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Abstract
In the quantum optimisation setting, we build on a scheme introduced by Young et al (2013 Phys.
Rev. A 88 062314), where physical qubits in multiple copies of a problem encoded into an Ising
spin Hamiltonian are linked together to increase the logical system’s robustness to error. We
introduce several innovations that improve the error suppression of this scheme under a special
model of control noise, designed to understand how limited precision could be overcome. First, we
note that only one copy needs to be correct by the end of the computation, since solution quality
can be checked efficiently. Second, we find that ferromagnetic links do not generally help in this
‘one correct copy’ setting, but anti-ferromagnetic links do help on average, by suppressing the
chance of the same error being present on all of the copies. Third, we find that minimum-strength
anti-ferromagnetic links perform best, by counteracting the spin-flips induced by the errors. We
have numerically tested our innovations on small instances of spin glasses from Callison et al (2019
New J. Phys. 21 123022), and we find improved error tolerance for three or more copies in
configurations that include frustration. Interpreted as an effective precision increase, we obtain
several extra bits of precision on average for three copies connected in a triangle. This provides
proof-of-concept of a method for scaling quantum annealing beyond the precision limits of
hardware, a step towards fault tolerance in this setting.

1. Introduction

In order to perform a quantum computation and benefit from the predicted quantum speedup [1–4], it is
necessary to maintain coherent quantum states for relatively long periods of time in the presence of noise.
For quantum computers to be viable, ways of suppressing and correcting the errors caused by the noise are
therefore necessary. For gate-based quantum computing, a framework for overcoming these obstacles was
established with the development of fault-tolerant quantum error correction (QEC) in [5, 6] and its
scalability in [7, 8]. Redundancy is created by entangling multiple qubits together. To detect errors, rather
than directly measuring the data qubits, auxiliary qubits are introduced such that measuring the auxiliary
qubits tells us about the parity between the data qubits. From these measurements, the qubit (or qubits) on
which an error has occurred may be identified and then corrected. These error correction methods have also
been adapted to measurement-based quantum computing [9] using techniques such as lattice surgery [10].
Many refinements and improvements continue to be developed in the gate model setting (for a recent review,
see [11]), in particular to reduce the number of physical qubits required per logical qubit.

For other types of quantum computing, error correction is less well-developed. In this paper, we focus on
continuous-time quantum computing, which includes adiabatic quantum computing (AQC), quantum
annealing, and continuous-time quantum walks. Each of these start with the quantum system in an initial
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state that is the easily prepared ground state of a simple Hamiltonian Ĥ0. The system is then driven over time
into the ground state of a Hamiltonian ĤP that encodes the problem to be solved. The Hamiltonian Ĥ(t) that
carries out the computation can typically be written,

Ĥ(t) = A(t)Ĥ0+B(t)ĤP, (1)

where A(t) and B(t) are the time-dependent control functions which differ for each type of continuous-time
quantum computing.

In AQC, A(t) is varied from 1 to 0 and B(t) from 0 to 1, slowly and smoothly. As the system is evolved
from Ĥ0 to ĤP, it remains in the ground state with high probability [12, 13]. Quantum annealing also evolves
the system from Ĥ0 to ĤP, however, instead of relying on the condition of adiabaticity, it uses other effects
such as cooling towards the ground state [14, 15]. Terminology around quantum annealing is not universally
agreed upon, but generally it is considered to encompass both cases where environmental dissipation plays a
role in the computation, and where closed system effects dominate but evolution is faster than adiabatic
(known as diabatic quantum annealing [16]). Continuous-time quantum walks evolve the system under a
time-independent Hamiltonian with the constant functions A(t) = γ and B(t) = 1, where γ is a hopping rate
between states, followed by measurement at a suitable time tf [17, 18]. In the case of quantum walks and
quantum annealing, the probability of finding the correct ground state will usually be significantly less than
unity, and repetitions are used to increase this probability. These three continuous-time techniques can be
thought of as extremal points in a space of hybrid methods that can be interpolated between [19], to find
methods suited to a particular problem and hardware.

While continuous-time quantum computing can be affected by bit-flip and phase-flip errors induced by
environmental noise, similar to gate-based quantum computing, the equivalent of gate errors appear as
errors in controlling the Hamiltonians. These include limited resolution in the hardware controls that hence
cannot implement sufficiently precise values of the fields and couplers, and limitations in the dynamical
controls that enact the functions A(t) and B(t) as the anneal is performed.

Scalable fault-tolerant QEC for continuous-time quantum computing has yet to be established and is
subject to several caveats [20–22], in particular, that two-local commuting Hamiltonians are not sufficient
for constructing ground subspace encodings [22]. Despite the challenges, a variety of schemes for error
correction and suppression in continuous-time quantum computing have been developed, generally referred
to as Hamiltonian error suppression [16]. Most can be grouped into categories: energy penalty Hamiltonians
[23–26]; dynamical decoupling [27–29]; subsystem codes [30–34]; continuous-in-time techniques [20, 35,
36]; via qubit ensembles [37]; the Zeno effect [38]; and QAC [39–49]. In addition to these techniques for
explicit error suppression and/or correction, quantum annealing may be carried out in some circumstances
without error correction, as long as sufficiently many repetitions are implemented [50–54].

In this paper, we develop a scheme to protect the ground state of an Ising problem Hamiltonian from
errors due to lack of precision in implementing its fields and couplings. Our scheme is built on quantum
annealing correction (QAC), first introduced in [39, 41]. We introduce several innovations to the scheme in
[39, 41]. In QAC, C copies of an Ising Hamiltonian are connected together in chain or grid structures via
strong ferromagnetic links, acting similarly to a repetition code as used in gate-based quantum computing or
classical error correction. Indeed, since Ising Hamiltonians, and the problems encoded in them, are classical
(solutions are represented by computational basis states), only bit-flip errors need to be considered to protect
the problem Hamiltonian. Phase errors may become important in the dynamics when the driver
Hamiltonian Ĥ0 is used, but are not relevant to the error models in the setting we consider in this work.

Our innovations are as follows. First, we note that in the setting where we are solving hard classical
optimization problems, we only need one of the copies to provide a correct answer. This is because it is
efficient to compare the quality of the candidate solutions, and select the best one. This is the strategy
employed in practical implementations using multiple runs, regardless of any error correction techniques
used. This fundamentally changes the criteria for evaluating the performance of the error correction
strategies, and thus identifies different strategies that work well. Second, we use weak anti-ferromagnetic
links to connect the corresponding qubits in the copies, rather than strong ferromagnetic links. As we will
show, anti-ferromagnetic links can suppress the probability of an error affecting all of the copies, while
ferromagnetic links do not. Third, we ensure the anti-ferromagnetic links induce frustration in the system by
connecting three copies in a triangle configuration (each logical qubit is formed from three physical qubits
connected this way). This improves the suppression of errors. In our work, we find that three copies
connected in a triangle using weak anti-ferromagnetic links can maintain the correct ground state on one or
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more of the connected copies, even when the errors have changed the ground state for a single problem
instance.

We note that for the parameter specification (control noise) error model we study in this paper, the
benefits from QAC using strong ferromagnetic links were already found to be modest. Nonetheless, under
experiment on D-Wave machines, this type of QAC was found to provide a large enhancement to success rate
in some cases [40–43, 45, 47, 55], indicating that the dynamics also play an important role in how the errors
are suppressed.

We have numerically tested our innovations on small instances of three problems:
Sherrington–Kirkpatrick (SK) spin glasses as studied in [56]; maximum independent set; and Ising spin
chains with random couplings. However, spin chains have been found to exhibit counter-intuitive statistical
effects [57], so will not necessarily provide a good guide for how other types of problems behave.
Understanding the behavior for Ising spin chains is important in relation to minor embedding techniques
used to instantiate highly connected problems into less connected hardware. Anti-ferromagnetic spin chains
were studied in [40] and found to be particularly challenging for QAC, due to the domination of domain
wall errors in this type of problem. Minor embedding employs chain like structures and hence reduces the
performance of QAC.

We use a simple error model to represent limited precision in applying the fields and couplings in the
Ising Hamiltonian. Interpreting our results as improved precision, using three connected copies can gain
several bits of effective precision in the fields and couplings that represent the problem. Since larger problems
require more precise settings, our results provide proof-of-concept that linked copies can be used to increase
the size of the problem that can be solved on hardware with limited precision. This is similar in spirit to error
correcting codes removing gate errors in digital quantum computing, allowing longer and larger
computations to successfully complete, but at a cost of using more qubits. Our results open the door to a
route to scalability and the equivalent of fault tolerance in a continuous-time quantum computing setting.
Our results are numerical, limited by classical computing capabilities, and are thus proof-of-concept, not
proof. Nonetheless, they are important for introducing and validating the ideas as a prelude to further
development.

