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Abstract: In recent years, with the rapid development of computer vision technology and the
popularity of intelligent hardware, as well as the increasing demand for human–machine interaction
in intelligent products, visual localization technology can help machines and humans to recognize
and locate objects, thereby promoting human–machine interaction and intelligent manufacturing.
At the same time, human–machine interaction is constantly evolving and improving, becoming
increasingly intelligent, humanized, and efficient. In this article, a new visual localization model is
proposed, and a language validation module is designed to use language information as the main
information to increase the model’s interactivity. In addition, we also list the future possibilities of
visual localization and provide two examples to explore the application and optimization direction
of visual localization and human–machine interaction technology in practical scenarios, providing
reference and guidance for relevant researchers and promoting the development and application of
visual localization and human–machine interaction technology.

Keywords: visual grounding; human–computer interaction; intelligent systems; user experience;
interaction design

1. Introduction

Human–computer interaction (HCI) has evolved significantly over the years, trans-
forming the way we interact with technology. One of the key challenges in HCI is bridging
the gap between human perception and the machine’s understanding of the visual world.
Visual grounding, a fundamental concept in computer vision, has emerged as a crucial
approach to address this challenge. In this article, we will explore the concept of visual
grounding and its applications in HCI, highlighting its potential to enhance our interactions
with computers and devices.

One key emerging technology in computer vision [1,2] is visual grounding (VG),
which refers to the process of establishing a correspondence between visual information
and its associated meaning in the real world. It enables computers to recognize and
interpret objects, actions, and scenes depicted in images or videos, facilitating meaningful
interactions with users. By grounding visual information, computers can understand and
respond to user queries, instructions, and gestures, opening up new possibilities for natural
and intuitive interfaces. These technologies have many applications, including image
retrieval [3], robot localization [4], image captioning [5], and so on. On the other hand, HCI
technology focuses on developing interfaces that allow humans to interact with computers
in a natural and intuitive way. This technology includes various modes such as voice,
gesture, touch, and eye-tracking. These modes can be used alone or in combination to
provide seamless and intuitive interaction between humans and computers.
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In this article, we present a novel VG method within the context of HCI. Our work
contributes in three main aspects:

• Proposal of the new model: We introduce a new model in the VG field that effec-
tively processes visual and language features in a symmetric manner. This symmetric
processing can better understand semantic information and improve the overall per-
formance of VG systems. Additionally, we design a language-driven, multi-stage
cross-modal decoder in the decoder section to iteratively locate targets based on
language information, thereby increasing the model’s interactivity;

• Experimental validation: We conducted extensive experiments to evaluate the ef-
ficacy of our proposed method. Through these experiments, we demonstrate the
advantages and improvements achieved by our model on several well-established
benchmarks [6–8] in the field of VG;

• Linking between VG and HCI: In addition to the empirical validation, we propose
a connection between VG and human–computer interaction. By highlighting the
synergies between these two fields, we propose feasible future applications of VG
within the domain of HCI. These applications encompass various aspects around HCI,
offering new possibilities for enhanced user experiences and intuitive interactions.

The structure of the paper is as follows. In Section 2, we will elaborate on previous
work on VG, including the methods used. In Section 3, we introduce our model and
the methods used in it. In Section 4, we will introduce the configuration, settings, and
dataset used in our model experiments, the experimental setup, and the results obtained.
In Section 5, we will discuss the connection between VG and HCI, as well as some potential
future application scenarios.

2. The Previous Development in Visual Grounding

Existing VG methods can be divided into three categories: Two-stage methods [6,7,9,10],
one-stage methods [11–13] and end-to-end transformer-based methods [14,15]. Both one-
stage and two-stage methods treat VG as a ranking problem of detected candidate regions.
One-stage methods [11–13,16] directly embed text and fuse image features to generate
dense predictions, from which the one with the highest confidence is selected. Two-stage
methods [10,17–24] first generate a set of object proposals and then match them with
language queries to retrieve top-ranked proposals. Both methods rely on pre-detected
proposals or predefined anchor box configurations for inference, and they match or fuse
candidate objects with text embeddings based on region features (corresponding to pre-
dicted proposals) or point features (corresponding to dense anchor boxes). However, such
feature representations may not be flexible enough to capture detailed visual concepts or
context mentioned in language descriptions [14].

