
 
 

 

 

 

This thesis has been submitted in fulfilment of the requirements for a 

postgraduate degree (e. g. PhD, MPhil, DClinPsychol) at the University of 

Edinburgh. Please note the following terms and conditions of use: 

• This work is protected by copyright and other intellectual property rights, 

which are retained by the thesis author, unless otherwise stated. 

• A copy can be downloaded for personal non-commercial research or 

study, without prior permission or charge. 

• This thesis cannot be reproduced or quoted extensively from without 

first obtaining permission in writing from the author. 

• The content must not be changed in any way or sold commercially in 

any format or medium without the formal permission of the author. 

• When referring to this work, full bibliographic details including the 

author, title, awarding institution and date of the thesis must be given.



Data-driven Modelling and

Control of Concentric Tube

Robots with Application in Distal

Lung Sampling

Balint Thamo

Supervisors: Dr. Mohsen Khadem, Dr. Zhibin (Alex) Li

T
H

E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

THE UNIVERSITY OF EDINBURGH

2023



Abstract

This research aims to explore the use of Concentric Tube Robots (CTRs) as a novel alter-

native to needle-based interventions in order to make these procedures more accurate and

repeatable. CTRs due to their small footprint, compliance, and dexterity have been proposed

for several minimally-invasive robotic surgeries. As a novel flexible robot, it has the potential to

reach distal parts of the human lung that are difficult or impossible to reach with conventional

needle-based interventions. There are, however, still significant challenges associated with

the motion and position control of CTRs. Commonly used model-based control approaches

are computationally expensive to solve and often employ simplified geometric/dynamic as-

sumptions, which could be inaccurate in the presence of unmodelled disturbances and ex-

ternal interaction forces. Consequently, this work explores different control strategies to over-

come these limitation. This is achieved by first building a simulation environment based on a

computationally improved kinematic model that enables real-time control. Then, data-driven

control approaches are investigated in order to provide accurate position control in the pres-

ence of uncertainties in the system. Finally, a three-phase affordance-aware motion planner

is proposed to demonstrate the feasibility of using CTRs for percutaneous lung biopsy.

According to this, the first part of this work concentrates on computationally efficient real-time

modelling and simulation of CTRs. In order to achieve this, two approaches are taken. The

first one introduces a method that can rapidly estimate the solution of the kinematic model,

while the second approach focuses on implementing the existing model in a computationally

efficient way in Robot Operating System (ROS) using C++.

Second, this work explores data-driven solutions to control the robot without relying on the

kinematic model. Consequently, two data-driven solutions are proposed, namely the Hybrid

Dual Jacobian approach and the Extended Dynamic Mode Decomposition (EDMD) algorithm.

The hybrid controller combines the advantages of model-based and data-driven control ap-

proaches, while the EDMD provides a completely model-free solution to control the robot. Both

controllers are capable of rapidly predicting the robot’s nonlinear dynamics from a limited data

set and offer consistent control under external loading and in the presence of obstacles.

The third part of the thesis explores the use of CTRs in the context of distal lung sampling. This

work demonstrates that CTRs are suitable for Needle-Based Optical Endomicroscopy where

a CTR steers a fluorescent imaging probe with cellular and bacterial imaging capability inside

soft tissue. Then, it is also demonstrated that a CTR can be used as a Steerable Needle to

reach a target deep inside the tissue. To achieve these tasks, a motion planner is essential due

to the fact that a CTR is only capable of reaching specific points in its workspace and there

are a number of configurations where the robot becomes unstable. Based on this, a three-
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phase affordance-aware motion planner algorithm is developed. The motion planner selects

the best entry point for a specific task. Based on the selected entry point it first generates

a stable trajectory from the robot’s initial configuration to the selected entry point. Then, a

feasible trajectory is generated from the entry point to the target. Finally, the proposed data-

driven control algorithm is applied to autonomously steer the robot on the generated trajectory

toward the target region for endomicroscopic imaging.
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Lay Summary

Lung cancer is one of the most common types of cancer and a leading cause of cancer-

related death. Early diagnosis is crucial in order to increase the chances of survival. One of

the most common diagnostic methods for detecting early-stage lung cancer is percutaneous

lung biopsy. In this method, a needle is guided through the chest wall into a suspicious area

to obtain a tissue sample. Unfortunately, this method is not capable of reaching distal areas of

the lung and cannot be repeated consistently. The purpose of this thesis is to explore potential

alternative methods that could be used to replace this procedure with Concentric Tube Robots.

Concentric Tube Robot is a unique type of robot with a miniature size and high dexterity. It

is capable of making snake-like movements, which makes it suitable for minimally invasive

surgical procedures. The use of Concentric Tube Robots for medical applications has been

proposed in a number of studies recently. In spite of the promising results, precise motion

control of Concentric Tube Robots is still challenging and it is one of the main limitations

of their application. This work explores different ways to control Concentric Tube Robots to

enable autonomous steering of the robot for endomicroscopic imaging.
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Chapter 1

Introduction

1.1 Motivation

One of the most common forms of cancer and the leading cause of cancer-related death is

lung cancer. It is estimated that the five-year survival rate is around 15%, primarily because it

is not detected until an advanced stage has developed. However, early detection of cancer can

result in a 70% chance of surviving for 5 years or more [2]. Therefore, the importance of early

detection cannot be overstated. The standard method for diagnosing lung cancer is through

biopsy, which can either be performed with a needle or with a bronchoscope. A needle-based

percutaneous lung biopsy is an invasive procedure performed after a local anaesthetic is

given; the doctor uses a needle guided through the chest wall into a suspicious area to obtain

a tissue sample. An alternative method is the bronchoscope, a long thin tube equipped with

a camera. It is moved down through the main airways of the lungs. Unfortunately, manual

bronchoscopy is challenging due to the difficulty of controlling the device inside the inner

airways. Thus, the procedure is not repeatable, and its application is limited to the central

regions of the lungs, where it is most effective. While both methods rely heavily on the

physician’s skills, neither is repeatable or capable of reaching distal parts of the lung.

Technological advancements have made it possible to improve the accuracy and repeata-

bility of the above-mentioned procedures by using novel robots. The goal of this research

is to investigate the use of Concentric Tube Robots (CTRs) as an alternative method for

percutaneous lung biopsy. CTRs or active cannulas are the smallest types of continuum

robots (CR). The miniature size and high dexterity of these robots make them attractive

for medical applications, such as minimally invasive surgery (MIS). In addition, their snake-

like motion makes them ideal candidates for manipulation and navigation within constrained

environments, such as those found within the human body.

CRs have been proposed for a variety of minimally invasive procedures such as neuro-

surgery [3], [4], eye interventions [5], cardiac surgery [6], [7] and lung interventions [8]. A

detailed overview of CRs in minimally invasive procedures can be found in [9] and [10].

1
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In spite of the promising results described above, CRs are fundamentally more complex

than conventional robots. Their nonlinear dynamics make their modelling and control more

challenging, as well as requiring more computational resources. In order to ensure the safe

deployment of CTRs during minimally invasive surgeries, precise and reliable motion control

is essential.

1.2 Problem Formulation

To achieve CTR-assisted endomicroscopy in percutaneous needle-based interventions the

following steps were taken. First, the computational efficiency of calculating the CTR model

was improved. Second, data-driven control approaches were examined in order to achieve

precise position control. Lastly, a motion planner was proposed to generate feasible trajecto-

ries for a given task and to facilitate the safe deployment of CTRs during minimally invasive

surgeries.

1.2.1 Computational Improvements to the Kinematic Model

To design control and motion planning strategies for CTRs, it is crucial to calculate their

kinematic model. The foundation of the kinematic model was laid down by Dupont et al. [11]

and Rucker et al. [12] using the linear constitutive law and the Cosserat rod theory. Based

on the proposed kinematic model, the robot’s shape can be obtained by solving a set of

differential equations with boundary conditions. This results in a Boundary Value Problem

(BVP) that can be solved by a shooting method, which is computationally expensive. Two

different approaches are taken in order to overcome the high computational cost. First, an

observer design is proposed that can rapidly estimate the rod’s curvature without explicitly

solving the BVP. Second, the kinematic model is implemented in C++ with optimizations and

approximations to make it as efficient as possible without compromising accuracy.

1.2.2 Data-driven Control of CTRs

It is often difficult or impossible to achieve precise position control of CTRs with model-based

controllers. In the kinematic model of CTRs bending and torsion are dominant while friction,

sheer strain and axial elongation are neglected. As a result of the neglected properties and

inaccurately identified model parameters, the model’s accuracy is limited. Furthermore, the

kinematic model does not account for unknown obstacles and external forces. Finally, in

order to control the CTR, the robot’s inverse kinematics must be calculated. Consequently,

a conventional model-based controller for a CTR with 3 tubes will require the model to be

calculated 7 times, presenting a challenge for real-time applications. To overcome these

difficulties, two data-driven control approaches are proposed.
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In the first method, a hybrid control approach is used, in which the model-based Jacobian

is used as an initial input for the data-driven controller, and then it is updated according to

Broyden’s update. This solution combines the advantages of model-based and data-driven

approaches. Namely, it has a short learning curve and can adapt to unknown disturbances

and uncertainties in the system.

The second method is a purely data-driven solution applying Extended Dynamic Mode De-

composition (EDMD) to approximate the Koopman operator. This holistic approach models

the dynamics of a closed-loop controlled CTR. As a result of this method, it is possible to

precisely control CTRs in the presence of obstacles without any prior knowledge of the model.

Furthermore, its learning curve is very short and can be accomplished before deployment.

1.2.3 Motion Plan for Minimally Invasive Procedures

To demonstrate needle-based interventions with CTRs, it is essential to develop a motion

planner that generates a trajectory for specific tasks. CTRs have a limited workspace and

there are many configurations where the forward kinematics of the robot loses its uniqueness,

which leads to instability. While a precise position controller can provide accurate control

locally, a motion planner is necessary to achieve precise control across the robot’s workspace.

The motion planning goal is to generate a path between the initial configuration and the target

position while avoiding unstable configurations and obstacles such as anatomical constraints.

Moreover, the tip of the robot is often required to maintain its orientation and to move in the

direction it is pointing (local z-direction). Therefore, the robot’s workspace is further limited by

these requirements. As a result, a three-phase affordance-aware motion planner is proposed,

in which the first phase provides all possible entry points for a given task, and the second

phase selects the best entry point from the generated entry points and generates a stable path

for the task. Finally, the third phase generates a trajectory from the robot’s initial configuration

to the desired entry point.

1.3 Thesis Statement

In light of the challenges mentioned in the last section, the main objective of this thesis is

to explore the use of CTRs in the context of distal lung sampling. Accordingly, this research

focuses on answering the following questions:

• How to use novel continuum robots and control algorithms to improve the accuracy of

needle-based interventions such as lung biopsy?

• Can the computational cost of the kinematic model be reduced without compromising

accuracy?

• Is it possible to achieve precise data-driven control of the robot with a short learning

curve in the presence of unknown disturbances?
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• Could a purely data-driven approach achieve precise motion control without requiring a

long learning phase?

1.3.1 Outline of Contributions

The remainder of the thesis is structured as follows. Chapter 2 provides a literature review.

Then, in accordance with the major questions of the thesis, the next four chapters address

one of the thesis’ central questions. Finally, the results are discussed in Chapter 7.

Chapter 2 presents the relevant background information, including an introduction to con-

tinuum robots and CTRs. Following this, position control and motion control strategies are

explored for CTRs.

In Chapter 3, the second question of the thesis is examined. Namely, how to improve the

computational efficiency of the kinematic model. The kinematic model of CTRs is introduced

which is used throughout the thesis. Then two different approaches are taken to improve

its computational efficiency. First, it is addressed by a novel nonlinear observer that can

rapidly estimate the solution of the Cosserat rod equations. Then, a computationally efficient

implementation of the kinematic model is presented, along with a description of the simulation

environment and the experimental setup.

In Chapter 4, the major goal is to find a solution to the third question of the thesis, namely how

to achieve precise position control in the presence of uncertainties. Accordingly, we discuss

how data-driven approaches may overcome these difficulties and the hybrid model-based

and data-driven controller is introduced. The proposed controller is then implemented in the

simulation environment and the results are experimentally verified.

In line with the main (first) question of the thesis, Chapter 5 examines the use of CTRs for

distal lung sampling. A three-phase sampling-based motion planner is presented that can

find an optimal entry point (configuration) and provides a stable trajectory for a given task.

This is followed by a description of the experimental setup and the verification of the results

through experiments. In this chapter, we demonstrate the autonomous steering of CTRs for

endomicroscopic imaging.

The final question of the thesis is addressed in Chapter 6 by exploring a purely data-driven

strategy with a short learning curve. This controller employs Extended Dynamic Mode Decom-

position (EDMD) to learn the nonlinear dynamics of the robot and the interaction forces without

using the mathematical model of the robot. In order to verify the controller’s performance,

simulations and experiments are conducted.

The final chapter of the thesis summarizes the research and explores possible future direc-

tions. Data-driven solutions for CTRs are discussed and compared, along with their advan-

tages and disadvantages.
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Chapter 2

Background

This chapter provides the necessary background information regarding CTRs. First, an intro-

duction to CRs and CTRs is presented. Then, existing position control strategies and motion

planner solutions are examined in the context of CTRs.

The chapter is organized as follows: A brief introduction to CRs is presented in Section 2.1.

Section 2.2 provides an overview of CTRs. Then, Section 2.3 discusses control strategies ap-

plicable to CTRs including model-based and learning-based solutions. Lastly, existing motion

planners are discussed in the context of CTRs in Section 2.4.

2.1 Continuum Robotics

The structure of CRs is fundamentally different from traditional robots. They are a type of

high-degree-of-freedom (HDOF) robot inspired by nature. HDOF robots include continuum

and hyper-redundant robots. CRs are continuously bending infinite degrees of freedom robots

characterized by flexible backbones, while hyper-redundant robots are built from many short

rigid links. The research of Hirose laid the foundation of HDOF robots in the 1990s [13]. Based

on his work, Chirikjian and Burdick developed robot design and motion control [14], [15] for

HDOF robots. Later Gravagne and Walker [16], [17], Hannah and Walker [18] made consid-

erable contributions by creating novel models of continuum and hyper-redundant robots.

CRs are generally classified by the structures of their backbones and their actuation mecha-

nisms. In terms of backbone structure, there are two kinds of continuum robots: single- and

multi-backboned. A single-backboned CR is consisted of one elastic element that supports

the robot’s movement and shape. Meanwhile, multi-backboned CRs have multiple parallel

elastic elements at fixed distances from one another. Simaan et al. provide a comprehensive

description of these robots in their work [19]. In terms of actuation type, a CR can either be

intrinsically or extrinsically actuated. In intrinsic actuation, the actuation is performed within

the manipulator itself. Extrinsic actuation occurs outside the manipulator, where mechanical

forces are transmitted by the structure. This project focuses on CTRs, which are a special type

of CRs. CTRs are single-backboned and manipulated extrinsically. A description of CTRs is

presented in the next section.
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2.2 Concentric Tube Robots

CTRs or active cannulas are the smallest type of CRs, consisting of at least two concentrically

arranged elastic tubes, usually made from Nitinol. Each tube has a straight and pre-curved

part. The tubes are nested in each other, and the outer tubes always have larger stiffness than

the inner ones. Figure 2.1 shows a CTR with two tubes, which was used in the experiments

throughout the thesis. Each tube can make translational and rotational movements, which

enables complex motion in constrained environments. A detailed overview of the kinematic

model of CTR based on the Cosserat rod theory is given in Section 3.1

Figure 2.1: An image of a CTR with two tubes used in the experiments. The first tube of the
CTR has a 1.1 mm diameter while the second tube has 1.8 mm diameter on the image.

The curvature of the tubes must be carefully considered during the design process. While the

robot’s motion becomes more complex as the curvature increases, it also becomes more

unstable, which leads to mechanical instability, the so-called "snapping" phenomenon. In

these cases, elastic potential energy is rapidly released due to the twisting and bending of

the tubes. Section 5.2.3 provides further details on CTR instabilities.

The miniature size and high dexterity of CTRs make them attractive for medical applications

such as minimally invasive surgeries. There are many kinds of ongoing research for manip-

ulating CTRs within the human body. Cardiac surgery [6], [7], neurosurgery [3], [4], vascular

surgery [20], [21], abdominal interventions [22], urology [23], [24] and otolaryngology [25], [26]

are just some examples. More applications are available in the survey of Burgner-Kahrs,

Rucker [10] and Mitros et al. [9]. While there has been significant progress related to CTRs

in recent years, there are still many challenges to be solved to exploit their full potential.

Motion and position control are still an open area of research as well as solving the stability

problem for CTRs with more than two tubes, especially in the presence of external forces and

uncertainties in the model and the environment. It is particularly true when the robot’s tip is in

contact with tissue.
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Throughout the thesis different control solutions are explored where the goal is to alter the

robot’s joint inputs in order to follow desired trajectories or target positions with the tip of the

CTR. The next section gives an overview of different position control approaches for CTRs.

2.3 Position Control of CTRs

The robot’s shape and tip pose can be altered by moving the tubes translationally or rota-

tionally. The kinematic model described in Section 3.1 provides the relationship between the

joint inputs and the shape of the CTR. Although CTRs are capable of performing complex

movements in restricted environments, they are difficult to control and precise control of

the robot’s motion is essential for the safe deployment of CTRs. The following sections will

examine different approaches to control CTRs, including model-based and learning-based

approaches.

2.3.1 Model-based Control

CTRs are most commonly controlled by the application of the kinematic model described in

Section 3.1. This model provides an approximation of the shape of the robot as a function

of joint inputs, i.e., rotation and translation of the tubes. The model is composed of a set of

nonlinear differential equations accompanied with boundary conditions that must be solved to

find the shape of the robot.

The most common model-based approach for controlling the motion of the CTRs is based

on estimating the Jacobian of the robot. The Jacobian can be estimated numerically [27] or

analytically [28] using the aforementioned kinematic model. Several researchers have used

the Jacobian for open-loop [11], [29], [30] and closed-loop control [27], [31], [32] to control

the CTR’s motion. These methods assume that the robot is moving in free space and do not

consider the effect of external forces acting on the robot as it happens in a realistic constrained

environment. Therefore, these methods can potentially cause damage as the robot traverses

the anatomy, or be unable to exercise the forces required for tissue manipulation. Researchers

have developed dynamic models of CTRs [33] that can simulate the CTR’s nonlinear dynamics

and accurately estimate robot motion under external forces.

In addition to the aforementioned limitations, models include several parameters representing

the mechanical characteristics of the robot that are often not easy to identify independently.

Moreover, the models require accurate knowledge of external forces acting on the robot.

Unfortunately, these forces are not always known, especially when the robot operates in an

unknown environment or is in contact with a deformable object. Therefore, the majority of

model-based approaches for controlling the motion of the CTRs assume that the robot is

moving in free space [27], [28], [11].
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In [34], a radically different approach was used to estimate contacts using real-time medical

images and machine learning where the controller employed this feedback to autonomously

navigate the inner walls of the heart during cardiac surgery. In other studies, researchers

employed CTRs for teleoperated surgical interventions [35], [36]. During the teleoperation,

the CTR is remotely-controlled by a user under visual feedback. The user can compensate

for controller errors caused by contacts or external forces. In another work [37], a deep neural

network was used to estimate robot contact forces at its tip as a function of the robot’s shape.

This information can be used to update the robot’s model for the accurate control of the robot.

However, application of these methods are limited where there is a lack of visual feedback or

the robot is obscured by anatomical obstacles.

Another approach for safe deployment of CTRs is based on model-based motion planning

with obstacle avoidance [38], [39], [40]. The motion planners employ pre-operative medical

images to develop a cloud point representing obstacles [38], [39] or create a 3D map of the

robot’s task space [40]. Next, this data is used to generate collision-free paths for the CTR.

Finally, model-based control approaches are employed to steer the robot on the pre-planned

path.

The next section provides an overview of learning-based controllers that learn the complex

dynamics of the robot and its interaction with the environment to overcome the aforementioned

limitations of model-based controllers.

2.3.2 Learning-based Control

The difficulties with the model-based controllers can be overcome by learning-based con-

trollers that learn the complex dynamics of the robot. Commonly, these methods employ

machine learning to learn inverse/forward kinematics or dynamic models [41], [42] or learn

a direct control policy for moving the robot using Reinforcement Learning (RL) techniques

with/without prior knowledge about geometric models [43], [44], [45]. The major disadvantages

of these methods are their requirement for numerous training data. For example, a deep-

neural-network based approach was proposed in [46] to learn the inverse kinematics of CTRs

and a dataset of 100000 samples had to be used to train the network. Gathering large

datasets with a real robot is not always feasible. Additionally, relying only on a simulation

dataset for training leads to unsatisfactory results when the model is deployed on the real

robot [47]. Moreover, these models that are trained offline on experimental datasets [46] or

simulated [45] datasets cannot capture the robot’s behaviour in contact with the environment

or external forces, as it would require a very large training dataset considering numerous robot

configurations with various forces.
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Some researchers [48] proposed online learning paradigms for the control of flexible robots.

These methods require considerable time for the algorithm to converge and learn before

reaching the desired accuracy. Additionally, the performance of the algorithm is very suscep-

tible to the quality of feedback signals, which are commonly obtained using electromagnetic

trackers or stereo cameras and have a low signal-to-noise ratio. Therefore, these methods

often fail in practice due to the poor quality of the feedback signal or the slow learning phase.