Our approach is complementary to the work developing nested QAC [43, 47, 48, 58] and penalty qubit
QAC [40–42, 44–46, 55, 58] where an odd number of copies are linked ferromagnetically, and the repetition
code is most often decoded by majority vote, although ‘coin tossing’ or energy minimization may also be
used [41]. The mean field analysis in [44] shows that, for simple Ising or p-spin ferro- or anti-ferro problem
Hamiltonians, copies connected in complete graph structures (all to all couplers) can prevent closing of the
minimum energy gap and for nested quantum annealing in [47], reduce the effective temperature, or,
equivalently, increase the effective energy scale, both of which mitigate against thermal and other
environment-induced errors.

The paper is organized as follows. In section 2 we provide background to quantum optimization in a
transverse Ising model setting, and introduce several concepts relevant for our error models. In section 3 we
summarize the numerical methods we used to test our models. In section 4 we describe how we determined
the best link strength to use. Then in section 5 we show how this leads to a significant improvement in the
precision on average. In section 6, we test how the dynamics of quantum walks interact with on our error
suppression strategy. We conclude in section 7.

2. Background

2.1. Transverse Ising Hamiltonian optimization
Classical optimization problems can be efficiently encoded [59] into an n-qubit Ising Hamiltonian ĤP of the
form

ĤP =
n−1∑
j=0

hjẐj +
n−1∑

j̸=k=0

JjkẐjẐk, (2)

where the fields with strengths hj act on the jth qubit and the couplings with strengths J jk act between the

qubits j and k. The Ẑj operators are tensor products

Ẑj =

(
j−1⊗
r=0

I2

)
⊗ Ẑ⊗

 n⊗
j+1

I2

 , (3)
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which act non-trivially with a Pauli-Z operator Ẑ on only the jth qubit. The strengths of the fields hj and
couplings J jk will be limited in range by the hardware capabilities. To model this, we use a range restricted to
the interval [−1,1] for both in our numerical simulations.

2.2. Definitions of problems used
The three different problems we use in this work are:

(a). A data set of SK spin glass instances which were generated for research reported in [56] and made
available here [60]. Finding the ground state of SK spin glasses is NP-hard, and also ‘uniformly hard’,
meaning almost all problem instances are hard at large sizes. SK spin glasses [61] are defined by,

HSK =−1
2

n−1∑
( j ̸=k)=0

JjkSjSk, (4)

where Sj are the classical spins (Sj ∈ {−1,1}) and the couplings J jk are drawn independently from a normal
(Gaussian) distibution with mean zero and standard deviation σ. Single-body field terms,

∑n−1
j=0 hjSj are

added to break the spin inversion symmetry, where hj are the field strengths and are also drawn
independently from the same normal distribution as the couplings. In order to map this to the quatum Ising
model, the classical spin variables Sj are simply mapped to Pauli-Z operators and the problem Hamiltonian
becomes,

ĤSK =−1
2

n−1∑
j ̸=k=0

JjkẐjẐk −
n−1∑
j=0

hjẐj. (5)

(b). The maximum independent set (MIS) is an NP-hard problem that is well-studied in computer
science/graph theory. An independent set is a set of vertices in a graph G that are not adjacent (i.e. not
connected by an edge). The MIS is the maximum possible size of this set for a given graph G. A five vertex
problem is used as an example to show the effect of our error suppression method in section 2.4.

(c). Ising spin chains have qubits linked with couplings Jjk ̸= 0 when k= j+ 1. They are similar to the
multi-qubit variable mappings used on D-Wave machines for minor embedding [62–64]. However, unlike
the SK spin glasses, finding the ground state of spin chains can be solved efficiently classically, and they have
been shown to exhibit counter-intuitive statistical effects [57], so they are not suitable for gaining insight into
the behavior of more general types of problem Hamiltonians. Nonetheless, they are important for real
hardware architectures (e.g. minor embedding), and their simplicity is useful in illustrative diagrams.

2.3. Error models and precision
In any real hardware, there is a limit to how precisely a field hj or coupling J jk can be set. The theoretical
model in equation (2) allows these to be real numbers, but in practice we only have a fixed number of
possible values available. Thus, we cannot in general represent the problem Hamiltonian exactly, the limited
resolution of the hardware will be a potential source of error, even before we carry out the computation. This
issue was first recognised in the AQC setting by Young et al [39]. There are many other sources of errors in
real hardware, but in this work, we focus just on the effects of limited precision. This is a simple and easy to
understand model that is of practical importance. A deeper understanding of one type of error is useful for
designing error mitigation strategies that can handle realistic situations with multiple sources of error.

Our model of limited resolution, quantified by the precision p, divides the range [−1,1] into 2p + 1
possible values (the resolution). The natural way to do this for periodic boundary conditions is as shown in
figure 1. The divisions shown below the line are labeled by their midpointsmp, and zero is one of the
midpoints. The endpoints of the division labeled zero are±2−p, with p= 2 for the upper line and p= 3 for
the lower line. The precision p is thus the number of classical bits needed to represent the possible values in
the range [−1,1]. Of course, we do not have periodic boundary conditions for the fields and coupling
strengths hj and J jk. The natural way to divide a range with endpoints is to shift the divisions in figure 1 so
that the midpoints are±2−p, etc. However, this means there are two divisions that could represent
approximately zero, and for reasons which will become clear when we present our results, we prefer to have
only have one division representing approximately zero. Hence, we use the model in figure 1, but with two
‘half divisions’ at each end.

Operationally, limited precision means that when we try to set a parameter tomp, the midpoint of the
division, the actual value obtained in the hardware could be anywhere betweenmp ± 2−p, with some
probability distribution. More generally, if we set try to set a value x such thatmp − 2−p ⩽ x⩽mp + 2−p,
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Figure 1. Two number lines showing the resolution available between−1 and 1, from p= 2 bits (22 = 4 values) and p= 3 bits
(23 = 8 values). The uncertainty of each of the values is shown below the line in alternating red and blue delineations of the
divisions. Underneath the number line for 3 bits, the area between 0 and -0.5 is expanded to show the location of the midpointmp

and the upper and lower limits:mp ± 2−p.

we instead obtain a value y such thatmp − 2−p ⩽ y⩽mp + 2−p with probability P(y|x). If P(y|x) is
the uniform distribution on the intervalmp ± 2−p, the average error in x scales quadratically in x, as
εu = 2p−1{(x−mp)

2+ 2−2p}, ranging from 1
2 2

−p for x=mp to 2−p for x at the endpoints of the division,
with the average over x being ⟨εu⟩x = 2

3 2
−p.

When using our random error model, for each Ising model instance, we take several repeats. For each
repeat, we obtain different random values (within the intervalmp ± 2−p) of the parameters, and therefore the
probability that we find the correct ground state changes each time. After a certain number of repeats we
measure the fraction correct of the singular instance. That is, the fraction of repeats where we find the correct
ground state. The fraction correct is determined for each Ising model instance and then averaged over the
total number of instances in the data set in order to find the average total fraction correct. In this paper, for
the non-deterministic random error model we used ten repeats (equivalently ten error samples) unless
otherwise specified.

Instead of averaging over the error distribution P(y|x), for numerical simulation purposes it is useful to
use a deterministic error model, as it simplifies our numerical simulations. When using a deterministic error
model, instead of averaging over many randomly chosen y for each x, we use a single randomly chosen y for
each x at precision p. This also means that using repetitions will not increase the probability of a successful
computation, if the randomly chosen y gives the wrong ground state. This allows us to separate the effects of
repeat runs from the effects of our error mitigation strategies. When using the deterministic random error
model, we take a single random error sample of each of the parameters in each Ising model instance.

Another natural model is, when taking a single error sample for a deterministic model, to round to the
midpointmp in each division, a model of a dial which only has discrete settings available. The error in the
mid-point model scales linearly, εm = |x−mp|, ranging from zero at the midpoint to 2−p at the endpoints,
with the average over x being ⟨εm⟩x = 1

2 2
−p. This underestimates the error compared to the random error

models, especially when the exact x is close tomp. However, especially when the precision p is low, using the
mid-point model means there is a high likelihood of terms within the Hamiltonian cancelling, leading to a
high level of degeneracy in the ground state of the Ising model instance with error. This high level of
degeneracy is not realistic for experimental hardware, for example in flux qubit quantum annealers, as
programmable coupling values are not evenly spaced [65]. The high level of degeneracy also causes problems
in numerical simulation, if the degenerate ground states include the correct solution. Hence, we use the
random error models for most of our simulations. Real hardware is likely to have a non-uniform distribution
for P(y|x), so neither the random nor the mid-point model is preferred on realistic grounds.