Although convolutional neural networks (CNNs) have achieved excellent performance
in various visual tasks [25–30], the success of transformers in the fields of vision and
language has attracted attention in the research community. Transformers have replaced
CNNs in many visual tasks, such as image classification [2] and object detection [1,31]. The
success of transformers in these areas has also driven the transformation of VG. In recent
transformer-based methods, such as TransVG [14,15], a ResNet+transformer encoder and
BERT are used in the backbone to extract visual and language features, respectively. The
two features are projected into the same dimension using a linear projection layer, and a
simple stack of transformer encoder blocks is used in the fusion stage to merge them. The
output of the fusion module is directly fed into an MLP to generate the four-dimensional
coordinates of the localized object. This approach achieves higher accuracy than the one- or
two-stage methods on most datasets. However, the problem with TransVG [15] is that the
fusion stage uses a simple stack of transformer encoder blocks, which, although effective, is
too simple, resulting in suboptimal experimental accuracy. VLTVG [14] solves the problem
of overly simple fusion in the fusion stage. It introduces a multi-stage cross-modal decoder
with a query as the query, which calculates and outputs discriminative features based
on the validation score input by the visual-language verification module and the visual
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context feature and visual feature output by the language-guided context module. These
features are then passed together with the language features into the multi-stage cross-
modal decoder, and the final output after the last layer of features is fed into an FFN layer
to generate the four-dimensional coordinates of the located object. VLTVG solves the
problem of simple stacking of transformer encoder blocks in TransVG [15], but the model
mainly processes visual features and neglects language feature processing, leading to a
lack of semantic understanding of language features in the entire model. There are also
other approaches that use transformers or attention mechanisms to tackle various types of
vision and language tasks [32–35]. For instance, SCAN [33] addresses image-text matching
by modeling correlations when proposing candidate bounding boxes. STVGBert [35]
associates text embeddings with video frame features for video grounding. In contrast,
we focus more on image-based grounding, using pixel-level modeling of visual-language
correlations.

3. Method

In this section, we will mainly introduce our proposed model. We will firstly present
the overall structure of the model. Then we elaborate each module used in the model,
including the verification module, context encoder module, and multi-stage cross-modal
decoder module.

3.1. The Overall Encoder and Decoder of the Model

Our proposed model follows the same approach as previous transformer-based mod-
els in directly locating objects based on their features. As shown in Figure 1, given an
input image and language sentence, we first extract features separately by feeding images
and sentences into two independent branches, respectively. For the image, we use a stack
of transformer encoder layers on top of ResNet50 [25] to generate the 2D feature map
Fv ∈ RC×H×W . For the language sentence, we use BERT [36] to encode it into a textual
embedding sequence Fl ∈ RC×L. Based on these two modalities, we use the visual verifi-
cation discriminative (VVD) module and the language verification discriminative (LVD)
module to encode them into discriminative features. In the VVD module, we employ a
visual-linguistic verification module and a language-guided contextual module to encode
the referenced features. In the LVD module, we use similar operations to those in the VVD
module, but instead we validate the language features based on visual features, allowing
the language features to focus more on the parts of visual information that are relevant to
the language sentence. Finally, we apply a multi-stage cross-modal decoder to iteratively
attend to the visual and language feature information encoded by the encoders for more
accurate retrieval of object representations for object localization.

3.2. Language Verification Discriminative (LVD) Module

The input language sentence is encoded by BERT into the feature Fl , which only
contains semantic understanding, but not any prior visual knowledge. Without the prior
knowledge, solely using language features to index object instances in images may lead
to incorrect indexing or eventually failure to locate the object. Therefore, it is necessary to
integrate visual features into the module. The LVD module integrates visual information
into the language features by computing the language discriminative features.
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Figure 1. The overall encoder and decoder architecture of our proposed model is constructed
as follows. Given the input image and language expression, the feature encoder first extracts
visual features and textual embeddings separately. Then, the LVD module (language verification
discriminative module) and VVD module (visual verification discriminative module) are used to
process the features to generate discriminative features corresponding to the language and visual
features, respectively. Finally, the multi-stage cross-modal decoder is utilized to iteratively infer the
target location using all the generated visual and language features. The normalization layer is not
indicated in the figure.

