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ABSTRACT

Van Vleck’s classic theory of the second moment of lineshapes in 1H nuclear magnetic resonance (NMR) is reworked in a form that allows the
effect of rapid molecular motion on second moments to be calculated in a semi-analytical fashion. This is much more efficient than existing
approaches and also extends previous analyses of (non-dynamic) dipolar networks in terms of site-specific root-sum-square dipolar couplings.
The non-local nature of the second moment means that it can discriminate between overall motions that are difficult to discriminate using
alternative approaches, such as measurements of NMR relaxation. The value of reviving second moment studies is illustrated on the plastic
solids diamantane and triamantane. In the case of triamantane, straightforward measurements of 1H lineshapes on milligram samples show
that the molecules in the higher temperature phase undergo multi-axis jumps, information that is not accessible either to diffraction studies
or to alternative NMR approaches. The efficiency of the computational methods means that the second moments can be calculated using a
readily extensible and open-source Python code.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0151022

I. INTRODUCTION

The width of the 1H NMR spectrum is an easily measured
and direct probe of molecular dynamics in organic materials. The
spectra of dynamic solids show clear transitions from “static” line-
shapes at low temperatures (when the dynamics are much slower
than the width of the 1H spectrum) to narrower dynamically aver-
aged spectra when the dynamics exceed the static linewidth (which is
typically about 50 kHz). Calculating the spectral lineshape, however,
requires diagonalization of the nuclear spin Hamiltonian, which
rapidly becomes intractable for large numbers of dipolar-coupled
spins. In contrast, Van Vleck demonstrated early in the development
of NMR that the second moment of the NMR lineshape could be
calculated analytically without diagonalization.1

Practical applications of the second moment require the calcu-
lation of the second moment in the presence of dynamics. This is
straightforward for “intramolecular” contributions to the motion-

ally averaged second moment, that is, involving spin pairs that move
together with the dynamic process.2 There are, however, no general
analytical expressions for the contribution of “intermolecular” dipo-
lar couplings to the second moment.3 Due to the slow convergence
of sum over dipolar couplings with distance, the intermolecular and
intramolecular contributions are typically similar in magnitude (see
examples below), and so the intermolecular contribution cannot be
neglected.

Second moments are generally evaluated in the high-field
limit, i.e., the dipolar Hamiltonian is “truncated” to terms that
commute with the dominant Zeeman interaction, introducing an
orientation dependence to the second moment of solid samples.
This dependence on the orientation of a crystallite with respect to
the magnetic field axis is included analytically in the Van Vleck
expressions derived for static samples. Existing approaches to cal-
culating the intermolecular component of the second moment
in the dynamic limit have, however, required a computationally
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expensive numerical integration over a sphere in order to determine
the orientationally averaged second moment. We provide below,
however, analytical expressions that allow the second moment to
be evaluated without such “powder averaging,” greatly reducing the
computational burden. This allows the calculations to be performed
in modern, portable programming languages rather than languages
designed for computational efficiency. The only public code we have
found for evaluating second moments is a Fortran-based code that is
restricted to threefold diffusional rotation4 and not applicable to the
problem of interest. Given the complexity of calculating motionally
averaged second moments, the lack of flexible public codes creates a
significant hurdle to their practical use.

In this article, we make a case for reintroducing the 1H second
moment as a tool for probing dynamics in organic solids, especially
in cases of whole molecular motion. In Sec. II , we re-present the
theory of second moments in formulations that are more typical
of modern treatments of NMR, in particular, making connections
to “root-sum-square dipolar couplings,” which are a more straight-
forward, and easily understood, measure of the strength of dipolar
coupling networks.5,6 In Sec. III B, we present a Python code to
evaluate second moments and evaluate the usefulness of second
moments on a pair of soft solids from the diamondoid family of
molecular organic solids.