We illustrate the difference between the error models in figure 2, by calculating the fraction of instances
with correct ground states when rounded to a given precision p. The data plotted have been computed using
the 5 qubit instances from [60]. Each of the 104 instances was subjected to one of the error models, which
generated an approximated Hamiltonian. The ground state of this approximated Hamiltonian was then
compared to the ground state of the exact Hamiltonian. Each of the 104 instances has been processed with
three different error models. First for the midpoint model, where each field hj and coupling J jk is rounded to
the nearest midpoint value allowed by the precision 1⩽ p⩽ 10. Second for the deterministic random model,
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Figure 2. Fraction of instances with the correct ground state vs precision p for 104 instances of 5 qubit SK spin glasses, rounding
each of the parameters to the midpoints (red), a single sample of random uniform errors on each of the parameters (green) and
103 instances, averaging over 10 samples of uniform random errors on each of the parameters (blue).

where a single new instance was generated by drawing new values for each hj and J jk uniformly at random,
across the division around the nearest midpoint value, for each precision 1⩽ p⩽ 10. Third for the uniform
random model, where instead of just one, ten new instances were generated in the same way as for the
deterministic randommodel. The fraction retaining the correct ground state is obtained by averaging over all
the data for each error model and precision. As predicted, the midpoint model (red) finds the correct ground
state slightly more often than the uniform random model (blue) and the deterministic random model
(green) at low values of p. The differences between the mid-point, deterministic random and uniform
random method are small, and the qualitative behavior is the same for all three models.

Figure 2 also shows the typical size of the errors introduced by reducing the precision. For the small sizes
we study (up to 9 qubits, limited by computational resources available), to break more than 5% of the
instances requires reducing the precision to around p≲ n where n is the number of qubits. This makes sense
intuitively, because n qubits can only represent 2n different outcomes, meaning that the average gap between
adjacent energy eigenstates will be of order 2−n, and errors smaller than this are unlikely to change the
ground state.

2.4. Error suppressionmethod
As we have shown in figure 2, for precision p≲ n, the ground state changes in a significant fraction of the
spin glass instances, meaning that a computation correctly finding the ground state will not always solve the
original problem. Our aim is to find a way to reduce these errors by using several copies, like a repetition
code. In the uniform random error model, repeating the computation has a chance of finding the correct
ground state in some of the attempts, as sometimes the incorrect settings will be close enough to the true
values. However, in the midpoint and deterministic random models the error is deterministic, standalone
repeats will not help, unless there are degenerate ground states that include the correct solution. Using the
midpoint or deterministic random model thus provides a tougher test for our error correction methods:
none of the improvement is due to repetition alone.

Instead of repeat runs, we use several copies at the same time, and link the corresponding qubits to each
other with coupling strength JF . The Hamiltonian at precision p for the system of C Ising model copies with
each set of corresponding qubits connected according to a graph G can be written as

Ĥ(C)
p =

C−1∑
c=0


n−1∑
j=0

h(p)j Ẑ(c)
j +

n−1∑
j̸=k=0

J(p)jk Ẑ(c)
j Ẑ(c)

k

−
n−1∑
j=0

∑
c,c ′∈G

J(p)F Ẑ(c)
j Ẑ(c ′)

j , (6)

where c, c ′ ∈ Gmeans copies c and c
′
correspond to endpoints of an edge in graph G.

When applying precision errors to the Ising model copies we first define the errors on each parameter

(h(p)j , J
(p)
jk ) according to the error model we are using. This same error is then applied to the corresponding

parameters in each of the connected copies. We note that whilst in experiment it would be extremely unlikely
to have the same errors on different copies, we prescribe our errors in this way to be consistent with the error
model when doing repeats of the singular disconnected copy. This means we have the same tougher test
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Figure 3.Diagram of two and three copies of a 5 qubit Ising chain (thin black links) with anti-ferromagnetic links (red/pink links)
in a chain (left) configuration and three copies of the same Ising chain with anti-ferromagnetic links in a triangle (right)
configuration. The red links identify the corresponding qubits on the left end of the chain; the pattern continues with the pink
links for the other four qubits.

when using the deterministic random error model as for the singular copies, i.e. if one copy is incorrect, this
means all three copies should be incorrect (if JF = 0).

When J(p)F > 0 (ferromagnetic links, as used in [39–48, 55]), the final term in this Hamiltonian makes it
energetically favourable for the qubits in each of the copies to align. For the exact Hamiltonian, all of the
copies in the system will thus have the correct ground state, i.e. the links do not introduce any extra errors.
Ferromagnetic links provide an energy barrier which suppresses bit-flip errors. However, if a bit-flip error
does occur in one or more copies, the ferromagnetic links tend to propagate this error to all the other copies,
and to neighboring qubits within copies, potentially making them all incorrect. For random errors, if the
error propagation is not too extensive, majority vote decoding can potentially remove the effects of the error
[40–48, 55]. However, for the more deterministic sort of errors introduced by lack of precision, this strategy
is less effective.

On the other hand, when J(p)F < 0 (anti-ferromagnetic links), the final term in the Hamiltonian makes it
energetically favourable for the qubits in the copies to be anti-aligned. This means that, even for the exact
Hamiltonian, one or more of the copies is likely to have an incorrect ground state. However, the opposing
spins create an energy barrier which suppresses further bit-flip errors. Hence, if a bit-flip error occurs in a
single copy, the anti-ferromagnetic links in the linked copies can prevent the error occurring on all copies,
making it more likely a correct copy persists despite the bit-flip errors. This is illustrated in figure 3, using
spin chains for clarity in the diagrams.

The work presented in this paper investigates in detail how and when it is effective to use anti-
ferromagnetic links between copies to reduce bit-flip errors, and estimates the level of error reduction

achieved. Due to computational limitations, we focus on C= 2 and C= 3. Two copies have just one J(p)F link
connecting each pair of corresponding qubits. Three copies may be connected linearly in a chain, or in a
triangle configuration, see figure 3. For copies connected in a linear chain configuration, the corresponding
qubits in each copy can alternate to satisfy the anti-ferromagnetic links. However, when the copies are
connected in a triangle configuration, one of the anti-ferromagnetic links must connect copies which do not
have opposing spins. This introduces frustration into the system, which can prevent a (bit-flip) error
appearing in every copy.

To illustrate the effect of the anti-ferromagnetic links and frustration compared to the original Ising
problem, table 1 shows a 5 qubit MIS problem with precision reduced to p= 1 through 4. The graph is
represented by the black connections between the qubits and a qubit in state one (zero) corresponds to a
vertex which is (is not) in the independent set. The problem Hamiltonian is

ĤMIS =−
∑
j

(
dj −

1

2

)
Ẑj +

∑
j,k∈edges

ẐjẐk

where dj is the degree of (number of edges connected to) node j and each edge is only counted a single time
in the second sum. The single copy behavior for different precisions is shown in the left hand column. The
ground state is incorrect for p< 4, with the incorrect qubits shown in red below the diagram. The right hand
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Table 1. Table comparing the numbers of correct ground states, for a single copy of a 5 qubit MIS Ising problem versus three connected
copies, at precisions 1, 2, 3, and 4. For each ground state, correct qubits are shown in black and incorrect qubits in red.

p⩾ 4 p= 2

p # #

1 00000 0 00010, 11101, 00010 0
2 10100 0 00111, 11000, 00111 2
3 00000 0 00111, 10000, 00111 2
4 00111 1 00111, 10000, 00111 2

column shows the behavior of three copies connected with−JminF anti-ferromagnetic links, where JminF is the
smallest possible non-zero value of JF allowed at that precision. The error model used is the midpoint model
(deterministic errors). Except for p= 1, at each p, two out of the three copies have the correct ground state,
despite the single copy being incorrect for p= 2 and 3. This shows that our error suppression method works
for this example. Even with some incorrect copies, it is easy to check which of the three bit strings provides
the best candidate solution to the MIS problem, by calculating (classically) the energy with the exact
Hamiltonian.

3. Numerical methods

Before presenting our main results using the [60] spin glass data set, we outline our numerical methods. We
used numerical simulation to obtain most of our results, run on desktop workstations and on HPC facilities
based at Durham University, and at Oxford University via the UK Quantum Technology Quantum
Computing and Simulation Hub. Our code was written in Python3 [66] from the Anaconda platform [67],
with much of the editing and initial runs done using the Pycharm IDE [68]. NumPy [69] and pandas [70]
packages were used for data processing. Plotting was done using matplotlib [71]. Where relevant, figures
have error bars, although the size of these is often too small to be seen. For data sets of 104 instances, the
expected error in the averages is around 1%.

We used sizes 5⩽ n⩽ 9 SK Ising spin glass data sets of 104 instances per size, from data archive: [60].
These have couplings J jk and fields hj drawn from a normal distribution with standard deviation ωSK, an
arbitrary energy unit set to ωSK = 1. For our error models, we require J jk and fields hj to be strictly within the
range [−1,1]. Hence, we re-scaled so that the maximum and minimum values align with±1, which is the
optimal mapping of the problem to a limited range of possible settings. Operationally, an equivalent
rescaling needs to be done to fit problems into the range of values available in real hardware.