As shown in Figure 2, the LVD module is based on multi-head attention [37]. It uses
the language feature Fl ∈ RC×L as a query, and the visual feature Fv ∈ RC×H×W as keys
and values. Through multi-head attention, relevant visual semantic information is collected
for the language feature reference, resulting in Ft, which is the language representation
corresponding to the visual features. Then, F′l and F′t are projected onto the same semantic
space through a projection layer and L2-norm layer, and their semantic correlation score
LS are calculated as the verification score for each spatial position (x, y):

LS(x, y) = α · exp

(
−
(
1− F′l (x, y)T F′t (x, y)

)2

2σ2

)
(1)

where α and σ are learnable parameters. The verification score represents the semantic
correlation score between the visual feature and the corresponding language semantic
feature. For each language feature, the verification score models the correlation based on
the visual feature. When the visual features are multiplied with the language feature, the
features obtained will naturally suppress some stimulation which is irrelevant to visual
information.

However, while modeling the correlation between language and visual features, the
location information or other relevant information in the language representation may
also be suppressed. This would lead to an incomplete understanding of the language
representation by the model. Therefore, the language features should also have visual
contextual information, such as interactive relationships and positional relationships. It
combines the position and other information in the language representation with visual
features, enabling the model to better understand information from the language extent.
This is also crucial for modeling the objects or other parts in images.
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Figure 2. The language verification discriminative (LVD) module is based on multi-head attention,
which uses multiple attention heads to capture visual information and model the correlation between
visual information and language expression, ultimately outputting language discriminative features.
The normalization layer and normalization layer are not indicated in the figure.

As shown in the second multi-head attention of Figure 2, Ft is added to Fl , and the
sum as the query and key. Fl serves as value for multi-head attention to obtain Flt. The
information in Flt represents the visual semantic information collected from visual features
through multi-head attention and the language contextual features obtained from the
interaction between visual and language features. The attention formula is as follows:

Q = WT
Q(Fl + Ft)

K = WT
k (Fl + Ft)

attni,j = softmax
(

Q(i)T(K(j)+WT
K R(i−j))√

dk

) (2)

where WQ and WK are the projection weights for the query and key, respectively, dk is the
dimension of the projection channel, and R(·) is the sine positional encoding for the relative
position [37].

Finally, we combine the language verification score LS with Flt to obtain the language
discrimination feature F̂l :

F̂l = (Fl + Flt) · LS (3)

The LVD feature F̂l is applied in the final multi-stage cross-modal decoder.

3.3. Visual Verification Discriminative (VVD) Module

In the VVD module, we employ a visual-linguistic verification module and a language-
guided contextual module to encode the referenced features. The visual-linguistic verifica-
tion module refines the visual features to focus on those that are relevant to the language
sentence. The language-guided contextual module collects information-rich visual contex-
tual information to aid in object recognition.

The input image is first encoded by a convolution neural network and then encoded
into the visual feature map Fv by transformer encoder layers. This feature map contains
the features of objects in the image, but with no prior knowledge of the language descrip-
tion. Retrieval without any prior knowledge is likely to be distracted by the features of
other objects or regions, leading to inaccurate localization. Therefore, the visual language
verification module allows the injection of language information into the visual features,
enabling the visual features to possess rich prior language knowledge.

As shown in Figure 3, the visual-linguistic verification module (VLVM) is based on
multi-head attention. The visual feature map Fv ∈ RC×H×W is used as the query and the
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textual embedding Fl ∈ RC×L is used as the key and value. Though multi-head attention,
relevant semantic information is collected for some visual features. Then, the projected
feature maps F′v and F′s are obtained by projection and L2-norm layers into the same
semantic space. Their semantic correlation score is calculated as the verification score for
each spatial location (x, y)

S(x, y) = α · exp

(
−
(
1− F′v(x, y)T F′s(x, y)

)2

2σ2

)
(4)

where α and σ are learnable parameters. These verification scores measure the correlation
between each visual feature and textual embedding. When the embedding is multiplied
with the visual feature, the resulting feature naturally suppresses the textual parts that
are irrelevant.

