw sEMG signals. The proposed

ECNN allows us to reject predictions with high evidential uncertainty from either

less supported or conflicting evidence. When there is no rejection option, both 2D

and 3D ECNN outperformed the existing SoA with a significant improvement of

5.72% and 3.71% in recognition accuracy. More importantly, they achieved a high

recognition accuracy of 83% and 83.51%, which were found to improve the existing

SoA by 13.19% and 13.88% under the rejection scheme. Furthermore, their long-

term robustness has been verified by presenting a high (> 80%) rejection-capable

recognition accuracy on each of 3 days with only a small degradation observed in

the afternoon of day 5. This encourages us to extend the investigation to amputee

subjects in improving the real-time sEMG-based control system.



Chapter 6

Improve the Inter-subject

recognition with normalisation

6.1 Introduction and related work

Recently, the inter-subject Surface Electromyography (sEMG)-based Hand Ges-

ture Recognition (HGR) has drawn more attention since the non-requirement of

training data from the user is more attractive in real-life applications. However,

this is a challenging research problem since sEMG signals are highly subject-

specific (Matsubara, Hyon and Morimoto 2011; Halaki and Gi 2012). This means

that a large variability of sEMG signals collected from different users can be ob-

served even if they are performing the same motion in the same way with the

same electrode position. In other words, the difficulty comes from the subject

variability, which could also be referred to as the problem of domain shift, that

is, the distribution of the target domain is different from the source domain.

To address this problem, Kerber, Puhl and Krüger used a normalisation ap-

proach (wrt the highest measured peak) to the segmented sEMG and computed

111
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10 features from the normalised data to train a Support Vector Machine (SVM).

An overall 95% accuracy was reported for classifying five hand gestures with a

majority vote for an active segment. However, the user-independent classifica-

tion accuracy drops to about 50% when the number of hand gestures increases

to 12. Khushaba proposed a framework based on Canonical Correlation Analysis

(CCA) to compute a series of style-independent features and the average classi-

fication accuracy of 82.96% with majority vote was reported to classify 12 finger

movements (including resting state) by training data from normal subjects and

testing with data from amputees.

Recently, many deep learning approaches, such as Convolutional Neural Net-

work (CNN), have been proposed to improve the robustness of a classifier. Fur-

thermore, the Transfer Learning (TL) has been widely used to solve the domain

shift problem in the field of deep learning. Côté-Allard et al. proposed a ConvNet

that employed raw sEMG as input and a 97.39% accuracy was obtained to classify

seven hand gestures, including neutral by applying TL with four cycles of training

data from the target domain where a cycle is defined as the recording of all hand

gestures required to be classified. In this chapter, we propose a referencing min-

max normalisation approach to re-weight the source domain sEMG data to simply

reduce the domain shift. Three datasets, where differences due to many factors

such as recording positions, acquisition setups, the number of hand gestures and

subjects, are used to validate the inter-subject gesture recognition performance of

our proposed method with Leave-One-Subject-Out Cross-Validation (LOSOCV).

Finally, the result is compared to the state-of-the-art (SoA) TL approach (Côté-

Allard et al. 2019).
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Table 12: Description of muscle location and sEMG electrode placement in G.
Dataset

Ch. Muscles Ch. Muscle
1 Extensor digitorum(upper) 10 Extensor digitorum(lower)
2 Anconeus 3 Flexor carpi ulnaris
8 Pronator teres (upper) 4 Pronator teres (lower)
5 Flexor carpi radialis (upper) 6 Flexor carpi radialis (lower)
7 Palmaris longus 9 Extensor carpi ulnaris
11 Extensor carpi radialis brevis 12 Extensor carpi radialis longus
13 Abductor pollicis brevis 14 Abductor digiti minimi
1 Ch. refers to sEMG channel number here.
2 The description order depends on muscle location rather than channel number.

6.2 Datasets

6.2.1 G. Dataset

This dataset has been introduced in (Lin et al. 2018), (Li et al. 2011). Here, we re-

fer to this dataset as G. Dataset since both non-invasive electrodes and amplifiers

used for recording are from Guger Technologies, Graz, Austria. The data were

recorded by five intact right-handed subjects with the 16-channel sEMG electrodes

placed over 12 muscles located in the upper arm, forearm, and hand. A description

of muscle location and sEMG electrode placement can be seen in Table 12 and

more details can be found in (Lin et al. 2018). During acquisition, subjects were

asked to repeat 12 hand activities including extension, flexion, pronation, supina-

tion, clench, stretch fingers, rotate hand (clockwise), rotate hand (anticlockwise),

grip, thumb up, thumb and index up four times in two alternating conditions

between extension (G.0 ) and relaxation (G.1 ) with the elbow resting on the arm

of a chair. A subset of hand gesture illustrations can be seen in Figure 27. Here,

each cycle includes 12 sEMG onset, which were visually determined. In the data

preprocessing stage, all sEMG was first down-sampled by the scale of four, that

is, 1200 Hz to reduce the processing time, but also to keep sufficient information

since the usable energy of sEMG is mainly distributed from 0 to 500 Hz in terms
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of frequency range (Wang, Tang and Bronlund 2013). Furthermore, a 250 ms

sliding window was applied with an overlap of 225 ms (90% × 250ms) to split the

sEMG onsets, allowing one to make a prediction under real-time usage constraints

(≤ 300 ms (Hudgins, Parker and Scott 1993; Englehart and Hudgins 2003)).

6.2.2 M. Dataset

The M. Dataset (Côté-Allard et al. 2019) is a recent public sEMG dataset used to

classify hand gestures. It contains two sub-datasets, one for pre-training and the

other for evaluating. In this project, a sub-dataset called ’Test0’, which is referred

to as M.0 here, is used to evaluate the performance of inter-subject sEMG-based

HGR with our proposed method. The 8-channel sEMG signals were recorded

with a Myo armband from 17 intact subjects making 7 hand gestures (Neutral,

Hand close, Wrist extension, Ulnar deviation, Hand open, Wrist flexion, Radial

deviation) for four times by standing up and having their forearm parallel to the

floor. The illustration of these hand gestures can be seen in Figure 28. Here, the

data were segmented by applying a sliding window of 260 ms with an overlap of

235 ms as suggested in (Côté-Allard et al. 2019).

6.3 Hypotheses

There are two hypotheses in this study:

1. The distribution of a signal from a channel

• varies little when an individual is repeating a hand gesture many times

(This may be supported by high intra-subject HGR accuracy presented

in chapter 4 and chapter 5);

• varies a lot across subjects when they are performing the same hand

gesture.
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Figure 19: Probability density functions of the sEMG of the same session but
different subjects

2. Taking into account a hand gesture, the maximum (max) and minimum

(min) sEMG values of a channel signal collected from a user could be used

to help shift and rescale the distribution of the same channel data recorded

from other subjects.