As a result, none of these methods have been tested on real CTRs. In spite of this, learning-

based methods are a fast-growing field, and there are numerous researches on data-efficient

algorithms for learning forward/inverse kinematics of robots or control strategies based on

reinforcement learning. However, the review of all these methodologies is out of the scope of

this work.

2.4 Motion Control of CTRs

The position control strategies described in the previous section provide a method for control-

ling the robot locally. In order to control the robot across the workspace and to accomplish

specific tasks, the CTR requires a motion planner capable of generating a feasible trajectory

between the initial configuration and the target configuration. Accordingly motion planners are

designed to prevent instabilities and to reach the desired target at a specific pose.

The most common sampling-based algorithms are based on probabilistic roadmaps (PRM) [49]

and rapidly exploring random trees (RRT) [50]. There is a wide range of modified versions of

these methods that are commonly used in practice, such as RRT* [51] and RRG [52], which

converge towards an optimal solution. RRT* generates a tree of valid configurations to find

the shortest path from the start position to the target, while RRG creates any graph, not

necessarily a tree.

Bergeles et al. generated a stable path with RRT* by discarding the unstable configurations

based on their assumptions [53]. Leibrandt et al. demonstrated a framework for stable path

planning using PRM [29], while Torres et al. used rapidly exploring random graph (RRG)

combining offline and online planners [54]. An RRT-Shape algorithm was also proposed by

Wu et al., which uses the CTR’s shape as a constraint for the RRT [55]. In interactions where

the anatomy of the patient is known, Kuntz et al. proposed a motion planner that utilizes

sampling-based motion planning along with local optimization [56]. Sun et al. published a

paper describing multiple independent RRTs (MIRRTs), which generated multiple RRTs and

selected the one with the lowest estimated probability of collision [57]. These approaches

work well for offline path planning in free space.



Chapter 3

Real-Time Implementation of the CTR

Model

This chapter focuses on examining different strategies to increase the computational efficiency

of calculating the kinematic model of CTRs. First, the kinematic model of CTRs is introduced.

Then, two different approaches are investigated in order to provide real-time implementation

of the kinematic model. First, a nonlinear observer is proposed that can rapidly estimate the

solution of the Cosserat rod equation in the kinematic model. Second, an efficient implemen-

tation of the kinematic model is described in detail. Further, the simulation environment is

described, which is based on the computationally efficient implementation of the model using

Robot Operating System (ROS) with C++ code. This provides a platform for testing different

control strategies on the robot. On top of this, communication with the actuators and sensors

is also implemented in this platform. Following this, a description of the experimental setup is

provided with model parameter identification. Finally, the proposed solutions for computational

improvements are compared.

The chapter is organized as follows: Section 3.1 gives a detailed review of the kinematic

model of CTRs, which is heavily used for the implementation of the simulation environment.

The kinematic model is based on the Cosserat rod theory, which is first applied to a single

rod in Section 3.1.1 and then extended to a CTR with multiple tubes in Section 3.1.2. Then,

Section 3.3 introduces the proposed nonlinear observer. In Section 3.4 a description of the

simulation environment is given along with computational improvements of the kinematic

model. This is followed by a description of the experimental setup in Section 3.5 and model

parameter identification in Section 3.5.1. Finally, the performance of the proposed methods is

investigated and compared in Section 3.6.

11
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3.1 Review of the CTR model

The most common approach for modelling continuum and soft robots is applying the Cosserat

rod theory. Cosserat-based models have been developed and experimentally validated for

tendon-driven robots [58], CTRs [59], [60], multi-backbone robots [61], and fluidic actuated

robots [62]. According to this, first, the Cosserat model is introduced for a single rod. Then it

is extended to a CTR with multiple tubes based on the work of Dupont et al. [11] and Rucker

et al. [12].

3.1.1 Cosserat Model for a Single Rod

Here, the Cosserat rod equations from [60] are reviewed for a single rod. The following

notation is used throughout the thesis: x, x, and x denote a scalar, a vector, and a matrix,

respectively. In the Cosserat theory, a rod is modelled as a deformable curve with a frame

attached to every point along its arc length, with the z-axis of the frame remaining tangent to

the curve. A schematic of a rod under external forces is shown in Fig. 3.1. The configuration

of the rod can be defined using a unique set of 3D centroids, r(s) : [0, ℓ]× [0,∞] → R3 ×
[0,∞], and a family of orthogonal transformations, R(s) : [0, ℓ]× [0,∞] → SO(3)× [0,∞]. For

describing the evolution of the curvature along the rod’s arc length, the Frenet-Serret frame

is used, which provides a moving reference frame to describe the rod’s curvature [30]. The

curvature can be defined as the magnitude of the rate of change of the unit tangent vector

with respect to the arc length or more intuitively the curvature of the rod describes how

much the rod bents at a given arc length. Now, assuming the rod is made of linear elastic

isotropic materials without pre-twist, we can derive the constitutive equations for calculating

the instantaneous curvature of the rod u(s) and the overall shape of the rod:

r
′
(s) = R(s)e3, (3.1a)

R
′
(s) = R(s)[u(s)]× , (3.1b)

u
′
(s) =−K−1

[
[u(s)]×K

(
u(s)−u∗)+[e3]×RT (s)F

]
(3.1c)

where e3 = [0,0,1]T is a unit vector aligned with the z-axis of the global coordinate frame,

u∗ denotes the pre-curvature of the rod in its initial configuration, K = diag(EI,EI,GJ) is

the stiffness matrix for bending and twisting, E is the rod’s Young’s modulus, I is the second

moment of inertia, G is the shear modulus, J is the polar moment of inertia, F denotes the

external loads and [.]× operator is the isomorphism between a vector in R3 and its skew-
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symmetric cross product matrix:

[u]× =

 0 −uz uy

uz 0 −ux

−uy ux 0

 (3.2)

The boundary conditions for (3.1) are specified in terms of rod’s initial curvature u∗, rotation

α , and translation β of the rod’s base.

r(0) = [0 0 0]T , (3.3a)

R(0) = Rz(α) (3.3b)

u(ℓ+β ) = u∗, (3.3c)

where Rz denotes a rotation around the z axis and ℓ is the rod’s initial length. The boundary

conditions given in (3.3) define r and R at the base of the rod, and curvatures u at the end

of the rod, thus forming a boundary value problem. Of note, the rod’s curvature at the tip of

the rod (u(ℓ+β )) is known from the mechanical parameters of the rod and it is assumed to

remain constant.

Figure 3.1: A schematic of a Cosserat rod with and without external force. The actuation
variables α and β denote the rotation, and translation of the rod’s base, respectively.

The model given in (3.1) is quasi-static and the equations are solved in the spatial domain

(with respect to s). Then, shooting methods can be used to solve the boundary value problem.

A shooting method consists of using a nonlinear root-finding algorithm to iteratively converge

on values for u(0), in order to satisfy (3.3c).
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3.1.2 Cosserat Model for a CTR

This section explains how the Cosserat model discussed in the previous section can be

extended to a CTR with multiple tubes. CTRs are comprised of two or more concentrically

arranged pre-curved elastic tubes. Fig. 3.2 shows the schematic of a CTR with three tubes.

Figure 3.2: Illustration of a concentric tube robot. The robot consists of three concentrically
arranged pre-curved elastic tubes. By rotating (αi) and translating (βi) the tubes and the shape
of the robot can be controlled. θi is shown at the robot’s cross-section and it denotes the
relative twist angle between the tubes around axis z.

In addition to the previous section, the following notations are used. Subscript i = 1,2..N

denotes the ith tube of the robot; N is the number of tubes and the outermost one while 1

is the innermost tube. The outer tubes always have larger stiffness than the inner ones. li
denotes the length of the ith tube, while arc length s is 0 at the proximal end of the tube

and l at the distal end. r(s) : [0, ℓ] → R3 represent the shape of the robot along arc length

s, while R(s) : [0, ℓ] → SO(3) describes the orientation change and twisting along s. q =

(α1..αNβ1..βN) contains the actuation inputs, αi is the proximal rotation of the base of the ith

tube and βi is the translation of the ith tube. ui(s)∗ and ui(s) denote the curvature of the ith

tube in initial and deformed state respectively. The shape of the robot can be derived from the

position vector and the rotation matrix:

r′(s) = R(s)e3, (3.4a)

R
′
(s) = R(s)[u(s)]× , (3.4b)

where r′(s) is the tangent vector to the curve at arc length s. Each tube conforms to the

equilibrium shape of the combined tubes but they are free to twist independently, therefore,

the following statements are true:

r1(s) = r2(s) = ..= rN(s) (3.5)

r′1(s) = r′2(s) = ..= r′N(s) (3.6)
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Following this, segments of the tubes are created. The segments are defined at the end of

each tube and at the end of the straight part of each tube. After segmentation, it is possible to

estimate the deformed shape of each segment. θi(s) is introduced to parametrize the twist of

the tube around axis z, with θ1(s) is defined as 0. Therefore, R1(s) is identity and

Ri(s) = R1(s)Rθi(s) (3.7)

where Rθi(s) is the rotation around axis z by θi(s), which is defined by:

Rθi(s) = eê3θi(s) (3.8)

Applying it to (3.4) the following equation is derived:

ui(s) = (RT
i (s)R

′
i(s))

V = RT
θi
(s)u1(s)+θ

′
i (s)e3 (3.9)

where θ ′
i (s) = uiz(s)−u1z(s) and the operator V is used to transform an element from SO(3)

into R3. Based on [12], the curvature of the ith tube can be obtained using the balance of forces

and moments in the following way by assuming that each tube conforms to the equilibrium

shape of the combined tubes. Please note that the (s) notation is dropped for simplicity.

u′
i

∣∣
x,y =−

( N

∑
i=1

Ki

)−1 N

∑
i=1

Rθi

[
Ki
(
u

′
i −u∗′

i )+ [ui]×Ki
(
ui −u∗

i )

]
−

( N

∑
i=1

Ki

)−1[
[e3]×RT (F +

s∫
0

f(ε)dε)

]∣∣∣∣
x,y
,

(3.10a)

u′
iz =

EiIi

GiJi
(uixu∗iy −uiyu∗ix), (3.10b)

where f is the external distributed force applied to the robot; F is the external point load

on the robot’s tip. Of note, it is difficult to estimate the external forces and this work mainly

focuses on data-driven control solutions, therefore, the controllers use a simplified version of

the model where forces are assumed to be zero. The effects of known forces are only included

as a baseline in the simulation environment where the controller’s performance is evaluated.

Finally, Ki is the stiffness matrix for bending and twisting and it is defined as:

Ki =

EiIi 0 0

0 EiIi 0

0 0 GiJi

 (3.11)
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Where Ei is Young’s modulus, Gi is the shear modulus of the ith tube. Ii is the second moment

of inertia and Ji is the polar moment of inertia of the ith tube’s cross-section. Solving (3.4), and

(3.10) with the following boundary conditions gives the robot’s backbone shape and curvature:

r(s)|s=0 = r(0) = [0 0 0]T , (3.12a)

R(s)|s=0 = Rz(α1−β1u1z), (3.12b)

θi(s)|s=0 = αi −βiuiz, (3.12c)

u1(s)|s=li+βi = u∗
1. (3.12d)

3.2 Computational Improvements of the Kinematic Model

Throughout the thesis, the kinematic model described in the previous section is employed.

This model forms the basis of the simulation environment presented in Section 3.4. Further-

more, it is utilized by the hybrid controller in Chapter 4 and the motion planner in Chapter 5.

Solving the Cosserat rod equations (3.1) is computationally expensive, particularly due to

mixed boundary values and kinematic constraints. Due to the high computational cost, low-

ering the cost of calculating the kinematic model makes real-time applications more feasible.

Therefore, computational improvements are required to be made to the model to improve its

performance in real-time controllers. According to this, two different approaches are taken to

improve the computational efficiency of calculating the kinematic model. The first approach

proposes a novel nonlinear observer that can rapidly estimate the solution of the Cosserat

rod equations. The second approach implements the kinematic model in an efficient way with

optimizations and approximations. The next section concentrates on the implementation of

the nonlinear observer. The proposed observer has also been published and the publication

with its accompanying media can be found in [63]. Later, the proposed observer was extended

to a CTR with 2 tubes by our research group in [64].

3.3 Rapid Solution of Cosserat Rod Equations

The Cosserat model estimates the continuum robots’ backbone shape as a function of the

robot’s mechanical characteristics and known external forces. It consists of several differential

equations with boundary conditions split between the base and the tip of the rod. Thus,

solving the model involves numerically solving a set of boundary value problems (BVPs),

which can be computationally expensive. Several studies [65], [66] including our previous
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works [67], [68] have demonstrated implementation of fast enough solutions of the Cosserat

model for control of continuum robots. However, the computational cost of the model directly

affects the performance and stability of these controllers. As a result, less accurate models

with low computational cost are still more attractive [69], [70].

Additionally, there are several promising new designs of continuum robots such as parallel

concentric tube robots [61] and eccentric pre-curved tube robots [71] that consists of many

kinematically coupled Cosserat rods. The computational cost of the Cosserat rod model is a

significant obstacle in the deployment of such designs and more efficient numerical methods

are needed.

Motivated by the above discussion, we study the design of a novel observer that can rapidly

estimate the solution of Cosserat rod equations without the need to solve the BVP. We propose

a nonlinear observer in the sense that the proposed observer employs partial measurement

of a Cosserat rod’s states (i.e., curvatures at the end of the rod) to estimate the solution of the

Cosserat equations. Furthermore, the convergence and stability of the observer are studied

and it is shown that the observer predictions exponentially converge to the solution of the BVP.

Simulations are performed to compare the performance of the observer with commonly used

BVP solvers. Our algorithm is available online1.

3.3.1 Refined Cosserat Rod Equations

Here the Cosserat model from Section 3.1.1 is refined to be time-dependent, calculating the

instantaneous curvature of the rod u(s, t) and the overall shape of the rod can be derived with

the constitutive equations in the following way:

r
′
(s, t) = R(s, t)e3, (3.13a)

R
′
(s, t) = R(s, t)[u(s, t)]× , (3.13b)

u
′
(s, t) =−K−1

[
[u(s, t)]×K

(
u(s, t)−u∗)+[e3]×RT (s, t)F (t)

]
(3.13c)

For more details see Section 3.1.1. The boundary conditions for (3.13) are specified in the

following way:

r(0, t) = [0 0 0]T , (3.14a)

R(0, t) = Rz(α(t)), (3.14b)

u(ℓ+β (t), t) = u∗, (3.14c)

1. https://github.com/SIRGLab/Rapid-Solution-of-Cosserat-Equations.git
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The boundary conditions given in (3.14) define r and R at the base of the rod, and curvatures

u at the end of the rod, thus forming a boundary value problem.

The model given in (3.13) is quasi-static. To solve the equations, it is assumed that at a

given time, time-dependent variables are constant and the equations are solved in the spatial

domain (with respect to s). Shooting methods can be used to solve the boundary value

problem. A shooting method consists of using a nonlinear root-finding algorithm to iteratively

converge on values for u(0, t), in order to satisfy (3.14c). Next, the time-dependent variables

are updated (i.e. α(t), β (t)), and the equations are solved again in the spatial domain. Our

main goal in this work is to design an observer that will employ measurement of u(ℓ+β (t), t)

through time to estimate the correct value of u(0, t) and ensure u(ℓ+β (t), t)→ u∗ ∀t > 0,

without the need to solve the BVP iteratively.

3.3.2 Methodology

In the following sections, we design an observer that can rapidly estimate the rod’s curvature

u(s, t) in (3.13) without explicitly solving the boundary value problem. Our main assumption

is that the solution of (3.13) is unique. We note that a Cosserat rod can buckle under external

forces and exhibit elastic instabilities. In this case, the solution of the Cosserat rod equations

can oscillate between multiple equilibrium points. In practice, stability measures introduced

in [72], [73] can be used to avoid the instabilities and ensure the solution of Cosserat equations

remains unique.

3.3.3 Generalized Observable Cosserat Model

Here, we transform the Cosserat rod equations into an observable form that simplifies the

design of the observer. To realize the effect of the missing initial value (i.e., u(0, t)) on the

solution of the Cosserat equations, we define two auxiliary variables, namely,

Γ(s, t) :=
∂u(s, t)
∂u(0, t)

, (3.15a)

χ(s, t) :=
∂
(
RT (s, t)F (t)

)
∂u(0, t)

. (3.15b)

Using (3.15a) and the chain rule, the evolution of the Cosserat rod’s curvature in time can be

estimated

u̇(s, t) = Γ(s, t)u̇(0, t). (3.16)
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We now use (3.13) to derive the equations for calculating Γ(s, t) and χ(s, t). Γ(s, t) can be

computed by taking the partial derivative of 3.13c with respect to u(0, t).

Γ
′
(s, t) =K−1

[
[K(u(s, t)−u∗)]×Γ(s, t)− [u(s, t)]×KΓ(s, t)− [e3]×χ(s, t)

]
. (3.17)

In deriving (3.17) we used the following identity

∂ ([a]×b)

∂c
=−[b]×

∂a

∂c
+[a]×

∂b

∂c
. (3.18)

We can calculate χ(s, t) in a similar way. First, we take the transpose of (3.13b). Next, we

multiply both sides by F (t). Finally, taking the partial derivative of both sides with respect to

u(0, t) gives

χ
′
(s, t) = [RT (s, t)F (t)]×Γ(s, t)− [u(s, t)]×χ(s, t). (3.19)

Remark 1. Based on our assumption of the uniqueness of the solution of the Cosserat rod

equations, Γ(s, t) defined in (3.15a) is a 3×3 matrix with rank of 3 if u ̸= 0⃗. Moreover, based on

(3.13) the initial values of Γ(s, t) and χ(s, t) at s = 0 are I and 0, respectively. Also (3.17) and

(3.19) are linear with respect to Γ(s, t) and χ(s, t). Therefore, Γ(s, t) and χ(s, t) are bounded

for any bounded s. Considering that s is upper bounded by the length of the rod, both Γ(s, t)

and χ(s, t) are bounded for all t.

Now, using (3.13), (3.16), (3.17), and (3.19), we transform the Cosserat rod equations into an

observable form.

r
′
(s, t) = R̂(s, t)e3, (3.20a)

R
′
(s, t) = R̂(s, t)[û(s, t)]× , (3.20b)

χ
′
(s, t) = [RT (s, t)F (t)]×Γ− [u(s, t)]×χ, (3.20c)

Γ
′
(s, t) =K−1

[
[K(u(s, t)−u∗)]×Γ(s, t)−

[u(s, t)]×KΓ(s, t)− [e3]×χ(s, t)
]
,

(3.20d)

˙̂u(s, t) = Γ(s, t)u̇(0, t) (3.20e)

with the following boundary conditions.

r(0, t) = [0 0 0]T , (3.21a)

R(0, t) = Rz(α(t)), (3.21b)

Γ(0, t) = I, (3.21c)

χ(0, t) = 0, (3.21d)
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where û(s, t) denotes the rod’s curvature estimated by the observer and I is the identity

matrix.

3.3.4 Observer Design

Based on (3.14c), the error of the observer in estimating the curvature of the rod at its tip is

ϵ(t) = û(ℓ+β (t), t)−u∗ (3.22)

In the following theorem, we provide the solution for u(0, t) that drives the error in (3.22)

to zero and ensures the solution of the observer in (3.20) converges to the solution of the

boundary value problem in (3.13).

Theorem 1. With u(0, t) taken as

u(0, t) =−
∫ t

0
RΓ

T (ℓ+β (t), t)P(t)ϵ(t)dt, (3.23)

where P(t) is the solution of the differential Riccati equation, which can be used to find the

optimal control gain of the system [74].

−Ṗ(t) =−P(t)ΓT (ℓ+β (t), t)RΓ(ℓ+β (t), t)P(t)+Q,

P(t f ) = P0,
(3.24)

and Q, R, P0 are all symmetric positive definite matrices and t f is a design choice, (3.22) is

exponentially stable and there exist positive constants c, k, and λ such that

∥ϵ(t0)∥ ≤ c ⇒∥ϵ(t)∥ ≤ ke−λ (t−t0),∀t ≥ t0 ≥ 0 (3.25)

Proof. Solution of the Riccati differential equation, P(t), is symmetric positive definite if ΓT (ℓ+

β (t), t) is bounded and non-singular [75]. Based on Remark 1 this condition is satisfied. Now,

we select the following Lyapunov candidate

V (t) = ϵT (t)P(t)ϵ(t). (3.26)

Taking the time derivative of V we obtain

V̇ (t) = ϵ̇T (t)P(t)ϵ(t)+ϵT (t)Ṗ(t)ϵ(t)+ϵT (t)P(t)ϵ̇(t). (3.27)

Additionally, from (3.22), (3.23), and (3.20e) we can calculate ϵ̇ as

ϵ̇(t) = Γ(ℓ+β (t), t)RΓ
T (ℓ+β (t), t)P(t)ϵ(t). (3.28)
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Substituting (3.28) in (3.27) and sorting the equations gives

V̇ (t) =ϵT (t)
(

Ṗ(t)−P(t)ΓT (ℓ+β (t), t)RΓ(ℓ+β (t), t)P(t)−

P(t)Γ(ℓ+β (t), t)RΓ(ℓ+β (t), t)T P(t)
)
ϵ(t)

(3.29)

Replacing Ṗ(t) using (3.24)

V̇ (t) = ϵT (t)
(
−Q−P(t)Γ(ℓ+β (t), t)RΓ(ℓ+β (t), t)T P(t)

)
ϵ(t) (3.30)

−Q in (3.30) is uniformly negative definite in t by definition. P(t) is symmetric, thus, −P(t)Γ(ℓ+
β (t), t)RΓ(ℓ+β (t), t)T P(t) has a quadratic form and is negative semi-definite uniformly in t.

