Goldsmiths Research Online

Goldsmiths Research Online (GRO) is the institutional research repository for Goldsmiths, University of London

Citation

Babiker, A; Elbarbary, N.S.; Alaqeel, B.; Al Noaim, K.; Al Yaarubi, S.; Al-Abdulrazzaq, D.; Al-Kandari, H.; Alkhayyat, H.; Odeh, R.; Babiker, O.; Abu-Libdeh, A.; Aljohani, A.; Al Abdul Salam, N.; Al-Juailla, F.; Masuadi, E.; Deeb, A.; Weissberg-Benchell, J.; Gregory, Alice M. and Al Alwan, I.. 2023. Lessons learned from COVID-19 Lockdown: An ASPED/MENA Study on Lifestyle Changes and Quality of Life during Ramadan Fasting in Children and Adolescents living with Type 1 Diabetes. Clinical Medicine Insights: Endocrinology and Diabetes, ISSN 1179-5514 [Article] (In Press)

Persistent URL

https://research.gold.ac.uk/id/eprint/33935/

Versions

The version presented here may differ from the published, performed or presented work. Please go to the persistent GRO record above for more information.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Goldsmiths, University of London via the following email address: gro@gold.ac.uk.

The item will be removed from the repository while any claim is being investigated. For more information, please contact the GRO team: gro@gold.ac.uk

Clinical Medical Insights: Endocrinology and Diabetes

Lessons learned from COVID-19 Lockdown: An ASPED/MENA Study on Lifestyle Changes and Quality of Life during Ramadan Fasting in Children and Adolescents living with Type 1 Diabetes

Journal:	Clinical Medicine Insights: Endocrinology and Diabetes
Manuscript ID	END-23-0073
Manuscript Type:	Original Article
Date Submitted by the Author:	05-Apr-2023
Complete List of Authors:	Babiker, Amir; King Saud bin Abdulaziz University for Health Sciences College of Medicine Elbarbary, Nancy; Ain Shams University Children's Hospital, Department of Pediatrics Alaqeel, Bothainah; King Abdullah Specialized Children's Hospital, Department of Pediatrics Al Noaim, Khalid; King Faisal University Medical Center Al Yaarubi, Saif Al-Abdulrazzaq, Dalia; Kuwait University, Department of Pediatrics Al-Kandari, Hessa; Farwaniya Hospital, Department of Pediatrics Alkhayyat, Haya; Bahrain Defence Force Royal Medical Services Odeh, Rasha; The University of Jordan Babiker, Omer; Sudan Childhood Diabetes Center Abu-Libdeh, Abdulsalam; Makassed Hospital Aljohani, Amal; King Abdullah Specialized Children's Hospital Al Abdul Salam, Noof; Sultan Qaboos University Al-Juailla, Fatima; Dasman Diabetes Institute Masuadi, Emad; King Saud bin Abdulaziz University for Health Sciences, Biostatistics Deeb, Asma; Sheikh Shakhbout Medical City Weissberg-Benchell, Jill; Northwestern University Feinberg School of Medicine, Department of Psychiatry and Behavioral Health Gregory, Alice; Goldsmiths University of London, Department of Psychology HASSANEIN, MOHAMED; Dubai Hospital Al Alwan, Ibrahim; King Abdullah International Medical Research Center
Keywords:	COVID-19, Lifestyle, Lockdown, Quality of life, Ramadan Fasting, Type 1 diabetes
Abstract:	Background Lockdown was a unique experience that affected many aspects of life, particularly during the challenge of Ramadan fasting (RF). Studying this can increase understanding of the effects of lifestyle changes on quality of life (QoL) for children with type 1 diabetes (T1D) during RF. Methods A cross-sectional study that assessed the effect of lockdown on lifestyle

and QoL on fasting children living with T1D during Ramadan in the Middle East and North Africa region (2020-2021). We compared the child (self) and parent (proxy) reports using PEDQoL v3.0 disease specific questionnaire during lockdown and non-lockdown periods, and assessed correlations with lifestyle changes using regression and gap analyses.

Results

A total of 998 reports from 499 children with T1D aged 8-18 years (study=276, control=223), and their parents during RF in lockdown and non-lockdown periods. Fathers were more involved in their children's care during lockdown (p=0.019). Patients had better compliance with treatment (p= 0.002), a reversed sleep pattern (p= 0.033), increased food intake (p=<0.001) and less exercise (p<0.001). Children and parents perceived better QoL during lockdown (p=<0.001) with no differences between their reports in "Diabetes Symptoms", "Treatment Adherence" and "Communication" domains. Self and proxy reports were different in all domains during non-lockdown (p-values <0.001- 0.009). In gap analysis, although not statistically significant, the gap was approximated between children's and parents' perceptions in all domains during lockdown.

Conclusion

COVID-19 lockdown had a positive impact on QoL of children living with T1D during RF, possibly due to lifestyle changes and superior psychosocial family dynamics.

Keywords: COVID-19, Lifestyle, Lockdown, Quality of life, Ramadan Fasting, Type 1 diabetes.

SCHOLARONE™ Manuscripts

Lessons learned from COVID-19 Lockdown: An ASPED/MENA Study on Lifestyle Changes and Quality of Life during Ramadan Fasting in Children and Adolescents living with Type 1 Diabetes

Amir Babiker^{1,2,3}, Nancy Samir Elbarbary⁴, Bothainah Alaqeel¹, Khalid Al Noaim⁵, Saif Al Yaarubi⁶, Dalia Al-Abdulrazzaq⁷, Hessa Al-Kandari^{8,9}, Haya Alkhayyat¹⁰, Rasha Odeh¹¹, Omer Babiker¹², Abdulsalam Abu-Libdeh¹³, Amal Aljohani¹, Noof Al Abdul Salam⁶, Fatima Al-Juailla⁸, Emad Masuadi^{2,3}, Asma Deeb¹⁴, Jill Weissberg-Benchell^{15,16}, Alice M. Gregory¹⁷, Mohamed Hassanein¹⁸ and Ibrahim Al Alwan^{1,2,3}

Correspondence to:

Dr. Amir Babiker

Consultant Pediatric Endocrinologist and Associate Professor - Joint Appointment

MBBS (U of K), FRCPCH (UK), CCT (UK), MSc Endocrinology and Diabetes (UK)

King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City

King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs

P.O.Box. 22490, Riyadh 11426, Saudi Arabia, Phone: (00966-11) 8011111 Ext. 53503; (00966) -

537806560, babikeram1@ngha.med.sa; babikeramir@hotmail.com

Running title: COVID -19 lockdown and Quality of life in children with type 1 diabetes.