Visual-linguistic verification module
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Figure 3. Visual verification discriminative (VVD) module. The VVD module is also based on multi-
head attention and consists of two sub-modules: the visual-linguistic verification module and the
language-guided context module. The visual-linguistic verification module models the correlation
between the language information and visual information pixel-by-pixel through multi-head attention
to obtain visual verification scores. The language-guided context module uses multi-head attention
to obtain contextual information of the language features and visual context features. Finally, the
visual verification scores, visual context features, and visual features are combined to calculate the
visual discriminative features.

While using the VLD module to model the correlation, the visual features should also
contain the visual context, such as interactive relationships and positional relationships,
which are crucial for modeling the target object and other parts. The language-guided
context module effectively combines the interaction, location, and other information about
objects in the language expression with visual features, forming the visual features with
contextual information.

As shown in Figure 3, the language-guided context module is also based on multi-head
attention. Fv is used as the query, and Fl is used as the key and value to obtain Fc, which
contains semantic information and is the corresponding language representation of the
visual features. Then, Fc is added with Fv as the query and key, and Fv is used as the value
to again obtain the visual context feature Fvc, which contains the visual representation of
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the contextual information in the language description. The attention formula for Fvc is
as follows: 

Q = WT
Q(Fv + Fc)

K = WT
k (Fv + Fc)

attni,j = softmax
(

Q(i)T(K(j)+WT
K R(i−j))√

dk

) (5)

where WQ and WK are the projecting weights for the query and key, respectively, dk is the
dimension of the projecting channel, and R(·) is the sine encoding of the relative position.

To establish more discriminative features for the target object, we use the same ap-
proach to fuse the contextual features Fvc and the visual verification scores S with the visual
features Fv:

F̂v = (Fv + Fvc) · S (6)

The generated visual discriminative feature F̂v is also applied in the final multi-stage
cross-modal decoder.

3.4. Multi-Stage-Cross-Modal Decoder

We use a multi-stage cross-modal decoder that takes language features as queries to
perform the final object localization task by leveraging the established visual feature map
and text embedding. The decoder can repeatedly process visual and language information,
thereby distinguishing the target object from other objects.

In Figure 1, we illustrate the architecture of the multi-stage cross-modal decoder
that we use language features as queries to perform final target localization task with
the established visual feature maps and text embedding. The decoder is composed of N
stages, each of which consists of the same network architecture (weights are not shared) for
iterative cross-modal reasoning. In the first stage, we use a learnable target query t1

q ∈ Rc×x

as the initial representation of the target object, where x is set to five. The target query
is fed into the decoder to extract visual features based on the language expression and
update its feature representation to ti

q(1 ≤ i ≤ N) at the beginning of each subsequent
stage. The feature updating process for each decoder is shown in Figure 1. Specifically,
in the i-th stage, the target query ti

q is used as a query and fed into the first multi-head
attention module, where language features are used as keys and values for multi-head
attention, aiming to imbue the target query with language information that can query the
relevant parts in both language and visual information encoded by the text embedding.
After obtaining the language information, it is fed into the second multi-head attention
module, where the previously computed language discrimination feature F̂l is used as the
keys and the language feature Fl is used as the values for multi-head attention to compute
the relevance with the previous language discrimination feature, resulting in tl ∈ Rc×5,
which contains the semantic information of the language expression corresponding to the
visual region of interest. Then, in the third multi-head attention module, we use tl as the
query, F̂v as the keys, and Fv as the values to compute the relevance with the previous
visual discrimination feature and collect the interested region from the visual feature map
Fv based on the semantic description collected in tl , generating the collected visual feature
tv ∈ Rc×5 for the referenced object. Finally, tv is used to update the target query ti

q: t′q = LN
(

ti
q + tv

)
ti+1
q = LN

(
t′q + FFN

(
t′q
)) (7)

where LN(·) stands for layer normalization, and FFN(·) is a feed-forward neural network
consisting of two linear projection layers with a ReLU activation layer. The updated ti+1

q
is then fed into the next level decoder for iterative cross-modal inference and feature
representation updates.