Hence their sum is negative definite uniformly in t. Thus, V̇ satisfies the inequality

V̇ (t)≤−η∥ε(t)∥, (3.31)

where η > 0. Based on the Lyapunov Theorem and the foregoing inequality, (3.22) is expo-

nentially stable.

3.3.5 Implementation

The observer given in (3.20) is quasi-static, similar to the Cosserat equations in (3.13). How-

ever, it can be solved as an initial value problem using the initial values given in (3.21) and

(3.23). At a given time t, time-dependent variables are assumed constant and the equa-

tions are solved in the spatial domain using standard methods such as the Runge-Kutta

or Adams–Bashforth families of algorithms. Next, the time-dependent variables are updated

(i.e. u(0, t), P(t), α(t), and β (t)). To calculate P(t), the Riccati differential equation in (3.24)

should be solved backwards in time from t + t f , where t f is the desired finite time, which

is selected based on simulation results. The result should be stored in memory. Next, the

updated time-dependent variables are used to solve the equations in the spatial domain again.

This process is shown in Fig. 3.3.

In the next section, we evaluate the performance of the observer in estimating the solution of

Cosserat equations.
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Figure 3.3: A block diagram of the designed observer.

3.3.6 Simulation Study

Simulations are performed to evaluate the proposed observer. Physical parameters of the rod

used in the simulations are given in Table 3.1. The parameters are selected from the data

sheet of a rod made of Nitinol alloy with outer and inner diameters of 3 mm and 2 mm.

We compared the observer predictions with the solution of the rod equations computed using

three different shooting methods. Each method employs a different root-finding algorithm,

which to the best of the authors’ knowledge, are the most commonly used BVP solvers. These

solvers are:

1. Interior point method [76],

2. Quasi-Newton method with BFGS Hessian estimation [77],

3. Nelder-Mead method [78].

In the simulations, we rotated the rod at a frequency of 2π/10 Hz and pushed the rod at a

velocity of 10 mm/sec. Moreover, a time varying force equal to [sin(2πt/10), cos(2πt/10),

sin(2πt/10)]T was applied to the tip of the rod. The simulation runs for 10 seconds at a

sampling frequency of 200 Hz. The observer gains R and Q used in the simulations were

set to 120× I and 30× I, respectively. These values were found to achieve the minimum

prediction error. The tolerance for all the root-finding algorithms was set to 10−3. Moreover, in
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all the shooting methods the estimated value of initial curvature at sample time k, i.e., u(0, tk)

was used as the initial guess for the root-finding algorithm in the next step k+ 1. This would

make the shooting methods run faster. Moreover, in all the algorithms a 3(2) pair Runge-Kutta

formula [79] was used to solve the differential equations governing the motion of the rod.

The simulations are performed in Matlab on an Intel Core i7 (2.93 GHz) machine with 16 GB

memory.

Table 3.1: Physical parameters of the rod. The parameters were selected to have similar
properties to CTR tubes described in Section 3.5.1.

ℓ [mm] 400
E [GPa] 70e9
G [GPa] 10e9
I [m4] 3.1907e−12
J [m4] 6.3814e−12

u∗ [m−1] [14,5,0]

Fig. 3.4(a) shows the rod’s trajectory estimated via the aforementioned BVP solvers and the

observer. As it can be seen, the accuracy of all of the methods is comparable. Also, it can

be seen that the observer has an error at the first sampling time but rapidly converges to

the correct solution. To investigate the accuracy of the observer, we compared the observer’s

predictions of the rod’s tip position, r(ℓ, t) with the results of the interior point method, which

was found to be the most accurate BVP solver. The error measured as ∥r(ℓ, t)observer −
r(ℓ, t)interior point∥ is shown in Fig. 3.4(b). It can be seen that the observer rapidly converges to

the final solution in less than 0.1 sec. After the convergence, the error of the observer remains

below 0.4 mm with an average of 0.13 mm.
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Figure 3.4: (a) A comparison of rod’s tip trajectory calculated by solving the rod’s model
using the observer and 3 different shooting methods. The rod’s shape is shown at several
configurations along the trajectory. (b) Error of the observer in estimating the position of the
rod’s tip with respect to the most accurate BVP solver, i.e., interior point method.
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Table 3.2: Experimental Results. Mean error (emean) measured as ∥u(ℓ, t)−u∗∥, the standard
deviation of the error (σe), the average time to estimate the solution of the model (tmean) for
each method, and standard deviation of time σt are reported.

Observer Interior-point Quasi-Newton Nelder-Mead

emean

[m−1]
0.0241 0.0055 0.0087 0.0101

σe

[m−1]
0.0537 0.0053 0.0065 0.1034

tmean

[sec]
0.0048 0.0525 0.0372 0.0810

σt

[sec]
7.4e−4 0.021 0.0151 0.195

Fig. 3.5(a) shows the error of the solvers and the observer in satisfying the boundary con-

ditions given in (3.14c). The error is measured as ∥u(ℓ, t)−u∗∥. The observer error is in

the same order as the BVP solvers and remains below 0.06 m−1. Fig. 3.5(b) compares the

computational efficiency of the BVP solvers and the observer in terms of the time that each

method takes to compute the solution of the model at each sampling time. The observer is

much faster than the BVP solvers and has a lower standard deviation. The average time that

the observer takes to estimate the model’s solution is 0.0042 seconds, which is significantly

faster than other solvers. The fastest BVP method is Quasi-Newton method and can calculate

the solution of the Cosserat equations in 0.0330 sec, which is more than 7 times slower.

We performed 20 more simulations, where, rods with different dimensions were moved/rotated

at frequencies varying between π/5 Hz and π/50. The results are summarized in Table 3.2.

The results demonstrate that the observer maintains a similar error as the BVP solvers while

exhibiting superior computational efficiency. The mean error of the observer in satisfying the

boundary conditions is 0.0241 m−1. Considering the most accurate BVP solver, i.e, interior

point method, as the ground truth, the observer has a mean error of 0.102 mm in predicting the

rod’s tip. This error is negligible and much lower than the experimentally validated accuracy

of Cosserat equations, which is in the range of 3 to 10 mm [61]. The average time that the

observer takes to estimate the model’s solution is 7 times faster than the fastest BVP solver,

namely, the Quasi-Newton method. The observer can estimate the solution of the Cosserat

equations at a sampling frequency of 200 Hz while rendering similar accuracy to slower BVP

solvers. The observer can significantly improve the computational efficiency of continuum and

soft robots’ models that include several kinematically coupled Cosserat rods.
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Figure 3.5: (a) Accuracy of the observer in satisfying the boundary condition in (3.14c)
compared with the BVP solvers. (b) A comparison of the computational efficiency of the
observer with common BVP solvers. On each box in (b), the central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points and the outliers are plotted
individually using the plus symbol.
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3.3.7 Concluding Remarks

A new framework for solving the Cosserat rod equations was presented in this section. The

Cosserat equations are widely used to model the motion of continuum and flexible robots.

However, the computational cost of the model has impeded the widespread application of

Cosserat-based models in real-time control of continuum robots. We have demonstrated that

our numerical framework can estimate the model’s solution 7 times faster than the fastest ex-

isting solvers, enabling future applications of Cosserat-based models in real-time control/motion-

planning of continuum and soft robots. In the next section, a computationally efficient im-

plementation of the existing model is discussed along with an overview of the simulation

environment utilized throughout the thesis.

3.4 Implementation of the Kinematic Model In C++

Based on the kinematic model described in Section 3.1, the CTR model was implemented in

Robot Operating System (ROS) using C++. ROS is a popular choice for implementing robotic

models. It enables developers to design and test separate nodes for various components of

a system. Communication between nodes can be accomplished through messages, where

a node can both publish and subscribe to messages. To receive messages broadcast by a

publisher node, a receiver node must subscribe to the messages. In addition to this, RViz is

used to visualize the simulation results. RViz is a 3D visualization tool developed for ROS.

Based on this the simulation environment is built from the following ROS nodes which is also

illustrated in Figure 3.6:

• ctr_main: This node is responsible for the communication with the user through the

GUI and feeds the ctr_controller with the measured tip position, joint positions and

requested commands.

• calculate_model: The kinematic model of CTR is implemented in this node. Based

on the received joint positions and model parameters it calculates and sends back the

shape of the robot.

• ctr_controller: This is the most important node, where different control strategies are

implemented. The node receives the tip and joint position values as well as the mode,

action and control parameters from the ctr_main node. Based on the selected mode

and action it calculates the next movement and sends the requested joint values to

the actuators through the send_motor_commands node. Finally, it requests the up-

date_rviz node to update the robot’s shape in RViz.

• kvaser_interface: This node provides an interface between a Kvaser USBcan Light

2xHS and ROS. It uses the CANLib library, which enables the communication between

ROS and the actuators. The ROS node publishes and subscribes to CAN messages to

communicate with the motors’ controller.
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• read_tip_position: The node communicates with the NDI’s Aurora System. This sys-

tem measures the coordinates and orientation of one or more 5DOF electromagnetic

sensors with the help of an electromagnetic field generator. After receiving the mea-

sured values, it converts them into the CTR’s base coordinate system and broadcasted

the calculated values to the ctr_main node.

• send_motor_commands: The purpose of this node is to communicate with the robot’s

Maxon brushless DC motors (ECXSP16L) through the kvaser_interface node. This

node broadcasts the read joint positions to the crt_main node and forwards the re-

quested joint positions from the ctr_controller to the kvaser_interface.

• update_rviz: RViz is updated from this node. It shows the shape of each tube sepa-

rately, as well as the overall shape of the robot. In addition to this, the desired tip position

and target position markers are visualized here.

To solve the differential equations of the Cosserat model in the calculate_model node, we use

ODEINT’s library, which is included in the Boost C++ libraries [80]. This library provides a wide

range of functions to solve ordinary differential equations. In this case, the integrate_adaptive

function was selected with the Runge-Kutta method to solve the differential equations in the

CTR model. In many applications, the tip position of the CTR is sufficient to control the robot.

Therefore, it is possible to adjust the precision of the solver in order to reduce the computation

time. Once the differential equations have been solved, the robot’s shape can be calculated by

solving an Initial Value Problem (IVP) or a Boundary Value Problem (BVP). The BVP is solved

by using the Levenberg-Marquardt algorithm from the ALGLIB package. Finally, the solution

of the BVP gives the shape of the CTR, which is shown in RViz.

The three main goals of the simulation environment are to provide the following things:

• A better understanding of the robot’s behaviour.

• A platform for testing different control techniques on the robot.

• A communication channel between the PC and different parts of the experimental setup

(motor controllers, limit switches, NDI’s Aurora System, electromagnetic sensors).



3.4. Implementation of the Kinematic Model In C++ 29

Fi
gu

re
3.

6:
R

O
S

no
de

s
an

d
to

pi
cs

in
th

e
si

m
ul

at
io

n
en

vi
ro

nm
en

t.



3.4. Implementation of the Kinematic Model In C++ 30

As Figure 3.7 illustrates, the user can select the following modes and actions in a simple

graphical interface unit:

• Modes

– Manual

– Data-Driven

– Hybrid

– EDMD

• Controllers

– PID

– MPC

• Tasks

– None

– Initial Learning

– Follow Square

– Follow Half Circle

– Follow Full Circle

– Follow Input Trajectory

– Follow Desired Tip Position

In addition to this, it is also possible to set initial joint inputs (αi,βi) and control parameters.

Any of the above-mentioned modes and actions can be done on the actual robot and in the

simulation environment simultaneously.

Figure 3.7: The RViz GUI enables the selection of different modes, controllers, and actions
as well as setting up initial rotational and translational joint inputs. It is possible to run the
implemented controllers on the actual robot and in the simulation environment simultaneously.
For example, the initial learning task is selected for EDMD with MPC, which means that
an initial learning phase for the EDMD is run to learn the robot’s behaviour in a given
configuration.
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Fig. 3.8 shows a CTR consisting of three tubes using RViz. The shape of each tube is shown

separately as well as the overall shape of the robot based on the model. The term robot

refers to a CTR in the remainder of this work. The simulation environment also works as

a convenient tool for understanding the robot’s behaviour. In addition to this, the robot’s tip

position and target tip position are also shown which helps the user to see how the robot

performs and gives insights into the differences between the simulation environment and the

actual robot.

Figure 3.8: RViz shows a CTR with three tubes. It shows the equilibrium shape of the tubes
(with local coordinate frames) with the tip position (red sphere), the shape of the first tube
(green), the shape of the second tube (blue), the shape of the third tube (orange) and the
target position (green sphere).
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3.5 Experimental Setup

Our experimental setup is designed based on Section 2.2. The base of the robot is built

from 3D printed materials (see Figure 3.9). The robot is actuated by six Maxon brushless

DC motors (ECXSP16L) with GPX16HP planetary gearheads and ENX16 encoders. These

motors are controlled through six EPOS4 Compact 50/5 CAN digital positioning controllers.

Three motors are used for achieving linear motion, and three for rotational movements. Each

of the former can move (extend or retract) one tube, while each latter rotates one tube axially.

Limit switches are applied for safety reasons to detect linear movement limits and to set

reference points to the system. There are no limits for the rotational joints. This setup can

be used with two or three tubes. Communication with the motors is done via CAN through

a Kvaser USBcan Light 2xHS, making it robust for possible medical applications. It enables

communication up to 1 Mbit/s between the PC and the position controllers. The motors used

for linear motions are set to the highest possible speed which corresponds to a 1.2 mm/s

tip position velocity in Cartesian space. The motors for rotational movements can achieve a

much higher velocity than this. Based on this, the desired tip velocity is set to 1 mm/s during

the experiments.

Figure 3.9: Experimental setup for a CTR with 2 tubes. An electromagnetic tracker is placed
at the tip of the robot to measure the robot’s tip position.

For position and orientation sensing, NDI’s Aurora System is used. This electromagnetic

tracker consists of a Tabletop Field Generator (FG), a System Control Unit (SCU), a Sensor

Interface Unit (SIU) and 5 Degrees of freedom(DoF) electromagnetic sensors. The control unit

controls the field generator and receives measurements from the sensor through the sensor

interface unit. First, a varying low-intensity electromagnetic field is generated by the field gen-

erator. Then, the SIU amplifies the signals received from the sensors and converts them into

digital values, which can be read from the PC. For our experiments a single electromagnetic
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sensor is used, which is attached to the robot’s tip. The sensor has a diameter of 0.55 mm

and a length of 8 mm; it is connected with a coil wire to the SIU. The position accuracy of

the sensor is 0.7 RMS (mm) with a maximum error of 1.8 mm, while the orientation accuracy

is 1.2 RMS (◦). The Aurora system has a measurement rate of 40 Hz, which is a potential

bottleneck of the system.

Moreover, the CTR can be equipped with a camera or optical fiber. Enable’s minnieScope

camera can provide visual feedback to either a software or to the surgeon, while an optical

fiber can be used for endomicroscopy.

3.5.1 Identifying Model Parameters

As the kinematic model relies on the model parameters, we first performed a system identifi-

cation experiment to identify the model parameters. Accurate model parameter identification is

important for the following reasons. First, it enables more realistic simulations in the simulation

environment. Second, it improves the performance of the hybrid controller in Chapter 4,

and improves the quality of the generated motion plans in Chapter 5. Manual backbone

segmentation established the base and shape of the CTR relative to the aligned calibration

grid. Matching backbone points were selected in both images, and then triangulated to provide

a 3-D point cloud (Fig. 3.10). The extracted 3-D backbones were used for calibrating the

CTR model parameters, namely, Young’s and shear moduli of the tubes. The parameters

were identified by fitting the kinematic model given in Section 3.1 to the shape of the robot

estimated via the cameras at 25 different configurations. The identified parameters of the

model are given in Table 3.3 and are the same as those used in the simulations.

Table 3.3: Mechanical Parameters of the CTR used in simulations.

Tube 1 Tube 2

Inner Diameter[mm] 0.7 1.4
Outer Diameter[mm] 1.1 1.8

Length[mm] 431 332
Curvature[1/m] 21.3 13.1

Young’s Modulus, E[GPa] 64.3 52.5
Shear Modulus, G[GPa] 25 21.4
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(a)

(b)

(c)

Figure 3.10: Three steps of getting the shape of the CTR using two cameras. (a) Camera
calibration using a calibration grid. (b) Taking photos of the robot with two cameras. (c) In both
images, matching backbone points are selected and then triangulated to produce a 3-D point
cloud.
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3.6 Performance of the Implemented Kinematic Model

Various simulation studies were carried out to evaluate the performance of the implemented

model. In the integration process, the minimum number of observer calls has a significant

impact on the model’s performance. The number of observer calls is related to solving the

differential equations in the CTR model. It is done by applying the integrate_adaptive func-

tion, which uses the Runge-Kutta method. The minimum number of observer calls sets the

minimum number of required points along each segment when solving the differential equa-

tions. A lower minimum number lowers the accuracy of the differential equation’s solution but

makes the calculation faster. Thus, several simulations were conducted with varying numbers

of observer calls in the integrate_adaptive function. Furthermore, the computational cost of

solving the model as an IVP and a BVP are compared. Of note, a key difference between

IVP and BVP is that in IVP the initial conditions are known at the same point (base of the

robot), while in BVP, the conditions are split between the base and tip of the robot. Shooting

methods are applied to solve the BVP, which require solving the model as an IVP multiple

times. Therefore, solving the BVP always takes longer than solving the IVP. The goal of the

comparison is to find the optimal way to compute the model in real-time (40 Hz) and to decide

whether it is possible to control the robot in real-time, which requires the calculation of the

model many times to compute the robot’s Jacobian. Of note, the 40 Hz was selected based

on the electromagnetic tracker’s sampling frequency.

First, a comparison of the accuracy and computational costs of IVP and BVP solvers was

conducted for CTRs with two and three tubes. The results of this comparison are summarized

in Table 3.4, 3.5 and shown in Figure 3.11. The errors are compared to a baseline provided

by the integrate function. While the IVP solution provides a fast enough solution for real-time

control, its accuracy is much lower than that of the BVP solution. According to the results,

the tip position error with the IVP solver is too large for controlling CTRs with three tubes.

While the IVP solution enables real-time control of a CTR with two tubes, it is significantly less

accurate than the BVP solution.

This was followed by a comparison of the BVP solver for a CTR with two and three tubes as

shown in Fig. 3.12. Based on the plots, it can be seen that reducing the number of observer

calls between each integration results in a decrease in the computational cost and in the

tip position’s accuracy. In order to make the real-time calculation feasible, accuracy must be

sacrificed. To ensure that the model can be calculated in real-time, the minimum number of

observer calls was chosen to be two. In this way, it is possible to compute the kinematic model

in real-time at 40 Hz without losing too much accuracy.
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In conclusion, the IVP solution provides fast enough computation time for a conventional

model-based solver to control a CTR with two tubes in real-time with acceptable accuracy,

while the BVP solution allows real-time calculation of the kinematic model with great accuracy.

Unfortunately, the high computational cost of this method, however, prevents its use to control

CTRs with conventional model-based control strategies in real-time.

Table 3.4: Tip Position Error [m].

Min. number of observer calls 2-Tubes 3-Tubes
IVP BVP IVP BVP

1 1.7e−2 1.5e−2 4.5e−2 2.1e−2
2 3.2e−3 9.6e−4 4.2e−2 1.6e−3
3 2.4e−3 1.8e−4 4.2e−2 3.4e−4
4 2.4e−3 5.6e−5 4.2e−2 1.1e−4
5 2.3e−3 2.3e−5 4.2e−2 4.4e−5
7 2.3e−3 5.8e−5 4.2e−2 1.1e−5
10 2.3e−3 1.5e−6 4.2e−2 2.6e−6
20 2.3e−3 1.1e−7 4.2e−2 2.3e−7
50 2.3e−3 2.2e−9 4.2e−2 1.1e−8
100 2.3e−3 2.2e−9 4.2e−2 1.1e−8

Table 3.5: Computation Time [ms].

Min. number of observer calls 2-Tubes 3-Tubes
IVP BVP IVP BVP

1 1 11 1 17
2 3 19 2 28
3 3 26 2 40
4 4 32 3 52
5 5 39 4 63
7 6 53 5 84
10 7 74 7 120
20 11 138 12 232
50 24 338 26 561
100 44 666 48 1116
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3.6.1 Performance Comparison and Discussion

In the previous sections, two different approaches were presented to improve the computa-

tional time of calculating the kinematic model of CTRs. The first method introduced a nonlinear

observer to estimate the solution of the Cosserat rod equations without solving a boundary

value problem. The second method implemented the existing model by applying optimizations

and approximations in C++. The development of the simulation environment and the proposed

observer happened simultaneously. Several simulation studies were carried out to compare

the performance of the two methods. It is important to emphasize that the bottleneck of the

experimental setup is measuring the tip pose with the electromagnetic tracker, which has a

40 Hz measurement rate. Therefore, the computational improvement goal is to enable the

implemented controller to run at this rate.

Figure 3.11: Comparison of the implemented BVP solver for 2 tubes and 3 tubes. The plots
indicate that the tip position error decreases and the computational time increases with the
minimum number of observer calls during the integration.
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Figure 3.12: Comparison of the implemented BVP solver for 2 tubes and 3 tubes. The plots
show that the minimum number of observer calls during the integration affects the tip position
error and computational time.

