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Abstract

This thesis presents a mechanised formalisation of key concepts and properties of

Meek’s method of Single Transferable Vote (STV). This method is currently in use

in a number of local elections in New Zealand, the Royal Statistical Society, and even

the Stack Exchange network. Using a formal approach, we show that the iterative so-

lution to the surplus transfer round of Meek’s method converges to a unique and valid

solution, and connect a functional implementation of its key components to a more

abstract and generalised proof.

Along the way, we consider and address issues present in existing pen-and-paper

proofs, and discuss a general representation of strict ballots suitable for the proof pat-

terns encountered in our formal development and for the implementation of Meek’s

method.

We believe that this work pushes the boundaries of interactive theorem proving for

the formal verification of voting algorithms, and offers multiple promising avenues for

further work on formally verifying the correctness and termination of STV methods in

Isabelle/HOL.
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2 Chapter 1. Introduction

The 17th of December 2019 marked the 200-year anniversary of Single Transfer-

able Vote (STV), when Thomas Wright Hill, grandfather of STV and member of the

Birmingham Society for Literary and Scientific Improvement, had his system used in

one of their internal elections. He had this to say of it:

“to secure (as nearly as possible) an accurate representation of the
whole body ... because experience proves that, owing to imperfect meth-
ods of choosing those who are to direct the affairs of a society, the whole
sway sometimes gets into the hands of a small party; and is exercised, per-
haps unconsciously, in a way that renders many persons indifferent, and
alienates others, until all becomes listlessness, decay, and dissolution.”

– Thomas Wright Hill (1819)

A little over 148 years later, on the 21st of February 1968, Brian Lawrence Meek

proposed what he regarded, and many others still regard, to be a principled and optimal

method for STV. David Hill, the great-great-great grandson of T. W. Hill, wrote the

open-source code1 to be used for New Zealand’s implementation of Meek’s method of

STV, the first implementation of the method we are aware of, and he was a collaborator

on the paper which contained the proof of its correctness by Douglas Robert Woodall

[41].

Nowadays, the numerous variants of STV, and their various hand- and computer-

counting procedures, are used across the world e.g. for the elections in countries such

as Scotland, Australia, Ireland and Malta. Meek’s method in particular sees use in New

Zealand, the Royal Statistical Society, and even the Stack Exchange Network. While

the purpose of this thesis is not to argue in favour of this or that system, the timeliness

of formal verification research in this area is clear. We hope that this work, along with

a few recent ones, will encourage the theorem proving community to contribute to the

task, and by its 250th anniversary, perhaps the whole STV family in all their aspects

will have been raised to a solid, verified, general foundations and a suite of canonical

implementations.

The whole process of elections is, on a sufficiently large scale, a critical system

with relatively serious consequences for error. If ballots are lost, misinterpreted, or

miscounted on anything beyond a very small scale, the repercussions may be quite

dire for the trust of the electorate, for the time and man-power wasted and then needed

to rectify it, for the finances and reputation of the election authority, and for the repu-

tation of the elected body and the organisation under its governance (e.g. the national

1Available to read on Amazon Kindle since 27th April 2019: “Meek method STV code of Dr David
Hill: (New Zealand rules)”.
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government). Clearly, high confidence in correctness and security should be pursued

to the greatest extent possible.

In the current work, the main tool for doing so will be interactive theorem prov-

ing, a discipline which combines the power and convenience of automated theorem

proving, whereby the validity of a statement in a logical language is determined auto-

matically, with the creativity and general applicability of human reasoning.

We present a framework for verifying the fundamental properties of Meek’s method

for STV, focusing largely on the most complicated component: the surplus transfer

round. In doing so, through the substantial development of novel representations and

lemmas, we make a significant contribution to the formalisation of this class of voting

algorithms. We also provide an implementation of the method and a simple verification

of the elimination round. Thus far, existing work on the verification of STV methods

has not ventured beyond the verification of the traditional hand-counting methods or

the more difficult to hand-count – hence often computer-counted – methods used in

Australia and Scotland. The latter do not carry the difficulty that comes with Meek’s

method’s so-called surplus transfer round and its process of iterative convergence (see

Section 1.1.1 for an overview). In this work, we formally prove that this process con-

verges to a unique and valid solution, and connect a functional implementation of

Meek’s method to these results.

1.1 An overview of Single Transferable Vote

All STV methods emphasise proportionality and elect to multiple seats. Meek’s method

(see Section 1.1.1) additionally emphasises the equal treatment of ballots, minimising

wasted votes (explained shortly), and does not include any modifications to help hand-

counting. STV methods use ranked-ballot voting and are employed for elections with

more than one available seat.2 A voter fills out a ballot by writing 1 next to their most-

preferred candidate, 2 to their second-most preferred candidate, and so on. We refer

to a ballot (formalised in Section 4.2) when we want to emphasise the ranking (for-

malised in Section 4.8), and refer to a vote or votes or ballot mass when we want to

emphasise it as an amount which is given to a candidate.

A ballot becomes non-transferable (or “exhausted”) if it is currently assigned to the

lowest-ranked candidate and is selected for potential transfer, e.g. a ballot listing abc

2STV reduces to Instant Runoff Voting aka Alternative Vote when there is only one seat, which while
for good reason is usually considered conceptually distinct from STV is technically subsumed by STV.
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that has already been transferred from a to b to c.3 Such votes are no longer assigned

to any candidate. The total number of exhausted votes is called the excess.

STV proceeds in rounds, with the first one – round 0 – being the initial allocation

of votes according to first preferences. Candidates are declared elected if their total

number of votes reaches (i.e. meets or exceeds) the quota. We will write Vc(st(i)) to

denote the total number of votes candidate c has, given some state st(i) at round i. The

state may just directly store the current mass of votes each candidate has, or, as we will

soon see, may be something more basic like a vector of real numbers associated with

each candidate from which the votes they each receive can be derived. We will write

Q to denote the quota, which is a specific number usually calculated at the start of the

method based on the number of seats S and total number of votes T .

In most methods the quota is static i.e. it remains the same throughout taking no

account of the excess, e.g. Q = T/(S+1). Because of this, if at any round some votes

are exhausted, one may not have enough votes “in circulation” – meaning the sum of

all votes currently assigned to candidates excluding the excess – for S candidates to

meet the quota. This often happens, and when it does one eliminates candidates until

S candidates are left and those left are taken as being elected whether they reach the

quota or not. Candidates neither eliminated nor elected are called hopeful.

When the quota is not static, it is instead given by e.g. Q(st(i)) = T−E(st(i))
S+1 , where

E(st(i)) is the excess at round i. Here T −E(st(i)) is the “votes in circulation” at some

given round i. In contrast with quotas that do not change, we call this a dynamic quota,

and hence write Q(st(i)) or simply Q(st) for some arbitrary state. As far as we know

Meek’s method4 is one of only a couple of STV methods that use a dynamic quota.

We will not remark on the relative merits of different quotas here, and simply note that

Meek’s method uses the dynamic quota with the most commonly used denominator

S+1.

A generic presentation of STV methods5 is presented in Algorithm 1, with the rep-

resentation of the state, the surplus transfer round (Line 6), and the elimination round
3Note that lowest-ranked in the context of voting means the candidate given the highest numerical

value on the ballot. So if I mark abc with ranks 1, 2, and 3, c is lowest-ranked. In other words, one
should view ranks as ordinals rather than cardinals.

4Warren’s method [78], which modifies the state-update method used in Meek’s method, also uses a
dynamic quota, though we will not deal with it in this thesis.

5As far as we know, apart from complicated and very divergent variants like Schulze-STV [70] and
CPO-STV [74], the only exception to this general formulation are methods which choose to not elect
candidates until they exceed the quota, though this has historically been done to get around problems
with choosing the quota to be exactly T/(S+ 1) as this can allow S+ 1 candidates to reach the quota
[50]. We are not aware of this being used much or at all in practice, and there are other ways to avoid
the problem.
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(Line 8) being the major areas of difference between various STV methods. After the

transfer round with the state updated st 7→ st ′, each candidate c which had surplus votes

Vc(st)> Q(st) should have Vc(st ′) = Q(st ′), reducing the surplus as desired to zero. If

no candidate with surplus exists, the candidate argminc∈CVc(st) is eliminated and their

votes transferred. If there is a tie it is either broken by looking at previous rounds, later

preferences, by evaluating candidates using another method, randomly, or by some less

common method. This whole process continues until S (or, as the case may be, S+1)

candidates are elected.

Algorithm 1 Generic STV: repeat rounds until |elected| ≥ S.

Require: S≥ 1∧|C| ≥ S

1: set initial round state st to allocate first preferences

2: elected⇐{c ∈C. Vc(st)≥ Q(st)}
3: surplus⇐ Σc∈elected(Vc(st)−Q(st))

4: while |elected|< S do
5: if surplus > 0 then
6: surplus transfer round [updates st]

7: else
8: elimination round [updates st]

9: end if
10: elected⇐{c ∈C. Vc(st)≥ Q(st)}
11: surplus⇐ Σc∈elected(Vc(st)−Q(st))

12: end while

1.1.1 Meek’s method

In this introduction we focus on the surplus transfer round of Meek’s method, as it is

where the formalisation effort of this thesis is largely focused; we do not verify the

whole method in this thesis. However, in the short Chapter 2 we will zoom out to give

a description of the full method so as to provide the reader with a bigger picture, before

zooming back in on the surplus transfer in Chapter 3 for the majority of the remainder

of the thesis.

In most variants of STV in use in real elections, the quota is rounded to an integer

and whole votes/ballots are transferred. See Figure 1.1 for an illustration of this. In a

handful of methods, Meek’s method included, fractional parts of all votes assigned to a
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candidate are transferred according to a candidate’s keep-value aka their weight. This is

done for fairness reasons, to avoid arbitrary selection of votes to transfer during surplus

transfer rounds. For a standard and minimal implementation of Meek’s method,6 the

state is simply7 the vector of weights, and no other state needs to be stored to determine

if candidates meet the quota, are eliminated, and so on. For this reason we can just

write Q(w), Vc(w), E(w) for some state w. Of course, in order to calculate the actual

values of these quantities given some weights one needs the set of ballots, which is left

implicit in these expressions.

For weight vectors over the course of an election in Meek’s method we could write

w(i, j) meaning step j of round i, as it almost always takes more than one step to com-

plete one surplus transfer round in this method. However, from here on out we will

simply write w( j) as some step j of an implicit round i as done by Hill et al. [41], since

it is only the steps of surplus transfer we care about in this thesis.

Meek’s method additionally allows transfer to already-elected candidates, which

only it and its sibling, Warren’s method [78], allow. This is also for fairness reasons, to

avoid “skipping over the opinions” of ballots assigned to already-elected candidates.

These design decisions also positively impact strategic voting [69] and the number of

“wasted votes”, which we will not go into here8 except to say that for our purposes

“wasted” is a synonym for “surplus or excess” i.e. wasted either through votes sur-

plus to requirement or by being unassigned to any candidate. See Figure 1.2 for an

illustration of one step of the surplus transfer round in Meek’s method.

One can calculate the number of votes each candidate has and the amount of ex-

cess there is, and hence what the quota is, by dealing with each voter’s ballot in turn.

If a ballot lists preferences xyz then candidate x will get wx of that ballot, y will get

wy(1−wx), and z will get wz(1−wy)(1−wx). This leaves (1−wz)(1−wy)(1−wx)

which is exhausted. When the amount that is exhausted – and hence the amount which

it contributes to the excess – is not 1, i.e. the ballot is not totally exhausted, we say it

is partially exhausted. With this it should be clear why weights are sometimes called

keep-values in the literature; when wx = 1 the candidate x keeps all of what they re-

6Standard meaning “non-enlisting”’, described shortly, and no other optimisations or changes which
change the fundamental logical flow. Minimal essentially meaning basic tie-breaking and ordinary
elimination.

7Almost the only state. Not quite true for the variant we are concerned with, as we will describe
shortly when we introduce the necessary context.

8“Wasted votes” is a complicated, normative term which does not seem to be dealt with well in the
literature, and we are still not sure precisely what it would mean to show that this method minimises
wasted votes.
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Figure 1.2: Illustration of one surplus transfer step for a Meek’s method of STV. Note

that the quota decreases due to the increase in excess.

ceive, when wx = 0 they keep none of what they receive, when wx = 1
5 they keep

one-fifth of what they receive, and so on.

A weight wx is said to be valid if wx ∈ [0,1], and a weight vector w is valid if

∀c ∈ C. wc ∈ [0,1]. We can express9 the votes that candidate c has given ballots B,

weights w, and a function frac-of which returns how much a candidate c gets of some

ballot b given some weights w like so:

Vc(w) = wcΣb∈Bfrac-of (b,c,w)

where frac-of can be written

frac-of (b,c,w) =

Πk∈G(b,c)(1−wk) if c ∈ L(b)

0 otherwise

using the function G which returns the candidates listed greater than a given candidate

c on a ballot b. See Section 4.2 and the sections following that for further discussion

9Similar expressions can be written for non-strict ballots. If a ballot lists three candidates as their
most preferred, they each receive a third of the vote. This fair extension is only possible in fractional-
vote STV methods. However, we do not cover non-strict ballots in this thesis.
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of L ,G . Using the function L , which takes a ballot and returns the set of candidates

listed on it, we can write a simple formula for the excess:

E(w) = Σb∈BΠc∈L(b)(1−wc).

One can immediately see from this formula that if every weight is 0, E(w) = |B|= T ,

otherwise (as long as each wc ∈ [0,1]) we have E(w)< T . Neither in Meek nor Hill et

al. nor anywhere else we can see are these explicit, closed-form expressions for Vc(w)

and E(w) presented, probably because they were not necessary to present and previous

authors had a less functional paradigm in mind, but we will use them as our direct

implementation as detailed in Section 5.2. In implementations, the excess is typically

stored as mutable state and one adds extra exhausted votes to it at each step.

The “equations to be solved at each step” referred to but left unexpanded in Meek

and Hill et al. [41] are for each elected candidate c, Vc(w) = Q(w). Meek acknowl-

edged [51] that solving this with a dynamic quota, fractional votes, and allowing trans-

fer to the already-elected poses a problem in terms of how to actually do this, citing

as an example a non-solution which involves an infinite loop whereby candidates pass

votes back and forth between themselves.

This system of equations can be solved analytically (more on complexity issues

shortly), and we will demonstrate this with a very small example that we will reuse in

Section 5.4.1 in a formal context. Take the set of ballots B = {ab,a,abc,bc,ba} and

number of seats S = 2 and let us use the initial weight vector of all 1s, w = 1. We name

the ballots according to their list of candidates here as each ballot is unique and for

ease of presentation; in general there may be bc1,bc2, ... and so on. The quota comes

out to be 5/3≈ 1.66, thus a and b are both elected with Va(w) = 3 and Vb(w) = 2. We

show the derivation of Va(w) in full for illustration purposes, placing ballots in square

brackets to distinguish them from candidates:
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Va(w) = waΣb∈Bfrac-of (b,a,w)

= Σb∈Bfrac-of (b,a,w) as w = 1, so wa = 1

= frac-of ([ab],a,w)+ frac-of ([a],a,w)+

frac-of ([abc],a,w)+ frac-of ([bc],a,w)+

frac-of ([ba],a,w) by summing through B

= frac-of ([ab],a,w)+ frac-of ([a],a,w)+

frac-of ([abc],a,w)+ frac-of ([ba],a,w) as since a /∈ L([bc]), frac-of ([bc],a,w) = 0

= Πk∈G([ab],a)(1−wk)+Πk∈G([a],a)(1−wk)+

Πk∈G([abc],a)(1−wk)+Πk∈G([ba],a)(1−wk) by def. of frac-of

= Πk∈{}(1−wk)+Πk∈{}(1−wk)+

Πk∈{}+Πk∈{b}(1−wk) expanding G

= 1+1+1+(1−wb) simplifying products

= 3 as wb = 1

With w as the initial state, we need to solve for some v such that Va(v) = Q(v),Vb(v) =

Q(v), subject to va ∈ [0,1],vb ∈ [0,1],vc = wc, where in this particular case wa = wb =

wc = 1. If there is no listed hopeful candidate one solution will always be the vector

0, though that does not apply here as all three candidates are both listed and hopeful.

The vector 0 is a “solution” only in a vacuous sense, as the quota and all candidates’

votes will be reduced to zero, but this is obviously a problem because that results in all

candidates running in the election reaching the quota.

As an aside, proving that the surplus transfer round never converges on 0 for any

weight vector which would trigger a surplus transfer round is an important result,

though it is simply a corollary to proving that the quota always remains positive.

Solving this system reduces to solving Va(v) = 4va− vavb = Q(v),Vb(v) = 4vb−
2vavb = Q(v) where Q(v) = (5− (1− va)(1− vb)− (1− va)− (1− va)(1− vb)(1−
vc)− (1−vb)(1−vc)− (1−vb)(1−va))/3, which in our simple example with c being

hopeful (hence wc = 1) reduces to Q(v) = (5− 2(1− va)(2− vb))/3. There are two

solutions: va = 2,vb = 4,vc = 1 and va = 4/13,vb = 1/3,vc = 1. One can plug both

solutions for v into the equations to check that, indeed, Va(v) = Q(v) and so on for

a,b,c.

In the first solution we have an invalid weight vector: weights that are greater than
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(a) Votes converging from above quota. (b) Weights converging.

Figure 1.3: B = {ab,a,abc,bc,ba},S = 2,w = 1.

1 have candidates take more than a whole vote and hence pass on negative vote. This

first solution has Va(v) = Vb(v) = Q(v) = 0. The second solution is the one we want,

and results in Va(v) =Vb(v) = Q(v) = 44/39. It will turn out that we will always have

equal or decreased weight vectors for solutions, here va≤wa,vb≤wb, which is a direct

corollary of Hill et al.’s solution to this problem.

Hill et al.’s computational solution to this problem is elegant, though absolutely did

require justification by mathematical proof, provided by Woodall [41]. This iterative

solution results in the votes of elected candidates “chasing” the quota.10 See Figure 1.3

for an illustration of this, which uses the same ballots as in the analytical example. Note

in the figure that candidate c happens to receive votes such that it is converging from

below; this is not typical outside of small examples like this starting with w = 1. Note

also that candidate b initially increases their vote, and thereafter who has the most

votes alternates between a and b. See Figure 1.4 for a larger example and an example

where candidates can become enlisted into the process as they are newly elected during

surplus transfer, i.e. move into the elected set in the middle of the round.

Woodall proved this process converges on a unique and valid solution vector, and

as corollaries we can prove the quota remains positive (i.e. is not “chased down to 0”)

and hence so are the elected candidates’ weights and votes, as their votes must remain

at-or-above the quota. During the surplus transfer round, we approach such a solution

by updating the elected candidates’ weights at each step according to the following

iteration of the weight vector:

10Apart from the rare occasion where all surplus is eventually transferred only to hopeful candidates,
whereby the transfer round immediately terminates.
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(a) Larger election example. (b) Larger election w/ enlisting.

Figure 1.4: Randomly generated examples for two larger elections, one without enlisting

and one with.

w(i+1)
c = w(i)

c
Q(w(i))

V (w(i))

until the sum of surpluses is less than some constant ε.11 We discuss our formalisation

of these various aspects in Chapter 3. For the duration of the surplus transfer round

candidates which were not elected at the start have their weights fixed; for hopeful

candidates their weights are fixed at 1, and for eliminated candidates their weights

are fixed at 0. In fact, eliminated candidates’ weight remain fixed at 0 permanently

throughout the method, i.e. remain eliminated.

This is the reason that the weights are not strictly speaking the only state for the

“non-enlisting” variant of Meek’s method in one specific scenario: at the start of a

surplus transfer round we have to store which candidates are initially elected in order

to update only their weights. That the weights are the only state is otherwise true, as

candidates are eliminated if and only if their weight is zero, and candidates are hopeful

if and only if they are not eliminated and do not yet reach the quota (and this implies

also they must have weight 1), and candidates are elected if and only if they reach the

quota (which implies their weight is in the range (0,1]) except in the case where they

reach the quota in the middle of the surplus transfer round, in which case their state is

updated to elected only at the end of the round.

The computational solution scales better than the analytical approach because there

is no general approach to solving the system of equations which would scale to large

11In New Zealand, ε = 0.0001. [57]
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numbers of candidates and ballots, as we get very large systems of equations of poly-

nomials with inequality constraints on the variables. Both Tarski’s method and Collins’

cylindrical algebraic decomposition [3] for real closed field problems scale poorly

(though are impressive for the problem they are trying to solve), the latter scaling

according to a double-exponential.

Apart from scaling better than an analytical approach, as already mentioned the

iterative approach also allows the extension whereby one enlists those candidates who

reach the quota during the surplus transfer round, rather than only addressing them

in a new transfer round after the current one has finished, though verifying this other

variant is outside the scope of this thesis. The iterative process generally does not

reduce the surplus to 0 in finite time, hence the need for the constant ε to provide some

stopping criteria. This also means that in our presentation of the generic algorithm for

STV in Algorithm 1, to include Meek’s method one would have to replace surplus > 0

with surplus > ε.

1.2 A brief history of Single Transferable Vote methods

Now that we have some context for the functioning of STV on a technical level, we will

briefly review its history and use in practice. This will help situate our work within its

historical context and highlight relevant recent developments around the use of STV.

First, we return to Thomas Wright Hill, and his description of his method:

“every one who has five votes shall be declared a member of the com-
mittee; if there are more than five votes given to any one person, the sur-
plus votes (to be selected by lot) shall be returned to the electors whose
names they bear, for the purpose of their making other nominations, and
this process shall be repeated till no surplus votes remain, when all the
inefficient votes shall be returned to the respective electors, and the same
routine shall be gone through a second time, and also a third time if nec-
essary...”

– Thomas Wright Hill (1819)

One should now be able to see that, given our discussion of STV in the previous sec-

tion, that the crucial innovation lacking in the above is the ranked ballot. Rather than

submit ballots ranking candidates from their favourite (placing a 1 next to their name),

to their next most preferred candidate (placing a 2), and so on, Hill’s system consisted

of listing only one’s most preferred candidate, and then if there were surplus votes12

12Presumably those most recently given to the candidates were considered the surplus.
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these were returned to the voters who cast these ballots, and they were asked to list

someone else. It was Carl Andræ who introduced ranking thirty six years later, in

1855, in a proposal for using the method in the Danish Rigsdagen (the name of the

national parliament of Denmark at the time).

The second crucial innovation, the elimination of candidates who have no chance

of being elected, was only made part of STV when English barrister Sir Thomas Hare

published his independently discovered (or invented) version of the system in 1857, in

Machinery of Representation [36]. Hare is considered by many to be the father of STV.

Several other innovations were to follow, such as the modification of the Hare quota of

T/S to the Droop quota [19] of T/(S+1).

In 1896 Andrew Inglis Clarke introduced the method to Tasmania, Australia, where,

due to various particularities, it has become known as Hare-Clarke STV. The Local

Government (Ireland) Act 1919 extended STV to be used in all Irish elections. Be-

tween 1915 and 1960 the USA had experiments with STV, though since 1941 the city

of Cambridge, Massachusetts is the only place still using it. New Zealand experi-

mented with it locally between 1917 and 1933. All elections in Malta have used it

since 1921. In 1922 the Constitution of the Irish Free State mandated proportional rep-

resentation, and in 1958 and 1968 Ireland rejected two referendums to change to plu-

rality voting (First Past The Post, FPTP) by 51.79% and 60.84% respectively. Canada,

similarly to the USA, had various local and regional trials with the system between

roughly 1926 and 1971. Australia introduced STV federally in 1948, and more Aus-

tralian states introduced it internally from 1973 to 1993. India uses STV for the Rajya

Sabha upper house, where the electorate are members of each state’s legislative assem-

bly. The most recent country to introduce a form of STV is Scotland for local elections

in 2007.

STV was almost adopted in 1917 in the United Kingdom (UK), in 211 of the 569

constituencies of the UK, but the proposal was defeated in a clash between the House

of Commons and House of Lords. In 2011, a referendum was held about whether

to use Alternative Vote (AV, aka Instant Runoff Voting, IRV) for UK elections, but

the proposal was also defeated. IRV is effectively a combination of STV with FPTP,

with ballots submitted and transferred as in STV but used to elect to single seats (e.g.

single-member constituencies), and is thus not a system for proportional representa-

tion. It is possible that in the next decade the question will surface again, with the

adoption of support for proportional representation by the UK’s two largest unions by

membership size (at the Unite Policy Conference in Liverpool, 22nd October 2021, and
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at UNISON’s National Delegate Conference in 17th June 2022).

Key to our story, however, is the fact that since 2001 in New Zealand all local

election authorities have had the option to run their elections using Meek’s method

for vote counting, and many do so.13 With some additional development, we hope

that it might be possible for the implementation used in New Zealand to be derived

from verified code extracted from our formal work. See Section 5.7, Section 5.8, and

Section 6.2.1 for further discussion of code extraction.

1.3 Contribution

Given this background, we can now summarise the key contributions of this thesis. We

present a formal verification of the correctness of the surplus transfer round of Meek’s

method for STV (Chapters (3, 5)), and in so doing we believe we have contributed a

significant step towards formally verifying the whole method. Moreover, given that

Meek’s method is the most complicated variant of STV in practical use, our work

also makes a notable contribution towards reasoning about the correctness of STV

methods in general. Noteworthy aspects of our work include the development of a

theory of ballots (Chapter 4) suitable for reasoning about strictness using a set-based

representation and with ballot induction, rankings, and their properties. We believe

this work provides a general framework that others in the Automated Reasoning and

Formal Verification community can build on to tackle related and broader challenges

involving the formal verification of voting algorithms.

The core of the thesis, where our results are presented and reflected on, is con-

tained in Chapter 3, Chapter 4, and Chapter 5. For more details on specific contri-

butions, hypotheses and evaluation, motivations, and novel ideas and key concepts,

see the relevant introductory sections of these chapters: Sections 3.1.1–3.1.5, Sec-

tions 4.1.1–4.1.5, and Sections 5.1.1–5.1.4. Discussions of related work can be found

in the relevant concluding sections: Section 3.10, Section 4.10, and Section 5.7.

1.4 Conclusion

In this chapter we provided essential background for understanding the historical and

technical context of the research results we will lay out in the rest of this thesis.

13Since 2004, all district health boards in New Zealand also use the method.
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We covered the timeliness of formal verification efforts in this area, specifically

noting the recent 200th anniversary of STV and the recent 50th anniversary of Meek’s

method. We also discussed the general history of STV and gave a broad technical

overview of its functioning in general as well as for Meek’s method specifically.

1.5 Organisation of the thesis

Having introduced some of the important concepts needed for our work, we now briefly

describe how the rest of this thesis is organised. Further information about the structure

of the thesis is provided in Section 2.2.2.

In Chapter 2 we provide a whole-method overview of Meek’s method. In Chapter 3

we present our abstract verification of the surplus transfer round and elimination round

in Meek’s method for STV, and then in Chapter 4 we cover a representation of strict

ballots alongside a development of sufficient results enough to facilitate connecting an

implementation of the component parts of Meek’s method in Chapter 5. We conclude

with a discussion of our contribution and some avenues for future work in Chapter 6.



Chapter 2

Introduction to Meek’s method as a

whole
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In this chapter we give an overview of Meek’s method as a whole to help ground

the discussion of the surplus transfer round in a broader context. While there is interest

in its historical development and subsequent deployment, especially in New Zealand,

this will be a purely technical overview along with some helpful intuition. We also

provide an introduction to understanding and reading Isabelle/HOL along with some

broader context and points on methodology.

2.1 Meek’s method algorithm

In this section we present an overview of an imperative implementation of Meek’s

method and a mathematical description equivalent to our implementation in Isabelle/HOL,

the latter of which is introduced in Section 5.2.5.

2.1.1 Imperative implementation

As we mentioned in the introductory chapter, imperative implementations of Meek’s

method were all that existed publicly before our work. We will briefly cover a pseudo-

code imperative implementation in this section before focusing on a more mathemati-

cal description in the next section.

The algorithm presented below (Algorithm 2), is the algorithm presented earlier

for generic STV (Algorithm 1) modified to represent Meek’s method directly. Where

the state was previously given the label st, we here give it the label w for the weights.

On Line 1 we simply the set the weight vector to be 1. This is what we call the

“initial allocation of first preferences” in STV in general, whereby the first preferences

of each ballot are examined and distributed to the various candidates. If we reword this

in terms of weights, we begin by setting the weights so that every candidate keeps all

of the votes they receive.

On Lines 2–3 we assign the set of elected candidates as those candidates who reach

the quota and set the total surplus to be the sum of the surpluses of elected candidates.

Then on Line 4, if enough candidates are elected, the main loop terminates. Note

that the number of candidates elected may be S or S+1. The latter only occurs when

there is an (S+1)-way tie, resolved by random choice or otherwise (not shown here).

Of course, if any single candidate has a surplus the parameter ε then the surplus

transfer round occurs (Line 6), the details of which we exclude here. It is more elegant

to present the implementation of this round as a recursive function, which we will do
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Algorithm 2 Meek STV: repeat rounds until |elected| ≥ S.

Require: S≥ 1∧|C| ≥ S

1: w⇐ 1
2: elected⇐{c ∈C. Vc(w)≥ Q(w)}
3: surplus⇐ Σc∈elected(Vc(w)−Q(w))

4: while |elected|< S do
5: if surplus > ε then
6: surplus transfer round [updates w]

7: else
8: lowest⇐ non-eliminated candidates with lowest votes

9: e⇐ picked from lowest

10: w⇐ w⟨e 7→ 0⟩
11: end if
12: elected⇐{c ∈C. Vc(w)≥ Q(w)}
13: surplus⇐ Σc∈elected(Vc(w)−Q(w))

14: end while

in the next section.

Note that the surplus transfer round itself is stopped according to the parameter

ε. It is worth imagining what would happen if we set ε to extremes. If we set ε = 0,

then in the majority of cases, i.e. when the transfer is non-trivial, the surplus transfer

round will never terminate. It will only terminate in this case if none of the surplus

goes to excess (reducing the quota, and triggering further transfer) and none of it goes

to already-elected candidates who exist in a loop which will ‘pass back’ ballot mass to

the original candidate.1 It will continue to tend toward the weight vector which solves

the system of equations, but it will never reach it and thus never terminate.

If we set ε very large, larger than the total number of votes, e.g. |B|+1, then there

will never be a surplus transfer round. The candidate with the lowest votes will be

repeatedly eliminated until S candidates remain. This turns Meek’s method of STV

into a crude extension of instant-runoff voting (aka alternative vote). We hypothesise

that there is way of choosing ε such that the final result would be the same for any

smaller value, in other words that there is a way of setting the parameter that is non-

distorting of the result. We discuss this in future work, Section 6.2.2.

Finally, in lines 8 through to 10, we expand the elimination round:

1This latter point is hard to grok but it is not important to understand to follow the thesis.



20 Chapter 2. Introduction to Meek’s method as a whole

8: lowest⇐ non-eliminated candidates with lowest votes

9: e⇐ picked from lowest

10: w⇐ w⟨e 7→ 0⟩

This means simply picking one of the candidates whose votes are the lowest and elim-

inating them, which in Meek’s method means setting their weight to 0, i.e. they keep

none of what they receive, and pass it all on, as if they had never stood. The angle-

bracket notation is chosen to match notation we will use later in our formal develop-

ment.

If the candidate eliminated had few or no votes, or not many votes which listed

further candidates, no new candidates may be elected as a result. In this case, an-

other elimination will take place. In other STV methods repeated elimination requires

checking whether S candidates remain after an elimination, but the dynamic quota in

Meek’s method means that this is unnecessary, as when S candidates remain they will

necessarily all meet the quota. For completeness, we note that the set lowest can be

computed like so:

{c ∈ {k ∈C. wk > 0}. ∀c′ ∈ {k ∈C. wk > 0}. Vc(w)≤Vc′(w)}.

All that remains is to specify how to decide which of the lowest-votes candidates to

eliminate, i.e. which to pick. The mathematical development only needs to know that

such a function exists, but we will still say a little about how one might do it here.

A function pick(X) which picks which candidate to choose from the non-empty

set of candidates X might be implemented as a pre-computed set of tuples associating

every possible combination of candidates with a choice from that set. For example,

two such tuples may be ({x,y,z},y) and ({z},z); these say that if candidates x,y,z are

tied, choose y, and if candidate z is “tied”, choose z (the only option). Whether this

set is computed by uniform random choice, by the alphabetical order of the names

candidates, or by some other means is not relevant for us.

However pick is implemented, it can also be re-used for breaking the tie in the case

where S+1 candidates meet the quota, though real implementations may prefer to use

different strategies for this and the case of elimination.

A fully-general pick function signature would allow the use the whole history of

states, here weight vectors, to determine which candidate to pick. So, pick(X ,H )

where H is the historical list of weight vectors up to the current one. With this, the

function could discriminate between the S+1 candidates by which was least-recently
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elected. An examination of alternative strategies for tie-breaking is outside the scope

of this thesis.

2.1.2 Functional implementation

A mathematical description of the method comes very naturally once one thinks through

how to derive closed-form expressions for the individual components frac-of , V , Q,

and E. In this section we will focus on the expression implementing Meek’s method

as a recursive function; for the derivation of the form of individual components see

Section 5.2 of the implementation chapter.

The following is a near-complete description of the method, with ballot represen-

tation, L , G , and pick left undefined. The component functions:

frac-of (b,c,w) =

Πk∈G(b,c)(1−wk) if c ∈ L(b)

0 otherwise

Vc(w) = wcΣb∈Bfrac-of (b,c,w)

E(w) = Σb∈BΠc∈L(b)(1−wc)

Q(w) =
|B|−E(w)

S+1

Additional functions (comments on notation to follow):

nonelim(w) = {c ∈C. wc > 0}

elected(w) = {c ∈C. Vc(w)≥ Q(w)}

lowest(w) = {c ∈ nonelim(w). ∀c′ ∈ nonelim(w). Vc(w)≤Vc′(w)}

surplus(w,X) = Σc∈X(Vc(w)−Q(w))

update(w,E) = w⟨E 7−→ λc. wc
Q(w)
Vc(w)

⟩

The rounds, the main function, and the additional function for mapping the terminal

state to the set of elected candidates:
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eliminate(w) = w⟨pick(lowest(w)) 7→ 0⟩

s-transfer(w,E) =

w if surplus(w,E)< ε

s-transfer(update(w,E)) otherwise

meek(w) =


w if |elected(w)| ≥ S

meek(eliminate(w)) if surplus(w,elected(w))< ε

meek(s-transfer(w,elected(w))) otherwise

winners(w) =

elected(w) if |elected(w)|= S

elected(eliminate(w)) otherwise

The cases in the meek function should be viewed sequentially, meaning in the second

case there is an implicit ¬(|elected(w)| ≥ S) i.e. |elected(w)| < S, and so on. Here

s-transfer stands for the surplus transfer round. The syntax w⟨c 7→ x⟩ sets the value

of the (weight) vector w at the index c to x. The syntax w⟨X 7−→ f ⟩ is equivalent to

applying w⟨c 7→ f (c)⟩ for each c ∈ X .

Given some fixed set of candidates C, ballots B, and stopping-parameter ε, applying

winners(meek(1)) will compute the outcome of the election, returning the set of elected

candidates.

Most of this does not need remarking upon, given the background we have already

provided in earlier discussion. We make only a few comments. First, note that the

surplus transfer round captures the set of elected candidates at the start of the round.

This is what makes this version non-enlisting. If instead of passing E to the function

each time it were instead to replace E with elected(w) we would have the enlisting

variant.

Second, notice that in the final round winners it is assumed that in the ‘otherwise’

case that we will only have S + 1 candidates which we assume will all have equal

votes. Likewise, in meek we are assuming that this function will terminate, i.e. will

eventually fill seats, among a number of other properties (mentioned at various points

throughout the thesis, especially in future work) necessary for this implementation to

make sense.

Finally, this version does not ensure there is a final surplus transfer round which

reduces the S remaining candidates’ votes to be equal to the quota, stopping when the

surplus is less than ε. Ensuring this would mean simply changing the conditions in the
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case split in the definition of meek, so that the surplus transfer round runs whenever

there is surplus, even if all seats are filled.

2.2 Methodology: approaching Meek’s method using

interactive theorem proving

In this section we lay out in broad term the methodology we use to approach the for-

malisation, including our choice of interactive theorem prover, and in turn how this

affects the structure of the thesis.

2.2.1 Interactive theorem proving and Isabelle/HOL

In this section we provide an overview of interactive theorem proving and Isabelle/HOL

sufficient to orient the reader for the rest of the thesis.

2.2.1.1 History and context

Interactive theorem proving combines automated reasoning – whereby theorems in

given circumscribed domains are able to be proven completely2 automatically – with

human intervention. That is, a human mathematician uses their existing mathematical

experience and knowledge of the world in combination with automated reasoning tools

to produce rigorous, computer-checked proof.

All non-trivial theorems require some degree of human intervention, as this thesis

more than demonstrates. The history of interactive theorem proving [39] stretches

back at least 50 to 60 years, from the initial explosion of interest spurred on by natural

deduction provers (e.g. Semi-Automated Mathematics [30]) and satisfiability checkers

(SAT) [10], to more recent theorem provers ranging from so-called “formulas as types”

provers (Agda [14], Coq [9], NuPRL [2], Lean [18]) to provers inspired by simple type

theory and the Logic of Computable Functions (LCF) methodology (HOL-Light [37],

Isabelle/HOL [61], HOL4 [71]).

Isabelle [81] is a generic proof assistant that supports a number of specific logics,

including ZF set theory and higher order logic (HOL), with the latter being by far

the most popular. Isabelle/HOL [61] provides a higher-order logic theorem proving

environment based on simple type theory [16, 43]. It is an LCF style [29] theorem

2“Completely” to a first approximation, at least; various fine-tuning is often required, though in the
form of parameters and not in the form of proof guidance.
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prover, and it is well-known that such an approach can ensure the soundness of formal

proofs. In practice, LCF style provers only use a small, trusted kernel on top of which

all other development is built.