We used five target queries to represent the target object, but only the first target
query was used for prediction and back-propagation updates during the final prediction
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process. This way, other interfering information is concentrated in the last four target
queries, making it simple and efficient, and eliminating the need to use a classification head
to detect whether the feature representation in the target query is a representation of the
query object.

Based on this multi-level decoder, using target queries can focus on different descrip-
tions of the referring expressions, enabling us to collect more complete features of the target
objects. Furthermore, we can use the collected features to further refine and improve the
target queries ti

q, forming a more accurate representation of the target objects.
Finally, we predict the bounding box of the referenced object by attaching a three-

layer MLP with a ReLU activation function to the output of each stage’s target query, and
supervise all predicted bounding boxes equally to facilitate multi-level decoder training.

4. Experiments

In this section, we first talk about how to implement the proposed methods, and
display the results subsequently.

4.1. Implementation Detail

We set the size of the input image to 640 × 640 and the maximum length of the
language expression to 40. During inference, we dynamically adjust the size of the input
image according to the input image, so that the longer edge equals 640 and the shorter edge
is padded to 640. At the beginning and end of the language expression, we added [CLS]
and [SEP] tokens, respectively, and then processed them using BERT [36]. We perform data
augmentation during training, following previous work [12,13,15,16].

In the visual feature extraction branch, we use ResNet50 as our CNN backbone,
followed by six transformer encoder layers of the visual feature extraction branch, which
we initialize using the corresponding weights of the DETR model [1]. In the text embedding
extraction branch, we initialize the corresponding weights using BERT [36].

During the training process, we used the AdamW optimizer [38] to train our model
with a batch size of eight. We trained for a total of 90 epochs, and in the first 10 epochs,
we froze the weights of the feature extraction branch (i.e., the CNN+transformer encoder
layers and BERT). This allowed our model to be trained in a more stable manner.

We set the initial learning rate of the network to 10−4, the initial learning rate of the
feature extraction layers to 10−5, and decay the learning rate by a factor of 10 after 60 epochs
of training.

We use the same loss function as previously used in transformer-based methods.
Since our network directly regresses to the coordinates of bounding boxes, we avoid
positive/negative sample assignment and directly use the predicted bounding boxes to
calculate the loss:

L =
N

∑
i=1

λgiou Lgiou

(
b, b̂i

)
+ λL1LL1

(
b, b̂i

)
(8)

where b represents the ground-truth bounding box, and
{

b̂i
}N

i=1
represents the predicted

bounding boxes from stage 1 to stage N. λgiou and λL1 denote the GIoU loss [39] and L1
loss, respectively, and λgiou and λL1 are hyper-parameters that balance the two losses,
which are set to 2 and 5, respectively.

We follow the evaluation metrics used in previous works [15,16]. Given an image and
a language expression, a predicted bounding box is considered correct if its intersection
over union (IoU) with the ground-truth bounding box is greater than 0.5.

4.2. Results

In Table 1, we report the performance comparison of our method with other state-of-
the-art methods on three popular benchmark visual localization datasets: RefCOCO [6],
RefCOCO+ [6], and RefCOCOg [7]. Our method outperforms other methods on some
of the datasets. Table 2 also shows the performance of our method on the test set of
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ReferItGame [8]. Our method is significantly better than the one- and two-stage methods
and also leads in transformer-based methods. As the ReferIGame dataset is annotated
through the refer it game, which has strong interactivity in terms of data formatting and
annotation, the performance comparison on the ReferIGame dataset indicates that our
model is superior to other methods in terms of interaction.

Table 1. Comparison of our method with other state-of-the-art methods on RefCOCO [6], Ref-
COCO+ [6], and RefCOCOg [7]. For the data not given in the model paper, we use “-” instead.

