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A B S T R A C T

The rise of COVID-19 and its consequent socio-economic losses raised concerns regarding the resilience of
workplaces against widespread infectious diseases. During the COVID-19 pandemic, several outbreaks occurred
in workplaces. As a result, local authorities implemented restrictive interventions (e.g., lockdown and social
distancing) to control the spread of this disease in different contexts. Despite the short-term positive impacts of
these interventions, they are not sustainable in the long run due to their associated economic costs to industries.
Hence, in the post-pandemic era, novel and non-restrictive interventions are needed to limit the spread of
similar diseases inside workplaces during epidemics. Herein, several non-restrictive interventions have been
introduced to limit the spread of COVID-19 in office spaces. The effectiveness of these interventions is tested in
generic office space by a disease spread simulator (CoDiSS), which is based on stochastic agent-based modeling.
As a result, this research identifies the most impactful interventions based on the simulation outcomes and
offers practical strategies to improve occupational safety within office environments. Our findings help enhance
safety in the ever-transforming occupational environment by limiting the spread of infectious diseases in
workplaces using non-restrictive interventions.
1. Introduction

The COVID-19 pandemic has raised concerns regarding the re-
silience of human societies against widespread infectious diseases.
Several COVID-19 outbreaks proved that our urban infrastructure lacks
the capacity to withstand the spread of infectious diseases, especially
in those settings where people gathered within an enclosed space,
such as healthcare and education infrastructure. As a result, local
authorities suggested several pharmaceutical (i.e., vaccination) and
non-pharmaceutical interventions (e.g., national lockdowns, social dis-
tancing, and mask mandates) to limit the spread of COVID-19 (Flaxman
et al., 2020; Perra, 2021). The suggested interventions can be cate-
gorized as restrictive and non-restrictive interventions (Arena et al.,
2022). Restrictive interventions refer to those implications that sig-
nificantly change the personal or social behaviors of citizens. The
face mask mandate and social distancing are two examples of restric-
tive interventions which affect citizens’ personal and social behaviors,
respectively. In contrast, non-restrictive interventions refer to those
implications that limit the spread of COVID-19 without significantly
changing their personal and social behaviors, such as increasing air
ventilation rates or changing the interior design of indoor spaces. De-
spite the satisfactory results of the restrictive interventions in the short
run (Bo et al., 2021), their implementation is not sustainable in the
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long run due to their high socio-economic costs (Allen, 2022; Corbaz-
Kurth et al., 2022; Wali, 2023). These costs include the increased rate
of adolescent psychiatric disorders during the lockdown (Guessoum
et al., 2020; Pauksztat, Andrei, & Grech, 2022), the increased job in-
security (Bazzoli & Probst, 2022; Vu, Vo-Thanh, Nguyen, Van Nguyen,
& Chi, 2022), and reduced GDP in several developed countries. One
of the key reasons for these high socio-economic costs is the lack of
engineering solutions to develop workplaces that can operate safely
during epidemics (i.e., disease-resilient workplaces).

COVID-19 is a respiratory infectious disease, which is transmitted
from an infected individual to a susceptible one through the airborne
(aerosol), droplet, or vehicleborne (fomite) transmission routes (Khan
et al., 2021). Despite the initial speculations about the dominance of
the droplet transmission route, several recent studies confirmed that
the dominant route of COVID-19 transmission is airborne (Jiang et al.,
2021; Lewis et al., 2022; Tellier, 2022). Accordingly, the non-restrictive
interventions for limiting the spread of COVID-19 in indoor spaces are
limited to two engineering solutions: air ventilation and air purifica-
tion (Berry, Parsons, Morgan, Rickert, & Cho, 2022). These systems
reduce the concentration of viral pathogens in indoor spaces by indoor-
outdoor air exchange (ventilation) or by removing viral pathogens
by air filtration or disinfection (air purification) (Park, Yook, & Koo,
2022). Despite the effectiveness of these systems, their high energy
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consumption has raised concerns among the building engineering com-
munity (Choi & Yoon, 2023). The air cooling system (air ventilation)
is the most energy-demanding end-use in buildings, consuming al-
most 40% of the total buildings’ energy consumption (González-Torres,
Pérez-Lombard, Coronel, Maestre, & Yan, 2022). Consequently, after
easing COVID-19 restrictions and reopening the economy, the increased
rate of air ventilation systems in indoor spaces has risen by 6%, com-
pared to the pre-pandemic time (IEA, 2022). This increase is equivalent
to a 3% increase in total buildings’ energy consumption (IEA, 2022).
Hence, there is a research gap in analyzing COVID-19 spread at the
micro level and developing novel and sustainable engineering solutions
to build disease-resilient workspaces in the post-pandemic era.