The two major areas which are usually cited as being of interest for the application

of theorem provers like Isabelle/HOL are large proof developments where a combina-

tion of size and technical speciality makes it labour-intensive or even impossible for

human reviewers to verify a pen-and-paper development, and formal verification of

both software (algorithms, protocols) and hardware (circuit design, hardware instruc-

tion semantics like x86). In the “big proof” area are projects like Flyspeck [35], which

is a particularly famous example owing to the fact that it took around 20 years between

initial submission in 1998 without computer formalisation and 2017 with computer

formalisation to finally be accepted to a journal without controversy. Our thesis lands

squarely in the formal verification of algorithms area, though we make use of general

mathematical results e.g. regarding limits which Isabelle/HOL’s multivariate analysis

library provides standard definitions and results for.

2.2.1.2 Software errors and problematic properties in voting

This discussion raises the question of errors in software implementation (‘bugs’) and

how common they are in voting software used in the world today. The main thing

that needs to be emphasised here is that in an unfortunately quite large number of

cases, electronic voting in the wild uses completely proprietary software and hardware

[11]. This not only makes it difficult to assess how often bugs occur, it also makes

it impossible to scrutinise and correct issues and, ultimately, undermines public trust.

Developing any open-source, verified software is thus a crucial goal as long as elec-

tronic voting continues to see use. Software which is verified and where the results

are published openly in peer-reviewed academic journals should be the default. It is

worth noting that the most up-to-date Pascal implementation of Meek’s method in use

in New Zealand was only recently released (on Amazon (!)), in 2019.

Another very significant example for us on this topic is the history of the Gregory

method. In 1983, in Australia, the Gregory method was modified to be more fair (by

taking part of each ballot instead of those recently transferred), resulting in a major

issue with the method which went without any formal comments on the issue until

Farrell and McAllister in 2003 [23]; the subsequently invented “weighted inclusive

Gregory method” finally puts this method on a more solid foundation and has since

been treated formally [25].
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While not strictly bugs, discovery of highly desirable properties which voting meth-

ods do not satisfy is a common occurrence (see for example the “butterfly effect” in

STV [53], which Hill shows Meek’s method is actually resistant to [42]). While Ar-

row’s theorem [4] – and more general theorems like Gibbard’s theorem [28] – prove

that no voting algorithm exists which can satisfy a specific very minimal set of desir-

able properties, there nevertheless remain properties which considered more important

than others, such as proportional representation.3 Though one must note that STV

methods do not strictly rank outcomes: an outcome of STV is a set of elected can-

didates, whereas ballots list not sets of elected candidates in order of preference but

candidates themselves. It is this feature together with over-early elimination which is

commonly cited the source of STV’s non-monotonicity (a social choice theory con-

cept) [83, 65, 54].4

More amusingly but no less serious, it is widely speculated that what triggered

the power-of-two issue (4,096 extra votes) in a Belgian election in 2003 was a bit-flip

potentially triggered by solar radiation, as it was not explainable by software error

[73]. More subtle issues caused by things like this would need individual verifiability

(a voter can check that their ballot was counted) and universal verifiability (anyone can

check that the result corresponds to the published ballots, clearly requiring also open-

source code). See Kremer et al. [48] for further, formal discussion of the concepts.5

2.2.1.3 Practical considerations

For a large part of its early history Isabelle/HOL mainly supported a proof method that

uses simple natural-deduction style reasoning, which, while suitable for breaking down

proofs in a top-down, mechanical fashion, is not particularly human-understandable.

Isabelle/HOL today supports Isar (Intelligible semi-automated reasoning) [79], which

allows one to combine the type of forward reasoning typical to pen-and-paper math-

ematics (with natural-sounding keywords like have x by <proof> moreover

have y by <proof> ultimately have z by <proof>) with automatic tools

3Arrow’s theorem and other computationally-unaware theorems are still highly relevant, but some-
what less relevant now the field of computational social choice theory [22] is now asking more precise
questions, like whether it is computationally feasible to discover a ballot which allows one to vote
strategically and not merely whether it is theoretically possible.

4I believe that Meek’s method provides a potential avenue on how to get around this, by not simply
setting candidates’ weights to zero but reducing them, though for now this is speculation. I also think
that Meek’s principles show that there is no principled reason for immediately eliminating candidates,
and doing so is merely seen as necessary for moving-along the algorithm.

5The authors also note eligibility verifiability: “anyone can check that each vote in the election
outcome was cast by a registered voter and there is at most one vote per voter.”
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and, where appropriate, backward reasoning when proving mathematical statements.

Of particular importance to the practicality of using an interactive theorem prover

is automated proof discovery, which in Isabelle is principally achieved via invocations

of the tool sledgehammer [13]. This can pull in hundreds of facts in-scope and invoke

external first-order theorem provers like SMT solvers [12] to attempt to automatically

prove the goal, and finally reconstruct the proof in Isabelle/HOL. Sometimes, a proof

that may look intricate using pen-and-paper can be mechanised by simply breaking it

into simpler subgoals and then invoking sledgehammer to discharge each goal in turn.

A key feature of Isabelle is the facilitation of scoped context via locales [45, 44, 7].

For an example, see the following section (Section 2.2.1.4). Locales provide a way of

organising a collection of fixed constants, or parameters, and assumptions involving

these (as well as any other constants in scope) such that if there is any inconsistency in

the assumptions then this is contained within the locale and cannot affect Isabelle at the

theory-level, thereby preserving soundness. One can also use this feature to investigate

algebraic structures such as groups, by fixing the group operator, assuming the group

axioms, and then deriving group-theoretical results in that context [47]. Isabelle also

has a mechanism that enables an interpretation (or model) to be given for a locale

by providing concrete values for the parameters of the locale [6]. For example, one

could interpret the group theory locale with the operator being integer addition and the

identity element being 0, and then proving each of the group axioms given this choice.

This support for interpretation will be important to the current work (see Section 5.4).

The suitability of Isabelle/HOL for our task, namely verifying the most compli-

cated and significant part of Meek’s method, is demonstrated by our successful appli-

cation of the tool in this thesis, in particular for catching errors and subtle oversights

made by both ourselves and our source text(s), both of which occurred during devel-

opment. Mistaken assumptions do not necessarily make the assumptions inconsistent,

they can just limit the possible models of the abstraction more than intended. So it is

necessary to provide a generic model of them at some point to make sure that this has

not occurred, which Isabelle also provides facilities for through locales.

2.2.1.4 Reading Isabelle/HOL syntax

We will briefly address enough of Isabelle/HOL’s syntax for the reader to be able to

comfortably follow the rest of the thesis. Additional comments on the syntax will

appear elsewhere in the thesis when necessary. See the Isabelle documentation for

further resources [76].
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Consider the following lemma statement from our development, ignoring the de-

tails for the purposes of this explanation:

lemma w_le1_V_ge0:
assumes c_cand: "c ∈ cands"

and w_props: "w $ c ≥ 0"
"
∧
c. c ∈ cands=⇒ w $ c ≤ 1"

shows "V_for w $ c ≥ 0"

Figure 2.1: An example Isabelle/HOL lemma.

Note that
∧

and =⇒ represent meta-level for-all and meta-level implication respec-

tively. Object-level syntax is the mathematical language one is using Isabelle to speak

with, in this case HOL, whereas meta-level syntax is more fundamental to Isabelle

as a framework. The object-level ∀x∈X. P x is in meta-level syntax
∧
x. x ∈

X =⇒ P x. The object-level repeated implication P−→ (Q−→ R) can be written

(P∧ Q)−→ R, likewise we can write P=⇒ (Q=⇒ R) as JP; QK=⇒ R.

The final technical point worth noting along these lines is the implicit meta-level

quantification of candidate c introduced in the first assumption c_cand and referenced

in the conclusion, and the fact that the second assumption w_props contains a meta-

level quantifier which shadows6 the original candidate c.

The keyword lemma (equivalent to theorem or corollary) is (almost always)

followed by a name, here w_le1_V_ge0, a colon, and then the lemma statement. As

long as the lemma remains unproven it is not possible to invoke it elsewhere. One can

circumvent this to enable an assume-first-prove-later methodology while one’s theories

are still in development, but one cannot create an Isabelle session [80] or submit any

results that are not fully and legitimately proven to the official repository of third-party

Isabelle development, the Archive of Formal Proofs [46].

Once proven it can be utilised later on in the same theory it resides in or in any

other importing theory. Each assumption of the lemma may, or may not, be given a

name. In the lemma above, c_cand names a single fact, whereas w_props names a

pair of facts, which can be accessed by w_props(2) for the second fact and w_props

or w_props(1,2) or w_props(1-2) for both facts. Lemmas can be stated at the top-

level of a theory file, inside a locale context, or inside a typeclass context (described

below). See Figure 2.2 for an example of a locale.

6A variable in a larger scope is said to be shadowed if a new, narrower scope is introduced which
uses the same name; here scopes are determined by binders.
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locale election_context =
fixes cands :: "'c set"

and ballots :: "'b set"
and L :: "'b ⇒ 'c set"
and G :: "'b ⇒ 'c ⇒ 'c set"
and listed :: "'c set"

defines listed_def: "listed ≡
⋃
{L b |b. b ∈ ballots}"

assumes all_valid: "b ∈ ballots=⇒
valid_strict_ballot (L b) (G b)"

and all_nonempty: "b ∈ ballots=⇒ L b ̸= {}"
and ballots_nonempty: "ballots ̸= {}"
and finite_ballots: "finite ballots"
and finite_cands: "finite cands"
and listed_cands: "listed ⊆ cands"

begin

lemma gt_compr_G:
assumes "b ∈ ballots"

and "k ∈ L b"
shows "{c. c > b k} = G b k"

<proof>

end

Figure 2.2: An example Isabelle/HOL locale.

The keyword locale plus a name introduces a locale context. Here, we are defin-

ing an election context, but we will ignore the details until Section 4.9. After the equal-

ity, one can “add in” other already-existing locales. Consider how a locale capturing a

group may start by adding in a locale defining monoids: locale group = monoid

+ .... After this, one may or may not fix a number of locale parameters, which are

then characterised by the assumptions. These parameters can later be instantiated dur-

ing an interpretation with more concrete values (see Section 5.4 where we use this

mechanism for Meek’s method).

Assumptions can also be named and are available throughout the locale context

and in any extending locales. Here, we use a special keyword defines in order to

introduce a concept that can be referenced across the assumptions.

A typeclass [31] is like a locale but which is where the constants and functions

it fixes must operate on a particular type variable. The typeclass finite does not

provide any additional constants but requires that any type which instantiate it is able

to prove that the set of all values belonging to the type is finite. The typeclass ord,

e.g. in the expression fix x :: "'a :: ord", requires that the type represented by

the type variable 'a provides definitions for the functions less_eq (≤) and less (<),
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but makes no requirements on properties they must satisfy. It is used as a foundation

for typeclasses like preorder, which requires among other things that less_eq is

transitive.

After a lemma statement Isabelle enters proof mode, and it expects a proof to be

given of the statement. Here one can invoke a single natural deduction proof step,

or a command which in turn invokes an automatic theorem prover, such as the clas-

sical first-order theorem-prover blast, optionally with additional arguments such as

introduction, elimination, or simplification rules one thinks will be needed to prove

the result. Alternatively, one can begin an Isabelle/Isar proof (here for the lemma

gt_compr_G):

proof
show "{c. c > b k} ⊆ G b k"

using ballot_gt_def by auto
next

show "G b k ⊆ {c. c > b k}"
proof

fix x
assume "x ∈ G b k"
then have "x ∈ L b"

using assms in_G_listed_in_L by blast
then have "x > b k"

by (simp add: ⟨x ∈ G b k ⟩ assms(2) ballot_gt_def)
thus "x ∈ {c. c > b k}"

by simp
qed

qed

Figure 2.3: An example Isabelle/Isar proof.

Isar proofs all start with the keyword proof. If one does not follow proof with a

hyphen then Isabelle will attempt to apply a default rule, and if no such rule applies

will fail with an error. There is a default rule here (equalityI) which breaks the

goal down into two subgoals, proving a subset relationship from two directions. In

place of the hyphen one can also pass proof methods like proof (rule equalityI)

– which applies the default rule in the case here – or proof (rule equalityI,

auto) which would apply the default rule and then attempt to solve all goals using the

classical reasoner auto.
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next
show "G b k ⊆ {c. c > b k}"
proof

fix x
assume "x ∈ G b k"
(* . . . * )
thus "x ∈ {c. c > b k}"

by simp
qed

qed

Figure 2.4: An partially suppressed example Isabelle/Isar proof.

The keyword have introduces a fact and again enters Isabelle into the proof mode,

where Isabelle expects a proof of the stated fact to be worked out. This can be done by

starting a new nested proof block using proof or by collecting zero or more facts with

using and then dispatching the goal using one of the provided proof methods. In this

example we use the classical reasoner blast, the ordinary single-subgoal simplifier

simp, and the multi-subgoal classical reasoner auto. The keyword show (or thus,

which is shorthand for then have) is the same as have except for when the fact one

is aiming to prove is the current sub-goal. A successful proof block is closed with

the keyword qed. We use (* ... *) to indicate suppressed Isabelle proof script (for

readability) and <proof> to indicate a suppressed Isabelle proof command.

Finally, note that on very rare occasions we omit small fragments of the Isabelle

statement of a locale, lemma, or definition. We do this either because it fixes types

which are obvious from context, and which including only adds noise, or because

they are syntax elements which are not necessary to introduce and which add nothing

conceptually to understanding. Isabelle/HOL source is provided in Appendix A, and

the full development is publicly available on GitHub [66].

2.2.2 Structure of the thesis

Before we begin the first results chapter of the thesis it is necessary to say a few words

about about the overall structure of the thesis, now with the necessary background on

Meek’s method and locales in Isabelle/HOL.

The formalisation begins in Chapter 3 with an abstract representation of the com-

ponent functions of Meek’s method, followed by the transfer round, and eventually

the election round. Then in Chapter 4 we cover representation and reasoning about

strict ballots, before finally ending in Chapter 5 with a concrete implementation which
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models the locales laid out in Chapter 3.

We could have approached this by first implementing Meek’s method concretely

with top-level definitions, then proved successively more high-level theorems about it,

before reaching something like the level of abstraction we tackle the method with in

Chapter 3. There are several issues with this latter approach for us, however. First of

all, the only existing public implementations of Meek’s method before this work, as far

as we are aware, was the version laid out in Hill et al. [41] and the version implemented

in OpenSTV [64]. Both of these were imperative implementations. As such, we did

not have a reference implementation to work with, but we did have a reference proof

which implemented abstract, high-level concepts. So this was the natural place to start,

during which we naturally “discovered” the elegant recursive formulation of Meek’s

method we presented in Section 2.1.2.

Secondly, STV is a family of methods, so it was important to us throughout all

of the formalisation to ensure that wherever possible we left open the possibility of

future generalisation. For example, to cover Warren’s method [78], or more traditional

hand-counting forms of STV. We thus see our locale hierarchy as a foundation with

which future work can build on, in order to produce a hierarchy of locales represent-

ing broader families of STV. Even within individual STV methods, Meek included,

there are a number of possible implementations. There are a number of choices for

tie-breaking in STV generally and a wide range of different quotas in-use. Meek’s

method has two key variants: one where during the surplus transfer round candidates

are “enlisted” into weight updates as soon as they reach the quota, and the standard ver-

sion that we formalise which fixes the set of elected candidates whose weights will be

updated during the round. Thus, by representing the component functions of Meek’s

method and the rounds at an abstract level first we provide the opportunity of modelling

those assumptions using multiple different implementations of Meek’s method.
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Abstract verification of transfer round
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This chapter develops an abstract representation of the surplus transfer round of

Meek’s method sufficient to prove that it converges on a unique and valid solution

vector. We also prove some additional theorems, including basic correctness properties

of the elimination round. In the course of discussing this, we will touch on various

representational decisions and difficulties along the way.

3.1 Overview

In this section we provide an overview of the chapter covering our aims, motivations,

hypotheses, and key ideas. We conclude with a summary of the structure of the rest of

this chapter.

3.1.1 General aims

In order to verify the correctness and termination of Meek’s method as a whole, one

needs to first deal with the following operations in STV: initial allocation, elimina-

tion, the final read-off (transformation of final state into the set of elected candidates),

tie-breaking, and surplus transfer. The modularity of STV permits dealing with each

of these on its own terms. Initial allocation, elimination, the final read-off, and tie-

breaking all terminate trivially, as they all involve a single operation. Surplus transfer,

however, is a uniquely involved process and needs to be dealt with using techniques

from analysis. This will be the focus of this chapter. We will end with a brief demon-

stration of applying the results developed for the surplus transfer round to the elimina-

tion round.

3.1.1.1 Correctness

A transfer round in STV is correct, that is to say it implements the operation properly,

if:

1. None of those elected at the start of the round, i.e. those who meet the quota,

have any of their votes transferred.

2. At the end of the transfer round, those elected at the start have no surplus.

3. Those who reached the quota at the start of the round still reach the quota by the

end of the round.
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Translating these general requirements into the form they take in Meek’s method,

where the only state that needs to be stored is the weight vector, we get the follow-

ing, where C is the set of candidates, w is the vector at the start of the round, and w′ is

the vector at the end of the round:

1. ∀c ∈C. Vc(w)< Q(w)−→ wc = w′c

2. ∀c ∈C. Vc(w)≥ Q(w)−→Vc(w′)≤ Q(w′)

3. ∀c ∈C. Vc(w)≥ Q(w)−→Vc(w′)≥ Q(w′)

Requirements (2) and (3) of course imply Vc(w′) = Q(w′) for elected candidates. One

of Meek’s method’s unique aspects, however, is that this does not happen, which is

why we separate the two here. In general, to account for Meek’s method and other

methods with only approximate transfer rounds, the requirement (2) becomes instead:

at the end of the transfer round, those elected at the start have a non-distorting amount

of surplus, which can be stated like so:

∀c ∈C. Vc(w)≥ Q(w)−→Vc(w′)≤ Q(w′)+ ε

By non-distorting we mean that if the surplus keeps being reduced, i.e. if ε is chosen

to be smaller, this will not change the final outcome at the end of all rounds. Proving

non-distortion, though it is an important property, is outside the scope of this thesis.

It would require proving that for any election size, there is some ε which can never

distort the outcome by terminating transfer rounds too early. We discuss this avenue

for future work in more detail at the end of this chapter.

Requirement (1) is also violated in optimised implementations of Meek’s method,

but this does not mean the requirement is wrong or overly strict. This common opti-

misation rolls up successive transfer rounds into a single longer-running round which

includes any candidates who newly reach the quota in the transfer process. We call

this the ‘enlisting’ variant, and it can almost certainly be proven to be mathematically

equivalent to running successive transfer rounds until a non-transfer round must be

done, as noted by Hill [40] in what seems to be the only source which acknowledges

this. Proving this equivalence also lies outside the scope of this thesis, though we

sketch an argument for equivalence at the end of this chapter as an avenue for future

work.

Note, however, that in a floating-point implementation, rounding errors may cause

differences between the enlisting and non-enlisting variants. This is as true here as it
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is of any two algorithms which even apply numerical operations in a different order

despite representing the same equation, and in general we have not found good reason

to investigate floating-point considerations. STV voting procedures are not the kind of

algorithm which are run many hundreds, thousands, or millions of times a day, and use

of precise rational arithmetic should be preferred in implementations, removing any

good reason to study floating-point error in these contexts.

It is possible that there are issues with a rational-arithmetic implementation of

Meek’s method. While we have not seen this in our own experimental implementa-

tion even for non-trivial election sizes, it is worth investigating systematically, as it

is the only possible source of significant slowdown or scaling issues we can see. We

leave it as future work to investigate this, described briefly in Section 6.2.7.

3.1.2 Specific objectives

In summary, in this chapter our aims are to verify the correctness of the most complex

part of Meek’s method: the surplus transfer round. Concretely, this means develop-

ing representations in Isabelle/HOL for the relevant data structures, components of

the overall algorithm, and abstract representations of the processes those components

implement.

There is an existing proof due to Woodall in a paper by Hill et al. [41] that the

iterative process involved in the transfer round of Meek’s method converges as the

number of steps of the process approaches infinity. Thus, the initial work in setting

up the locales and the skeleton of the lemmas and theorems in Isabelle/HOL builds on

this.

Leveraging this existing work also draws in the kinds of aims that come with any

formalisation effort building on existing pen-and-paper mathematics: establishing the

sufficiency of the original presentation by ordinary pen-and-paper mathematical stan-

dards, discovering any outright errors, and evaluating its appropriateness for translation

into a formal system. Concretely evaluating whether such a formalisation is possible,

deriving insights, and evaluating the original work comes naturally out of the process

of attempting a formalisation, and we will provide commentary on this where relevant

throughout this chapter.
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3.1.3 Motivation

The fundamental motivation we have already discussed, which is that one needs to

verify each component of Meek’s method in order to verify it as a whole. Thus, all the

motivations for verifying voting in general apply here, which we summarised in the

opening remarks of Chapter 1.

Beyond this, Woodall’s existing proof is a pen-and-paper one that is detached from

the associated implementation (in Pascal) and has some insufficiencies regarding gaps

in the proof, and it intentionally side-steps potential complications in the two different

levels of abstraction underlying one particular part of the argument.

By gaps, we mean the usual gaps which are just the difference between pen-and-

paper and formal mathematics, but also more significant gaps that reflect problems in

the original presentation. The former kind of ‘gap’ is occasionally, but not often, inter-

esting to a typical mathematician – that is, a mathematician not interested in automated

or interactive theorem proving – though are much more often interesting to those con-

cerned with the philosophy and sociology of mathematics, especially as it relates to the

extent to which everyday mathematics is built on pure deductive reason, versus other

modes of reason and their intersection: inductive, subconscious-intuitive, abductive,

visual-intuitive, and sociological (e.g. appeal to trusted authority).

Replacing these other kinds of arguments with deductive ones can itself be a very

insightful process; consider an appeal to intuition when moving from a specific exam-

ple to a claim that the approach works in the general case, and the insights that can

be derived from uncovering the very delicate and subtle problems associated with this

being only partially or conditionally the case.

The more problematic kind of gap, reflecting anything from misleading or incom-

plete presentation to outright error (by omission or otherwise), of which we present

a couple of significant ones in this chapter, are clearly important regardless of one’s

position on formalisation of this sort. For further discussion of the relationship of auto-

mated reasoning and interactive theorem proving to mathematical endeavour see Hales

on the Kepler Conjecture [34], or even our own work on formalising an axiomatic sys-

tem for Minkowski spacetime where misplaced geometric intuition is a common issue

[68].
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3.1.4 Hypothesis and evaluation

We claim that the aims laid out in Section 3.1.1 are feasible, and demonstrate this in

this chapter by presenting our specific formulation of the theorems necessary to achieve

these aims. That we have proven what we claim can be seen by:

• Confirming by inspection that the key definitions, e.g. the definitions for feasible

and solution vectors and the weight-update function, are properly implemented.

• Inspecting the statements of the theorems presented in this chapter, to confirm

that they indeed prove the correctness and proper termination of the round. We

will provide further evidence of this in Chapter 5: that the assumptions can be

fulfilled is shown through a concrete example, for which we also provide an

analytical solution with an application of our mechanised theorems from this

chapter to show that this is the unique solution.

• Further development presented in Chapter 5 showing that the assumptions of

the locale are consistent and are applicable to a concrete implementation of the

method.

In addition, given that the existing proof due to Woodall is very short, we expected

there to be much to say about the relationship between the pen-and-paper and formal

proofs, whether this was simply that there are many intuitive ideas which are hard to

formalise, or perhaps that there are even gaps and errors in the presentation. Indeed,

this turned out to be the case, and we will discuss this in the sections to follow.

We also claim that the motivations laid out in Section 3.1.3 convincingly argue the

case for the worthwhile-ness of the aims laid out in Section 3.1.1.

3.1.5 Novel concepts and ideas

In carrying out the formalisation of the transfer round, we identified several gaps in the

original presentation by Woodall. The representation decisions necessary for this part

of the work, which is what we started with, deeply informed the representation and

proof development that followed and which we discuss in Chapter 4 regarding ballots

and will discuss later in Chapter 5 on the implementation.

Through developing a minimal set of assumptions in order to prove the correctness

of this round, and thus transfer rounds generally, it forced us to consider how to char-

acterise what precisely a method has to satisfy in order to be considered an STV. This
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also led to our identification of the problem of ‘distortion’, which we conjecture should

be solvable by exhibiting a function for producing a non-distorting stopping-parameter

ε for any given election size (see Section 6.2.2).

We have generalised the original proof of Woodall to any fractional quota, T−E(w)
S+c1

+

c2, where c1 ∈N+,c2 ∈R. See section 1.1 for a discussion introducing these constants

and terms. We do not see any way to extend this to integral quotas where e.g. there is

a floor function enclosing the expression.

The main reasons for this generalisation are that there are a wide variety of quotas

in use across the spectrum of different STV methods in use today, and because we

believe existing justification for the use of this quota in Meek’s method was not very

strong. Proving Meek’s method’s correctness for as wide a range of quotas as possible

then gives us the opportunity to say that this form and range of quotas is necessary for

Meek’s method to function as intended, and it is clearly desirable to choose the smallest

(where c1 = 1,c2 = 0) because any larger quota could leave candidates unelected.1

Also, it is interesting to see precisely which results constrain the allowable quotas; we

note in particular that the Hare quota where c1 = 0 – at least for the proof approach

used by ourselves and Hill et al. [41] – has to be abandoned from the allowable quotas

in order to prove the key convergence result.

All of this together provides increased confidence in the correctness of Meek’s

method as a whole, which has not seen any formalisation effort before, except insofar

as others have formalised certain classes of STV, and while all STV methods share

a common basic structure these existing efforts nevertheless do not extend to Meek’s

method.

3.1.6 Structure of this chapter

In Section 3.2 we provide a description of our approach to representing the transfer

round. In Section 3.3 we present an overview of the constants and assumptions of the

locale representing the components of the transfer round. In Section 3.4 we introduce

definitions for working with weight vectors in the context of the transfer round and

characterise a context for a non-trivial transfer round. Section 3.5 presents a high-level

view of the proof that all vectors remain ‘feasible’ (defined in Section 3.4) for all steps

of the round along with a proof that the process converges. Section 3.6 discusses the

proof of convergence to a unique solution vector, thus proving the correctness of the

1To see this, consider the case where S+ 1 candidates reach the quota exactly, in the case where
c1 = 1,c2 = 0. Clearly, any larger quota would leave them all unelected.
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round. Finally, in Section 3.9, Section 3.10, and Section 3.11 we respectively discuss

the size of the formalisation, related work, and make some closing remarks.

3.2 General approach

The development is split up into two locales: one representing the components of

Meek’s method generally (see Section 3.3), and one representing an abstract surplus

transfer round (see Section 3.4). The first locale simply fixes what one might call

the necessary “election parameters”, such as the number of ballots, number of seats,

parameters of the quota, and the set of candidates. It does not make any assumptions

about whether we are in an elimination round, a terminal state, or a transfer round.

We will avoid dwelling on this first locale and quickly move to the second locale on

surplus transfer which extends the first; references back to results proven within this

first locale will be made as needed. Further discussion of representation decisions are

reserved for when they appear.

Throughout both locales the set of ballots is not directly represented, as we have

no need to do so in order to reason about the kinds of properties relevant to the key

theorems. This follows Woodall in Hill et al. [41] where Vc(w) is written, even though

if one were to pass all relevant quantities to functions we would need the ballots to

calculate the votes as in Vc(B,w). Nor is any individual ballot ever referenced formally,

though there is one informal reference in Hill et al. on “inspecting each ballot” towards

the end of the argument in Woodall’s proof justifying a particular step, which we will

come back to later in the chapter.

3.3 Meek’s method locale and additional set-up

In this section we present first an overview of the locale that characterises the com-

ponent functions of Meek’s method generally and abstractly, and then cover some ad-

ditional definitions and their relationship to the transfer round that are essential for

proving convergence in general and which largely follow the concepts introduced by

Woodall in Hill et al. [41]. We must first take a brief detour to introduce among other

things the harpoon notation, w ⇂ c,r.
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3.3.1 Some helpful notation for vectors

In order to ease working with vectors, three additional functions are helpful. Most of

the results needed to work with these definitions are simple consequences of concepts

and lemmas from Isabelle’s standard library and its multivariate analysis session.

Our definitions not only make reading and writing proof scripts in Isabelle/HOL

easier and more compact, but also help with the suggestion of new lemmas and facts

during proof. This is due to the reduced visual noise and clearer argument order, and

also because they enable symmetries to be more easily noticed as a result of their

intuitively logical and compact, symbolic style.

definition dec1 ::
"(real , 'a) vec ⇒ 'a::finite ⇒ real ⇒ (real , 'a) vec" where
"v ⇂ x,r ≡ χy. if x = y then v $ x - r else v $ y"

Figure 3.1: Definition for reducing an element of a weight vector with convenient nota-

tion.

This function decreases the x element of a vector v by r, or increases it if r < 0. This

eases the parsing of facts and goals with several such decreases in one expression,

occasionally repeated on the same weight vector.

The vector type (real, 'a::finite) vec uses a finite index type (here the type

variable 'a) to access real numbers; note the unintuitive order where index type is

in the second position. The dollar in v $ x is simply the syntax used for accessing

element x of vector v in Isabelle/HOL, and (χy. f y) is a vector with value f y at

index y.

definition vec_upd ::
"('val, 'arg::finite) vec ⇒ 'arg ⇒ 'val ⇒ ('val, 'arg) vec"
where

"v<x 7→ val> ≡ vec_lambda ((vec_nth v)(x := val))"

Figure 3.2: Notation for updating the value of one element of a weight vector.

This is just a vector update function. It maps the value of vector v at index x to val.

The additional notation:
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definition repl_all ::
"('b, 'a) vec ⇒ 'a::finite set ⇒ ('b, 'a) vec ⇒ ('b, 'a) vec"
where

"v<X 7−→ v'> ≡ χx. if x ∈ X then v' $ x else v $ x"

Figure 3.3: Definition for updating a set of elements of a weight vector to the associated

values of a new vector.

maps the values of a vector v to the corresponding values of v′ at all the elements in X .

For all three of these we prove various lemmas, such as:

lemma replace_effectively_UNIV [simp]:
assumes notin_eq: "

∧
x. x /∈ X=⇒ v' $ x = v $ x"

shows "v<X 7−→ v'> = v'"

lemma replace_insert_dec:
fixes v :: "(real , 'a::finite) vec"
assumes "x /∈ X"
shows "v<insert x X 7−→ v'> = v<X 7−→ v'> ⇂ x,(v $ x - v' $ x)"

Figure 3.4: Example lemmas proving properties of the vector update functions.

many of which can be handed over to the simplifier for automatic application.

3.3.2 Component functions of Meek’s method locale

The first locale will be presented in parts, beginning with its parameters:

locale abstract_meek_carrier =
fixes V_for :: "(real , 'c::finite) vec ⇒ (real , 'c) vec"

and Q_for :: "(real , 'c) vec ⇒ real"
and c1 :: nat
and c2 :: real
and E_for :: "(real , 'c) vec ⇒ real"
and num_ballots :: "nat"
and seats :: "nat"
and cands :: "'c set"

Figure 3.5: The locale characterising Meek’s method generally for a specific election

(ballots left implicit).

The naming convention *_for indicates that a function takes any weight vector (per-

haps with additional arguments) and produces some result. The already-introduced

mathematical notation V , Q, E, T , and S (see Section 1.1.1 and Chapter 2) become



3.3. Meek’s method locale and additional set-up 43

V_for, Q_for, E_for, num_ballots, seats in Isabelle. In general, we believe that

our adopted syntax for the formalisation aids proof readability.

Though we do not represent ballots explicitly, it is important to note that we are

still fixing constants representing the votes given some weights V (w), the quota given

some weights Q(w), and the excess given some weights E(w). See Section 5.4.2.8 for

implementation details; at this abstract level, it is sufficient to reason from axiomatic

characterisations of these functions.

As V_for w $ c returns a definite value for the votes of candidate c given weights

w, the set of ballots is in a sense an implicit additional argument of each function. Even

if we did represent the ballots explicitly as an argument to the locales, we would still

only be able to speak in terms of bounds because we do not have a concrete set of

ballots such as {abc,cab,ac,b,cba}.

The function V_for takes a vector of real numbers indexed by values of a finite type

'c and returns a vector of the same type, denoted by (real, 'c) vec. In particular,

the input is a vector of weights and the output is a vector of votes. The polymorphic

type 'c is that of candidates, and it must be finite due to the constraints of Isabelle’s

vec type constructor, which underneath is merely a wrapper for functions over finite

types. This is convenient to work with as it ties into Isabelle’s multivariate analysis

library, providing most of what we will need regarding limits and the like.

The parameters c1 and c2 will be used to constrain the valid forms of the quota

Q_for and thus aid our generalisation of Woodall’s proof. The quota also takes a

weight vector and returns the quota for that vector as a real number. Similarly for the

excess E_for, which is the sum total of all partially or wholly exhausted votes (see

Section 1.1.1 and Chapter 2 for a reminder about these functions).

Finally, the three election parameters – num_ballots, seats, and cands – are

necessary to characterise the form of the quota and state the assumptions needed about

each of the three *_for functions. There is an important decision here regarding rep-

resentation, where we have chosen to include the set of candidates running in the elec-

tion, cands, as a parameter of the locale. Hence the *_carrier suffix of the locale

naming. We had originally not done this, and instead used the whole type as the set of

candidates, the set of which is accessible in Isabelle/HOL using the overloaded con-

stant for the universal set UNIV :: 'c set. We will have more to say about this in

Section 5.4.2 on interpretation in the next chapter, but suffice to say this initial ap-

proach was problematic, even if it did make the statement of assumptions, lemmas,

and facts less cluttered with assumptions and case splits about cands.
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3.3.2.1 V_for assumptions

Following this are three assumptions sufficient to characterise V_for in terms of both

strict and non-strict bounds for all except specific kinds of sums (for which we will

introduce an additional assumption later):

assumes
V_change: " Jc ∈ cands; w $ c ̸= 0 K =⇒

V_for (w ⇂ c,r) $ c =
V_for w $ c * (1 - r / w $ c)"

and V_winc: " Jc ∈ cands; c' ∈ cands; c' ̸= c;
w $ c' ≥ 0; r ≥ 0;∧
k. k ∈ cands=⇒w $ k ≤ 1 K =⇒

V_for (w ⇂ c,r) $ c' ≥ V_for w $ c'"
and self_winc: " Jc ∈ cands; w $ c ≥ 0;∧

c. c ∈ cands=⇒ w $ c ≤ 1;
r ≤ 0 K =⇒

V_for w $ c ≤ V_for (w ⇂ c,r) $ c

Figure 3.6: Locale assumptions characterising V_for.

These characterise

• what happens to candidate with non-zero weight when their weight is changed,2

• what happens to a candidate’s vote when another, distinct candidate’s weight is

changed (subject to partial validity requirements on the weights), and

• what happens to a candidate’s vote when a candidate’s weight is weakly in-

creased,3 even if their weight is 0 i.e. they are eliminated (also subject to partial

validity).

The last assumption is not present in Woodall. While these assumptions repeatedly

refer to w ⇂ c,r, as they say nothing about the value of r this means nothing more than

c’s weight changes. It is important to continue to notice when r is not constrained. The

first two assumptions V_change and V_winc characterise the vast majority of what one

will want to say about V_for, but V_change does not cover the case of the candidate

being eliminated, which self_winc exists to allow.

2The reader may notice that a candidate with non-zero weight is just an eliminated candidate. This is
true, but as we are characterising the functions and not yet locating ourselves within a concrete transfer
round, it is confusing to refer to candidate status like “eliminated” or “elected”. We do so when it is
convenient and hopefully unlikely to confuse, but it is good to keep this in mind. The method’s elegant
encoding of status in weights does make presenting properties of functions on weights confusing outside
of the context of actual rounds.

3Of course, this does not happen in real rounds.
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We had initially tried to generalise cases such as “if the weight is weakly decreased”

to “if the weight is changed and this results in the votes weakly decreasing”, but this

turned out to be a problematic attempt at generalisation which caused numerous issues

on the interpretation side, so what we present here ends up being close to the original

presentation of the assumptions by Woodall.

The assumption V_change gives the formula for a weight change as in Woodall’s

first assumption “Vc(w) decreases in exact proportion [emphasis ours] to the decrease

in wc”, the explicit formula which they give later in their paper without derivation.

Unlike Woodall, we do provide a derivation, which we describe later when discussing

the interpretation of the locale (see Section 5.4.2).

Finally, self_winc allows one to conclude that if c has weight 0, their votes

must weakly increase (from 0) upon increasing their weight (we name this lemma

elim_winc). Eliminated candidates in the actual algorithm never have their weights

further decreased, so this is sufficiently general to cover all the cases of changes to

weights that affect V_for. Although we name this assumption elim_winc, note that

we are simply saying what happens to a function when a component of a vector equal

to 0 changes in a particular way, and that this represents “an eliminated candidate” will

only truly make sense later in the context of a concrete round.

It is clear when thinking about the ballots why self_winc is true: there are either

some ballots which the candidate is listed on which are not currently all assigned to

other candidates, or there are not; in the former case they will receive some votes upon

the weight increase, and in the latter case they will remain at 0. Less obviously, one

way in which we can use self_winc via elim_winc is by using a trick where we

decrease a candidate’s weight to 0 and then increase it again (note non-candidates’

weights are covered in Section 3.3.3):
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1 lemma w_le1_V_ge0:
2 assumes c_cand: "c ∈ cands"
3 and w0: "w $ c ≥ 0"
4 and w1: "

∧
c. c ∈ cands=⇒ w $ c ≤ 1"

5 shows "V_for w $ c ≥ 0"
6 proof -
7 have "V_for (w<c 7→ 0>) $ c = 0"
8 by (simp add: c_cand eliminated_no_votes)
9 then have "0 ≤ V_for (w<c 7→ 0> ⇂ c,(- w $ c)) $ c"

10 using elim_winc [of c "w<c 7→ 0>" "- w $ c"] by (simp add:
c_cand vec_upd_def w0 w1)

11 also have " ... = V_for w $ c"
12 <proof>
13 finally show ?thesis .
14 qed

Figure 3.7: Lemma for the non-negativity of candidate votes, whose proofs demon-

strates the weight change trick.

This proof states that, given eliminated candidates have no votes (line 7) and increasing

eliminated candidates’ weights weakly increases their votes (lines 9–11), it must be the

case that candidates that are not eliminated have non-negative votes (line 13).