To further prove our hypotheses, we employed a Gaussian Probability Density

Function (PDF), shown in Equation 25, to present how dense the probability is

close to a discrete sEMG magnitude. It should be noted that sEMG signals them-

selves may not always conform strictly to Gaussian distributions because they are

complex and can be easily affected by many factors such as muscle fatigue and

crosstalk. However, in practice, researchers often use Gaussian assumptions as a

simplification to apply well-established statistical techniques, enabling hypothesis
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Figure 20: Probability density functions of the sEMG from the same subject but
different sessions

testing, classification, and comparison of different features extracted from the sig-

nals. For example, Parker, Stuller and Scott have shown that Electromyography

(EMG) signals can be modelled with a Gaussian process when they are recorded

at reasonably low contraction levels.

Here we analysed the first channel sEMG signal labelled Gesture 1 (Extension)

from G.1. As shown in Figure 20, the distributions of the first channel signal

collected by the first subject (Sb0) vary only little between different sessions,

while significant differences in the distributions of the same channel signal among

different subjects could be found, shown by the green lines in Figure 19. It proves

our first hypothesis. The red dotted and dashed plots in Figure 19 show that

differences in the distributions of the same channel signal between subjects could
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be reduced by applying normalisation, which proves our second hypothesis.

f(x) = e−(x−µ)2/(2σ2)

σ
√

2π
(25)

where x is a channel of sEMG onset, µ and σ are the mean and standard deviation

of x.

6.4 Methods

6.4.1 Referencing normalisation

Based on the hypotheses presented above, we propose a normalisation method

to reduce the domain shift problem of the inter-subject sEMG-based HGR. It is

assumed that a cycle sEMG signal from a target subject has been collected and,

therefore, can be used as reference data. The maximum and minimum sEMG

potentials across all channels for each class would then be calculated from this

cycle shown as max (Xt
i(k)) and min (Xt

i(k)) in Equation 26. Moreover, all cycles

from the source domain would be normalised to reduce the domain shift. The

detailed equation for the proposed normalisation approach can be seen as follows:

Xs′

i(k) = Xs
i −min (Xs

i )
max (Xs

i )−min (Xs
i )
× (max (Xt

i(k))−min (Xt
i(k)))

+ min (Xt
i(k)) (26)

where X′ is a normalised sEMG onset; Xs and Xt represent a raw sEMG onset

in the source and target domain; i and k represent the channel number and class

label. The details of how to apply this normalisation approach are presented

in subsection 6.4.1.
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6.4.2 The model architecture

The CNN architecture implementation (in PyTorch v.1.1.0 and Python 3.7.3) for

M. Dataset is as described in (Côté-Allard et al. 2019). It needs to be modified for

G. Dataset since the input and output are different. The input data correspond

to 16 × 300 (that is, the number of channels × the number of sample points) and

8 × 52 while the output refers to twelve and seven hand gestures for G. Dataset

and M. Dataset, respectively. The details of the modified CNN can be found

in Table 13. It consists of two convolutional layers and one fully connected layer

using recent techniques such as Batch Normalisation (BN) (Ioffe and Szegedy

2015), Parametric Rectified Linear Unit (PReLU) activation function (He et al.

2015b) and Adaptive Moment Estimation (ADAM) (Kingma and Ba 2015). The

first and second convolutional layer has 32 and 64 filters of size 3×5, respectively.

The cross-entropy loss function is used here, and the hyperparameters: learning

rate, batch size, and epoch number are selected as 0.023, 256, 100, respectively.

Table 13: Proposed CNN architecture for G. Dataset

Layer Order - Type Output Shape Parameters
L1-Conv2d [-1, 32, 14, 296] 512
L2-BatchNorm2d [-1, 32, 14, 296] 64
L3-PReLU [-1, 32, 14, 296] 32
L4-Dropout2d [-1, 32, 14, 296] 0
L5-MaxPool2d [-1, 32, 14, 98] 0
L6-Conv2d [-1, 64, 12, 94] 30,784
L7-BatchNorm2d [-1, 64, 12, 94] 128
L8-PReLU [-1, 64, 12, 94] 64
L9-Dropout2d [-1, 64, 12, 94] 0
L10-MaxPool2d [-1, 64, 12, 31] 0
L11-Linear [-1, 500] 11,904,500
L12-BatchNorm1d [-1, 500] 1,000
L13-PReLU [-1, 500] 500
L14-Dropout [-1, 500] 0
L15-Linear [-1, 12] 6,012
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6.4.3 System structure

Figure 21: A high-level diagram illustrating the steps for inter-subject sEMG-
based hand gesture classification

An overview working scheme for inter-subject sEMG-based HGR with a CNN

using the referencing normalisation approach that we proposed could be seen

in Figure 21. The first step is to calculate the maximum and minimum sEMG

potentials across all channels for each class from a cycle collected from a testing

subject. The next step is to normalise each sEMG onset in the source domain
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before applying the sliding window for segmentation. After finishing the training

with normalised segmented data, all other cycles except cycle 1 in the target do-

main are simply segmented to test the classification performance with the trained

CNN.

6.5 Results

To show the robustness of the results, we used LOSOCV to evaluate the per-

formance, and the average classification accuracy is presented without perform-

ing a majority vote. In other words, the recognition accuracy shows how many

segmented test windows are correctly classified. Note that all experiments are

reported as an average of 20 runs. We first investigate the performance of inter-

subject sEMG-based HGR with our proposed method according to Figure 21 on

G.0, G.1, and M.0. The results (’RNor’) have been compared with using a stan-

dard normalisation (’Nor’) in Table 14. Here, a standard normalisation refers to

normalising each input data, that is, each segmented channel sEMG in both the

source and target domains, to [0, 1].

Table 14: Classification accuracy of the CNNs on three datasets with respect to
the normalisation methods applied

Dataset G.0 G.1 M.0

Nor
mean 33.06% 30.56% 73.76%
std 11.03% 9.61% 9.98%
p0 4.08e− 09 7.11e− 09 4.12e− 12

RNor
mean 85.09% 88.97% 94.53%
std 6.96% 7.95% 4.79%
p0 3.70e− 05 1.13e− 05 3.80e− 16

p1 3.90e− 18 3.90e− 18 1.78e− 57
p0: The p-value for the Shapiro-Wilk test.
p1: The p-value for the non-parametric Wilcoxon
signed-rank test.
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Since each result deviated from the normal distribution shown using a Shapiro-

Wilk test (n = 100, 340 for G. and M. datasets) where all p values (p0) were less

than 0.05, a non-parametric Wilcoxon signed-rank test was then used to compare

the classification accuracies between the normalisation methods. It can be seen

that all the p-values (p1) are less than 0.05 as in Table 14, which implies that the

average recognition accuracy using our proposed normalisation was significantly

higher compared to the standard normalisation across different datasets.

Additionally, we further investigated the performance of gesture classification

using the recently proposed TL method (Côté-Allard et al. 2019). The first three

cycles from training subjects were used to pre-train the CNN and then the last

cycle was used for validation. This pre-trained model is called Source Network,

where the parameters are frozen except for BN parameters to ensure the ability

to update domain-related information from the target domain. Furthermore, a

Second Network was trained by cycles from the target subject, and then merged

with the Source Network by an element-wise summation. The different number

of cycles (i.e., cycle 1; cycle 1, 2; cycle 1, 2, 3) of the target subject were used

to train Second Network in turn to investigate how classification performance

could be affected by increased training data from the target domain. To test the

performance of the trained CNN using TL, the cycle 4 of the target subject was

used.