The ground states of these problems were found using a classical branch and bound algorithm. We
quantify the effectiveness of our error suppression by comparing the fraction of problems successfully solved
across the whole data set for a given size and precision. In a multiple copy system, we define fraction correct
as the number of instances which still have at least one correct ground state (out of the several linked copies),
divided by the total number of instances used from the data set.

In section 6, the effect of quantum walk dynamics on our error suppression method was analysed, using a
quantum walk simulation code developed for use in [56, 72]. Following the definition in [56], we use a time
average success probability, defined as,

P̄(t,∆t)≡ 1

∆t

ˆ t+∆t

t
dtfP(tf), (7)

where t and∆t are chosen to be large enough to ensure reasonable convergence towards the infinite time
average. The four 5-qubit spin glass examples (a), (b), (c) and (d) used in figure 12 were also taken from data
archive: [60], and have the unique I.D.’s ‘acyenjvndejjyhbcfmkjefgzjtjqjt’, ‘aakxejqunlcpqhmnftnrckailrczyp’,
‘aclwrzmpznazfkjktzcswfdxjprfth’, ‘acjdimxkqejkngndlykgxntdtxrgij’, respectively.
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4. Link strength tests

4.1. Optimal link strength
Prior work [39–42] using ferromagnetic links between qubit copies found that strong links are required,
stronger than the typical field and coupling strengths in the problem Hamiltonian. This is not favorable for
scaling to larger sizes or more copies. The scaling requirements were improved in subsequent work [43, 44,
46–48, 58], but the results still rely on optimising the ferromagnetic link strength, and are sub-optimal for
problem Hamiltonians that use the full dynamic range of the hardware [47]. In contrast, we find for

anti-ferromagnetic links that the best improvement is obtained when JF is equal to J
(p)
F =−2−p+1 in the

mid-point error model and close to this value in the deterministic random error model. This is illustrated in
figure 4 for the deterministic random model, averaged over 103 instances of SK spin glasses (left) and spin
chains (right). For consistency, we refer to the value where JF gains this best improvement as JminF in both the

mid-point and deterministic randommodel. Note that we tested intermediate values of J(p)F , to check that the
value of JminF is robust to variation within a division. The choice of divisions in figure 2 with only one
representing approximately zero is now justified. The other possible choice, with two divisions representing
approximately zero, one with ferromagnetic character, the other with anti-ferromagnetic character, would
have made it more difficult to extract the optimal value of JminF .

The four graphs show the fraction correct against link strength J(p)F for two copies (top row) and three
copies in a triangle configuration (bottom row). Each graph shows results from both p= 3 (blue) and p= 4
(yellow), with dotted vertical lines indicating the mid-point values for each of the allowed divisions
according to the precision. The results are similar for both spin chains and SK spin glasses, showing the

robustness of the effect. Both spin glass and spin chain cases show an improvement for JF = J(min)F , for p= 4
and all apart from the two copies of spin chains case show an improvement for p= 3. Horizontal dotted lines

indicate the fraction correct for J(p)F = 0, i.e. the baseline for any improvement, and the maximum fraction

correct over all J(p)F values, in green for p= 3 and red for p= 4.
For these relatively small 5 qubit problems, for two copies, for both spin glasses and spin chains, and for

three copies in spin chains the improvement is only seen for J(p)F ≃ JminF but for three copies of spin glasses in

a triangle, some improvement persists for slightly larger (in magnitude) anti-ferromagnetic values of J(p)F .
These results show that there is more than one mechanism contributing to the observed improvements in the
fraction correct.

The improvement seen only for JF ≃ JminF is likely due to the extra link counteracting the impact of the
imprecise field or coupling in the problem Hamiltonian. In this case, the average error (see section 2.3) is

between 1
2 2

−p and 2
3 2

−p, smaller but comparable with the strength of the minimum J(p)F . Larger values of J
(p)
F

are thus likely to make things worse rather than better, by introducing more error than they counteract. The

steep fall in fraction correct for larger J(p)F for two copies can be explained by this. By a conceptually-similar
mechanism to the one we show here, adding a small amount of thermal fluctuations has similarly been
shown to mitigate against errors [73].

The improvements seen for three copies include the effects of frustration that tend to keep at least one
copy correct, even when there are errors that should change the ground state. The more gentle fall in fraction
correct for three copies suggests this is significant, even when the link strength is not optimal.

4.2. The deterministic error model
Having shown that there is a significant improvement, albeit on average rather than for every instance, by

using anti-ferromagnetic links of strength J(p)F ≃ JminF (the minimum allowed value by the precision), we now
look in more detail at how the improvement is achieved. We choose the case that provides the best
improvement in the SK spin glasses, i.e. JminF , and three copies connected in a triangle to provide frustration.
In figure 5, we compare the fraction correct versus precision p, averaged over 104 instances of 5-qubit SK spin
glasses, for a single copy and three connected copies. The light red bars (left) show the fraction correct
averaged over all 104 instances for 1 repeat of single copies for each precision 1⩽ p⩽ 10. As there is little to
no degeneracy in the ground state when using the deterministic random model, there is no need to find the
results for 3 repeats of the single copies (same resources as three connected copies) as they will be similar.
The total height of the bars on the right show the fraction correct for three copies connected with links

J(p)F = J(min)F . This is broken down into the three possible cases: all three copies correct (dark blue, lowest),
two of three copies correct (green, middle) and one of three copies correct (yellow, top). The error bars
(black) at the top of each bar show that the effect is much larger than statistical effects. These results clearly
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Figure 4. Fraction correct against JF for p= 3 (blue) and p= 4 (yellow) for 103 instances of 5 qubit problems for two copies (top
row) and three copies in a triangle (bottom row) of spin glasses (left column) and spin chains (right column). Here the precision
was implemented using a single sample of random uniform errors on each of the parameters. Vertical dotted lines indicate the
mid-points of each of the allowed divisions at that precision for p= 3 (blue) and p= 4 (yellow). Horizontal dotted lines indicate

the fraction correct for J
(p)
F = 0 and the maximum fraction correct for any J

(p)
F , in green for p= 3 and red for p= 4.

Figure 5. Fraction correct versus precision p for 104 instances of 5 qubit SK spin glasses. Left bars show fraction correct for single

copies (red). Right bars show fraction correct for three copies connected with links J
(p)
F = J

(min)
F split into all three correct (dark

blue), two correct (green), one correct (yellow). Here the precision was implemented using a single sample of random uniform
errors on each of the parameters.

show how the frustration tends to break one or more copies: the bar for all three connected copies correct is
always lower than the single copy fraction correct. It also shows that the frustration tends to keep at least one
copy correct, even when a single copy is broken by the reduced precision: the total fraction correct for three
connected copies is always higher than the single copy fraction correct.

Since the improvement is an average effect, it is also interesting to ask how often connecting three copies
anti-ferromagnetically breaks the ground state for a given precision p when it is correct for a single copy.
Figure 6 shows this break down of the three copy results.

The left hand bars show the 1 repeat single copy fraction correct (light red) as in figure 5. Note that the 3
repeat and 4 repeat single copy fraction correct was also calculated, but due to the low/no degeneracy of the
ground states, did not show any significant difference.

The right bars now show: the cases where the single copy is correct and the three copies have at least one
correct (bottom, light blue); the cases where the single copy is incorrect but the three copies have at least one
correct copy (middle, light green); and the cases where the single copy is correct but the three copies are all
incorrect (top, dark red). The sum of the light blue and light green bars is the same as the total height of the
right hand bars in figure 5, i.e. all the cases where the three copies give the correct result. The sum of the dark
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Figure 6. Fraction correct versus precision p for 104 instances of 5-qubit spin glasses. Left bars show fraction correct for a single
copy (red). Right bars show fraction correct broken down into cases where: both single copy and three copies are correct (bottom,
light blue); the single copy is incorrect but the three copies have at least one correct (middle, light green); the three connected
copies are incorrect but the single copy is correct (top, dark red). Like figure 5, here the precision was implemented using a single
sample of random uniform errors on each of the parameters.

Table 2. Table showing the number and percentage of non-improvement instances (instances that are correct for a single copy but
incorrect for three connected copies) at each precision 1 ⩽ p ⩽ 10 for 104 instances of 5 and 9-qubit Ising spin glasses.

Precision

Non-improvement instances 1 2 3 4 5 6 7 8 9 10

5-qubit 48 89 79 17 6 1 1 0 0 0
(%) 0.48 0.89 0.79 0.17 0.06 0.01 0.01 0.00 0.00 0.00
9-qubit 26 103 153 76 17 1 1 0 0 0
(%) 0.26 1.03 1.53 0.76 0.17 0.01 0.01 0.00 0.00 0.00

red and light blue bars is the same as the height of the light red left hand bars, i.e. all the cases where the
single copy is correct.