In the premises of the locale assumptions we consistently make minimal assump-

tions about the weight vector necessary for the conclusion to follow. We do this largely

because it is genuinely necessary at some points during the proofs. This is particularly

the case because we do not know that weights remain valid for all steps of the sur-

plus transfer round until the first major theorem is proven. As we sometimes have

to make locale assumptions more general by weakening assumptions about weights,

we decided to make locale assumptions maximally general, for both consistency and

future-proofing. That is, as opposed to steadily generalising locale assumptions as

needed; there is no repeated fiddling to be done if we maximise generality straight

away.

This approach does make it marginally more difficult to prove some results on the

implementation side in order to prove it models these assumptions, but the difficulty

increase is not significant. Intuition is only sacrificed until the conclusion of the first

major theorem, after which we can return to thinking only in terms of valid weights.

3.3.2.2 E_for assumptions

We now introduce the three assumptions regarding the excess specifically:
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and E_winc: " Jc ∈ cands; r ≥ 0;∧
k. k ∈ cands=⇒ w $ k ≤ 1 K =⇒

E_for (w ⇂ c,r) ≥ E_for w"
and E_lower: " J

∧
c. c ∈ cands=⇒ w $ c ≥ 0;∧
c. c ∈ cands=⇒ w $ c ≤ 1 K =⇒

E_for w ≥ num_ballots * (Πc∈cands. 1 - w $ c)"
and E_upper: " Jc ∈ cands;

∧
c. c ∈ cands=⇒ w $ c ≥ 0;∧

c. c ∈ cands=⇒ w $ c ≤ 1;∧
k. k ∈ cands=⇒ w $ c ≤ w $ k K =⇒

E_for w ≤ num_ballots * (1 - w $ c)"

Figure 3.8: Locale assumptions characterising E_for.

The first assumption simply says that when one weakly increases a candidate’s weight,

the excess weakly increases. This is subject to some partial validity requirements as

usual, which we will not continue to remark upon. This is provable on the implemen-

tation side even if some weights are negative; in general, we make minimally strong

assumptions to ease proof. Additionally, as long as one starts with valid weights, we

will later eventually prove that weights do only ever (weakly) decrease, and never in-

crease, so the constraint on r is still sufficiently general for our purposes; the same

applies to the other assumptions.

The second and third assumptions require a little more justification. We know little

about the codomain of the excess E_for from just E_winc (and the invariant, described

below). We thus additionally assume lower and upper bounds for the codomain of

E_for under certain conditions. This will later help us put bounds on both the quota

and the votes in circulation. Neither of these assumptions appear in Woodall’s proof.

The lowest possible value, characterised in E_lower, occurs when every candidate

is listed on every ballot, in which case the amount of excess each ballot contributes is

the same, and the total excess is found simply by multiplying by num_ballots. Note

that this is 0 only when all candidates are hopeful i.e. all weights = 1.

The maximum possible excess, characterised in E_upper, is found by finding the

candidate with the (equal-)lowest weight, c, and supposing that every ballot only lists

c, and in which case every ballot contributes 1 - w $ c. Note this is again only 0

when all candidates are hopeful, i.e. when w $ c = 1, and is potentially as high as

num_ballots if w $ c = 0, i.e. if c is eliminated, though this only actually occurs if

every listed candidate is eliminated. Crucially, this allows us to show that the excess

never exceeds num_ballots.
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3.3.2.3 The votes invariant

We will now deal with a single assumption that requires a non-trivial amount of effort

to prove on the interpretation side (see Section 5.5.3) but which is necessary to assume

for both generality and elegance in this locale:

and votes_invariant:
"num_ballots = (Σk∈cands. V_for w $ k) + E_for w"

Figure 3.9: Locale assumption stating the votes invariant.

Woodall provides five self-evident assumptions about the properties of the functions

V_for, E_for, and Q_for when one weakly decreases i.e. decreases or leaves the

same the weight of a single candidate:

We shall make extensive use of the following facts which are obvi-
ous [...], and in which we use the term ‘increases’ and ‘decreases’ in the
weak sense (that is, both terms correctly describe a number that does not
change): if one component w j of w is decreased whilst all the other com-
ponents remain unchanged, then:

1. Vj(w) decreases, in exact proportion to the decrease in w j;
2. each Vk(w)(k ̸= j) increases;
3. the sum of the votes for all the ‘elected’ candidates decreases by

an amount v ≥ 0 (since the contribution from each ballot paper de-
creases);

4. the excess vote increases, by at most v;
5. the quota decreases, by at most v/(s+1).

We only assume properties (1), (2) and (4) (stated as V_change, V_winc, and E_winc

in our locale – see Figure 3.6 and Figure 3.8) and derive the rest by introducing our

votes invariant.

Note our version of (1) requires weights be non-zero. This may appear to be less

general, as Hill et al. do not seem to make that assumption, but that is because they

are stating properties which hold for elected candidates, who they already assume have

valid, positive weights. So in fact our assumption is stronger, as it covers all candidates

and also applies for a broader range of weights. In general, handling weights and

weight validity leading up to the first theorem is much more subtle than it appears in

Hill et al.

The invariant itself is perhaps a little surprising: it says that the number of ballots

is equal to the sum of votes in circulation plus the excess, given any weight vector.
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That is, even invalid ones. Unlike with the other assumptions, we do not do this out

of necessity for later proof or consistency of presentation, but because it simply falls

very easily out of the design of Meek’s method that one needs to make no assumption

about weights.

The fact that the invariant can be easily stated while making no mention of a par-

ticular step of the surplus transfer round will be useful when we come to interpret the

locale “within itself” after introducing the second theorem in Section 3.6.1.

One could rephrase the assumption to say that the sum of votes in circulation plus

the excess is equal for any two weight vectors, but then one has the problem of proving

that this constant is equal to num_ballots, and there seems to be nothing to gain from

this additional complication.

3.3.2.4 Remaining assumptions

We conclude the presentation of the locale by summarising the purpose of the remain-

ing assumptions:

and quota_form:
"Q_for =
(λw. (num_ballots - E_for w) / (seats + c1) + c2) ∧
c2 ≥ 0 ∨
Q_for =
(λw. real_of_int ⌊(num_ballots - E_for w) /

(seats + c1)⌋ + c2) ∧
c2 > 0"

and num_ballots_gt0: "num_ballots > 0"
and seats_gt0: "seats > 0"
and noncand_no_V_change: " Jc ∈ cands; c' /∈ cands K =⇒

V_for (w ⇂ c',r) $ c =
V_for w $ c"

and noncand_no_Q_change: "c /∈ cands=⇒
Q_for (w ⇂ c,r) = Q_for w"

Figure 3.10: Remaining locale assumptions about the quota, number of ballots, seats,

and non-candidates.

The first fixes the form of the general quota to either fractional or integral, with any

additive constants we like, provided that in the former case c2 ≥ 0 and in the latter case

c2 > 0. These constraints are necessary to ensure the quota always remains positive,

because if it does not then most of the proofs cannot get off the ground. Although

Meek’s method in practice always uses the fractional variant with c1 = 1∧ c2 = 0, it

is an easy generalisation to make. We prove as much as we can without restricting
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the form of the quota, but eventually do have to settle on the fractional quota with a

constraint on c1.

The remaining assumptions characterise a non-trivial election – num_ballots_gt0

and seats_gt0 – and require changes to non-candidates’ weights to not affect candi-

dates’ votes nor the quota.

3.3.3 Assumptions about non-candidates

We generalise noncand_no_V_change and noncand_no_Q_change to cover arbitrary

changes to weight vectors. These kind of “non-candidate” assumptions are necessary

due to our use of a carrier set, cands, as opposed to using the whole type for the

set of candidates. Lemmas like the following which leverage these assumptions are

important as it allows us to conclude Vc(w) =Vc(w′) if all candidate weights are equal:

lemma eq_cand_weights_V_eq:
assumes "c ∈ cands"

and cands_eq: "
∧
c. c ∈ cands=⇒ w $ c = w' $ c"

shows "V_for w $ c = V_for w' $ c"
proof -

have "V_for w $ c = V_for (w<X 7−→ w'>) $ c"
if "X ⊆ UNIV - cands" for X
using finite that

proof (induct X rule: finite_induct)
case empty
then show ?case

by simp
next

case IH: (insert k X)
(* . . . * )
finally show ?case

by simp
qed
(* . . . * )
finally show ?thesis .

qed

Figure 3.11: A generalisation of the fact that non-candidates’ weights do not affect any

candidates’ votes.

We have shown the cut-down version of the above proof to demonstrate a very com-

mon induction technique in our development using an easy-to-understand lemma. We

induct on a (necessarily finite) subset X of candidates whose weights are updated from

an initial vector w to a final vector w′. Usually we take X ⊆ cands; the induction pattern

is exactly the same, only the set is different. The typical way of finishing off lemmas
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of these sort is to take a fact one has like P(Vc(w < cands 7−→ w′ >)) and show this

is equivalent to P(Vc(w′) as long as c ∈ cands, using lemmas derived from the likes of

eq_cand_weights_V_eq.

3.4 Transfer round locale

In this section, we characterise a non-trivial transfer round according to Meek’s method

and prove correctness and proper termination

3.4.1 Feasible and solution vectors

There are two final concepts to introduce before we get to the surplus transfer round lo-

cale. Following Woodall, we introduce the notion of feasible vectors and solution

vectors:4

definition feasible :: "(real , 'c::finite) vec ⇒ (real , 'c) vec ⇒
real ⇒ 'c set ⇒ 'c set ⇒ bool" where

"feasible w V Q cands elected ≡
∀c∈cands. w $ c ≥ 0 ∧ w $ c ≤ 1 ∧ (c ∈ elected−→ V $ c ≥ Q)"

definition solution :: "(real , 'c::finite) vec ⇒ (real , 'c) vec ⇒
real ⇒ 'c set ⇒ 'c set ⇒ bool" where

"solution w V Q cands elected ≡
∀c∈cands. w $ c ≥ 0 ∧ w $ c ≤ 1 ∧ (c ∈ elected−→ V $ c = Q)"

Figure 3.12: Definitions for feasible and solution vectors.

In other words, a vector is feasible if all of its weights are valid, and the candidates

which are supposed to be elected reach the quota. We presume the term “feasible” is

used by Hill et al. because a wide class of such weight vectors may occur in the course

of a transfer round, depending on the specific set of ballots involved. Similarly for

solution vectors, where the elected candidates’ votes are equal to the quota. Note that

we quantify over candidates, which is necessary with the cands carrier set approach.

The following additional definitions are also useful:

4These definitions occur outside the locale in order to be reused in later theory files at the top-level,
which is why they take the sets cands and elected as arguments.
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definition feasible_given :: "(real , 'c::finite) vec ⇒ (real , '
c::finite) vec ⇒ (real , 'c) vec ⇒ real ⇒ 'c set ⇒ 'c set ⇒
bool" where

"feasible_given w0 w V Q cands elected ≡
feasible w V Q cands elected ∧
(∀c∈cands. c /∈ elected−→ w $ c = w0 $ c)"

definition solution_given :: "(real , 'c::finite) vec ⇒ (real , '
c::finite) vec ⇒ (real , 'c) vec ⇒ real ⇒ 'c set ⇒ 'c set ⇒
bool" where

"solution_given w0 w V Q cands elected ≡
solution w V Q cands elected ∧
(∀c∈cands. c /∈ elected−→ w $ c = w0 $ c)"

Figure 3.13: Definitions for feasible and solution vectors given some initial weight vector

which must remain unchanged.

These latter two definitions explicitly require that a feasible (respectively solution)

vector’s weights for non-elected (i.e. hopeful and eliminated) candidates is the same

as some other vector w0, so-named because this will always be the initial vector at the

start of the transfer round in our usage. This is helpful when obtaining an arbitrary

solution vector in Theorem 2, for example (see Section 3.6).

These all state a little more than Woodall’s definitions as they explicitly require that

hopeful candidates’ weights are also valid, though Woodall likely implicitly considered

that hopeful candidates initially have valid weights and as they are never updated will

continue to do so. So we are simply making this more explicit.

3.4.2 Transfer round locale definition

We introduce the surplus transfer round in two parts. First, we introduce the locale

that fixes the set of elected candidates and the weights at step 0 of the surplus transfer

round. Inside this locale context, we introduce numerous definitions and abbrevia-

tions, including a definition characterising the weight vector at each subsequent step.

Second, we use these definitions and abbreviations to state the various assumptions

characterising the surplus transfer round.

3.4.2.1 Transfer round locale definition: first part and additional definitions

The initial head of the transfer round locale, containing just the additional fixed con-

stants and one additional assumption:
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locale meektransfer_fixes_carrier = abstract_meek_carrier +
fixes transfer_weights :: "(real , 'c) vec"

and elected0 :: "'c set"
assumes elected_cands: "elected0 ⊆ cands"

Figure 3.14: Transfer round locale constants, with one assumption on elected0.

The constant elected0 should be read as “the set of candidates elected at step 0”. The

transfer_weights vector is the initial weight vector, which should comply with this

set of elected candidates (and indeed we will force this to be the case shortly). We can

here introduce one basic assumption that does not require additional notation, which is

the simple fact that those elected must be candidates.

One may wonder why we do not define elected0 as the set of candidates who

reach the quota given the initial weights. It is, as with several of the decisions regard-

ing representation, to do with Theorem 2. We need to be able to interpret this locale

with the same set of elected candidates but a potentially different initial weight vec-

tor. When we finally get there, these subtle representation decisions will pay off in a

comparatively brief discussion of Theorem 2.

We can now leverage our vector update notation to tersely describe what it means

to update a weight vector once:

abbreviation update_one where
"update_one w ≡

w<elected0 7−→ (χ c. w $ c * Q_for w / V_for w $ c)>"

Figure 3.15: One step of the transfer round defined within the transfer round locale.

Note that non-elected weights, including non-candidates’ weights, are made to remain

the same implicitly. We could set undefined for non-candidates’ weights to be max-

imally agnostic about them, but we do not see a benefit in doing so, as in any case

because Isabelle requires functions to be total we have to choose something, and it

does make things easier to suppose they remain the same. We now simply define the

sequence of weight vectors by repeated applications of single-updates using the power

function:
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definition w_at :: "nat ⇒ (real , 'c) vec" where
"w_at i ≡ (update_one^^i) transfer_weights"

lemma w_upd:
assumes "c ∈ elected0"
shows "w_at (Suc i) $ c = w_at i $ c * Q_at i / V_at i $ c"

lemma w_no_upd:
assumes "c /∈ elected0"
shows "w_at (Suc i) $ c = w_at i $ c"

abbreviation V_at :: "nat ⇒ (real , 'c) vec" where
"V_at i ≡ V_for (w_at i)"

abbreviation feasible_for :: "(real , 'c::finite) vec ⇒ bool" where
"feasible_for w ≡ feasible w (V_for w) (Q_for w) cands elected0"

abbreviation feasible_at :: "nat ⇒ bool" where
"feasible_at i ≡ feasible_for (w_at i)"

Figure 3.16: Definitions capturing the state of the weight vector and votes at all steps of

the transfer round, plus two lemmas to illustrate this is equivalent to the usual presen-

tation.

For reference, the following hold for the function (^^): f^^0 x = x, f^^(Suc i)

x = f (f^^i x). We also introduce additional abbreviations not shown here such

as Q_at, solution_at, and so on. We abbreviate feasible w (V_for w) (Q_for

w) elected0 as feasible_for w. Similarly, we introduce solution_for. In prior

revisions of these locales, the sequence w_at was a locale parameter and was charac-

terised directly by how it should update, but given that the weight vector over all steps

is uniquely determined by the initial weight vector, there is not much sense in this. The

only thing having w_at as a locale parameter allows one to do over a definition is to

say nothing about non-candidates.
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3.4.2.2 Transfer round locale definition: main part

We can now fully begin our treatment of the transfer round:

locale meektransfer_carrier = meektransfer_fixes_carrier _ _ _ _ _
_ _ V_for

for V_for :: "(real , 'c::finite) vec ⇒ (real , 'c) vec" +
assumes elected_nonempty: "elected0 ̸= {}"

and seats_not_exceeded: "card elected0 ≤ seats"
and feasible0: "feasible_at 0"
and E_cont: "isCont E_for w"
and V_cont: "isCont V_for w"
and nonelected_nonnegative:

" Jc ∈ cands; c /∈ elected0 K =⇒ V_at 0 $ c ≥ 0"
and vote_sum_ge1

" J
∧
c. c ∈ cands=⇒ w $ c ≥ 0;∧
c. c ∈ cands=⇒ w $ c ≤ 1 K =⇒

(Σc∈cands. V_for ((w_at 0)<elected0 7−→ w>) $ c) ≥ 1"

Figure 3.17: The transfer round locale with all remaining assumptions.

We assume the continuity of V_for and E_for, which will be needed for proving

our theorems involving limits. Clearly based on our discussion of Meek’s method

in Section 1.1 these are simply compositions of continuous functions, and we indeed

prove their continuity in Section 5.4.2. We have proven that as long as the quota is

fractional, the lemma Q_cont stated isCont Q_for w is true. All of the assumptions

of this locale are about characterising the specific, valid and non-trivial surplus transfer

round whose properties we want to prove. It is valid because:

1. The weights are initially valid and the elected candidates at least reach the quota:

feasible0. This forces compliance between the constants elected0 and

transfer_weights.

2. Non-elected (either hopeful or eliminated) candidates have non-negative votes:

nonelected_nonnegative. We need this so that we conclude all candidates

start with non-negative votes.

3. The seats are not over-filled: seats_not_exceeded.

and we are in a non-trivial surplus transfer round because, aside from the non-triviality

assumptions of the prior locale:

1. At least one candidate is elected: elected_nonempty.
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2. No matter how one changes the elected candidates weights at step 0, as long as

they are still valid then the sum over all candidates’ votes must still be at least 1:

vote_sum_ge1.

The last of these is intended to capture Woodall’s non-triviality condition, where they

state “there is at least one ballot paper that contains the name of a ‘hopeful’ candidate

[h] in its list of preferences”. If this is the case then we have Vh(w) ≥ 1 regardless

of what happens to the elected candidates’ weights in w as long as they are valid,

and elected candidates’ weights are the only candidates whose weights change. This

ensures non-triviality because if there is no such hopeful candidate, the votes would

chase the quota down to 0, and in that case rather than go through this iterative process,

one should just immediately choose to elect randomly from the remaining hopeful

candidates to fill the seats (an undesirable turn of events in practice, of course).

Without access to ballot structure, we cannot make a simple assumption equivalent

to “there is at least one hopeful candidate listed on at least one ballot”. If we assume

something like ∃c ∈ cands. wc = 1, we still do not know if they are listed on any

ballot. If we abandon our abstraction away from a set of ballots and assume5 ∃c ∈
cands. ∃b∈ ballots. c∈L(b)∧wc = 1, without access to the concrete definition of the

votes function and ballot structure we cannot use this to conclude that this candidate

will always receive some votes. But one of the two major points of using locales for

this in the first place, aside from abstracting from ballots and focusing purely on the

bounds, is flexibility of specific implementation.

Note that these assumptions do not actually exclude all trivial cases. There is the

case where |elected0| = |cands| and the method is clearly finished. And there is the

case where ∀c ∈ elected0. Vc(w(0)) = Q(w(0)). In the latter case the surplus transfer

round would not occur, similarly if the sum of surpluses were less than the stopping-

parameter ε. The reason we do not exclude these situations is that these cases are

subsumed within the analysis without special treatment (e.g. no case splits), and the

intuitive context for this locale is in any case not quite “given this is a surplus transfer

round...” but rather “if one were to carry on as if we were in a surplus transfer round

without a stopping-criterion...”, and in the latter of these two trivial cases the weights

still “converge”, immediately on the initial weight vector. We can now begin proving

5Note here we already have to introduce L , and so we are only the step of adding G away from being
at the lower-level of representation except without the concrete function definitions; this would add a
level of complexity and syntactic noise that is quite unnecessary, as all facts pertaining simply to bounds
are as far as we can tell statable without this. One slightly convoluted assumption does not undermine
this basic fact.



3.5. Theorem 1: feasible convergence on a solution 57

the two major theorems.

3.5 Theorem 1: feasible convergence on a solution

Theorem 1. The assumptions characterising the votes, excess, and quota, along with

the equation for updating weights, constructs a sequence of feasible vectors that con-

verges to a solution vector.

Proving this proceeds in two parts. First, one proves:

theorem all_feasible: "feasible_at i"

Figure 3.18: Theorem: the weight vector is feasible at every step of the transfer round.

Then, one proves that w_inf, the limit of the sequence of vectors (λi. w(i)) exists and

is a solution vector:

definition w_inf :: "(real , 'c) vec" where
"w_inf ≡ χc. (THE l. (λi. w_at i $ c)−−−→ l)"

theorem w_inf_solution:
assumes gfq: "∀w. Q_for w =

(num_ballots - E_for w) / (seats + c1) + c2"
shows "solution_for w_inf"

Figure 3.19: The limit vector of the transfer round is a solution.

In the above, the operator THE is a non-computational aspect of Isabelle/HOL which

selects the unique value that satisfies the enclosed predicate. The The operator is the

Hilbert choice operator for values which uniquely satisfy the predicate passed and THE

merely provides the ability to bind a variable for convenience.

3.5.1 Theorem 1.1: all steps of the process are feasible

The first part proceeds in three steps:

1. Show the quota is positive when the weight vector is feasible.

2. Prove general statements on how the votes and quota change given decreases to

weights.
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3. Using these general statements, induct on the step and hence show (in ordinary

mathematical notation for brevity) Vc(w(i+1)) ≥ Vc(w′) = Vc(w(i))w(i+1)
c /w(i)

c =

Q(w(i)) ≥ Q(w(i+1)) as per Woodall, where w′ is w(i) with c’s weight replaced

by w(i+1)
c .

Formalising the first step is not trivial, and we had to prove the following weaker

lemma:

lemma feasible_at_Q_pos:
assumes feas: "∀j. j ≤ i−→ feasible_at j"
shows "Q_at i > 0"

Figure 3.20: Lemma showing that the quota remains positive as long as all prior steps

of the transfer round produced feasible vectors.

which says that at any given step i if the weight vector is feasible at this and at every

prior step j then the quota must be positive. For this we have to first prove, among

other things, that:

1. No matter what happens to the elected candidates weights, the sum of all votes

is always at least 1, using votes_sum_ge1.

2. The quota is nonnegative for feasible vectors, using E_upper.

3. For any sequence of weight vectors, if at some step i and all prior steps the

weights were feasible and updated in the usual way, then the excess never ex-

ceeds num_ballots - 1.

It is important here that the excess is always less than or equal to some value less

than the number of ballots, as when taking the limit we still need E_at w_inf <

num_ballots.

The general proofs about decreasing weight vectors are also quite involved, and

are also used in several places in Theorem 2. This is partly because for Theorem 1,

Woodall has these statements for the special case of w(i), w(i+1), and w′, but then in

Theorem 2 uses similar vectors with the same relationships to construct a solution

vector “by Theorem 1”. In formalisation, one can tackle such things by proving each

case separately or by proving a general lemma which cover both cases, which is what

we have done.

Our two general proofs of a little over 200 lines replace Woodall’s “By (2), (1), (6)

and (5)”. The one which substitutes for Vc(w(i+1))≥Vc(w′), proven in the prior locale,

is:
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lemma many_wdec_V_winc:
assumes "c ∈ cands"

and cands_le: "
∧
c. c ∈ cands=⇒ w_le $ c ≤ w $ c"

and c_no_change: "w $ c = w_le $ c"
and w_ge0: "

∧
c. c ∈ cands=⇒ w_le $ c ≥ 0"

and V_nonpos_eq: "
∧
c. Jc ∈ cands; V_for w $ c ≤ 0 K

=⇒ w_le $ c = w $ c"
and w_props: "

∧
k. k ∈ cands -{c}=⇒ w_le $ k ≥ 0"

"
∧
k. k ∈ cands=⇒ w $ k ≤ 1"

shows "V_for w $ c ≤ V_for w_le $ c"

Figure 3.21: Lemma showing that if all candidates’ weights are weakly decreased ex-

cept candidate c’s, which remains the same, c’s votes must increase.

The assumption V_nonpos_eq is capturing the fact that we need every candidates’

votes to be positive to be able to say anything about the effects of decreasing their

weight (due to e.g. the premises of the locale assumptions), so we require that any

candidates whose votes are not positive have their weights left the same. Allowing

negative votes but requiring such candidates’ weights to not change is a weakening

of the assumption that seems unnecessary, but is actually quite important in terms of

easing into the applications of these general lemmas in the surplus transfer locale, as

we do not assume or know immediately in the context of a surplus transfer round that

all candidates’ votes are nonnegative, this has to be proven. Similar results are proven

for the excess, quota, etc. Also, important for proof automation, after this we are

able to prove that candidates with positive votes remain positive after decreasing other

candidates’ weights. We then prove Theorem 1.1:

theorem all_feasible: "feasible_at i"

Figure 3.22: Theorem: the weight vector is feasible at every step of the transfer round,

proven.

Note that in the proof of all_feasible we make use of strong as opposed to weak

induction,6 necessary due to feasible_at_Q_pos requiring every prior round to be

feasible. Also note that we have no assumption about what form the quota takes, and

so this is general over any integer or fractional dynamic quota one might use. The

proof is completed in a little under 200 lines.
6Strong induction, for natural numbers specifically, has at the induction step that the proposition is

true for all previous (∀m < n) steps and one is required to prove it is true for the current (n) step. In
weak induction the proposition must be proven true for a base case (n = 0) and then given it is true at
the current step (n) one must prove it is true for the next (n+1).
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With Theorem 1.1 proven, we can then prove stronger versions of lemmas like

feasible_at_Q_pos with the assumptions removed, along with a number of other

corollaries, including the following now undecorated by any assumptions besides the

fact that the c under consideration is in each case a candidate (or more specifically for

one lemma, an elected candidate):

corollary V_sum_pos:
"(Σc∈cands. V_at i $ c) ≥ 1"

corollary E_lt_max:
"E_at i ≤ num_ballots - 1"

corollary Q_pos:
"Q_at i > 0"

corollary elected0_Vi_ge_Qi:
assumes "c ∈ elected0"
shows "V_at i $ c ≥ Q_at i"

corollary w_ge0:
assumes "c ∈ cands"
shows "w_at i $ c ≥ 0"

corollary w_le1:
assumes "c ∈ cands"
shows "w_at i $ c ≤ 1"

Figure 3.23: Various important and now easy to state corollaries to the first part of

Theorem 1.

3.5.1.1 Theorem 1.1: additional remarks

There are a number of basic facts one needs for this development that one would not

think to explicitly prove using pen-and-paper. For example, some proofs to do with

nonnegativity or positivity of candidates’ votes e.g. after weight updates. They are

particularly important for facilitating proof discovery by sledgehammer. One such

lemma is the fact that if all candidates’ weights are valid, then all candidates’ votes are

nonnegative:
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lemma valid_all_nonneg:
assumes "c ∈ cands"

and le1: "
∧
c. c ∈ cands=⇒ w $ c ≤ 1"

and ge0: "
∧
c. c ∈ cands=⇒ w $ c ≥ 0"

shows "V_for w $ c ≥ 0"

Figure 3.24: Lemma stating that all candidates’ votes are non-negative as long as their

weights are valid.

We prove this using a similar induction trick to that mentioned earlier where we start at

the 0-vector and map back to the original weight vector one by one. For this particular

lemma, valid_all_nonneg, we then prove:

1. The singleton set base case using elim_winc and a case split on whether the

singleton element is c, and

2. the inductive step using elim_winc, the lemma assumptions, and the fact that

eliminated candidates have no votes.

Things such as these basic facts clarified the delicate structure of some of what is

implicit in Woodall’s proof in terms of the order in which one is able to build up these

lemmas. For example, the positivity of the quota for feasible weights only follows

once you have a number of other results about nonnegativity of votes, the fact that the

excess never reaches its upper bound thanks to the non-triviality criterion, and some of

this in turn requires first proving weaker lemmas as a stepping-stone to what one will

be able to finally prove, and so on.

Illustrative of this, we had originally encoded in our assumptions the variant of

Meek’s method where new candidates can become elected when they reach the quota

during a surplus transfer round (i.e. the “enlisting” approach); this completely changes

the natural order of proof and makes initial proof development much easier, but intro-

duces other significant complications when it comes to convergence. See Section 6.2.6

on future work to do with this variant.

3.5.2 Theorem 1.2: the process converges and the limit is a solu-

tion

The second part proceeds in roughly four steps:

1. Prove (λi.w(i)
c ) is convergent.
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2. Show 0≤Vc(w(i))−Q(w(i)) =Vc(w(i))−Vc(w′)≤ T (w(i)−w(i+1))

3. Show the validity of w_inf.

4. Using the above series of inequalities, V_cont, and Q_cont we show V_for

w_inf = Q_for w_inf.

Recall that T is the number of ballots, as introduced in Section 1.1. The validity of

w_inf simply follows from the fact that (λi. w(i)
c ) is bounded below by 0 and above by

1. The convergence of w_at follows as the weights are bounded below by 0 and are

weakly monotonically decreasing as a consequence of Theorem 1.1, given that non-

elected candidates’ weights do not change and elected candidates weights are always

multiplied by some number between 0 and 1.

3.5.2.1 Theorem 1.2: a non-proof in Woodall

For the series of inequalities however, Woodall claim that

Vc(w(i))−Vc(w′)≤ T (w(i)
c −w(i+1)

c )

is true “since decreasing wc by δ cannot decrease Vc(w) by more than T δ”. We can

prove that the left-hand side can be rewritten so that this reduces to proving the follow-

ing:

Vc(w(i))(w(i)
c −w(i+1)

c )/w(i)
c ≤ T (w(i)

c −w(i+1)
c )

This follows immediately if w(i)
c =w(i+1)

c . If they are not equal, this reduces to showing

Vc(w(i))/w(i)
c ≤ T , i.e. the total votes received before passing on according to c’s weight

does not exceed the total number of ballots.

We prove a generic version of this, i.e. a version not dependent on steps of the

round, in the locale meekabstract_carrier. We were for a time unsure about the

provability of this at the level of abstraction where one does not have access to ballot

structure, and had included it as an additional assumption to the locale, which felt

somewhat unjustified and out of place at that level.

Once we had made it an assumption, we proved it on the interpretation side using

a lot of unfolding, simplification, and refolding for the specific implementation we use

of the various functions. However, we eventually found a way to prove it using a trick

similar to that we showed earlier with w_le1_V_ge0 to do with mapping weights to

some constant and back, and using the typical induction pattern we have also already

shown with eq_cand_weights_V_eq:
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theorem fracs_le_num_ballots:
assumes c_cand: "c ∈ cands"

and w0: "
∧
c. c ∈ cands=⇒ w $ c ≥ 0"

and w1: "
∧
c. c ∈ cands=⇒ w $ c ≤ 1"

shows "V_for w $ c / w $ c ≤ num_ballots"

Figure 3.25: Lemma stating that the total votes received before passing on according

to c’s weight does not exceed the total number of ballots.

If wc = 0 or Vc(w) = 0 the theorem follows trivially. In all other cases we are dealing

with a candidate with positive weight and some votes. Dividing the votes by the can-

didate’s weight recovers – as long as wc ̸= 0 – is the raw amount of votes they receive

from others “before passing anything on”. We briefly discussed what we have been

calling frac-of , the “fractions of votes going to a candidate given some ballot”, in Sec-

tion 1.1. This quantity Vc(w(i))/w(i)
c essentially represents the sum of fractions of each

ballot going to c at step i. The function frac-of will be given its proper Isabelle/HOL

definition in Section 5.2. We now give an outline of the proof.

proof -
have "V_for (w<cands 7−→ 1><Y 7−→ w>) $ c /

w<cands 7−→ 1><Y 7−→ w> $ c ≤ num_ballots"
if "Y ⊆ cands" for Y

using finite that assms
proof (induct Y rule: finite_induct)

case empty
(* . . . * )
finally show ?case .

Figure 3.26: Outline of the proof of fracs_le_num_ballots: first fragment.

The trick here is to first map all candidates’ weights to 1. The base case, which we cut

out here for brevity, reduces to proving Vc(w < cands 7−→ 1 >)≤ T , which follows by

a helper lemma (which is what triggered the idea for the proof of this theorem):

lemma w1_V_le_num_ballots:
assumes c_cand: "c ∈ cands"

and w1: "
∧
c. c ∈ cands=⇒ w $ c = 1"

shows "V_for w $ c ≤ num_ballots"

Figure 3.27: Outline of the proof of fracs_le_num_ballots: second fragment.

This follows from the invariant plus the fact that there is no excess when all candidate

weights are 1. We then proceed with the induction step:



64 Chapter 3. Abstract verification of transfer round convergence in Meek’s method

next
case IH: (insert x X)
then have IH': "V_for (w<cands 7−→ 1><X 7−→ w>) $ c /

w<cands 7−→ 1><X 7−→ w> $ c ≤ num_ballots"
by blast

(* . . . * )
qed
thus ?thesis

by fastforce
qed

Figure 3.28: Outline of the proof of fracs_le_num_ballots: third fragment.

We cut out most of the proof here, as neither the structure nor the proof methods are

enlightening beyond what we describe in the following. Overall the theorem requires

over 100 lines even with several helper lemmas which were created just for this pur-

pose. We first begin by extracting the induction hypothesis, with our goal to prove

being V_for (w<cands 7−→ 1><insert x X 7−→ w>) $ c / w<cands 7−→
1><insert x X 7−→ w> $ c ≤ num_ballots. We then case split on whether

w $ c = 0. The wc = 0 part of the case split is trivial, though we need an additional

helper lemma to say that the votes a candidate receives after multiplication by the

weight is bounded above by T . The second part of the case split is a bit more involved,

though in the end only requires some important lemmas for pushing through algebra

to do with our vector updating functions over candidates, the assumption V_change,

and several invocations of the helper lemma already mentioned to do with votes kept

being bounded above by num_ballots.

3.5.2.2 Theorem 1.2: completing the proof

Finally, we can prove V_for w_inf $ c = Q_for w_inf for every elected c. We

have that Vc(w(i))−Q(w(i)) is bounded below by 0 and above by T (w(i)
c −w(i+1)

c ),

and this upper bound also converges to 0 because the weights converge, and hence the

difference is “squeezed” down to 0:

lemma V_lim_eq_Q_lim:
assumes "c ∈ elected0"
shows "(λi. V_at i $ c - Q_at i)−−−→ 0"

Figure 3.29: The different between the votes and the quota of each elected candidate

is squeezed down to 0.
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which finally enables us to prove Theorem 1.2:

theorem w_inf_solution:
assumes gfq: "∀w. Q_for w

= (num_ballots - E_for w) / (seats + c1) + c2"
shows "solution_for w_inf"

Figure 3.30: As long as the quota is fractional, the limit vector in the transfer round is a

solution vector.

where we need a fractional quota because we need the following fact that does not

follow using an integral quota (along with an analogous V_w_inf):

lemma Q_w_inf:
assumes gfq: "∀w. Q_for w

= (num_ballots - E_for w) / (seats + c1) + c2"
shows "Q_at−−−→ Q_for w_inf"

Figure 3.31: As long as we are using a fractional quota, the quota remains bounded

above by the value of the quota in the limit.

Nevertheless, this is still a generalisation of the original theorem.

3.6 Theorem 2: uniqueness of the solution

Theorem 2. “The solution vector, whose existence was proved in Theorem 1, is unique.”

In Woodall this amounts to taking two arbitrary solution vectors w and w* and showing

w_inf = w and w = w*. We produce a modified proof which takes an arbitrary w and

show w_inf = w. We will use Isabelle notation exclusively here, as we will follow the

proof relatively closely and need to refer to newly introduced constants. It consists of

the following parts:

1. Construct the vector w_min which is the element-wise minimum of w_inf and

w.

2. Prove w_min is feasible and hence construct the solution vector w_min_inf,

which exists by Theorem 1.

3. Prove Q_for w_min_inf = Q_for w and ∀c∈cands. V_for w_min_inf $

c = V_for w $ c.
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4. We have ∀c∈cands. w_min_inf $ c ≤ w $ c.

5. Let L = {c∈cands. w_min_inf $ c < w $ c }.

6. Show L = {} using (3) and the fact that strictly increased weights implies strictly

increased votes, thus ∀c∈cands. w_min_inf $ c = w $ c.

7. Thus ∀c∈cands. w_min_inf $ c = w_inf $ c, and so ∀c∈cands. w $ c

= w_inf $ c, as required.

Steps (3–6) must be repeated, replacing w by w_inf. As is commonly the case in prose,

this repetition can be dispatched by careful use of “without loss of generality” or “by

analogy to the previous proof”. Unfortunately, aside from a few specific attempts [38],

this is often difficult to achieve formally.

3.6.1 Theorem 2: statement

We will present our proof interspersed with associated discussions, starting with the

statement of Theorem 2 in Isabelle:

theorem unique_solution:
assumes gfq: "Q_for = (λw. (num_ballots - E_for w) /

(seats + c1) + c2)"
and "c1 > 0"

shows "∃w. solution_given_for (w_at i) w ∧
(∀w'. solution_given_for (w_at i) w'−→

(∀c∈cands. w' $ c = w $ c))"

Figure 3.32: The solution to the transfer round is unique.

The proof is the same whether we write w_at 0 or w_at i in the statement, so we

make the easy generalisation. We are not able to use the binder ∃!w meaning “there

exists a unique w” because we need to restrict our statement to the set cands. For this

purpose we introduce a helper lemma which breaks the proof down into first showing

existence, which follows trivially from the fact that we have one solution already in

w_inf, then showing uniqueness. The additional constraint on c1, that it must be

positive and hence at least 1 (given it is a natural number), comes from our generalised

proof of the fact that Q_for w_min_inf = Q_for w:
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lemma Q_eq_via_other_le:
assumes gfq: "∀w. Q_for w

= (num_ballots - E_for w) / (seats + c1) + c2"
and "c1 > 0"
and "card X < seats + c1"
and "Q_for w_le ≤ Q_for w"
and "∀c ∈ X. w_le $ c ≤ w $ c

∧ Q_for w_le = V_for w_le $ c
∧ Q_for w = V_for w $ c"

and "∀c. c /∈ X−→ w_le $ c = w $ c"
and "∀c. w_le $ c ≥ 0"
and "∀c. V_for w $ c ≤ 0

−→ w_le $ c = w $ c"
shows "Q_for w_le = Q_for w"

Figure 3.33: The fractional quota is equal for weight vectors related by

The reason we need c1 > 0 in this lemma is (at least) for a step in a proof by con-

tradiction where we derive the fact (where S is seats) that S+ c1 < |X |, where this

contradicts |X |< S+ c1 only if c1 > 0. For X = elected0, |elected0|< S+ c1 follows

from our locale assumption seats_not_exceeded which says that |elected0| ≤ S,

again as long as c1 > 0.