¹ King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

² King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Saudi Arabia

³ King Abdullah International Medical Research Centre, Saudi Arabia

⁴ Department of Pediatrics, Diabetes Unit, Ain shams University, Cairo, Egypt.

⁵ Department of Pediatrics, King Faisal University Medical Center, AlAhsa, Saudi Arabia

⁶ Sultan Qaboos University, College of Medicine & Health Science, Oman

⁷ Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait

⁸ Department of Population Health, Dasman Diabetes Institute, Kuwait

⁹ Department of Pediatrics, Farwaniya Hospital, Ministry of health, Kuwait

¹⁰ Pediatric Department, Bahrain Defense Force Royal Medical Services, Bahrain

¹¹ Department of Pediatrics, School of Medicine, The University of Jordan, Amman, Jordan

¹² Sudan Childhood Diabetes Center (SCDC), Khartoum, Sudan

¹³ Department of Pediatrics, Endocrinology Unit, Makassed Islamic Hospital & Al-Quds Medical School, Jerusalem, Palestine

¹⁴ Sheikh Shakhbout Medical City & Khalifa University, Pediatric Endocrinology, Abu Dhabi, United Arab Emirate

¹⁵ Northwestern University Feinberg School of Medicine, Chicago, USA

¹⁶ Pritzker Department of Psychiatry and Behavioral Health, Ann and Robert H. Lurie Children's Hospital of Chicago, USA

¹⁷ Department of Psychology, Goldsmiths, University of London, New Cross, United Kingdom

¹⁸ Department of Endocrinology and Diabetes, Dubai Hospital, Dubai, United Arab Emirates

Health-related quality of life (HRQoL) represents an essential outcome measure of health in pediatric practice [1]. Improving quality of life (QoL) in chronic diseases has become an important subject for researchers in the recent decades [2]. There is a clear relationship between chronic diseases and reduction of QoL. Pediatric QoL disease specific questionnaires are increasingly used to identify children at-risk and applying early appropriate interventions [3]. Type 1 diabetes mellitus (T1D) is a known disease that negatively affect QoL and is related to multiple factors including severity of hypoglycemia, presence of complications, efficacy of self-management of diabetes, and acceptance of the disease [4]. No doubt, understanding and organizing care of children with type 1 diabetes reflect well on these children and their parents' QoL [4] [5]. The fasting month of Ramadan especially during COVID-19 was a good opportunity to revise the management of adolescents with type 1 diabetes, with a positive involvement of different family members in the child's management.

Ramadan fasting (RF) has always posed a particular challenge, affecting QoL, in patients with T1D. Challenges include maintaining glycemic control, and sometimes, fasting for the first time in adolescents [6]. There are multiple shifts in lifestyle that occur during Ramadan including changes to mealtimes and sleep patterns. These have a direct effect on the body physiology that leads to disturbance in several homeostatic and hormonal processes [7],[8]. For example, shifting sleep timing during Ramadan will lead to changes in body temperature and cortisol level that affect blood glucose levels [9]. Because of that, fasting Muslim children and adolescents living with T1D are at risk of hypoglycemia, hyperglycemia, diabetic ketoacidosis, dehydration and thrombosis during RF [10],[11].

During the COVID-19 pandemic, lockdown was an international experience. A complete lockdown was implemented as a preventative measure to stop the spread of the virus. This was a unique experience which affected many aspects of life and subjected children in particular to a new adjustment of their schooling system as well as changes to social interactions and care received in children with chronic diseases [12]. Lockdown highlighted challenges experienced by families of children living with long term illnesses, including psychosocial challenges as well as difficulties with providing care to their young. Furthermore, lockdown resulted in restrictions to physical activities with RF resulting in added changes to sleep pattern and dietary intake. While lockdown resulted in many challenges for families it also held the potential for improving psychosocial bonding between family members - and especially for children living with T1D and their carers.

The aim of this study was to assess the impact of lockdown on lifestyle, diabetes management and QoL in fasting children living with T1DM during RF in different Muslim countries in the Middle East and North Africa (MENA) regions.

Research design and methods

Study design and tools

This is a cross-sectional multicenter study, in which we compared the experience reported by patients fasting Ramadan during the complete lockdown period in 2020 (study group) to patients fasting Ramadan during non-lockdown (or partial lockdown, commonly in daytime hours) in 2021 (control group). The study was designed by a research group of the Arab Society of Pediatric Endocrinology (ASPED). Children living with T1D were enrolled from multiple centers in the MENA region. Participating countries included: Saudi Arabia, Kuwait, Oman, Bahrain, Sudan, Egypt, Palestine and Jordan.

We assessed the *lifestyle changes* in Ramadan by asking questions about sleep pattern changes, dietary habits, indoor and outdoor exercise activities including night time special prayers in Ramadan (Tarawih prayer), hours spent on electronic devices and any major differences in lifestyle during current lockdown compared to non-locked time. We also assessed the effect of complete lockdown compared to non or partial lockdown on the *perception of QoL* and any possible relationship with changes in lifestyle. We used a validated Arabic version of a disease specific health related quality of life (HRQoL) questionnaire (PEDQoL) version 3.0 designated for children living with diabetes and their parents [13]. The questionnaire contained items clustered in five domains of QoL, these were (1) diabetes symptoms (2) treatment barriers, (3) treatment adherence, (4) worry and (5) communication. In addition, there were questions about demographics included age, gender, duration of diabetes, type of treatment; (conventional, multiple daily injection (MDI) therapy or continuous subcutaneous insulin infusion (CSII)), parents' level of education, socioeconomic status, the primary caregiver who most typically delivers injections and compliance with treatment.

All families included in the study were approached by the research group by direct interview either in-person (while visiting the outpatient department) or via telephone interview (during the complete lockdown), where the questions were read out to children and the accompanying parent after obtaining verbal consent to participate in the study.