We call these instances represented by the dark red portion of the right hand bars in figure 6 the
non-improvement instances. Table 2 shows the number of theses (out of 104 instances) at each value of
precision for the 5-qubit Ising spin glasses. We note that interestingly the singular non-improvement
examples at p= 6 and p= 7 are not the same instance and neither instance is a non-improvement instance at
p= 5. However two of the non-improvement instances (‘daktkzxgdjqgjgfyfrtxvgkwsakcpa’ and
‘oxtrdxiwslzzairfouykekiuazpjwh’) continue to be non-improvement instances at lower precisions.

Though the increase in fraction correct is small, running a single (disconnected) copy as well as the 3
connected copies (on a machine one third the size and therefore cheaper) and comparing the candidate
solutions to choose the best, allows us to include the dark red section of the right hand bars to our total
fraction correct. The equivalent figure for 9-qubit SK spin glasses is shown in figure 7. It is similar to the
5-qubit results in figure 6, but shows how larger system size problems are broken more easily by low
precision, as would be expected.

4.3. The random error model
For the deterministic error model, once the error has been applied, the ground state we find is either correct
or incorrect. As the error is fixed, repeats do not help to find the correct ground state. To simulate the
random error model, we take ten error samples for each Ising model instance. In general, the single copy will
only be incorrect for some of these errors samples, so the fraction correct we calculate is an average over the
samples and the instances. Equivalently, we can then look at the fraction correct as the probability of the
single copy being correct or incorrect. This means that as long as there is some probability that the ground
state is correct, more repeats can help to find the correct ground state. If we assume completely uncorrelated
errors, we can then find the fraction correct for three unconnected copies P(3) (the same as three repeats of a
single copy) using,

P(3) = 1− (1− P(1))3, (8)

where P(1) is the fraction correct for the single copy.
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Figure 7. As figure 6 for 104 instances of 9-qubit Ising spin glasses. Here also the precision was implemented using a single sample
of random uniform errors on each of the parameters.

Figure 8. As figure 5 but here the precision was implemented using ten samples of random uniform errors on each of the
parameters. The left hand bars are split into the fraction correct of a single copy (light red, lower) and the fraction correct of three
unconnected copies (red, upper), calculated using equation (8).

In figure 8 the comparison between three unconnected copies (the same as three repeats of a single copy)
and three copies connected anti-ferromagnetically is shown in the same format as in figure 5. The fraction
correct is now larger for the three unconnected copies, but the three connected copies still show additional
improvement for higher precisions p≳ 5. These results show that, for the random error model, the
anti-ferromagnetic links provide an additional effect beyond independent repetition, albeit less than in the
deterministic error situation.

As we assume completely uncorrelated errors here, we can use equation (8) to calculate the fraction
correct for three unconnected copies. However, in hardware it is likely that there would be a mixture of both
uncorrelated and correlated errors, meaning the improvement from repeats would be smaller than that seen
in figure 8. The best balance between repeats of single copies and connecting multiple copies thus depends
on the specific hardware implementation.

4.4. Spin chains
We have also analyzed equivalent data for 5-qubit spin chains for all the cases in this section. We find that the
effects are very similar to the spin glasses for all cases, and so do not present the details here. The similarity in
all aspects provides confidence in the generality of our results for other problem Hamiltonians.

4.5. Dependence on number of copies
Table 3 shows the number of copies C and configuration (Config.) of 5-qubit spin glass instances and their
average fraction correct (across 104 instances) for precisions 1 to 10. In each case precision was applied using
the deterministic random error model. We see from this table that four copies connected in a loop performs
worse than two copies connected in a chain for precision p< 8. However, at p⩾ 8, the four copies connected
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Table 3. Table showing the number of copies C (of 5-qubit spin glass instances), with the configuration of those copies (Config.) and the
fraction correct of each of these copy configurations at precisions 1 to 10. In each case the precision was applied using the deterministic
random error model.

Precision

C Config. 1 2 3 4 5 6 7 8 9 10

2 chain 0.2620 0.5437 0.8067 0.9372 0.9794 0.9934 0.9975 0.9984 0.9994 0.9997
3 loop 0.3591 0.6584 0.8437 0.9496 0.9856 0.9956 0.9991 0.9995 1.0 1.0
4 loop 0.2489 0.4468 0.6498 0.8585 0.9572 0.9870 0.9971 0.9991 0.9998 0.9999
5 loop 0.3618 0.6605 0.8448 0.9499 0.9856 0.9956 0.9991 0.9995 1.0 1.0

in a loop then slightly out performs two copies in a chain. We also see that both 3 and 5 copies connected in a
loop outperform both 2 copies (in a chain) and 4 copies (in a loop), for all values of p from 1 to 10. We see
that 5 copies connected in a loop performs slightly better than 3 copies in a loop for p< 6. However, for
p⩾ 6, the fraction correct of both 3 and 5 copies in a loop are exactly the same. We note that neither 2 copies
(in a chain) and 4 copies (in a loop) are frustration containing configurations of copies, whereas both 3
copies and and 5 copies (in a loop) are. These results indicate the importance of including frustration in our
copy configurations in our error suppression scheme.

5. Precision improvements

We now turn to a quantitative estimate of the improvement in precision, using the deterministic error model
applied to the spin glasses. Figure 9 shows the total fraction correct (peak of the bars in figure 7) for single
copies (solid lines) and three connected copies plus a separate single copy (dotted lines) for 104 instances of
SK spin glasses for n= 5, 6, 8 and 9. Not shown, n= 7 is very similar. The limit we computed to was n= 9
which for three copies requires 27 qubits. This was not a hard limit to classical computational abilities as
more efficient solves could compute higher number of qubits. However as the aim of this research was a
proof of principle of our scheme it was not deemed necessary to go higher.

The single copy fraction correct approaches unity around p= n+ 1. As noted previously, the intuition
for this is that there are 2n different possible states for n-qubits, i.e. n qubits cannot represent higher
precision outcomes than p= n. For the three connected copies (plus a separate single copy), the fraction
correct (dotted lines) tends to approach unity sooner. In other words, the three connected copies still find the
correct solution at lower precision than for a single copy. This is the effect we are looking for, to protect
against lack of precision in the hardware.

5.1. Quantifying improvements
To quantify the improvements we obtain by connecting three copies anti-ferromagnetically plus a single
copy, we calculated the difference in precision p between the single copies and connected copies plus single
copies at the same fraction correct. We called this the precision improvement. In figure 9, this is the
horizontal distance between the dotted and solid lines. However, as the data points on the dotted line
(three-connected-copies-plus-single-copy) do not in general have corresponding data points on the solid line
(single-copy) at the same fraction correct, we used the data points for three-connected-copies-plus-
single-copy data and extrapolated the single-copy data. The extrapolation uses an exponential fit of the form
f(p) = Aexp(−bp) where fraction correct= (1− f(p)), in order to estimate an effective precision for the
single copy, at the corresponding value of fraction correct. All fits exclude the single copy data points at p= 1
and p= 2, which exhibit non-exponential effects due to the low precision. These fits are plotted in figure 10,
alongside the single-copy and three-connected-copies-plus-single-copy data on a log fraction broken= (1−
fraction correct) vs precision plot. The difference between the value of the precision at the same fraction
correct (horizontal displacement) is the precision improvement, plotted in figure 11. The error in the
variables A and b (arising from the fit) and the error in fraction correct (from the
three-connected-copies-plus-single-copy data points), were combined via a functional approach [74] in
order to calculate the error in the single-copy precision. This is the error shown by the error bars in figure 11.

It can be seen in figure 11, for each size n= 5 to 9, between precision p= 2 to around p= 7, as precision
increases, the precision improvement also increases, from less than 1 at p= 2 to around 3 at around p= 7. At
p= 1 the precision improvement appears to be larger than at p= 2, but this is due to the exponential fit not
matching the data at this very low precision. Data points for p≳ 6 have larger error bars due to the small
number of incorrect single copy counts at high precision.

The levelling off of the improvement suggested by the data for higher p is expected for the finite resources
of three copies. As this work is a numerical study on small problem sizes, we cannot reliably extract trends for
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Figure 9. Fraction correct vs precision p for 104 instances of 5 (light green), 7 (dark green), 8 (brown) and 9 (red) qubit spin
glasses with four repeats of a single copy (solid) and three connected copies plus 1 separate single copy (dotted). Here the
precision was implemented using a single sample of random uniform errors on each of the parameters.

Figure 10. Same data as figure 9, but plotted as fraction broken= 1− fraction correct on a log scale, with a linear fit to the single
copy data (solid lines) excluding the first two points (p= 1,2) from the fit.

larger problem sizes. However, the results presented here offer proof-of-concept that the method can provide
several extra bits of precision by using three linked copies compared with a single copy.