The research community tackled this challenge by modeling the
spread of COVID-19 by several modeling techniques, including statis-
tical methods (Chu, 2021), computational fluid dynamics (CFD) (Che,
Ding, & Li, 2022; Sheikhnejad et al., 2022), and agent-based model-
ing (ABM) (Kerr et al., 2021; Martinez, Bruse, Florez-Tapia, Viles, &
Olaizola, 2022; Raoufi & Fayek, 2021). In these efforts, scholars often
concentrated on modeling the spread of COVID-19 in different settings,
ranging from the country- or state-wide spread of the disease (Katal,
Wang, & Albettar, 2022; Krivorotko, Sosnovskaia, Vashchenko, Kerr,
& Lesnic, 2022; Li & Giabbanelli, 2021) to the spread of COVID-19
in classrooms (Che et al., 2022). Considering their modeling scope,
these efforts can be categorized as (I) macro-level models that simulate
the spread of COVID-19 in large geographical areas, among large
populations (i.e., national-, or state-level models) (Aylett-Bullock et al.,
2021; Kerr et al., 2021); and (II) micro-level models that simulate the
spread of the disease within a limited area, among a small number of
distinguishable individuals (e.g., classroom or offices) (Araya, 2021a;
Martinez et al., 2022; Seresht, 2022). All of these modeling efforts
(i.e., the macro- and micro-levels models) address the prognostic anal-
ysis of COVID-19 spread by predicting the spread of this disease within
human populations.

While prognostic analysis is essential, research is also required on
the diagnostic analysis of COVID-19 to utilize these predictive models
and diagnose the main causes of disease transmission in different
settings (van Smeden, Reitsma, Riley, Collins, & Moons, 2021). The
diagnostic analysis, as described, helps to develop innovative, effective,
and sustainable interventions for this disease in the long run. There are
very few studies in the literature focusing on the diagnostic analysis of
COVID-19. Additionally, those few studies that tackled the diagnostic
analysis of COVID-19 concentrate on the macro-level spread of the
disease and often evaluated the effectiveness of vaccination at the
national, state, or city levels (Katal et al., 2022; Krivorotko et al., 2022;
Li & Giabbanelli, 2021).

Diagnostic analysis of COVID-19 at the micro-level is complex since
it requires considering the physical (e.g., architecture) and functional
(e.g., ventilation rate) characteristics of the building, as well as the
occupants’ social and personal behavior (Martinez et al., 2022; Zhao,
Liu, Yin, Zhang, & Chen, 2022). Incorporating buildings’ physical and
functional characteristics is a straightforward practice because these
characteristics are static (do not change over time); however, modeling
occupants’ behavior poses a challenge due to its interactive and dy-
namic nature, as well as its dependency on several personal and social
characteristics of occupants (Araya, 2021a; Seresht, 2022). Herein,
a general-purpose simulation framework (contagious disease spread
simulator, called CoDiSS (Gerami-Seresht & Sadeghi, 2023)) is used for
prognostic and diagnostic analysis of COVID-19 spread at the micro-
level. CoDiSS is an open-source simulation framework developed by the
authors based on stochastic ABM. The application of ABM in CoDiSS
helps capture the interactive and dynamic behaviors of occupants,
as well as their interactions with the building and one another. The
contributions of this paper are threefold: (I) on the prognostic analysis
aspect, this paper introduces a highly granular micro-level simulation
2

framework that captures several parameters that affect the airborne
transmission of infectious diseases in indoor spaces; (II) on the di-
agnostic analysis aspect, this paper identifies the high-risk zones for
COVID-19 transmission in office spaces; and (III) to enhance the occu-
pational safety, this paper suggests non-restrictive interventions to limit
the spread of COVID-19 in the identified high-risk zones and assesses
the effectiveness of the suggested interventions through simulation.

The remainder of this paper is organized as follows: Section 2
provides a brief review of the literature on ABM and the simulation of
COVID-19 spread at the macro and micro levels. Section 3 illustrates
our research methodology by interpreting the spatial (i.e., related to
space) and temporal (i.e., related to time) structure of CoDiSS (Gerami-
Seresht & Sadeghi, 2023). Section 4 tests the validity of the research
methodology by simulating the COVID-19 outbreak in a case study
project and comparing the results to empirical data. Section 5 de-
scribes the research methodology for developing non-restrictive inter-
ventions and then assesses several interventions for limiting the spread
of COVID-19 in office spaces. In Section 6, the results are discussed, and
a strategy (combination of several interventions) to enhance occupa-
tional safety in office spaces. Finally, Section 7 presents the conclusions
and discusses future research areas in this context.