Study population

There were two groups of patients. The study group was recruited in 2020 and included participants from Saudi Arabia, Egypt, Oman, Bahrain and Kuwait who fasted Ramadan during the pandemic complete lockdown. The control group included participants from Egypt, Palestine, Jordan and Sudan was recruited in 2021 when the lockdown had been lifted, at least partially in the evening hours until dawn, in some countries.

Each center recruited between 50 – 60 patients for inclusion in either the study or control group (of note, Egypt recruited patients in both the study and control groups). Inclusion criteria were: Children and adolescents of 10-18 years of age living with T1D, patients diagnosed with T1D for more than 6 months, and observing fasting for at least 50% of the Ramadan month. Exclusion criteria included additional diagnoses with other autoimmune or chronic diseases, a recent diagnosis (<6 months) of diabetes, recent severe infections or a learning difficulty or developmental delay which could impair the completion of questionnaires. A contribution of 50-60 patients per centre from 8 MENA countries resulted in an estimated total sample size of 400 - 480 children living with T1D. Patients enrolled in the study and control groups were matched by age and gender.

Data analysis

Descriptive analysis described continuous data. Categorical variables were described using frequency and percentages. Mean and SD were used to describe parametric continuous variables and median (interquartile range for non-parametric continuous data). ANOVA tests were implemented for comparisons between self and proxy reports. For assessment of risk factors that might affect the QoL scores in children, spearman correlations and regression analyses were used. Paired t-test was used for comparisons within groups while independent t-test was used for comparison across groups. Multivariable regression analysis was used to compare quality of life scores across each lifestyle parameter individually. A p-value <0.05 was considered statistically significant.

Results

The sample consisted of a total of 998 self (child) and proxy (parent) reports from 499 children with T1D. Data was collected from a study group (N=276) and a control group (N=223). The study and control groups were matched for age, gender and parents' level of education (Table1).

Demographics (Table 1)

Children's ages ranged between 8 to 18 years. The majority of participants were females (study 53.3% vs control 50.7%). Accommodation type was included in the study. Open residential areas meant that children did not have any access to workout facility, whereas living in compounds gave some room to move around. The number of participants who live in open residential areas was comparable between study and control group, however, there were more patients living in compounds in the study group. There was a difference in the socioeconomic status between the groups, (P-value <0.001) as 25.9% of study group reported high socioeconomic status as compared 8.5% in the control group.

Insulin regimen

As for insulin regimen, 92.8% of the control group reported MDI use as compared to the study group (81.8%) (Table 1). Overall, children living with T1DM were more compliant with treatment during the lockdown period. Interestingly, greater adherence to insulin therapy was observed in the lockdown group (p-value 0.004). Dose of insulin is usually adjusted during Ramadan to accommodate the change in routine that occurs naturally with fasting and there was an increase in total daily dose of insulin in the lockdown group as compared to the control group (p<0.001). There was also greater involvement of family members in insulin dose delivery in the lockdown group as compared to the control group. Fathers' involvement was noted by assessing who was accompanying the child to their check-up or virtual follow up that was greater during lockdown (24.6%) as compared to non-lockdown (9.4%), (p<0.001). Also, fathers and other family members, but not their mothers, were the main care providers to these children in 33% during lockdown compared to 21% during non-lockdown period (P<0.019).

Lifestyle changes (Table 1)

There were significant differences in lifestyle parameters during Ramadan between the lockdown and the non-lockdown groups. They included in the lockdown group (as compared to the control group): worse reversed sleep pattern (p= 0.033) and an increased number of meals with lower carbohydrate consumption (p=<0.001). Better compliance with treatment was reported by the lockdown group (p=0.002) as 60.1% of those in the lockdown group reported good compliance during lockdown as opposed to 50.9% in the non-lockdown group. A greater proportion of children in the lockdown group reported a significant lack of exercise (56.7%) as compared to those in the non-lockdown group (43.5%). Even Taraweh prayers were performed less in the study group as comapred to the control group (p=<0.001). There was an increase in hours spent using electronic devices in the lockdown group (6.1 hours +_ 3.6 SD) as compared to the non-lockdown group (3.9 hours +- 2.2 SD; p <0.001). The number of meals

was greater in the lockdown vs the control group (p<0.001). The challenge of fasting Ramadan was considered to be lower in the lockdown group as compared to the control group (48.7% of patients reported RF to be challenging in the lockdown group as compared to 85.2% of patients during non-lockdown, p<0.001).

QoL: Self vs proxy reports (Table 2)

Children and parents in the lockdown group perceived an overall better QoL in all domains compared to the control group (p=<0.001). There was no difference between child and parent perception of QoL during lockdown in "Diabetes Symptoms", "Treatment Adherence" or "Communication" domains. However, there was significant difference in their perception of QoL in all other domains during non-lockdown and in the "Treatment barriers" and "Worries" domains during lockdown (P values range from <0.001 to 0.009).

Despite the significant variations in variables of lifestyle in the study and control groups, none of these variables had a significant individual effect when regressed against QoL scoring in self and proxy reports.

Lockdown Vs Non-lockdown (Table 2 and Figure 1)

Using regression analysis, and focusing on self-report data, we found that group status (lockdown vs non-lockdown) predicted "Diabetes symptoms" and "Treatment adherence" domains as well as in total aggregate scores (Table 3). The same was found for parent-report data (Table 3). Group status predicted QoL (aggregate score and all domains' scores) in self and proxy reports — with a better QoL reported for the lockdown group. For the "worry" domain, and when focusing on parent-report, this effect was particularly pronounced in the older age group (13-18 years) in both genders (Figure 1). The male older age group (13-18 years) scored much better in the "Treatment barriers" domain during lockdown compared to other age group (Figure 1).

Using gap analysis to compare the variations in self and proxy reports in different domains, there was an approximation in the gap between children and parents' perceptions in all domains during lockdown. However, that was not statistically significant (Figure 1).

Discussion

Risk of complications in children with T1D includes hypoglycemia and hyperglycemia. These complications are closely related to the changes that normally occurs in lifestyle during Ramadan including diet, exercise and insulin requirement. COVID-19 lockdown was an additional burden on families with children and adolescents living with T1D. Having T1D is a risk factor for adverse outcomes during the COVID-19 lockdown [14].