To choose one of the proposed solutions for calculating the kinematic model, the proposed

nonlinear observer was compared to the BPV solver for calculating the shape of a rod. An

overview of the simulation results is shown in Figure 3.13. Accordingly, the nonlinear observer

has a much lower computational cost than the BVP solver, while its tip error is comparable to

that of the BVP solution. It should be noted that these simulations were conducted in order to

estimate the shape of a single rod rather than a CTR with multiple tubes.

Based on the findings detailed above, the following conclusions were drawn. A 2-tube CTR

with the model parameters described in Table 3.3 can be calculated with acceptable error

using the IVP solution to achieve real-time control, whereas with the BPV solution, the shape

can be accurately determined in real-time. It is not feasible to use IVP or BVP solutions (with

conventional model-based controllers) with CTRs that have more than two tubes for real-

time applications at 40 Hz using a Desktop Computer with Intel(R) Core(TM) i9-12900K CPU

processor and 32.0 GB of Memory. The accuracy of the IVP solution is not acceptable, while

the BVP solution is computationally too expensive. The nonlinear observer provided a fast

solution with good accuracy in the case of single rods. However, at the time of the decision to

choose between the two proposed solutions, the nonlinear observer had only been developed

for single rods, and the IVP and BVP solvers had produced satisfactory results for a CTR

with 2 tubes. Furthermore, the rest of this work focuses on data-driven control solutions for

CTRs that do not heavily rely on the model-based solution. Therefore, we decided to use the
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IVP and BVP solutions in the simulation environment. In spite of this, we intend to use the

proposed nonlinear observer in our future research for different control approaches and for

more complex systems. Accordingly, the proposed observer was subsequently used by our

research group to estimate the shape of a CTR with 2 tubes [64].

Figure 3.13: Comparison of the implemented nonlinear observer and BVP solver for a
single rod. The plots show that both solutions provide satisfactory accuracy but the nonlinear
observer is computationally much more efficient.

3.7 Conclusion

The framework of the thesis was laid out in this chapter. Two different approaches were

presented to lower the computational cost of calculating the CTR model. First, a nonlinear

observer was presented that can rapidly estimate the solution of the Cosserat rod equa-

tions without solving a BVP problem. This observer is able to estimate the solution of the

model significantly faster than conventional solvers. Then, the simulation environment was

implemented in an efficient way in ROS using C++. This simulation environment enables the
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users to familiarize themselves with CTRs, run simulations to test different control approaches

and communicate with the experimental setup. Following this, the experimental setup was

presented with model parameter identification. Finally, a comparison between the nonlinear

observer and the computationally efficient kinematic model was carried out. The simulation

results show that both solutions provided satisfactory results. Both methods achieved accept-

able accuracy, while the nonlinear observer is more efficient than the BVP solution. However,

at the time of the decision, the nonlinear observer had only been developed for single rods.

As a result, the remainder of the thesis utilizes the computationally efficient implementation of

the model. Note, that our research group later extended the use of the nonlinear observer to

estimate the shape of CTRs with 2 tubes. The next chapter proposes a data-driven method to

control CTRs.



Chapter 4

Hybrid Data-driven Model-guided

Control

Providing precise and reliable position control is one of the main challenges of CTRs. It is

particularly challenging when there are unknown disturbances and uncertainties in the sys-

tem. During minimally invasive surgery, constant contact between the robot and the tissue is

inevitable. Conventional model-based solvers struggle to adapt to these unknown interactions.

In order to overcome this, data-driven control strategies are discussed that can ensure the

safe deployment of CTRs. In this chapter, a hybrid controller is proposed, which incorporates

Broyden’s update with the kinematic model. Following this, a purely data-driven solution based

on Extended Dynamic Mode Decomposition is described in Chapter 6.

The main requirement for a data-driven controller is to be able to adapt to unknown external

forces and uncertainties in the system while enabling real-time operation at 40 Hz. This

sampling frequency was selected based on the electromagnetic tracker’s sampling frequency,

which is also 40 Hz.

The remainder of the chapter is organized as follows. Section 4.2 describes possible sce-

narios where data-driven solutions can overcome the limitations of model-based solutions. In

Section 4.3 details of the proposed hybrid controller are provided including numerical methods

to estimate the model-based and data-driven Jacobians of the robot and the proposed hybrid

dual Jacobian control strategy. In Sections 4.4 and 4.5 simulations are performed to verify

the performance of the proposed method and results are discussed, respectively. Following

this, the hybrid controller is refined in Section 4.6.1 and the simulation results are verified

experimentally in Section 4.6.2. Finally, concluding remarks appear in Section 4.7.

The controller proposed in this chapter was also published and can be found with its accom-

panying media in [81].

41
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4.1 Introduction

To address the challenges of model-based controllers, in this chapter, we propose a hy-

brid control approach that takes advantage of utilizing a closed-loop data-driven controller

initialized by the nominal model of the robot. The proposed method has great potential to

overcome the difficulties of the model-based approaches including predicting the effects of

unknown external forces, robot dynamics, and unexpected disturbances that might happen

in a real surgical setting during the robot’s motion. Moreover, to address the challenges

associated with current data-driven techniques, it employs the predictions of the kinematic

nominal model of the robot to guarantee fast and accurate convergence of the controller.

We study the performance of the controller in several scenarios including the robot with

inaccurately identified parameters, the robot under external forces, and the robot manipulating

a soft-tissue.

4.2 Problem Statement

Commonly used model-based control approaches often employ simplified geometric/dynamic

assumptions, which could be very inaccurate in the presence of unmodelled disturbances and

external interaction forces. Additionally, the application of emerging data-driven algorithms in

real-time control of CTRs is limited due to the fact that these controllers require a consider-

able amount of time to let the algorithm develop enough to reach the desired accuracy and

relevancy.

The goal of this chapter is to present a way to control the motion of a CTR with unknown

dynamics in contact with an unknown environment using only measurements of the robot’s tip

position. A schematic of the CTR is shown in Fig. 4.1, where a CTR is used for the ablation of

lung tumours. A CTR carrying an ablation probe is inserted through the chest cavity towards

the tumour. The goal is to press the ablation probe on the surface of the tumour without having

prior knowledge about the deformation behaviour of the tumour or the tissue surrounding the

robot. In such scenarios, generally, there are three sources of disturbance that can lead to

inaccurate motion control of the robot:

1. Unknown external forces applied to the robot from the surrounding tissue.

2. Interaction forces between the robot and the soft tissue during tissue manipulation.

3. Inaccuracies in the mathematical model of the robot.

We assume that during the operation, we can track the position of the tip of the robot via

commonly used electromagnetic trackers (EMT). It is assumed that the position feedback

has a random Gaussian noise. In addition, we assume that the nominal kinematic model of

the CTR robot is available, which may cause ±10% error in predicting the position of the

robot’s tip [27]. We propose an approach to control the CTR’s motion in the presence of the
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aforementioned disturbances. This novel approach includes three main modules: (i) a model-

based estimation of the robot’s kinematics in free space, (ii) a data-driven estimation of the

robot’s motion in the presence of unknown disturbances, and (iii) a hybrid control procedure

that fuses these approaches together to accurately and quickly control the robot tip’s position

in real-time. The following sections describe these modules in detail.

Figure 4.1: A schematic of lung ablation using a concentric tube robot (CTR). Unknown
external concentrated point force F and distributed forces f may act on the robot during its
motion.

4.3 Methodology

4.3.1 Model-based Jacobian in Free-space

Without loss of generality, we assume that the CTR is composed of three tubes, the final

deformed curve of all tubes at a given time t must be equal to the curve of the innermost tube

and that the end-effector is the tip of the innermost tube, denoted by x= r
∣∣
s=ℓ1+β1

, where x

is a 3×1 vector denoting the Cartesian coordinates of the robot tip.

For achieving motion control, the Jacobian of the robot is required. It can be numerically

estimated using

JM =
∆x

∆q
=


xT
(
q+

∆q1
2 e1

)
−xT

(
q− ∆q1

2 e1

)
∆q1
...

xT
(
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∆q6
2 e6

)
−xT

(
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2 e6

)
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T

, (4.1)

where ei is the ith unit vector of canonical basis of joint space and q=
[
β1, β2, β3, α1, α2, α3

]T

is the vector of joint inputs.
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We select the above formulation as it gives rise to parallelizable computations without sacrific-

ing in the kinematics model’s accuracy. For a three-tubed CTR, the Jacobian is a 3×6 matrix

and it maps the joint velocities q̇ ∈ R6 to the end-effector velocities ẋ ∈ R3.

The Jacobian given in (4.1), is calculated by numerically linearising the solution of the robot’s

model given by (3.4) and (3.10). The approximation uses the quasi-static model and the non-

linearities in the equations are removed. Moreover, it requires a knowledge of the interaction

forces between the robot and the surrounding environment, i.e, F ∈R3 and f ∈R3 in (3.10a),

which are not always available. Additionally, the Jacobian is susceptible to uncertainties in the

identified value of the model parameters, e.g, the tubes’ stiffness E. It has been shown that

the accuracy of the model is equal to 8% of the robot’s length due to these uncertainties [12],

which means that the predicted shape of the robot has an 8% error of the robot’s length

compared to the actual shape of the robot. In the next section, we propose a data-driven

Jacobian that can overcome the aforementioned difficulties.

4.3.2 Data-driven Jacobian for Free and Constrained Motions

To learn the robot’s dynamic behaviour on-the-fly and compensate for the effects of distur-

bances and external forces, we require an algorithm that updates the elements of the Jacobian

in real-time. To this end, we have chosen Broyden’s Jacobian update approach that can safely

and incrementally learn a CR’s Jacobian on-the-fly [82], [83], [84]. This algorithm employs the

current measurements of the CTR’s tip position x, joint inputs q, and updates the Jacobian

accordingly as follows:

Ĵ
k+1
D = Ĵ

k
D +χ

∆xk − Ĵ
k
D∆qk

(∆qk)T (∆qk)
(∆qk)T , (4.2)

where Ĵ
k+1
D is the estimated Jacobian matrix at sample time k+ 1, ∆xk is the displacement

of the robot’s tip at sample time k, ∆qk represents a vector of actuator input change, and χ is

the learning rate (0< χ <1).

The advantage of this approach is the ability to adapt to parameter uncertainties and unknown

perturbations in the environment due to its online learning behaviour [84], [85], [83]. The main

drawback of this method, however, is the long learning time required for estimating the robot

Jacobian, particularly when the robot is interacting with an unknown environment [84]. Of

note, this is mainly due to the random initialization of the estimated Jacobian matrix and the

learning rate parameter χ . As shown in [82], bad initialization of these parameters may cause

the algorithm to never converge or need many iterations to estimate a Jacobian matrix.
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4.3.3 Hybrid Dual Jacobian

Here, we propose a solution for calculating a novel hybrid Jacobian by combining both the

model-based and the data-driven Jacobians (Fig. 4.2). First, the model-based Jacobian is

calculated using (4.1). Next, it is used as a weighted initial guess in Broyden’s recursive

method given in (4.2). The updated equation for estimating the hybrid Jacobian JH is given by

Ĵ
k+1
H = e−λ1kJk

M +
1− e−λ2k

1+ e−λ2k

[
Ĵ

k
H +χ

∆xk − Ĵ
k
H∆qk

(∆qk)T (∆qk)
(∆qk)T

]
, (4.3)

where ĴH and JM denote the data-driven and the model-based Jacobians, respectively. Also,

λ1 and λ2 are constant positive scalars working as the weighting factors of the considered

Jacobians.

In (4.3), at time zero (i.e., k = 0), the data-driven Jacobian Ĵ
k
H is initially set to zero and the

model-based Jacobian Jk
M is used to update the hybrid Jacobian estimation Jk+1

H . Then, in the

next sample times, the contribution of the model-based Jacobian exponentially decays toward

zero at the rate of λ1, while the weight of the data-driven Jacobian (i.e.,
1− e−λ2k

1+ e−λ2k ) converges

toward 1 at an exponential rate of λ2.

Of note, the proposed hybrid Jacobian is capable of adapting to the unknown perturbations

and robot dynamics at a low computational cost, while benefiting from the model-based

kinematics to shorten the learning time of the data-driven approach.

Figure 4.2: Block diagram of the proposed hybrid approach for motion control of CTRs.
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4.3.4 Motion Control of CTRs

Using the proposed hybrid Jacobian, we design a controller to steer the tip of the robot to

a desired Cartesian position xd ∈ R3. For the CTR robot, this means to find a combination

of joint input, i.e., tubes rotation αi and translation βi that results in an end-effector position

x= xd . To this end, we calculate the forward differential kinematics of the robot as

ẋ= JH(q)q̇. (4.4)

By introducing the pseudo-inverse of the hybrid Jacobian [86],

Ĵ
†
H = JT

H(JHJT
H)

−1, (4.5)

The pseudo-inverse is used since J is not a square matrix. Equation (4.4) can then be modified

to obtain the inverse kinematics of a CTR:

q̇ = Ĵ
†
Hẋ. (4.6)

To follow a desired trajectory xd , an error between the desired and actual tip position is intro-

duced: e = xd −x. Equation (4.6) can be converted to the following control law to minimize

this error:

q̇d = Ĵ
†
H
[
ẋd +KPe

]
, (4.7)

where KP is a 3x3 symmetric positive definite matrix containing the controller gains. Fig. 4.2

shows a block diagram of the proposed motion control approach.

4.4 Simulation Studies

To evaluate the performance of the proposed approach, we compared the proposed hybrid

dual-Jacobian controller with two commonly used controllers: (i) a model-based controller

proposed in [27], and (ii) a data-driven controller employing the Broyden’s regression algo-

rithm [83], [84] via three different types of simulations. In the performed simulations, a nominal

model of the CTR was first used to calculate the model-based Jacobian in free space via

(4.1). Of note, this nominal model was derived based on an existing robot used in [27]. The

model parameters of this simulated CTR have been summarized in Chapter 3 (Table 3.3).

Next, the model-based Jacobian was used as (4.3) to calculate the hybrid Jacobian during

the performed simulations and on-the-fly. Finally, the control law given in (4.7) is employed

on the hybrid Jacobian to steer the robot on a pre-defined desired trajectory. The algorithm

was tested on a perturbed CTR model in an unknown environment. This perturbed model

simulates the effects of unknown disturbances including unknown external distributed/point
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loads. To make the simulation more realistic, a normally distributed random noise is added to

the robot’s tip position:

n =
1

σ
√

2π
exp

(
−x2

2σ2

)
, (4.8)

with σ = 2 mm. Later, a mean filter is used to denoise the feedback signal. The filter takes the

average of 5 consecutive samples to reduce the noise.

To evaluate the proposed hybrid approach, the following different simulation scenarios were

considered while using three different perturbed models:

(S1) Robot with inaccurately identified parameters: The controller is tested on a perturbed

CTR model with ±20% inaccuracy in initial pre-curvature of the robot U , tube’s Young’s

Modulus (E), and Shear Modulus (G) of the tubes. These inaccuracies result in a

maximum of 10% error in estimating the robot’s tip position [27].

(S2) Robot under unknown external forces: The controller was tested on a CTR model that

includes external forces. A point load equal to [0.5,0.5,0.5]T N was applied to the tip of

the robot. The controller has no prior knowledge of this force.

(S3) Robot manipulating a soft tissue: The CTR robot is in contact with a soft tissue without

any a priori knowledge of the tissue’s mechanical characteristics. This study simulates

the tissue ablation procedure, where a probe capable of applying intensive heat/cold

is pressed and moved on the surface of the tissue to destroy abnormal tissue. In the

performed simulation, the robot is commanded to deform the surface of the tissue by a

magnitude of 1 mm and move along a rectangle while keep pushing the tissue by the

same amount. To simulate this scenario, the deformation behaviour of the tissue was

modelled using the soft tissue model presented in [87]:

F = a1x+a2x2 (4.9)

where F is the contact force between the robot and the tissue and x is the relative

surface deformation of the tissue. Also, a1 = 0.03 N
mm and a2 = 0.003 N

mm2 are constants

representing the mechanical characteristics of kidney and liver tissue [87]. In addition

to the mentioned contact force F , a time-varying distributed force f was also applied

along the whole shape of the robot:

f = sin
(2πt

2

)
, (4.10)

where t is time. Of note, this distributed force only has a y component with a maximum

value of 1 N
m . The controller has no prior knowledge of this force.
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For all three scenarios, the nominal model of the robot was fixed and no external forces were

considered during the calculation of the model-based Jacobian. Of note, the external forces

were calculated in the perturbed model to give a baseline for the simulation. Also, the robot’s

tip was steered to follow a square trajectory with 35 mm base length in the first two cases and

a 60×30 mm rectangle trajectory in the third case, which simulates the size of a lung tumour

at stage 2 or 3 [88]. A square trajectory was selected since the CTRs have more difficulties in

traversing straight lines and sharp corners as opposed to circular paths.

Using C++, we simulated these scenarios in Robot Operating System (ROS). Simulation

sampling time and the robot’s tip desired velocity were selected as 15 millisecond and 5 mm
sec ,

respectively. In addition to these, the following controller parameters were chosen: Kp = 3I,

where I is a 3× 3 identity matrix. Also, we selected λ1, λ2, and χ in (4.3) as 0.1, 0.1, and

0.1, respectively. These values were tuned via trial and error to achieve the minimum tracking

error. Fig. 4.3 shows the robot in free space and in touch with the tissue in the ROS simulation

environment. The joint inputs and the corresponding tip positions were used for the data-

driven and hybrid controller to learn the behaviour of the robot.

Figure 4.3: CTR simulated in ROS environment. (a) CTR in free space, (b) CTR in contact
with soft tissue.

4.5 Results and Discussion

Results of the three scenarios are summarized in Table 4.2. The average tracking error, the

standard deviation of the error, the maximum tracking error, and the root-mean-square error

(RMSE) are reported. The root-mean-square error is calculated as

RMSE =

√
∑

m
j=1 (x j −xd, j)2

m
, (4.11)
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Table 4.1: Comparison of Error between desired and actual trajectories in three scenarios.
Results of model-based, data-driven, and hybrid controllers are presented. emean is the
average error, σe is the standard deviation of the error, emax is the maximum error, and RMSE
is the root mean square error. The values are all in millimeters.

S1 emean σe emax RMSE

Data-Driven 14.530 25.239 120.237 25.239
Model-Based 18.410 2.724 11.715 7.206

Hybrid 0.686 0.518 1.945 0.861

S2 emean σe emax RMSE

Data-Driven 18.410 33.052 114.045 37.856
Model-Based 14.089 6.781 26.699 15.739

Hybrid 0.719 0.535 1.908 0.896

S3 emean σe emax RMSE

Data-Driven 37.992 48.242 108.476 61.404
Model-Based 5.982 3.180 14.420 6.792

Hybrid 1.105 0.829 4.772 1.382

and is used as a measure of the differences between the actual trajectory of the robot’s end-

effector, x, and the desired trajectory, i.e., xd , for m data points along the robot’s tip trajectory.

Fig. 4.4(a) shows the actual trajectories of the three compared methods (i.e., data-driven,

model-based, and hybrid dual Jacobian) in the 1st scenario (S1), while Fig. 4.4(b) presents

the tracking error versus time. Of note, for these simulations, the pure data-driven approach

without any initial training failed to learn the Jacobian and was unable to follow the desired

trajectory. This happens because the data-driven method requires a good initial guess to be

able to converge. The model-based method struggled to follow the desired trajectory with

the unknown changes in the model parameters, while the proposed hybrid method quickly

adapted to these changes. The largest errors in this approach appeared when the trajectory

changed its direction. The errors with the latter approach are an order of magnitude smaller

than with the former ones (as shown in Table 4.2).

In the 2nd scenario (S2), similar to the previous simulation, the robot was asked to follow a

square trajectory with 35 mm base length. Fig. 4.5(a) shows a comparison of the model-based

and hybrid methods. Similar to S1 scenario, the pure data-driven approach without any initial

training failed to learn the Jacobian and was not able to follow the desired trajectory. Therefore,

due to its large errors, we did not take it into account in the figure. The model-based approach

could not also accurately follow the trajectory and obtained RMSE= 15.7 mm. As mentioned,

this is mainly due to not considering the unknown external forces during deriving the model-

based Jacobian. Nevertheless, similar to the previous scenario, the hybrid dual Jacobian
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approach is not only able to follow the rectangular trajectory but is much more accurate as

well (i.e. RMSE= 0.9 mm). This is mainly because thy hybrid approach can compensate for

the effect of external forces on the deformation behaviour of the robot. Table 4.2 shows that

the average error for our proposed dual Jacobian approach is less than 0.72 mm, while it is

more than 6.89 mm with the model-based approach, which is not able to adapt to the unknown

disturbances.

(a)

(b)

Figure 4.4: (a) Following a square trajectory using a model with inaccurate parameters.
(b) Mean error of the three methods while following a square trajectory using a model with
inaccurate parameters.
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(a)

(b)

Figure 4.5: (a) Following a square trajectory with a [0.5,0.5,0.5]T N external force on the tip
of the robot. (b) The robot is steered to follow a rectangle trajectory while pushing a soft tissue
by 1mm in the presence of distributed force along the shape of the robot.
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In the 3rd scenario (S3), the CTR indirectly manipulates particular points on the tissue surface

without having prior knowledge about the external contact forces during manipulation. In this

simulation, the tissue was placed parallel to the y-z plane at x = 5 cm. The external point force

was approximately 0.3 N when the tissue was pressed by 1 mm. The results summarized in

Table 4.2 demonstrate the superior performance of the proposed hybrid approach. The hybrid

approach has some difficulties at the beginning when it reaches the soft tissue and deviates

from the desired trajectory when the desired trajectory changes its direction. However, it is

able to recover quickly and follow the trajectory with more accuracy compared to the model-

based method. As shown in Fig. 4.5(b), the model-based controller struggles to follow the

desired trajectory and remains close to the surface of the tissue.