Table 15: Classification accuracy of CNNs on three datasets with raw data and
transfer learning

No. of Training Cycles 1 2 3

G.0 mean 12.33% 63.59% 73.11%
std 6.81% 24.10% 22.37%

G.1 mean 13.7% 44.05% 92.50%
std 8.44% 39.58% 12.50%

M.0 mean 94.61% 97.41% 98.77%
std 5.39% 3.79% 2.36%

It can be noticed from Table 15 that higher classification accuracy was achieved
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as the number of training cycles increases. However, with the limited number of

training cycles, the TL performs poorly in G. Dataset. This implies that TL

requires more training cycles from the target domain to update domain-related

information as the difficulty of the HGR task increases.

Overall, Table 14 and Table 15 show that the best performances achieved

on G.1 are higher than G.0 regardless of the methods applied. It implies that

muscle variability between subjects could be reduced if all subjects performed a

hand gesture in a stable way, that is, with their elbow on instead of off the chair

arm.

Furthermore, it is difficult to compare our referencing normalisation approach

with the SoA TL directly due to the different number of training and testing

cycles involved even for the same dataset. However, in terms of the inter-subject

sEMG-based HGR, applying our referencing normalisation approach could achieve

similar results when three cycles from the target subjects are used in the training

process with the SoA TL.

6.6 Conclusion

This chapter presented a referencing normalisation approach to reduce domain

shift when considering the inter-subject sEMG-based HGR. The classification per-

formance using our method was investigated with a CNN on three sub datasets

by LOSOCV. The subject-independent classification accuracy 85.09%, 88.97% and

94.53% was achieved in G.0 and G.1 when predicting 12 hand gestures not includ-

ing rest and in M.0 to classify 7 hand gestures including rest. Additionally, we

applied a SoA TL method to investigate its ability to solve the domain shift prob-

lem. Our results showed that it required only one training cycle in M.0 but three

training cycles in G.0 and G.1 for TL to update the domain-related information

so that achieving better classification accuracy than our proposed normalisation
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method.

However, inter-subject sEMG-based HGR usually does not practically allow

the target domain data to be involved in the training process. Compared to TL,

our proposed referencing normalisation method only requires one cycle from a user

to extract a little prior information, but it is not used for training. This is easy to

implement with low computational cost. The results showed that a general high

accuracy in HGR accuracy could be obtained in terms of different number of hand

gestures, subjects, recording positions, and acquisition setups. Nevertheless, our

method may not work well if a user is performing a hand gesture in a different

way in the real world.



Chapter 7

Conclusions and Future Research

7.1 Conclusions

This thesis has a specific main focus on how to improve the robustness of Surface

Electromyography (sEMG)-based Hand Gesture Recognition (HGR) by taking

advantage of the most recent advanced deep learning techniques. The main re-

search gap addressed by this study is that the tremendous success in achieving a

very high sEMG-based HGR accuracy (≥ 90%) reported in scientific articles pro-

duced only limited clinical or commercial impact. In light of this and the recent

finding that the real-time performance of sEMG-based HGR tends to degrade

significantly, these confirm the need to improve the robustness of sEMG-based

HGR.

To address this problem, this thesis is concerned with the development of

uncertainty-aware sEMG-based hand gesture classifiers based on the core hypoth-

esis that the robustness of HGR can be improved by rejecting uncertain predic-

tions. In particular, the following research questions were addressed in this thesis.

1. What does uncertainty awareness mean? Why is this considerable? And

124
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how do we design uncertainty-aware sEMG-based hand gesture models?

2. How do we evaluate the ability of an uncertainty-aware model in a fair and

comparable way? And how this can reform the current evaluation system

of sEMG-based HGR?

3. How can we leverage the uncertainties inferred by uncertainty-aware models

in practical use?

To address the first question, Chapter 3 presents a framework for designing

an uncertainty-aware sEMG-based hand gesture classifier with design principles,

theoretical details, model training approaches, hyperparameter determination pro-

cess, and characteristics of inferred uncertainties. Uncertainty awareness is simply

referred to the ability of a model to make inferences along with explainable uncer-

tainties about them. This functionality has great potential to improve the robust-

ness of the model as a general solution, rather than only to manage a particular

robustness problem. Furthermore, it shows how the designed uncertainty-aware

model, Evidential Convolutional Neural Network (ECNN), can be proposed by in-

tegrating a Convolutional Neural Network (CNN) with Evidential Deep Learning

(EDL) without increasing the complexity of the model.

Chapter 4 mainly addresses the second question. The ability of an uncertainty-

aware model is evaluated by investigating the quality of uncertainty estimates,

that is, the reliability of the model based on our definition. This can be quan-

tified by introducing the misclassification detection task. To ensure that it can

be comparable in a fair way, the normalised Area Under Precision-Recall Curve

(nAUPRC) is employed for reliability analysis. From the evaluation results and

Accuracy-Rejection Curve (ARC) analysis shown in Section 4.8.2 and Section 4.9,

it can be seen that the proposed reliability analysis has shown great potential to be

a supplementary measure when evaluating sEMG-based hand gesture classifiers.
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The answer to the third question can be found in Chapter 4 and Chap-

ter 5. First, the illustration shown in Section 4.5 indicates how to investigate

the rejection-capable sEMG-based finger movement recognition performance with

uncertainty measures. The comparison results between CNN and ECNN briefly

show the great power of the evidential uncertainties. Next, to further explore the

potential of ECNN, it has been designed to solve a very challenging task, i.e.,

to improve the long-term robustness of hand grasp recognition. The experimen-

tal results in the challenging Non-Invasive Adaptive Hand Prosthetics (NinaPro)

database 6 shown in Section 5.4.3 support our hypothesis that the robustness of

sEMG-based HGR can be improved by rejecting uncertain predictions.

Finally, to address the practical concern that there is no or only limited training

data available from the user, a normalisation approach has been proposed to

improve the inter-subject sEMG-based HGR by reducing the subject variability of

sEMG signals. Its robustness has been verified by the comparison results between

this and a state-of-the-art (SoA) Transfer Learning (TL) method using Leave-

One-Subject-Out Cross-Validation (LOSOCV) shown in Section 6.5.

In Chapter 6, the work presented was conducted during the early stage of my

PhD research, at a time when the datasets used in the previous chapters were not

yet known. As my research progressed, I gained access to the specific datasets

utilised in the earlier chapters, which allowed me to perform more comprehensive

analyses and draw meaningful comparisons with the subsequent findings. In spe-

cific detail, the choice of datasets in each chapter was carefully made to align with

the respective research objectives and account for the varying data availability at

different stages of the study. For instance, in Chapter 4, the NinaPro Database5,

exercise A, was selected for reliability analysis. This particular sub dataset con-

tains dexterous finger movements that are often challenging to distinguish from

one another, making it an ideal choice for assessing the reliability of the proposed

models. In Chapter 5, the NinaPro Database6 was chosen for long-term robustness



CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH 127

analysis due to its suitability for repeatability assessments, featuring high vari-

ability in data acquisition. Moreover, for the inter-subject recognition presented

in Chapter 6, the M. dataset was used, featuring a relatively large number of

subjects, totaling 17 individuals. Lastly, the G. dataset, despite comprising only 5

subjects, was selected for its unique characteristic of encompassing hand gestures

performed under two different conditions. These thoughtfully chosen datasets not

only enhance the comprehensiveness of our research but also allow for valuable

insights and robust evaluations across different aspects of sEMG-based HGR.