The study group had faced a combination of three challenges, having type 1 diabetes, fasting Ramadan as well as being subjected to lockdown. Hence, it could be postulated that additional changes during the lockdown to lifestyle could pose further risks that can affect the outcome of these patient's QoL.

The lockdown resulted in people staying at home and spending unprecedented amounts of time with their children. This global experience was novel and no similar periods have been studied to this extent. Undoubtedly, lockdown impacted the mental health on a societal level [15]. Children and adolescents are the most sensitive age groups to be affected by drastic changes in lifestyle [15]. Given that fasting Ramadan had always posed a challenge on children with T1D, we observed experiences while fasting during the month of Ramadan. Specifically, we compared lifestyle, QoL and diabetes management (including diet, exercise and insulin dosage) during RF in children and adolescents living with T1D who reported symptoms during complete lockdown period to those who reported symptoms during incomplete/partial lockdown (essentially referred to as non-lockdown) period.

Exercise

In general, outdoor activities improve the cognitive, physical, social, and emotional health of children [16]. Decreased physical activity is one of the lifestyle changes that has been observed during Ramadan among Muslim populations [17]. A recent paper have even discussed the fitness for work of an adult Muslim who fasts during Ramadan and adjustment of working hours to meet these needs [18]. There is a debate about the psychological effect of outdoor activities for type 1 DM patients, though it improves the general wellbeing and in some studies was proposed to have a therapeutic effect. The COVID-19 outbreak led to lockdown and limitations of this type of activities [19].

A central issue associated with spending prolonged hours a day at home is the lack of physical exercise which, was demonstrated in our control group. Lockdown, surprisingly did not affect

exercise negatively. Although, it was thought that indoor activities versus outdoors would have negatively impact children's QoL during lockdown time. Nevertheless, that was not the case in our cohort. Despite that there were more participants living in enclosed residential areas in the study group, there was no difference in outdoor activities reported between the groups. We propose that lack of exercise is an issue regardless of restrictions imposed by the compulsory lockdown. This is supported by the fact that subjects who lived in compounds, where there are facilities to use during lockdown, did not have a significant improvement in exercise practices.

Muslims perform prayers five times daily all year round and during Ramadan, additional prayers take place (called Taraweeh). These differ from regular daily prayers by being longer in duration and timed shortly after breaking the fast. Therefore, this activity is considered as an exercise of moderate intensity. We included Taraweeh as part of exercise. The prayers are usually preformed in groups at mosques. Understandably, therefor, Taraweeh were performed less during the lockdown as compared to the control group in our cohort (<0.001).

Screen time

Being confined to one space increased screen time. That in itself can contribute to psychological issues [20]. Studies have shown an increase in level of anxiety and depression with extended screen time and excessive use of internet and social media platforms [21]. As expected, screen time had inevitably increased during lockdown. However, the increase in hours spent on devices also included time spent studying from home which, theoretically, could have resulted in less psychosocial consequences as compared to the leisure use of devices.

Positive family dynamics

Some studies have found increased tension in households during lockdown due to the stress of quarantine [22]. However, we found improvement in family dynamics in the lockdown group as compared to the control group. This was evidenced by increased involvement in the care of patients during the lockdown. Comparing our two groups, we noted more involvement of fathers and other family members during the lockdown in the delivery of insulin injections. Many factors could have contributed to this improvement. First, we propose that increased time spent at home improved the communication and strengthened the ties between family members. Communication with parents increased and parents were perhaps more attentive to their children's needs. Close supervision of the management of T1D by parents, increased family interactions and support from both parents and other members of the family to children

living with T1D could have improved both children and parents' perception of QoL during this new challenging experience of fasting of youngsters living with T1D.

In our study, we noticed more father involvement in patient's care during the lockdown, as opposed to solely mothers being the primary care-providers. This change is favorable and would likely reduce the parenteral stress and burden of taking care of a child with a chronic condition such as T1D [23]. The positive effect of family involvement has been highlighted in the literature previously, and many studies have focused on improving health outcomes in children and adolescents living with type 1 diabetes via using family based interventions [24].

Effect on insulin

In our study, there was greater adherence to insulin therapy during the lockdown period and an increase in total daily dose of insulin in the lockdown group. This was consistent with an Italian study that found a significant increase in insulin boluses during COVID lockdown compared to non-lockdown in pre-school and school aged children. They proposed that during lockdown, more parental involvement led to that enhancement in metabolic effect [25].

Effect on quality of life

Superior QoL during RF was reported during the pandemic lockdown as compared to the control group. Improved dietary habits, better treatment compliance and adherence which, we attributed to more involvement of family members in supporting children and adolescents living with T1D through the stressful experience of RF. These changes that lockdown has brought on lifestyle, besides improvement in family interactions and greater support for children with T1D, have improved the QoL for these children and adolescents.

Despite the significant variations in some variables of lifestyle between the two groups, when QoL scores were regressed against these individual parameters, none of them had a significant impact on the QoL scoring in both children and parents' reports. This indicates, that the significant overall and individual domains effects had resulted from them collectively in addition to the expected, but difficult to accurately measure, positive effects of family dynamics and social interactions that improved communication, adherence to treatment and reduced concerns about symptoms and acute and long-term complications.

The overall and individual domains' QoL scores were consistently better during lockdown. That was more apparent in the older age group (13-18 years) in both genders and more specifically in the "Worry" domain in the proxy report. Probably parents felt that their children were less worried during lockdown as there were no outdoor activities and fewer commitments during fasting time in the lockdown. The male older age group (13-18 years) scored much better in the "Treatment barriers" domain during lockdown compared to other age groups probably with the help and support from other family members. This is the main group who typically shows the risk-taking behavior of missing insulin doses [1]. Also, the younger age (10-12 years) group is probably still well-attached to parents and follows their guidance and instructions on management better than the older age (13-18 years) group.

The lockdown imposed immense restrictions on social interactions. Schools closed down and contact with classmates, friends and extended family varied in nature and was limited. That might have been isolating and was associated with depression and increased loneliness [20]. However, some children and adolescents living with T1D struggle with shame around peers with delivering injections [26]. That was no longer apparent in our study group and the worry domain was reduced as compared to the control group. Being close to parents and other family members during the lockdown period could have reduced the worries about potential hypoglycemic episodes during fasting hours and at the time of unattended outdoor activities that are popular among adolescents in Ramadan's night-time.