The proposed hybrid approach is able to adapt to uncertainties in the model and in the

environment. The hybrid Jacobian proposed in (4.3) always requires some time to learn the

effects of uncertainties and disturbances. To investigate the time response of the controller,

we performed 16 trials; in each trial, the robot was tasked to follow a trajectory at a velocity

between 0.1 to 10 mm/sec with sampling times varying between 15 to 100 milliseconds, in

the presence of model uncertainties. Results are summarized in Fig. 4.6. As it can be seen

the controller’s error linearly increases with respect to tracking velocity. This shows that the

Hybrid controller requires sufficient time to adapt to the changes in the feedback signal and

is most suitable for autonomous control of the CTR at velocities below 10 mm/sec, which is

appropriate for needle-based interventions [89] such as lung biopsy and ablation.

0.1

Figure 4.6: Hybrid controller’s error with respect to sampling time and desired velocity. The
blue points on the plot are the results from the simulations, the surface on the plot was fitted
on these points.
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4.6 Experimental Verification

4.6.1 Control Architecture Modifications

Here, we refine the hybrid data-driven control architecture developed in the previous sections

to control the CTR’s end-effector to track a time-varying desired trajectory, xd(t). To provide

precise control of the actual robot, we redefine the data-driven Jacobian of the robot as:

Jk+1
H = Jk

MF+

[
Jk

H +

(
∆xk −Jk

H∆qk

(∆qk)T (∆qk)
(∆qk)T

)
χ

]
(1−F), (4.12)

where JH is the data-driven Jacobian, χ is the learning rate, and F= diag([𭟋,𭟋,0,0]), where

𭟋 is the Normal Forgetting Function defined as:

𭟋= exp

−rem
(

t
Γ2

)
Γ1

 , (4.13)

where rem is the remainder function, and Γ1 and Γ2 are constant parameters defining the

speed of forgetting and remembering, respectively. Figure 4.7 shows the normal forgetting

function for various values of Γ1 and Γ2. According to this, the translational part of the Jacobian

is reloaded based on the model at a specified interval (Γ2). Between reloads the controller

forgets the model-based solution and learns the robot’s behaviour based on the known joint

input changes and the corresponding tip position displacements. The rate of forgetting is

described by (Γ1). Of note, the reminder function can be implemented with equidistant resets

in practice.

Time [sec]

20.5 ,
20.1 ,
10.1 ,

Figure 4.7: Plots of normal forgetting function for various values of Γ1 and Γ2. The normal
forgetting function reloads the translational part of the Jacobian based on the model at a
set interval (Γ2). Between two reloads the controller forgets the model-based solution at a
specified rate (Γ1) and uses Broyden’s update to learn the robot’s behaviour.
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Compared to previously presented simulation studies, we have improved the Hybrid Jacobian

in two ways:

1. We use variable learning rates for translational (β ) and rotational (α) actuators. These

actuators have different units and different magnitudes. Using variable learning rates

allows us to tune the controller more efficiently. To this end, χ is defined in the following

way: χ= diag([χ1,χ1,χ2,χ2]), where χ1 and χ2 are learning rates for translational and

rotational actuators, respectively.

2. We introduced the normal forgetting function that will enable the controller to employ the

information from the model-based Jacobian at fixed time intervals. The reason for this is

that the translational inputs of the CTR (β1 and β2) have relatively smaller values than

the rotational ones. Moreover, CTRs tend to move on curvilinear trajectories, which

use rotational inputs more often than translational inputs. Therefore, rotational inputs

are often updated more frequently. This will cause the controller to ignore translational

inputs or the Hybrid Jacobian to become ill-conditioned. To this end, we use the normal

forgetting function to reset the columns of the Jacobian estimated by the controller

via the data-driven approach and replace them with the model-based Jacobian. The

frequency of forgetting and resetting can be adjusted using Γ1 and, Γ2 as shown in

Figure 4.7).

Now, we can use the following control law to track an arbitrary desired trajectory.

q̇d = J†
H [ẋd +K(xd −x)], (4.14)

where qd is the desired actuator velocities, J† is the Moore–Penrose inverse of the hybrid

Jacobian matrix. The Moore–Penrose inverse is required since J is not a square matrix. The

proportional gain matrix, K, is a symmetric positive definite matrix.

4.6.2 Experimental Results

To verify the performance of the hybrid controller, a concentric tube robot with two tubes was

used with a 5-DOF Electromagnetic tracker (Aurora, NDI) attached to its tip. See Section 3.5

(Fig. 3.9) for more details about the experimental setup.

The controller was verified through the following two cases:

(S1) Robot following pre-defined trajectories in free-space: Two different trajectories were

followed by the robot’s tip in free-space: (i) A square trajectory with a base length of 20

mm, (ii) a spiral trajectory on the global xy plane.

(S2) Robot following pre-defined trajectories under unknown external forces: In this study,

the controller was tested on a square trajectory with a base length of 20 mm while

applying a point load of 20 grams to the tip of the robot.
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Figure 4.8: Representative experimental results for trajectory tracking in the first scenario
(S1): Robot’s tip follows a) a spiral trajectory, b) a square trajectory.

Based on the experimental results, Table 4.2 summarizes the tip position accuracy during

deployment. Each experiment was carried out five times. Figure 4.8 illustrates representative

results for the first scenario (S1). Then Figure 4.9 shows the results for the second scenario

(S2) when an unknown weight is added to the tip of the robot. It is important to emphasize

that the position accuracy of the electromagnetic sensor is 0.7 RMS (mm) with a maximum

error of 1.8 mm. Therefore, the tip position error is mostly due to the sensor’s inaccuracy. In

addition to this, the figures’ axes have different scales, which magnifies the fluctuations in one
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direction. Based on this, more advanced controllers including artificial damping may be able

to improve the fluctuations but the proposed controller’s accuracy is already very good. The

results confirm that the hybrid controller can provide precise position control locally, even in

the presence of unknown external forces.

Table 4.2: Comparison of tip position error between desired and actual trajectories. emean is
the average error, σe is the standard deviation of the error, emax is the maximum error, and
RMSE is the root mean square error. The values are all in millimeters. It is important to note
that the position accuracy of the electromagnetic sensor is 0.7 RMS (mm) with a maximum
error of 1.8 mm.

emean σe emax RMSE

S1: Square 0.668 0.415 2.550 0.786
S1: Spiral 0.922 0.595 2.85 1.098

S2: Square with weight 0.787 0.389 2.853 0.878

Figure 4.9: Representative experimental results for the second scenario (S2): Robot’s tip
follows a square trajectory, while an unknown weight is attached to its tip.
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4.7 Conclusion

A hybrid model-based and data-driven controller was described in this chapter. The demon-

strated hybrid approach is able to control CTRs experiencing unknown perturbations and

external forces. This hybrid approach used an initial Jacobian obtained from the solution

of the CTR model and then efficiently combined it with a data-driven approach to update

the Jacobian in real-time and estimate the variations in the Jacobian caused by unknown

external forces and perturbations. With this approach, the CTR was able to adapt to un-

certainties such as unknown external forces (with up to 0.5 N magnitude) and up to 20%

error in estimating the model parameters. Various simulation studies demonstrated that the

RMSE of the proposed hybrid approach in tracking a rectangular trajectory is about 9 times

less than a common model-based controller (i.e., < 1.1 mm). In addition, experiments were

conducted on a real CTR to verify the proposed controller. The experiments demonstrated that

the proposed controller was capable of controlling the robot’s tip despite the applied external

forces. Although these results are promising and enable accurate position control of CTRs,

the controller still relies on the input provided by the model-based solution and is sensitive

to the control parameters. The next chapter utilizes the proposed hybrid controller in possible

distal lung sampling applications.



Chapter 5

Robotics-assisted Optical Biopsy

In the previous chapter, a data-driven control approach was introduced to overcome the

limitations of model-based control solutions. As a result, the proposed hybrid controller is

capable of achieving precise position control if a feasible trajectory is provided. In this chapter,

possible applications of CTRs for distal lung sampling are discussed and a motion planner

is presented to generate feasible trajectories for specific applications. There are two goals

associated with motion planning. First, steering the robot accurately towards the target region

while compensating for unknown tissue interaction forces. Second, maintaining the orienta-

tion of the robot and the imaging probe to ensure precise imaging of the target region. In

order to achieve these goals, a three-phase affordance-aware motion planner is introduced.

Affordance in robotics refers to the potential actions that an object such as soft tissue or

environment offers to a robot. Experiments have been conducted on phantom tissue to verify

the performance of the proposed motion planner for using CTRs for optical endomicroscopy

and as a steerable needle.

According to this, Section 5.1 gives an overview of potential applications of CTRs in distal

lung sampling. Then, the Affordance-aware Motion Planning is introduced in Section 5.2. This

includes the Dexterity Affordance in Section 5.2.2, Stability Affordance in Section 5.2.3 and

Constrained Motion Affordance in Section 5.2.4. Following this, a 3-phase motion planner is

introduced in Section 5.3. Finally, the experimental results are presented in Section 5.4.

The proposed motion planner for robotic-assisted optical biopsy was also submitted to the

IEEE Transactions on Medical Robotics and Bionics(T-MRB) as follows:

B Thamo, V Voulgaridou, H Wood, J Stone, K Dhaliwal and M Khadem", Towards Robotics-

Assisted Endomicroscopy in Percutaneous Needle-based Interventions", IEEE Transactions

on Medical Robotics and Bionics 2023 (T-MRB 2023, submitted).

58
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5.1 Introduction

In the past decade, advances in fibre optics, light sources, detectors, and molecular biology

have led to the development of several novel methods for in vivo endomicroscopy. The term

endomicroscopy refers to methods that use the properties of light to enable the operator to

make an instant in-vivo diagnosis, previously only possible by using histological or cytological

analysis. According to this, a number of promising imaging techniques has emerged, includ-

ing Fluorescence Imaging, Optical Coherence Tomography, Confocal Endomicroscopy, and

Surface-Enhanced Raman Spectroscopy. These technologies have shown to be promising

tools for tissue characterization compared to traditional biopsy. Instead of taking a number

of biopsies and examining the samples with histology, an optical probe can be inserted into

the patient to scan a target region. Modalities of endomicroscopy have been combined with

surgical robots to provide high-resolution images of the tissue in real-time. A review of various

applications is provided in [90]. However, the application of these technologies is limited to

surface or near-surface imaging due to the lack of steerable technology that can (i) guide

the probe inside the tissue, and (ii) provide precise control over the distal scanning motion.

In this chapter, we detail the proof of concept for a robotic platform capable of accurate and

repeatable endomicroscopic imaging in needle-based interventions (Figure 5.1). In needle-

based interventions, a physician inserts a needle through the skin to reach different internal

organs, such as prostate, breast, lung, and liver to perform a biopsy or target cancerous le-

sions with needle-based ablation procedures to burn or freeze malignant cells. Percutaneous

lung biopsy and prostate biopsy or ablation are two examples shown in Figure 5.2.

(a) (b)

Figure 5.1: (a) A CTR used as a steerable needle deploying a fluorescence imaging probe
connected to the Versicoulor fluoroscopy imaging unit. The CTR’s shape and length can be
controlled by axially rotating (α1, α2) or translating (β1, β2) the pre-curved tubes. (b) The
medically approved Versicolour unit. Figure (b) is from [1] with permission of the authors.
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To fully take advantage of the endomicroscopic technology, we propose a robotic platform that

consists of a continuum robot, namely, a CTR and a bespoke fluorescence endomicroscopic

imaging platform called Versicolour, first introduced in [1]. Versicolour is a sensitive and modu-

lar three-colour fluorescence endomicroscopic imaging platform spanning the visible to near-

infrared (NIR) range. Versicolour has been clinically translated into patients with pulmonary

disease to delineate healthy, cancerous, and fibrotic tissue autofluorescent structures [1].

Using this technology, the proposed robotic platform is experimentally validated for automated

endomicroscopic imaging during needle-based interventions. This technology can offer ac-

curate in-vivo real-time imaging of targeted regions during needle-based interventions to (i)

guide the biopsy, (ii) monitor the progression of a disease and assess the effectiveness of an

experimental treatment, (iii) unify the diagnosis and the treatment of diseases or cancerous

cells by providing real-time diagnosis followed by the delivery of targeted therapies or ablation.

To achieve the above-mentioned goals, a CTR is used as a steerable needle to steer a

flexible endomicroscopic probe deep inside the tissue. In this regard, the main challenges

are (i) the accurate steering of the robot towards the target region while compensating for

unknown tissue interaction forces, (ii) controlling the orientation of the robot and the imaging

probe to guarantee precise imaging of the target region. To this end, we propose a motion

planning algorithm to calculate the feasible target regions for these procedures. Then, the

initial configuration of the robot is calculated to reach the target with the desired tip orientation.

Finally, the hybrid controller described in Chapter 4 is applied to steer the robot on a pre-

planned path while compensating for unknown tissue effects. Experiments are performed to

validate the robotic platform in two scenarios simulating clinical cases. To the best of our

knowledge, this is the first robotic platform capable of automated deep tissue endomicroscopic

imaging.

(a) (b)

Figure 5.2: Examples of percutaneous needle-based Interventions. (a) Needle-based lung
biopsy. A CT Scan of the chest is shown during the procedure. (b) Transrectal prostate biopsy
under ultrasound guidance.
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In this chapter, we develop and experimentally validate the robotic platform for automated

endomicroscopic imaging during needle-based interventions. We evaluate the robot in two

scenarios: (i) scanning a phantom tissue region, while searching for anomalies in fluorescent

images, simulating percutaneous lung biopsy; (ii) accurately reaching a target deep inside a

phantom tissue at a relative depth of 50 mm (Figure 5.3).

Tissue Scanning
Insertion on a Line

Figure 5.3: Two applications of the proposed motion planner, namely, insertion in a straight
line into the tissue and scanning the tissue on a mesh grid.

5.2 Affordance-aware Motion Planning

Here, we propose a motion planning algorithm that accepts the entry point and the desired

path to a specific procedure in a global coordinate frame estimated from pre-operative medical

images as input and finds (i) the desired robot configuration at the entry point for a specific

task, (ii) a trajectory from the robot’s initial configuration to the desired entry point, and (iii) a

stable and feasible trajectory from the entry point towards the target.

In order, to take endomicroscopic images of the target region inside the tissue, the generated

plan should satisfy the following requirements:

1. The generated plan should guide the robot toward the target in a way that the robot’s

tip is roughly perpendicular to the tissue’s surface. This requirement ensures that the

endomicroscopic probe is capable of capturing high-quality images.
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2. The generated plan should minimise the interaction forces between the robot and the

tissue. As the robot cuts through the tissue, the robot will bend as a result of the

interaction forces and deviate from the desired trajectory. These forces are unknown

and hard to estimate in heterogeneous tissue [91]. Therefore, the planner should aim

to find a trajectory where interaction forces are minimal. Later, the unknown external

forces can be handled by the controller as disturbances.

3. The planned trajectory should be stable and avoid singularities. CTRs exhibit elastic

instabilities due to torsional elastic energy storage in the tubes. An instability occurs

when this energy is rapidly released and the robot “snaps” to a new configuration [92].

The generated plan should avoid such instabilities.

In line with the requirements to generate a motion plan for CTRs for deep tissue endomi-

croscopy, we employ the concept of affordance to quantify the aforementioned requirements

in a way that can be considered by a motion planner. Essentially, affordance describes the

relationship between an object and the capabilities of the robot to interact with it. Furthermore,

affordance provides guidance for robot design and can improve the efficiency and effective-

ness of robot-object interactions [93]. Accordingly, in the following sections, we characterize

the robot’s affordance for deep tissue endomicroscopy.

5.2.1 CTR Affordance for Endomicroscopy

Based on the defined requirements, we intend to quantify the robot’s affordance for (i) moving

perpendicular to the tissue, (ii) cutting with minimal force, and (iii) avoiding singularities.

To achieve this, we use the concept of manipulability for continuum robots introduced in [94].

Velocity manipulability is a measure of a robot’s ability to produce changes in its velocity by

altering its joint inputs. It is a metric that assesses the controllability of the robot’s motion. In

accordance with this, CTR manipulability can be estimated using the robot’s kinematic model,

which is detailed in Section 3.1, and can be summarised as

x= f (q(t),g(s),u(s)), (5.1)

where x is the Cartesian coordinates of the robot’s end-effector, t and s denote time and robot’s

arc length, q(t) = [β1, β2, α1, α2, ]
T denotes the actuation values shown in Figure 5.1, u(s)

is the curvature of the robot’s backbone, and, g(s) ∈ SE(3) is a homogeneous transformation

defining the location and orientation of the robot’s backbone in task space and can be defined

as

g(s) =

[
R(s) r(s)

03×1 1

]
(5.2)
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where r(s) is the arc-length parametrized shape of the robot and R ∈ SO(3) is a rotation

matrix at every arc-length s. Using the model, we can define the Jacobian matrix, J, that maps

the joint velocities, q̇ ∈ IR4, to the robot end-effector velocity, ẋ ∈ IR3 as

ẋ= Jq̇. (5.3)

The Jacobian can be numerically estimated by solving the model in (5.1):

J =
∆x

∆q
=


xT
(
q+

∆q1
2 e1

)
−xT

(
q− ∆q1

2 e1

)
∆q1
...

xT
(
q+

∆q4
2 e4

)
−xT

(
q− ∆q4

2 e4

)
∆q4


T

. (5.4)

Where ei is the ith unit vector of the canonical basis of joint space. For a two-tubed CTR, the

Jacobian is a 3×4 matrix.

Now, we can use the Jacobian to estimate the robot’s velocity manipulability ellipsoid (VME).

VME represents the direction in which the robot is capable of moving in a given configuration.

Furthermore, the VME maps a unit sphere in joint space to an ellipsoid in task-space and can

be estimated by taking the Singular Value Decomposition (SVD) of the Jacobian as

J = UΣVT , (5.5)

where the diagonal entries of Σ = diag(σ1..σn) are singular values uniquely determined by

J and σ1 > σ2 > σi > σn. The columns of U and the columns of V are called left-singular

vectors and right-singular vectors of J, respectively. By using σi and vi, the VME can be

spanned where vi is the ith column of V. Moreover, vi is the ith principal axis vector of the

VME with a magnitude equal to σi.

Additionally, one can develop the Unified Force Manipulability Ellipsoid (UME) defined in [94]

to quantify the direction of robot motion in response to a unit force/torque applied to its tip.

The schematic of the two ellipsoids is shown in Figure 5.5(a). Of note, as illustrated in [94]

UME’s major axis is approximately parallel to the VME’s minor axis. Therefore, the direction

where the robot has the highest ability to produce changes in its velocity is the same as the

direction where it retains maximum stiffness (i.e., minor axis of UME). Now, by leveraging

some of the features of the VME, we propose three variables to quantify CTR affordance

for endomicroscopic tasks, namely, Dexterity Affordance (ψ), Stability Affordance (c), and

Constrained Motion Affordance (Γ).
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Figure 5.4: A schematic of the CTR advancing through soft tissue. As the robot proceeds, it
cuts tissue with its symmetric sharp inner tube. As a result, external cutting forces are applied
to the robot’s tip (F ). When the robot deviates from the cutting path, which is in the direction
of its local z-axis, it compresses tissue and distributed external forces (f ) are applied to its
backbone.

5.2.2 Dexterity Affordance

Here, we define variable ψ to quantify how well the robot can move instantaneously through

soft tissue for cutting and taking endomicroscopic images. As the CTR advances through

soft tissue, cutting forces are applied to its tip in the opposite direction of the tip’s local z-

axis [91](Figure 5.4). In a configuration, where the principal axis of the VME with the largest

singular value (v1) is aligned with the local z-axis of the robot’s tip, the CTR can manipulate

its velocity along the local z-direction with less joint efforts (left image in Figure 5.5(a)).

Additionally, based on the fact that the UME is approximately perpendicular to the VME, the

robot retains high stiffness against cutting forces (CTR will bend less under axial forces).

Therefore, this is the optimal case for cutting through tissue. Furthermore, the robot advances

along its local z-axis and will reach the desired targets perpendicularly. Thus, it would be

able to capture high-quality endomicroscopic images of the target. To this end, we define the

Dexterity Affordance ψ as the angle between the tip’s local z-axis and the major axis of the

velocity manipulability:

ψ = arccos(z ·v1), (5.6)

where v1 is the first column of V in (5.5) and z is the last column of matrix R(s) at the robot’s

tip, which is estimated by solving the kinematic model of the robot in (5.1). Note that both

vectors z and v1 are unit vectors.

It is important to emphasize that a configuration with small ψ has more dexterity in moving

along its local z-axis making it more capable of cutting through tissue and acquiring high-

quality images by pressing the endomicroscopic probe perpendicularly to the tissue. This is

demonstrated in Figure 5.5(b). Of note, we only consider the columns of the Jacobian which
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VME

UME

(a)

Imaging Probe

Target

(b)

Figure 5.5: (a) A schematic of the velocity manipulability ellipsoid and unified force manipu-
lability ellipsoid of a CTR in two different configurations. The major axis of the VME (vi), the
local z-axis of the robot at its tip (z), and the dexterity affordance (ψ) are shown as well. (b) A
schematic of the robot moving along its principal axis of velocity manipulability ellipsoid in two
different configurations. When the VME’s principal axis is aligned with the robot’s local z-axis,
the robot is capable of reaching the desired target perpendicularly. This is more suitable for
endomicroscopic imaging.

correspond to translational actuators (i.e., β1 and β2). The reason is that (i) intuitively we

know that the robot generates axial motions using its translational actuators, and (ii) rotational

and translational actuators have different units. This can lead to inconsistent results when

calculating the manipulability of the robot, as the units used in the calculation will affect the

magnitude of the singular values.