3.6.2 Theorem 2: construction of a feasible vector and self-interpretation

One of the key parts of Theorem 2 is constructing the solution vector w_min_inf.

In Woodall this is done by claiming the five assumptions about the properties of the

functions (see Section 3.5.2) plus Theorem 1 produce a solution vector, and that all of

this applies equally to w_min given that it is feasible. Formally, this is a lot more work.

We need to interpret the locale meektransfer_carrier within itself using w_min,

and thus cannot assume anything in that locale not provable at this level of abstraction

at this point in the proof.

An interpretation of a locale in Isabelle/HOL is an instantiation of the arguments

with particular constants and functions with proofs that these satisfy all of the as-

sumptions of the locale. Here we are instantiating the arguments (line 13) using the

same constants and functions we have access to within the locale except we instantiate

transfer_weights with w_min (defined on line 4).
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1 next
2 fix w
3 assume w_sol: "solution_given_for (w_at i) w"
4 define w_min where "w_min ≡ χ c. min (w $ c) (w_inf $ c)"
5
6 (* . . . * )
7
8 have "feasible_for w_min" unfolding feasible_def
9 <proof>

10
11 (* . . . * )
12
13 interpret w_min_loc: meektransfer_carrier Q_for c1 c2 E_for

num_ballots seats cands w_min elected0 V_for
14 <proof>
15 let ?w_min_inf = w_min_loc.w_inf
16 have w_mininf_sol: "solution_given_for w_min ?w_min_inf"
17 <proof>
18
19 (* . . . * )

We then proved each assumption of the locale for w_min in turn, where only the non-

negativity of votes and the non-triviality criterion required a non-trivial proof step.

After proving a number of inequalities involving the various weight vectors, we con-

tinue:

1 have inf_le: "Q_for ?w_min_inf ≤ Q_for w"
2 <proof>
3 have Q_eq: "Q_for ?w_min_inf = Q_for w"
4 <proof>
5 then have V_eq: "

∧
c. c ∈ elected0=⇒

6 V_for w $ c = V_for ?w_min_inf $ c"
7 <proof>

The first fact (line 1) follows from a lemma many_wdec_Q_winc, analogous to

many_wdec_V_wdec (shown earlier) but for the quota, proven in the locale

meekabstract_carrier locale and reused a few times in the proof of this theorem.

The second fact (line 3) follows from Q_eq_via_other_le (see Section 3.6.1). The

final fact (line 5) follows simply from unfolding and the simplifier.

3.6.3 Theorem 2: considering each ballot paper

This brings us to the final step (6) in the proof outline we enumerated earlier, where

we must conclude L = {}.
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Woodall claims that the fact that the votes strictly increase with strictly increasing

weights is not difficult to see, as one can see this is the case “by considering each ballot

paper”. This is what we meant in Section 3.1.1 when we referred to two different levels

of abstraction in Woodall’s argument. After much trial and error, we concluded that

this is best (perhaps only) provable with access to ballot structure (see Section 5.4),

as Woodall’s comment implies, and so we introduce a new, straightforward assump-

tion, which may appear complicated because of the required validity restrictions on the

weights. This leads to the following locale extension:

locale meektransfer_strictinc_carrier =
meektransfer_carrier +
assumes many_dec_V_sum_dec:

"
∧
w w_le. J
X ⊆ cands; X ̸= {};∧
c. c ∈ X=⇒ w_le $ c < w $ c;∧
c. Jc ∈ cands; c /∈ X K =⇒ w_le $ c = w $ c;∧
c. c ∈ cands=⇒ w_le $ c ≥ 0;∧
c. Jc ∈ cands; V_for w $ c ≤ 0 K =⇒ w_le $ c = w $ c K

=⇒ (Σc∈X. V_for w_le $ c) < (Σc∈X. V_for w $ c)"

Figure 3.34: An additional assumption for a strictly decreasing sum over a strictly de-

creased weight vector.

Theorem 2 lives inside this final locale context. With all of this, including much of the

setup for Theorem 1 described in Section 3.3, we can prove this final step:

1 let ?L = "{c ∈ elected0. ?w_min_inf $ c < w $ c}"
2
3 (* . . . * )
4
5 have "?L = {}"
6 proof (rule ccontr)
7 (* . . . * )
8 then have w_w_min: "w $ c = w_min $ c"
9 if "c ∈ cands" for c

10 <proof>
11
12 (* . . . r e p e a t 3−−5 *)
13 then have w_min_w_inf: "w_min $ c = w_inf $ c"
14 if "c ∈ cands" for c
15 <proof>
16
17 show "∀c∈cands. w $ c = w_inf $ c"
18 by (simp add: w_min_w_inf w_w_min)
19 qed

The set L is defined (line 1) and proven to be empty by contradiction (line 6), as
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described previously. We then show that the weight vector constructed at the start

of the proof, w_min, is equal to the arbitrary weight vector we are trying to show is

unique. We then in turn show w_min is equal to the limit vector w_inf and hence

prove that the arbitrary weight vector must, in fact, be the limit vector itself (line 17),

concluding the proof of uniqueness.

With all these steps formally demonstrated, the Isabelle formalisation of the two

theorems of Woodall is complete.

3.7 Additional theorems

The first two theorems, built-on and generalised from Woodall, show that the weight

vector converges on a solution. What is not shown is that this convergence process is

monotonic; just based on proven results it could still be the case that the total surplus

increases in some steps and decreases in others. In this section we prove that after

a particular condition has been met, all steps from that point strictly monotonically

decrease the total surplus.

3.7.1 Abbreviation for surplus and some results

We introduce the following abbreviation, which makes writing and reading lemma

statements and proofs involving surplus easier to follow:

abbreviation surplus_at :: "'c ⇒ nat ⇒ real" where
"surplus_at c n ≡ V_at n $ c - Q_at n"

Figure 3.35: Abbreviation for the surplus of a given candidate at a given step.

Before moving on to the proof of monotonically decreasing surplus, we will first prove

two simple theorems. One which states that for any ε and any candidate c ∈ elected0,

we can show that there is some step after which the surplus always remains below ε.

The other trickier theorem states that the sum of surpluses of any subset of the elected

candidates eventually always remains below ε. This does not get us strict monotonicity,

but they are helpful theorems to have in any case.
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theorem surplus_arbitrarily_small:
assumes "c ∈ elected0"

and "ε > 0"
shows "∃n. ∀m ≥ n. surplus_at c m < ε"
proof -

have "surplus_at c −−−→ 0"
<proof>

thus ?thesis
<proof>

qed

theorem surplus_sum_arbitrarily_small:
assumes "X ⊆ elected0"

and "ε > 0"
shows "∃n. ∀m ≥ n. (Σc∈X. surplus_at c m) < ε"

Figure 3.36: Theorems stating there exists a step after which the total and individual

surplus remain below ε.

The first of these two theorems demonstrates which we pick the first argument position

for the candidate: passing in a candidate gives a sequence of surpluses for that candi-

date. It follows trivially from the existing development (both of the suppressed proofs

are one-liners, suppressed to reduce visual noise).

The second theorem is only a touch trickier. The case where X is empty is trivial.

When X is non-empty, we leverage the first theorem to show for all c ∈ elected0:

∃n. ∀m≥ n. surplus-at(c,m)<
ε

|X |+1

We then take the largest n, call it nmax, at which any of the elected candidates’ surplus

drops below this value. It thus satisfies:

∀c ∈ elected0. ∀m≥ nmax. surplus-at(c,m)<
ε

|X |+1

Fix m≥ nmax. We can then use the above to prove:

∑
c∈X

surplus-at(c,m)< ∑
c∈X

ε

|X |+1

= ε
|X |
|X |+1

< ε

which completes the proof.
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3.7.2 Termination is not over-eager

Here we prove that after the surplus is reduced below ε, there is no point at which the

surplus comes back above ε. This is an important result for showing that “stopping

too early” is not a concern. To prove this one needs to show that the surplus is mono-

tonically decreasing. This is not immediately obvious in the initial phase of the round

given considerations about elected candidates, who may have a weight of 1, and the

fact that the quota decreases. We prove the following general theorem about surplus:

theorem surplus_sum_dec_general:
assumes gfq: "Q_for =

(λw. (num_ballots - E_for w) / (seats + c1) + c2)"
and w_props: "

∧
c. c ∈ cands -elected0=⇒ w_le $ c = w $ c"

"
∧
c. c ∈ elected0=⇒ w_le $ c < w $ c"

"
∧
c. c ∈ cands=⇒ w_le $ c ≥ 0"

"
∧
c. c ∈ cands=⇒ w $ c ≤ 1"

and elected_V_gt0: "
∧
c. c ∈ elected0=⇒ V_for w $ c > 0"

and c1_gt0: "c1 > 0"
shows "(Σc∈elected0. V_for w_le $ c - Q_for w_le) <

(Σc∈elected0. V_for w $ c - Q_for w)"

Figure 3.37: General theorem for decreasing surplus.

This states that given a fractional quota and a pair of valid weight vectors, one of

which is strictly less than the other element-wise across elected candidates, the sum of

surpluses over the lesser weight vector is smaller than the sum of surpluses over the

other weight vector. This follows by case-splitting on whether the excess changes plus

largely leveraging results from previous sections.

At first glance this seems to be enough to prove that surplus strictly monotonically

decreases, but it is not, because we have never actually proved that once candidates’

weights all strictly decrease on one step, they all strictly decrease on all subsequent

steps. We will not dwell on the details here, but the key lemma we build up to is the

following:
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lemma Q_dec_w_always_dec:
assumes gfq: "Q_for =

(λw. (num_ballots - E_for w) / (seats + c1) + c2)"
and Q_dec: "Q_at (i + 1) < Q_at i"
and i_lt_j: "i + 1 < j"
and j_lt_k: "j < k"
and c_elec: "c ∈ elected0"

shows "w_at k $ c < w_at j $ c"

Figure 3.38: If the quota decreases once, all elected candidates’ weights always de-

crease.

This states that as long as the quota decreases once, and it is a fractional quota, the

weights of every elected candidate at any later steps j and k where i+1 < j < k satisfy

w(k)
c < w( j)

c . The requirement for the quota to decrease once is important: our formali-

sation of the surplus transfer round includes cases where the so-called infinite iterative

convergence is over in a few steps.

Consider a case where two candidates a and b are elected with wa = wb = 1. If

a has surplus votes and b does not, a could transfer all of their surplus to b, and then

if nobody who listed b first listed a anywhere below b on their ballot, b transfers all

of their votes somewhere other than back towards a. If b transfers all their votes to

some third candidate c who still does not reach the quota, the surplus transfer round

terminates after just a few steps, with strictly zero remaining surplus. With that said,

the desired theorem is now provable:

theorem surplus_sum_always_dec:
assumes gfq: "Q_for =

(λw. (num_ballots - E_for w) / (seats + c1) + c2)"
and Q_dec: "Q_at (i + 1) < Q_at i"
and i_lt_j: "i + 1 < j"
and j_lt_k: "j < k"
and c1_gt0: "c1 > 0"

shows "(Σc∈elected0. surplus_at c k) <
(Σc∈elected0. surplus_at c j)"

corollary surplus_sum_strict_mono:
assumes gfq: "Q_for =

(λw. (num_ballots - E_for w) / (seats + c1) + c2)"
and Q_dec: "Q_at (i + 1) < Q_at i"
and c1_gt0: "c1 > 0"

shows "strict_mono (λj. - (Σc∈elected0. surplus_at c (i + 2 + j)))"

Figure 3.39: As long as the quota decreases once, the surplus sum strictly monotoni-

cally decreases.
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This initial series of steps where nothing may happen to decrease the quota may be

arbitrarily long in theory, though this will likely be unheard of in practice even for one

or two steps. The corollary simply leverages an existing Isabelle/HOL standard library

constant for expressing strict monotonic decreasing sequences.

A consequence of this result is that we know that the iterative procedure does not

ever send weights erratically through the space of possible solution vectors. For exam-

ple, before proving this it is conceivable that some intermediate weight vector could

drastically reduce the total surplus, so that it falls below ε, such that the round termi-

nates. Then, on the next step, the surplus is increased back above ε, and only then

much later is the true solution vector approached. In this sense, we now know that

there is no such thing as “over-eager” termination.

3.8 Elimination round

In this section we briefly cover applying the results proven for the surplus transfer

round to the elimination round.

3.8.1 Elimination round locale

Like we characterised the surplus transfer round, we have to characterise the elimina-

tion round:

locale meekelimination_carrier = abstract_meek_carrier +
fixes weights :: "(real , 'c) vec"

and pick :: "'c set ⇒ 'c"
assumes eliminatable: "∃c∈cands. weights $ c > 0"

and w_g0: "c ∈ cands=⇒ weights $ c ≥ 0"
and w_le1: "c ∈ cands=⇒ weights $ c ≤ 1"
and valid_pick: " JX ⊆ cands; X ̸= {} K =⇒ pick X ∈ X"

Figure 3.40: Elimination round locale.

Like the surplus transfer round locale, we extend the locale which provides the very

high-level abstract characterisation of the component functions. Also like the surplus

transfer round, we have to provide some assumptions which characterise when the

elimination round can apply. Here, this is just that there is some candidate available

to eliminate. We also fix some function pick which can decide between equally-good

candidates for elimination, whose only property must be that it picks from the set we

give to it.
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We assume weights are valid; this is no different from the surplus transfer round,

where we assumed that the weights were valid on the first step, and had to prove they

remained so. With the elimination round there is only the one step, so there is no

additional work to do. We introduce the following definitions:

definition noneliminated :: "'c set" where
"noneliminated ≡ {c∈cands. weights $ c > 0}"

definition lowest_cands :: "'c set" where
"lowest_cands ≡ {c∈noneliminated. ∀c'∈noneliminated. V_for
weights $ c ≤ V_for weights $ c'}"

definition eliminated :: 'c where
"eliminated ≡ pick lowest_cands"

definition elim_weights :: "(real , 'c) vec" where
"elim_weights ≡ weights <eliminated 7→ 0>"

It is then possible to trivially leverage all of the work we did proving general results in

preparation for the surplus transfer round, such that all of the following are provable

automatically (albeit occasionally by using smt):

lemma eliminated_V0:
"V_for elim_weights $ eliminated = 0"

lemma Q_wdec:
"Q_for elim_weights ≤ Q_for weights"

lemma elim_V_wdec:
"V_for elim_weights $ eliminated ≤ V_for weights $ eliminated"

lemma all_V_winc:
assumes "c ∈ cands"

and "c ̸= eliminated"
shows "V_for elim_weights $ c ≥ V_for weights $ c"

lemma E_winc:
"E_for elim_weights ≥ E_for weights"

lemma elim_diff:
"V_for weights $ eliminated - V_for elim_weights $ eliminated =
E_for elim_weights - E_for weights +
(Σc∈cands -{eliminated}. V_for elim_weights $ c) -
(Σc∈cands -{eliminated}. V_for weights $ c)"
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3.9 Size of formalisation (rough de Bruijn factor)

It is difficult to put a number on the difficulty of a formalisation compared to what it

would take in a rigorous pen-and-paper effort, but a large part of the development in

this chapter is devoted to a formal reconstruction of Woodall’s pen-and-paper proof.

The original proof takes up around 1.5 pages, whereas the relevant theory files (ex-

cluding additional theorems) come in around 4,700 lines, thousands of lines of Is-

abelle/HOL per page of proof.

Compared to our development of a formal theory of Minkowski spacetime in sepa-

rate work [68], where 22 pages convert into roughly double the number of lines (around

9,000), this development seems like quite a lot. Even if one said the spacetime devel-

opment were really more like 11 pages taking into account font size, this development

on Meek’s method is still notably larger. I do not think this is surprising, given that the

spacetime development is based on a source text already very rigorous, and our source

text was more of a proof sketch in parts as opposed to more rigorous definition-lemma-

theorem style development. Furthermore, we have generalised enough of the results

that as we will see later allow us to fairly trivially prove properties of the elimination

round as well.

There have been a handful of iterations refining this, which represents its own hid-

den complexity. Lines-of-code is not a terribly good measure of complexity however,

and one could add many lines to this by additional comments, a different approach to

Isabelle style, and a more rounded development of lemmas including many more not

directly connected to our end-goal, and indeed remove many lines by using a very com-

pressed style. The whole development around specifically the surplus transfer round is

an order of magnitude greater, over 10,000 lines.

3.10 Related work

As far as we know there is no existing fully formal treatment of any aspect of Meek’s

method. There is Woodall’s proof of solution uniqueness [41], of course, and we have

covered almost every aspect of it in this chapter and more beyond.

Wichmann’s batch of tests [82] for Meek’s method focuses on differences in two

implementations of Meek’s method, the effect of adding a small epsilon to the quota,

and how the final outcome changes depending on one’s approach to tie-breaking. They

discover multiple errors in the implementations. However, their results are only tan-
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gential to our focus on the transfer round.

There are a number of formal verification efforts involving other forms of STV,

which we mention briefly. Ghale et al. [25] formalise the specifications of a number of

STV methods in Coq using descriptions of the methods as sequences of rules. One of

their results is in enabling one to check more easily whether legal and formal descrip-

tions really match, as well as being able to apply the approach to a number of different

STV methods. This is an improvement on Dawson et al. [17] – who provide a nice

overview of current work in this area – principally as using Coq allows one to extract

the specification to runnable Haskell, and so produce verified software without much

additional effort, and because Ghale et al’s approach scales to larger elections. They

do not apply their approach to Meek’s method. The work of Ghale et al. [25, 26, 24] is

the closest thing there currently is to a framework for formally verified STV in general.

One could potentially subsume Meek’s method into one of these representations, by

representing the surplus transfer round non-computationally; for example, approaches

which specify what the various rounds’ pre- and post-conditions are could simply state

that the weight vector is updated such that the votes of all the elected candidates are

reduced to the quota and non-elected candidates’ weights are left the same. Of course,

one would first have to implement a more general form of the votes and excess func-

tions which is compatible with Meek’s-method style weights. However, any specifi-

cation which relies on there being no surplus left after the surplus transfer round will

fall down when applied to Meek’s method as it is practically deployed, as its surplus

transfer round terminates when Vc(w) < Q(w)+ ε. Each of the approaches also fail

to subsume Meek’s method if they assume a static quota, which, as Meek’s method

pioneered the use of a dynamic quota and is as such not very common, they invariably

do assume a static quota at present.

3.11 Conclusion

We have formalised and expanded upon a proof that the equations Vc(w) = Q(w) to be

solved simultaneously for each elected candidate c during the surplus transfer round

of Meek’s method of STV always has a unique and valid solution. One necessarily

converges to a unique solution vector by iteratively updating the elected candidates’

weights according to w(i+1)
c = w(i)

c Q(w(i))/Vc(w(i)) as long as (in addition to transfer

round validity and non-triviality conditions) the quota is of the form Q(w) = (T −
E(w))/(S+ c1)+ c2 where c1 ∈ N+,c2 ∈ R.



78 Chapter 3. Abstract verification of transfer round convergence in Meek’s method

We identified several gaps in the original presentation by Woodall, and filled them

in the course of the formal development. This includes the appeal to intuition in “by

inspecting each ballot”, the error in the proof whereby an inequality was “proved” by

stating the inequality in English, by removing the appeal to intuition present in apply-

ing the specific weight-update results in the first theorem to a quite different context in

the second theorem, and by drawing out what is necessary to assume about the com-

ponents in the context of a simple-to-state invariant. The rest is rigorously filling in all

of the necessary details and intermediate steps, hopefully providing a greater apprecia-

tion for the subtlety of the two key theorems as a whole, and providing insight into the

functioning of the method. Other gaps related to connecting the implementation more

rigorously both with the assumed and proven properties, are covered in Chapter 5.

The locale assumptions we have settled on were developed through several rounds

of refinements (see also Section 5.4.2.1 on refinement), and should serve as a good

basis for further analysis of the method at this level of abstraction if desired. Within

the two locales developed we prove two main theorems.

The first theorem shows that the transfer round weight vector remains feasible

throughout and that, as a result, it converges on a solution vector. We build up to

proving this by proving several general results about the behaviour of the functions

V_for, E_for, and Q_for given changes to a single candidate’s weight followed by

changes to the weights of any number of candidates.

The second theorem states that the solution vector is unique. That is, for any other

vector which is a solution to the transfer round, it must be equal to the solution one

gets by taking the limit of the sequence of feasible vectors, defined by starting with the

initial weight vector at the start of the transfer round and iteratively updating according

to the weights update rule.

It is possible that our commitment to not representing ballots on any level except in

their total number in the two locales is unnecessarily limiting. While it is true that there

is little point in representing full ballot structure at this level of abstraction, and we have

not needed more than what we currently have for deriving the results in Chapter 5, we

could have looked more into meeting abstract ballot representation somewhere in the

middle. For example, a sub-locale characterising the set of listed candidates would

enable us to introduce assumptions distinguishing the effects of changes to the various

functions between listed and unlisted candidates. Potentially, something along the lines

of this could allow us to prove lemmas like many_dec_V_dec (see Section 3.6.3) at the

more abstract level of the locales.
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We will return to these locales in Chapter 5 to show our implementation is a model

of the abstraction developed in this chapter. In the following chapter we will first

develop a theory for ballots suitable for aiding this interpretation.
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This chapter develops a theory for ballots sufficient for connecting our implemen-

tation in the following chapter, Chapter 5, to our abstraction in Chapter 3.

4.1 Overview

In this section we provide an overview of the chapter covering our aims, motivations,

hypotheses, and key ideas. We conclude with a summary of the structure of the rest of

this chapter.

4.1.1 General aims

This chapter is exclusively concerned with developing a theory of ballots which can

serve two main aims. One such aim is for it to serve as a basis for reasoning about the

implementation in Chapter 5 and hence as the necessary glue between the abstracted

development of Chapter 3 and the implementation.

The other is for it to be isolated from the rest of the development to do with Meek’s

method and thus provide the option for it to be used independently as a starting point

for other work which needs to cover preference orderings or ballots (the two are equiv-

alent for our purposes). This theory development for ballots has to satisfy a few more

specific properties:

• It should be suitable for combination with our implementation in a relatively fric-

tionless way; that is, representational decisions should not be made in isolation

from the implementation.

• In order to serve as the glue between the implementation and the abstraction,

it needs to allow us to dispatch each of the locale assumptions for our specific

implementation.

• The theory should help minimise boilerplate in proofs by providing lemmas use-

ful for automated proof search, case split rules, and induction rules which do not

require too much initial heavy lifting in the induction step.

• Finally, where possible, it should not bake-in representations for strict ballots

too deeply, allowing the theory to be extended for non-strict ballots.

We also need to provide a way of representing election context that consists of at least

a set of valid ballots and candidates ready to be counted. This context allows for

further notational convenience and provides a context with which we can provide an
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interpretation of the locales. That is, we will interpret the locales from Chapter 3 within

a locale representing election context.

4.1.2 Specific objectives

Our specific objectives are determined by what will be needed for our formal develop-

ment (of Chapter 3 and Chapter 5) as it relates to Meek’s method. The focus of our

work is not on building a general framework for ballots and elections, but on verifying

the surplus transfer round of Meek’s method of STV. However, we have kept in mind

potential generalisation throughout and discuss these where appropriate. We thus set

our concrete objectives as follows (with more details to follow in the chapter):

• Define strict ballots in terms of the ballot’s carrier set L and the greater-than

function G in line with our implementation (see Section 5.2), suitable for reason-

ing at the level of ballots-in-general and the implementation of the components

of STV specifically.

• Prove a rule for ballot induction, needed for more complex proofs.

• Define constants necessary for capturing the ballot’s ranking of candidates in

terms of natural numbers, as with real elections where candidates are ranked by

assigning them to the numbers 1, 2, and so on in order of preference.

• Prove that the function which identifies the candidates on the ballot with their

rank is bijective on the set of listed candidates, can be fully identified with a

function that returns a candidate given a rank, and this latter function can in turn

be used to state a few key properties such as the fact that those listed greater than

the candidate at rank n have ranks 0 through to n−1.

4.1.3 Motivation

The motivation for this chapter is relatively simple. This development is necessary in

order to reason about the implementation in the context of a set of valid, strict ballots,

in order to connect it with the results in Chapter 3.

However, it is not just this. It is worthwhile highlighting and isolating those aspects

of the development which can be plucked out and applied in other contexts. There are

several things in both of the other core chapters that can be taken as general lessons,

approaches, or starting points for generalisation, but everything in this chapter exists

entirely on its own. We hope that it could serve as a good basis for generalisation

beyond strict ballots and beyond a mere election context.
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4.1.4 Hypothesis and evaluation

We claim that using a carrier set and greater-than function on candidates is a suitable

and even desirable representation for ballots or preference orderings, and that it scales

well for more complex proofs involving ballot induction. We demonstrate this through

the use of a ballot induction rule to prove various uniqueness results for ballots in

general, and we will use it multiple times again in Chapter 5.

We also claim that parts of the theory (ballots, weights) can be linked into existing

ordering theorems developed for carrier sets in the Isabelle/HOL standard library, by

interpreting the ordering locales provided by HOL-Algebra specifically, and that this

can then be leveraged for automation. Providing this link is essentially equivalent to

showing that our functional approach can be translated into the more common binary-

relation-first approach. We have indeed proven that we can link into HOL-Algebra in

this way, however our hope that this could be leveraged for automation did not come to

fruition, and so we have to answer this claim negatively until developments in existing

Isabelle libraries are improved, e.g. as part of the ongoing overhaul of HOL-Algebra

by the maintainers, to the point where we can come back and leverage them for this

formalisation. As the automation was not able to be leveraged it did not make any

impact on the formalisation, and so we will not cover our development surrounding

this in the thesis.

The ballots theory is intended to allow us to interpret the locales from Chapter 3,

and indeed we use it to do so in Section 5.4. Our representation originates from the

development discussed in Section 5.2, though as mentioned our ballot formalisation

is independent of Meek’s method and could in theory be used to study elections in

general.

4.1.5 Novel concepts and ideas

The representation of ordering, whether for preferences or ballots, is one of the main

novelties presented in this chapter. We begin from a function G , as opposed to a

binary relation ≻ over pairs of candidates, or a relation represented by a set of pairs

of candidates. This is novel, at least within the topic of voting and social choice in

Isabelle/HOL. The carrier set L would have been needed in any approach, as each

ballot has its own set of listed candidates. Of course, each possible representation is in

the end equivalent, and one can prove transfer rules for going from one to the other.

As far as we are aware, nothing else currently exists in Isabelle/HOL along the lines
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of our use of ballot induction for verifying aspects of voting algorithms. Additionally,

there is nothing analogous to the definitions for directly above and directly below can-

didates or to our approach that connects the basic representation to natural-number

rankings.

4.1.6 Structure of this chapter

In Section 4.2 we present a formal representation of strict ballots and some initial lem-

mas. Next, in Section 4.3 we present a representation of subballots along with a few

important lemmas, which will help facilitate our ballot induction rule in Section 4.4.

In the sections that follow this, Sections (4.5, 4.6, 4.7), we respectively cover two

predicates for referring to the unique candidate(s) directly above and directly below a

candidate on a ballot, touch on some uniqueness results employing ballot induction,

and make some remarks on ballots and automation. Finally, in Section 4.8 we cover

definitions and results for connecting ballots to natural-number rankings, before pre-

senting a formal representation of election context sufficient for our purposes in this

thesis in Section 4.9. We conclude in Section 4.10 and Section 4.11 by discussing

related work and future work respectively.

4.2 Strict ballots

In order to reason about voting generally, and Meek’s method specifically, we need

a way of representing and reasoning about ballots. For us this only needs to be an

abstract, minimal representation. It should allow us to state what a valid strict ballot

is, and allow us to obtain a candidate or set of candidates satisfying a property on one

or more ballots. As mentioned previously, it should also be amenable to an elegant

induction rule, and fit well with the implementation.

4.2.1 A predicate for strictly ranked ballots

A ballot is simply a total order over a subset of candidates. It may also be necessary

in some contexts for it to be adorned with metadata like a voter ID, but at base it is

simply a total order. An order which is not over an entire type, as is the case with

ballots, carries what is called a carrier set. For an ordering over (e.g. the ranking of) a

ballot b, this is L(b).
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It is known that all one needs to define a total ordering is a less-than (or greater-

than) relation and an equality relation both of which are total on the type (or carrier set).

What we have is a greater-than relation with the function G and an equality relation

which is just ordinary equality (=) over the type 'c. With the addition of the carrier

set provided by L , we clearly have all we need to define a total ordering for ballots.

The definition below does just that.

Definition 1 (Strict ballots). A ballot b, given L ,G , is a strict ballot iff

• L(b) is finite.

• The greater-than function maps to a subset of the listed candidates:

∀c ∈ L(b). G(b,c)⊆ L(b)

• Candidates are not listed greater than themselves:

∀c ∈ L(b). c /∈ G(b,c)

• The greater-than function is relationally transitive:

∀c k l ∈ L(b). c ∈ G(b,k)∧ k ∈ G(b, l)−→ c ∈ G(b, l)

• For any two listed candidates, one is listed greater than the other or they are

equal:

∀c k ∈ L(b). c ∈ G(b,k)∨ k ∈ G(b,c)∨ c = k

It is important to note that we cannot talk about a value b being a ballot or not on

its own. It is a ballot (or not) given some L ,G . This also means that the same b

can represent an entirely different ballot given different accessor functions. Because

of this, we introduce a shorthand for referring to ballots, namely a tuple (L(b),G(b))

(the ballot), representing the carrier set with type 'c set and the greater-than function

with type 'c ⇒ 'c set.

We embed this shorthand throughout the ballot theory because only this tuple is

relevant when considering a single individual ballot, and not some general L and G
which are being applied to numerous ballots. We also remove the need to explicitly

refer to b and talk simply of the ballot (L ,G) with b left implicit.

So for the remainder of this section, we should think about L as having the type

'c set and G the type 'c ⇒ 'c set. In the section on elections, Section 4.9, it will

become necessary to introduce a fixed L and fixed G along with a set of ballots B, and
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they again become accessor functions in the proper sense, taking the types 'b ⇒ 'c

set and 'b ⇒ 'c ⇒ 'c set. We overload these two symbols in both the informal

and formal notation, though it will be clear when we are using one sense or the other.

Thus, the Isabelle/HOL definition below.1

definition valid_strict_ballot :: "'c set ⇒ ('c ⇒ 'c set) ⇒
bool" where

"valid_strict_ballot L G ≡ finite L ∧
(∀x∈L. G x ⊆ L ∧ x /∈ G x ∧

(∀y∈L. (∀z∈L. y ∈ G x ∧ z ∈ G y−→ z ∈ G x) ∧
(x ∈ G y ∨ y ∈ G x ∨ x = y)))"

Figure 4.1: The definition of strict ballots in our theory development.

4.2.1.1 Additional commentary on the definition and its use in Isabelle/HOL

The ballot is represented by the pair (L ,G), which we nevertheless always pass around

individually to curried functions. The definition is followed by a number of derived

introduction and elimination rules in the usual way as well as obvious corollaries, as

is the case for all our definitions. Most of the other basic results about valid (strict)

ballots follow immediately from the definition and basic set-theoretical results. For

example:

lemma in_G_in_L:
assumes "valid_strict_ballot L G"

and "c ∈ L"
and "k ∈ G c"

shows "k ∈ L"
by (meson G_sub_L assms psubsetD)

Figure 4.2: A simple ballot lemma, directly provable using set-theoretical results.

Isabelle/HOL’s ability to work with sets in this way makes the initial development

using this representation quite trivial. To further build some intuition for how these

functions encode ballot information, consider the strict ballot abc. Its representation

in Isabelle/HOL could be:

1Note that while we require the carrier set to be finite, we do not require the type to be finite, unlike
in the rest of the development. This is because this ballots theory is modularly separate from the rest of
the formalisation, and so we have one eye on not over-fitting to the rest of the formalisation so that it is
more easily pulled out and used by others.
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L = {a,b,c}
G = λx.

if x = a then
{}

else if x = b then
{a}

else if x = c then
{a,b}

else
undefined

Figure 4.3: One possible representation of the ballot abc in Isabelle/HOL notation.

Neither the pen-and-paper definition nor the Isabelle one, valid_strict_ballot, say

anything about what G should return for candidates not listed on that particular ballot.

This is standard in contexts where one has no reason to discuss elements not in the

carrier set, which is typically the case. Relatedly, if we know that some k ∈ G(c), we

also need to know that c ∈ L for this to be informative of k (e.g. see Figure 4.2).

Technically speaking, this also means Figure 4.3 is only one of many possible

representations of the ballot abc, as while L has to be {a,b,c} here, the function G only

needs to return the appropriate sets of {} for a, {a} for b, and {a,b} for c. That is to

say, we can just as well implement it using a case-expression instead of an if-expression

(though in Isabelle/HOL functions are equal iff they are equal on all inputs, known

formally as the principle of extensionality), and return whatever arbitrary set we like for

values other than these three, such as {a,unde f ined} as opposed to unde f ined. Owing

to this, we cannot check equality of the ballots (L ,G),(L ′,G ′) by simply checking

(L ,G) = (L ′,G ′), but instead we have to check L = L ′∧ (∀c ∈ L . G(c) = G ′(c)).
Clearly, assuming the ballot is finite is quite reasonable, assuming there is noth-

ing very interesting that can be done in our context with “infinite ballots”. This also

trivially means there are finitely many candidates listed greater than any other.

We do not preclude the possibility that the ballot may be empty in the definition.

One reason for this is that permitting emptiness can ease case splits, which are gen-

erated by needing to check whether one is removing the last candidate from a ballot,

e.g. removing a from [a]; in other words, removing candidates could make ballots

become invalid. This would also make our induction rule (Section 4.4) and subballots

(Section 4.3) more inelegant.

One may wonder why we have restricted ourselves to strict ballots, after all STV

allows one to list two or more (even all) candidates as equally preferable. Focusing

on these allowed us to make significant progress promptly without having to worry
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about non-strictness, which is not too theoretically interesting or essential for practical

purposes, given that almost all real-world STV elections disallow voters from listing

two or more candidates/parties as equally preferable. We further argue this point in

Section 5.2.

4.2.1.2 Basic representation

Before introducing a predicate like valid_strict_ballot one has to decide what it

will be defined on. That is, what will the types of its arguments be, and what form do

the values of that type have to take in order to be considered a “valid ballot”.

If we start by assuming that we are using a carrier set L and a greater-than function

G , as we did in the parent section, the definition we gave for valid strict ballots is

the obvious one. However, there are multiple other choices for basic representation

that are worth considering and comparing to that we have chosen. In particular, of the

following would have worked as an alternative basis.

• A list: b :: 'c list. In this case we do away with an additional greater-

than function, an explicit carrier set, and a predicate for testing whether a ballot

is valid. For that reason we can directly give ballots a concrete type with this

approach.

• A predicate relation (with a necessary carrier set): ≻ :: 'c ⇒ 'c ⇒ bool

with L :: 'c set, representing “is preferred to”, with the usual notion of

equality.

• A set-based relation: R :: ('c * 'c) set, where if (c,k) ∈ R we say “c is

preferred to k”.

The linked-list-based ballot is the most elegant in terms of basic representation, as

the list datatype itself builds-in both a notion of a carrier set (the candidates in the

list) and the ordering. The only way in which a list can not be a valid ballot is if it

lists the same candidate more than once. Nevertheless, there are a few things to say

against starting with a list-based representation in Isabelle/HOL, besides our desire

for frictionless integration with the implementation of Meek’s method (which does

not use lists). The main one being that this is often not the most natural for doing

traditional mathematical proof, especially not proof development that does not rely

much on typical functional implementation styles like folding and mapping. An initial

experiment with lists showed this to be true.
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The latter two approaches (relation and set-based relation) are the closest to our

actual representation and variant forms of both are quite common in general treatments

of social choice and voting [5, 15]. One can easily see how one might map between G
and ≻ and vice-versa.

However, we consider four largely practical (i.e. not deeply theoretical) aspects

that make our actual representation preferable to a more typical relational one. First,

ours allows a seamless integration with (our understanding of) a natural implementa-

tion of the component functions of Meek’s method. Second, choosing a novel base

representation is more likely to throw up novel and interesting research questions and

directions. Third, when defining an example election, our approach leads to smaller

statements. More specifically, when starting from a binary relation in either the predi-

cate or set approach, unless one takes the transitive closure when considering whether

a ballot is valid or not (complicating the basic setup), one has to provide pair-wise

comparisons for every candidate. Fourth, it makes defining the rank of a candidate in

terms of the basic representation trivial (see Section 4.8).

Note that all of these approaches can be made as general as our own approach

when it comes to a full election context simply by adding as a first argument to each an

additional ballot argument of an unrestricted type variable 'b. The approach of using

type variables for ballots ('b) and candidates ('c) instead of more basic, concrete types

is simple but powerful, as one could start working from our representation and decide

that concretely one does not want to literally define ballots in terms of functions, and

instead only use that representation for analysis. For one’s actual ballot representation

if one instead, say, wanted them to be defined using the set-based relation approach,

you could given some R :: ('c * 'c) set transfer it to our (L ,G) like so:

L = fst ` R ∪ snd ` R

G = (λc. {k ∈ L. (k, c) ∈ R})

One would then have to make sure that any given concrete R is defined in such a way

that it is compatible with valid_strict_ballot, given these definitions.

Of course, Meek’s method is an algorithm, not just something subject to mathe-

matical analysis, so at some point it is important for its basic types to be suitable for

time and space efficient implementation. This is not an issue, though, as one can sim-

ply later implement the same functions using more software-engineering appropriate

types, prove equivalence with the more mathematical-analysis appropriate types, and

perform code extraction on the former.
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4.3 Subballots

Consider the following induction rule for finite sets from the Isabelle/HOL standard

library:

lemma finite_psubset_induct [consumes 1, case_names psubset]:
assumes finite: "finite A"

and major: "
∧
A. J finite A;

∧
B. B ⊂ A=⇒ P B K =⇒ P A"

shows "P A"

Figure 4.4: Induction rule for finite sets in the Isabelle/HOL standard library.