Models Venue BackBone
RefCOCO RefCOCO+ RefCOCOg

Val TestA TestB Val TestA TestB Val-g Val-u Test-u

Two-stage Models

CMN [18] CVPR′17 VGG16 - 71.03 65.77 - 54.32 47.76 57.47 - -
VC [23] CVPR′18 VGG16 - 73.33 67.44 - 58.40 53.18 62.30 - -

ParalAttn [24] CVPR′18 VGG16 - 75.31 65.52 - 61.34 50.86 58.03 - -
MAttNet [22] CVPR′18 ResNet-101 76.65 81.14 69.99 65.33 71.62 56.02 - 66.58 67.27
LGRANs [20] CVPR′19 VGG16 - 76.60 66.40 - 64.00 53.40 61.78 - -

DGA [21] ICCV′19 VGG16 - 78.42 65.53 - 69.07 51.99 - - 63.28
RvG-Tree [17] TPAMI′19 ResNet-101 75.06 78.61 69.85 63.51 67.45 56.66 - 66.95 66.51
NMTree [19] ICCV′19 ResNet-101 76.41 81.21 70.09 66.46 72.02 57.52 64.62 65.87 66.44
Ref-NMS [40] AAAI′21 ResNet-101 80.70 84.00 76.04 68.25 73.68 59.42 - 70.55 70.62

One-stage Models

SSG [11] arXiv′18 DarkNet-53 - 76.51 67.50 - 62.14 49.27 47.47 58.80 -
FAOA [13] ICCV′19 DarkNet-53 72.54 74.35 68.50 56.81 60.23 49.60 56.12 61.33 60.36
RCCF [12] CVPR′20 DLA-34 - 81.06 71.85 - 70.35 56.32 - - 65.73

ReSC-Large [16] ECCV′20 DarkNet-53 77.63 80.45 72.30 63.59 68.36 56.81 63.12 67.30 67.20
LBYL-Net [41] CVPR′21 DarkNet-53 79.67 82.91 74.15 68.64 73.38 59.49 62.70 - -

Transformer-based Models

TransVG [15] ICCV′21 ResNet-50 80.32 82.67 78.12 63.50 68.15 55.63 66.56 67.66 67.44
TransVG [15] ICCV′21 ResNet-101 81.02 82.72 78.35 64.82 70.70 56.94 67.02 68.67 67.73

ours ResNet-50 84.00 87.64 79.31 72.67 78.17 63.51 71.71 74.63 73.36

Table 2. Comparison with the state-of-the-art methods on the test sets of ReferItGame [8].

Models BackBone ReferItGame
Test

Two-stage models

CMN [18] VGG16 28.33
VC [23] VGG16 31.13

MAttNet [22] ResNet-101 29.04
Similarity Net [10] ResNet-101 34.54

CITE [42] ResNet-101 35.07
DDPN [43] ResNet-101 63.00

One-stage models

SSG [11] DarkNet-53 54.24
ZSGNet [44] ResNet-50 58.63
FAOA [13] DarkNet-53 60.67
RCCF [12] DLA-34 63.79

ReSC-Large [16] DarkNet-53 64.60
LBYL-Net [41] DarkNet-53 67.47

Transformer-based models

TransVG [15] ResNet-50 69.76
TransVG [15] ResNet-101 70.73
VLTVG [14] ResNet-50 71.60
VLTVG [14] ResNet-101 71.84

ours ResNet-50 72.45

Table 3 shows the ablation experiments conducted to verify the effectiveness of our
proposed method. In the first row, we did not use our improved module and achieved
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an accuracy of 71.62%. In the second row, we modified the number of queries in the
multi-stage decoder to five, resulting in an accuracy of 71.81%. In the last row, we used the
complete model and achieved the best performance of 72.45% among all ablation variants.

Table 3. The ablation studies of the proposed components in our network. We evaluated the accuracy
of the visual grounding, and reported the model size and computational complexity.