5.2.3 Stability Affordance

CTRs can become unstable or "snap" when the robot’s forward kinematics loses its unique-

ness and can have multiple equilibriums. Snapping is a mechanical instability caused by

the rapid release of the elastic potential energy that is accumulated due to the bending and

twisting of the tubes [92]. Snapping, the unexpected swift change in the CTR’s configuration

complicates the process of performing tasks smoothly and can harm sensitive tissues in

the proximity of the robot. In order to characterize the solution of robot kinematics and its

stability, we introduce the robot’s stability affordance (c) as the inverse of the robot’s Jacobian’s

condition number:

c =
1

∥J∥∥J−1∥
=

σn

σ1
. (5.7)

According to this, c is calculated by dividing the most significant singular value of J by the least

significant singular value of J. The Jacobian matrix becomes singular as the robot kinematics

becomes unstable. Consequently, c increases towards infinity. By minimizing the proposed

stability affordance, one can avoid such scenarios.
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The proposed Dexterity Affordance and Stability Affordance quantify the robot’s motion for a

given configuration but cannot provide information on the transient behaviour of the CTR. To

this end, we introduce another variable, namely, the Constrained Motion Affordance.

5.2.4 Constrained Motion Affordance

As discussed, when the robot cuts through tissue or scans the tissue for endomicroscopic

imaging, its tip is required to move along its local z-axis. The Constrained Motion Affordance

aims to quantify the robot’s ability in moving along its local z-direction from one point to

another. Consequently, we introduce Γ = [γ1,γ2], where γ1 is the relative angle between the

tip displacement in the next time step and the tip’s local z-axis in the previous time step. γ2 is

the angle between the robot’s local z-axis in the next time step and the local z-axis of robot’s

initial configuration at t0:

γ1 = arccos
(

(xtk −xtk−1) · (ztk)

∥(xtk −xtk−1) · (ztk)∥

)
(5.8a)

γ2 = arccos(zt0 · ztk+1) (5.8b)

Figure 5.6 demonstrates these variables, where the robot is shown in several configurations.

Assuming that it has moved from point A to point B at time tk, now we need to find the next

feasible point to move to at time tk+1. The robot should move on a straight line to cut through

the tissue with its tip, and should avoid lateral movements as much as possible. Furthermore,

the robot should approach the target perpendicularly. Accordingly, γ1 characterizes the robot’s

motion along a straight path, while γ2 quantifies the tip’s orientation during the motion. Based

on this the following scenarios are possible:

1. Optimal Scenario: The robot moves on a relatively straight line and approaches the

next point perpendicularly creating optimal conditions for endomicroscopic imaging.

This scenario is shown in Figure 5.6(b), where both γ1 and γ2 are relatively small.

2. Lateral Movement : A movement with a relatively large γ1 results a lateral robot move-

ment. For instance, moving to point D from point B results in a small γ2. However, as

shown in Figure 5.6(c), moving to point D also results in a relatively large γ1. In this

case, the robot has moved laterally. This will compress the surrounding tissue, resulting

in relatively large interaction forces.

3. Tip Orientation Misalignment The robot’s tip is not perpendicular to the target point.

Figure 5.6(d) shows a scenario where γ1 is small and the robot’s trajectory is straight,

however γ2 is relatively large. In this case, the robot’s tip will not be able to deploy the

endomicroscopic probe into the target region perpendicularly.
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(a) (b)
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(c) (d)

Figure 5.6: A schematic of a CTR moving in 2D space. (a) The robot has reached point B from
point A. (b) The robot moves to point C on a relatively straight line (small γ1) and approaches
point C perpendicularly (small γ2) (c) The robot approaches a target perpendicularly (small
γ2), however, it is making a lateral movement (large γ1). (d) The robot moves on a straight line
(small γ1) but the robot’s tip is not perpendicular to the target point (large γ2).

In the next section, we use a motion planning algorithm that leverages the developed affor-

dance variables to estimate optimal paths for robotic-assisted endomicroscopy.

5.3 3-Phase Motion Planner

Based on the previously defined robot affordance measures, we propose a motion planning

algorithm comprised of 3 different planning phases. The motion planner accepts the desired

target location acquired from pre-operative images and employs the affordance variables

discussed in the previous section to (i) estimate the robot’s entry point into the tissue, (ii) find

the optimal trajectory from the entry point to the target to perform endomicroscopic imaging,

(iii) find a trajectory that takes the robot to the entry point from a given starting configuration.
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5.3.1 Phase 1: Identify ideal starting configurations

The first motion planning phase includes an exhaustive search to find all the configurations

in which the robot is stable and has maximum capability in moving along its local z-direction

for tissue cutting and scanning. This can be achieved by optimizing the stability affordance

variable c and the dexterity affordance ψ . To this end, we generated all possible feasible

configurations (q) between the robot’s joint limits with a 1 mm resolution for translational joint

inputs and a 5 degree resolution for rotational joint inputs. Based on the stability affordance

and the dexterity affordance measures, we only accepted configurations where c ≤ ε1 and

ψ ≤ ε2, where ε1 and ε2 are hyperparameters and should be small enough to ensure the

robot’s stability and dexterity. Based on this, Figure 5.7 shows the results of the 1st phase of

the motion planner. The motion planner employs a CTR with parameters given in Chapter 3

(Table 3.3), while ε1 and ε2 were selected to be 44.7 and 5◦, respectively. ε1 was selected as

the mean of the stability affordance variable c for all generated configurations, this way the

majority of the configurations where the robot is unstable are eliminated. ε2 should ideally be

0, however, this significantly limits the number of feasible configurations. Therefore, a small

value of 5◦ was selected to ensure sufficient configurations are generated in the 1st phase.

Figure 5.7: Results of the 1st phase of the motion planner. It shows all those tip positions
where the dexterity and stability affordance are optimal.
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5.3.2 Phase 2: Select the best starting configuration from Phase 1 and gener-
ate a feasible trajectory for a given task

In the second phase, a modified RRT* algorithm is applied to select a configuration where the

robot can perform insertion into soft tissue on a straight line and scan a region of tissue. The

algorithm accepts the results of the previous phase as inputs and runs the planner for each

point from phase 1. Based on this, the algorithm is looking for the following factors:

1. Tissue Insertion: For tissue insertion, the goal is to find a series of points along a straight

line aligned with the local z-axis of the robot’s tip (Figure 5.8(a)).

2. Grid Scan: For tissue scanning, the goal is to find points along a grid with an offset from

the robot’s tip position in its local z-direction (Figure 5.8(b)).

(a)

(b)

Figure 5.8: (a) First motion planning goal is to find a configuration which allows the robot’s
tip to move in the tip’s local z-direction for 50 mm to reach the target. (b) The second motion
planning goal is to find a configuration where the robot’s tip can reach multiple points along a
grid, d is the distance between the tip of the robot and the grid’s plane, while l is the distance
between two points on the grid. xG,yG,zG show the global coordinate system, while xT ,yT ,zT

indicates the tip coordinate system.
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To achieve these motion planning goals, a modified version of RRT* algorithm [52] is applied to

generate a motion plan containing a sequence of stable configurations Π = (qstartq1..qkqgoal)

between starting position xstart with the corresponding qstart initial configuration and goal

position xgoal with the corresponding goal configuration qgoal . q1..qk are the generated con-

figurations between initial and goal configurations, while xi ∈ R3 is the corresponding tip

position of qi ∈ R4 configuration of the robot.

For finding a plan Π, we first build a tree Γ = (q1..qk), where each element (node) of Γ

is a valid configuration based on the stability affordance and constrained motion affordance

criteria. The algorithm has the following steps:

1. Generate new node: Generate a random configuration qrand in configuration space (C-

space). The random configuration is generated within the joints’ limits. Joint limits are

defined as:

• The translational joint inputs are required to be within the following range:

0 <= βi <= li, where βi is the translational input of the ith tube and li is the length

of the ith tube.

• Relative limits: The tubes cannot pass each other, therefore: β1 < β2.

2. Find nearest node: Find the nearest tip position xnearest in Γ to the generated configu-

ration xrand in work space (W-space).

3. Contraction: Create a new configuration qnew by moving qrand within a distance δ to

qnearest :

qnew = qnearest +δ ×w× (qrand −qnearest), (5.9)

where w is a 4×1 weighting vector.

4. Finding new parent: After qrand was moved closer to qnearest , find a parent node in Γ

within a distance δ to qnew where the cost of reaching qnew is lower through the new

parent node qparent than through qnearest .

5. Obstacle check: Check that there is no virtual obstacle within δobstalce to qnew. In such

a case, return to the first step.

6. Stability check: Check if qnew is a feasible solution according to the stability affordance

and constrained motion affordance criteria. If qnew is unstable, then add it to O as a

virtual obstacle and go back to the first step.

7. Adding new node: If qnew is stable and obstacle free then add qnew to Γ and do the

next step. Otherwise, go back to the first step.

8. Rewiring: After qnew was added to the tree, we go through the nodes in Γ and check if

qnew lowers the cost of reaching any of the existing nodes.

9. The above-mentioned steps are repeated until the specified goal is reached or the

maximum number of iterations is reached. If the goal is not achieved, this process is

repeated for another point from the list of entry points generated in phase 1.

The proposed planner is a modified version of RRT* with the following two differences:
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(1) We consider configurations where the stability and constrained motion affordances are not

optimal as virtual obstacles, and avoid traversing through these configurations. O = (O1..Ot)

where Oi ∈ R4 is the list of all configuration where C ≤ ε1 and γ2 ≤ ε3, where ε1 are ε3

hyperparameters.

(2) In general, applying the RRT* to CTRs is challenging due to the different joint types

(translational and rotational) with different units and magnitudes. As a result, step 2 and 3 in

the algorithm (i.e., finding the distance between two configurations in C-space) is challenging.

Therefore, the RRT* will almost certainly be biased toward using one type of actuation (rota-

tional or translational), preventing it from exploring W-space. In this regard, joint weights (w

in (5.9)) are applied in step 3 to prevent biasing toward rotational or translational movements.

In order to estimate w for a given configuration (qnearest ), each joint i is perturbed by a small

value (δα and δβ ). Next, the tip displacement for each perturbation is recorded (δxi). Finally,

w is calculated as

w =

[
δxmax

δx1
,
δxmax

δx2
,
δxmax

δx3
,
δxmax

δx4

]T

, (5.10)

where δxmax = max{δxi}, for i = 1, ··,4. w aims to normalize joint displacement during con-

traction to ensure that a unit change in each joint results in similar tip displacement, thus

avoiding bias toward one type of motion.

Figure 5.9 shows the result of the first two phases of the motion planner for two scenarios:

(i) moving on a straight line (green), (ii) scanning the tissue surface (blue). For insertion on

a line, the goal is to follow a 50 mm long straight line into the tissue. For achieving this the

hyperparameters were selected as ε1 = 44.7 and ε3 = 15 where ε1 was selected as the mean

of the stability affordance variable c for all generated configurations. For tissue scanning, the

goal was to track a mesh grid normal to the robot’s entry point with a 25 mm offset from the tip

position in the local z-direction. The mesh contains a 5 by 5 grid with 10 mm distance between

each point. The hyperparameters for this scenario were selected as ε1 = 44.7 and ε3 = 60.

Thresholds for constrained motion affordance were relaxed as for tissue scanning the robot

needs to be roughly perpendicular to the tissue compared to the insertion plan where the

robot needs to strictly follow a straight line.

Phase 2 of the planning goes through all feasible configurations generated in phase 1, until it

finds a path to the target. The output of this phase is the generated plan, ΠR, defined as a set

of configurations that guides the robot to the target, starting from a selected entry point xR
enter.

Of note, the entry point and the generated path are defined in the reference frame of the CTR,

i.e, robot’s base, denoted by R. However, it is assumed that the coordinates of the desired

entry point and path are pre-defined from medical images in a global frame of reference

as xG
t and ΠG. We can perform a rigid registration to transform the robot’s base to a new
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position to register the estimated entry point and the generated path to the global frame. For

this purpose, we can use classic point cloud registration algorithms, such as Iterative Closest

Point algorithm [95]. The algorithm accepts ΠR and ΠG as inputs to estimate the homogenous

transformation matrix that aligns the two cloud points T G
C . This process is shown in Figure 5.10

Figure 5.9: Two phases of motion planning. The first phase shows all the tip positions where
the movement in the tip z-direction is dominant. The second phase shows the reachable tip
positions for the two motion planning problems for selected entry points.

Robot Frame Transformed
Robot Frame

Global Frame

Figure 5.10: Transforming robot coordinate frame to ensure the generated plan and entry
point falls on the estimated target from pre-operative images.
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5.3.3 Phase 3: Generate a feasible trajectory from the robot’s initial configura-
tion to the selected entry configuration

The third phase of the motion planning aims to find an optimal trajectory that brings the robot

from any initial configuration to the transformed entry point. We use a similar RRT* algorithm

to phase 2. The algorithm is described in Algorithm 1.

The main difference between the algorithms in phase 2 and 3 is that the constrained motion

affordance conditions are relaxed in phase 3 as the robot will move in free space. Results

of the 3rd phase of the motion planner are shown in Figure 5.11 and Figure 5.12. In the

simulations, two random points inside the robot workspace were given as the initial robot

configuration and desired entry point.

(a) (b)

(c) (d)

Figure 5.11: Valid configurations starting from an initial position after a) 500, b) 2000, c)
4000 iterations and d) the selected path from the initial position to the final position through
consecutive, valid configurations.
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(a) (b)

(c) (d)

Figure 5.12: The results of the RRT* algorithm are presented. a) and c) show the generated
configurations of Γ and the selected path Π, while b) and d) show the desired trajectory Π

and actual trajectory with the hybrid controller described in Chapter 4.

Algorithm 1 RRT* algorithm for motion planning phase 3

while ∥qnew −qgoal∥< δ do
GenerateNewConfiguration()
FindNearestNode()
Contraction()
FindNewParent()
if IsObstacleFree then

if IsStable then
AddNewNode()
Rewire()

else
AddConfigurationToObstacles()

else
DiscardConfiguration()
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5.4 Experimental Results

To verify the performance of the proposed motion planner, a CTR with two tubes was used with

a 5-DOF Electromagnetic tracker (Aurora, NDI) attached to its tip. The mechanical parameters

of the CTR are detailed in Chapter 3 (Table 3.3). The Hybrid controller proposed in Chapter 4

was applied to steer the robot’s tip along pre-defined trajectories.

The motion planner and the controller were verified through the following three cases:

(S1) Robot following pre-defined trajectories in free-space: The robot’s tip is required to

follow a trajectory generated with the RRT* algorithm (phase 3) across its workspace.

(S2) Robot applied as a Steerable Needle: The robot is required to follow a straight trajectory

in its local z-direction. Using the first two phases of the proposed motion planner a

straight trajectory was generated with a desired initial configuration.

(S3) Needle-Based Optical Endomicroscopy: An optical fiber was attached to the CTR’s tip

providing feedback for the Versiclolour platform. The robot’s tip was required to reach

multiple points on a phantom tissue along a grid to provide an accurate image to the

Versicolour. An offset of 25 mm was applied to the grid in the z-direction from the tip’s

position. The space between grid points was set to 10 mm. It was necessary to reach

each point on the grid from a perpendicular direction to its plane. To achieve these

goals, the first two phases of the proposed motion planner were used.

Based on the results of the experiments, Table 5.1 summarizes the accuracy of the tip position

during deployment. Figure 5.13 illustrates representative results for the first scenario (S1) over

five trials. Based on the results, the robot’s tip is able to follow pre-defined trajectories across

the available workspace with a maximum mean error of 2.1 mm.

The results of the second scenario (S2) show that the CTR can be used as a steerable needle

following a pre-generated straight trajectory accurately while it is in constant contact with soft

tissue (Fig. 5.18). The experimental setup is shown in Fig. 5.14. It is important to note that

the initial configuration and trajectory are chosen using the first and second phases of the

proposed motion planner.

Table 5.1: Comparison of Error between desired and actual trajectories. emean is the average
error, σe is the standard deviation of the error, emax is the maximum error, and RMSE is the
root mean square error. The values are all in millimeters.

emean σe emax RMSE

S1: Path 2.071 0.950 5.179 0.796
S2: Line in Tissue 0.496 0.704 3.360 0.861

S3: Grid Scan 0.983 0.433 1.849 1.075
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Figure 5.13: Experimental results for the third scenario (S3): Robot is required to follow pre-
generated trajectories across robot’s workspace: a) case I, b) case II.

Figure 5.14: Experimental setup for the second scenario (S2). The tip of the robot is required
to follow a straight trajectory inside gelatin.
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(a) (b)

Figure 5.15: Simulation results using the first two phases of the proposed motion planner. (a)
making straight movement in the local z-direction (b) reaching multiple points along a grid.

As a final demonstration, we present the third scenario (S3), which illustrates the proposed

CTR’s capability to perform a grid scan during an endomicroscopic procedure (Fig. 5.17).

During this experiment, a fiber was attached to the tip of the CTR and connected to the

Versicolor providing feedback on the procedure. As Fig. 5.19 shows that the tip of the CTR

was able to follow the grid trajectory accurately. Figure 5.16(a) shows a typical image of the

Versicolour when the tip of the robot is in contact with gelatin, or it does not make any contact

and Fig. 5.16(b) shows when it makes contact with one of the stickers. The mean error during

the procedure was 0.983 mm. The initial configuration of the robot and the desired trajectory

were generated by the first two phases of the motion planner. Of note, the phantom tissue

was manually placed in the second (S2) and third (S3) experiments. Therefore, the third phase

of the motion planner has not been used.

These experimental results verify the proposed motion planner and provide evidence for the

potential use of CTRs in optical endomicroscopy and steerable needle applications.
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(a) (b)

Figure 5.16: (a) Normal image of the Versicolour, when the tip of the robot is in contact with
gelatin or it does not make any contact(b) The image of the Versicolour, when the tip of the
robot makes contact with the sticker. The Versicolour is set to show a completely dark image if
there is no contact with the target and a bright image when the target is found. The properties
of the Versicolour can be altered depending on the requirements.

Figure 5.17: Experimental setup for the third scenario (S3). A fiber is attached to the tip of the
robot to provide an image for the Versicolour. The robot is required to reach multiple points
along a grid. The goal of this experiment is to detect the stickers on the gelatin.
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Figure 5.18: Experimental results of the second experiment (S2). The robot is used as a
steerable needle, cutting through gelatin along a straight trajectory.

Figure 5.19: Results from the third experiment (S3). The robot is used for needle-based optical
endomicroscopy, reaching multiple points on a gelatin along a pre-defined grid, while a fiber
is attached to its tip providing feedback to the Versicolour platform.
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5.5 Concluding Remarks

Over the last decade, endomicroscopy has shown to be a promising tool for tissue character-

ization compared to traditional biopsy. Instead of taking a number of biopsies and examining

these with histology, an optical probe can be inserted into the patient and used to obtain high-

resolution images of the tissue in real-time. Despite the increased applications and growing

research interests in this area, the clinical application of endomicroscopy, however, is limited

to surface/near-surface imaging as reliable steerable technologies that can guide the probe

inside the tissue are not available. This study aims to overcome this, by proposing a solution for

the application of CTRs for needle-based optical endomicroscopy and as steerable needles. In

order to accomplish this, a fiber-based multicolour endomicroscopy platform called Versicolour

was combined with a CTR. Then, a three-phase motion planner was developed to generate

a motion plan for finding the ideal initial configuration for the robot for a given task and to

generate a desired trajectory to reach the target. The following factors were important during

the motion planning phase: moving perpendicular to the tissue, cutting with minimal force, and

avoiding singularities. Moreover, to achieve the required precision for real-life scenarios, the

previously proposed hybrid controller was applied. Finally, the proposed motion planner was

experimentally verified with a phantom tissue. Based on the experimental results, we demon-

strated that our proposed robotic platform is capable of achieving the following two tasks.

First, scanning a phantom tissue region, while searching for anomalies in fluorescent images,

simulating percutaneous lung biopsy. Second, accurately reaching a target deep inside a

phantom tissue at a relative depth of 50 mm. This enables performing a biopsy or targeting

cancerous lesions with needle-based ablation procedures to burn or freeze malignant cells.



Chapter 6

Extended Dynamic Mode

Decomposition (EDMD)

In Chapter 4, a hybrid approach was discussed for controlling CTRs across robot workspace.

Although the proposed controller achieves good accuracy, it still requires the kinematic model

as an input, which may not always be available. Therefore, in this chapter, the implementation

of a purely data-driven controller is explored to achieve the same goals. It is advantageous

to use a purely data-driven approach since it does not rely on the kinematic model, and it is

less sensitive to inaccurately identified parameters in the model and controller. The proposed

method is achieved by lifting the nonlinear system dynamics into a higher dimensional space

where its evolution is approximately linear. This relationship is described by the Koopman

operator, which is approximated by applying the Extended Dynamic Mode Decomposition

(EDMD). Consequently, this method uses joint positions as inputs and measured tip positions

as states, which are then lifted into a higher dimensional space.