II. THEORY
A. Second moment of static dipolar lineshapes

The spin Hamiltonian, in frequency units, of a set of dipolar-
coupled nuclei is

H = HZ +HD =∑
j

νj,NMRŜ jz +∑
k>j

ŜjD jkŜk, (1)

where the first term is the Zeeman Hamiltonian and νj,NMR is the
Larmor frequency of spin j (potentially at this stage including the
effects of chemical shifts). The second term corresponds to the dipo-
lar couplings between spin pairs, with Ŝ representing the vector of
spin operators (Ŝx, Ŝy, Ŝz). The dipolar coupling tensor, Djk, is axi-
ally symmetric (and traceless) and so can be described in terms of a
single orientation vector,

Djk = Djk(3r̄jk ⊗ r̄jk − I), (2)

where r̄ jk is the unit vector between spins j and k, I is a 3 × 3 identity
matrix, and ⊗ denotes the outer (or tensor) product of two vectors.
Djk is the dipolar coupling constant,

Djk = −μ0h̵γ jγk

8π2r3
jk

, (3)

where the gyromagnetic ratios of the spins, γi, are expressed in
rad s−1 T−1 and Djk is expressed, as in Eq. (1), in frequency units.

In the high-field limit, the dipolar Hamiltonian for a set of like
(homonuclear) spins is “truncated” to the normal expression

H homo
D, jk = DΩ

jk[3Ŝ jz Ŝkz − Ŝ jŜk] DΩ
jk = D jk

⎛
⎝

3γ2
jk − 1
2
⎞
⎠, (4)

where superscript Ω denotes a dipolar coupling constant which
includes its dependence on crystallite orientation Ω, and γjk is the

zz direction cosine relating the direction of the internuclear vector,
r̄ jk = (α jk, β jk, γ jk), to the magnetic field (conventionally oriented
along z).

Van Vleck’s key insight1 was that diagonalization of the Hamil-
tonian is unnecessary if computing the second moment of the
resulting spectral line. Provided we can neglect the effects on chemi-
cal shifts in comparison with dipolar couplings, which is an excellent
approximation for wideline (static) 1H NMR spectra, we can conve-
niently evaluate spectral moments in a frame rotating at the spectral
midpoint, ν0, and the consequent symmetry about zero frequency
means that it is sufficient to consider only the evolution of one, say
x, component of the transverse (xy) magnetization. In the Heisen-
berg formulation of quantum mechanics, the time dependence is put
on the operator,

dF̂x

dt
= i[HD, F̂x], (5)

where F̂x = ∑N Ŝxi denotes the sum x operator over the N spins.
Note that there are no factors involving h, since the Hamiltonian is
expressed directly in frequency units. If we represent the operators
as matrices and consider this equation element by element in a basis
that diagonalizes the Hamiltonian with eigenvalues εn, then7,8

d(F̂′x)m,n

dt
= iνm,n(F̂′x)m,n, (6)

i.e., the signal is a sum of oscillations at frequencies νm,n = εm − εn.
The amplitudes are given by Am,n = ∣(F̂′x)m,n∣2, where the ′ indicates
that the matrix elements are expressed in the basis that diagonalizes
the Hamiltonian.

The normalized second moment of these oscillations, measured
from an origin at ν0, is

M2 = ∑m,n Am,nν2
m,n

∑m,n Am,n

= ∑mn ∣(F′x)mn∣2(εm − εn)2

∑mn ∣(F′x)mn∣2 .
(7)

Note that M2 is expressed here in frequency units rather than the tra-
ditional definition in terms of angular frequency, which is denoted
here as Mω

2 , with Mω
2 = 4π2M2. Most literature values for 1H second

moments are reported in G2 (reflecting acquisition using a varying
magnetic field). These are related to the M2 above by

M2 / kHz2 = 10−14(γH

2π
)

2
(Mω

2 / G2)

= 18.128(Mω
2 / G2)

(using T ≡ 104 G and γH = 2.6752 × 108 rad T−1 s−1).
The key to evaluating Eq. (7) without diagonalization is refor-

mulating the summations in terms of matrix traces using standard
matrix algebra results,
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Tr (∣B∣2) =∑
m
(BB†)m,m

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
m,n
∣Bm,n∣2 if B is Hermitian,

−∑
m,n
∣Bm,n∣2 if B is anti − Hermitian.