The main original contributions of this thesis are summarised below.

• Proposing a framework to design a simple but effective uncertainty-

aware sEMG-based hand gesture classifier, given in Chapter 3,

publications (Lin et al. 2022, 2023).

The designed uncertainty-aware model is referred to ECNN. Its ability to

make its inference along with explainable quantified multidimensional un-

certainties can help us to understand the processing mechanisms of HGR to

better ensure that such a reliable classifier can respond to clinical concerns.

The uncertainty-aware model can provide better model interpretability while

the proposed framework can improve model design efficiency in the field of

sEMG-based HGR. This is achieved by helping a model achieve the ability

to infer understandable multidimensional uncertainties without increasing

model complexity.

• Providing reliability analysis for sEMG-based HGR by introducing

a proper definition of model reliability, as shown in Chapter 4,

publication (Lin et al. 2023).

This fills the gap of lacking consensus on the definition of model reliability

in this field and offers a new dimension of evaluation, which can help model



CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH 128

selection together with recognition accuracy. The proposed reliability anal-

ysis has shown great potential to be a supplementary measure to evaluate

sEMG-based HGR. Leveraging it can simply allow us to know which model

is more reliable especially when they have similar recognition accuracy. Fur-

thermore, the quantification of model reliability can provide an indication of

rejection-capable recognition performance, which is highly dependent on the

optimal rejection threshold determination and should be evaluated by more

than one measure, such as the accuracy-rejection curve and false activa-

tion error. This highlights the efficiency of the proposed reliability analysis

because it does not suffer from these problems.

• Improving the long-term robustness of sEMG-based hand grasp

recognition with proposed ECNN by rejecting uncertain predic-

tions, as shown in Chapter 5, publication (Lin et al. 2023).

Despite the fact that the potential of ECNN can be investigated by relia-

bility analysis without optimal rejection threshold determination, one may

be eager to know how the performance of HGR can be improved under re-

jection schemes in practical use. This study presents a practical way to

determine a rejection threshold using only validation sets and to provide

a comprehensive analysis of the long-term performance of rejection-capable

hand grasp recognition with raw sEMG. To further explore the potential of

ECNN, 3D ECNN is designed as a novel model architecture to extract both

temporal and spatial features from sEMG signals. The results on a very

challenging benchmark dataset, NinaPro DB6, show that both 2D and 3D

ECNN outperformed the existing SoA under either non-rejection or rejec-

tion scheme. This further proves that the robustness of sEMG-based HGR

can be improved by reliable models.

• Proposing a normalisation approach to leverage large amounts of
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inter-subject data for model training so that improving recognition

accuracy of sEMG-based HGR, as shown in Chapter 6, publica-

tion (Lin et al. 2020).

A novel method has been proposed to address the problem that no sufficient

training data from the user is available in real-life. The inter-subject sEMG-

based HGR addresses this problem by leveraging data from others but suffers

from the high subject variability of sEMG signals. The results on several

datasets with LOSOCV show that the domain shift can be reduced by the

proposed normalisation method. The potential of our method has also been

verified by presenting higher inter-subject recognition accuracy than the SoA

TL, especially when only one cycle of data from the user is available.

7.2 Directions for Future research

This thesis mainly addresses a challenging research problem of how to improve the

robustness of sEMG-based HGR by rejecting uncertain predictions. Despite the

comprehensive results presented in Section 4.8 and Section 5.4.3 showing that the

proposed uncertainty-aware model, ECNN, is more reliable and robust compared

to CNN, it has much room to be improved and the current cutting-edge model

will become obsolete in the future. Therefore, what we want readers to take

away from this work is not just a specific model, but a theoretical framework to

design reliable models and use them to tackle real-life problems, for example, to

help implement restorative natural and robust upper-limb prosthetic control for

amputees. Based on this, the directions for future research to explore reliable

sEMG-based hand gesture classifiers are discussed from five perspectives that are

relevant to model reliability: input source, model design, model training, post-

processing, and applications.
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7.2.1 Multimodal fusion for improving model reliability

From the perspective of model input, this thesis only considers improving the per-

formance of sEMG-based HGR taking the input of sparse multichannel raw sEMG

signals for practical concerns such as minimising computational and data acquisi-

tion cost. This can be referred to as the unimodal sEMG-based HGR. When these

costs can be afforded or the improvement of model performance has a higher prior-

ity than the other factors, the multimodal fusion of sEMG and other types of data

streams such as forearm kinematics (e.g., Inertial Measurement Units (IMUs)),

other biomedical signals (e.g., Electroencephalogram (EEG)), and visual informa-

tion (e.g., eye tracking data), can possibly be used to improve model reliability

and thus produce more robust performance compared to unimodal sEMG data

streams.

Recently, many studies have shown that multimodal sEMG-based HGR achieved

better performance than unimodal. For example, Wei et al. shows that the pro-

posed multi-view CNN with IMU data streams obtained an overall higher recogni-

tion accuracy in a series of benchmark datasets than only taking sEMG as input.

Furthermore, Cognolato et al. presents a multimodal approach that exploits eye-

hand coordination parameters with sEMG signals to improve the robustness of

sEMG-based HGR. The experimental results in both transradial amputees and

able-bodied subjects show that the proposed multimodal approach significantly

outperforms the one relying only on the sEMG modality. It seems that multi-

modal sEMG-based HGR is one of the promising research directions. From the

perspective of this thesis, one can investigate if model reliability can be improved

by employing more modalities. If the answer is yes, it is interesting to ask the

question: can we identify which modality contributes more with the aid of our

proposed framework of reliability analysis? Or more importantly, how do different

modalities contribute to model reliability and why? Furthermore, when introduc-

ing uncertainty-ware models for multimodal sEMG-based HGR, one can consider
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using extra information from a modality to further adjust predictive uncertainties.

Rather than determining modalities, finding a way to implement multimodal

fusion is also a challenging problem. As shown in Figure 22, different basic multi-

modal fusion strategies can be implemented and accommodated when considering

combining modalities in an efficient way. Our proposed framework of reliability

analysis can only provide a fair comparison between models. As such, how to

find the most reliable multimodal fusion strategy remains an open question. This

is important especially when more fusion strategies need to be explored as more

heterogeneous data becomes available in the future.

Figure 22: An illustration of different multimodal fusion strategies. (a) Early or
data-level fusion, (b) late or decision-level fusion, and (c) intermediate fusion. (Ra-
machandram and Taylor 2017)

7.2.2 Uncertainty-aware model design to extract advanced

spatial-temporal features

Model design is always iterative and thus becomes a possible future research

direction in this field. One limitation of this thesis is that we did not attempt to

develop complicated sEMG-based uncertainty-aware models. For example, even

though a 3D ECNN was proposed, as presented in Figure 14, to improve the

long-term robustness of hand grasp recognition by extracting both spatial and

temporal features, this can still be considered a simple CNN structure. It is well
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known that a basic CNN can only consider local spatial features in Euclidean

space. Precisely speaking, the information of sEMG electrode placement can

be represented explicitly in the form of the graph network rather than a two-

dimensional grid.