The remainder of this chapter is organised as follows. Sections 6.1 presents the contribution

of this work. Then, Sections 6.2 details the proposed data-driven controller. In Sections 6.3,

an extensive simulation study is performed to tune the controller parameters. Experimental

evaluation of the controller and discussion of the results are presented in Section 6.4. Finally,

concluding remarks appear in Section 6.5.

The data-driven control method presented in this chapter has also been published [96].

While a video presentation of the experiments is available here:

https://doi.org/10.1109/LRA.2022.3231490/mm1
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6.1 Contribution

In this chapter, we aim to control the motion of a CTR with unknown dynamics in contact with

an unknown environment as shown in Fig. 6.1. The goal is to follow a desired trajectory without

having prior knowledge of the external forces acting on the robot or obstacles restricting

the robot’s motion. It is assumed that we can only measure the Cartesian coordinates of

the robot’s tip position using commercially available electromagnetic trackers (EMT). To this

end, we propose a data-driven method that overcomes the difficulties of the model-based

approaches, including predicting the effects of unknown external forces, the robot’s dynamics,

and unexpected disturbances that might happen in a real setting during the robot’s motion.

Additionally, the proposed controller requires only 250 samples to effectively learn the robot

dynamics, which is significantly less than previous learning-based algorithms. We study the

performance of the controller in extensive simulations and experiments. We consider a variety

of scenarios including the robot under external forces, the robot in contact with an obstacle,

and the robot cutting through phantom tissue, simulating percutaneous needle-based inter-

ventions. Our algorithm is available online.1

Figure 6.1: Illustration of a CTR with two tubes in contact with an obstacle and under external
forces. The actuation variables αi denotes the proximal base rotation of the ith tube, while βi

is the translation joint input of the ith tube.

6.2 Methodology

Here, we present a holistic approach to model the dynamics of a closed-loop controlled CTR.

We use several samples from the system to develop a linear state space model of the CTR,

i.e., a model that accepts joint inputs and measurements of the robot’s tip position over a

fixed period of time and predicts the future position of the robot’s tip. Each sample at time tk
contains the Cartesian coordinates of the robot’s end-effector position x and the robot control

inputs q = [β1 β2 α1 α2] at time tk. The proposed model is linear, however, it captures

the nonlinear dynamics of the robot and interaction forces. It is not linearizing the system in

the sense that it neglects higher-order nonlinear terms. Instead, it is transforming the robot’s

dynamics into a higher dimensional space, where the mapping between inputs and outputs

1. https://github.com/SIRGLab/CTR-EDMD.git
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is linear. This will reduce the system’s nonlinearity at the cost of increasing the system’s

dimensionality. In particular, rather than describing the evolution of a dynamical system’s

state directly, which may be a nonlinear mapping, the Koopman operator [97] is employed to

describe the evolution of continuous scalar-valued functions of the state. Koopman operator

has been previously proposed for data-driven modelling of nonlinear systems. A review of

Koopman applications in nonlinear control can be found in [98]. Later, we apply a numerical

approximation algorithm known as Extended Dynamic Mode Decomposition (EDMD) [99] to

discretize the linear system. EDMD is an efficient numerical method previously proposed for

reducing the dimensionality of linear systems [100]. The final model is a linear a dynamical

system that allows established linear control design methodologies to be used to design

controllers for the robot. Finally, we employ a linear model predictive controller that employs

the data-driven dynamic model to control the position of the CTR. A block diagram of the

proposed control strategy is shown in Fig. 6.2.

Concentric Tube
Robot

External Force

Electromagnetic 
Tracker

Tip Position

MPC
Desired
Trajectory

Optimal 
Control Inputs

Data-driven
Model

Future Robot
Trajectory

Figure 6.2: A block diagram of the proposed control strategy.

6.2.1 Data-driven Modelling via Dynamic Mode Decomposition

This section describes a data-driven approach for modelling the dynamics of a CTR as a

linear state space system. The basic idea is to lift (or embed) the nonlinear dynamics into

a higher dimensional space where its evolution is approximately linear. For this purpose, we

use a linear operator known as the Koopman operator. Later, we apply the Extended Dynamic

Mode Decomposition (EDMD) to compute a finite-dimensional approximation of the operator

to form an input/output discrete dynamical system representing the motion of the CTR.
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Without loss of generality, we assume the CTR is composed of two tubes. We can summarize

the dynamic behaviour of the CTR as

x+ = f (x,q), (6.1)

where x ∈ R3 is the state of the system representing the Cartesian coordinates of the robot’s

tip, q ∈ R4 are the 4 control inputs shown in Fig. 6.1, x+ is the successor state and f is the

dynamic transition mapping.

The Koopman operator is an infinite-dimensional and linear operator originally developed to

describe the evolution of nonlinear autonomous systems [97]. More specifically, it describes

the evolution of functions of the states of a nonlinear system. We call these functions of states

observables. To this end, we define a set of scalar-valued observables as a mapping

g(x,q) : R3 ×R4 → R, (6.2)

where g belongs to an infinite dimensional Hilbert space H [101]. Now, using the extension of

the Koopman operator it is possible to incorporate control inputs into the analysis. According

to this, the Koopman operator with inputs and control (KIC) can be used to capture the control

inputs’ effects on the system dynamics. It is defined as a linear operator K : H → H such

that

K g(x,q)≡ g( f (x,q),q+). (6.3)

Linear operators from Hilbert space to Hilbert space have associated eigenvalues and eigen-

functions, i.e.,

K φi(x,q) = λiφi(x,q), (6.4)

where φi is the ith eigenfunction and λi is the ith eigenvalue. Consequently, the observable

functions can be written as a linear combination of all the eigenfunctions (since they form a

basis)

g(x,q) =
∞

∑
i=1

φi(x,q)vi (6.5)

where vi is called the ith Koopman mode associated with the ith Koopman eigenfunction. In

what follows, we approximate the infinite-dimensional KIC system with a finite-dimensional

system of size N:

K g(x,q)≈
N

∑
i=1

λiφi(x,q)vi = Kg(x,q), (6.6)

where K denotes the linear map from the observables’ space to the finite-dimensional approx-

imation of the KIC’s resulting Hilbert space, which we call the lifted space.
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We compute this approximation to the Koopman operator using a method called extended

dynamic mode decomposition [100]. First, the observables are partitioned into functions of

the state Yx, input Yq, and both Yx,q

Y =

 Yx
Yq

Yx,q

=



g1(x,0)
...

gl(x,0)

gl+1(0,q)
...

gl+p(0,q)

gl+p+1(x,q)
...

gl+p+ j(x,q)



= g(x,q), (6.7)

where l, p, and j denote the number of basis functions used to estimate the states, inputs,

and input-output coupled dynamics, respectively. Applying the Koopman operator to the ob-

servables gives

Z =

 Zx

Zq

Zx,q

= g( f (x,q),q+) (6.8)

We want the EDMD approximation of KIC to be linear and affine. Therefore, we set Yx,q = 0.

Keeping Yx,q would result (in the simplest case) in a bilinear approximation to the dynamical

system. Predictors with bilinear form are not immediately suited for control design. Therefore,

we decide to set Yx,q = 0. This potentially reduces the model’s accuracy. However, this results

in a linear control system that is computationally more efficient. Additionally, we are not

concerned with the internal dynamics of the input, thus Zx,q =Zq = 0. We note that by definition

then Zx = Y+
x .

The choice of functions in Yx, Yq and Zx are a design choice. A common choice is polynomial

functions of varying order [102]. In this work, we set the state vector observables to be

Yx =
[

x1 x2 x3 x2
1 x2

2 x2
3 x2

1x2 x2
1x3 x2

2x1 x2
2x3 x2

3x1 x2
3x2

]T
(6.9)

and the input vector observables to be

Yq =
[

q1 q2 q3 q4

]T
=
[

β1 β2 α1 α2

]T
. (6.10)
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Assuming that we collect a dataset of tip positions and control inputs at m consecutive time
samples, we get

[
Z0 Z1 ... Zm

]
=
[

A B
][ Y 0

x Y 1
x ... Y m

x

Y 0
q Y 1

q ... Y m
q

]
(6.11)

where K =
[

A B
]
, superscripts 0, · · · ,m denote the time steps, with m commonly known

as the DMD horizon showing the number of samples used to estimate the linear model. The

elements of Zx,q are ignored here since we have set those to zero (as well as Yx,q). We note

that functions of states in Yx, Yq, and Zx are computed directly from the tip measurements

and control inputs. Now we can use the EDMD algorithm to estimate A and B. EDMD aims to

calculate A and B so that we arrive at the linear differential equation

Y+
x = AYx +BYq. (6.12)

Given the Datasets Z0,Z1, ...,Zm, Y 0
x ,Y

1
x , ...,Y

m
x , and Y 0

q ,Y
1
q , ...,Y

m
q , first we Construct an input

matrix

Y =
[

Yx Yq

]
=

[
Y 0

x Y 1
x ... Y m

x

Y 0
q Y 1

q ... Y m
q

]
, (6.13)

and an output matrix

Z =
[

Z0 Z1 ... Zm
]
. (6.14)

Next, we compute the singular value decomposition (SVD) of the input matrix and partition

the result into the first l rows associated with Yx and the next p rows associated with Yq.

Y =UΣV ∗ =

[
U1

U2

]
ΣV ∗. (6.15)

Where ∗ is the conjugate transpose of a matrix. Of note, ∗ is overloaded and here it does not

have the same meaning as in the model (3.1), where it denotes the initial curvature. Similarly,

we compute the SVD of the output matrix

Z = Û Σ̂V̂ ∗. (6.16)

Finally, we can estimate matrices A and B as

A = Û∗ZV Σ
−1U∗

1 Û

B = Û∗ZV Σ
−1U∗

2 .
(6.17)
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Fig. 6.3 summarizes the proposed modelling approach. The model given in (6.12) will accept

the m samples of input q and output x passed through the observables as Yq and Yx and

predicts the successor observable states Y+
x . We note that, based on (6.9), the first three

elements of Y+
x will be the predicted future output of the plant, i.e., xm+1. Additionally, the

rank of A describes the dimension of the lifted space (N in (6.6)) and is equal to the number

of state vector observables. Based on (6.9), N is equal to 12. One can always select more

observables to increase the model accuracy at the cost of reducing the EDMD’s computational

efficiency. In Section 6.3, simulations are performed to demonstrate that 12 observables are

sufficient for estimating the lifted space of the CTR.

Figure 6.3: A block diagram of the proposed data-driven modelling approach.
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6.2.2 Model Predictive Control

Here, we employ a model predictive control (MPC) algorithm that uses the linear data-driven

model of CTRs in (6.12) to steer the CTR over a pre-defined desired trajectory xd . The model

predictive controller aims to find the control inputs (q) to drive the states (x) to some reference

value over a fixed horizon by solving the following quadratic program:

minimize:
M

∑
i=1

(xi −xd
i)T Q(xi −xd

i)+qiT Rqi

with respect to: q

subject to:

Y+
x = AYx +BYq

qL < qi < qU .

(6.18)

where i = 1, · · · ,M denotes the time instant, M is the MPC horizon, Q and R are positive

definite matrices penalizing tracking error and the control inputs. qL and qU denote the upper

and lower limits of the joint inputs. In this work, we used the algorithm in [103] to solve the

MPC problem. The algorithm employs the Nesterov Accelerated Gradient method to rapidly

estimate the gradient of the cost function and improve the computational efficiency of the

MPC. The gradient is later used in a gradient descent algorithm for updating control variables

while minimising the cost function.

6.3 Simulation Study

In this section, we perform simulations to evaluate the performance of the proposed controller.

Simulation environment for the CTR is developed using the mathematical model of the CTR

presented in [60]. The robot is composed of two tubes. Mechanical characteristics of the robot

used in the simulations are the same as detailed in Section 3.5.1. These are the parameters

of an actual robot used in the experiments. The robot’s tip was steered to follow a square

trajectory with 20 mm base at a velocity of 1 mm/s.

In the first set of simulations of this square trajectory, we evaluated the effect of DMD horizon

(m) on the accuracy of the controller. Six different horizons ranging from 50 to 300 were

selected. To simulate the effects of noise in the sensory feedback, we added random Gaussian

noise with a standard deviation of 2 mm to the measured tip position. Results are summarized

in Fig. 6.4(a). Furthermore, we simulated a scenario where the robot’s tip’s Cartesian coor-

dinates are compared with only the first three states of the Lifted Space, which based on

(6.9) correspond to the robot tip coordinates. The robot is moved randomly and the DMD

horizon was set to 250. After the 250 samples, the robot tip position is compared with the
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first three states of the lifted space. We note that this is an open-loop simulation. The average

error measured over ten trials is 0.3 mm with a standard deviation of 0.1 mm. Based on these

results, we selected the DMD horizon m to be equal to 250 to be later used in the experiments,

as it was found to achieve the minimum error.

(a)

(b)

Figure 6.4: (a) Error bars comparing CTR’s tip position error with respect to the DMD Horizon.
Starting from the middle of the box, the line inside the box corresponds to the median error,
box ends indicate the 25th and 75th percentiles, and the ends of the dashed lines are the
maximum and minimum errors. (b) Error bars comparing CTR’s tip position error with respect
to the MPC Horizon.

In the next simulation, we evaluated the effects of MPC Horizon (M). Four different horizons

ranging from 3 to 15 sample times were selected. The result of trajectory tracking error for

various MPC horizons are shown in Fig. 6.4(b). The results did not show any significant

difference between the different horizons. We selected the largest horizon (i.e., 15). The

proposed data-driven approach accepts the system states, i.e, robot tip position, and cor-

responding control inputs for a fixed period of time (DMD horizon). Next, it develops a linear

map between control inputs and robot states in a higher dimensional space called the lifted

space. As shown in Fig. 6.4(a), an optimal number of 250 samples are sufficient to learn the

robot behaviour moving at a velocity of 1 mm/sec. We note that this is a continuous learning
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process. Therefore, a change in external disturbance will affect the robot states and the EDMD

has the ability to adapt quickly and update the model accordingly. However, if the robot is

moving too fast, the sampling frequency must be increased so that the model can capture the

rapidly varying dynamics of the system.

Figure 6.5: Tip position error with respect to sampling frequency and desired velocity. The
blue dots on the plot are the results from the simulations, the surface on the plot was fitted on
these points.

To investigate the effect of sampling frequency on the proposed model and controller, we

performed 16 trials; in each trial, the robot was asked to follow the same trajectory at velocities

of 0.5, 1, 1.5, and 2 mm/sec, with sampling frequencies varying from 10 to 40 Hz. We note

that the maximum sampling frequency of the electromagnetic tracking sensor used in the

experiment is 40 Hz. Therefore, we limit the sensor frequency in the simulations to 40 Hz.

Results are summarized in Fig. 6.5. The simulation demonstrates that the tracking error

generally increases with respect to sampling frequency and tip velocity. Moreover, it is evident

that the tracking error at higher velocities can be minimized by selecting a higher sampling

frequency. Based on this analysis, we selected 1 mm/s as the robot’s desired tip velocity and

40 Hz as the sampling frequency in our experiments.
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6.3.1 EDMD Generalization to a CTRs with 3 Tubes

To test the performance of the proposed algorithm on CTRs with 3 tubes, we carried out

two simulations. The parameters of the 3-tube CTR used in the simulations are detailed in

Chapter 3 (Table 3.3). The newly added tube has a curvature of 21.3, which is based on a real

robot discussed in [27].

Extending the proposed method to 3 tubes does not require any major changes in the lifting

functions. The only difference is that the number of control inputs for a 3-tube CTR is 6 instead

of 4. Control inputs in this case are three translational joint inputs and three rotational joint

inputs. Accordingly, we updated the input vector observables in 6.10 as follows

Yq =
[

q1 q2 q3 q4 q5 q6

]T
=
[

β1 β2 β3 α1 α2 α3

]T
. (6.19)

Two simulation studies were carried out. First, the robot’s tip was controlled to follow a square

trajectory with a base length of 20 mm. Next, the robot’s tip was steered to follow a circular

trajectory with a 30 mm radius. 2 mm Gaussian noise was added to the tip position to simulate

realistic sensory feedback. Results are shown in Fig. 6.6. The root mean squared error is 1.06

mm for the square trajectory and 1.27 mm for the circular trajectory. The results demonstrate

that the proposed controller provides similar performance to a CTR with 2 and 3 tubes.

Figure 6.6: Simulation results on a CTR with 3 tubes. (a) Tracking a square trajectory. (b)
Tracking a circular trajectory.
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6.3.2 Open-loop Control with EDMD

To verify the method and to provide a way for a better understanding of the model, an open-

loop control simulation study was carried out. We simulated a scenario where the robot’s tip’s

Cartesian coordinates are compared with only the first three states of the Lifted Space, which

are defined in (6.9). Based on this, the first three states correspond to the robot’s tip coordi-

nates. However, the proposed method models the robot’s behaviour in a lifted space, where

the input-output relationship is linear. Then, the robot is controlled in that space. Therefore,

the process of control and modelling is coupled. Additionally, the mapping between the robot

space and the lifted space is nonlinear. Therefore, comparing the lifted space with robot space

is not always feasible. For instance, the lifted space states include terms such as x2
1x2 and x2

3x2

with x ∈ R3 defined as Cartesian coordinates of robot tip.

Figure 6.7: A comparison between the robot tip position predicted by the data-driven model
and the simulated model. The robot inputs are generated randomly.

According to this, the robot is moved randomly, while the DMD horizon was set to 250. After

the 250 samples, the robot tip position is compared with the first three states of the lifted

space. We note that this is open-loop. The average error measured over ten trials was 0.3

mm. Representative results of the simulation are shown in the Fig. 6.7.
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6.4 Experiments and Discussions

Several experiments were performed to evaluate the performance of the proposed controller.

The experimental setup consists of a CTR with two tubes and a 5-DOF electromagnetic

tracker (Aurora, NDI) attached to its tip (Fig. 6.8(a)). Based on the manufacturer datasheet,

the electromagnetic tracker has a mean accuracy of 0.7 mm and a maximum error of 1.8 mm.

The controller was implemented in Robot Operating System (ROS) in C++ and tested on a

Desktop Computer with Intel(R) Core(TM) i9-12900K CPU processor and 32.0 GB of Memory.

(a)

(b) (c)

Figure 6.8: (a) Experimental setup. An electromagnetic tracker is placed at the tip of the robot
to measure the robot’s tip position. (b) Robot in contact with an obstacle. (c) 20 gram weight
is connected to the robot’s tip.

The following four scenarios were considered in the experiments:

(S1) Robot following a pre-defined trajectory in free space: The controller was tested on the

CTR in free space. The robot’s tip was steered to follow three different trajectories: (i) a

square trajectory with 20 mm base length, (ii) a circular trajectory with a 30 mm radius,

and (iii) a longer trajectory towards the edge of the robot’s workspace, which was given

as a sequence of equally distanced random points. 10 trials are performed for each

trajectory.
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(S2) Robot under unknown external forces: The controller was tested while a point load of

20 grams was applied at the tip of the robot (Fig. 6.8(c)). The controller is tasked to

follow a square trajectory with 20 mm base length. 10 trials are performed.

(S3) Robot in the presence of an obstacle: The robot’s tip was steered to follow a sequence

of points while a fixed obstacle was obstructing the robot’s motion (Fig. 6.8(b)).

(S4) Robot in contact with phantom tissue: The robot was required to perform multiple tasks

while it was in contact with a phantom tissue.

Based on the simulation study presented in Section 6.3, the sampling frequency and the

desired tip velocity in all the scenarios were selected as 40 Hz and 1 mm/sec, respectively. In

addition to this, we selected the MPC parameters Q = 5×107I, and R = I. The MPC horizon

was set to 15. The DMD horizon was set to 250 as well. Prior to the experiments, the robot’s

joint inputs were altered randomly for 10 seconds, while the corresponding tip positions were

recorded. This data set was used to initialize the data-driven model.

Representative results of the trajectory tracking in the first scenario (S1) are shown in Fig. 6.9(a-

c). The proposed data-driven algorithm is capable of following various trajectories with high

accuracy. The mean tracking error and standard deviation of error are reported in Table 6.1.

In the second scenario (S2), a weight of 20 grams was attached to the robot’s tip. Of note, the

20 gram weight at the tip of the CTR causes a significant change in the CTR’s shape and tip

position as shown in Fig. 6.8(c). The controller was able to adapt to these changes without

any prior knowledge of the weight and accurately follow the desired trajectory (Fig. 6.10).

The mean error and the standard deviation of the error over 10 trials are 1.7 mm and 2 mm,

respectively.

Table 6.1: Comparison of Error between desired and actual trajectories. The mean error and
the standard deviation of error are reported over 10 trials. The values are all in millimeters.

Scenario S1 Scenario S2

Trajectory Square Circular Point series Square with weight
Mean error 1.40 0.748 2.40 2.00

std 0.97 0.450 1.70 1.70
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Figure 6.9: Representative experimental results for trajectory tracking in the 1st scenario (S1).
(a) Square Trajectory. (b) Circular Trajectory. (c) A long trajectory towards the edge of the
robot’s workspace.

In the third scenario (S3), the robot was tasked to follow several target points while it was

in continuous contact with an obstacle. The target positions were selected to be at least 1

cm apart. The controller stops once it reaches the vicinity of the target and the error becomes

less than 2 mm. This value was selected based on the accuracy of the electromagnetic sensor

(1.8 mm). Results are shown in Fig. 6.11. In all cases, the robot was able to reach the desired

target positions with a maximum error of 2 mm.
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Figure 6.10: Result for the second experimental scenario (S2), a 20g weight is attached to the
robot’s tip while it’s following a square trajectory. (a) Robot tip trajectory. (b) Tracking error.