(8)

Hence,

M2 = −Tr ([H, F̂ ′x]2)
Tr (F̂′2x )

, (9)

where the minus sign arises because the matrix with elements
(ε j − εk)(F′x) jk is anti-Hermitian. Since Eq. (9) only features traces
of matrices, it is valid in any eigenbasis, including the much more
convenient eigenbasis of the Zeeman Hamiltonian, which allows the
′ to be dropped. Evaluating the commutator in the numerator for the
Hamiltonian of Eq. (4) is then straightforward from the properties of
angular momentum operators,

[Ŝ jŜk, F̂x] = 0, (10)

[Ŝ jz Ŝkz , F̂x] = i(Ŝ jyŜkz + Ŝ jz Ŝky). (11)

Again, the commutators do not contain factors of h since these are
operators returning frequencies rather than true angular momen-
tum operators. Hence,

[H homo
D , F̂x] = 3i∑

k> j
DΩ

jk(Ŝ jyŜkz + Ŝ jz Ŝky). (12)

The traces of squared spin operators are independent of axis label-
ing and easily evaluated for z in the Zeeman basis. Similarly, traces
involving different spins can be evaluated in z for the two spins
independently, e.g.,

Tr (Ŝ1xŜ2y) = Tr (Ŝ1z Ŝ2z) = 0.

Hence, for a system of N spins of the quantum number S, the
following relationships hold:1

Tr (Ŝ2
ja) = 1

3
S(S + 1)(2S + 1)N , (13)

Tr (Ŝ jaŜkb) = Tr (Ŝ2
jaŜ2

kb) = 0 for j ≠ k and any a, b in {x, y, z},
(14)

Tr (Ŝ2
jaŜ2

kb) = 1
9

S2(S + 1)2(2S + 1)N for any a, b in {x, y, z}.
(15)

Combining Eqs. (14) and (15) with Eq. (12),

Tr ([H homo
D , F̂ x]2) = −9 × 2

9
S2(S + 1)2(2S + 1)N∑

k>j
(DΩ

jk)2, (16)

where the factor of two arises from the two pairs of terms of the form
Ŝ2

jaŜ2
kb from squaring Eq. (12). From Eqs. (13) and (14), the other

trace evaluates to

Tr (F̂2
x) = N

3
S(S + 1)(2S + 1)N , (17)

since there are N terms of the form Tr (Ŝ2
ja) and the “cross-terms”

are zero. Hence, we obtain

Mhomo,Ω
2 = 6

N
S(S + 1)∑

k>j
(DΩ

jk)2, (18)

where the Ω superscript indicates that its value will depend on
crystallite orientation Ω.

Re-writing the double sum to give equal treatment to all spins,

Mhomo,Ω
2 = 3

N
S(S + 1)∑

k
∑
j≠k
(DΩ

jk)2. (19)

In practice, we need to determine the second moment averaged
over crystallite orientations. The orientationally averaged (DΩ

jk)2

terms are

⟨(DΩ
jk)2⟩Ω = D2

jk⟨[P2(cos θ)]2⟩Ω = 1
5

D2
jk, (20)

where ⟨⟩Ω denotes the average over the orientation Ω (expressed in
terms of the two spherical angles), and using

⟨[P2(cos θ)]2⟩Ω = ∫
Ω[P2(cos θ)]2 dΩ

∫ ΩdΩ
= 1

5
. (21)

Hence, the orientationally averaged second moment is

M2 = ⟨Mhomo,Ω
2 ⟩Ω = 3

5
S(S + 1)⟨D2

k,rss⟩N (22)

= 9
20
⟨D2

k,rss⟩N for S = 1/2, (23)

where ⟨⟩N denotes the average over the spins, and Dk,rss is the root-
sum-square (RSS) coupling for site k,

Dk,rss =
√
∑
j≠k
(Djk)2. (24)

The RSS coupling has proved a useful and intuitive metric for the
strength of the local dipolar coupling network.5,6 This formulation
of the second moment also avoids the assumption, made in clas-
sic derivations, that the spins are somehow “equivalent”; within the
approximation that dipolar couplings dominate the lineshape, these
expressions are exact, even if different sites have different dipolar
environments. As noted for diamantane in the sample output in the
supplementary material, there can be significant variations between
the Drss values for different H environments.