Note that A⊂ B in Isabelle/HOL represents a strict subset, with A⊆ B as the non-strict

counterpart. We would like to produce a similar induction rule for ballots. The problem

we have is that ballots are not simply their carrier sets, they also have the ordering

information provided by G , and so this lemma cannot be used as-is. We need our own,

and the first step involves providing a ballot-specific version of the subset relation for

sets, a subballot(b,b′), or more accurately subballot((L ′,G ′),(L ,G)), like A⊂ B for

sets. The following definition works for this purpose:

Definition 2 (Subballots). A ballot (L ′,G ′) is a subballot of a ballot (L ,G) iff

• The set of listed candidates is a proper subset: L ′ ⊂ L
• The set of candidates greater than some candidate listed on the subballot is the

same as with the larger ballot, minus all those candidates who are not on the

subballot: ∀c ∈ L ′. G ′(c) = G(c)− (L−L ′)

definition subballot where
"subballot L' G' L G ≡ L' ⊂ L ∧ (∀c∈L'. G' c = G c - (L - L'))"

Figure 4.5: The definition of a subballot in our development.

This could be more precisely named proper_subballot but we do not have any rea-

son to use non-proper subballots, and so we opted for this name.

Do note, however, that the definition in Isabelle/HOL does not actually require

its arguments to be valid ballots. Related to this, an important theorem immediately

suggests itself, analogous to the fact that sub-orders of linear orderings are linear or-

derings:
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lemma subballot_valid:
fixes L :: "'c set"
assumes valid: "valid_strict_ballot L G"

and sub: "subballot L' G' L G"
shows "valid_strict_ballot L' G'"

Figure 4.6: All subballots of valid strict ballots are themselves valid strict ballots.

We then prove some simple lemmas of which the following are a sample:

lemma exists_subballot:
assumes "L ̸= {}"
shows "∃L' G'. subballot L' G' L G"

lemma exists_subballot':
assumes "L' ⊂ L"
shows "∃G'. subballot L' G' L G"

lemma remove_one_less_than:
assumes "valid_strict_ballot (insert c L') G"

and "subballot L' G' (insert c L') G"
and "k ∈ G c"

shows "G' k = G k" "c /∈ G' k"

Figure 4.7: A sample of formally proven lemmas about subballots.

4.4 Ballot induction

We now arrive at one of the important devices needed for more complex reasoning

about ballots: ballot induction. We present it below, using curried functions to closer

match the formal development and ease presentation.

Theorem (Ballot induction). The ballot (L ,G) satisfies some property P if

• The ballot is valid: valid(L ,G)

• Every valid ballot whose every subballot satisfies P itself satisfies P.

∀L ′ G ′.valid(L ′,G ′)∧ (∀L ′′ G ′′. subballot(L ′′,G ′′,L ′,G ′)−→ P(L ′′,G ′′))
−→ P(L ′,G ′)
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lemma ballot_induct:
assumes valid: "valid_strict_ballot L G"

and major:
"
∧

L' G'. J valid_strict_ballot L' G';∧
L'' G''. subballot L'' G'' L' G'=⇒ P L'' G''K

=⇒ P L G"
shows "P L G"

Figure 4.8: The ballot induction rule in Isabelle/HOL.

The form of our ballot induction lemma is analogous to finite_psubset_induct (see

Figure 4.4), except in place of finiteness we require validity (which implies finiteness

for this induction rule to work), and in place of the proper subset relation we instead

have the proper subballot relation. We will see how one goes about using this in the

proofs of later theorems.

4.5 Directly above and below candidates on ballots

In this section we briefly cover two predicates characterising candidates as directly

above or directly below another candidate on a ballot. These two predicates were

originally more key to our proof strategy for rankings, but this became less the case as

our formalisation progressed.

Our proof plan originally involved using induction to show that the listed candi-

dates spanned the range of ranks from {0..L − 1}: when inserting a new candidate,

there is a unique candidate above or below them, use this to show no other candidate

shares their rank, combine with the facts that those listed above will have the same

rank as before insertion and those below will have rank one more. This would have

probably worked, but our actual approach is somewhat simpler (see Section 4.8) and

simply came about naturally in the course of proving basic results.

Nevertheless, there are a few results proven using these predicates that we use as

the basis for uniqueness results for rankings, which are themselves then used to prove

the key results needed for the votes invariant.

Definition 3 (Directly above). A candidate c is directly above another c′ on a ballot

(L ,G) iff

• c and c′ are listed: c,c′ ∈ L
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• The candidates listed greater than c′ are exactly those listed greater than c plus

c itself:

G(c′) = G(c)∪{c}

Definition 4 (Directly below). A candidate c is directly below another c′ on a ballot

(L ,G) iff

• c and c′ are listed: c,c′ ∈ L
• The candidates listed lesser than c plus c itself are exactly those listed (strictly)

lesser than c′:

L−G(c) = (L−G(c′))−{c′}

To get a sense for the definitions, consider the ballot abcde. We can see that candidate

b is listed directly above candidate c because they are both listed and the candidates

listed greater than c (= {a,b}) are exactly those listed greater than b (= {a}) plus b

(= {a,b}). In reverse, we can see that candidate c is listed directly below candidate

b because they are both listed and the candidates listed lesser than c (= {d,e}) plus c

itself (= {c,d,e}) are exactly those listed lesser than b (= {c,d,e}).
In Isabelle/HOL we write this as follows, using a special notation to ease having L

and G as additional parameters:

definition above where
"c above[L,G] c' ≡ c' ∈ L ∧ insert c (G c) = G c'"

definition below where
"c below[L,G] c' ≡ c ∈ L ∧ c' ∈ L ∧ L - G c = (L - G c') - {c'}"

Figure 4.9: The predicates for “is directly above” and “is directly below” in Isabelle/HOL.

For these definitions, we only include what is necessary in the context of a valid ballot

as this is the only context for their practical use. The following lemma provides reas-

surance that our definition of above, which does not require c to be listed, is correct:

lemma above_in1:
assumes "c above[L,G] c'"

and "valid_strict_ballot L G"
shows "c ∈ L"

Figure 4.10: Lemma demonstrating that the definition for above is sufficient in the con-

text of a valid ballot.
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We follow the definitions of these predicates with numerous other lemmas e.g. about

reflexivity, symmetry, and transitivity results that one would expect from successor-

predecessor predicates such as these. We are then able to prove a number of uniqueness

results along the lines of ex_unique_above listed below.

lemma ex_unique_above:
assumes valid: "valid_strict_ballot L G"

and "c ∈ L"
and "G c ̸= {}"

shows "∃!k. k above[L,G] c"

Figure 4.11: Lemma stating that for every candidate which is not the top-most listed

candidate on a ballot, there exists a unique candidate directly above them.
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4.6 Uniqueness results and applying ballot induction

We will use unique_last_pref to demonstrate the use of ballot induction for a lemma

that is core to our results about rankings. This states that there is a candidate listed last,

and that this candidate is unique on the ballot:

lemma unique_last_pref:
assumes "valid_strict_ballot L G"

and "L ̸= {}"
shows "∃!c∈L. G c = L - {c}"

Figure 4.12: There is a unique last-listed candidate on any non-empty valid ballot.

The proof of this lemma follows a common pattern of ballot induction and so we will

briefly dwell on it. We begin by opening up the induction by inducting on L ,G as

a ballot.2 Inside the induction proof, we have two newly fixed L ,G , which by the

induction premises we know represents a valid non-empty ballot, and by the induction

hypothesis (IH) we know that:

∀L ′ G ′. subballot(L ′,G ′,L ,G)∧L ′ ̸= {} −→ ∃!c. c ∈ L ′∧G ′(c) = L ′−{c}

To apply the IH, we thus need a non-empty subballot. The easiest way to get one is by

removing a single candidate from the ballot. We thus obtain some arbitrary, fixed c′

and L ′,G ′ which satisfy:

• L = L ′∪{c},c′ /∈ L ′

• subballot(L ′,G ′,L ,G)

A common bit of boilerplate is at this point to show that this obtained G ′ satisfies:

∀c ∈ L ′. G ′(c) = G(c)−{c′}

In other words, we define it, based on the fact that we know the definition of L ′, being

L with c′ removed, and the fact about the pair being a subballot of the original ballot.

In the proof of this particular lemma we then case split on whether L ′ = {}, another

common next step, especially if a premise of the lemma is ballot non-emptiness as then

this case split is necessary to even apply the IH. For this particular lemma, if L ′ = {},
we can conclude that L = {c′} and clearly c′ is our unique, last-listed candidate.

2In Isabelle: induct L G rule: ballot_induct
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If L ′ ̸= {}, then we can apply the induction hypothesis to obtain a candidate c

which is the unique last-listed candidate on the subballot. We know that c′ ̸= c because

c is listed on L ′ and c′ is not. We can show that it must be the case that either c remains

the last-listed candidate on the larger ballot (one could say “after inserting c′”), and if

not then this must now be c′. If c remains the last-listed then it must still be unique

because it was unique on the subballot plus, using the fact that ballots are total orders,

we can use the fact that c′ ̸= c, and for c to be last it must be that c /∈G(c′), to conclude

c′ ∈ G(c). Given c′ is greater than some candidate (specifically, c), the expression

characterising last-ness does not apply to c′. Similar reasoning applies for the case

where c′ is last on the larger ballot, and this completes the proof.

4.7 Pure ordering-specific properties and automation

Before moving to natural-number rankings, we will discuss the general lemma

ex_greatest_sat_cand. This states that for any subset of a ballot, if it contains

at least one candidate satisfying a property, then there is a maximally-listed candidate

in that subset satisfying said property. It is an important lemma that comes up in the

proof of the votes invariant (see Section 5.5.3). This is because most of the compo-

nent functions of Meek’s method (see Section 5.2) are implemented in such a way

that hopeful candidates become important for analysis. In particular, if we can find a

maximally-listed hopeful candidate h on some ballot, then we know that none of that

ballot’s mass goes to any candidates listed less than h, as h receives whatever is left

of the ballot after those listed above them have taken their share (apportioned by the

weights).

Theorem (Maximal listed candidate satisfying a property). If (L ,G) is a valid ballot,

X ⊆ L , and there is some x ∈ X such that P(x), then there exists a unique y ∈ X such

that P(y) and all z ∈ X where z ̸= y∧P(z) are listed less than y.

lemma ex_greatest_sat_cand:
assumes valid: "valid_strict_ballot L G"

and Xsub: "X ⊆ L"
and ex: "∃x∈X. P x"

shows "∃!x∈X. P x ∧ (∀y∈X. y ̸= x ∧ P y−→ x ∈ G y)"

Figure 4.13: If there is a candidate on a ballot satisfying a property, there is a unique,

highest-listed candidate satisfying that property.
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This could be reframed so that it is only stated over L , with subset membership being

subsumed by the property P, but this is a handy form to have it in.

Consider the case when P=(λc.wc = 1) and X =G(k), and we have some c∈G(k)

where wc = 1. That is, c is a hopeful candidate listed greater than k. We can then obtain

a c′ greater than k such that wc′ = 1, and all other hopeful candidates must be listed

less than c′.3 Importantly, as c′ is the top-listed hopeful candidate, we know that they

must get at least some votes, as there is nobody listed above them that is hopeful (i.e.

nobody that can “suck up” everything coming to them), and everybody below them

must get no votes. We can use this to simplify, for example, sums over votes.

4.8 Rankings

We finish this discussion of ballots by introducing functions for extracting and stating

the rankings of candidates expressed as natural numbers.

Definition 5 (Candidate rank). A candidate c has rank n, rank(c) = n, iff there are n

candidates listed greater than c on the ballot.

Definition 6 (Ranked nth). The candidate ranked nth on a ballot, ranked(n), is the

unique candidate listed on the ballot who has n candidates listed greater than them.

The candidates listed greater than some candidate c is of course the set G(c), and

counting how many candidates are listed greater than c is thus equivalent to taking the

cardinality: |G(c)|. Equating candidate rank with cardinality means, unlike in real-

world elections, our “highest rank” is 0, not 1.

Indeed, while the ordinal “first” is the usual view of the top-ranked candidate, as

the first on the list, and ordinal “first” is often associated with the cardinal 1, it is not

necessary for these to match. Indeed, in computer science and mathematical settings

it is often much more natural to start from 0. Here this has an intuitive interpretation

which is equivalent to its actual implementation, as the number of those listed greater

on the ballot; one can read traditional list-indexing in computer science the same way,

the index of an item in a list is the number of items preceding it in the list.

So we have rank and ranked, the latter of which is merely the inverse of rank.

There is little else to say about these two notions when viewed abstractly, though the

Isabelle versions merit some further remarks (besides the fact that we have to explicitly

carry around L and G):

3It may or not be the case that c′ = c.
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definition rank where
"rank G c ≡ card (G c)"

definition ranked where
"ranked L G n ≡ SOME c. c ∈ L ∧ rank G c = n"

Figure 4.14: Functions for working with natural-number rankings on ballots.

Notice that we do not define ranked as the inverse of rank, which would be:

ranked G n ≡ inv (rank G) n

This does not work because, in Isabelle, it reduces to SOME c. card (G c) = n,

which can pick candidates both in L and outside L , and breaks the uniqueness result

that only one candidate satisfies the predicate (λc. |G(c)| = n) for any given n < |L |.
That is, we need to explicitly restrict the domain of the choice operator to L , which

does not happen by simple inverse.

We could use either THE or SOME here in our definition, but it is best practice if one

is presuming that it is possible to prove uniqueness to not embed this in the definition,

and instead prove the equivalence. We will come back to this equivalence shortly in

Section 4.8.2.

4.8.1 Sanitising the terminology

As with real-world elections, the lower a candidate’s natural-number ranking, the

higher-up they are listed on the ballot. This can occasionally be confusing, especially

when parsing the mathematics versus the theorem name, and so we have endeavoured

to stick to a consistent vocabulary, which for clarity we outline here along with the

associated mathematical formulae:

• c is listed greater than c'←→ c ∈ G c'

• c is listed lesser than c'←→ c ∈ L - G c' - {c'}

• c is ranked higher than c'←→ rank G c < rank G c'

• c is listed (directly) above c'←→ c above[L,G] c'

• c is listed (directly) below c'←→ c below[L,G] c'
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In particular, “ranked higher/listed greater” is chosen over “ranked greater/listed higher”

as this seems to more closely match real-world terminology. Likewise “ranked lower”

is chosen if one wishes to view the same fact from the other direction, from the point of

view of c′. The terminology is also clarified through the relationship in the following

theorem:

lemma greater_higher_ranked:
assumes "valid_strict_ballot L G"

and "c' ∈ L"
and "c ∈ G c'"

shows "rank G c < rank G c'"

Figure 4.15: A lemma for illustrating the terminology used.

Candidate c is ranked higher than c′, meaning their natural-number ranking is less. We

also say c is listed greater than c′. Finally, c may or may not be listed above c′.

Note again that we develop both the set-based formulation and the formulation

based on ranking (derived from the set-based one) because both are necessary for the

formal development; this work is not just here as additional work which may be useful

to others but not us.

4.8.2 Uniqueness of ranked

The uniqueness of ranked can be stated in Isabelle/HOL like so:

lemma ranked_THE:
assumes "valid_strict_ballot L G"

and "n < card L"
shows "ranked L G n = (THE c. c ∈ L ∧ rank G c = n)"

Figure 4.16: Uniqueness of ranked.

Proving it is a direct application of Isabelle’s standard library lemma the_equality,

which we can use to reframe what we need to prove like so:

Theorem (Uniqueness of ranked). Given a valid ballot (L ,G) and a position on the

ballot n < |L |, there is a unique listed candidate at that position. Equivalently, given

validity and n < |L |, it is the case that the following are true:

• The candidate ranked nth is indeed actually a listed candidate: ranked(n) ∈ L
• The rank of the candidate ranked nth is n: rank(ranked(n)) = n
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• For each listed candidate, if their rank is n, they must also be the nth ranked

candidate: ∀c ∈ L . rank(c) = n−→ ranked(n) = c

These are three of a larger collection of key results for connecting the functions rank

and ranked, and are what allows us to focus on proving numerous results about rank

and then connect these to results about ranked using connective glue such as ranked_THE

and the various results it depends on.

It is, in the end, the function ranked which is more important for us, as it provides

a sequence into the ballot representation that is very useful for the proof of the votes

invariant (Section 5.5.3). But key results about ranked, including very basic ones like

ranked_THE, are not provable until we have a number of these key results about rank,

which we will go through some of now.

4.8.3 Key properties of rank

Defining rank directly in terms of cardinality allows us to use everything we have

already proven about ballots prior to the treatment of rankings, and also make use of

the bounty of set-theoretical results which already exist in Isabelle/HOL.

For example, earlier on (see Section 4.6) we discussed unique_last_pref, a

lemma which expresses the fact that there is unique candidate which is listed last.

We can trivially translate this from a set-based lemma into one based on rankings and

prove a fact which states that there is a unique candidate which is ranked lowest:4

lemma unique_rank_lowest:
assumes "valid_strict_ballot L G"

and "L ̸= {}"
shows "∃!c∈L. rank G c = card L - 1"

The fact that this is provable so easily using Isabelle/HOL’s automated proof tools

supports the claim that the set-based and rank-based representations are sufficiently

well-connected by existing lemmas. We also prove when removing a candidate affects

(or not) another candidate’s ranking, which is important for case splits later:5

Theorem (Removing or inserting lesser listed candidates leaves rank the same). If

(L ′,G ′) is a subballot of (L ′∪{c},G), and k is listed greater than c, then rank(k) is

equal on both ballots.
4One could also use the terminology “ranked last” here.
5Note that when asserting facts like subballot(L ′,G ′,L ′∪{c},G), whether this holds depends only

on whether G ′ is a sub-greater-than function of G , as L ′ is necessarily a subset of L ′∪{c}.
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One writes theorems such as these in Isabelle as follows:

lemma rank_insert_same:
assumes "valid_strict_ballot (insert c L') G"

and "subballot L' G' (insert c L') G"
and "k ∈ G c"

shows "rank G k = rank G' k"

where statements such as “the rank of k on G” or “the rank of k on both ballots” is of

coursed expressed by passing G directly to the rank function.

Moving on to the focus of this section, we can isolate two important results.

Theorem (There are lower-ranked candidates for all lower rankings). For any given

candidate c listed on a ballot (L ,G), and any rank m lower than or at c on the ballot,

rank(c)≤ m < |L |, there is a candidate k such that:

• k is listed: k ∈ L
• Either k is itself c, or k is listed lesser than c: k /∈ G(c)

• The rank of k is m: rank(k) = m

Consider the case where rank(c) = 0, then for every rank m ∈ {0..|L − 1|} there is

some candidate with that rank. In other words, rank in the domain L is surjective on

{0..|L−1|}. This result thus conceptually leads directly to the next one:6

Theorem (The rankings of those lesser are unique and contiguous). If c is a candidate

listed on the ballot (L ,G), then the rank of c, with the rank of the candidate below c,

and so on, are exactly the natural numbers rank(c) through to |L |−1, i.e.:

rank(L−G(c)) = {rank(c)..|L |−1}

Here rank is applied to a set, overloaded in the conventional way functions are in pen-

and-paper mathematics. The second lemma has a very important corollary: if c is the

top-ranked candidate then G(c) = {} and rank(c) = 0, and so7

rank(L) = {0..|L |−1} (4.1)

That is, every rank from 0 through to one less than the size of the ballot is assigned to

some candidate on the ballot. Indeed, we can prove thank rank is bijective between L
6In actuality, the next result follows from different although similar sources.
7We originally proved this fact in a 200-line ballot induction proof not dissimilar from the proofs

that appear in Section 5.5.3 concerning the votes invariant. We do not discuss this proof here because
of this similarity and also because later results actually made it redundant.
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and {0..|L |− 1}. This is very close to one of the essential facts we need for ranked,

discussed in the following section.

4.8.4 Key properties of ranked

After proving that rank is a bijection, several uniqueness results follow, such as there

being a unique candidate for every rank and a unique rank for every candidate. How-

ever, we will not elaborate further on these as they are basic results which follow

immediately from the bijectivity of rank on L . The key batch of lemmas for ranked

are ones of the form rank(ranked(n)) = n, if n is in the proper range. In Isabelle/HOL:

lemma rank_of_ranked:
assumes "valid_strict_ballot L G"

and "n < card L"
shows "rank G (ranked L G n) = n"

Figure 4.17: One of a handful of “glue lemmas” connecting rank and ranked.

We have already shown that if n < |L |, ranked(n) must be listed, and we have also

shown that listed candidates have unique ranks. We have that rank(ranked(n)) = n as

above, also that ranked(rank(c)) = c if c is listed. Lemmas such as ranked_THE as

we discussed earlier can now be proven. For example the following fact from earlier

which was needed to prove it:

Given n < |L |, for each listed candidate, if their rank is n, they must also be the nth

ranked candidate: ∀c ∈ L . rank(c) = n−→ ranked(n) = c

Proof. Fix c ∈ L with rank(c) = n. Immediately, we have c = ranked(rank(c)) =

ranked(n).

Finally, there are the three results which will be used in the proof of the votes invariant

in Section 5.5.3. First, that the candidate ranked top (when such a candidate exists), in

0th position, has nobody listed above them:

lemma G_ranked_0_empty:
assumes "valid_strict_ballot L G"

and "L ̸= {}"
shows "G (ranked L G 0) = {}"

Figure 4.18: The first and most trivial of three key results for ranked.
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Second, those ranked higher than the nth candidate are the same as those ranked 0

through to n−1.

lemma G_ranked_n_eq_ranked:
assumes "valid_strict_ballot L G"

and "0 < n"
and "n < card L"

shows "G (ranked L G n) = ranked L G ` {..n - 1}"

Figure 4.19: The second of three key results for ranked.

Third and finally, those ranked from 0 through to one less than the rank of c are exactly

those listed greater than c:

lemma valid_ranked_image_gt:
assumes "valid_strict_ballot L G"

and "c ∈ L"
and "rank G c ̸= 0"

shows "ranked L G ` {..rank G c - 1} = G c"

Figure 4.20: The third of three key results for ranked.

4.9 A minimal treatment of election context

What defines “an election” depends on one’s purpose. It could encompass the whole

process, from voting method (machine, paper, bead, etc) to vote counting to election

auditing. For our purposes, however, we only care about the algorithm used to count

the ballots, Meek’s method, the input into that algorithm, and the tweakable parameters

of the algorithm (e.g. the stopping parameter, ε).

The principal thing we will cover in this section is election context, which we define

as being the input to an election along with its parameters.

4.9.1 The election context locale

The inputs to an election are only ever two things: the candidates running, and the

submitted ballots, perhaps with additional metadata. A method may or may not have

parameters, so in the general case we are only concerned with the inputs. We do not

consider a situation where there are no ballots to count, i.e. when the set of ballots is

empty. Note also that in this context we must fix an L and G which now each take a

ballot as an initial argument:
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Definition 7 (Election context). An election context is a set of candidates C and a set

of ballots B along with ballot accessors L and G satisfying the following:

• Each ballot is valid: ∀b ∈ B. valid(L(b),G(b))

• There is at least one candidate listed on each ballot: ∀b ∈ B. L(b) ̸= {}
• There is at least one ballot: B ̸= {}
• There are finitely many ballots: f inite(B)

• There are finitely many candidates: f inite(C)

• Only candidates are listed on ballots:
⋃
{L(b). b ∈ B} ⊆C

Recall that the function valid takes the set of candidates listed on a ballot and the

greater-than function for that specific ballot directly as arguments, so we have to pre-

apply them with the ballot b. The Isabelle/HOL translation of this definition of election

context contains no surprises, but we present it for completeness’ sake:

locale election_context =
fixes cands :: "'c set"

and ballots :: "'b set"
and L :: "'b ⇒ 'c set"
and G :: "'b ⇒ 'c ⇒ 'c set"
and listed :: "'c set"

defines listed_def: "listed ≡
⋃
{L b |b. b ∈ ballots}"

assumes all_valid: "b ∈ ballots=⇒
valid_strict_ballot (L b) (G b)"

and all_nonempty: "b ∈ ballots=⇒ L b ̸= {}"
and ballots_nonempty: "ballots ̸= {}"
and finite_ballots: "finite ballots"
and finite_cands: "finite cands"
and listed_cands: "listed ⊆ cands"

Figure 4.21: The locale capturing election context.

There is a choice regarding representation here. If listed candidates are the only ones

that are relevant, given that any candidate not listed on any ballot may as well not be

standing, one might be tempted to just draw an equivalence between the set of listed

candidates to be the set of running candidates. There are two related reasons not to do

so.

First, it is bad practice to exclude an aspect of representation that one assumes will

have no real effect on theoretical results, even if it seems obvious. One should not

presume what one can prove. For a simple example, we can prove, rather than assume,

that we do not need to consider unlisted candidates when summing or taking products

over the types of functions that are common to the contexts in which we take sums and

products:
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lemma sum_cands_listed:
assumes "

∧
c. c ∈ cands=⇒ f c = g listed c"

and "
∧
X c. c /∈ X=⇒ g X c = 0"

shows "(Σc∈cands. f c) = (Σc∈listed. f c)"

lemma prod_cands_listed:
assumes "

∧
c. c ∈ cands=⇒ f c = g listed c"

and "
∧
X c. c /∈ X=⇒ g X c = 1"

shows "(Πc∈cands. f c) = (Πc∈listed. f c)"

Figure 4.22: Sums and products over candidates can be reduced to sums and products

over listed candidates.

Second, it is bad practice to exclude an aspect of representation for minor efficiency

gains, by whatever measure of efficiency (proof length, number of variables, etc), if

doing so negatively affects representational and proof intuition or if it results in a rep-

resentation that unnecessarily strays from what is expected or typical.

We exclude empty ballots as they are not theoretically interesting outside of the

notion of spoiled ballots and tactical voting, though this locale could indeed be gen-

eralised to cover empty ballots without too much additional pain. Such a generalisa-

tion would force a great deal of lemmas to consider whether a ballot is empty or not,

adding conceptually shallow visual noise. Furthermore, to fully integrate empty bal-

lots into the rest of the formalisation, it would either force implementations to begin by

“filtering out” spoiled ballots (including empty ones), or consider them immediately

exhausted.

On the other hand, in principle Meek’s method is the STV method best suited to

handling empty ballots given it uses a dynamic quota, where throwing a large number

of ballots away immediately would not be an issue in the way it would be with a static

quota. Nevertheless, we have chosen to maintain exclusion of empty ballots for the

duration of the thesis.

4.9.2 Working within an election context permits more elegant no-

tation

Having L and G as fixed constants available throughout the locale election_context8

allows us to define notation that leaves them implicit in that context. For instance:

8As opposed to previously where they were fixed constants introduced for each top-level lemma in
the ballots theory.
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definition ballot_eq where
"x = b y ≡ x = y ∧ x ∈ L b ∧ y ∈ L b"

definition ballot_gt where
"x > b y ≡ x ∈ L b ∧ y ∈ L b ∧ x ∈ G b y"

definition ranked_first where
"ranked_first b y ≡ ∀x∈L b. x ≤ b y"

Working with a more elegant notation like this not only improves readability, but can

serve as a much better basis for priming one’s intuitions about viable approaches to

proof and necessary theorems; the latter is particularly the case with symbolic, infix

notation that more readily suggests to one’s intuition various results regarding symme-

try, transitivity, and so on.

4.9.3 Lifting statements to the higher level by connecting defini-

tions

The definitions introduced in the previous section hide away what was previously ex-

posed, particularly G . In order to facilitate proof purely at the level of this more intu-

itive notation, we introduce a handful of lemmas along the lines of the following.

lemma gt_compr_G:
assumes "b ∈ ballots"

and "k ∈ L b"
shows "{c. c > b k} = G b k"

Figure 4.23: The greater-than predicate generates the greater-than function.

All of these of course follow trivially by basic set-theoretical results.

4.10 Related work

Any work which represents a voting method will typically develop some representation

for ballots and election context. In more general social choice settings a ballot is called

a preference ordering, and a set of ballots a preference profile. Mapping from the

preference profile to produce a social ordering, which fairly represents an aggregation

of the individual preference orderings, is the goal of voting theory.

Ghale et al. represent ballots using a list of candidates as well as a fractional value

associated with the ballot. This fractional value is directly associated with the ballot
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because they implement a procedural approach to counting votes whereby candidates

have, at various stages, piles of fractional ballots currently assigned to them which

they pass on only partial amounts of according to a “transfer value” (re)computed by

considering the surplus of the candidate this fraction of the ballot is currently assigned

to, a kind of ad-hoc candidate weight. We discussed the list approach to representing

ballots in Section 4.2.1.2 alongside further discussion of the approach we have actually

used and other potential representations.

Eberl’s work in randomised social choice theory [21, 20], which formalises some

key results in Isabelle/HOL, represents ballots as preference relations, each relation

⪰i being associated with some candidate i, permitting indifference or equal-preference

or “non-strict ballots” in our terminology. This is an appropriate representation for

a social choice setting where most results directly concern this binary relation, for

example: if every one of the m agents9 prefers alternative x to alternative y, which we

can write (∀i≤ m. x⪰i y), the social ordering (⪰) should prefer x to y, i.e. x⪰ y.

Finally, Nipkow [60] formalises the two most seminal impossibility theorems in so-

cial choice theory in Isabelle/HOL: Arrow’s Impossibility Theorem [4] and the Gibbard-

Satterthwaite Theorem [28]. They note that preference profiles are total preorders, but

represent them using a utility function, a mapping from alternatives to real numbers.

We have not discussed this approach in the thesis. This is a representation which is ap-

propriate for a general setting, especially one in which representing ‘underlying’ voter

preference, including intensity of preference, is relevant. One can use the utility func-

tion as a proxy for a total preorder over alternatives in the obvious way, and evaluate

the socially chosen alternative using the utility function. A complication in applying

this directly to STV is that in STV the preference profiles (ballots) do not rank alter-

natives. The alternatives in STV are, properly speaking, sets of elected candidates of

size S (the number of seats), and yet one does not rank one’s preferred sets of elected

candidates but individual candidates.

4.11 Conclusion

In this chapter we developed a representation for strict ranked ballots using a carrier

set L along with a greater-than function G which takes a candidate on the ballot and

returns the set of candidates listed greater than them. We developed an induction rule

9‘Agent’ is a more general way to refer to what we have called a voter, though we have typically just
referred to the ballot regardless of the preferences of some voter which produced it.
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for ballots and some key results about rankings that will be necessary for the following

chapter.

Our ballot induction rule utilises subballots and is analogous to the induction prin-

ciple used for finite sets with an additional aspect to cover candidate ranking. We

develop a handful of key results for these initial definitions, including the fact that

subballots are valid ballots. Following this, we prove that on non-empty ballots, there

are unique candidates listed first and last, and on ballots with at least two candidates,

top-ranked and bottom-ranked candidates excluded, there are unique candidates listed

directly above and directly below every candidate.

Importantly, we developed some definitions for representing and reasoning about

rankings. We define a candidate’s rank in terms of the number of candidates listed

greater than them on the ballot, meaning the rankings start at 0 for the highest ranked

candidate. We establish the equivalence between the ranking of a candidate and the

candidate with that ranking using the functions rank and ranked. We prove a number

of basic and important results about rank and about ranked, which are important for

the interpretation in the next chapter. For example, ranked({0..|L−1|}) = L .

It is possible that if we had focused on automation more up-front, while initially

slowing development, this would have sped up development significantly enough to

pay for itself. However, not getting the automation we hoped for from initial experi-

ments posed a risk with respect to sinking time into getting this to work, with signifi-

cant work required to finalise the results of Chapter 3 and Chapter 5 outstanding, and

so we made the judgement to focus on proving the key results of this chapter and move

on.

Finally, we developed a minimal wrapper around the ballots theory for capturing

election context, within which we will provide the interpretation of the locales devel-

oped in Chapter 3, to follow now in the next chapter.
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In this final chapter covering the work done we cover our implementation of the

components of Meek’s method of STV, a specific surplus transfer round satisfying our

abstraction in Chapter 3, as well as a general proof that the implementation satisfies

our abstraction for all valid elections.

5.1 Overview

In this section we provide an overview of the chapter covering the aims, motivations

and other key aspects when it comes to verifying Meek’s algorithm concretely.

5.1.1 Aims and objectives

The aims of this chapter are to demonstrate that a typical implementation of Meek’s

method has a unique solution in the transfer round by discussing the verification of the

correctness of the locales specified in Chapter 3. We then use this to demonstrate that

for a specific election a solution to a transfer round, which we compute analytically

within the theorem proving environment, is unique.

5.1.1.1 Specific objectives

Our specific objectives are to concretise the proofs of correctness from Chapter 3 by:

• Implementing the component functions of Meek’s method: the votes, quota, and

excess.

• Proving these component functions, given a set of valid strict ballots and the

usual weight update function, satisfy the abstract characterisation of Meek’s

method and the transfer round given in Chapter 3. As sub-objectives, this in-

volves the following:

– Proving a sizeable number of preliminary lemmas to facilitate interpreta-

tion of the locales.

– Proving that each assumption of the locale characterising Meek’s method

at the top-level is satisfiable.

• Giving a specific example which we can solve analytically, showing that this is a

solution given the concrete component functions, and then showing this solution

is unique using the results of Chapter 3.
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5.1.2 Motivation

By providing an interpretation of the locales from Chapter 3 we give evidence that the

assumptions of the locale are:

1. Possible to prove for a concrete implementation, and hence logically consistent.

2. Satisfiable for a specific example using that concrete implementation without

significant additional development, i.e. all the assumptions can be dispatched by

invoking the more general lemmas for the specific example.

3. General, i.e. applicable to all valid elections.

5.1.3 Hypothesis and evaluation

Our hypothesis is that the three motivations given above – namely the possibility of

giving an interpretation, the ease of use for specific examples, and the generality of the

assumptions – can be formally demonstrated in Isabelle.

By actually proving each assumption holds for a concrete implementation, we show

that such an exercise is possible, if perhaps onerous. By providing a model – in Is-

abelle/HOL parlance, an interpretation – we show the assumptions are consistent. By

proving that an implementation – which only needs the additional context of a set of

valid strict ballots – is a model of the locales, we show the assumptions apply to all

valid elections.

5.1.4 Novel concepts and ideas

This chapter contains several novel contributions. First and foremost, we connect the

proof of the uniqueness of the solution vector in non-trivial surplus transfer rounds to a

concrete implementation, and thus open the door to verified, extracted code for Meek’s

method, something which has never previously existed.

Connecting these two aspects requires, of course, providing a functional implemen-

tation of Meek’s method in Isabelle/HOL. No such functional implementation has been

provided anywhere before as far as we are aware. Meek’s method was implemented

imperatively in Pascal [41] originally and later in Python in OpenSTV.1 We believe the

functional implementation of Meek’s method reveals the most about its elegance as a

1OpenSTV is now the proprietary OpaVote [64].
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method. Such an implementation also allows us to fill in a few gaps left by Woodall in

the proofs that animated much of the previous chapter.

Finally, we prove the votes invariant for Meek’s method, which all STV methods

satisfy. Specifically, for Meek’s method this reads:

∀C B w. |B|= Σc∈CVc(B,w)+E(B,w) (5.1)

where C is the set of candidates, B is the set of ballots, w is the weight vector i.e. the

state in Meek’s method, and V and E are the votes and excess functions. It states that

the votes in circulation among the candidates, plus the excess votes, is constant and

equal to the total number of ballots. See Section 5.5.3 for a full discussion of this

invariant. Equivalently:

∀C B. |B|= Σc∈CVc(B,0)+E(B,0) = E(B,0) (5.2)

∀C B w w′. Σc∈CVc(B,w)+E(B,w) = Σc∈CVc(B,w′)+E(B,w′) (5.3)

Proving this invariant was not a trivial task (See Section 5.5.3).

5.1.5 Structure of this chapter

In Section 5.2 we provide an implementation of the votes, quota, and excess and dis-

cuss the representation decisions involved, in Section 5.3 we provide a number of

preliminary proofs regarding the components, in Section 5.4 we interpret the locale

representing Meek’s method generally from Chapter 3, and finally in Section 5.5 we

cover the outline of the proof of the votes invariant for Meek’s method. We wrap up

by covering formalisation size in Section 5.6, some related work in Section 5.7, and

summarise in Section 5.8.

5.2 Closed-form expressions for components and im-

plementation

In this section we will present a concrete implementation of the basic functional com-

ponents of Meek’s method. These components appeared in the previous chapter as

the functions V_for, Q_for, E_for (see Section 3.3.2), whose only argument was the

weight vector. Here, it will be necessary to also provide more concrete ballot, using

the representation discussed throughout Chapter 4, introduced in Section 4.2.
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As discussed in the overview (Section 5.1), nobody has previously presented the

closed-form expressions of these components, though Hill et al. [41] probably used

something like them in their proof implicitly. They are easy to derive, however, by

considering how much each ballot contributes to the quantities in turn.

The resulting expressions are of course of a purely functional, mathematical nature,

unlikely to be anything one would naturally produce in an ordinary implementation of

Meek’s method in a standard programming language without giving thought to ease

of mathematical analysis. Meek’s method, because the state can be simply given by

the ballots and the weights, and because it need not explicitly track the “votes so far”,

“quota so far” etc., uniquely lends itself to closed-form expressions of this sort.

5.2.1 The fraction of a ballot going to a candidate

The votes a candidate receives is the sum of the fraction of each ballot they receive,

multiplied by their weight (or keep-value). Thus, we begin by defining the function

which returns the fraction of a ballot a particular candidate receives given a weight

vector. We will briefly discuss non-strict ballots and other representational extensions

using the same method of derivation as we use here as future work in Section 6.2.8.

On a particular ballot, each candidate k receives a fraction of the ballot from the

candidate above them, keeps the ballot mass received in proportion to their weight (aka

keep-value) wk, and passes on what remains, which is what they receive in proportion

to 1−wk. For example, if the ballot is abcd, the fraction of the ballot received by

each candidate is as shown in Table 5.1. The first listed candidate of course initially

receives the whole ballot. Candidate b keeps wb of the 1−wa they receive, hence a

simple multiplication of the two, and so on.