Interestingly, there was a smaller gap between adolescents' and parents' perceptions of the QoL in children with T1D, in the lockdown group as compared to the non-lockdown group (although this difference was not statistically significant). One reason for this could be the alignment of experiences between children and their parents during lockdown. The gap between self-report and parent-report was greater in the older adolescent age group (13-18 years of age), as compared to the younger age-group. This could reflect different thinking styles during adolescents as compared to other developmental stages [27]. The neuronal sensitivity to motivational factors develops during adolescence, hence; teens compared to adults may possess novelty-seeking and risk-taking behaviors [28],[29]. Moreover, adolescents do not prefer to share their worries if that reflects a limitation in confidence or lacking experience [30]. Their decision making could also by influenced by peers or other emotions and social contexts [29],[31]. This distinct behavior may frequently result in disagreement with parents in management of their diabetes [30]. Hence; a sustainable gap had remained between self and

proxy reports of QoL in the two periods of our study, possibly due to different perspectives of parents and these adolescents, especially the older age group.

Study limitations

Our data reflected on a cohort from various MENA countries with multiple variations in socioeconomic status, dietary habits and lockdown policies. Children and adolescents included in the study had different socioeconomic backgrounds. Some had the privilege to live in compounds where they had access to exercise facilities and experienced more freedom in mobility during the lockdown. Participants had different insulin regimens based on their income, with MDI mostly used with lower socioeconomic status. As we appreciate these differences and the effect they might have had, there was no way to adjust for it. Despite being from different groups of countries, most share similar cultures and rituals during Ramadan Fasting. However, there are some minor variations in food and eating habits/traditions between different countries in MENA region due to cultural differences, which was difficult to adjust for in our study. Due to variations in the extended lockdown time ploicy, we were unable to recruit the same patients during the non-lockdown/partial lockdown period.

Another challenge we faced during data collection was that the number of children who fasted for the first time was higher in the control group, hence; an increase in the percentage of incomplete RF (50%) in that group. It was also difficult to conclude whether the incomplete RF was because of facing more challenges or due to a decreased enthusiasm related to a belief of not reaching the appropriate age to complete RF. Although the patients were well matched in the two groups and changes in lifestyle between the groups were adjusted for, there could be some hidden unmeasured additional psychosocial factors related to parents/adolescents' relationship in the two groups.

Conclusion

COVID-19 lockdowns resulted in great risks for children and adolescents. However, the change in lifestyle experienced also provided great opportunities. By comparing patient groups recruited during and after the lockdown, we found that the lockdown group reported superior family dynamics, which were associated with a superior QoL in fasting Muslim children and adolescents living with T1D. Clinical implications of this work include that diabetes treating teams could emphasize these lifestyle changes and family psychosocial interactions through

family-targeted programs to support the successful management and positively enhance QoL in children and adolescents with T1D during the potentially stressful experience of RF. This holds true regardless of the challenges of COVID and associated lockdowns.

Acknowledgement

We wish to express our sincere appreciation to all the patients and their families for their participation and cooperation during the study period. From Kuwait, we would like to acknowledge the following: Dasman Diabetes Institue, Kuwait University, Dr. Doa Khalifa. Research assistants: Sarah Qabazard, Taibah Al-Qaisi, Fatima Al-Juailla, Fouzeyah Othman. This paper's guarantor is Dr. Amir Babiker

Funding

No funding was requested.

Conflict of interest

The authors declare no conflict of interest.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contribution

AB-Conceptualized the idea. AB and IA – Study designing. BA, AB – Writing the first draft, NE, BA, KA, SY, DA, HA, HayA, RO, OB, AA, NA, AmA, FA, EM - Data collection and drafting the manuscript. EM – Data analysis, EM, AB, BA – Data interpretation and writing the results. AD, JW-B, AM.G, IA and MH – drafting, further interpretation of results and editing the manuscript. All authors approved the final submitted manuscript.

References

- 1. Babiker A, Al Aqeel B, Marie S, et al (2021) Quality of Life and Glycemic Control in Saudi Children with Type 1 Diabetes at Different Developmental Age Groups. Clin Med Insights Endocrinol Diabetes 14:1179551421990678
- De Wit M, Delemarre-van de Waal HA, Bokma JA, et al (2008)
 Monitoring and discussing health-related quality of life in adolescents

- with type 1 diabetes improve psychosocial well-being: a randomized controlled trial. Diabetes Care 31:1521–1526
- 3. Abdul-Rasoul M, AlOtaibi F, Abdulla A, et al (2013) Quality of life of children and adolescents with type 1 diabetes in Kuwait. Med Princ Pract 22:379–384
- 4. Hagger V, Hendrieckx C, Sturt J, et al (2016) Diabetes distress among adolescents with type 1 diabetes: a systematic review. Curr Diab Rep 16:1–14
- 5. Saoji N, Palta M, Young HN, et al (2018) The relationship of type 1 diabetes self-management barriers to child and parent quality of life: a US cross-sectional study. Diabet Med 35:1523–1530
- 6. AlAlwan I, Al Banyan A (2010) effects of Ramadan fasting on children with type 1 diabetes. Int J Diabetes Mellit 2:127–129
- 7. Beshyah S, Habeb A, Deeb A, Elbarbary N (2019) Ramadan fasting and diabetes in adolescents and children: a narrative review. Ibnosina J Med Biomed Sci 11:47–56
- 8. Fredheim S, Foli-Andersen P, Laerkholm G, et al (2018) Adrenaline and cortisol levels are lower during nighttime than daytime hypoglycaemia in children with type 1 diabetes. Acta Paediatr 107:1759–1765
- 9. Reilly T, Waterhouse J (2007) Altered sleep—wake cycles and food intake: The Ramadan model. Physiol Behav 90:219–228
- 10. Kaplan W, Afandi B (2015) Blood glucose fluctuation during Ramadan fasting in adolescents with type 1 diabetes: findings of continuous glucose monitoring. Diabetes Care 38:e162–e163
- Beshyah SA, Chowdhury TA, Ghouri N, Lakhdar AA (2019) Risk of diabetic ketoacidosis during Ramadan fasting: a critical reappraisal.
 Diabetes Res Clin Pract 151:290–298
- 12. Brooks SK, Webster RK, Smith LE, et al (2020) The psychological impact of quarantine and how to reduce it: rapid review of the evidence.