2. Literature review

The research community strove to address the challenges raised
by the COVID-19 pandemic by modeling the spread of COVID-19 in
different settings (prognostic analysis) at both the macro and micro
levels. Although a wide range of modeling techniques is utilized for
macro-level modeling of COVID-19 spread, the majority of micro-level
models are based either on ABM (Araya, 2021a; Martinez et al., 2022;
Seresht, 2022) or CFD (Che et al., 2022; Sheikhnejad et al., 2022).
The application of ABM at the micro-level is beneficial when dynamic
human behavior is the main contributor to the disease spread, and CFD
is useful for modeling the movements of aerosols within indoor spaces.
ABM is a simulation technique with proven capability for modeling
complex systems, in which the overall system performance is created
by several interactions among individual components (i.e., agents) of
the system (Borshchev, 2013). The following two sub-sections review
the prominent efforts for modeling COVID-19 spread at the macro
and micro levels and identify the research gaps in the prognostic and
diagnostic analysis of COVID-19.

2.1. Macro-level modeling of COVID-19 spread

At the macro level, COVID-19 outbreaks are simulated at the city,
state, or even country levels, using a range of modeling techniques,
including statistical modeling (Chu, 2021), Monte Carlo simulation
(Afshar-Nadjafi & Niaki, 2021; Xie, 2020), and ABM (Kerr et al., 2021;
Truszkowska et al., 2021). The large modeling scale of the macro-
level ABM models is associated with high computational costs and
low granularity. Consequently, these models often simulate a large
population of citizens by a single agent to help with their large mod-
eling scale, simulating the behaviors of thousands or even millions of
citizens. This indicates that macro-level models cannot closely trace the
interactions between specific individuals in the simulation environment
since they require simplification and generalization of human behav-
iors (Truszkowska et al., 2021). Given these characteristics, the macro-
level models of COVID-19 are inappropriate for simulating the spread
of this disease (i.e., prognostic analysis) in small enclosed spaces, like
office spaces. This limitation can be addressed by implementing micro-
level modeling of COVID-19 spread, in which the high granularity of
the model allows accounting for different socio-personal behaviors of
individuals within the simulation environment.

In addition to their application for prognostic analysis, the macro-
level models of COVID-19 are utilized for analyzing the effectiveness

of some interventions on a large scale. Jadidi et al. (2021) numerically
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analyzed the effectiveness of partial COVID-19 vaccination, where vac-
cines are not available or appropriate for all citizens. Li and Giabbanelli
(2021) used Covasim (Kerr et al., 2021), a well-established macro-level
simulator of COVID-19, to evaluate the effectiveness of vaccines at
the national level in the United States. Their results confirm the high
effectiveness of vaccines in limiting the spread of COVID-19. Similar
studies in the UK (Panovska-Griffiths et al., 2022), Germany (Krebs, von
Jouanne-Diedrich, & Moeckel, 2021), and Poland Latkowski and Dunin-
Keplicz (2021) confirm the effectiveness of vaccination in limiting
the spread of COVID-19 at the national level. In another macro-level
analysis, Shorfuzzaman, Hossain, and Alhamid (2021) suggested the
use of computer vision algorithms for monitoring the compliance of
citizens to the social distancing mandate. Despite the usefulness of these
results, these studies fail to develop and test innovative non-restrictive
interventions for limiting the spread of this disease due to their low
granularity. Identifying the high-risk zones for disease transmission and
testing the effectiveness of new interventions (i.e., diagnostic analy-
sis) can be accomplished by either empirical studies (Mendez-Brito,
El Bcheraoui, & Pozo-Martin, 2021) or by micro-level modeling, in the
latter of which all affecting parameters are sufficiently addressed.