Query5 LVD #Params Gflops Acc (%)

152.18M 41.79 71.62
X 152.19M 41.84 71.81
X X 152.31M 42.13 72.45

Figure 4 shows the loss curve of our training process. We unfroze the parameters of
the network layers for image and text feature extraction after the 10th epoch to involve
them in the training process. We also decreased the learning rate by a factor of ten at the
60th epoch. These modifications can be clearly observed in the figure, demonstrating their
effectiveness.

Figure 4. The loss curve of the model training.

Figure 5 showcases the output results of our model, revealing a high degree of accuracy
in the majority of the localization outcomes. The predicted results of our model closely
match the ground-truths, indicating its proficiency in localizing objects within images.
However, we also present instances of localization failures in Figure 5, accompanying the
language expressions associated with the respective images. In these particular examples,
the model tends to mislocate the objects, potentially due to a limited understanding of the
language expressions relevant to the given image. As a result, the model heavily relies on
visual cues alone for localization, leading to inaccuracies.

For example, in the second-to-last image in Figure 5, the requested localization phrase
is “girl with mic”, but the model’s localization result does not match the ground-truth.
Instead, it localizes to the girl on the left. This could be due to the model not encountering
the term “mic” during training, leading to a lack of understanding of the complete meaning
of the language expression and resulting in localization to the most prominent girl.
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Zebra in front Right taco thing Horse in the center

*Bottle with flowers on label

Couch with sunbeam across it Batter guy whos swinging Right toy Black car on right

Bike in back with red accent Bowl of sushi upper right Cat on right Chick on couch

Small tv right Left one Woman on top left tennis player Right cow on the ground

Man with bat number

*Girl with mic*Man uniformBrocoli surround by chicken

Figure 5. The comparison between our model’s localization results and the ground-truth bounding
boxes is shown. The green boxes represent the ground-truths, while the red boxes indicate the pre-
dicted bounding boxes by our model. Additionally, we present three examples of localization errors,
with the language expressions associated with the erroneous examples marked with an asterisk (*).

5. Feasible Work of VG to Enhance HCI

VG is a field closely related to HCI. Using VG to enhance HCI is a future research
area because VG can enable computers to better understand the relationship between
images and language, making it easier for them to understand human intentions during the
interaction process, resulting in simpler and more efficient HCI. Here we present potential
application scenarios that VG could be applied to in HCI.

5.1. Image Dataset Annotation

There is a growing trend towards the utilization of larger visual and multi-modal
models in recent years. However, training these models on large datasets necessitates a
significant amount of data to facilitate effective learning of the given task. Unfortunately,
the process of annotating image data is both laborious and costly. One potential solution
to address this challenge is to integrate VG as a fundamental component with other
algorithms, thereby creating an automatic image dataset annotation tool. As shown in
Figure 6a, traditional dataset annotation consists of two main parts. Firstly, a dataset
organizer/manager generator describes the objects to be annotated in the images in terms
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of language expressions. Then, workers annotate/label the objects in the images according
to the language expressions. This purely manual approach naturally brings with it several
major problems. Firstly, it requires hiring a large amount of personnel to annotate the data,
when the dataset becomes large. Secondly, there is no specific standard for workers to
manually annotate data, the position and size of objects are annotated at workers’ will.
This leads to inconsistency when different workers have different annotation styles. In
deep learning, the high-quality annotation of a dataset is crucial for accurate classification,
detection, and segmentation, while an inconsistent dataset degrades the performance of
deep learning systems. Lastly, employing humans to perform such repetitive and tedious
tasks is not in line with the principles of HCI.

Image to text

Object annotation

Image to text
or

Speech to text 

Object annotation

VG model

(a)  Traditional methods for annotating datasets (b)  Improved method using VG model

confirm

Figure 6. The previous dataset annotation process and the process of dataset annotation using VG
technology are shown in the flowchart. Figure (a) represents the previous dataset annotation process,
while Figure (b) represents the process of dataset annotation using VG technology.