- Lancet 395:912-920
- 13. Varni JW, Curtis BH, Abetz LN, et al (2013) Content validity of the PedsQLTM 3.2 Diabetes Module in newly diagnosed patients with type 1 diabetes mellitus ages 8–45. Qual Life Res 22:2169–2181
- 14. Hassanein M, Alamoudi RM, Kallash M-A, et al (2021) Ramadan fasting in people with type 1 diabetes during COVID-19 pandemic: The DaR Global survey. Diabetes Res Clin Pract 172:108626
- 15. Panchal U, Salazar de Pablo G, Franco M, et al (2021) The impact of COVID-19 lockdown on child and adolescent mental health: systematic review. Eur Child Adolesc Psychiatry 1–27
- 16. Chaddock L, Voss MW, Kramer AF (2012) Physical activity and fitness effects on cognition and brain health in children and older adults. Kinesiol Rev 1:37–45
- 17. DeLang MD, Salamh PA, Chtourou H, et al (2021) The effects of Ramadan intermittent fasting on football players and implications for domestic football Leagues over the next decade: a systematic review. Sport Med 1–16
- 18. Deen M, Moothadeth A, Waqar S, et al (2022) Fasting during Ramadan and fitness for work implications. Occup. Med. (Chic. Ill). 72:154–156
- 19. Chen P, Mao L, Nassis GP, et al (2020) Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. J Sport Heal Sci 9:103
- 20. Singh S, Roy D, Sinha K, et al (2020) Impact of COVID-19 and lockdown on mental health of children and adolescents: A narrative review with recommendations. Psychiatry Res 293:113429
- 21. Woods HC, Scott H (2016) # Sleepyteens: Social media use in adolescence is associated with poor sleep quality, anxiety, depression and low self-esteem. J Adolesc 51:41–49
- 22. Galea S, Merchant RM, Lurie N (2020) The mental health consequences

- of COVID-19 and physical distancing: the need for prevention and early intervention. JAMA Intern Med 180:817–818
- 23. Aldubayee M, Mohamud S, Almadani KA, et al (2020) Parental levels of stress managing a child diagnosed with type 1 diabetes in Riyadh: a cross sectional study. BMC Psychiatry 20:1–7
- 24. Feldman MA, Anderson LM, Shapiro JB, et al (2018) Family-based interventions targeting improvements in health and family outcomes of children and adolescents with type 1 diabetes: a systematic review. Curr Diab Rep 18:1–12
- 25. Schiaffini R, Barbetti F, Rapini N, et al (2020) School and pre-school children with type 1 diabetes during Covid-19 quarantine: the synergic effect of parental care and technology. Diabetes Res Clin Pract 166:108302
- 26. Lu Y, Pyatak EA, Peters AL, et al (2015) Patient perspectives on peer mentoring: type 1 diabetes management in adolescents and young adults. Diabetes Educ 41:59–68
- 27. Van Duijvenvoorde ACK, van Hoorn J, Blankenstein NE (2022) Risks and rewards in adolescent decision-making. Curr Opin Psychol 101457
- 28. Adriani W, Chiarotti F, Laviola G (1998) Elevated novelty seeking and peculiar d-amphetamine sensitization in periadolescent mice compared with adult mice. Behav Neurosci 112:1152
- 29. Sturman DA, Mandell DR, Moghaddam B (2010) Adolescents exhibit behavioral differences from adults during instrumental learning and extinction. Behav Neurosci 124:16
- 30. Schilling LS, Knafl KA, Grey M (2006) Changing patterns of self-management in youth with type I diabetes. J Pediatr Nurs 21:412–424
- 31. Blakemore S-J, Robbins TW (2012) Decision-making in the adolescent brain. Nat Neurosci 15:1184–1191

		Lockdown		Non-loc		
		N	%	N	%	P-Value
Age (years)	8 - 12	93	33.7%	94	42.2%	0.052
	13 - 18	183	66.3%	129	57.8%	
Gender	Male	129	46.7%	110	49.3%	0.565
	Female	147	53.3%	113	50.7%	
Parents' level of	Up to high school	109	40.5%	80	35.9%	0.292
education	University	160	59.5%	143	64.1%	
Accompanying parent	Mother	182	65.9%	154	69.1%	<0.001
1 0 01	Father	68	24.6%	21	9.4%	
	Both	26	9.4%	41	18.4%	
	Other	0	0.0%	7	3.1%	
Main care-provider	Child	69	26.4%	69	30.9%	0.019
F	Mother	106	40.6%	107	48.0%	
	Father	14	5.4%	4	1.8%	
	Other	72	27.6%	43	19.3%	
Total dose of insulin*	Decreased	91	57.2%	126	57.5%	<0.001
J	Same	34	21.4%	75	34.2%	
	Increased	34	21,4%	18	8.2%	
Injection delivered by*	Child	146	55.9%	110	49.3%	<0.001
, , , , , , , , , , , , , , , , , , ,	Mother	28	10.7%	80	35.9%	
	Father & Others	87	33.3%	33	14.8%	
Adherence to treatment*	Poor	40	14.9%	56	25.1%	0.004
	Average	74	27.6%	69	30.9%	
	Good	154	57.5%	98	43.9%	
Is fasting Ramadan	Yes	132	48.7%	173	85.2%	<0.001
challenging?	No	139	51.3%	30	14.8%	
Sleep pattern	Reverse sleep pattern	238	86.5%	177	79.4%	0.033
	Normal sleep pattern	37	13.5%	46	20.6%	
Food contents and portion	Increased portion = Carbs 90-100 g/meal	147	58.8%	147	66.5%	<0.001
-	Same, Carbs 60-75 g/meal	64	25.6%	72	32.6%	
	Decreased portion, Carbs <60 g	39	15.6%	2	0.9%	