Figure 23: A collage comprised of all available pictures from (Francesca Palermo
2017) that contain the information of electrode placement for NinaPro DB6

Future research can potentially address this by exploring uncertainty-aware

models based on Graph Convolutional Network (GCN), which has recently re-

ceived widespread attention to handle arbitrary graph-structured data. Taking

the NinaPro DB6 as an example, the detailed position of 14 electrodes can be

seen in Figure 23, where the first row contains eight electrodes arranged in cor-

respondence to the radio-humeral joint while the second row contains six elec-

trodes placed just below the first row. To better reflect the complex topological

structure of electrode placement, a graph-structured sEMG channels can be seen

in Figure 24. This electrode network modelled by a general graph with a properly

designed GCN may help accurately capture spatial dependence thus allowing fully

utilising the spatial information during model design.

In terms of learning temporal features, a basic CNN can only capture short-

term time-dependent information because of the fixed convolutional kernel size
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Figure 24: A graph network representing the physical spatial dependency of 14
electrodes used in NinaPro DB6

at each layer. The Temporal Convolutional Network (TCN) was carried out as a

solution to address this problem by using structures such as causal dilated convo-

lution and residual connection (Betthauser et al. 2019; Zanghieri et al. 2020a). It

is interesting to design models that can extract the advanced spatial-temporal fea-

tures of sEMG simultaneously, which are highly expected to enhance the overall

performance of sEMG-based HGR, especially when integrating them with EDL.
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7.2.3 Improve the explicit training of ECNN

It is clear that the training process of a model directly determines its performance,

especially for deep learning models. As stated in Section 5.5, the general poor

model reliability achieved with the uncertainty of dissonance reveals a limitation

in the training of ECNN variants. To improve training for ECNN, one possible

future direction is to design loss functions that can establish training strategies

to penalise training samples that are misclassified differently depending on their

uncertainty types. This may also be achieved by introducing AdaBoost which

increases weights for misclassified samples while decreasing weights for correctly

classified ones in every iteration (Wu and Nagahashi 2014). It is interesting to

investigate how such weights can be adjusted based on the quantified uncertainties

in different dimensions. Another direction for future research is to train a ECNN

that has the ability not only to achieve high recognition accuracy in in-distribution

samples but also to detect out-of-distribution samples. This can help further

improve the current definition of model reliability by introducing the task of out-

of-distribution detection.

7.2.4 Improve the predictive uncertainties

Future research directions in post-processing include introducing uncertainty fu-

sion, as well as iterative uncertainty updating. Uncertainty fusion can help gener-

ate a summarised predictive uncertainty by merging uncertainties from different

models with a single modality or multi-modalities (see the (b) of Figure 22). This

is assumed to increase the reliability of sEMG-based HGR. However, there are

many challenges that need to be addressed with care. For example, a natural

question can be raised: If each model shares the same weight during the fusion

process? Furthermore, how to determine the correct fusion operator, which de-

pends on the situation, remains for further investigation for sEMG-based HGR.
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Bayesian fusion is known to be one of the most commonly used postprocess-

ing techniques for sEMG-based HGR. One interesting future research direction

is to develop a Bayesian fusion post-processing approach that can integrate the

multidimensional uncertainties generated by ECNN. It should be noted that the

Bayesian fusion scheme can only be used when the statistical independence of

the entities being combined is assumed (Kuncheva 2014). Therefore, the disjoint

window should be considered instead of the sliding window with overlap when

segmenting the sEMG signals.

7.2.5 Improve inter-subject recognition with uncertainty

In Chapter 6, we developed a normalisation approach to improve inter-subject

sEMG-based HGR by reducing the variability of sEMG signals collected from

different users with a CNN. One may ask if ECNN can be used to enhance perfor-

mance. We have presented how predictive uncertainties of ECNN can be leveraged

to improve rejection-capable performance of sEMG-based HGR, but did not yet

explore its potential in inter-subject sEMG-based HGR. It would be interesting

to train a ECNN with only limited data (e.g., one cycle) from the user and use its

uncertainty-aware ability to determine if the subject variability has been reduced

by our proposed normalisation method. In other words, the trained ECNN can

be used to decide if samples collected from others can be used as training data

for the user. If the predictive uncertainty of a normalised sample is presented

as high, this suggests that this sample should not be involved in model training.

Otherwise, it means that the domain shift has been reduced well and that the

normalised samples (from others) can be regarded as the samples collected from

the user. Under this condition, it is expected to see the inter-subject recogni-

tion performance can be improved with a large available amount of well-selected

training data.
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7.2.6 Real-time myoelectric control interfaces

It is hoped that the work presented in this thesis will be beneficial for designing

robust and reliable myoelectric control interfaces. This is especially interesting

for rehabilitation applications such as controlling assistive robots or prosthetic

limbs. Note that for prosthetic limb control, our results should be confirmed by

involving amputee subjects, and ideally with a human-in-the-loop experiment, in

future studies. Furthermore, the performance of myoelectric control should be

evaluated with real-time, closed-loop experiments when possible to pursue the

ultimate goal of achieving restorative natural upper-limb function for amputees.
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Côté-Allard, U. et al. (2021). A transferable adaptive domain adversarial neural

network for virtual reality augmented EMG-based gesture recognition. IEEE

Trans Neural Sys & Rehab Eng, 29, pp. 546–555.

Dempster, A. P. (2008). A generalization of Bayesian inference. In Classic Works

of the Dempster-Shafer Theory of Belief Functions, Studies in Fuzziness and

Soft Computing, vol. 219, Springer, pp. 73–104.

Drost, G., Stegeman, D. F., van Engelen, B. G. and Zwarts, M. J. (2006). Clinical

applications of high-density surface EMG: A systematic review. J Electromyogr

Kinesiol, 16(6), pp. 586–602.

Du, Y., Jin, W., Wei, W., Hu, Y. and Geng, W. (2017). Surface EMG-based

inter-session gesture recognition enhanced by deep domain adaptation. Sensors,

17(3), p. 458.



BIBLIOGRAPHY 143

Englehart, K. and Hudgins, B. (2003). A robust, real-time control scheme for

multifunction myoelectric control. IEEE Trans Biomed Eng, 50(7), pp. 848–

854.

Englehart, K. B., Hudgins, B. and Parker, P. A. (2001). A wavelet-based con-

tinuous classification scheme for multifunction myoelectric control. IEEE Trans

Biomed Eng, 48(3), pp. 302–311.

Farina, D. et al. (2014). The extraction of neural information from the surface

EMG for the control of upper-limb prostheses: emerging avenues and challenges.

IEEE Trans Neural Sys & Rehab Eng, 22(4), pp. 797–809.

Fatimah, B., Singh, P., Singhal, A. and Pachori, R. B. (2021). Hand movement

recognition from sEMG signals using fourier decomposition method. Biocybern

Biomed Eng, 41, pp. 690–703.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognit Lett, 27(8),

pp. 861–874.