Candidate Fraction received Fraction kept

a 1 wa

b (1−wa) (1−wa)wb

c (1−wa)(1−wb) (1−wa)(1−wb)wc

d (1−wa)(1−wb)(1−wc) (1−wa)(1−wb)(1−wc)wd

Table 5.1: Fraction of the ballot abcd received, kept, and hence transferred by each of

the candidates a,b,c,d.

Any additional, unlisted candidate receives 0. It is easy to read off a closed-form
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expression from this table:

frac-of (b,c,w) =

{
Πk∈G(b,c)(1−wk) c ∈ L(b)

0 otherwise
(5.4)

We have to condition on c ∈ L(b) (see Section 4.2 for a discussion of L ,G) as the

product over an empty set is by convention equal to 1. This convention also holds in

Isabelle, hence the translation of this into Isabelle is direct, as follows:

definition frac_of :: "'c set ⇒ ('c ⇒ 'c set) ⇒ 'c ⇒ (real , '
c::finite) vec ⇒ real" where

"frac_of L G c w ≡ if c ∈ L then Πk∈G c. (1 - w $ k) else 0"

Figure 5.1: Definition of frac-of .

In the next section, we discuss the difference between the pen-and-paper frac-of and

its Isabelle formalisation frac_of.

5.2.1.1 Remarks on L ,G

In the mathematical listing for frac-of (Equation 5.4) we pass some ballot b, with L and

G being available implicitly. In the Isabelle/HOL formalisation we require the carrier

set and greater-than function representing the ballot to be passed explicitly, as for large

parts of the theory on implementation there is no implicit L and G available. These

definitions all exist at the top-level, unadorned by additional context. When using

ballot accessors, i.e. an L and G which do not directly represent a ballot but require

an abstract ballot to be passed to them, they need to be pre-applied in Isabelle/HOL:

frac_of (L b) (G b) c w.

As discussed in Section 4.2, sometimes L ,G do directly represent a ballot, as in the

Isabelle implementation of frac-of , other times they take an additional ballot argument.

We make flexible use of the notation for L ,G throughout, and it will be obvious how

we are using it in context by the surrounding discussion and by whether L ,G take this

additional argument.

We could have defined frac_of so that it took accessors L ,G and some ballot b

and applied the two functions to b, i.e. taking arguments frac_of b L G c w. This

was indeed our original representation. However, in proofs, we regularly construct a

new ballot by simply inserting or removing new candidates into some existing ballot

(L ,G). Doing this via some abstract ballot b would at best introduce a number of syn-

tactically messy indirections, and at worst make this impossible. The latter, because
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fixing a pair of accessors L ,G sets the available individual ballots that are charac-

terised with respect to some set of abstract ballots B = {b1,b2, ...}. That is, we would

need new ballot accessors to represent a ballot not listed in B, or to pick values outside

B for each new ballot.

The final note worth remembered, is that this definition of frac-of , like all the

others that will follow, puts absolutely no requirements on the arguments L ,G ,w,c.

Although we label them the same here as we do in the context where (L ,G) represent

an actual ballot, they actually denote any set and function of the correct type. This

is because this definition lives at the top-level of the Isabelle theory (rather than in a

locale), without the surrounding context of any additional assumptions. Of course, the

implementation does not make sense if (L ,G) does not represent a strict ballot. It will

only be later in the context of a set of valid, strict ballots (see Section 5.4) that we will

then leverage the results of Chapter 3 and Chapter 4.

5.2.1.2 Properties of frac-of observable by inspection

We can see by inspecting Equation 5.4 that if any candidate k listed above c has weight

wk = 1, then frac-of (b,c,w) = 0. That is, if any candidate on the ballot is a hopeful

candidate, that candidate receives any remaining votes coming from the candidates

listed above them and passes nothing on, as expected.

We can also see that eliminated candidates listed above a candidate, with weight 0,

contribute nothing to the votes the candidate receives, as we would expect. They are

“passed over” by this function, as if they were not listed on the ballot to begin with.

This equivalence between elimination and not being listed is, while trivial to notice

here, an important property of Meek’s method. See Section 5.3.2.

As long as valid(L ,G) is the case (see Section 4.2), the weight wc of the candidate

itself is uninvolved in the votes frac-of (b,c,w) that it receives because a candidate

cannot be listed above itself. Thus, it is immediately obvious that there is no “feedback

loop” in passing around ballot mass, outside of incorrectly implemented imperative

versions.

If any of the weights of candidates listed above another are greater than 1, candi-

dates may receive “negative votes”. This seems strange, but it all balances out (proven

in Section 5.5.1). Any candidate with a weight greater than 1 can be seen as “taking

vote mass” from lower-listed candidates and/or the excess, which is invalid in normal

circumstances.

Similarly, candidates with negative weight pass on all the votes and even more in
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proportion to their negative weight. If the top-listed candidate had negative weight, the

candidate listed immediately below them would receive more than the mass usually

received from a single ballot. While this seems a digression into trivial truths about

a simple product over a simple expression, it will be important in Section 5.5, where

we deal with the votes invariant, and the non-triviality of proving this “balancing out”

formally is revealed.

5.2.2 The votes component

The votes a candidate c receives and keeps from a ballot b, given weight vector w, is

exactly the votes received multiplied by its keep-value, the weight wc. It is the third

column in Table 5.1. The votes a candidate receives in total is the sum of each mass of

ballot received and kept over the whole set of ballots. We may thus write it, following

Woodall’s candidate-subscript notation for the votes V , as:

Vc(B,w) = wcΣb∈Bfrac-of (b,c,w) (5.5)

Note that Vc({},w) = 0, no matter the weights w or the candidate c. In Isabelle we split

this into two different definitions, to allow for alternate implementations of f stemming

from alternate representations of ballots or alternative formulations for the same ballot

representation:

definition
votes' :: "'b set ⇒ ('b ⇒ 'c ⇒ (real , 'c::finite) vec ⇒ real)
⇒ (real , 'c::finite) vec ⇒ (real , 'c::finite) vec" where

"votes' B f w ≡ χ c. w $ c * (Σb∈B. f b c w)"

definition
votes :: "'b set ⇒ ('b ⇒ 'c set) ⇒ ('b ⇒ 'c ⇒ 'c set) ⇒
(real , 'c::finite) vec ⇒ (real , 'c::finite) vec" where
"votes B L G w ≡ votes' B (λb. frac_of (L b) (G b)) w"

Figure 5.2: Definition of the votes function V .

This subscript notation, implying V (B,w) is some sort of vector of votes, does also

nicely mirror the Isabelle, in which we use the vector accessor function $ to get the

candidate, rather than simple function application: votes B L G w $ c.
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5.2.3 The excess component

The excess is the total mass of exhausted votes. That is, one adds up the contribution

each ballot makes to the excess, which is how much of it is exhausted. To get the

amount of mass a single ballot exhausts, we simply extend Table 5.1 by one additional

row (see Table 5.2). Again, it is easy to read-off a closed-form expression for this:

Candidate Fraction received Fraction kept

a 1 wa

b (1−wa) (1−wa)wb

c (1−wa)(1−wb) (1−wa)(1−wb)wc

d (1−wa)(1−wb)(1−wc) (1−wa)(1−wb)(1−wc)wd

Excess (1−wa)(1−wb)(1−wc)(1−wd) N/A

Table 5.2: Fraction of the ballot abcd received, kept, and hence transferred by each of

the candidates a,b,c,d, plus the excess.

E(B,w) = Σb∈BΠc∈L(b)(1−wc) (5.6)

definition excess where
"excess B L w ≡ Σb∈B. Πc∈L b. (1 - w $ c)"

Figure 5.3: Definition of the excess function E.

We can read off, by inspection, several facts about the excess from this, knowing noth-

ing else about Meek’s method:

• If a hopeful candidate is listed on every ballot, there is no excess.

• If every candidate is eliminated, this becomes E(B,0) = Σb∈B1 = |B|, i.e. every

ballot is completely exhausted.

• How much of each individual ballot is exhausted depends only on which candi-

dates are listed, not their order (because multiplication is commutative). Hence,

there is no direct link for voters between their ranking and how much of their

ballot will be exhausted or “wasted”.
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• If every ballot lists every candidate in the full set of candidates C, the excess can

be written |B|Πc∈C(1−wc). In combination with the first point, if there is any

hopeful candidate in such a situation, no ballot is at all exhausted or “wasted”

until every candidate is either eliminated or elected, which only occurs in the

final step of the process.

We believe that this is one reason why it would be pedagogically valuable to provide

people with a more mathematical definition of Meek’s method, as it more easily allows

one to read-off its properties and mentally play with its components. This is unlike any

existing implementation, which judging by the implementation in OpenSTV and the

original Pascal respectively, leaves the algorithm feeling somewhat more opaque and

messy than it is in reality.

5.2.4 The quota component

For the formulation of the quota we have a choice to make. Either directly here in the

implementation, or later when we leverage the more abstract results. Every quota in

general takes the following form2:

Q(B,S,w) = r
(
|B|−δEE(B,w)

S+ c1
+ c2

)
+ c3 (5.7)

where r is a rounding function, which potentially includes the identity function, S is

the number of available seats, and c1 ∈N0, c2,c3 ∈R≥0. For the vast majority of STV

methods, the excess plays no part in the quota, and we may set δE = 0, otherwise

δE = 1. Of course, in other methods the state may be represented by something other

than weights w as in Meek’s method.

For Meek’s method the dynamic, fractional Droop quota (Equation 5.8) where r =

(λx. x),δE = 1,c1 = 1,c2 = 0,c3 = 0 is always chosen3 in practice, and so we only

concretely implement this quota:

Q(B,S,w) =
|B|−E(B,w)

S+1
(5.8)

2As far as we are aware, based on the literature [50, 75, 59, 58] and various non-academic writing
and implementations on the web [63].

3By far the most common quota is the static, integral Droop quota, where r = (λx. ⌊x⌋),δE = 0,c1 =
1,c2 = 0,c3 = 1. While we proved in Section 3.5.1 that the dynamic version (the static version makes
no sense for Meek’s method) of this quota is fine for proving the first major theorem (Theorem 1.1), it
could not be used to prove the second major theorem (Theorem 1.2) in Section 3.5.2. This explains its
absence from this thesis.
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In Isabelle/HOL we split it up into the fractional quota taking simple values that can be

directly computed and a version that takes the state and uses it to calculate the simple

values needed:

definition quota_hb' :: "nat ⇒ nat ⇒ real ⇒ real" where
"quota_hb' T s E ≡ (T - E) / (s + 1)"

definition quota_hb :: "'b set ⇒ nat ⇒ ('b ⇒ 'c set) ⇒ (real , '
c::finite) vec ⇒ real" where

"quota_hb B s L w ≡ quota_hb' (card B) s (excess B L w)"

Figure 5.4: Definition for the quota function Q.

5.2.5 Whole method

While we do not verify any aspect of the functional implementation of Meek’s method,

we provide our Isabelle/HOL implementation here for completeness. We suppress type

annotations here for readability. First, elimination:

definition smallests where
"smallests v ≡ {c. ∀k. v $ c ≤ v $ k}"

definition eliminate where
"eliminate B L G w ≡

w<(SOME c. w $ c > 0 ∧ c ∈ smallests (votes B L G w)) 7→ 0>"

Figure 5.5: The elimination round.

An implementation of elimination which was concerned with code extraction and not

merely ability to reason about the definition would have to remove this use of SOME.

The best option would likely be to add an argument providing a function which picks

a candidate, hence make the choice of how to implement that function a problem for

elsewhere in the development, perhaps even after code extraction (so that one could

just substitute, say, a Scala standard library random-selection function).

The surplus transfer round is implemented as follows (the prefix ε in the theorem

names exists because we have also implemented versions of these functions which are

non-computational in a similar way to eliminate):
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abbreviation update_one where
"update_one elected B s L G w ≡ χ c.

if c ∈ elected then
w $ c * quota_hb B s L w / votes B L G w $ c

else
w $ c"

function ε _solve where
"ε _solve ε elected B s L G w = (

if surplus B s L G w > ε then
ε _solve ε elected B s L G (update_one elected B s L G w)

else
w)"

Finally we have Meek’s method, implemented as a recursive function:

function ε _meek where
"ε _meek ε B s L G w = (let reaches = reaches_quota B s L G w in

if card reaches ≥ s then
w

else if surplus B s L G w > ε then
ε _meek ε B s L G (ε _solve ε reaches B s L G w)

else
ε _meek ε B s L G (eliminate B L G w)

)"

5.3 Preliminary results

This section covers a handful of lemmas illustrative of the level of abstraction, diffi-

culty of proof, and general form of the results in this part of the formalisation, leading

up to the interpretation of the locales. The vast majority of these lemmas cover the

function frac-of .

5.3.1 Basic facts about frac-of

All of these lemmas exist outside of any enclosing context, which is to say that there

are no additional assumptions on any constants or functions besides those shown in

the lemma statement. For example, we can prove that if a hopeful candidate c is listed

greater than a candidate c′, then c′ receives no votes:
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lemma fraq_eq_has1:
assumes "c ∈ G c'"

and "w $ c = 1"
shows "frac_of L G c' w = 0"

Figure 5.6: Candidates listed less than a hopeful candidate on a ballot receive no votes.

The main thing to note about this is that we do not actually know anything about G .

It does not represent one part of a ballot here, because there is no such assumption

valid_strict_ballot L G characterising it as such. However, many such lem-

mas follow from the definitions (e.g. frac_of in the current case) without additional

assumptions.

The next result is a general lemma characterising frac_of when a single candi-

date’s weight is changed, which follows largely by unfolding frac-of , simplification,

and refolding:

lemma frac_eq_neq_if:
assumes c'_in: "c' ∈ L"
shows "frac_of L G c' (w ⇂ c,r) =

(if c ∈ G c'
then if w $ c ̸= 1

then frac_of L G c' w * (1 + r / (1 - w $ c))
else r * (Πk∈G c'-{c}. 1 - w $ k)

else frac_of L G c' w)"

Figure 5.7: Lemma showing an expression for votes received from changing a single

weight in terms of the original votes received.

We condition on whether c is listed greater than c′ and whether c is non-hopeful in

order to get at the three most important cases regarding how the value changes. There

is no point in making c′ ∈ L part of the if-then-else, as the case where this is not true

is trivially 0 by definition.

Note also that c ̸= c′ is not needed, though we will have this fact immediately when

c ∈ G c′. This tells us that if the weight of c is changed but is not listed above c′, the

fraction of the ballot c′ receives is unchanged. This also applies when c = c′ because

the weight of c′ has nothing to do with how much of a ballot it receives, only how

much it passes on.

Otherwise, if c is hopeful, c′ received 0 previously and so we cannot write an

informative expression in terms of frac-of . Then we have the most important case

where there is an elegant multiplicative relationship between the old value and the
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new one, which is the case relevant for the locale assumption regarding how the votes

change with one change to the weight. In ordinary mathematical notation, this would

be written:

if c′ ∈ L(b),c ∈ G(b,c′),wc ̸= 1, then

frac-of (b,c′,(w ⇂ c,r)) = frac-of (b,c′,w)
(

1+
r

1−wc

)

We conclude with some remarks summarising the rest of the preliminary results. Con-

sider the ballot wx..yc..z, where ‘..’ stands for any number of other candidates. We can

in a sense “redefine” the function frac_of by capturing its recursive nature, which

may be read “c gets whatever y got multiplied by 1−wy”. This is the more intuitive

way we understood this function when laying out the tables in earlier sections:

lemma frac_for_two:
assumes y_directly: "G y = G c - {y}"

and y_in: "y ∈ L"
and y_gt: "y ∈ G c"
and c_in: "c ∈ L"

shows "frac_of L G c w = frac_of L G y w * (1 - w $ y)"

Figure 5.8: Lemma stating the frac-of function for a candidate in terms of the candidate

listed directly above it.

Note the assumption y_gt implies G c ̸= {}, meaning c is not ranked first on the ballot.

The assumption y_directly should by read as “y is ranked directly above c”.

This lemma is exemplary of where covering non-strict ballots would obscure the

underlying relationship and add unenlightening syntactic noise. The assumptions, like

y_directly, would have to take into account that both y and c may (or may not!)

be part of equally-listed subsets of the ballot, divisors would be introduced into the

conclusion, without forcing the ballot to be valid we would we have to add more as-

sumptions to make sure division by 0 is not occurring, and so on. We had originally

begun by proving properties like this for both the strict and non-strict cases, and it was

specifically the above lemma that led us to abandon this approach.

We also provide some connection between the ranking functions of Section 4.8 and

this implementation:
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lemma rank_0_all_frac:
assumes "valid_strict_ballot L G"

and "c ∈ L"
and "rank G c = 0"

shows "frac_of L G c w = 1"

Figure 5.9: Lemma showing that the top-ranked candidate receives the full ballot.

A number of lemmas follow these basic facts, characterising when this function is

non-negative, less-or-equal 1, and so on. There is nothing interesting to say about the

majority of this, however, so we end our discussion here.

5.3.2 The principle of elimination

There are several ways in which one could formulate a principle of elimination for

Meek’s method, or STV generally. Meek used an informally stated elimination princi-

ple as one of two principles generative of the method [52, 51] and as discussed earlier

(Section 1.1). There, he phrased is thus:

Principle 1. If a candidate is eliminated, all ballots are treated as if
that candidate had never stood.

The most important direct consequences of this are at the level of definitions and rep-

resentation. An example of one such consequence comes up if a ballot lists entirely

eliminated candidates: that ballot should be treated as empty or as having listed values

not representing candidates, and so the ballot should not count to the total number of

submitted ballots and the quota should in turn be lower than if it did count to the to-

tal. Though note that “should not count to the total number of submitted ballots” here

just means that all the ballot does is increase the excess by 1, which is equivalent to

reducing the number of ballots |B| by 1; we are not saying that empty ballots should be

treated as not counting towards |B| in the strict sense of the mathematical calculation

of these quantities, but rather conceptually speaking. As the excess in Meek’s method

represents the partially or totally discounted ballots, we can state this requirement as a

theorem:

Theorem (Elimination principle for excess). Ballots which only list eliminated candi-

dates should contribute their whole mass to the excess.
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lemma eliminated_ballots_increase_excess_by_number_eliminated:
fixes Elim :: "'c::finite set"
assumes finB: "finite B"

"
∧
b. b ∈ B=⇒ finite (L b)"

shows "excess B L (1<Elim 7−→ 0>) = card {b∈B. L b ⊆ Elim}"

Figure 5.10: An elimination principle consequence stated in Isabelle/HOL by making

use of the weight vector of all 1s.

Arguing in this way, Meek claims that any static quota violates this principle, as it

implicitly treats ballots which only list eliminated candidates as still contributing to

and involved in the count. According to the elimination principle this is no more

reasonable than considering empty ballots submitted as inputs to the algorithm in the

first place as valid (and thus contributing to a higher quota than if they had not been

considered). This would be undesirable for lots of obvious reasons, including election

manipulation.

Our main purpose in highlighting this is conceptual (and partly to provide context

for a recommendation for future work in Section 6.2.9). It would be interesting in

the context of a general representation of STV to investigate whether one could state

this principle as a constraint on the allowable models of the more general abstraction.

Neither the lemma presented above or the one below are necessary for our key re-

sults. It is however also likely that greater use of lemmas like the following one would

prove useful for automatic simplification, as it removes otherwise necessary case splits

to do with dividing or multiplying by 0 if eliminated candidates’ weights come into

expressions regarding votes.

Theorem (Elimination principle for votes). Removing eliminated candidates from ev-

ery ballot which lists them, and removing ballots which only list eliminated candidates,

does nothing to change the amount of votes each remaining candidate receives.
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lemma eliminated_candidates_equiv_unlisted_votes':
assumes Elim_elim: "

∧
c. c ∈ Elim=⇒ w $ c = 0"

and BElim_B: "BElim ⊆ B"
and BElim_all_elim: "

∧
b. b ∈ BElim=⇒ L b ⊆ Elim"

and finB: "finite B"
shows "votes B L G w $ c =

votes (B - BElim) (λb. L b - Elim)
(λb c. G b c - Elim) w $ c"

Figure 5.11: A consequence of the principle of elimination for the design, and hence

properties, of the component for counting votes.

5.4 Connecting implementation and abstraction

In the next sections, it will be shown that our implementation satisfies – for any elec-

tion, i.e. a valid set of non-empty finite ballots – the assumptions of the locale given

in Section 3.3.2, and that a specific transfer round satisfies the locale given in Sec-

tion 3.4. Before continuing on to the more general interpretation of the locale in 3.3.2,

we first provide a concrete model of both locales using a specific example deliberately

constructed to require an immediate transfer round. Note that the specific example

(Section 5.4.1) uses numerous lemmas from the more general proofs in the sections

that follow (developed in Section 5.4.2 onwards).

5.4.1 A fully concrete model

The “equations to be solved at each step” in a transfer round for each elected candidate

c is Vc(w) = Q(w). We demonstrated an analytical approach to solving this in Sec-

tion 1.1, and promised a formal verification of an associated example, which we now

describe. This will also serve as a sanity check for the development in Chapter 3 as

the formalisation of this example lives outside any surrounding additional context, and

so only depends on the logical consistency of the Isabelle standard library. It will also

help to ground what the various types and functions can look like in practice.

All in all, it takes around 250-300 lines to set up the example, show it implements

a valid election, calculate the initial allocation of first preferences, show that va =

4/13,vb = 1/3 is a solution to the transfer round, and finally show this solution is

unique.

As a reminder, our example consisted of the set of ballots B = {ab,a,abc,bc,ba}
and number of seats S = 2, with a weight vector w = 1. First, we need to represent this
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example formally in Isabelle/HOL.
datatype cand = Alice | Bob | Claire

lemma cand_UNIV:
"(UNIV :: cand set) = {Alice , Bob, Claire}"

using cand.exhaust by blast

instance cand :: finite
proof

show "finite (UNIV :: cand set)"
by (simp add: cand_UNIV)

qed

As the 'c type variable we have been using has to satisfy the sort constraint finite,

we are forced to either define a new type with explicit constructors such as cand above,

or introduce a new type which is a subset of the natural numbers, e.g.:
typedef cand' = "{0::nat ,1,2}"

morphisms from_cand cand
by auto

instance cand' :: finite
<proof>

We implement each of the relevant quantities in the obvious way (here the suffix _ex

simply means “example”):
abbreviation ballots :: "(cand list) set" where

"ballots ≡
{[Alice ,Bob],[Alice],[Alice ,Bob,Claire],[Bob,Claire],[Bob ,Alice]}"

abbreviation cands_ex where
"cands_ex ≡ {Alice , Bob, Claire}"

abbreviation elected_ex where
"elected_ex ≡ {Alice , Bob}"

abbreviation gt_cand :: "cand list ⇒ cand ⇒ cand set" where
"gt_cand b c ≡

if c ∈ set b
then set (takeWhile (λc'. c' ̸= c) b)
else {}"

abbreviation votes_ex :: "(real , cand) vec ⇒ (real , cand) vec"
where

"votes_ex w ≡ votes ballots set gt_cand w"

abbreviation seats_ex :: nat where
"seats_ex ≡ 2"

abbreviation quota_ex :: "(real , cand) vec ⇒ real" where
"quota_ex w ≡ quota_hb ballots seats_ex set w"

abbreviation excess_ex :: "(real , cand) vec ⇒ real" where
"excess_ex w ≡ excess ballots set w"
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As we have already mentioned, the results in this section leverage many of the general

results from Section 5.4 onwards: we implement the components for this example in

terms of the generally implemented components votes, excess, and so on.

The following lemma works even if ballots list candidates multiple times, even in

a non-consecutive order. Thus, our implementation of L ,G accepts more ballots in

the form of a cand list as valid than we may want to, in fact accepting any list of

candidates as valid, but it works for our purposes because we do not need equal ballots

to be equal values.

lemma cand_lists_valid:
"valid_strict_ballot (set b) (gt_cand b)"

It is obvious why this works for any list for L , as the Isabelle function set removes

duplicates, but it is not immediately obvious why it works for G i.e. gt_cand in the

above formalisation. To see why it works, consider [a,b,a,c], then those listed above

a are {}, those above b are {a}, those above c are {a,b} – the extra a is irrelevant.

Any additional listing of a candidate after the first listing is ignored by using Isabelle’s

takeWhile function, because it stops at the first matching candidate. Given ballot

validity, it is trivial to show that what we have is at least a valid election context (we

will elide interpretation proofs after this):

interpretation election_with_seats cands_ex ballots set gt_cand
cands_ex seats_ex

proof -
show "election_with_seats cands_ex ballots set gt_cand seats_ex"
proof

show "
∧
b. b ∈ ballots=⇒ valid_strict_ballot (set b) (gt_cand

b)"
using cand_lists_valid by presburger

show "
∧
b. b ∈ ballots=⇒ set b ̸= {}"

by blast
show "ballots ̸= {}"

by simp
show "finite ballots"

by auto
show "0 < seats_ex"

by simp
show "finite cands_ex"

by simp
show "all_in ballots set ⊆ cands_ex"

by auto
qed

next
show "cands_ex ≡ all_in ballots set"

<proof>
qed

The quota in our example comes out to be 5/3 ≈ 1.66, and a and b are both elected
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with Va(w)= 3 and Vb(w)= 2. We need to solve Va(v)=Q(v),Vb(v)=Q(v) for some v

subject to va ∈ [0,1],vb ∈ [0,1],vc =wc, where in this particular case wa =wb =wc = 1.

We solved this abstractly in Section 1.1, and we now we leverage our formal results

to show that the solution derived in that section is correct. We start by calculating the

initial values after the initial allocation of first preferences (i.e. at w = 1), all provable

by invoking a single command (with some simple helper lemmas):
lemma prior_votes_ex:

"votes_ex 1 $ Alice = 3"
"votes_ex 1 $ Bob = 2"
"votes_ex 1 $ Claire = 0"

lemma prior_excess_ex:
"excess_ex 1 = 0"

lemma prior_quota_ex:
"quota_ex 1 = 5/3"

As two candidates exceed the quota, we are in a transfer round (for any reasonable ε).

As discussed in Section 1.1, there are two solutions to the system of equations, and the

only valid one of the two is va = 4/13,vb = 1/3,vc = 1,Va(v) =Vb(v) =Q(v) = 44/39.

We can easily show that this is a solution:
abbreviation sol_ex :: "(real , cand) vec" where

"sol_ex ≡ χ c.
if c = Alice then

4/13
else if c = Bob then

1/3
else

1"

lemma sol_ex_votes:
"votes_ex sol_ex $ Alice = 44/39"
"votes_ex sol_ex $ Bob = 44/39"

lemma sol_ex_excess:
"excess_ex sol_ex = 21/13"

lemma sol_ex_quota:
"quota_ex sol_ex = 44/39"

lemma solution_given_sol_ex:
"solution_given 1 sol_ex (votes_ex sol_ex) (quota_ex sol_ex)
cands_ex elected_ex"

Each of these is provable in a single command, aside from solution_given_sol_ex

which requires a handful. We can now interpret all the various locales for this example:
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lemma feasible_ex:
"feasible 1 (votes_ex 1) (quota_ex 1) cands_ex elected_ex"

lemma cands_all_in_ex:
"all_in ballots set = cands_ex"

interpretation meek_ex: abstract_meek_carrier votes_ex quota_ex
"1::nat" "0::real" excess_ex "card ballots" seats_ex cands_ex

interpretation meektransfer_fixes_ex: meektransfer_fixes_carrier
quota_ex "1::nat" "0::real" excess_ex "card ballots" seats_ex
cands_ex votes_ex "1::(real , cand) vec" elected_ex

abbreviation w_at_ex where
"w_at_ex ≡ meektransfer_fixes_carrier.w_at quota_ex votes_ex
(1::(real , cand) vec) elected_ex"

lemma w_at0_1_ex:
"w_at_ex 0 = 1"

lemma nontriviality_ex:
assumes w_ge0: "

∧
c. c ∈ cands_ex=⇒ 0 ≤ w $ c"

and w_le1: "
∧
c. c ∈ cands_ex=⇒ w $ c ≤ 1"

shows "(Σc∈cands_ex. votes_ex (1<elected_ex 7−→ w>) $ c) ≥ 1"

interpretation transfer_ex: meektransfer_carrier quota_ex "1::nat"
"0::real" excess_ex "card ballots" seats_ex cands_ex 1
elected_ex votes_ex

interpretation transfer_strictin_ex: meektransfer_strictinc_carrier
quota_ex "1::nat" "0::real" excess_ex "card ballots" seats_ex
cands_ex 1 elected_ex votes_ex
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None of the locales besides meektransfer_fixes_ex can be fully interpreted auto-

matically in Isabelle, each requiring multiple invocations of its smt command. How-

ever, they are trivial to prove by the user, as they all go through via locale unfolding

and then applying sledgehammer on each goal, instantiating variables as needed.

Finally, we invoke Theorem 2 (see Section 3.6) to show that this solution is unique:

abbreviation solution_given_for_ex where
"solution_given_for_ex ≡ meektransfer_fixes_ex.solution_given_for"

lemma unique_solution_ex:
assumes sol_w: "solution_given_for_ex 1 w"

and c_cand: "c ∈ cands_ex"
shows "w $ c = sol_ex $ c"

proof -
have q: "quota_ex = (λw. (real (card ballots) - excess_ex w) /
real (seats_ex + 1) + 0)"
using meek_ex.quota_form by linarith

obtain v where theorem2:
"solution_given_for_ex 1 v"
"(∀w'. solution_given_for_ex 1 w'−→ (∀c∈cands_ex. w' $ c = v

$ c))"
using transfer_strictin_ex.unique_solution [OF q, of 0]
w_at0_1_ex less_numeral_extra(1) by auto

have "w $ c = v $ c" if "c ∈ cands_ex" for c
using sol_w that theorem2(2) by presburger

moreover have "sol_ex $ c = v $ c" if "c ∈ cands_ex" for c
using solution_given_sol_ex that theorem2(2) by presburger

ultimately show ?thesis
using c_cand by presburger

qed

Figure 5.12: Proof of the uniqueness of the solution vector for the example.

5.4.2 The components’ implementation is a model of the abstract

representation

In this section we prove that for any valid election, the components laid out in Sec-

tion 5.2 are a model of our locale in Chapter 3. We provide some brief commentary for

each of the lower-level equivalents of the assumptions of the locale, except the votes

invariant which we discuss further in Section 5.5. The order of presentation is in terms

of increasing reliance on ballot validity, and hence increasing dependence on our rep-

resentation of ballots and validity, from no dependence at all to needing full validity.

We elide discussion of the statements and proofs of the continuity assumptions and the

assumptions for non-candidates, as they follow fairly easily.
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In general, we make the assumptions of these lemmas as weak as possible, so

that they can be applied with greater ease in this initial theorem development before

interpretation. Of course, once we interpret the locales in the context of a valid election,

this degree of weakness becomes unnecessary.

First, a brief digression on the development of the locales.

5.4.2.1 On locale refinement

It is not worth going into any of the chronological details, but it is the process of

interpretation that led us to correct a few mistakes in our locale assumptions, in an

iterative process of refining the implementation and the abstraction. We started our

development on the abstraction side. When we later implemented the components,

we realised some of the premises of the assumptions of the locale were unnecessarily

strong or just not needed e.g. in V_change and V_winc we originally required the

weight to be positive,4 rather than non-zero and non-negative respectively. This then

simplified some of the theorem development inside the locale. This implementation-

abstraction refinement process is a distinct advantage of working within a theorem

proving environment.

Sometimes, we discovered a proof of a locale assumption that did not depend on

the structure of ballots, and thus could potentially be moved to a theorem in the locale,

removing locale assumptions and thus increasing the usability and generality of the

locale. For example, as discussed in Section 3.5.2.1, we originally assumed (assump-

tion’s premises elided) that ∀w. Vc(w)/wc ≤ |B|, and we had also assumed rather than

derived the fact that if wc = 0, Vc(w) = 0, the latter of which was possible to prove

after relaxing some premises on the weights in other locale assumptions.

Increasing the strength of the locale by removing assumptions then allowed us

to remove some development from the implementation side, sometimes a sizeable

amount. The resulting proofs once moved to the abstraction were also, as one might

expect when one is forced to reason simply in terms of bounds and not nitty-gritty

ballot structure, much more elegant and legible.

We expect that gathering evidence for the sufficiency and minimality of the locale

assumptions in this way is the only practical way to do so, and given the number of

refinements we have applied we feel confident in claiming the locale assumptions are

4This was not a major impediment so we did not initially give sufficient thought to weakening the
premises at this point, but just proving this fact on the implementation side makes it obvious what is
necessary to assume.
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both sufficient to prove anything one might want to which depends only on the bounds

of the component functions, and minimal enough to be relatively easily implementable

and crucially extendable and generalisable for a diversity of specific implementations

within and outwith the general framework provided by Meek’s method.

5.4.2.2 E_lower

We prove the assumption showing that the excess is bounded below by the number of

ballots multiplied by the product of the proportion of votes received that each candidate

passes on:
theorem E_lower:

assumes ge0: "
∧
c. c ∈ all_in B L=⇒ w $ c ≥ 0"

and le1: "
∧
c. c ∈ all_in B L=⇒ w $ c ≤ 1"

shows "excess B L w ≥ card B * (Πc∈all_in B L. 1 - w $ c)"

No assumptions about the validity of the ballot are needed. Proving this is simple, we

just have to start by removing the inner product’s dependence on the ballot bound by

the outer sum:

E(B,w) = Σb∈BΠc∈L(b)(1−wc)

≥ Σb∈BΠc∈
⋃
{L(b). b∈B}(1−wc)

= |B|Πc∈
⋃
{L(b). b∈B}(1−wc)

Seeing how one moves from the first line to the second just requires recognising the

fact that, as long as w is valid, the excess is lower (or the same) the more candidates

that are listed on ballots.

5.4.2.3 V_winc

The lower-level statement of the assumption characterising when the votes function

increases when another candidate’s weight is decreased:
theorem V_winc:

assumes "c' ̸= c"
and "w $ c' ≥ 0"
and "r ≥ 0"
and le1: "

∧
b k. Jb ∈ B; c' ∈ L b; k ∈ G b c'-{c} K =⇒

w $ k ≤ 1"
shows "votes B L G (w ⇂ c,r) $ c' ≥ votes B L G w $ c'"

Note c is not necessarily listed greater than c′; the lemma follows regardless. The

proof follows naturally from unfolding definitions and applying the most (intuitively)

obvious simplifications at each step.
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The weight of c′ cannot be negative because then if they received more vote mass

than before, they would actually get less votes and the inequality would have to flip.

The amount of decrease, r, cannot be negative because, again, the inequality would

have to flip.

The assumption le1 states that for every ballot c′ is listed on, those greater than c′,

except c, have weight less-or-equal 1. By inspecting the proof of this lemma we see that

this could be further weakened to only restrict the weights of those candidates between

c′ and c on the ballot. However, this was unnecessary for easing initial development,

and so we have not further refined the theorem.

5.4.2.4 E_winc

The assumption showing that the excess increases when a candidate’s weight is de-

creased:

theorem E_winc:
assumes "r ≥ 0"

and le1: "
∧
b k. Jb ∈ B; c ∈ L b; k ∈ L b; k ̸= c K =⇒ w $ k ≤ 1"

and "finite B"
shows "excess B L (w ⇂ c,r) ≥ excess B L w"

We need the set of ballots to be finite here in order to split up the sum over products

one gets when unfolding. More fundamentally, if the set of ballots were infinite, the

sum with which the excess is defined could diverge, and in that case this inequality

would not be provable.

We don’t need to say anything about c’s weight as the lemma follows regardless of

its value, and hence we include k ̸= c to weaken the assumption le1.

The proof follows by unfolding and simplification of E(w ⇂ c,r), which follows

naturally once one starts by splitting sum over the disjoint sets in B = {b ∈ B. c ∈
L(b)}∪{b ∈ B. c /∈ L(b)}.

5.4.2.5 E_upper

theorem E_upper:
assumes c_le1: "w $ c ≤ 1"

and ge0: "
∧
c. c ∈ all_in B L=⇒ w $ c ≥ 0"

and le1: "
∧
c. c ∈ all_in B L=⇒ w $ c ≤ 1"

and c_min: "
∧
k. k ∈ all_in B L=⇒ w $ c ≤ w $ k"

and "finite B"
and ballots_nonempty: "

∧
b. b ∈ B=⇒ L b ̸= {}"

shows "excess B L w ≤ card B * (1 - w $ c)"



136 Chapter 5. Tying it all together: Meek’s method concretely

Note c is not necessarily a candidate. We originally made this generalisation purely to

allow interpretation of a non-carrier set version of the locale as well, where c could be

any candidate in UNIV, which was our original representation. We have since depre-

cated this representation of favour of using carrier sets everywhere, but kept the origi-

nal generality of a number of lemmas. We further discuss this representation decision

in Section 5.4.2.9.

This is provable in much the same way as E_lower, by unfolding, splitting up B,

and simplifying. They key step in the proof, where Bc := {b ∈ B. c ∈ L(b)}, is:

Σb∈B−BcΠk∈L(b)(1−wk)≤ |B−Bc|(1−wc)

This ultimately follows because ∀b∈B−Bc. Πk∈L(b)(1−wk)≤ 1−wc, provable using

c_min, and using this to show:

E(B,w) = ...=

Σb∈B−BcΠk∈L(b)(1−wk)+ |Bc|(1−wc)≤

|B−Bc|(1−wc)+ |Bc|(1−wc) =

|B|(1−wc)

5.4.2.6 V_change

The assumption showing the relationship between the votes for a candidate before and

after their weight is decreased:

theorem V_change:
assumes self_not_gt: "

∧
b. Jb ∈ B; c ∈ L b K =⇒ c /∈ G b c"

and wnon0: "w $ c ̸= 0"
shows "votes B L G (w ⇂ c,r) $ c =

votes B L G w $ c * (1 - r / w $ c)"

It is this result that Woodall does not derive in Theorem 1. For completeness, we

provide its derivation, which follows the formal proof. We have
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Vc(w ⇂ c,r) = (w ⇂ c,r)cΣb∈Bfrac-of (b,c,(w ⇂ c,r)) by simple unfolding

= (wc− r)Σb∈Bfrac-of (b,c,(w ⇂ c,r)) by definition of dec1

= (wc− r)Σb∈Bfrac-of (b,c,w) as c is not listed greater than itself (self_not_gt)

= (wc− r)(Vc(w)/wc) by the definition of V and wnon0

=Vc(w)(1− r/wc) by rearranging

where 1− r/wc is the exact proportion c’s vote decreases with a decrease of r in their

weight, as desired. This also works for r = 0 and r < 0. In the case where r = 0, the

equation clearly simplifies to Vc((w ⇂ c,r)) = Vc(w) as expected, and when r is less

than 0 one can see that the minus becomes a plus and c’s vote increases, as expected.