(a)

(b)

Figure 6.11: Experimental results for the 3rd scenario (S3). The CTR is tasked to reach several
target points shown by red circles while it is in contact with an unknown obstacle.
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In the fourth scenario (S4), the robot was navigated in the presence of a phantom tissue. We

simulated two clinical scenarios. The first case study simulated percutaneous needle-based

interventions such as prostate brachytherapy, where a needle is steered on a straight line to

reach a deeply nested target in soft tissue [104]. The targets were selected inside the tissue

within the robot’s workspace, 65 mm from the entry point (Fig. 6.12(b)).

The 2nd case study simulates percutaneous lung biopsy, where a needle is inserted through

the skin, puncturing the pleura to reach the peripheral lung for sampling. Commonly, multiple

incisions are used to reach multiple suspicious areas. Here, the robot is tasked to cut through a

phantom tissue with a 25 mm thickness, simulating skin and pleura. Later it is tasked to reach

6 different points spread across its workspace from the same point of entry. We demonstrate

that we can reach multiple sites via a single entry point (Fig. 6.12(b)). The phantom tissue in

all the case studies is made following the recipe given in [105]. The tissue is made by mixing

bovine gelatin powder with water at a temperature of 70◦C. The weight ratio of gelatin-to-water

in the mixture is 18% and the tissue’s Young’s modulus of elasticity was estimated to be 59

kPa. The elasticity of the synthetic tissues is similar to what is found in animal tissue. Although

navigating the CTR inside a soft tissue is particularly challenging, the first case study shows

that the robot is able to move along its tip direction following a straight line with a length of

65 mm inside the tissue (Fig. 6.12(a)). Figure 6.12(c) shows a representative result from this

experiment. Over five insertions, the mean error of following the straight trajectory was 1.75

mm. As demonstrated by the second experiment, the robot’s tip can reach target locations in

different directions within its workspace despite making continuous contact with soft tissue.

The robot was able to move its tip within 2 mm of the target in all 6 cases. (Fig. 6.12(d)).
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(a) (b)

(c)

(d)

Figure 6.12: Experimental setup and results for the fourth scenario (S4) (a) Robot’s tip
following a straight line while cutting through phantom tissue. (b) The robot cuts through the
tissue to reach multiple target positions. (c) Results for robot cutting tissue along a straight
line. (b) Results for robot’s tip reaching 6 different target positions after cutting through tissue.
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6.5 Concluding Remarks

In this chapter, we introduced a data-driven control strategy for the autonomous steering of

CTRs. The control strategy relies only on a limited data set and is capable of rapidly adapting

to the robot’s nonlinear dynamics resulting in fast and accurate convergence. We studied

the performance of the controller in extensive simulations and experiments. We considered

a variety of scenarios, including the robot under external forces and the robot in contact

with an obstacle. The proposed controller was capable of following a variety of trajectories

within the robot’s workspace with a maximum mean error of 2.4 mm at a frequency of 40

Hz and a velocity of 1 mm/s. Additionally, the controller was capable of steering the robot in

the presence of unknown obstacles with a maximum error of 2 mm. Future work focuses on

experimentally validating the proposed approach on CTRs with 3 tubes and investigating the

application of the EDMD for controlling the robot’s orientation in surgical tasks requiring higher

dexterity.



Chapter 7

Conclusion

7.1 Summary

The main goal of this thesis was to investigate the use of CTRs as novel alternatives to

needle-based interventions such as percutaneous lung biopsy. CTR is a unique type of robot

that is well-suited for medical applications due to its small footprint and high level of dexterity.

In recent years, CTRs have been proposed for a variety of minimally invasive surgical pro-

cedures. However, precise motion control in the presence of unknown interactions limits their

application. Motivated by this, we explored data-driven control strategies for CTRs to achieve

precise motion control within the context of distal lung sampling.

The conventional way to control CTRs is by solving their inverse kinematics based on their

kinematic model. This approach has a couple of drawbacks. First, it is computationally ex-

pensive because it requires solving a set of differential equations with boundary conditions

in order to obtain the robot’s shape. Second, model-based solvers have difficulty adapting to

unknown forces and uncertainties in the system. To overcome these difficulties, data-driven

controllers are explored. Accordingly, two data-driven approaches are implemented: one that

partly relies on the kinematic model, and one that is purely data-driven.

To test different control strategies without the need for physical experiments, a simulation

environment is essential, where the computational cost of the kinematic model is crucial.

Consequently, the first part of the thesis focuses on implementing the simulation environment

and improving the kinematic model’s computational efficiency. Two different approaches were

taken to improve the kinematic model’s performance. First, a nonlinear observer was proposed

that can rapidly estimate a rod’s shape without solving a boundary value problem. Second,

approximations and optimizations were applied to the kinematic model in order to reduce its

computational cost without compromising the accuracy of the model.

The second part of the thesis concentrates on data-driven control methods to provide accurate

position control for CTRs in the presence of unknown interactions. Accordingly, two data-

driven solutions are implemented. In the first approach, the model-based Jacobian is used

as an initial input, and then it is updated in a similar manner to Broyden’s method. This

combines the advantages of model-based and data-driven control strategies. In the second

100
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approach, Extended Dynamic Mode Decomposition (EDMD) is applied to approximate the

Koopman operator. This holistic approach captures the nonlinear dynamics of the robot and

its interactions with the environment. This purely data-driven approach allows accurate real-

time control of the robot without the need for any prior knowledge of its model.

Finally, potential applications of CTRs are discussed in the context of needle-based interven-

tions. Our results demonstrate that CTRs can be used as steerable needles and are suitable

for Needle-Based Optical Endomicroscopy. To achieve these goals, a three-phase motion

planner is proposed to determine the optimal entry point for a given task and to generate a

stable path from the starting configuration to the entry point and then from the entry point to

the target position.

7.2 Contributions

7.2.1 1st contribution: computational improvements to the kinematic model of
CTRs

According to the conventional approach, CTRs are modelled using the Cosserat rod theory.

The Cosserat model contains a set of differential equations with boundary conditions split

between the base and the tip of the rod. Boundary Value Problems (BVPs) must therefore be

numerically solved, which can be a computationally expensive task. It has been demonstrated

that it is possible to implement fast-enough solutions to the Cosserat model to control con-

tinuum robots. In spite of this, the computational cost of the model affects the performance

and stability of model-based controllers. Consequently, less accurate models with low compu-

tational costs remain more appealing [69], [70]. Accordingly, the first contribution of the work

is the creation of a computationally efficient simulation framework for CTRs. To achieve this,

two different approaches are taken. The goal in both cases is to improve the computational

efficiency of the kinematic model. First, a nonlinear observer is introduced to estimate the

shape of the robot. Second, the existing model is implemented in C++ using approximations

and optimizations. Both of the proposed solutions can be used to implement a real-time control

system with conventional model-based controllers for CTRs with 2 tubes.

7.2.2 2nd contribution: achieving precise position control in unknown
environments using data-driven approaches

The second contribution of this work is achieving precise position control of CTRs in the

presence of unknown obstacles and uncertainties in the system. The Cosserat model has an

accuracy of approximately 9% of the robot’s length. This error can be attributed to uncertain-

ties in model parameters as well as neglecting torsion, shear strain, and friction. Additionally,
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during minimally invasive surgery, the robot’s body is constantly in contact with the surround-

ing environment. These unknown interactions cannot be taken into account by the kinematic

model. Consequently, CTR control requires a controller that can adapt to unmodelled inter-

action forces and uncertainties in the system. To address the above challenges, we propose

two data-driven solutions: a hybrid controller and a controller utilizing EDMD. Both of the

controllers are capable of adapting to unknown external forces and providing real-time control

for CTRs with 2 and 3 tubes.

7.2.3 3rd contribution: demonstration of potential applications of CTRs
in distal lung sampling via a three-phase motion planner

Finally, the thesis proposes potential applications of CTRs for distal lung sampling. Two po-

tential applications are identified: using the robot as a steerable needle and performing optical

endomicroscopy. Each application requires the tip of the robot to perform a movement in the

direction in which its tip is pointing (local z-direction). In order to achieve this, a three-phase

motion planner is introduced. During the first phase of the motion plan, all possible entry points

for a given task are generated. Then, the second phase selects the most suitable entry point

from the first phase, and a stable path between the selected configuration and the target is

generated. Finally, the third phase generates a trajectory from the initial configuration to the

entry point. These are done by the modified RRT* algorithm. As a final step experiments with

phantom tissue are conducted to confirm the proposed applications.

7.3 Discussion

7.3.1 Data-driven Control Methods

There is a significant challenge in controlling CTRs, which is one of their main limitations. Due

to the nonlinear dynamics of CTRs and unknown external forces in the system, model-based

solutions are computationally expensive and have difficulty achieving precise position control.

Contrary to model-based solutions, Machine Learning (ML) methods offer the potential to

overcome these limitations. However, most machine learning methods require large datasets.

One example is the training of a deep neural network on a dataset of 100000 samples to

learn the inverse kinematics of CTRs [46]. Unfortunately, it is often not feasible to collect large

datasets of real robots, while the use of a simulation dataset for training does not guarantee

satisfactory performance on real robots [47] mainly because it is difficult to simulate the robot’s

behaviour in contact with the environment or external forces in simulation. Consequently,

previous works on this topic [46], [106], [45] have not been applied to the control of real

CTRs and are tested only in simulations.
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Since neither the model-based nor the learning-based approaches have provided satisfactory

results, we decided to investigate possible data-driven approaches to achieve precise position

control for CTRs. The difficulties mentioned above can be overcome by data-driven controllers

that have the ability to adapt to the complex dynamics of the robot and its interactions with

the environment in real time. Consequently, Chapter 4 proposes a hybrid control approach

that combines the advantages of model-based and data-driven approaches. Then, a purely

data-driven solution is proposed in Chapter 6. In the following section, we compare the exper-

imental results of these control approaches.

7.3.2 Comparison of Data-driven Approaches

The hybrid controller receives the model-based prediction of the robot’s differential kinematics

and updates the Jacobian iteratively based on the feedback of the tip position received from

the electromagnetic sensor. As the controller relies on the robot model, it first requires a

system identification experiment to identify model parameters accurately, namely Young’s and

shear moduli of the tubes.

First, the EDMD accepts the system states and corresponding control inputs for a fixed

period of time called DMD horizon. Next, it develops a linear map between control inputs and

robot states in a higher dimensional space called lifted space. Finally, the robot’s trajectory

is controlled in this lifted space. We note that this is a continuous learning process. For

instance, for a DMD horizon of 250 samples, at any given time instant the algorithm employs

the previous 250 samples to predict the robot motion in the next sample time. Therefore, a

change in external forces will affect the tip position, and the EDMD has the ability to adapt

quickly and update the model accordingly. The proposed work is not linearizing the system in

the sense that it neglects higher-order nonlinear terms. Instead, it is transforming the robot’s

dynamics into a higher dimensional space, where the mapping between inputs and outputs

is linear. This will reduce the system’s nonlinearity at the cost of increasing the system’s

dimensionality. Later, it is shown that the lifted space can be spanned by a set of orthonormal

basis functions. The proposed EDMD approach estimates the basis functions to represent the

lifted space as a linear state-space model suitable for model predictive control.

In order to compare the hybrid method with the EDMD, the following factors were taken into

consideration: accuracy, computation time, learning curve, reliance on the kinematic model,

and extendability to three tubes. Using either method, one can achieve accurate position

control with a short learning curve, and it is possible to employ both methods on CTRs with

three tubes. Fig. 7.1 shows a comparison between the tracking error of the hybrid controller

and the controller using EDMD. As it can be seen, both controllers offer similar performance.

Of note, in contrast to the hybrid controller, the proposed data-driven controller does not

require any information from the model. Thus, obviating the need for modelling the robot

and system identification with stereo cameras. Therefore, the proposed EDMD controller can
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Figure 7.1: A comparison between the error of the proposed data-driven controller (blue
line) and a hybrid controller (red line). (a) Following a square trajectory. (b) Following a long
trajectory to the limits of robot workspace.

be deployed on any arbitrary CTR. In both cases, it takes less than 10 seconds to learn the

robot’s behaviour locally. A major advantage of the EDMD method is that it does not require an

initial guess, whereas the hybrid method may not converge if the initial Jacobian is incorrect.

The computational cost of the hybrid method is lower than that of the EDMD due to working

with smaller matrices. The hybrid approach requires the pseudo-inverse of a 3x4 or 3x6 matrix

depending on the number of tubes, while EDMD requires the singular value decomposition of

a 16x250 or 18x250 matrix.

As a result, the EDMD represents a more advanced method that is capable of achieving similar

results to the hybrid approach without the need to have any knowledge of the underlying

system. Thus, it is a particularly attractive method for various continuum robot applications.

The hybrid approach, on the other hand, is capable of providing similar accuracy, but it relies

on the kinematic model and requires more tuning and parameterization compared to EDMD.

It is important to emphasize that the electromagnetic sensor has a position accuracy of 0.7

RMS (mm) with a maximum error of 1.8 mm. Thus, the tip position error is primarily caused by

the inaccuracy of the sensor. In addition to this, the axes of the figures in this work often have

different scales. According to this, both methods can achieve a very good accuracy, which

can hardly be improved without increased computational cost or without changing the robot’s

design.
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7.3.3 Distal Lung Sampling with CTRs

By utilizing the proposed data-driven control approaches, the challenges of using CTRs in

constrained environments can be overcome, even if the robot is constantly in contact with

its environment. As a result of these advancements, CTRs can become more appealing in

minimally invasive surgeries. Thus, we examined the potential applications of CTRs in distal

lung sampling. Accordingly, two potential applications for CTRs have been identified, namely

optical endomicroscopy and steerable needles. Unfortunately, CTRs have limited workspace

and are unstable in many configurations. Furthermore, it is also critical to move the robot’s tip

in its tip direction (local z-direction). Consequently, the application of CTRs in these scenarios

requires a motion planner on top of the position controller. Therefore, we proposed a three-

phase motion planner where the first phase generates all possible entry points (configurations)

where movement in the local z-direction is possible. Then, from the generated entry points,

the second phase selects the most suitable configuration for a specific task and provides a

stable trajectory for the procedure. Following this, phase three generates a trajectory from the

initial robot configuration to the selected entry point. Finally, the generated motion plans are

experimentally verified using phantom tissues.

7.4 Future Directions

In this study, we demonstrated that CTRs can be used for optical endomicroscopy and as

steerable needles. We achieved this by proposing data-driven control strategies and a three-

phase motion planner. The proposed data-driven methods have the potential to overcome

existing challenges associated with accurate position control of CTRs. Furthermore, the three-

phase motion planner can provide motion plans for specific procedures. Although the results

of this study are promising, there are still several challenges that can be addressed in order

to make CTRs even more effective.

7.4.1 Pose Control of CTRs

A limitation of the proposed control strategies is that they do not take into account the orienta-

tion of the robot’s tip. CTRs are commonly used as steerable needles to reach specific target

points inside the body for therapeutic or diagnostic purposes. Although obtaining the desired

target point is sufficient for these applications, achieving pose control would be of significant

benefit and would extend the potential use of CTRs in minimally invasive surgery.

The CTR described in this work has 4 control inputs, two rotational and two translational

inputs. With only four inputs, it is not always possible to control the robot’s position and

orientation (6 DoF). Even for CTRs with 3 tubes (6 inputs), accurate control of robot position

and orientation at the same time is not always achievable, as the robot workspace contains
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several singularities. One approach to overcome this problem is to use a specific tool with

an articulated wrist that offers accurate orientation control [107]. As a result, the process of

controlling the robot’s Cartesian coordinates is decoupled from the process of controlling its

orientation. Another approach would require the combination of complex robot design and

advanced motion planning. In this case the robot design would optimize the robot parameters

for specific applications while the motion planner would generate a feasible trajectory for the

robot.

7.4.2 Experiments on a CTR with 3 Tubes

Throughout this work, simulations were carried out for CTRs with 3 tubes, but experiments

were conducted only on CTRs with 2 tubes. Part of the reason for this is that the applications

for CTRs suggested in Chapter 5 do not necessarily require a CTR with three tubes. Moreover,

time constraints prevented us from carrying out experiments on CTRs with 3 tubes. Therefore,

our future research will include testing data-driven control strategies and motion planners on

CTRs with 3 tubes. In general, it is more challenging to control CTRs with 3 tubes; the number

of unstable configurations and computation time increases with the number of tubes. In spite of

this, the simulation results are promising; both data-driven strategies have been successfully

extended to 3 tubes.

7.4.3 Including the Shape of the Robot to Position and Motion Control

To achieve data-driven control and motion planning, only the tip position of the robot was

considered in this work. The performance of the data-driven methods may be further improved

by including more points along the shape of the robot in the feedback loop. On top of this, the

motion planner could generate more realistic trajectories by taking the shape of the robot into

account.
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[99] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koopman

operator meets model predictive control,” Automatica, vol. 93, pp. 149–160, 2018.

[100] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data–driven approximation of the

koopman operator: Extending dynamic mode decomposition,” J. of Nonlinear Science,

vol. 25, no. 6, pp. 1307–1346, 2015.

[101] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Generalizing koopman theory to allow for

inputs and control,” SIAM Journal on Applied Dynamical Systems, vol. 17, no. 1, pp.

909–930, 2018.

[102] P. J. L., B. S. L., and J. N. Kutz, “Dynamic mode decomposition with control,” SIAM

Journal on Applied Dynamical Systems, vol. 15, no. 1, pp. 142–161, 2016.

[103] M. Kögel and R. Findeisen, “A fast gradient method for embedded linear predictive

control,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 1362–1367, 2011, 18th IFAC

World Congress.

[104] M. Khadem and et al., “Robotics-assisted needle steering around anatomical obstacles

using notched steerable needles,” IEEE J. Biomedical and Health Informatics, pp. 1–1,

2017.

[105] M. Khadem, C. Rossa, N. Usmani, R. S. Sloboda, and M. Tavakoli, “A two-body

rigid/flexible model of needle steering dynamics in soft tissue,” IEEE/ASME Trans. on

Mechatronics, vol. 21, no. 5, pp. 2352–2364, 2016.

[106] K. Iyengar and D. Stoyanov, “Deep reinforcement learning for concentric tube robot

control with a goal-based curriculum,” in IEEE Int. Conf. on Robotics and Automation,

2021, pp. 1459–1465.

[107] P. A. York, P. J. Swaney, H. B. Gilbert, and R. J. Webster, 3rd, “A wrist for Needle-Sized

surgical robots,” IEEE Int Conf Robot Autom, vol. 2015, pp. 1776–1781, May 2015.


	Cover Sheet.pdf
	PhD_Thesis_Final (2).pdf
	Abstract
	Lay Summary
	Acknowledgements
	Declaration
	Figures and Tables
	Introduction
	Motivation
	Problem Formulation
	Computational Improvements to the Kinematic Model
	Data-driven Control of CTRs
	Motion Plan for Minimally Invasive Procedures

	Thesis Statement
	Outline of Contributions


	Background
	Continuum Robotics
	Concentric Tube Robots
	Position Control of CTRs
	Model-based Control
	Learning-based Control

	Motion Control of CTRs

	Real-Time Implementation of the CTR Model
	Review of the CTR model
	Cosserat Model for a Single Rod
	Cosserat Model for a CTR

	Computational Improvements of the Kinematic Model
	Rapid Solution of Cosserat Rod Equations
	Refined Cosserat Rod Equations
	Methodology
	Generalized Observable Cosserat Model
	Observer Design
	Implementation
	Simulation Study
	Concluding Remarks

	Implementation of the Kinematic Model In C++
	Experimental Setup
	Identifying Model Parameters

	Performance of the Implemented Kinematic Model
	Performance Comparison and Discussion

	Conclusion

	Hybrid Data-driven Model-guided Control
	Introduction
	Problem Statement
	Methodology
	Model-based Jacobian in Free-space
	Data-driven Jacobian for Free and Constrained Motions
	Hybrid Dual Jacobian
	Motion Control of CTRs

	Simulation Studies
	Results and Discussion
	Experimental Verification
	Control Architecture Modifications
	Experimental Results

	Conclusion

	Robotics-assisted Optical Biopsy
	Introduction
	Affordance-aware Motion Planning
	CTR Affordance for Endomicroscopy
	Dexterity Affordance
	Stability Affordance
	Constrained Motion Affordance

	3-Phase Motion Planner
	Phase 1: Identify ideal starting configurations
	Phase 2: Select the best starting configuration from Phase 1 and generate a feasible trajectory for a given task
	Phase 3: Generate a feasible trajectory from the robot's initial configuration to the selected entry configuration

	Experimental Results
	Concluding Remarks

	Extended Dynamic Mode Decomposition (EDMD)
	Contribution
	Methodology
	Data-driven Modelling via Dynamic Mode Decomposition
	Model Predictive Control

	Simulation Study
	EDMD Generalization to a CTRs with 3 Tubes
	Open-loop Control with EDMD

	Experiments and Discussions
	Concluding Remarks

	Conclusion
	Summary
	Contributions
	1st contribution: computational improvements to the kinematic model of CTRs
	2nd contribution: achieving precise position control in unknown environments using data-driven approaches
	3rd contribution: demonstration of potential applications of CTRs in distal lung sampling via a three-phase motion planner

	Discussion
	Data-driven Control Methods
	Comparison of Data-driven Approaches
	Distal Lung Sampling with CTRs

	Future Directions
	Pose Control of CTRs
	Experiments on a CTR with 3 Tubes
	Including the Shape of the Robot to Position and Motion Control


	Bibliography