Finley, F. and Wirta, R. (1967). Myocoder studies of multiple myopotential re-

sponse. Arch Phys Med Rehabil, 48(11), pp. 598–601.

Fitts, P. M. (1992). The information capacity of the human motor system in

controlling the amplitude of movement. J Exp Psychol Gen, 121(3), pp. 262–

269.

Forman, G. and Scholz, M. (2010). Apples-to-apples in cross-validation studies:

pitfalls in classifier performance measurement. SIGKDD Explor, 12(1), pp. 49–

57.

Fougner, A., Scheme, E., Chan, A. D. C., Englehart, K. and Stavdahl, Ø. (2011).

Resolving the limb position effect in myoelectric pattern recognition. IEEE

Trans Neural Syst Rehabil Eng, 19(6), pp. 644–651.



BIBLIOGRAPHY 144

Fougner, A. L., Stavdahl, Ø., Kyberd, P. J., Losier, Y. G. and Parker, P. A. (2012).

Control of upper limb prostheses: Terminology and proportional myoelectric

control—A review. IEEE Trans Neural Syst Rehabil Eng, 20, pp. 663–677.

Francesca Palermo, M. A., Barbara Caputo (2017). Repeatability analysis of hand

movement recognition for control of robotic prosthesis based on sEMG data.

Master’s thesis, The Sapienza University of Rome.

Fukuda, O., Tsuji, T., Kaneko, M. and Otsuka, A. (2003). A human-assisting

manipulator teleoperated by EMG signals and arm motions. IEEE Trans Robot

Autom, 19(2), pp. 210–222.

Gasser, H. S. and Erlanger, J. (1922). A study of the action currents of nerve with

the cathode ray oscillograph. American Journal of Physiology-Legacy Content,

62(3), pp. 496–524.

Geng, W. et al. (2016). Gesture recognition by instantaneous surface EMG images.

Sci Rep, 6(1), 36571.

Geng, Y., Zhou, P. and Li, G. (2012). Toward attenuating the impact of arm

positions on electromyography pattern-recognition based motion classification

in transradial amputees. J Neuroeng Rehabil, 9, 74.

Geng, Y., Zhang, F., Yang, L., Zhang, Y. and Li, G. (2012). Reduction of the effect

of arm position variation on real-time performance of motion classification. In

2012 Annu Int Conf IEEE EMBC, IEEE, pp. 2772–2775.

Geng, Y., Samuel, O. W., Wei, Y. and Li, G. (2017). Improving the robustness

of real-time myoelectric pattern recognition against arm position changes in

transradial amputees. Biomed Res Int, 2017, 5090454.

Gerilovsky, L., Tsvetinov, P. and Trenkova, G. (1986). H-reflex potentials shape



BIBLIOGRAPHY 145

and amplitude changes at different length of relaxed soleus muscle. Electromyogr

Clin Neurophysiol, 26(8), pp. 641–653.

Ghassemi, M. et al. (2019). Development of an EMG-controlled serious game for

rehabilitation. IEEE Trans Neural Sys & Rehab Eng, 27(2), pp. 283–292.

Golovin, D. et al. (2017). Google vizier: A service for black-box optimization. In

KDD, ACM, pp. 1487–1495.

Gu, Y., Yang, D., Huang, Q., Yang, W. and Liu, H. (2018). Robust EMG pat-

tern recognition in the presence of confounding factors: features, classifiers and

adaptive learning. Expert Syst Appl, 96, pp. 208–217.

Hakonen, M., Piitulainen, H. and Visala, A. (2015). Current state of digital signal

processing in myoelectric interfaces and related applications. Biomed Signal

Process Control, 18, pp. 334–359.

Halaki, M. and Gi, K. (2012). Normalization of EMG signals: To normalize or

not to normalize and what to normalize to? In G. R. Naik, ed., Computational

Intelligence in Electromyography Analysis, InTechOpen, chap. 7, pp. 175–194.

Hargrove, L. J., Englehart, K. B. and Hudgins, B. (2006). The effect of elec-

trode displacements on pattern recognition based myoelectric control. In EMBC,

IEEE, pp. 2203–2206.

Hargrove, L. J., Englehart, K. B. and Hudgins, B. (2008). A training strategy

to reduce classification degradation due to electrode displacements in pattern

recognition based myoelectric control. Biomed Signal Process Control, 3(2), pp.

175–180.



BIBLIOGRAPHY 146

Hargrove, L. J., Scheme, E. J., Englehart, K. B. and Hudgins, B. S. (2010). Mul-

tiple binary classifications via linear discriminant analysis for improved control-

lability of a powered prosthesis. IEEE Trans Neural Sys & Rehab Eng, 18(1),

pp. 49–57.

Hartwell, A., Kadirkamanathan, V. and Anderson, S. R. (2018). Compact deep

neural networks for computationally efficient gesture classification from elec-

tromyography signals. In BioRob, IEEE, pp. 891–896.

Hashimoto, S. et al. (1994). Waveform changes of compound muscle action poten-

tial (CMAP) with muscle length. J Neurol Sci, 124(1), pp. 21–24.

He, J. et al. (2015a). User adaptation in long-term, open-loop myoelectric training:

implications for EMG pattern recognition in prosthesis control. J Neural Eng,

12(4), 046005.

He, K., Zhang, X., Ren, S. and Sun, J. (2015b). Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In ICCV, IEEE

Computer Society, pp. 1026–1034.

He, Y., Fukuda, O., Bu, N., Okumura, H. and Yamaguchi, N. (2018). Surface EMG

pattern recognition using long short-term memory combined with multilayer

perceptron. In 2018 40th Annu Int Conf IEEE Eng Med Biol Soc, IEEE, pp.

5636–5639.

Herberts, P., Almström, C., Kadefors, R. and Lawrence, P. D. (1973). Hand

prosthesis control via myoelectric patterns. Acta Orthop Scand, 44(4-5), pp.

389–409.

Hintze, J. L. and Nelson, R. D. (1998). Violin plots: A box plot-density trace

synergism. The American Statistician, 52(2), pp. 181–184.



BIBLIOGRAPHY 147

Hu, Y. et al. (2019). sEMG-based gesture recognition with embedded virtual hand

poses and adversarial learning. IEEE Access, 7, pp. 104108–104120.

Huang, Q. et al. (2017). A novel unsupervised adaptive learning method for long-

term electromyography (EMG) pattern recognition. Sensors, 17(6), 1370.

Huang, Y., Englehart, K., Hudgins, B. and Chan, A. (2005). A gaussian mixture

model based classification scheme for myoelectric control of powered upper limb

prostheses. IEEE Trans Biomed Eng, 52(11), pp. 1801–1811.

Hudgins, B., Parker, P. and Scott, R. N. (1993). A new strategy for multifunction

myoelectric control. IEEE Trans Biomed Eng, 40(1), pp. 82–94.

Hutter, F., Hoos, H. H. and Leyton-Brown, K. (2011). Sequential model-based

optimization for general algorithm configuration. In LION, Lecture Notes in

Computer Science, vol. 6683, Springer, pp. 507–523.