In case it is not clear, c not being listed greater than itself is invoked in the third

line because the fraction a candidate receives is unaffected by their own weight as long

as this holds.

5.4.2.7 self_winc

The assumption showing that a candidate’s vote increases (weakly, as usual) if their

weight is increased, even if they are eliminated:

theorem self_winc:
assumes "w $ c ≥ 0"

and le1: "
∧
c. c ∈ all_in B L=⇒ w $ c ≤ 1"

and "r ≤ 0"
and not_gt_self: "

∧
b. Jb ∈ B; c ∈ L b K =⇒ c /∈ G b c"

and gt_listed: "
∧
b c k. Jb ∈ B; c ∈ G b k; k ∈ L b K =⇒

c ∈ L b"
shows "votes B L G w $ c ≤ votes B L G (w ⇂ c,r) $ c"

This cannot be elegantly subsumed into V_winc because r ≥ 0 is assumed in V_winc,

and one cannot generalise that without flipping the inequality. Note also that this

lemma requires both that candidates are not listed above themselves, and that the can-

didates listed greater than any other listed candidate are all listed on the ballot.

Clearly all of this would still apply to non-strict ballots. In fact, none of these

theorems until we get to the votes invariant require even transitivity of candidates, i.e.

an actual ranking!
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5.4.2.8 Interpretation

Finally, we can prove that our implementation is a model of the abstraction. This will

be brief, as most of the leg-work has been provided by earlier sections. We introduce

a new context, an election context with seats and within this context prove that our

characterisation of (the component functions of) Meek’s method is correct.

locale election_with_seats = election_context cands ballots L G
listed

for cands :: "'c::finite set"
and ballots :: "'b set"
and L :: "'b ⇒ 'c set"
and G :: "'b ⇒ 'c ⇒ 'c set"
and listed :: "'c set" +
fixes seats :: nat
assumes seats_gt0: "seats > 0"

begin

lemma all_in_eq_listed:
"all_in ballots L = listed"

using listed_def by auto

interpretation meek_interp: abstract_meek_carrier "votes ballots (L
:: 'b ⇒ 'c set) G" "quota_hb ballots seats L" "1 :: nat" "0 ::
real" "excess ballots L" "card ballots" seats "all_in ballots L"

Figure 5.13: Interpretation of the Meek locale for any valid election with seats.

It is clear what most of these parameters are, except the 1 and 0: recall that the lo-

cale we defined required an additive denominator plus an extra amount to be added to

the quota, here was pass 1 for the denominator and 0 for the part to add on, as with

the standard quota for Meek’s method. The assumptions it requires us to prove are

precisely those in Section 5.4.2.2 through to Section 5.4.2.7 (apart from the few we

elided). Refer back to Section 3.3.2 for details.

This, together with the concrete example, concludes the major goal of this chapter:

show that the Meek’s method locale is consistent, feasible to interpret, and is gener-

ically applicable to any valid election, along with proving the same for the transfer

round locale for an explicit example. As we have already seen with the concrete exam-

ple, with this interpretation we can now use any of the lemmas and theorems proven

within the locale for this specific implementation.
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5.4.2.9 Carrier sets, clarity, and automation

Without going into too much detail, it is worth remarking upon the impact of represen-

tation as it pertains to carrier sets. In our original development, apart from the fact that

we had originally represented Meek’s method using the enlisting variant in the locale

(see Chapter 3.4), we also represented the set of candidates like so:

abbreviation cands :: "'c set" where
"cands ≡ UNIV"

Figure 5.14: Original representation for candidates in the Meek locales.

This makes some sense, in particular because the type variable 'c is forced to be of sort

finite in our development, and so it is likely to represent the whole set of candidates

in practice. This choice eliminates the need for assumptions about non-candidates,

and eliminates the need to include c ∈ cands in so many assumptions, lemmas, and

case splits. It also allows us to work with direct vector equality and limits, rather than

sub-vector equality and limits of projections.

However, the most natural set to work with at the level of implementation is never

UNIV, it is all_in ballots L (see Section 5.2), as no candidate which is not actually

listed on any ballot makes any difference to any of the lemmas we have proven. We

may thus wish to interpret the locale with all_in ballots L representing the full

set of candidates, which is what we do (without issue).

We managed to interpret the UNIV version with results proven only over this set,

but the presence of UNIV if one uses the universal set for the set of candidates on

the locale side in the assumption E_lower (see Section 5.4.2.2) necessitated jumping

through hoops to prove, and it was only by accident that there was a way of doing this;

not necessarily the case that one will be as lucky for all possible future assumptions

involving UNIV, and so we have deprecated this approach.

Starting with the carrier set also has the advantage of being more easily extendable

to infinite sets of candidates, potential or actual, if anyone wishes to take up such a task

in the future.
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5.5 An important invariant: votes-in-circulation plus ex-

cess

Without needing to prove some theorem which requires total ballot validity, we would

be rightly suspicious of whether the set of assumptions of the locale are anything close

to sufficiently characterising the component functions of Meek’s method. The votes

invariant is such a theorem, requiring ballots to be a – in our case strict – total order

over a subset of candidates.

This section, through our investigation and proof of this invariant, highlights sev-

eral key representational decisions. First, our representation of ballots lends itself very

nicely to a ballot induction rule that is comfortable to work with for both proof ex-

ploration as well as for legibility in the final Isabelle/Isar proof, even for large proofs

such as this. At least, provided one is used to reading (L , G) as a ballot, one whose

structure we can easily play with using usual set-theoretical functions.

Second, it exposes the not so fortunate tension between the nature of a ballot as a

set of elements and the nature of a ballot as a sequence of elements. Sometimes we

want to take products over sets of candidates on ballots satisfying various predicates,

or treat it quite simply as a set of candidates. Sometimes, we want to map over a ballot

in an order-dependent way; a list representation for ballots is a common one for this

purpose. However, it was (and is) our belief that a set-based representation of ballots

is more appropriate5 for reasoning, and analysis in Isabelle/HOL specifically, deriving

sequence-based representation from this. We also discussed why we did not choose a

relational approach, where one has a binary relation on outcomes denoting preference,

in Chapter 4. On the implementation side, the (L , G) approach is justified by simply

being the most natural way to implement the components, which we would have to

define and use regardless.

Third, this is the first major use case for the whole of the development in Chapter 4

outside of the context of that chapter. We require several key results about both rank

and ranked from that theory. The latter function in particular provides us with our

map from ballot-as-set to ballot-as-sequence.

5We leave to one side implicit representations based on underlying “objective” or subjective prefer-
ence or utility, such as those based on a utility function taking an outcome and returning a real number,
common in the game-theoretic side of social choice theory.
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5.5.1 Ballot mass preservation

As a prelude to proving the votes invariant (see Section 5.5), we show that for each

ballot6 (L ,G), if one sums the amount of this ballot that each candidate receives, with

the amount of the ballot that is exhausted, we get a total ballot mass of 1. That is, ballot

mass is preserved.

∀L G c w. valid(L ,G)−→ Σc∈Lwcfrac-of (L ,G ,c,w)+Πc∈L(1−wc) = 1 (5.9)

lemma sum_fracs_eq1:
fixes L :: "'c::finite set"
assumes valid: "valid_strict_ballot L G"
shows "(Σc∈L. w $ c * frac_of L G c w) + (Πc∈L. 1 - w $ c) = 1"

Figure 5.15: Lemma showing that ballot mass is preserved.

This lemma says nothing about whether some candidates receive negative ballot mass,

merely that it all balances out in the end. That is, we prove that ballots do not contribute

any more or less than they should to the votes in circulation, regardless of the weight

vector w. The formal proof takes 250 lines of Isar.

As our proof is novel and important to the votes invariant, we will give a breakdown

of its main steps next. We begin by inducting on the ballot:

• The base case of an empty ballot happens to follow trivially despite being some-

what nonsensical, as a sum over an empty set is 0, and the product is 1. Thus,

for non-empty ballots we can interpret the equality as saying that no more nor

less than the ballot’s unit mass is distributed between candidates and the excess,

while for the empty ballot the expression simply happens to hold with no un-

contrived interpretation of the fact; it simply allows us to not add an assumption

about emptiness.

• The inductive step with IH of the form ∀L ′ G ′. subballot(L ′,G ′,L ,G) −→
V (L ′,G ′) + e(L ′) = 1 proceeds by obtaining a subballot (L ′,G ′) of (L ,G),

with L = L ′∪{c} for some new,7 fixed c, and splitting the ballot up into those

candidates σ = {c′ ∈ L ′. G ′ c′ = G c′} whose rank does not change after the

6We refer to (L ,G) and do not make an indirection via some b in order to maintain mutual intelligi-
bility with the Isabelle/Isar proof.

7In particular, not the c of the lemma statement, which the obtained c shadows.
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removal of c from L , and those whose rank does change, L ′ − σ. We have

V (L ′,G ′)+ e(L ′) = 1 by the inductive hypothesis, meaning the subballot pre-

serves vote mass.

• If V ′(L1,L2,G) is defined8 as the amount of votes a ballot (L2,G) would con-

tribute to the candidates in the set L1, and e(L) is the amount that would be

exhausted by the candidates in the set L , that is if:

– V ′(L1,L2,G) =de f Σc∈L1wcfrac-of (L2,G ,c,w),

– V (L ,G) =V ′(L ,L ,G),

– e(L) = Πc∈L1−wc,

then through algebraic manipulation we can reduce

– V (L ,G)+ e(L), to

– 1+wc(frac-of (L ,G ,c,w)−V ′(L ′−σ,L ′,G ′)− e(L ′))

• We prove the expression 1+wc(...) equals 1 by showing that frac-of (L ,G ,c,w)=

V ′(L ′−σ,L ′,G ′)+ e(L ′), and thus essentially complete the proof.

One should read the main equivalence, frac-of (L ,G ,c,w) =V ′(L ′−σ,L ′G ′)+e(L ′),
we wish to prove as “the amount c receives on (L ,G) is equal to what candidates listed

less than c receive on (L ′,G ′) plus the excess on (L ′,G ′)”.

This makes sense intuitively. Viewing the ballot (L ′, G ′) as an original ballot

which we “insert into” to get to (L , G), we can see that a new candidate c when

inserted anywhere in (L ′, G ′), “sucks up” everything that was going to those now

below them plus the excess. Recall that “votes received” refer to frac-of (not V ),

which is what a candidate receives prior to passing any of it on. Suppose the ballot is

abdefg, and we insert candidate c to get abcdefg. What defg and the excess received

before, spread between them according to their weights, was everything ab passed on,

and now c stands in the way, receiving all of that.

This completes the proof. The key is applying ballot induction, recognising that

the important quantity is that which c receives and which all those previously below c

received, and algebraic manipulation to get to a point where this equivalence expres-

sion between pre- and post-insertion is involved (in the course of which, the inductive

hypothesis is used), which we can prove. The only thing one needs to take our word on

8Note we use subscripts 1 and 2 to avoid overloading L in the definition of V ′.
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is that this algebraic manipulation is valid, given the assumption that the ballot is valid

and nothing else (i.e. nothing about the weights). This was far from trivial to prove

and it would be potentially be productive to investigate alternative induction strategies

for ballots in future work.

Proving the equivalence frac-of (L ,G ,c,w) = V ′(L ′−σ,L ′,G ′) + e(L ′) is what re-

quires the important facts about the ballot being a strict, linear order on a subset of

ballots. We will proceed to prove this in the following section.

5.5.2 Proof that an inserted candidate receives all that was going

to those below

The equality

frac-of (L ,G ,c,w) =V ′(L ′−σ,L ′G ′)+ e(L ′)

follows easily if c is ranked first, as then σ = {} and we have V ′(L ′−σ,L ′,G ′) +
e(L ′) =V (L ′,G ′)+ e(L ′) which equals 1 by the induction hypothesis.

The case where c is not ranked first is more difficult. In this case, we are forced

to consider those listed above c and part of the proof in this case relies on an equality

holding that can only be proven true if we take advantage of the fact that the ballot is

a linear order over a subset of candidates. Our proof of this subsumes the σ = {} case,

so there is no case-split in the formal proof.

The proof proceeds as follows. We will focus on the second step in another sec-

tion, the first step after the unfolding, as it is the most substantial. That is, the most

substantial besides the problem of constructing a correct proof as a whole in the first

place.
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frac-of (L ,G ,c,w) = Πk∈G(c)(1−wk) by unfolding and c ∈ L via L = L ′∪{c}

= 1−Σk∈G(c)wkΠk′∈G(k)(1−wk′) see Section 5.5.2.1

=

1−Σk∈G(c)wkΠk′∈G(k)(1−wk′) if k ∈ L ′

1−Σk∈G(c)wk ∗0 otherwise
given ∀k ∈ G(c). k ∈ L ′

= 1−Σk∈G(c)wkfrac-of (L ′,G ,k,w) by def. of frac-of

= 1−V ′(G(c),L ′,G) by def. of V ′

= 1−V ′(σ,L ′,G) as by def. of σ and some ballot facts we have σ = G(c)

= 1−V ′(σ,L ′,G ′) as G ′(c) = G(c) on σ(= G(c))

=V ′(L ′−σ,L ′,G ′)+ e(L ′) by the induction hypothesis

(5.10)

The final step is an equivalence that is proven in the penultimate step in the series of

equational reasoning steps leading up to proving ballot mass preservation:

V (L ,G)+ e(L) = ...

=V ′(σ,L ′,G ′)+V ′(L ′−σ,L ′,G ′)+ e(L ′)+

wc(frac-of (L ,G ,c,w)−V ′(L ′−σ,L ′,G ′)− e(L ′))

= 1+wc(frac-of (L ,G ,c,w)−V ′(L ′−σ,L ′,G ′)− e(L ′))

which follows by the induction hypothesis, and one can see by inspection by eliminat-

ing the sub-expression multiplied by the weight wc obtains our needed fact. We will

now address the second step in Proof 5.10 as promised.

5.5.2.1 Connecting natural-number orderings and the ballot representation

The most difficult and most important part of the proof of ballot mass preservation

relies on key properties of ranked and general lemmas concerning sums and products

over sequences. If we zoom in on this key step in the proof we have the following

reasoning, with the name of the lemma associated with each step listed alongside.
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Πk∈G(c)(1−wk) = Πi<|G(c)|(1−wranked(i)) prod_seq_to_set

= 1−Σi<|G(c)|wranked(i)Π j<i(1−wranked( j)) prod_one_minus_sequence_lt

= 1−Σk∈G(c)wkΠk′∈G(k)(1−wk′) sum_prod_seq_to_set

In ordinary mathematical notation, we can write each of the lemmas involved like so:

• prod_seq_to_set: For f : C→R, finite X, and a sequence (sn)n∈N of elements

of C satisfying {sn}n∈{0..|X |−1} = X we have:

Πi<|X | f (si) = Πx∈X f (x) (5.11)

• prod_one_minus_sequence_lt: If n > 0, we have:

Πi<n(1− si) = 1−Σi<nsiΠ j≤i(1− s j) (5.12)

• sum_prod_seq_to_set: For f : C→ R, g : C→ R, finite X, and a sequence

(sn)n∈N of elements of C together with a function Y : C → P (C) satisfying

{sn}n∈{0..|X |−1}=X, Y (s0)= {}, ∀n> 0. n≤ |X |−1−→Y (sn)= {sm}m∈{0..n−1},

and ∀x ∈ X . f inite(Y (x)), we have:

Σi<|X | f (si)Π j<ig(s j) = Σx∈X f (x)Πy∈Y (x)g(y) (5.13)

The arbitrary function f can be generalised, as we have shown in the formal proof, to

take any argument type, and it can take any return type which implements the func-

tionality of a commutative multiplicative monoid in prod_seq_to_set, and the func-

tionality of a commutative ring in sum_prod_seq_to_set. The type constraints of the

function g in the latter lemma are the same as those of f . We provide the Isabelle/HOL

notation (eliding type annotations) for one of the lemmas here, to facilitate the discus-

sion that follows:
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lemma sum_prod_seq_to_set:
fixes f :: "'a ⇒ 'b::{ring ,comm_monoid_mult}"
assumes fin: "finite X"

and seq_image: "seq ` {0 .. card X - 1} = X"
and Y_seq0: "Y (seq 0) = {}"
and Y_seqn: "

∧
n. Jn ≤ card X - 1; n > 0 K =⇒

Y (seq n) = seq ` {.. n - 1}"
and finite_Y: "

∧
x. x ∈ X=⇒ finite (Y x)"

shows "(Σi<card X. f (seq i) * (Πj<i. g (seq j))) =
(Σx∈X. f x * (Πy∈Y x. g y))"

Figure 5.16: Lemma connecting a sum and product over a sequence to a sum and

product over a set of elements related by functions expressing an ordering over the

elements.

The sequence we need which satisfies these requirements is, as we have already seen,

the sequence which identifies the top-ranked candidate with natural number 0, the next

with natural number 1, and so on. That is, the sequence ranked. If we re-read each of

the requirements of the lemma sum_prod_seq_to_set with the following associated

ballot identifications then we can understand them more intuitively:

seq ≡ ranked L G
X ≡ G c Y ≡ G

f ≡ λc. w $ c g ≡ λc. 1 - w $ c

then the requirements read as:

• fin and finite_Y: basic ballot finiteness.

• seq_image: The candidates listed greater than c must be exactly those candi-

dates identified by the rankings 0 through to one less than c’s own ranking.

• Y_seq0: The top-ranked candidate must have nobody listed above them.

• Y_seqn: The candidates listed greater than the nth ranked candidate, for all n

with 0 < n < |G(c)|, must be exactly those with rankings 0 through to one less

than n.

These are precisely the results we developed in Section 4.8.

5.5.2.1.1 Proof of the sequence-to-set results As we have seen, there are two

lemmas relating the function ranked, ballot-as-sequence, to the functions (L ,G), ballot-

as-sets, in the proof of ballot mass preservation: lemmas prod_seq_to_set and
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sum_prod_seq_to_set. We will outline a proof for the latter of these below. We

omit a proof of the former as it is conceptually very similar but simpler and less in-

teresting. A reminder of what we need to prove in sum_prod_seq_to_set, with the

assumptions elided:

Σi<|X | f (si)Π j<ig(s j) = Σx∈X f (x)Πy∈Y (x)g(y) (5.14)

We can see by inspection that if c is top-ranked – i.e. |G(c)| = 0 with X ≡ G(c) –

this trivially follows because Σi<0 f (i) = 0 for any f by standard convention as well as

in Isabelle/HOL. The case where c is not ranked first is more involved, and currently

takes 800 lines of Isabelle.

Some of this is proof bloat, down to undesirable case-based reasoning forced by the

fact that splitting the sets along the lines of {..m}= {..n−1}∪{n..m} for any n,m∈N
with n ≤ m does not work when n = 0, as in Isabelle/HOL functions are total on the

type and hence 0− 1 resolves to 0 for the natural numbers – as is most reasonable –

and hence {..n− 1} = {0} and so the two sets {..n− 1} and {n..m} are not disjoint.

Disjointness is required several times during the proof.

We will merely give an outline of the proof here, because while it was fairly labo-

rious, its details are not particularly insightful. It proceeds as follows:

Proof. Case split on emptiness of X , trivially dispatching the empty case. For the

non-empty case, induct on X .

The singleton case introduces x (with X replaced by {x}), and we can deduce x= s0

from the induction premises. The case follows as we can deduce that the LHS is equal

to f (x) due to Π j<0(...) = 1 being true for any inner function and the fact s0 = x, and

the RHS is equal to f (x) as we can conclude Y (x)= {} from the fact Y (s0)= {} and the

fact that Y (s0) is finite (needed as infinite sets also have cardinality 0 in Isabelle/HOL).

The induction case, which introduces a newly bound X and an x, proceeds by first

obtaining the place in the sequence n where sn = x,n ≤ |X |. We then break down the

proof by working through the expressions this known fact about x.

The induction hypothesis has to work for any arbitrary sequence (sn)n∈N and greater-

than function Y (remembering Y will be instantiated as G) satisfying the induction

premises, i.e. they are quantified in the IH, and the key pair of functions to apply it

to are the following: s′ ≡ λi. if i < n then si else si+1 and Y ′ ≡ λy. Y (y)−{x}. These

essentially represent the sequence (e.g. ballot-ranking) and greater-than function (e.g.
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G) “before inserting x”, as is the common pattern for the traditional ballot-specific in-

duction proofs too, where in the proof patterns more typical in this development we

instead obtain L ′,G ′ in a set-centric rather than sequence-centric way. Once we apply

the IH to these two functions, the rest of the proof follows naturally, albeit at some

length.

5.5.2.1.2 Proof of the purely sequence-based result The lemma concerning just

sequences, prod_one_minus_sequence_lt, is easily provable from a less-or-equal

version, which we prove by induction on n:

Πi≤n(1− si) = 1−Σi≤nsiΠ j≤i(1− s j)

Proof. The base case follows by reduction of both sides to 1−s0. In the inductive case

we, of course, have to prove the following:

Πi≤n+1(1− si) = 1−Σi≤n+1siΠ j≤i(1− s j)

This follows by expanding the left-hand size, invoking the induction hypothesis and

simplifying the expression, and then doing the same to the right-hand side:

Πi≤n+1(1− si) = (1− sn+1)Πi≤n(1− si) extract n+1 from the product

= (1− sn+1)(1−Σi≤nsiΠ j≤i(1− s j)) by IH

= 1− sn+1− (1− sn+1)(Σi≤nsiΠ j≤i(1− s j)) by distributivity

also

Σi≤n+1siΠ j≤i(1− s j) = sn+1Π j<n+1(1− s j)+Σi≤nsiΠ j≤i(1− s j) extract n+1

= sn+1Π j≤n(1− s j)+Σi≤nsiΠ j≤i(1− s j) reindex product

= sn+1(1−Σi≤nsiΠ j≤i(1− s j))+Σi≤nsiΠ j≤i(1− s j) by IH

= sn+1 +(1− sn+1)(Σi≤nsiΠ j≤i(1− s j)) by rearranging

hence Πi≤n+1(1− si) = 1−Σi≤n+1siΠ j≤i(1− s j).
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In Isabelle/HOL:

lemma prod_one_minus_sequence:
fixes seq :: "nat ⇒ real"
shows "(Πi≤ n. 1 - seq i) = 1 - (Σi≤ n. seq i * (Πj<i. 1 - seq j))"

Figure 5.17: A lemma expanding the product of 1 minus an index into a sequence.

5.5.3 Proving the invariant

With ballot mass preservation finally proven (Sections 5.5.1 and 5.5.2), we can lever-

age this to prove the votes invariant. We presented the general theorem in Equa-

tions (5.1), (5.2) and (5.3). Here we will prove a version which states that no matter the

weight vector, the sum of votes in circulation plus the excess is always exactly equal

to the number of ballots, effectively a combination of Equations (5.2) and ( 5.3) which

we presented at the start of Section 5.1.4:

∀C B w. |B|= Σc∈CVc(B,w)+E(B,w) (5.15)

The statement of this theorem exists within an election context (with seats). Hence,

we already have a fixed set of valid ballots in scope. We prove the invariant with the

modest generalisation that it is true for any subset of the ballots in the election, in order

for it to be as general as possible inside the election context.9

theorem votes_invariant:
assumes "B ⊆ ballots"
shows "card B = (Σk∈all_in B L. votes B L G w $ k) + excess B L w"

Figure 5.18: Theorem showing the votes invariant holds for any subset of the ballots

and any weight vector.

The case where the initial sum is over the whole set of candidates rather than just

those listed follows easily as a corollary.10 Note that in this version of the theorem

we also permit B = {}, unlike if we proved it for all of ballots, which is non-empty

within the election context. The proof proceeds by induction on the finite set B, with

the induction rule for finite sets being analogous to our induction rule for ballots, as

discussed in Section 4.4.
9We could have proven it for any finite set of valid ballots, outside of this context, removing require-

ments like non-empty ballots, but this would be a trivial and needless generalisation at this stage.
10The first summation could technically be over any superset of B which is still a subset of ballots.
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We begin by performing a case split on whether B = {}. The empty case follows

trivially as both the votes in circulation and the excess are defined in terms of a sum

over ballots, which reduces to 0 when B = {}.
In the non-empty case we have to consider the induction step, which consists of a

new fixed B satisfying the induction hypothesis. The induction hypothesis states that

all proper subsets of B maintain the invariant. As B is non-empty, we can pull out a

ballot b′ and define B′ such that we have B = B′ ∪{b′}. If we can somehow reduce

the problem from sums over B to sums over B′ and show this expression is equal to

|B′|+ 1 then we will be done, as |B′|+ 1 = |B|. Indeed, through a series of steps

involving unfolding and then rearranging we can show that:

Σc∈allin(B)Vc(B,w)+E(B,w) = |B′|+

Σk∈L(b′)Vk(B′,w)−

Σk∈allin(B′)∩L(b′)Vk(B′,w)+

Σk∈allin(B)Vk({b′},w)+

Πk∈L(b′)(1−wk)


▽

It remains to show that the part of the expression after |B′| reduces to 1. We will

label this expression ▽ for convenience. First, we eliminate the presence of B in the

expression Σk∈allin(B)Vk({b′},w). We can show that:

Σk∈allin(B)Vk({b′},w) =

Σk∈allin(B′)Vk({b′},w)+

Σk∈L(b′)Vk({b′},w)−

Σk∈allin(B′)∩L(b′)Vk({b′},w) (5.16)

If we substitute this into ▽ we now have it so that each sub-expression, each sum or

product, is concerned exclusively with the votes going to the candidates listed on b′ or

the votes going to candidates listed on B′ that come from those listed on b′, or some

combination of this.

Recall that B = B′ ∪{b′}. It may happen to be the case that allin(B′) and L(b′)

share no candidates in common, so the intersection in the last line cannot be reduced

any further without considering the relationship on a case by case basis.

The case where L(b′) = {} is excluded by the fact that no ballots can be empty in

an election context. However, even if it were empty, the theorem would be provable
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as all of the sums in ▽ reduce to 0 and the singular product reduces to 1 as it is the

product over an empty set, and we are done.

In the case where L(b′) ̸= {}, it is not obvious how to proceed. We can get unstuck

by considering what else in this context should be equal to 1, and whether that could

help simplify what we need to prove.

In Section 5.5.1 we proved an equality which can do precisely this job, which is

ballot mass preservation. If this more unwieldy expression is reducible to the amount

which b′ contributes in ballot mass, then it must also be reducible to 1 by that result.

Indeed, by substituting that expression for 1 in the equation we are trying to prove

and bringing everything over to one side, we can complete the proof by showing that

▽− (contribution of b′) = 0.

Σk∈L(b′)Vk(B′,w)−Σk∈allin(B′)∩L(b′)Vk(B′,w)+

Σk∈allin(B′)Vk({b′},w)+Σk∈L(b′)Vk({b′},w)−

Σk∈allin(B′)∩L(b′)Vk({b′},w)+Πk∈L(b′)(1−wk)−

▽

Σk∈L(b′)Vk({b′},w)−Πk∈L(b′)(1−wk) mass contributed by b′, = 1

= Σk∈L(b′)Vk(B′,w)−Σk∈allin(B′)∩L(b′)Vk(B′,w)+

Σk∈allin(B′)Vk({b′},w)−Σk∈allin(B′)∩L(b′)Vk({b′},w) by cancelling (5.17)

We will focus on the case L(b′) ⊆ allin(B′) to demonstrate the general approach to

finalising this proof:

Σk∈L(b′)Vk(B′,w)−Σk∈allin(B′)∩L(b′)Vk(B′,w)+

Σk∈allin(B′)Vk({b′},w)−Σk∈allin(B′)∩L(b′)Vk({b′},w) by cancelling

= Σk∈L(b′)Vk(B′,w)−Σk∈L(b′)Vk(B′,w)+

Σk∈allin(B′)Vk({b′},w)−Σk∈L(b′)Vk({b′},w) as allin(B′)∩L(b′) = L(b′)

= Σk∈allin(B′)Vk({b′},w)−Σk∈L(b′)Vk({b′},w) cancelling

= Σk∈L(b′)Vk({b′},w)+Σk∈allin(B′)−L(b′)Vk({b′},w)−

Σk∈L(b′)Vk({b′},w) summing out

= Σk∈allin(B′)−L(b′)Vk({b′},w) cancelling

= 0 (5.18)
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The last step of this reasoning follows as if b′ is the only ballot, the amount of this

ballot going to candidates not listed on b′ is clearly 0. Other cases can be similarly

reduced to 0 in this way.

5.6 Size of formalisation

The Isabelle/HOL involved in proving the results of this chapter amounts to around

7,000 lines of code. We do not have a pen-and-paper reference because the act of

connecting abstraction and implementation in this way is not something available to

a pen-and-paper approach, and is a unique ability that working with an interactive

theorem prover provides us.

5.7 Related work

The most relevant existing literature is, as with Chapter 3, the works of Ghale et al.

[25, 26, 24] and Dawson et al. [17]. There is also the work Moses et al. to consider

[55]. We covered generality of representation in our discussion of this in Chapter 3.

Here, we will briefly cover the aspects of their work relevant to verified, executable

code, as this is most relevant to our connecting implementation and abstraction, even

without our own extracted code, especially for the purposes of evaluating whether our

approach is suitable for extension to cover similar purposes.

Ghale et al. in Modular Formalisation and Verification of STV Algorithms [27] use

the in-built code extraction mechanism of the dependently-typed interactive theorem

prover Coq to generate Haskell code implementing some simple STV procedures.

Dawson et al. in Machine-Checked Reasoning About Complex Voting Schemes Us-

ing Higher-Order Logic [17] used the HOL4 theorem prover [71] to verify the correct-

ness of a simple method for STV and was able to leverage this to (manually) produce

executable code, though the approach did not scale beyond small elections.

In No More Excuses: Automated Synthesis of Practical and Verifiable Vote-Counting

Programs for Complex Voting Schemes Moses et al. show that one can produce a ver-

ifiable certificate for the Schulze method of counting [70] at large scale. They, like

Ghale et al. and others, take the approach of encoding the computations as proof steps.

The approach requires one to be able to logically specify the method in the way they

do for simple STV methods, and this is again not clearly extendable to Meek’s method.

They distinguish verification, meaning proving the execution of the method is in gen-



5.7. Related work 153

eral correct, and verifiability, meaning the ex post facto ability to verify that a specific

execution of the method was correct. In this thesis we have only focused on the for-

mer. Put another way, verification is a technical act, whereby we use mathematics to

rigorously prove correctness, termination, and other desirable properties. Verifiability

is a social act enabled by the technical design of protocols and algorithms, and is thus

more related to various cryptographic properties of communication protocols and the

like than algorithm verification of the kind we have covered here.

Also relevant are the existing, in-use but un-verified procedural implementations

of Meek’s method. These are Hill and Wichmann’s implementation in the Pascal [40]

and OpenSTV’s11 implementation of Meek’s method in Python. In future it would

be worthwhile evaluating these implementations by running them against verified, ex-

tracted code for as many realistic, generated elections as is possible.

Key to many of these approaches (see also Pattinson et al. [67], Verity et al. [77],

and Beckert et al. [8]) is formal runtime certificates, states linked by rules as an in-

ductive datatype, which provides an auditable output which one can inspect to ensure

that the underlying computation proceeded correctly. Of course, one can also pro-

vide some quality-of-life tool to map this computer-verifiable certificate to a human-

readable one.

11Now proprietary and called OpaVote. [64]
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5.8 Conclusion

In this chapter we have demonstrated the consistency of the abstract representation of

Meek’s method by providing an interpretation that uses a functional implementation

of each component of the algorithm. We demonstrated the generality of the locale by

interpreting it using an arbitrary election context.

We provided two key interpretations. The first used a specific transfer round exam-

ple that we first discussed in Section 1.1.1. We showed that the analytical solution to

the system of equations that need to be solved for this transfer round is equivalent to

the solution one gets by taking the limit of the sequence of weight vectors produced by

iteratively updating the weight vector. In doing so, we showed that the general result

from Section 3.6, regarding solution vector uniqueness, can be appropriately applied

in this specific context. By providing a model we have shown that the assumptions in

both locales are consistent (relative to the consistency of Isabelle/HOL).

The second more general interpretation required us to prove each of the assump-

tions of the locale meekabbstract_carrier for our concrete implementation. We

showed that this is the case for all of the simpler assumptions (Section 5.4.2.2 through

to Section 5.4.2.7) as well as the one more complex assumption, the votes invariant

(Section 5.5.3). By doing this, we showed that the (locale) assumptions characterising

Meek’s method are general, as they apply for any arbitrary valid election context.

Finally, our proof of the votes invariant required proving a few key results connect-

ing the set and sequence representations of ballots through the function ranked from

Section 4.8.

One could with some additional work use what we have developed here to pro-

duce verified, executable Haskell, Scala, or ML code using Isabelle/HOL’s own code

extraction mechanism. It is not clear to us how easy our approach is to extend to

produce formal certificates, of the sort discussed in the section on related work (see

Section 5.7). As our approach is entirely functional, and does not proceed by state

updates according to definite, named rules that one can easily capture as elements of

a datatype, it would require some modification to support. Some aspects of what is

needed for that particular approach (no doubt other approaches can also be fruitful)

is more natural in dependently typed languages; consider for example the a protocol

represented as a system of transitions embedded within a dependent type, alongside

the fact that STVs can be viewed as transitioning back and forth between definite types

of rounds. We leave further speculation about this aside as something perhaps worth
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considering as future work.

This concludes our Isabelle/HOL formalisation. We have established the crucial

fact that Meek’s method of STV’s uniquely involved surplus transfer round is correct,

in that it converges on a unique solution vector. In the final chapter we will present

avenues for future work and conclude with some final remarks.
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We conclude in this chapter with some final remarks and a discussion of a number

of promising avenues for future work.

6.1 Final remarks

In this thesis we have presented a formal verification of the correctness of the sur-

plus transfer round of Meek’s method for STV (Chapters (3, 5)). In so doing, we

believe we have contributed a significant step towards formally verifying the whole

method. Moreover, given that Meek’s method is the most complicated variant of STV

in practical use, our work also makes a notable contribution towards reasoning about

the correctness of STV methods in general.

Noteworthy aspects of our work include the development of a theory of ballots

(Chapter 4) suitable for reasoning about strictness using a set-based representation and

with ballot induction, rankings, and their properties. Moreover, our novel representa-

tions for working with Meek’s method should be useful for further analysis of STV

methods.

Overall, we believe this work provides a general framework that others in the Au-

tomated Reasoning and Formal Verification community can build on to tackle related

and broader challenges involving the formal verification of voting algorithms. We con-

clude by surveying the broad field of future work opened up by this development.

6.2 Future work, limitations, and challenges

In this section we briefly present some potential avenues for future work and discuss

some of the associated challenges.

6.2.1 Full method verification

In this thesis we have principally focused on the surplus transfer round of Meek’s

method. Of course, for a fully verified Meek’s method with code extraction, one would

also have to tackle each of the other individual rounds: elimination, tie-breaking, ini-

tial allocation (more of a round in hand-counting than computer-counting), and map-

ping the final state to the set of elected candidates. After tackling the other individual

rounds, which are all simple single-step operations, one would then have to deal with

termination and correctness of the whole method.
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Meek’s method itself is not difficult to implement; we have implemented it in

Isabelle/HOL but have not proven any important end-to-end properties of the over-

all method, such as full termination (i.e. termination of every round and the whole

method).

6.2.1.1 Termination

Termination overall would simply follow from proving that at every round, one of the

following has to occur: one or more new candidates are elected, or a new candidate is

eliminated. Through elimination, one moves closer to S candidates being left. Through

election, one heads closer to S candidates being elected. One or the other has to meet

S eventually; if S+1 become elected a final tie-breaking round is of course necessary.

The fractional Droop quota cannot elect more than S+1 candidates, so this is the only

exceptional case that needs to be considered.

6.2.1.2 Seat-filling

Trickier would be proving that Meek’s method correctly fills all seats, meaning simply

that the correct number of candidates is elected in the end and throughout the process

once a candidate is marked as elected they remain elected throughout. One may also

wish to prove as part of this for Meek’s method that the final state being converged

upon at the last surplus transfer round is one in which all non-eliminated candidates

exactly meet the quota, perhaps alongside a theorem about “minimising excess” as

Meek and others claim the method does (what this precisely means would need to be

determined). We have considered what it would take to prove correct seat-filling, and

we do think this could require a significant effort. For ordinary STV, the argument for

termination is very similar to the argument for seat-filling: it is approached from both

directions by election and elimination.

The problem is that Meek’s method’s surplus transfer round does not terminate

when Vc(w) = Q(w), for all elected c, but when Vc(w)< Q(w)+ ε for all elected c (or

equivalently one can sum all the surpluses and terminate when the sum is less than ε).

We think that that this should not be a big issue. Consider the case where ε is set so

high that a surplus transfer round never occurs, then candidates are simply eliminated

until S are left. It thus seems likely that the same argument about an inevitable march

towards seat-filling is true.

The Droop Proportionality Criterion (DPC) would also be an important property
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to tackle if the work was expanded to more social-choice-theoretical results as part of

a more general framework for STV. It is in theory true of all STV, and so not particu-

larly important to focus on for work specifically focusing on Meek’s method, though

it would certainly be a good result to confirm for this specific case. For properties

like the DPC (see Tideman [74], who notes the property as the “proportionality for

solid coalitions”), which is a mathematical characterisation of whether a multi-winner

method provides proportional representation in those seats specifically,1 one may need

to worry more about the role of ε in distorting the “ideal” result. This brings us onto

our second piece of future work.

6.2.2 Non-distortion

To prove properties like the proportionality criterion one may have to show that there

is some sufficiently small ε for any given election size such that the final outcome is

the same as if one used the precise value for the solution vector.2 Equivalently, that

if one continued the iterative process, there is no later step at which the final outcome

(not just the set of elected candidates at the end of the round) would change.