B. Rotating molecules
Formally, the second moment is invariant to motion. As dis-

cussed by Abragam,3 however, the observable second moment is
reduced by fast dynamics and is determined by the time-averaged
Hamiltonian (as is assumed without comment in most literature on
second moments). Splitting the Hamiltonian into time-dependent
and time-independent terms, the key trace in Eq. (9) becomes

Tr ([H (t), F̂ x]2]) = Tr ([⟨H ⟩, F̂ x]2) + ⟨ [H (t) − ⟨H ⟩, F̂ x]2]⟩,
(25)
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where ⟨⟩ refers to averaging over time, t. The first-term determines
the observable second moment and corresponds to evaluating the
second moment with the time-averaged dipolar Hamiltonian. The
associated lineshape will have a strong Gaussian character, which
is practically significant, as noted below. In contrast, the second
term will involve frequencies over a wide frequency range (deter-
mined by the characteristic frequency of the motion). In the limit
of fast motion being considered, these will be outside the spectral
width.3 Hence, although mathematically significant for preserving
the invariance of the second moment, the second term is effectively
unobservable.

For systems with long-range order, we can, in principle, use
second moments quantitatively to distinguish between different
dynamic processes. As noted above, however, there are no general
analytical expressions for evaluating the intermolecular component
of the second moment in the presence of dynamics. Moreover, the
classic Van Vleck expressions, re-derived above, assume “normal”
dipolar tensors with zero asymmetry. Since dynamic averaging can
result in average tensors with a non-zero asymmetry parameter (typ-
ically from averaging over two-site jumps), the above-mentioned
standard expressions cannot be used.

We can, however, straightforwardly extend the above-
mentioned derivation to calculate second moments directly from the
principal values of dynamically averaged tensors, D̄ jk. For a conven-
tional dipolar coupling tensor, the zz term in the high-field limit
is (DL

jk)zz = 2DΩ
jk, where L denotes the laboratory frame and DΩ

jk
depends (only) on the θ spherical angle as in Eq. (4). By analogy
with the quadrupolar coupling tensor,9 the corresponding term of a
general average dipolar coupling tensor will depend on both θ and ϕ
polar angles as

(D̄L
jk)zz = 2D jk(3 cos2 θ − 1

2
+ η sin2 θ cos 2 ϕ). (26)

Note that the sign of the η term will depend on the conventions used
for ordering axes and defining the ϕ polar angle, but is irrelevant for
the final result.

The individual (orientationally averaged) contributions to the
sum-square couplings are given by

⟨(DΩ
jk)2⟩Ω = D2

jk(1
5
+ η2

15
), (27)

where the following orientational averages have been used [in
addition to Eq. (21)]:

⟨(3 cos2 θ − 1)sin2 θ cos 2ϕ⟩Ω = 0, (28)

⟨sin4 θ cos22ϕ⟩Ω = 1
15

. (29)

This minor modification to Eq. (20) effectively extends to the appli-
cations of root-sum-square couplings to any system where tensors
have been averaged by fast dynamics. It also allows orientation-
ally averaged second moments to be efficiently calculated using the
existing relationship between M2 and Dk,rss values [Eq. (23)].

The “intermediate” timescale, in which the motional corre-
lation time lies between the limits of fast and slow motion, is

considerably more complex and is not discussed here; see Ref. 10 and
references therein. It is worth noting, however, that a pre-condition
for analyzing the intermediate regime is that the fast-motion limit of
M2 is known,11 either from experiment or from calculation.

III. COMPARISON WITH EXPERIMENT
A. Experimental details

Experimental 1H NMR data were acquired as a part of a wider
study of dynamics in diamondoid materials. Experimental details
and raw data are provided for the subset of results used here for
experimental verification.

To maintain sample history across static and spinning experi-
ments, samples were packed into 4 mm zirconia rotors, which were
placed in a 5 mm glass holder to ensure that the filled rotor was
in the center of the coil. In contrast to diamantane, which is avail-
able commercially, there was limited triamantane sample available
(∼20 mg). Hence, the limited volume of sample was sealed inside
a Kel-F (polychlorotrifluoroethylene) insert before packing into the
zirconia rotor. Static wideline solid-state NMR 1H spectra were
obtained using a Bruker Avance III HD spectrometer operating at
400.17 MHz and a static 5 mm probe. Spectra were recorded using a
solid echo (SE) with a 15 μs inter-pulse echo delay. The triamantane
spectra below 469 K showed significant signal from the Kel-F insert,
and so additional spectra (denoted IR) were acquired using inver-
sion recovery with a delay between 0.5 and 1.0 s to approximately
nullify this more rapidly relaxing component.