Hwang, H. J., Hahne, J. M. and Müller, K. R. (2017). Real-time robustness eval-

uation of regression based myoelectric control against arm position change and

donning/doffing. PLoS One, 12(11), e0186318.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In ICML, JMLR Workshop and

Conference Proceedings, vol. 37, JMLR.org, pp. 448–456.
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Figure 25: The 12 basic finger movements considered in the NinaPro Database 5,
Exercise A, with corrected labels (Atzori and Müller 2015).
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Figure 27: A subset of hand gesture examples from G. Dataset (Li et al. 2011).
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Figure 28: The 7 commonly seen hand gestures considered in the M.
Dataset (Côté-Allard et al. 2019).
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Table 16: The Determined Optimal Hyperparameters of CNN with Stratified
Nested Cross-Validation on NinaPro DB5

Subj Outer Loop Fold batch size learning rate optimizer

1

1 256 0.00861312 RMSprop
2 128 0.00215868 RMSprop
3 256 0.00143892 RMSprop
4 128 0.00224912 ADAM
5 128 0.00790112 ADAM
6 128 0.00147652 RMSprop

2

1 128 0.00872215 RMSprop
2 128 0.00288572 ADAM
3 128 0.00569556 RMSprop
4 128 0.00196093 ADAM
5 128 0.00348368 ADAM
6 128 0.00130826 RMSprop

3

1 128 0.00669941 RMSprop
2 128 0.00385254 ADAM
3 128 0.00375963 ADAM
4 128 0.00159470 ADAM
5 128 0.00552542 RMSprop
6 128 0.00180949 ADAM

4

1 128 0.00417521 RMSprop
2 256 0.00628941 RMSprop
3 128 0.00446880 RMSprop
4 128 0.00566787 RMSprop
5 128 0.00551087 RMSprop
6 128 0.00717378 RMSprop

5

1 256 0.00374168 RMSprop
2 128 0.00370201 ADAM
3 128 0.00504043 ADAM
4 128 0.00169821 RMSprop
5 128 0.00338842 ADAM
6 128 0.00554601 RMSprop

6

1 128 0.00618573 ADAM
2 256 0.00863308 RMSprop
3 128 0.00777292 ADAM
4 128 0.00848694 RMSprop
5 128 0.00248306 ADAM
6 128 0.00427281 ADAM

7

1 128 0.00176621 RMSprop
2 128 0.00407085 ADAM
3 128 0.00293482 RMSprop
4 256 0.00200357 RMSprop
5 128 0.00206999 RMSprop
6 128 0.00262685 RMSprop

8

1 128 0.00147638 RMSprop
2 128 0.00238904 RMSprop
3 128 0.00180673 ADAM
4 128 0.00208326 RMSprop
5 128 0.00162371 RMSprop
6 128 0.00214145 RMSprop

9

1 128 0.00558604 RMSprop
2 128 0.00150895 RMSprop
3 256 0.00707605 RMSprop
4 256 0.00610104 RMSprop
5 256 0.00246841 RMSprop
6 128 0.00237642 RMSprop

10

1 128 0.00327037 RMSprop
2 128 0.00181628 RMSprop
3 128 0.00295268 ADAM
4 128 0.00246366 ADAM
5 128 0.00299895 RMSprop
6 128 0.00102180 RMSprop
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Table 17: The Determined Optimal Hyperparameters of ECNN-A with Stratified
Nested Cross-Validation on NinaPro DB5

Subj Fold batch size learning rate optimizer evidence fun

1

1 128 0.00695823 ADAM ReLU
2 128 0.00997057 ADAM SoftPlus
3 128 0.00874911 RMSprop SoftPlus
4 128 0.00335200 RMSprop ReLU
5 256 0.00913189 RMSprop SoftPlus
6 128 0.00217550 ADAM ReLU

2

1 128 0.00878374 RMSprop SoftPlus
2 256 0.00696920 RMSprop SoftPlus
3 128 0.00943700 ADAM SoftPlus
4 256 0.00255285 ADAM SoftPlus
5 256 0.00492863 RMSprop SoftPlus
6 128 0.00419251 ADAM ReLU

3

1 256 0.00740250 RMSprop SoftPlus
2 256 0.00952314 RMSprop SoftPlus
3 256 0.00642838 RMSprop ReLU
4 128 0.00701040 RMSprop SoftPlus
5 256 0.00400770 RMSprop SoftPlus
6 128 0.00662747 RMSprop SoftPlus

4

1 128 0.00791172 RMSprop SoftPlus
2 128 0.00356949 RMSprop SoftPlus
3 128 0.00761020 RMSprop SoftPlus
4 128 0.00369350 ADAM SoftPlus
5 256 0.00495729 RMSprop ReLU
6 256 0.00442420 RMSprop SoftPlus

5

1 128 0.00714004 ADAM SoftPlus
2 128 0.00987980 ADAM SoftPlus
3 128 0.00510656 ADAM ReLU
4 128 0.00176210 RMSprop SoftPlus
5 128 0.00203610 RMSprop SoftPlus
6 128 0.00677087 ADAM SoftPlus

6

1 128 0.00459300 RMSprop SoftPlus
2 128 0.00336792 ADAM SoftPlus
3 128 0.00998516 ADAM SoftPlus
4 128 0.00217437 ADAM SoftPlus
5 128 0.00279520 RMSprop ReLU
6 128 0.00438666 ADAM SoftPlus

7

1 128 0.00327256 SoftPlus SoftPlus
2 128 0.00988837 ADAM SoftPlus
3 128 0.00620641 ADAM ReLU
4 128 0.00463151 RMSprop SoftPlus
5 128 0.00577810 ADAM SoftPlus
6 128 0.00986300 ADAM SoftPlus

8

1 128 0.00392580 ADAM SoftPlus
2 128 0.00304193 ADAM ReLU
3 256 0.00683400 ADAM SoftPlus
4 128 0.00463151 ADAM SoftPlus
5 128 0.00102860 RMSprop SoftPlus
6 128 0.00631100 RMSprop SoftPlus

9

1 128 0.00421213 RMSprop SoftPlus
2 128 0.00635812 RMSprop SoftPlus
3 128 0.00249564 ADAM SoftPlus
4 256 0.00267723 RMSprop SoftPlus
5 128 0.00433935 ADAM ReLU
6 128 0.00380242 ADAM SoftPlus

10

1 128 0.00384500 RMSprop SoftPlus
2 128 0.00318350 RMSprop SoftPlus
3 128 0.00287494 ADAM ReLU
4 256 0.00340249 ADAM SoftPlus
5 256 0.00225589 RMSprop ReLU
6 128 0.00367486 ADAM SoftPlus
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Table 18: The Determined Optimal Hyperparameters of ECNN-B with Stratified
Nested Cross-Validation on NinaPro DB5

Subject Outer Loop Fold batch size learning rate optimizer evidence fun annealing step

1

1 128 0.00755720 ADAM ReLU 60
2 256 0.00937702 RMSprop SoftPlus 55
3 128 0.00993340 RMSprop SoftPlus 60
4 128 0.00610603 ADAM SoftPlus 60
5 128 0.00588229 RMSprop SoftPlus 55
6 128 0.00589500 RMSprop SoftPlus 60