6. Continuous-time dynamics

The results in the previous sections are obtained by considering the problem Hamiltonian only. This
provides good estimates for the outcome using adiabatic processes that remain in the ground state
throughout. For more dynamic processes that populate excited states, it is also necessary to check that
actually running a quantum anneal or quantum walk does not introduce adverse effects that negate the
precision improvement. We note again that QAC performs better than expected when implemented on
D-Wave machines due to the effect of dynamics [40–43, 45, 47, 55]. We tested our methods with quantum
walks, as the time-independent Hamiltonian is easier to simulate, and it also tends to populate more excited
states than an approximately adiabatic dynamics.

For quantum walks, the key parameter is the hopping rate γ that determines the relative strengths of the
driving and problem Hamiltonians. For practical applications, the success probability must not be very
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Figure 11. Precision improvement in bits versus precision, for 104 instances of 5 (light green) 6 (blue), 7 (dark green), 8 (brown)
and 9 (red) qubit spin glasses. Precision improvement was calculated between a linear fit to the 4 repeats of a single data and the 3
connected copies plus 1 single copy data at the same value fraction correct. Data below p= n is plotted as solid lines. Data above
p= n is plotted as dotted lines.

sensitive to the exact value of γ, because there is in general no efficient way to determine the optimal value
without solving the problem itself. For the spin glasses, [56] discusses in detail how to estimate a suitable
heuristic value of γ. It turns out that the spin glasses have a fairly broad range of suitable γ values, as
illustrated by the green curves in figure 12. The optimal value determined in [56] is indicated by the vertical
red dotted lines. The main question we answer with our simulations is, how the value of gamma is affected
by the anti-ferromagnetic links joining the three copies.

There are a few subtleties to correctly comparing the three-copy performance with the exact single-copy
performance in a quantum walk setting. The average success probability is defined as the overlap of the
quantum state with the solution state, time averaged as per equation (7). For three copies, there are many
different states that give one or more correct copies, and not all of them are ground states. We thus define the
success probability to be the sum of the probabilities of obtaining any of these states—since what we are
interested in is correct solutions, not ground states—and then we time averaged in the same way. For the
exact single copy case, the probability of obtaining a correct solution from three runs can be calculated as
follows, where P(y) is the probability of succeeding at least once in y runs. We have P(3) = 1− (1− P(1))3,
i.e. subtract the probability of failing all three runs from unity. This is the correct quantity to compare with
three copies, as it uses the same number of qubits in total, and can be run in the same time (by just setting
the anti-ferromagnetic links to zero).

As well as the exact three-run success probabilities plotted in green in figure 12, also shown are the
success probabilities for the same spin glass instances at reduced precision p= 3 both with (blue) and
without (orange) the anti-ferromagnetic links close to the minimum precision (using the deterministic
random error model). The orange lines thus show the difference the lack of precision makes to single copies
compared to the green exact success probabilities. The blue lines show how anti-ferromagnetic links change
this for the same lack of precision. Each of the four instances were chosen so that, at p= 3, their ground state
was incorrect when only a single copy was used, but they had at least one copy with a correct ground state,
when three connected copies were used.

The four instances plotted in figure 12 illustrate the range of behaviours we observe. In these examples,
the probability of obtaining the correct solution state is sometimes higher, sometimes lower and sometimes
similar, but in all cases, the broad peak remains, and the optimal value of γ would provide a good
performance, except for one single copy instance, figure 12(b). This shows that the dynamics and heuristic
parameter estimation are not significantly impacted by the anti-ferromagnetic links joining multiple copies.
Moreover, given that the success probability is in any case not sensitive to the exact value of γ, it is not
necessary to use any error mitigation techniques to increase the precision for the driver Hamiltonian settings,
for solving this type of problem.

Characterizing the effects of limited precision and anti-ferromagnetically linked copies on the outcomes
of quantum walk computation requires significant work to unravel the contributions from excited states that
also provide correct solutions. A full analysis will be left for future work.

15



Quantum Sci. Technol. 8 (2023) 035031 J Bennett et al

Figure 12. Average success probability equation (7), P(t,∆t) for t= 30,∆t= 70 versus γ, for four instances (a) to (d) of a
5-qubit spin glass for: no links (JF = 0) and no precision reduction (green); with JF = 0 and precision set to p= 3 (orange); with
JF ≃ JminF and p= 3 (blue). Here the precision was implemented using a single sample of random uniform errors on each of the
parameters. Each instance (a) to (d) has an incorrect ground state for a single copy but is correct for at least one of three
connected copies for p= 3. The optimal value of γ for the case with no links and no precision reduction, (peak of the green line)
is shown as a vertical red dotted line. For reproducibility, the unique I.D.’s of the instances (a) to (d) can be found in section 3.

7. Conclusion and open questions

In this work we have introduced, and provided a proof-of-concept numerical analysis of, a set of
improvements to the error suppression part of the error correction scheme first introduced in [39].
Recognizing that only one copy needs to be correct in a quantum optimization setting allows us to use
anti-ferromagnetic links instead of ferromagnetic. The advantage of anti-ferromagnetic links is that they
penalize configurations in which all copies have the same error, improving the chance of at least one copy
remaining correct, in a repetition-code multiple-copy model. Furthermore, only weak anti-ferromagnetic
links are needed to achieve this error suppression, making our method fully scaleable.

We also confirmed that introducing linked copies does not significantly change the parameters and
performance of quantum walk dynamics used to solve the spin glass instances. In other words, heuristics for
setting parameters based on single copies can be used without modification for the multiple linked copies.
Interpolation between quantum walks and AQC [19] suggests this may hold for quantum annealing
parameters, too, although we have not tested this.

Applying these methods to a setting in which only limited precision is allowed for the fields and coupling
strengths, we showed a proof-of-concept that anti-ferromagnetic links can compensate for the errors
introduced by lack of precision, effectively gaining several bits of precision for three connected copies. If this
extends to practical sizes, it provides a way to scale quantum annealing systems beyond the barrier of fixed
precision in the controls for the fields and couplings between the qubits. Our work highlights the importance
of incorporating frustration into quantum annealing architectures. This took the form of anti-ferromagnetic
triangles in our examples here; we have also tested larger odd and even loops to confirm that frustration is
the key element.

Further work is needed to extend these results analytically, to larger sizes, and potentially to
concatenating the repetition codes in analogy to gate model error correction. The mean field methods in [44,
46] can potentially be adapted to this setting to provide indications of the likely scaling. Preliminary study
supports our numerical finding that the quantum walk hopping rate does not change, an important factor
for scalability. Mean field methods may also allow the interpretations in [47] in terms of effective
temperature reduction, or energy scale enhancement, to be applied to our method, facilitating a direct
comparison of the methods and their suitability for different types of errors.

Unlike for QAC where a large enhancement in success rate for some cases has been found in [40–43, 45,
47, 55], we have yet to test the performance our scheme on D-Wave hardware, though this is an interesting
future direction. Practical demonstrations of the precision improvement could be done on hardware with a
suitable native graph—results for longer spin chains indicate that minor embedding can reduce rather than
increase precision, which could lead to inconclusive results. However, the experimental results for nested
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QAC in [41, 43] suggest it should be possible to extract some indications of the practical validity of the
method using current DWave systems.

Furthermore, it is an open question whether the techniques proposed here could be applied to
gate-model machines through QAOA (quantum approximate optimisation algorithm), given the recently
highlighted connections between QAOA and quantum annealing [75]. Whether these techniques can be
extended beyond classical optimization problems and classical repetition codes to fully universal quantum
error correcting codes, e.g. for quantum simulators, where quantum Hamiltonians are evolved continuously
in time, is also an interesting open question. The addition of weak anti-ferromagnetic links effectively
rewards finding good quality solutions which differ by large Hamming distances. This may have application
beyond error mitigation in hybrid algorithms, or for problems where a diverse set of solutions are desired.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://doi.
org/10.15128/r21544bp097.

Acknowledgments

N C and V K were supported by EP/L022303/1 and impact acceleration funding associated with this grant. N
C was supported by EPSRC fellowship EP/S00114X/1. J B was supported by a UK EPSRC funded DTG
studentship, Project Reference 2214392. A C was supported by the EPSRC UK Quantum Technology Hub in
Computing and Simulation (EP/T001062/1).

ORCID iDs

Jemma Bennett https://orcid.org/0000-0003-0222-0851
Adam Callison https://orcid.org/0000-0002-8247-0289
Nicholas Chancellor https://orcid.org/0000-0002-1293-0761
Viv Kendon https://orcid.org/0000-0002-6551-3056

References

[1] Bernstein E and Vazirani U 1993 Quantum complexity general 25th ACM STOC pp 11–20
[2] Simon D R 1994 On the power of quantum computation Proc. 35th Annual Symp. on Foundations of Computer Science pp 116–23
[3] Deutsch D and Jozsa R 1992 Rapid solution of problems by quantum computation Proc. R. Soc. A 439 553–8
[4] Shor P W 1994 Algorithms for quantum computation: discrete logarithms and factoring Proc. 35th Annual Symp. on Foundations of

Computer Science pp 124–34
[5] Shor P W 1996 Fault-tolerant quantum computation 37th Symp. on Foundations of Computing (IEEE Computer Society Press) pp

56–65
[6] Knill E and Laflamme R 1996 Concatenated quantum codes (arXiv:quant-ph/9608012)
[7] Knill E, Laflamme R and Zurek W H 1998 Resilient quantum computation Science 279 342
[8] Aharonov D, Kitaev A and Preskill J 2006 Fault-tolerant quantum computation with long-range correlated noise Phys. Rev. Lett.