Three different sample temperatures were analyzed for each
material: 211, 411, and 498 K for diamantane, corresponding to
three distinct motional regimes observed in earlier studies, and
192, 360, and 469 K for triamantane, corresponding to the static
limit and two distinct motional regimes (see Figs S5 and S6 in the
supplementary material for plots of the temperature dependence
of M2). In both cases, the highest temperature corresponds to a
highly dynamic regime in which bulk molecular diffusion is likely
to be present (by analogy with the behavior of adamantane12). Note
that the static limit for diamantane (transition temperature 135 K13)
could not be accessed using the equipment available. Temperatures
were calibrated using ethylene glycol and methanol (details in the
data archive), with an estimated uncertainty on individual presented
temperatures of ±5 K.

B. Calculation implementation
The calculation of second moments in crystalline systems was

implemented in Python 3 using the Soprano library for NMR crys-
tallography, which in turn relies on the Atomic Simulation Envi-
ronment (ASE) library,14 a widely used support library for atomistic
calculations. The unit cell of the starting structure can then be spec-
ified using any format read by ASE (although typically CIF) and is
assumed to be a three-dimensional periodic structure of a molec-
ular solid. The distinct molecules in the unit cell are identified by
Soprano functions on the basis of short internuclear distances (com-
pared to the sum of Van der Waals radii). The use of standardized
libraries allows the code to be kept compact and readily extensi-
ble, in contrast to previous monolithic codes. In its current form,
vanVleck Calculator assumes that the motion involves whole
molecules undergoing n-fold diffusional rotation about one or more
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axes. These axes are specified in terms of site labels present in the
initial structure, for instance, the C2 axis in triamantane links car-
bon atoms with labels C1 and C53. The effects of combined n- and
m-fold rotations on the atomic positions are evaluated to produce an
M = n ×m × ⋅ ⋅ ⋅ set of atomic positions.

The effects of dynamics on intermolecular couplings cannot be
expressed analytically since the magnitude and orientation of the
dipolar tensors change as the spins move relative to each other. It
is straightforward, however, to numerically average tensors over the
motion. The intramolecular contributions to the second moment
are evaluated for a “reference” molecule containing the rotation
axis/axes, and the dipolar tensors are averaged over the M molecu-
lar positions. For intermolecular couplings, and assuming the same
uncorrelated motion on all molecules, there will be M2 pairs of
relative molecular orientations,

⟨Dinter
jk ⟩ = 1

M2

M

∑
l

M

∑
m

D jk(Φl, Φm), (30)

in which each tensor is computed using the internuclear vectors
rjk(Φl, Φm) corresponding to the different orientational states, Φ, of
the two molecules. The averaged tensors will not, in general, have
axial symmetry (η = 0), and so the Van Vleck formulae cannot be
used. The solution in the previous literature, e.g., Ref. 15, was to
compute second moments from explicit calculations of motionally
averaged DΩ

jk terms. Because these values depend on the crystal-
lite orientation, a computationally expensive powder average is
needed.16 In contrast, here we use Eq. (27) to calculate M2 val-
ues directly from the eigenvalues of the averaged tensors obtained
from Eq. (30), considerably improving computational efficiency.
The overall efficiency means that there is little benefit in removing
symmetry-equivalent combinations of Φl, Φm.

The total intermolecular and intramolecular contributions to
the sum-square coupling are evaluated for each H site of the ref-
erence molecule. The intermolecular component of the second
moment converges relatively slowly with increasing distance. The
cut-off is specified in terms of a radius from the center of mass of the
“reference” molecule; only “remote” molecules with a center of mass
within the radius are included in the summation. Finally, the over-
all second moment is determined from the mean of the sum-square
couplings at each site [Eq. (23)]. A sample output is given in Sec. III
of the supplementary material.