2

1 128 0.00718230 ADAM SoftPlus 55
2 128 0.00630821 RMSprop SoftPlus 60
3 128 0.00759272 ADAM SoftPlus 60
4 256 0.00182804 RMSprop ReLU 60
5 128 0.00569176 ADAM SoftPlus 60
6 128 0.00853500 ADAM SoftPlus 60

3

1 128 0.00970321 ADAM SoftPlus 60
2 128 0.00764483 ADAM ReLU 60
3 128 0.00866606 RMSprop SoftPlus 60
4 256 0.00763013 RMSprop SoftPlus 60
5 128 0.00758694 ADAM ReLU 55
6 128 0.00841684 RMSprop SoftPlus 60

4

1 128 0.00987511 ADAM SoftPlus 60
2 128 0.00899087 ADAM SoftPlus 60
3 128 0.00992393 ADAM SoftPlus 60
4 128 0.00851400 ADAM SoftPlus 60
5 128 0.00575878 RMSprop SoftPlus 60
6 128 0.00889460 RMSprop SoftPlus 60

5

1 128 0.00804827 RMSprop SoftPlus 60
2 128 0.00701815 RMSprop SoftPlus 60
3 128 0.00844130 ADAM SoftPlus 45
4 256 0.00844045 RMSprop SoftPlus 60
5 128 0.00842967 ADAM SoftPlus 45
6 128 0.00877795 RMSprop SoftPlus 60

6

1 128 0.00834386 RMSprop SoftPlus 55
2 128 0.00839500 ADAM SoftPlus 60
3 128 0.00727211 RMSprop SoftPlus 60
4 256 0.00669182 RMSprop SoftPlus 60
5 128 0.00762575 ADAM SoftPlus 60
6 128 0.00663232 RMSprop SoftPlus 60

7

1 128 0.00816471 ADAM SoftPlus 60
2 128 0.00897314 ADAM SoftPlus 55
3 256 0.00998654 RMSprop SoftPlus 60
4 128 0.00905298 RMSprop SoftPlus 60
5 128 0.00992728 ADAM SoftPlus 55
6 128 0.00804264 RMSprop SoftPlus 60

8

1 128 0.00412006 RMSprop SoftPlus 55
2 128 0.00534277 RMSprop SoftPlus 60
3 128 0.00346718 RMSprop SoftPlus 60
4 128 0.00543464 RMSprop SoftPlus 60
5 128 0.00989251 ADAM SoftPlus 60
6 256 0.00796879 RMSprop SoftPlus 55

9

1 256 0.00731462 RMSprop SoftPlus 60
2 128 0.00739066 ADAM SoftPlus 60
3 128 0.00710547 ADAM SoftPlus 55
4 128 0.00984175 ADAM SoftPlus 55
5 128 0.00819889 RMSprop SoftPlus 60
6 256 0.00799579 ADAM SoftPlus 60

10

1 128 0.00896102 ADAM SoftPlus 55
2 128 0.00805946 RMSprop SoftPlus 60
3 128 0.00898895 RMSprop SoftPlus 60
4 128 0.00840827 RMSprop SoftPlus 60
5 256 0.00701282 RMSprop SoftPlus 60
6 128 0.00573632 RMSprop SoftPlus 60
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Table 19: The Determined Optimal Hyperparameters of ECNN-C with Stratified
Nested Cross-Validation on NinaPro DB5

Subject Outer Loop Fold batch size learning rate optimizer evidence fun tau

1

1 128 0.00292867 RMSprop SoftPlus 0.0104
2 128 0.00711669 ADAM SoftPlus 0.0100
3 128 0.00827213 ADAM ReLU 0.0100
4 256 0.00111971 ADAM ReLU 0.0102
5 256 0.00194469 RMSprop ReLU 0.0104
6 128 0.00219270 RMSprop ReLU 0.0158

2

1 128 0.00469811 RMSprop SoftPlus 0.0108
2 128 0.00648811 RMSprop SoftPlus 0.0155
3 128 0.00335853 RMSprop SoftPlus 0.0105
4 256 0.00762505 ADAM SoftPlus 0.0115
5 256 0.00613626 ADAM ReLU 0.0104
6 256 0.00103725 ADAM SoftPlus 0.0185

3

1 128 0.00999356 ADAM SoftPlus 0.0100
2 128 0.00255055 ADAM SoftPlus 0.0101
3 128 0.00799018 ADAM SoftPlus 0.0104
4 256 0.00351461 ADAM ReLU 0.0102
5 256 0.00746422 RMSprop SoftPlus 0.0100
6 128 0.00969107 RMSprop SoftPlus 0.0101

4

1 256 0.00255049 RMSprop ReLU 0.0106
2 256 0.00543337 ADAM ReLU 0.0101
3 256 0.00400591 ADAM ReLU 0.0101
4 256 0.00237541 ADAM SoftPlus 0.0102
5 128 0.00543133 RMSprop SoftPlus 0.0104
6 128 0.00244918 ADAM SoftPlus 0.0119

5

1 256 0.00555642 RMSprop SoftPlus 0.0115
2 256 0.00209180 ADAM Exp 0.0117
3 256 0.00285707 RMSprop ReLU 0.0106
4 128 0.00134497 ADAM ReLU 0.0195
5 128 0.00229343 ADAM ReLU 0.0101
6 256 0.00149723 RMSprop ReLU 0.0143

6

1 128 0.00155251 RMSprop ReLU 0.0100
2 256 0.00161771 RMSprop ReLU 0.0103
3 128 0.00407107 ADAM SoftPlus 0.0110
4 128 0.00402627 ADAM SoftPlus 0.0102
5 256 0.00590821 ADAM Exp 0.0111
6 256 0.00435864 ADAM ReLU 0.0112

7

1 256 0.00216571 RMSprop SoftPlus 0.0103
2 128 0.00205496 RMSprop ReLU 0.0103
3 256 0.00148712 ADAM ReLU 0.0109
4 256 0.00431477 ADAM SoftPlus 0.0102
5 256 0.00263851 ADAM ReLU 0.0103
6 256 0.00135566 ADAM ReLU 0.0167

8

1 128 0.00831896 RMSprop SoftPlus 0.0101
2 256 0.00502280 RMSprop SoftPlus 0.0106
3 256 0.00328582 ADAM SoftPlus 0.0103
4 128 0.00254655 ADAM ReLU 0.0100
5 256 0.00546814 RMSprop SoftPlus 0.0116
6 256 0.00482164 ADAM Exp 0.0102

9

1 256 0.00655349 ADAM SoftPlus 0.0102
2 256 0.00297165 ADAM Exp 0.0121
3 128 0.00163260 RMSprop ReLU 0.0185
4 256 0.00101235 RMSprop ReLU 0.0145
5 128 0.00456503 ADAM ReLU 0.0102
6 256 0.00346760 ADAM ReLU 0.0103

10

1 128 0.00368632 ADAM SoftPlus 0.0101
2 256 0.00940509 ADAM SoftPlus 0.0102
3 256 0.00276342 ADAM ReLU 0.0111
4 256 0.00163194 ADAM SoftPlus 0.0102
5 256 0.00525047 ADAM Exp 0.0102
6 256 0.00885823 RMSprop SoftPlus 0.0106
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