96 050504
[9] Raussendorf R and Briegel H J 2001 A one-way quantum computer Phys. Rev. Lett. 86 5188
[10] Horsman C, Fowler A G, Devitt S and Meter R V 2012 Surface code quantum computing by lattice surgery New J. Phys. 14 123011
[11] Girvin S M 2021 Introduction to quantum error correction and fault tolerance Quantum Information Machines (Lecture Notes of

the Les Houches Summer School 2019), ed M Devoret, B Huard and I Pop (arXiv:2111.08894)
[12] Farhi E, Goldstone J, Gutmann S and Sipser M 2000 Quantum computation by adiabatic evolution (arXiv:0001106 [quant-ph])
[13] Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 A quantum adiabatic evolution algorithm applied to

random instances of an NP-complete problem Science 292 472
[14] Finnila A, Gomez M, Sebenik C, Stenson C and Doll J 1994 Quantum annealing: a new method for minimizing multidimensional

functions Chem. Phys. Lett. 219 343
[15] Kadowaki T and Nishimori H 1998 Quantum annealing in the transverse Ising model Phys. Rev. E 58 5355
[16] Crosson E J and Lidar D A 2020 Prospects for quantum enhancement with diabatic quantum annealing (arXiv:2008.09913)
[17] Farhi E and Gutmann S 1998 Quantum computation and decision trees Phys. Rev. A 58 915
[18] Childs A M and Goldstone J 2004 Spatial search by quantum walk Phys. Rev. A 70 022314
[19] Morley J G, Chancellor N, Bose S and Kendon V 2019 Quantum search with hybrid adiabatic–quantum-walk algorithms and

realistic noise Phys. Rev. A 99 022339
[20] Sarovar M and Young K C 2013 Error suppression and error correction in adiabatic quantum computation: non-equilibrium

dynamics New J. Phys. 15 125032
[21] Young K C, Sarovar M and Blume-Kohout R 2013 Error suppression and error correction in adiabatic quantum computation:

Techniques and challenges Phys. Rev. X 3 041013
[22] Marvian I and Lidar D A 2014 Quantum error suppression with commuting Hamiltonians: two local is too local Phys. Rev. Lett.

113 260504
[23] Jordan S P, Farhi E and Shor P W 2006 Error-correcting codes for adiabatic quantum computation Phys. Rev. A 74 052322

17

https://doi.org/10.15128/r21544bp097
https://doi.org/10.15128/r21544bp097
https://orcid.org/0000-0003-0222-0851
https://orcid.org/0000-0003-0222-0851
https://orcid.org/0000-0002-8247-0289
https://orcid.org/0000-0002-8247-0289
https://orcid.org/0000-0002-1293-0761
https://orcid.org/0000-0002-1293-0761
https://orcid.org/0000-0002-6551-3056
https://orcid.org/0000-0002-6551-3056
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://arxiv.org/abs/quant-ph/9608012
https://doi.org/10.1126/science.279.5349.342
https://doi.org/10.1126/science.279.5349.342
https://doi.org/10.1103/PhysRevLett.96.050504
https://doi.org/10.1103/PhysRevLett.96.050504
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1088/1367-2630/14/12/123011
https://arxiv.org/abs/2111.08894
http://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.1126/science.1057726
https://doi.org/10.1126/science.1057726
https://doi.org/10.1016/0009-2614(94)00117-0
https://doi.org/10.1016/0009-2614(94)00117-0
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://arxiv.org/abs/2008.09913
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.70.022314
https://doi.org/10.1103/PhysRevA.70.022314
https://doi.org/10.1103/PhysRevA.99.022339
https://doi.org/10.1103/PhysRevA.99.022339
https://doi.org/10.1088/1367-2630/15/12/125032
https://doi.org/10.1088/1367-2630/15/12/125032
https://doi.org/10.1103/PhysRevX.3.041013
https://doi.org/10.1103/PhysRevX.3.041013
https://doi.org/10.1103/PhysRevLett.113.260504
https://doi.org/10.1103/PhysRevLett.113.260504
https://doi.org/10.1103/PhysRevA.74.052322
https://doi.org/10.1103/PhysRevA.74.052322


Quantum Sci. Technol. 8 (2023) 035031 J Bennett et al

[24] Bookatz A D, Farhi E and Zhou L 2015 Error suppression in Hamiltonian-based quantum computation using energy penalties
Phys. Rev. A 92 022317

[25] Marvian I 2016 Exponential suppression of decoherence and relaxation of quantum systems using energy penalty
(arXiv:1602.03251)

[26] Marvian M and Lidar D A 2017 Error suppression for Hamiltonian quantum computing in Markovian environments Phys. Rev. A
95 032302

[27] Lidar D A 2008 Towards fault tolerant adiabatic quantum computation Phys. Rev. Lett. 100 160506
[28] Quiroz G and Lidar D A 2012 High-fidelity adiabatic quantum computation via dynamical decoupling Phys. Rev. A 86 042333
[29] Ganti A, Onunkwo U and Young K 2014 Family of [6k, 2k, 2] codes for practical and scalable adiabatic quantum computation

Phys. Rev. A 89 042313
[30] Jiang Z and Rieffel E G 2017 Non-commuting two-local Hamiltonians for quantum error suppression Quantum Inf. Process. 16 89
[31] Marvian M and Lidar D A 2017 Error Suppression for Hamiltonian-based quantum computation using subsystem codes Phys. Rev.

Lett. 118 030504
[32] Marvian M and Lloyd S 2019 Robust universal Hamiltonian quantum computing using two-body interactions (arXiv:1911.01354)
[33] Bacon D, Brown K R and Whaley K B 2001 Coherence-preserving quantum bits Phys. Rev. Lett. 87 247902
[34] Lidar D A 2019 Arbitrary-time error suppression for Markovian adiabatic quantum computing using stabilizer subspace codes

Phys. Rev. A 100 022326
[35] Sarovar M and Milburn G J 2005 Continuous quantum error correction by cooling Phys. Rev. A 72 012306
[36] Atalaya J, Zhang S, Niu M Y, Babakhani A, Chan H C H, Epstein J and Whaley K B 2020 Continuous quantum error correction for

evolution under time-dependent Hamiltonians (arXiv:2003.11248)
[37] Mohseni N, Narozniak M, Pyrkov A N, Ivannikov V, Dowling J P and Byrnes T 2021 Error suppression in adiabatic quantum

computing with qubit ensembles npj Quantum Inf. 7 71
[38] Paz-Silva G A, Rezakhani A T, Dominy J M and Lidar D A 2012 Zeno effect for quantum computation and control Phys. Rev. Lett.

108 080501
[39] Young K C, Blume-Kohout R and Lidar D A 2013 Adiabatic quantum optimization with the wrong Hamiltonian Phys. Rev. A

88 062314
[40] Pudenz K L, Albash T and Lidar D A 2014 Error-corrected quantum annealing with hundreds of qubits Nat. Commun. 5 3243
[41] Vinci W, Albash T, Paz-Silva G, Hen I and Lidar D A 2015 Quantum annealing correction with minor embedding Phys. Rev. A

92 042310
[42] Pudenz K L, Albash T and Lidar D A 2015 Quantum annealing correction for random Ising problems Phys. Rev. A 91 042302
[43] Vinci W, Albash T and Lidar D A 2016 Nested quantum annealing correction npj Quantum Inf. 2 16017
[44] Matsuura S, Nishimori H, Albash T and Lidar D A 2016 Mean Field Analysis of Quantum Annealing Correction Phys. Rev. Lett.

116 220501
[45] Mishra A, Albash T and Lidar D A 2016 Performance of two different quantum annealing correction codes Quantum Inf. Process.