2.2. Micro-level modeling of COVID-19 spread

The micro-level models of COVID-19 can address the physical and
functional characteristics of the environment, as well as the socio-
personal behaviors of its occupants, due to their smaller modeling
scope (Araya, 2021a; Liao et al., 2022). This high level of granularity is
associated with a significant increase in their computational costs and
modeling complexity; hence micro-level models are only applicable to
small areas and a limited number of individuals. A discussion by Saeedi
(2018) illustrates the trade-off between the modeling scope and gran-
ularity. There are very few studies tackling the prognostic analysis
of COVID-19 at the micro level due to the complexities associated
with modeling buildings’ characteristics and their occupants’ behaviors.
A few studies attempted micro-level modeling of COVID-19 spread
among construction workers (Araya, 2021a, 2021b; Seresht, 2022);
however, these studies fail to capture the essential parameters that
affect COVID-19 transmission, such as airborne transmission, contacts,
and architecture of the simulation environment. In a more recent and
more comprehensive effort, Martinez et al. (2022) introduced a micro-
level model of COVID-19 (ArchABM), which has a high granularity
by accounting for the physical characteristics of the indoor space
and modeling each individual by an agent. ArchABM is a modular
framework with high scalability, and its simulation results prove the
usefulness of micro-level models for the prognostic analysis of COVID-
19. However, ArchABM (Martinez et al., 2022) utilizes a discrete
event time engine, which limits the capability of this framework for
modeling highly dynamic human behaviors and air movements inside
indoor spaces since these dynamic variables can only be modeled by
the continuous time engine (Bandyopadhyay & Bhattacharya, 2014).
Furthermore, some critical aspects of modeling COVID-19 spread are
overlooked in ArchABM, such as the changes in the viral load of the
virus throughout the infection duration and the infection risk calculated
based on the virus quanta inhaled. There remains a significant research
gap in the prognostic analysis of COVID-19 transmission within indoor
spaces, encompassing all various parameters that influence the spread
of this disease.

In addition to the limitations that exist in the prognostic analysis
of COVID-19 at the micro level, the diagnostic analysis of this disease
is also lacking, since it is only addressed by CFD (Che et al., 2022;
Sheikhnejad et al., 2022). The application of CFD for diagnostic analysis
of COVID-19 completely ignores the dynamic socio-personal behaviors
of occupants and concentrates on the air movements within the indoor
space. Accordingly, further efforts are required to utilize the existing
micro-level ABM models to simulate the disease spread in different
3

scenarios and identify the high-risk zones of disease transmission. The
high granularity of micro-level ABM models can also help to test new
interventions for limiting the spread.

The following three research gaps are identified within the existing
body of knowledge: (I) simulating the spread of COVID-19 in indoor
spaces by a highly granular micro-level model (prognostic analysis);
(II) identifying the high-risk zones of COVID-19 transmission (diag-
nostic analysis); and (III) developing innovative and non-restrictive
interventions to limit the spread of the disease in the identified high-
risk zones. These research gaps are addressed in this paper by modeling
the spread of COVID-19 in office spaces using a highly granular micro-
level framework, CoDiSS (Gerami-Seresht & Sadeghi, 2023), identifying
the high-risk zones, and testing several non-restrictive interventions to
limit the disease spread in these settings.

3. Research methodology

This section discusses the methodology for simulating COVID-19
spread in office spaces by CoDiSS. The spatial and temporal structure
of CoDiSS is presented in Fig. 1, illustrating the data flow between
the different modules of the framework. In every simulation timestep,
CoDiSS starts with simulating the social and then personal behaviors of
the agents to determine each agent’s actions throughout the timestep.
In CoDiSS, agent behaviors are stochastically defined by probabilistic
distributions. Hence, despite all agents following the same behavioral
rules, their actions are different at each time step. The stochastic
behavioral rules allow CoDiSS to deliver more realistic results by simu-
lating agents’ diversity and accounting for differences in their personal
attributes.

In every simulation timestep, the virus spread by infected agents is
calculated based on their actions and the location within the simulation
environment. Afterward, CoDiSS simulates the virus decay and the air-
flow within the simulation environment, and finally maps the virus con-
centration throughout the environment and stochastically determines
the new cases of COVID-19.

Furthermore, the structure of CoDiSS is illustrated based on the
ODD+D (i.e., overview, design concepts, details, and decision-making)
protocol developed by Müller et al. (2013).