C. Discussion
Table I shows the results of calculating second moments on dia-

mantane and triamantane using the approach described above and
different models for the motion shown in Fig. 1. Including molecules
up to a radius of 20 Å from the reference molecule (which corre-
sponded to 134 and 108 molecules for diamantane and triamantane,
respectively) provided values that converged to 0.1 kHz2. The crys-
tal structures were taken from the Cambridge structural database17

(refcodes CONGRS and TRIAMT01 for diamantane and triaman-
tane, respectively). As noted in a previous study to calculate Drss
values from crystal structures,5 using uncorrected H positions can
lead to unreliable results; e.g., the calculated dipolar coupling within
a CH2 is extremely sensitive to systematic errors in C–H distances in
the associated x-ray diffraction studies. Hence, the H positions were
relaxed using CASTEP18 (at fixed unit cell geometry). In the case of

TABLE I. Calculated powder-averaged M2 values (in kHz2) for different motional
models.

Intramolecular Intermolecular Total

Diamantane

Static 261.3 138.2 399.5
C2 164.2 43.3 207.4
C3 67.0 35.4 102.4
C3 + C2 67.0 16.4 83.5

Triamantane

Static 260.7 128.7 389.4
C2 147.9 42.0 189.9
Pseudo-C2 (long) 165.7 46.6 212.3
Pseudo-C2 (short) 173.3 43.8 217.1
Any two C2-like axes 113.1 18.7 131.8

diamantane, for example, the second moment was over-estimated by
about 15% using un-optimized diffraction co-ordinates. In contrast,
there was a negligible difference in calculated M2 values depending
on whether just H positions or all atomic positions were relaxed.
Note how the intermolecular contribution to the second moment is
not negligible, especially in the static limit, but even in the dynamic

FIG. 1. Molecular structures of diamantane and triamantane, illustrating motional
axes considered in the second moment analysis.
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case, neglecting that intermolecular component would lead to sig-
nificant discrepancies with experimental values. Historically, this
has complicated the practical application of second moments; in
the earlier study of diamantane motion via second moments,13 the
intermolecular contribution was estimated in a rather ad hoc way by
analogy with similar systems.

Considering the values in Table I, it is unsurprising that rota-
tion about a Cn axis with n > 2 (diamantane) leads to a very large
reduction in second moment, which is measurably different from
the effects of twofold rotations. Note how the introduction of a
C2 motion has no effect on the intramolecular component of M2,
since the dipolar tensors averaged by the C3 motion are invariant
to a C2 around a perpendicular axis. In the case of triamantane,
three C2-like motions can be proposed. Note that any pair of C2-like
motions generates the third, and so there is no physical significance
to considering all three motions simultaneously, and the same value
of M2 is obtained for any pair of the C2-like motions. The sec-
ond moment values, however, differ measurably between models
involving a single C2-like motion and two such motions.

Various approaches were evaluated to determine the sec-
ond moment from the experimental data. As discussed in the
supplementary material, it was difficult to obtain consistent val-
ues for the second moment in the static limit, i.e., triamantane at
192 K, and these tended to over-estimate M2 compared to calcula-
tions. These discrepancies are thought to arise from contributions
of higher-order moments when using spin-echoes for detection.19

On the other hand, the lineshapes in the “intermediate” temperature
regime have a strong Gaussian character, and robust and consis-
tent values could be obtained. In the high temperature limit, where
M2 is small, the lineshape is increasingly determined by relaxation
and develops Lorentzian characteristics. Second-moment analysis is,
therefore, inappropriate in this limit.

Figure 2 shows the quantification of the experimental sec-
ond moment of the diamantane and triamantane samples in the
key “intermediate” regime in which the 1H lineshape is partially
averaged by dynamics. In agreement with the predictions noted pre-
viously,3 the spectra in this regime fit well to Gaussian functions;
similar observations have been made for dipolar lineshapes aver-
aged by magic-angle spinning.20 The experimental values shown in
Table II are quoted to the nearest 5 kHz2. This estimated uncer-
tainty is much larger than the very small statistical uncertainties
in the fitting (shown in Table S1 in the supplementary material),
which simply reflect the high signal-to-noise ratio of the 1H spectra.
This 5 kHz2 figure is a more reasonable estimate of the uncer-
tainty in the experimental values; as shown in Figs S5 and S6 of the
supplementary material, the second moment values steadily increase
with temperature as a result of increased molecular libration, intro-
ducing significant uncertainty in estimating a second moment free
of librational effects.