To address the limitations of traditional data annotation methods mentioned above, we
have made improvements by incorporating VG technology as a replacement for extensive
manual operations. We present a process flow diagram illustrating the data annotation
procedure using VG technology, as shown in Figure 6b. Our approach also consists of two
main parts: the generation of language expressions as the first step, localization annotation
using VG technology as the second step. The first step involves manually describing
the objects that need to be annotated to generate language expressions. We only rely on
human input in this step because the selection and description of language expressions
are subjective tasks that are challenging for current technology to replace with automated
processes. When generating language expressions, there are two options for the input:
direct text input and voice input using devices with language recognition capabilities.
After generating the language expressions, we feed the images and language expressions
into our VG model to perform object localization annotation. In this step, we utilize VG
technology to replace manual annotation because it involves repetitive labeling tasks that
do not require strong subjectivity. Additionally, using machines for annotation leads to
faster processing, ensures a consistent labeling style, and improves the overall quality of
the dataset.

After the model completes the annotation process, we interact with the user to verify
the accuracy of the annotations. If the annotations fail, we either reposition and re-annotate
them or ask the organizer to provide a more precise language expression for the model to
perform the repositioning and annotation.
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5.2. Interactive Object Tracking

VG can be integrated with other technologies to enable real-time object detection
and tracking, which has numerous applications in HCI. For example, cameras can use
this technology to track people or robots. In the paradigm of tracking by learning, when
tracking pedestrians in a crowded scene, initial object detectors may present multiple
objects as tracking candidates at the start of tracking. A human operator may then select
an object of interest to track. However, it can be challenging for the human operator to
communicate to the computer which object to track, and it may even be impossible to
switch to a different object during the tracking process. Furthermore, there is currently no
provision for interactive operations during target selection.

We propose an interactive object-tracking system to overcome the limitations of tra-
ditional object-tracking approaches. As illustrated in Figure 7, when a human operator
encounters a scene with multiple pedestrians and decides on a target to track, an oral
instruction is released by the operator and transformed into text using a speech-to-text
module, such as a voice recognition device. The first frame image and the language expres-
sion are then input into a VG model for target localization. Once the VG model completes
the localization, the operator is asked to verify whether it is correct. If the positioning
is not accurate, the user needs to provide more precise language descriptions, such as
the interactive relationship or location of the object in addition to the characteristics of
the object itself, because the model has the ability to understand object interactions and
positions. The best wording should include the characteristics of the positioned object and
its location relationship, etc. For example, “the car on the left” is better than just “car”.
Once the target localization is completed, the VG-based results and the remaining video
frames are fed into a tracking model. The tracking model utilizes the VG localization results
to track the target in the subsequent video frames.

Speech to text VG model

Is it positioned correctly?

Yes

Help me track the man 
in the blue T-shirt and 
pink shorts.

Track model

Figure 7. Interactive object-tracking process diagram. The images in the diagram represent different
frames of a video to illustrate the tracking process.

The interactive object-tracking system we have designed is highly adaptable and can
be used in various working environments. For instance, if the tracking task involves recog-
nizing a single object, the system can easily be adapted by replacing the input expression
with a specific expression for that object. This flexibility allows the system to be customized
for different tracking tasks and makes it more versatile and widely applicable.
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6. Conclusions

We proposed a transformer-based VG framework that establishes discriminative fea-
tures for both language and vision, and performs iterative cross-modal reasoning for
accurate object localization. Our language discriminative feature module and vision dis-
criminative feature module enable the collection of semantically related information from
language and vision, respectively, which is used for localization in a multi-stage cross-
modal decoder. Extensive experiments on public datasets demonstrate the superiority of
our method. Finally, we propose some solutions for enhancing HCI in VG tasks, aiming to
promote the development and application of VG and HCI technology.

Although VG has made significant advancements, there are still several challenges
that need to be addressed. Some of the key challenges include dealing with ambiguity,
incorporating temporal information for dynamic scenes, and achieving robustness to
changes in lighting, viewpoints, or occlusions. Additionally, ethical considerations, such as
privacy, bias, and fairness, must be carefully addressed when deploying VG technologies
in HCI. To promote responsible and inclusive HCI, it is essential to ensure transparency,
accountability, and user consent. Handling these challenges will be critical in realizing the
full potential of VG and ensuring that it benefits society as a whole.
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