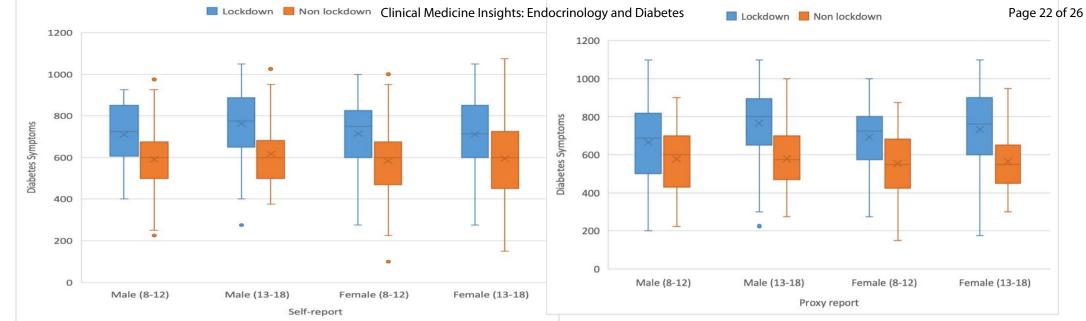
Nı	umber and timing of meals
	Hours spent on
	electronic devices
	Exercise

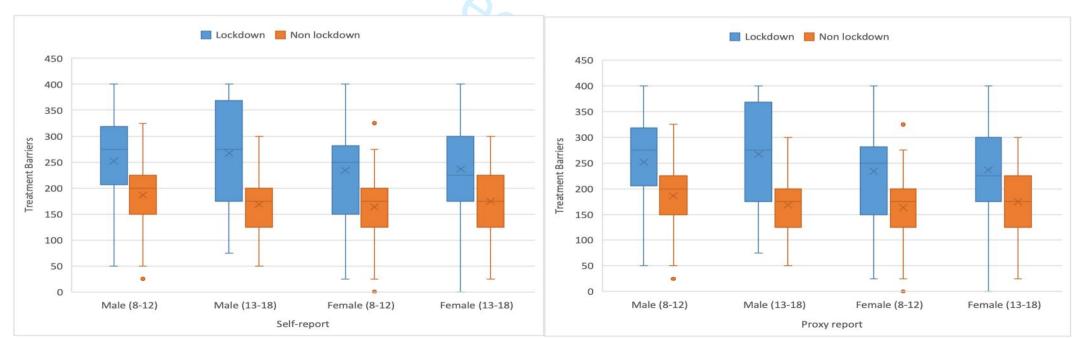
Compliance with

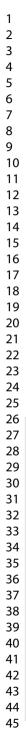
treatment

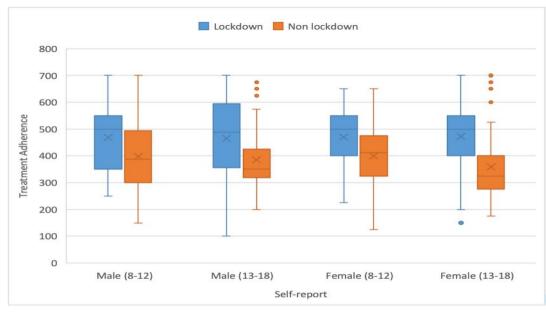
(Mean, SD)	2.8 (0.4)		2.3 (0.8)		<0.001
(Mean, SD)	6.1 (3.6)		3.9 (2.2)		<0.001
No	110	56.7%	97	43.5%	<0.001
Tarawih Prayer (Mild intensity)	8	4.1%	44	19.7%	
Medium intensity	35	18.0%	30	13.5%	
High intensity	41	21.1%	52	23.3%	
Poor	31	11.6%	53	23.9%	0.002
Average	76	28.4%	56	25.2%	
Good Partial	161 1	60.1% 0.4%	113 40	50.9% 17.9%	

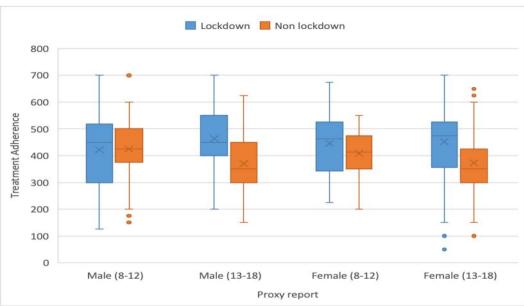
^{*}Not reported by all patients

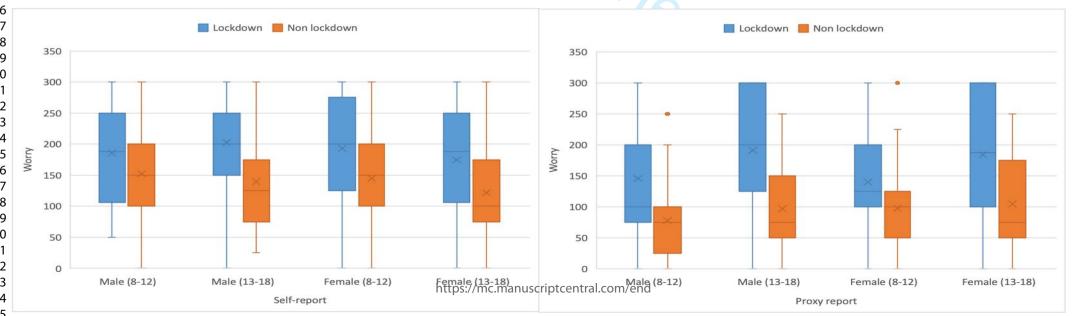

Table 1 – Demographics of participants and lifestyle changes in the study (Lockdown) and Control (Non-lockdown) groups