As shown in Table II, the motion of diamantane at 221 K is
clearly consistent with rapid dynamics about its C3 symmetry axis.
The dynamics in the higher temperature regime (sampled here at
441 K) indicates that the molecules are constrained but are under-
going significantly more motion than at 221 K. This motion has
previously been described in terms of rotation about an additional
“L” axis tilted away from the symmetry axis.13 A more likely scenario
is that there is significant overall motion of molecules at these ele-
vated temperatures, permitting frequent flips around their C2 axes

FIG. 2. Static 1H spectra (solid black) fitted to Gaussian lineshapes (dashed red),
including, if needed, an additional Gaussian (gray) to fit out the insert signal. The
fitted M2 values are shown in Table II.

(corresponding to a jump-only value of M2 of 83.5 kHz2), plus a
significant reduction of M2 due to the overall motion and associ-
ated thermal expansion of the lattice (cf. the temperature of M2
in Fig. S5).

In the case of triamantane, the second-moment results clearly
show that the dynamics of the molecules must involve jumps about
multiple C2-like axes. The energetic barriers are expected to be low-
est for the symmetry-preserving C2 and the symmetry-breaking “top
over bottom” flip of the molecule about the long molecular axes. As
in the case of diamantane, the experimental second moment in the
high temperature regime is significantly smaller than the prediction
from an idealized motion, due to overall libration. This picture is
consistent with diffraction data in which a gradual order-disorder
transition between 273 and 303 K was found to be associated with
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TABLE II. Experimental M2 values (to the nearest 5 kHz2) and best match from
calculated values.

Experiment Calculated

Diamantane

221 K 100 C3 axis: 102.4
411 K 55 C3 + pseudo-C2: 83.5

Triamantane

360 K 120 Two C2 axes: 131.8

an additional pseudo-mirror plane corresponding to a symmetry-
breaking flip of the molecules.21 Crucially, however, the diffraction
data are not sensitive to the symmetry-preserving C2 motion and
so the NMR data, via the second moments, are providing a more
complete picture of the dynamics in this material.

It is important to note that attempts to understand the motion
of triamantane by other techniques were unsuccessful; indeed,
this provided the initial motivation to consider using 1H second
moments. In particular, it was not possible to distinguish between
motional models for triamantane using 13C relaxation time mea-
surements. First, because there was a narrow window between phase
transition temperatures and the point at which 13C linewidths were
too degraded by interference between the dynamics and the 1H
decoupling.22 Second, and in contrast to diamantane, in which the
C3 motion has a distinctly different effect on different C–H bond
vectors, the C2-like motions in triamantane all have similar effects
on individual bond vectors. Hence, it was not possible to iden-
tify the motion using 13C relaxation time constants calculated for
specific motional models.23 In contrast, the second moment con-
tains a significant “non-local” contribution, via the intermolecular
component. Relaxation times, for either 13C or 1H, also struggle
to distinguish between large and small amplitude motions; in par-
ticular, a large amplitude motion that leads to an inversion of the
NMR tensor will not modulate the interaction and will not affect
relaxation times. This inherent ambiguity is much less likely in
second-moment values since they are summed over multiple dipolar
interactions, which are affected both by orientation with respect to
the external field and by the physical distances between atoms. On
the other hand, the differences in averaged second moment between
alternative C2-like axes in Table I are generally small, i.e., it is not
realistic to distinguish between very similar motional models using
second-moment data.

As recently argued in the context of polymeric materials,10

we argue that the 1H second moment is a useful complementary
tool for studying molecular reorientation in organic solids. Extend-
ing Van Vleck’s original derivation, we can efficiently calculate
site-resolved root-sum-square couplings and second moments for
different motional models in crystalline materials. The code is pub-
licly available24 and can be readily modified to include more complex
scenarios than the plastic crystalline materials considered here.

SUPPLEMENTARY MATERIAL

The supplementary material contains a discussion of different
methods for quantifying the experimental second moment, the full
temperature dependence of M2 for diamantane and triamantane,
and a sample output from the calculation.
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