One can generalise the problem: show that, for all election sizes, i.e. for all bounds

on |B| and |C|, there is some sufficiently small ε which cannot distort the result. This

would be a remarkable result; while it is considered that distorted outcomes with an ε

of around 0.0001 are unlikely, it would be extremely beneficial for further trust in the

method. Even more so if the proof of this were constructive, meaning one produced a

function taking an election size and could produce an ε which was non-distorting.

A related result that would be much easier to prove, by developing an example

that can be scaled to any election size, would be to show that for any ε there is some

election with a distorted result. No existing work on the topic of distortion in Meek’s

method exists3; the approach has been one of fingers-crossed that election sizes typical

for countries will not distort the result for an arbitrarily chosen ε [40].

1We say “those seats specifically” because in practice, these are usually seats at just the constituency
level, and STV is not applied to fill up an entire parliament. This is what arguably makes the method a
compromise between proportional representation and local representation.

2Whether one gets this precise value for the solution vector by computational means, e.g. through
solving it analytically, or non-computational means, e.g. through the choice function THE, is we think
not relevant for this kind of proof.

3Work on the so-called “butterfly effect” [53, 42] in STV and Hill’s response that it does not apply
to Meek’s method feels closest in spirit though has nothing to do with convergence and the stopping
parameter.
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6.2.3 Code extraction

Related to full method verification, code extraction for even just the surplus transfer

round would be beneficial. What needs to be done, and it is unclear how much extra

work this might be, is to connect up the implementation of the surplus transfer round

with these results in such a way that code extraction is possible. Part of this will

involve proving various functional equivalences because the vector type constructor

vec that we use for analysis does not permit code extraction. Care would also have to

be taken to manage the finiteness restriction on the type of candidates. Focusing on this

plumbing work was simply too much of a time distraction from the more conceptually

interesting and important results to be tackled in this thesis.

Nevertheless, given Isabelle’s code extraction mechanism is sophisticated enough

to provide some guarantees of at least partial correctness, through a shallow embedding

of equivalent concepts [32] in various programming languages (Haskell, Scala, ML,

OCaml) which treats generated code as a higher-order rewrite system represented using

the intermediate language Mini-Haskell [33], it will be important work to pursue in

order to popularise the results of this thesis.

6.2.4 Automation

Automating more proofs by providing powerful simplification sets or bespoke tactics

would be beneficial to the future maintenance and expansion of the framework. There

are least three possible focus areas:

• Ballots: connecting G with more general results about orderings, including an

identification with the natural numbers so that sequence-like reasoning follows

for a broader class of theorems without significant effort.

• Weight vectors: connecting sub-vectors, such as the weight vector considering

only the candidates or only the elected candidates, with general ordering the-

orems. This would be useful for automation, but also for writing things like

(∀c ∈ L . wc < w′c) instead like w <L w′.

• Specific automation for the component functions of Meek’s method, which takes

into account things like: eliminated and unlisted candidates having no effect,

hopeful candidates receiving all of what remains of a ballot, simplification rou-

tines to a canonical form for expressions involving definite weight decreases,

and so on.
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6.2.5 Generalisation

Warren’s method, mentioned as an aside a couple of times in this thesis, is the same

as Meek’s method in terms of component functions but takes a different approach to

updating the weights. Warren considered Meek’s method for updating weights to be

unfair, though acknowledged that most of the time the two methods will produce the

same result. We can also point out that the point of the method for updating weights is

to converge on the unique solution vector, so that the choice of update is only relevant

when considering edge-cases, where stopping early distorts the result. It would thus

be worthwhile to generalise the approach in Chapter 3 to cover any weight update

function that is monotonically decreasing in the way necessary for convergence.

6.2.6 Verified optimisation

Optimisations for time and space complexity exist both for general methods of STV

as well as Meek’s method specifically. Any optimisation for Meek’s method needs

to be shown to be functionally equivalent to the simpler implementation, so that the

latter can be used for code extraction while the former is used for analysis. For STV,

one such optimisation is to eliminate candidates as soon as it is clear that they cannot

become elected.

For Meek’s method, as discussed in Section 1.1.1 and Section 5.2 and as noted

by Hill [40], a common optimisation is to “enlist” candidates into the surplus transfer

round as soon as they reach the quota. For this variant new candidates can become

elected during the round, so instead of updating weights for c ∈ elected0, one up-

dates as long as Vc(w(i))≥ Q(w(i)). We determined that while this makes initial proof

development in Chapter 3 and considerations around weight validity easier, it makes

convergence much harder (as the non-triviality criterion may not be maintained, and

the candidates involved in convergence dynamically changes). Hence, we followed

Hill et al. and proved all of the results for the non-enlisting variant and leave proving

their equivalence as future work.

For ε= 0, i.e. when solving the successive transfer rounds with the precise solution

vector, we have developed an informal argument based on a proof by contradiction,

considering the ways in which the two final vectors could differ, and then invoking

solution-round uniqueness to derive a contradiction. Pursuing this argument formally

could potentially be a fruitful avenue for research.

However, related to our comments on non-distortion, the property one would want
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to prove is likely something more along the following lines: for all election sizes, there

is an ε such that the final outcome is the same whether one enlists candidates into the

surplus transfer round or carries out successive rounds until there is no more surplus.

6.2.7 Rational weights

Meek’s method can be entirely defined in terms of rational arithmetic. This includes

the parameter ε > 0 which may just be chosen as an arbitrarily small rational. Given

the fact that voting methods are only executed for elections, generally coming once

every year at most, and that hand-counting typically takes hours, days, or weeks

(depending on irregularities), we have considered it self-evident that implementing

Meek’s method using rational arithmetic is sensible. However, if it were the case that

for very large elections calculation becomes time intensive due to many non-trivial

greatest-common-divisor calculations, then floating-point approximation would have

to be used.

But floating-point carries the danger of rounding which results in the total votes in

circulation being non-constant throughout the execution of the method. The solution

turned to in the open-source software OpenSTV as suggested in a paper by Lundell and

Hill is quasi-exact arithmetic, which they suggest alongside other potential options,

including:

“Use rational arithmetic, so that all values can be represented exactly.
This approach is likely to be computationally expensive, and has not to
our knowledge been implemented.” [50]

Our initial experiments show that there is reason for optimism, but we believe that

it would be important to experimentally investigate the potential presence of scaling

issues in using precise rational arithmetic for Meek’s method applied to very large

elections. If it is a problem, this immediately demands additional future work on veri-

fying Meek’s method on a subset of the rationals, whether floating-point, quasi-exact,

or using something more sophisticated like dyadic rationals. The latter would likely be

the most attractive option as it is a well-understood mathematical domain which has

been used in existing Isabelle/HOL formalisations (e.g. Li et al. [49]).

6.2.8 Non-strict ballots

One could generalise frac-of to non-strict ballots with little difficulty. Proving all of

the results in this thesis for non-strict ballots may, however, be more onerous than
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is worth the payoff, seeing as non-strict ballots are rarely used for STV in practice.

Nevertheless, we provide the equation one needs for frac-of to get this process started.

By introducing an additional function, E , which takes a ballot and returns the sets

of equally-listed candidates, we can write a simple closed form expression for frac-of

and E for non-strict ballots. For the ballot ABC, where A, B, and C are sets of equally-

listed candidates with for example A = {a1, ..,anA}, we have

E(ABC) = {{a1, ..,anA},{b1, ..,bnB},{c1, ..,cnC}}

We also introduce GE which takes a ballot and a candidate c and returns the sets of

equally listed candidates above the equally-listed set which c is in, for ABC again:

GE(ABC,c1) = {{a1, ..,anA},{b1, ..,bnB}}. And finally we introduce LE which takes a

ballot and a candidate and returns those listed equally to it, for example LE(ABC,b1) =

{b1, ..,bnB}.

frac-of (b,c,w) =


ΠK∈GE (b,c)(1−ΣK)

|LE (b,c)| c ∈ L(b)

0 otherwise
(6.1)

E(B,w) = Σb∈BΠK∈E(b)(1−ΣK) (6.2)

where ΣK = Σk∈Kwk
|K| .

6.2.9 Meek’s method from first principles

Finally, a completely different but nevertheless interesting project, one which is im-

possible not to consider when pursuing a formalisation project such as this, is whether

one could derive the form of Meek’s method itself using Meek’s two principles:

Principle 1. If a candidate is eliminated, all ballots are treated as if
that candidate had never stood.

Principle 2. If a candidate has achieved the quota, he retains a fixed
proportion of every vote received, and transfers the remainder to the next
non-eliminated candidate, the retained total equalling the quota.

Given that the method is supposed to optimally implement the principles, something

like this should be possible. We think that, starting with a very general characterisation

of STV-likes, one could formalise these two principles, as well as other STV principles

(see e.g. Aleskerov et al. [1]), and then prove that Meek’s method satisfies the prin-

ciples. Whether Meek’s method is the only method to do so is another question. We
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believe that we have identified that no STV principles, nor Meek’s principles, justify

the usual method of elimination of simply the candidate with the lowest votes, though

more research needs to be done (indeed, CPO-STV and Schulze-STV were in-part

invented to address this problem of premature elimination). One could also interro-

gate Warren’s claim that his method satisfies its own, different principles, and does not

satisfy those laid out by Meek.

It would be interesting to approach this question from both the discipline of mecha-

nism design [56, 62], as well as by encoding the degree to which a method satisfies the

various principles as a real number and applying traditional methods of optimisation

and AI to evolving a method for vote-counting. Perhaps a combination of the two ap-

proaches similar to reinforcement mechanism design [72] might be worth considering.
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Isabelle/HOL

A.1 Definitions and induction rules

A.1.1 Vectors

definition dec1 :: "(real , 'a) vec ⇒ 'a::finite ⇒ real ⇒ (real , '
a) vec" ("_ ⇂ _,_" [100,100,100] 100) where

"v ⇂ x,r ≡ χ y. if x = y then v $ x - r else v $ y"

definition vec_upd :: "('val, 'arg::finite) vec ⇒ 'arg ⇒ 'val ⇒
('val, 'arg) vec" ("_<_ 7→ _>" [100,100,100] 100) where

"v<x 7→ val> ≡ vec_lambda ((vec_nth v)(x := val))"

definition repl_all :: "('b, 'a) vec ⇒ 'a::finite set ⇒ ('b, 'a)
vec ⇒ ('b, 'a) vec" ("_<_ 7−→ _>" [100,100,100] 100) where

"v<X 7−→ v'> ≡ χ x. if x ∈ X then v' $ x else v $ x"

abbreviation repl_all_fn_N ("_<_|_ 7−→ _>" [100, 100, 100, 100] 100)
where

"w<n|X 7−→ f> ≡ ((λw. w<X 7−→ (χ c. f w c)>) ^^ n) w"

definition feasible :: "(real , 'c::finite) vec ⇒ (real , 'c) vec ⇒
real ⇒ 'c set ⇒ 'c set ⇒ bool" where

"feasible w V Q cands elected ≡
∀c∈cands. w $ c ≥ 0 ∧ w $ c ≤ 1 ∧ (c ∈ elected−→ V $ c ≥ Q)"

definition solution :: "(real , 'c::finite) vec ⇒ (real , 'c) vec ⇒
real ⇒ 'c set ⇒ 'c set ⇒ bool" where

"solution w V Q cands elected ≡
∀c∈cands. w $ c ≥ 0 ∧ w $ c ≤ 1 ∧ (c ∈ elected−→ V $ c = Q)"

definition feasible_given :: "(real , 'c::finite) vec ⇒ (real , '
c::finite) vec ⇒ (real , 'c) vec ⇒ real ⇒ 'c set ⇒ 'c set ⇒
bool" where

"feasible_given w0 w V Q cands elected ≡
feasible w V Q cands elected ∧ (∀c∈cands. c /∈ elected−→ w $

c = w0 $ c)"

167
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definition solution_given :: "(real , 'c::finite) vec ⇒ (real , '
c::finite) vec ⇒ (real , 'c) vec ⇒ real ⇒ 'c set ⇒ 'c set ⇒
bool" where

"solution_given w0 w V Q cands elected ≡
solution w V Q cands elected ∧
(∀c∈cands. c /∈ elected−→ w $ c = w0 $ c)"

A.1.2 Ballots

definition valid_strict_ballot :: "'c set ⇒ ('c ⇒ 'c set) ⇒
bool" where

"valid_strict_ballot L G ≡ finite L ∧
(∀x∈L . G x ⊆ L ∧ x /∈ G x ∧

(∀y∈L. (∀z∈L. y ∈ G x ∧ z ∈ G y−→ z ∈ G x) ∧
(x ∈ G y ∨ y ∈ G x ∨ x = y)))"

definition subballot :: "'c set ⇒ ('c ⇒ 'c set) ⇒ 'c set ⇒ ('c
⇒ 'c set) ⇒ bool" where

"subballot L' G' L G ≡ L' ⊂ L ∧ (∀c∈L'. G' c = G c - (L - L'))"

lemma ballot_induct [consumes 1, case_names psubballot]:
assumes valid: "valid_strict_ballot L G"

and major: "
∧

L G. J valid_strict_ballot L G;∧
L' G'. subballot L' G' L G=⇒ P L' G'K

=⇒ P L G"
shows "P L G"

definition above :: "'c ⇒ 'c set ⇒ ('c ⇒ 'c set) ⇒ 'c ⇒ bool"
("_ above[_,_] _" [100,100,100,100] 100) where

"c above[L,G] c' ≡ c' ∈ L ∧ insert c (G c) = G c'"

definition below :: "'c ⇒ 'c set ⇒ ('c ⇒ 'c set) ⇒ 'c ⇒ bool"
("_ below[_,_] _" [100,100,100,100] 100) where

"c below[L,G] c' ≡ c ∈ L ∧ c' ∈ L ∧ L - G c = (L - G c') - {c'}"

definition rank :: "('c ⇒ 'c set) ⇒ 'c ⇒ nat" where
"rank G c ≡ card (G c)"

definition ranks :: "'c set ⇒ ('c ⇒ 'c set) ⇒ ('c * nat) set"
where

"ranks L G ≡ (λc. (c, rank G c)) ` L"

definition ranked :: "'c set ⇒ ('c ⇒ 'c set) ⇒ nat ⇒ 'c" where
"ranked L G n ≡ SOME c. c ∈ L ∧ rank G c = n"

A.1.3 Meek’s method

definition quota_hb' :: "nat ⇒ nat ⇒ real ⇒ real" where
"quota_hb' T s E ≡ (T - E) / (s + 1)"
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definition votes' :: "'b set ⇒ ('b ⇒ 'c ⇒ (real , 'c::finite) vec
⇒ real) ⇒ (real , 'c::finite) vec ⇒ (real , 'c::finite) vec"
where

"votes' B f w ≡ χ c. w $ c * (Σb∈B. f b c w)"

definition surplus' :: "(real , 'c::finite) vec ⇒ real ⇒ real"
where

"surplus' V Q ≡ Σc∈{k. V $ k > Q}. V $ c - Q"

definition quota_diff_vec' :: "(real , 'c::finite) vec ⇒ real ⇒
(real , 'c::finite) vec" where

"quota_diff_vec' V Q ≡ χ c. V $c - Q"

definition smallests :: "(real , 'c::finite) vec ⇒ 'c set" where
"smallests v ≡ {c. ∀k. v $ c ≤ v $ k}"

definition ranked_last :: "'b ⇒ ('b ⇒ 'c set) ⇒ ('b ⇒ 'c ⇒ 'c
set) ⇒ 'c" where

"ranked_last b L G ≡ THE c. G b c = L b - {c}"

definition excess :: "'b set ⇒ ('b ⇒ 'c set) ⇒ (real , '
c::finite) vec ⇒ real" where

"excess B L w ≡ Σb∈B. Πc∈L b. (1 - w $ c)"

definition quota_hb :: "'b set ⇒ nat ⇒ ('b ⇒ 'c set) ⇒ (real , '
c::finite) vec ⇒ real" where

"quota_hb B s L w ≡ quota_hb' (card B) s (excess B L w)"

definition frac_of :: "'c set ⇒ ('c ⇒ 'c set) ⇒ 'c ⇒ (real , '
c::finite) vec ⇒ real" where

"frac_of L G c w ≡ if c ∈ L then Πk∈G c. (1 - w $ k) else 0"

definition votes :: "'b set ⇒ ('b ⇒ 'c set) ⇒ ('b ⇒ 'c ⇒ 'c
set) ⇒ (real , 'c::finite) vec ⇒ (real , 'c::finite) vec" where

"votes B L G w ≡ votes' B (λb. frac_of (L b) (G b)) w"

definition reaches_quota :: "'b set ⇒ nat ⇒ ('b ⇒ 'c set) ⇒ ('b
⇒ 'c ⇒ 'c set) ⇒ (real , 'c::finite) vec ⇒ 'c set" where

"reaches_quota B s L G w ≡
{c. votes B L G w $ c ≥ quota_hb B s L w}"

definition quota_diff_vec :: "'b set ⇒ nat ⇒ ('b ⇒ 'c set) ⇒
('b ⇒ 'c ⇒ 'c set) ⇒ (real , 'c::finite) vec ⇒ (real , '
c::finite) vec" where

"quota_diff_vec B s L G w ≡
quota_diff_vec' (votes B L G w) (quota_hb B s L w)"

definition surplus :: "'b set ⇒ nat ⇒ ('b ⇒ 'c set) ⇒ ('b ⇒ 'c
⇒ 'c set) ⇒ (real , 'c::finite) vec ⇒ real" where

"surplus B s L G w ≡ surplus' (votes B L G w) (quota_hb B s L w)"

definition eliminate :: "'b set ⇒ ('b ⇒ 'c set) ⇒ ('b ⇒ 'c ⇒ '
c set) ⇒ (real , 'c::finite) vec ⇒ (real , 'c::finite) vec" where

"eliminate B L G w ≡
w<(SOME c. w $ c > 0 ∧ c ∈ smallests (votes B L G w)) 7→ 0>"
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definition solve :: "'c set ⇒ 'b set ⇒ nat ⇒ ('b ⇒ 'c set) ⇒
('b ⇒ 'c ⇒ 'c set) ⇒ (real , 'c::finite) vec ⇒ (real , '
c::finite) vec" where

"solve elected B s L G w ≡
THE w_sol. (∀c∈elected. votes B L G w_sol $ c =

quota_hb B s L w_sol) ∧
(∀c. c /∈ elected−→

w_sol $ c = w $ c)"

function meek :: "'b set ⇒ nat ⇒ ('b ⇒ 'c set) ⇒ ('b ⇒ 'c ⇒ '
c set) ⇒ (real , 'c::finite) vec ⇒ (real , 'c::finite) vec" where

"meek B s L G w = (let reaches = reaches_quota B s L G w in
if card reaches ≥ s then

w
else if surplus B s L G w > 0 then

meek B s L G (solve reaches B s L G w)
else

meek B s L G (eliminate B L G w)
)"

abbreviation update_one :: "'c set ⇒ 'b set ⇒ nat ⇒ ('b ⇒ 'c
set) ⇒ ('b ⇒ 'c ⇒ 'c set) ⇒ (real , 'c::finite) vec ⇒ (real ,
'c::finite) vec" where

"update_one elected B s L G w ≡
χ c. if c ∈ elected then

w $ c * quota_hb B s L w / votes B L G w $ c
else

w $ c"

function ε _solve :: "real ⇒ 'c set ⇒ 'b set ⇒ nat ⇒ ('b ⇒ 'c
set) ⇒ ('b ⇒ 'c ⇒ 'c set) ⇒ (real , 'c::finite) vec ⇒ (real ,
'c::finite) vec" where

"ε _solve ε elected B s L G w = (
if surplus B s L G w > ε then

ε _solve ε elected B s L G (update_one elected B s L G w)
else

w)"

function ε _meek :: "real ⇒ 'b set ⇒ nat ⇒ ('b ⇒ 'c set) ⇒ ('b
⇒ 'c ⇒ 'c set) ⇒ (real , 'c::finite) vec ⇒ (real , 'c::finite)
vec" where

"ε _meek ε B s L G w = (let reaches = reaches_quota B s L G w in
if card reaches ≥ s then

w
else if surplus B s L G w > ε then

ε _meek ε B s L G (ε _solve ε reaches B s L G w)
else

ε _meek ε B s L G (eliminate B L G w))"

A.2 Locales and contextual definitions

A.2.1 Elections
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locale election_context =
fixes cands :: "'c set"

and ballots :: "'b set"
and L :: "'b ⇒ 'c set"
and G :: "'b ⇒ 'c ⇒ 'c set"
and listed :: "'c set"

defines listed_def: "listed ≡
⋃
{L b |b. b ∈ ballots}"

assumes all_valid:
"b ∈ ballots=⇒ valid_strict_ballot (L b) (G b)"

and all_nonempty: "b ∈ ballots=⇒ L b ̸= {}"
and ballots_nonempty: "ballots ̸= {}"
and finite_ballots: "finite ballots"
and finite_cands: "finite cands"
and listed_cands: "listed ⊆ cands"

begin

definition ballot_eq :: "'c ⇒ 'b ⇒ 'c ⇒ bool" ("_ = _ _" [100,
100, 100] 100) where

"x = b y ≡ x = y ∧ x ∈ L b ∧ y ∈ L b"

definition ballot_gt :: "'c ⇒ 'b ⇒ 'c ⇒ bool" ("_ > _ _" [100,
100, 100] 100) where

"x > b y ≡ x ∈ L b ∧ y ∈ L b ∧ x ∈ G b y"

definition ballot_le :: "'c ⇒ 'b ⇒ 'c ⇒ bool" ("_ ≤ _ _" [100,
100, 100] 100) where

"x ≤ b y ≡ x = b y ∨ y ∈ L b ∧ x ∈ (L b - G b y)"

definition ballot_lt :: "'c ⇒ 'b ⇒ 'c ⇒ bool" ("_ < _ _" [100,
100, 100] 100) where

"x < b y ≡ x ̸= y ∧ x ≤ b y"

definition ballot_ge :: "'c ⇒ 'b ⇒ 'c ⇒ bool" ("_ ≥ _ _" [100,
100, 100] 100) where

"x ≥ b y ≡ x = b y ∨ x > b y"

definition ranked_first :: "'b ⇒ 'c ⇒ bool" where
"ranked_first b y ≡ ∀x∈L b. x ≤ b y"

definition ranked_last :: "'b ⇒ 'c ⇒ bool" where
"ranked_last b x ≡ ∀y∈L b. x ≤ b y"

end

A.2.2 Meek’s method

locale abstract_meek_carrier =
fixes V_for :: "(real , 'c::finite) vec ⇒ (real , 'c) vec"

and Q_for :: "(real , 'c) vec ⇒ real"
and c1 :: nat
and c2 :: real
and E_for :: "(real , 'c) vec ⇒ real"
and num_ballots :: "nat"
and seats :: "nat"
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and cands :: "'c set"
assumes

V_change: " Jc ∈ cands; w $ c ̸= 0 K =⇒
V_for (w ⇂ c,r) $ c =
V_for w $ c * (1 - r / w $ c)"

and V_winc: " Jc ∈ cands; c' ∈ cands; c' ̸= c; w $ c' ≥ 0;
r ≥ 0;

∧
k. k ∈ cands=⇒ w $ k ≤ 1 K =⇒

V_for (w ⇂ c,r) $ c' ≥ V_for w $ c'"
and E_winc: " Jc ∈ cands; r ≥ 0;

∧
k. k ∈ cands=⇒ w $ k ≤ 1 K =⇒

E_for (w ⇂ c,r) ≥ E_for w"
and E_lower: " J

∧
c. c ∈ cands=⇒ w $ c ≥ 0;∧
c. c ∈ cands=⇒ w $ c ≤ 1 K =⇒

E_for w ≥ num_ballots * (Πc∈cands. 1 - w $ c)"
and E_upper: " Jc ∈ cands;

∧
c. c ∈ cands=⇒ w $ c ≥ 0;∧

c. c ∈ cands=⇒ w $ c ≤ 1;∧
k. k ∈ cands=⇒ w $ c ≤ w $ k K =⇒

E_for w ≤ num_ballots * (1 - w $ c)"
and self_winc: " Jc ∈ cands; w $ c ≥ 0;∧

c. c ∈ cands=⇒ w $ c ≤ 1; r ≤ 0 K =⇒
V_for w $ c ≤ V_for (w ⇂ c,r) $ c"

and votes_invariant:
"num_ballots = (Σk∈cands. V_for w $ k) + E_for w"

and quota_form:
"Q_for = (λw. (num_ballots - E_for w) / (seats + c1) +

c2) ∧ c2 ≥ 0 ∨
Q_for = (λw. real_of_int ⌊(num_ballots - E_for w) /

(seats + c1)⌋ + c2) ∧ c2 > 0"
and num_ballots_gt0: "num_ballots > 0"
and seats_gt0: "seats > 0"
and noncand_no_V_change: " Jc ∈ cands; c' /∈ cands K =⇒

V_for (w ⇂ c',r) $ c = V_for w $ c"
and noncand_no_Q_change: "c /∈ cands=⇒

Q_for (w ⇂ c,r) = Q_for w"

locale meektransfer_fixes_carrier = abstract_meek_carrier V_for
for V_for :: "(real , 'c::finite) vec ⇒ (real , 'c) vec" +
fixes transfer_weights :: "(real , 'c) vec"

and elected0 :: "'c set"
assumes elected_cands [simp]: "elected0 ⊆ cands"

begin

abbreviation update_one where
"update_one w ≡

w<elected0 7−→ (χ c. w $ c * Q_for w / V_for w $ c)>"

definition w_at :: "nat ⇒ (real , 'c) vec" where
"w_at i ≡ (update_one^^i) transfer_weights"

abbreviation V_at :: "nat ⇒ (real , 'c) vec" where
"V_at i ≡ V_for (w_at i)"

abbreviation E_at :: "nat ⇒ real" where
"E_at i ≡ E_for (w_at i)"

abbreviation Q_at :: "nat ⇒ real" where
"Q_at i ≡ Q_for (w_at i)"
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abbreviation feasible_for :: "(real , 'c::finite) vec ⇒ bool" where
"feasible_for w ≡ feasible w (V_for w) (Q_for w) cands elected0"

abbreviation solution_for :: "(real , 'c::finite) vec ⇒ bool" where
"solution_for w ≡ solution w (V_for w) (Q_for w) cands elected0"

abbreviation feasible_given_for :: "(real , 'c::finite) vec ⇒
(real , 'c::finite) vec ⇒ bool" where

"feasible_given_for w0 w ≡
feasible_given w0 w (V_for w) (Q_for w) cands elected0"

abbreviation solution_given_for :: "(real , 'c::finite) vec ⇒
(real , 'c::finite) vec ⇒ bool" where

"solution_given_for w0 w ≡
solution_given w0 w (V_for w) (Q_for w) cands elected0"

abbreviation feasible_at :: "nat ⇒ bool" where
"feasible_at i ≡ feasible_for (w_at i)"

abbreviation solution_at :: "nat ⇒ bool" where
"solution_at i ≡ solution_for (w_at i)"

abbreviation feasible_given_at :: "nat ⇒ bool" where
"feasible_given_at i ≡ feasible_given_for (w_at 0) (w_at i)"

abbreviation solution_given_at :: "nat ⇒ bool" where
"solution_given_at i ≡ solution_given_for (w_at 0) (w_at i)"

abbreviation surplus_at :: "'a ⇒ nat ⇒ real" where
"surplus_at c n ≡ V_at n $ c - Q_at n"

end

locale meektransfer_carrier = meektransfer_fixes_carrier _ _ _ _ _
_ _ V_for

for V_for :: "(real , 'c::finite) vec ⇒ (real , 'c) vec" +
assumes elected_nonempty: "elected0 ̸= {}"

and seats_not_exceeded: "card elected0 ≤ seats"
and feasible0: "feasible_at 0"
and E_cont: "isCont E_for w"
and V_cont: "isCont V_for w"
and nonelected_nonnegative: " Jc ∈ cands; c /∈ elected0 K =⇒

V_at 0 $ c ≥ 0"
and vote_sum_ge1:

" J
∧
c. c ∈ cands=⇒ w $ c ≥ 0;∧
c. c ∈ cands=⇒ w $ c ≤ 1 K =⇒
(Σc∈cands. V_for ((w_at 0)<elected0 7−→ w>) $ c) ≥ 1"

locale meektransfer_strictinc_carrier = meektransfer_carrier +
assumes many_dec_V_sum_dec:

"
∧
w w_le. J
X ⊆ cands;
X ̸= {};∧
c. c ∈ X=⇒ w_le $ c < w $ c;∧
c. Jc ∈ cands; c /∈ X K =⇒ w_le $ c = w $ c;
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∧
c. c ∈ cands=⇒ w_le $ c ≥ 0;∧
c. c ∈ cands=⇒ w $ c ≤ 1;∧
c. Jc ∈ cands; V_for w $ c ≤ 0 K =⇒ w_le $ c = w $ c K =⇒

(Σc∈X. V_for w_le $ c) < (Σc∈X. V_for w $ c)"

locale meektransfer_excess_inc_carrier =
meektransfer_strictinc_carrier _ _ E_for

for E_for :: "(real , 'c::finite) vec ⇒ real" +
assumes E_inc_E_inc:

" JX ⊆ Y; Y ⊆ cands;∧
c. c ∈ cands=⇒ w_lt' $ c ≥ 0;∧
c. c ∈ cands=⇒ w $ c ≤ 1;∧
c. c ∈ cands -X=⇒ w $ c = w_lt $ c;∧
c. c ∈ cands -Y=⇒ w_lt $ c = w_lt' $ c;∧
c. c ∈ X=⇒ w_lt $ c < w $ c;∧
c. c ∈ Y=⇒ w_lt' $ c < w_lt $ c;

E_for w_lt > E_for w K =⇒ E_for w_lt' > E_for w_lt"

locale meekelimination_carrier = abstract_meek_carrier V_for
for V_for :: "(real , 'c::finite) vec ⇒ (real , 'c) vec" +
fixes weights :: "(real , 'c) vec"

and pick :: "'c set ⇒ 'c"
assumes eliminatable: "∃c∈cands. weights $ c > 0"

and w_g0: "c ∈ cands=⇒ weights $ c ≥ 0"
and w_le1: "c ∈ cands=⇒ weights $ c ≤ 1"
and valid_pick: " JX ⊆ cands; X ̸= {} K =⇒ pick X ∈ X"

A.3 Key theorems

A.3.1 Theorem 1.1: all steps of the surplus transfer round are fea-

sible

theorem all_feasible:
"feasible_at i"

corollary all_feasible_given:
"feasible_given_at i"

corollary V_sum_pos:
"(Σc∈cands. V_at i $ c) ≥ 1"

corollary E_lt_max:
"E_at i ≤ num_ballots - 1"

corollary Q_frac_ge:
assumes "Q_at i = (num_ballots - E_at i) / (seats + c1) + c2"
shows "Q_at i ≥ 1 / (seats + c1) + c2"

corollary Q_int_ge:
assumes "Q_at i = ⌊(num_ballots - E_at i) / (seats + c1)⌋ + c2"
shows "Q_at i ≥ c2"
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corollary Q_pos:
"Q_at i > 0"

corollary elected0_Vi_ge_Qi:
assumes "c ∈ elected0"
shows "V_at i $ c ≥ Q_at i"

corollary w_ge0:
assumes "c ∈ cands"
shows "w_at i $ c ≥ 0"

corollary w_le1:
assumes "c ∈ cands"
shows "w_at i $ c ≤ 1"

A.3.2 Theorem 1.2: the sequence of weight vectors in the surplus

transfer round converges

lemma monoconv_dec:
assumes "bdd_below (range f)"

and "decseq f"
shows "convergent (f::nat ⇒ '
a::{conditionally_complete_linorder ,linorder_topology})"

lemma w_bdd_below:
"bdd_below (range (λi. w_at i $ c))"

lemma w_decseq:
"decseq (λi. w_at i $ c)"

theorem w_convergent:
"convergent (λi. w_at i $ c)"

definition w_inf :: "(real , 'c) vec" where
"w_inf ≡ χ c. (THE l. (λi. w_at i $ c)−−−→ l)"

A.3.3 Theorem 2: the transfer round converges on a unique solu-

tion vector

theorem unique_solution:
assumes gfq: "Q_for = (λw. (num_ballots - E_for w) / (seats + c1)
+ c2)"

and "c1 > 0"
shows "∃w. solution_given_for (w_at i) w

∧ (∀w'. solution_given_for (w_at i) w'−→
(∀c∈cands. w' $ c = w $ c))"
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A.3.3.1 Additional theorems

theorem surplus_sum_dec_general:
assumes gfq: "Q_for =

(λw. (num_ballots - E_for w) / (seats + c1) + c2)"
and w_props: "

∧
c. c ∈ cands -elected0=⇒ w_le $ c = w $ c"

"
∧
c. c ∈ elected0=⇒ w_le $ c < w $ c"

"
∧
c. c ∈ cands=⇒ w_le $ c ≥ 0"

"
∧
c. c ∈ cands=⇒ w $ c ≤ 1"

and elected_V_gt0: "
∧
c. c ∈ elected0=⇒ V_for w $ c > 0"

and c1_gt0: "c1 > 0"
shows "(Σc∈elected0. V_for w_le $ c - Q_for w_le) <

(Σc∈elected0. V_for w $ c - Q_for w)"

theorem surplus_sum_always_dec:
assumes gfq: "Q_for =

(λw. (num_ballots - E_for w) / (seats + c1) + c2)"
and Q_dec: "Q_at (i + 1) < Q_at i"
and i_lt_j: "i + 1 < j"
and j_lt_k: "j < k"
and c1_gt0: "c1 > 0"

shows "(Σc∈elected0. surplus_at c k) <
(Σc∈elected0. surplus_at c j)"

A.3.4 Necessary theorems for proving the implementation models

the locales

A.3.4.1 Non-candidates do not affect components

theorem noncand_no_E_change:
assumes "c /∈ all_in B L"
shows "excess B L (w ⇂ c,r) = excess B L w"

theorem noncand_no_Q_change:
assumes "c /∈ all_in B L"
shows "quota_hb B s L (w ⇂ c,r) = quota_hb B s L w"

theorem noncand_no_V_change:
assumes "c ∈ all_in B L"

and "c' /∈ all_in B L"
and G_sub_L: "

∧
b c. Jb ∈ B; c ∈ L b K =⇒ G b c ⊆ L b"

shows "votes B L G (w ⇂ c',r) $ c = votes B L G w $ c"

A.3.4.2 Upper and lower bounds on excess

theorem E_lower:
assumes ge0: "

∧
c. c ∈ all_in B L=⇒ w $ c ≥ 0"

and le1: "
∧
c. c ∈ all_in B L=⇒ w $ c ≤ 1"

shows "excess B L w ≥ card B * (Πc∈all_in B L. 1 - w $ c)"

theorem E_upper:
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assumes c_le1: "w $ c ≤ 1"
and ge0: "

∧
c. c ∈ all_in B L=⇒ w $ c ≥ 0"

and le1: "
∧
c. c ∈ all_in B L=⇒ w $ c ≤ 1"

and c_min: "
∧
k. k ∈ all_in B L=⇒ w $ c ≤ w $ k"

and "finite B"
and ballots_nonempty: "

∧
b. b ∈ B=⇒ L b ̸= {}"

shows "excess B L w ≤ card B * (1 - w $ c)"

A.3.4.3 Single changes to weights

theorem V_change:
assumes self_not_gt: "

∧
b. Jb ∈ B; c ∈ L b K =⇒ c /∈ G b c"

and wnon0: "w $ c ̸= 0"
shows "votes B L G (w ⇂ c,r) $ c =

votes B L G w $ c * (1 - r / w $ c)"

theorem V_winc:
assumes "c' ̸= c"

and "w $ c' ≥ 0"
and "r ≥ 0"
and le1: "

∧
b k. Jb ∈ B; c' ∈ L b; k ∈ G b c'-{c} K =⇒
w $ k ≤ 1"

shows "votes B L G (w ⇂ c,r) $ c' ≥
votes B L G w $ c'"

theorem E_winc:
assumes "r ≥ 0"

and le1: "
∧
b k. Jb ∈ B; c ∈ L b; k ∈ L b; k ̸= c K =⇒ w $ k ≤ 1"

and "finite B"
shows "excess B L (w ⇂ c,r) ≥ excess B L w"

theorem self_winc:
assumes "w $ c ≥ 0"

and le1: "
∧
c. c ∈ all_in B L=⇒ w $ c ≤ 1"

and "r ≤ 0"
and not_gt_self: "

∧
b. Jb ∈ B; c ∈ L b K =⇒ c /∈ G b c"

and gt_listed: "
∧
b c k. Jb ∈ B; c ∈ G b k; k ∈ L b K =⇒
c ∈ L b"

shows "votes B L G w $ c ≤ votes B L G (w ⇂ c,r) $ c"

A.3.4.4 Components’ continuity

theorem excess_cont:
fixes w :: "(real , 'c::finite) vec"
assumes "finite B"
shows "isCont (excess B L) w"

theorem V_cont:
assumes "finite B"
shows "isCont (votes B L G) w"
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A.3.4.5 Votes invariant

theorem votes_invariant:
assumes "B ⊆ ballots"
shows "card B = (Σk∈all_in B L. votes B L G w $ k) + excess B L w"

A.3.5 General locale interpretation

locale election_with_seats = election ballots L G
for ballots :: "'b set"
and L :: "'b ⇒ 'c::finite set"
and G :: "'b ⇒ 'c ⇒ 'c set" +
fixes seats :: nat
assumes seats_gt0: "seats > 0"

begin

interpretation meek_interp: abstract_meek_carrier "votes ballots (L
:: 'b ⇒ 'c set) G" "quota_hb ballots seats L" "1 :: nat" "0 ::
real" "excess ballots L" "card ballots" seats "all_in ballots L"

abbreviation meek_interp_on where
"meek_interp_on bals ≡ abstract_meek_carrier (votes bals (L :: 'b
⇒ 'c set) G) (quota_hb bals seats L) (1 :: nat) (0 :: real)
(excess bals L) (card bals) seats (all_in bals L)"

lemma subset_interp:
assumes "bals ⊆ ballots"

and "bals ̸= {}"
shows "meek_interp_on bals"

end
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