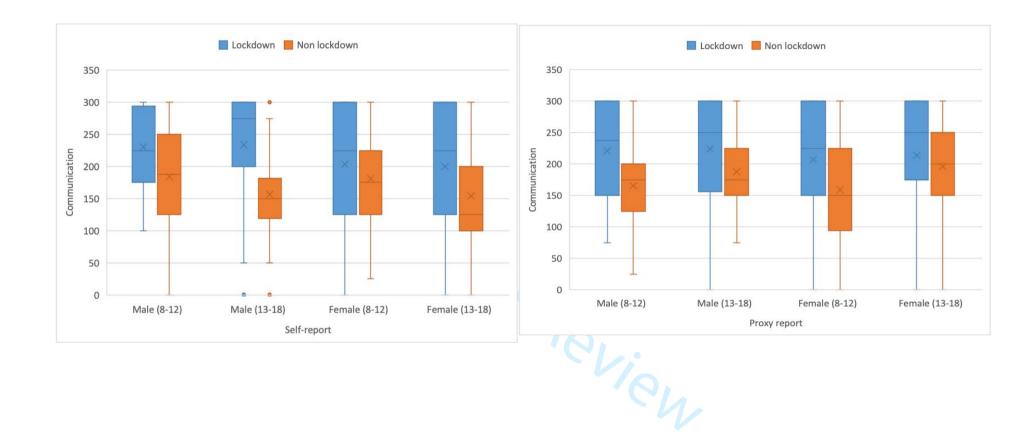

	Self-report					Proxy report				
	Lockdown		Non-lockdown		Lockdown		Non-lockdown			
	Mean	SD	Mean SD		P-	Mean	SD	Mean	SD	P-
					value					value
Diabetes Symptoms	728.2	176.5	598.5	172.5	< 0.001	727.8	193.8	569.0	159.0	< 0.001
Treatment Barriers	264.9	98.2	204.2	80.6	< 0.001	248.4	100.0	172.7	62.8	< 0.001
Treatment Adherence	469.0	128.7	383.4	117.6	< 0.001	450.8	133.3	390.5	112.5	< 0.001
Worry	189.0	83.1	138.2	71.1	< 0.001	172.5	93.3	95.4	60.0	< 0.001
Communication	215.2	88.8	166.8	72.8	< 0.001	216.6	85.5	179.3	67.2	< 0.001
Total Aggregate	1862.0	388.0	1491.0	366.0	< 0.001	1815.0	403.0	1407.0	302.0	< 0.001

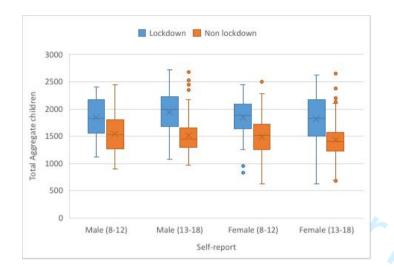

Table 2 -Self and Proxy quality of life reports during lockdown and non-lockdown periods


	Proxy report									
Parameter		В	P-value	95% CI for B			В	P-value	95% CI	for B
				Upper	Lower				Upper	Lower
Total Aggregate	Intercept	1217.9	< 0.001	714.5	1721.4	Intercept	864.9	0.001	367.4	1362.5
	Lockdown	316.8	< 0.001	213.1	420.5	Lockdown	279.3	< 0.001	176.9	381.8
	Non-lockdown (ref.)	0.0				Non-lockdown (ref.)	0.0			
Diabetes Symptoms	Intercept	634.5	< 0.001	388.8	880.1	Intercept	429.7	0.001	181.2	678.2
	Lockdown	108.4	< 0.001	57.8	158.9	Lockdown	135.8	< 0.001	84.6	187.0
	Non-lockdown (ref.)	0.0				Non-lockdown (ref.)	0.0			
Treatment Barriers	Intercept	95.2	0.142	-32.0	222.3	Intercept	44.7	0.437	-68.4	157.7
	Lockdown	33.2	0.013	7.0	59.4	Lockdown	27.9	0.019	4.6	51.2
	Non-lockdown (ref.)	0.0				Non-lockdown (ref.)	0.0			
Treatment Adherence	Intercept	359.8	< 0.001	185.4	534.2	Intercept	285.6	0.002	109.4	461.8
	Lockdown	101.5	< 0.001	65.6	137.4	Lockdown	80.7	< 0.001	44.4	117.0
	Non-lockdown (ref.)	0.0				Non-lockdown (ref.)	0.0			
Worry	Intercept	80.1	0.139	-26.3	186.5	Intercept	14.7	0.762	-80.4	109.8
-	Lockdown	18.6	0.096	-3.3	40.5	Lockdown	5.7	0.569	-13.9	25.3
	Non-lockdown (ref.)	0.0				Non-lockdown (ref.)	0.0			
Communication	Intercept	48.3	0.396	-63.6	160.3	Intercept	92.7	0.075	-9.5	194.9
	Lockdown	55.2	< 0.001	32.1	78.2	Lockdown	29.8	0.006	8.7	50.8
	Non-lockdown (ref.)	0				Non-lockdown (ref.)	0.0			


Table 3 – Regression analyses of the overall changes in lifestyle against quality-of-life (QoL) scores in Self and Proxy reports







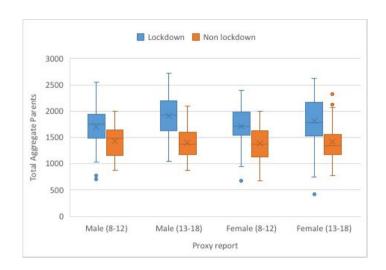


Figure 1a – Boxplots of QoL scores per age and gender

a Lockdown b Non lockdown

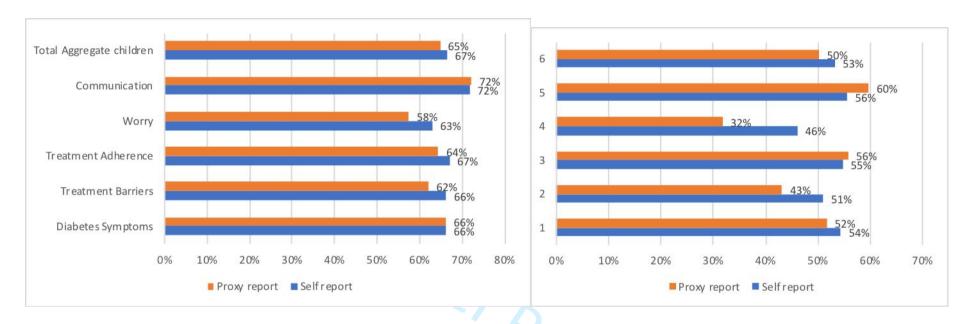


Figure 1b – Gap analysis

Figure 1 – a) Differences in QoL scores and b) Gap analysis, between self and proxy reports during lockdown and non-lockdown periods

Highlights

- Children and parents perceived overall better QoL during lockdown.
- Patients had better compliance with treatment.
- More family member involvement, as opposed to only mothers, was noted in the care of children living with type 1 diabetes during lockdown.