15 609
[46] Matsuura S, Nishimori H, Vinci W, Albash T and Lidar D A 2017 Quantum-annealing correction at finite temperature:

ferromagnetic p -spin models Phys. Rev. A 95 022308
[47] Vinci W and Lidar D A 2018 Scalable effective-temperature reduction for quantum annealers via nested quantum annealing

correction Phys. Rev. A 97 022308
[48] Matsuura S, Nishimori H, Vinci W and Lidar D A 2019 Nested quantum annealing correction at finite temperature : p -spin

models Phys. Rev. A 99 062307
[49] Li R Y, Albash T, and Lidar D A 2020 Limitations of error corrected quantum annealing in improving the performance of

Boltzmann machines (arXiv:1910.01283v2)
[50] Brooke J, Bitko D, Rosenbaum T F and Aeppli G 1999 Quantum annealing of a disordered magnet Science 284 779
[51] Lanting T et al 2014 Entanglement in a quantum annealing processor Phys. Rev. X 4 021041
[52] Denchev V S, Boixo S, Isakov S V, Ding N, Babbush R, Smelyanskiy V, Martinis J and Neven H 2016 What is the computational

value of finite-range tunneling? Phys. Rev. X 6 031015
[53] Johnson MW et al 2011 Quantum annealing with manufactured spins Nature 473 194
[54] Boixo S, Smelyanskiy V N, Shabani A, Isakov S V, Dykman M, Denchev V S, Amin M H, Smirnov A Y, Mohseni M and Neven H

2016 Computational multiqubit tunnelling in programmable quantum annealers Nat. Commun. 7 10327
[55] Pearson A and Mishra A 2019 Analog errors in quantum annealing : doom and hope npj Quantum Inf. 5 107
[56] Callison A, Chancellor N, Mintert F and Kendon V 2019 Finding spin glass ground states using quantum walks New J. Phys.

21 123022
[57] Callison A, Chancellor N, Mintert F and Kendon V 2020 Error measurements for a quantum annealer using the one-dimensional

Ising model with twisted boundaries (arXiv:2006.07685)
[58] Matsuura S 2019 Mean field quantum annealing correction J. Phys. Soc. Japan 88 061006
[59] Choi V 2010 Adiabatic quantum algorithms for the np-complete maximum-weight independent set, exact cover and 3SAT

problems (arXiv:1004.2226)
[60] Chancellor N, Callison A, Kendon V and Mintert F 2019 Finding spin-glass ground states using quantum walks, data archive at

Durham University, UK, note for spin glass instances used in [56] (available at: https://doi.org/10.15128/r21544bp097)
[61] Sherrington D and Kirkpatrick S 1975 Solvable model of a spin-glass Phys. Rev. Lett. 35 1792
[62] Choi V 2011 Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design Quantum Inf. Process. 10 343
[63] Choi V 2008 Minor-embedding in adiabatic quantum computation: I. The parameter setting problem Quantum Inf. Process. 7 193
[64] Minorminer 2018 (available at: https://github.com/dwavesystems/minorminerAccessed) (Accessed 05 March 2019)
[65] van der Ploeg S HW, Izmalkov A, van den Brink A M, Hübner U, Grajcar M, Il’ichev E, Meyer H G and Zagoskin A M 2007

Controllable coupling of superconducting flux qubits Phys. Rev. Lett. 98 057004
[66] Van Rossum G and Drake F L 2003 Python Language Reference Manual, Network Theory United Kingdom
[67] Anaconda 2016 Anaconda software distribution (available at: https://anaconda.com)
[68] JetBrains 2021 Pycharm ide - community edn (available at: https://jetbrains.com/pycharm/)
[69] Oliphant T E 2006 A Guide to Numpy (Tregol Publishing)

18

https://doi.org/10.1103/PhysRevA.92.022317
https://doi.org/10.1103/PhysRevA.92.022317
https://arxiv.org/abs/1602.03251
https://doi.org/10.1103/PhysRevA.95.032302
https://doi.org/10.1103/PhysRevA.95.032302
https://doi.org/10.1103/PhysRevLett.100.160506
https://doi.org/10.1103/PhysRevLett.100.160506
https://doi.org/10.1103/PhysRevA.86.042333
https://doi.org/10.1103/PhysRevA.86.042333
https://doi.org/10.1103/PhysRevA.89.042313
https://doi.org/10.1103/PhysRevA.89.042313
https://doi.org/10.1007/s11128-017-1527-9
https://doi.org/10.1007/s11128-017-1527-9
https://doi.org/10.1103/PhysRevLett.118.030504
https://doi.org/10.1103/PhysRevLett.118.030504
https://arxiv.org/abs/1911.01354
https://doi.org/10.1103/PhysRevLett.87.247902
https://doi.org/10.1103/PhysRevLett.87.247902
https://doi.org/10.1103/PhysRevA.100.022326
https://doi.org/10.1103/PhysRevA.100.022326
https://doi.org/10.1103/PhysRevA.72.012306
https://doi.org/10.1103/PhysRevA.72.012306
https://arxiv.org/abs/2003.11248
https://doi.org/10.1038/s41534-021-00405-2
https://doi.org/10.1038/s41534-021-00405-2
https://doi.org/10.1103/PhysRevLett.108.080501
https://doi.org/10.1103/PhysRevLett.108.080501
https://doi.org/10.1103/PhysRevA.88.062314
https://doi.org/10.1103/PhysRevA.88.062314
https://doi.org/10.1038/ncomms4243
https://doi.org/10.1038/ncomms4243
https://doi.org/10.1103/PhysRevA.92.042310
https://doi.org/10.1103/PhysRevA.92.042310
https://doi.org/10.1103/PhysRevA.91.042302
https://doi.org/10.1103/PhysRevA.91.042302
https://doi.org/10.1038/npjqi.2016.17
https://doi.org/10.1038/npjqi.2016.17
https://doi.org/10.1103/PhysRevLett.116.220501
https://doi.org/10.1103/PhysRevLett.116.220501
https://doi.org/10.1007/s11128-015-1201-z
https://doi.org/10.1007/s11128-015-1201-z
https://doi.org/10.1103/PhysRevA.95.022308
https://doi.org/10.1103/PhysRevA.95.022308
https://doi.org/10.1103/PhysRevA.97.022308
https://doi.org/10.1103/PhysRevA.97.022308
https://doi.org/10.1103/PhysRevA.99.062307
https://doi.org/10.1103/PhysRevA.99.062307
https://arxiv.org/abs/1910.01283v2
https://doi.org/10.1126/science.284.5415.779
https://doi.org/10.1126/science.284.5415.779
https://doi.org/10.1103/PhysRevX.4.021041
https://doi.org/10.1103/PhysRevX.4.021041
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/ncomms10327
https://doi.org/10.1038/ncomms10327
https://doi.org/10.1038/s41534-019-0210-7
https://doi.org/10.1038/s41534-019-0210-7
https://doi.org/10.1088/1367-2630/ab5ca2
https://doi.org/10.1088/1367-2630/ab5ca2
https://arxiv.org/abs/2006.07685
https://doi.org/10.7566/JPSJ.88.061006
https://doi.org/10.7566/JPSJ.88.061006
https://arxiv.org/abs/1004.2226
https://doi.org/10.15128/r21544bp097
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1007/s11128-010-0200-3
https://doi.org/10.1007/s11128-010-0200-3
https://doi.org/10.1007/s11128-008-0082-9
https://doi.org/10.1007/s11128-008-0082-9
https://github.com/dwavesystems/minorminerAccessed
https://doi.org/10.1103/PhysRevLett.98.057004
https://doi.org/10.1103/PhysRevLett.98.057004
https://anaconda.com
https://jetbrains.com/pycharm/


Quantum Sci. Technol. 8 (2023) 035031 J Bennett et al

[70] McKinney W 2010 Data structures for statistical computing in python Proc. 9th Python in Science Conf. vol 1 p 56 https://doi.org/
10.25080/majora-92bf1922-00a

[71] Hunter J D 2007 Matplotlib: a 2d graphics environment Comput. Sci. Eng. 9 90
[72] Callison A, Festenstein M, Chen J, Nita L, Kendon V and Chancellor N 2021 An energetic perspective on rapid quenches in

quantum annealing PRX Quantum 2 010338
[73] Nishimura K, Nishimori H, Ochoa A J and Katzgraber H G 2016 Retrieving the ground state of spin glasses using thermal noise:

Performance of quantum annealing at finite temperatures Phys. Rev. E 94 032105
[74] Hughes I and Hase T 2010Measurements and Their Uncertainties : A Practical Guide to Modern Error Analysis (Oxford: Oxford

University Press)
[75] Brady L T, Kocia L, Bienias P, Bapat A, Kharkov Y and Gorshkov A V 2021 Behavior of analog quantum algorithms

(arXiv:2107.01218)

19

https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1103/PRXQuantum.2.010338
https://doi.org/10.1103/PRXQuantum.2.010338
https://doi.org/10.1103/PhysRevE.94.032105
https://doi.org/10.1103/PhysRevE.94.032105
https://arxiv.org/abs/2107.01218

	Using copies can improve precision in continuous-time quantum computing
	1. Introduction
	2. Background
	2.1. Transverse Ising Hamiltonian optimization
	2.2. Definitions of problems used
	2.3. Error models and precision
	2.4. Error suppression method

	3. Numerical methods
	4. Link strength tests
	4.1. Optimal link strength
	4.2. The deterministic error model
	4.3. The random error model
	4.4. Spin chains
	4.5. Dependence on number of copies

	5. Precision improvements
	5.1. Quantifying improvements

	6. Continuous-time dynamics
	7. Conclusion and open questions
	References