3.1. Overview

The objective of CoDiSS is to determine infection risks in an indoor
space – an office space, in this research – while considering the physical
and functional characteristics of the building and its occupants’ behav-
ior. For airborne transmission, this risk is quantitatively determined
based on the Riley, Murphy, and Riley (1978) equation, considering
the virus quanta that each agent inhales during the simulation run. One
quantum is equal to the dose of viral pathogens required to cause infec-
tion in 63% of susceptible individuals (Buonanno, Stabile, & Morawska,
2020). In CoDiSS, each person inside the office space is modeled by
an agent, and the time steps are selected by the modeler. The state
variables of CoDiSS are (I) the concentration of viral pathogens inside
the office space mapped over the entire space (calculated for each
1.5 m × 1.5 m cell) and (II) the state of each agent specified by its
location, task, infection state (for infected ones), and infection risk (for
healthy ones).

CoDiSS is a general-purpose ABM framework for modeling the
spread of infectious diseases; hence, it allows modelers to select the cell
size based on the modeling context and limitations. In this research,
the cell size is set to 1.5 m × 1.5 m, so that agents’ walking speed is
simply modeled as one cell per second, resulting in an average walking
speed of ≈5 (km∕h) as suggested by the literature for average women
and men (Dempsey et al., 2022). Additionally, selecting the cell sizes of
1.5 m allows tracking the droplet transmission of contagious diseases (in
future research) since the distance between two agents within a given
cell will be less or equal to ≈2 m, which is the minimum safe distance
between a susceptible and infected individual for droplet transmission
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Fig. 1. The spatial and temporal structure of CoDiSS.
(i.e., maximum travel distance of large droplet nuclei before gravita-
tional settling) (Lewis et al., 2022). The simulation process starts with
creating the office layout in CoDiSS manually, creating several agents,
and then simulating agents’ interactions with the space and one another
in continuous time progressions. CoDiSS utilizes continuous simulation
time steps equal to one minute of the real-world time progression.

3.2. Design concepts

The theoretical aspect of COVID-19 transmission and the infection
risks associated with different social behaviors has been comprehen-
sively discussed in epidemiology literature (Fang, Karakiulakis, & Roth,
2020; Lancet, 2020). Generally, infectious diseases may be transmitted
from an infected individual to a susceptible one through one of the
following transmission routes (Dicker, Coronado, Koo, & Parrish, 2012):

• Direct Transmission

– Direct Contact: Direct transmission occurs if the infectious
agents (e.g., bacteria, viral pathogens) are transmitted
through skin-to-skin contact between two individuals.

– Droplet Spread: Droplet spread occurs through the short-
range spray of large droplets (>5 μm) created by an infected
agent through sneezing, coughing, or normal breathing.

• Indirect Transmission

– Airborne Transmission: Airborne transmission (also called
aerosol transmission) occurs by the small repository droplets
or droplet nuclei, which are smaller than 5 μm in diameter
and may float in the air for extended periods until the
pathogens are deactivated (i.e., viral decay) or removed
from the air either by gravitational settling, ventilation or
air purification.

– Vehicleborne Transmission: Vehicleborne transmission oc-
curs when infectious agents are transmitted to susceptible
individuals through a contaminated vehicle that has been in
4

contact with an infected individual earlier. These vehicles
can be food or water, biological products (e.g., blood),
or fomites (e.g., bedding or objects’ surfaces). Hence, this
transmission route is also known as fomite transmission.

– Vectorborne Transmission: In this transmission route, the
infectious agents are transmitted from an infected individ-
ual to the susceptible one through insects’ vectors (e.g.,
mosquitoes, fleas). These insects may be just a mechanical
career of the viral pathogens or support the growth and
change of the infectious agent.

Despite the initial speculations (Jimenez et al., 2022), recent studies
confirm that airborne (aerosol) transmission is the dominant trans-
mission route of COVID-19 (Jiang et al., 2021; Tellier, 2022). Thus,
CoDiSS only simulates the airborne transmission of COVID-19 in of-
fice spaces in this research. At each simulation timestep, it identifies
the infected individuals inside the office space and calculates ̇𝑁𝐸𝑖,𝑗 ,
denoting the number of pathogens exhaled by all infected agents at
the (𝑖, 𝑗) coordinate. The number of pathogens exhaled by an agent is
determined based on the activity it undertakes in each simulation time
step, using the experimental data provided in the literature (Goyal,
Reeves, Cardozo-Ojeda, Schiffer, & Mayer, 2021; Lancet, 2020; Liu
et al., 2020). In this research, agents either sit, talk, or walk within the
office space, and the number of pathogens they exhale is determined
accordingly. Next, in each simulation time step, CoDiSS calculates the
changes in the concentration of viral pathogens inside the office, as
presented in Eq. (1). The notation of �̇� 𝑡

(𝑖,𝑗) represents the concentration
of pathogens in the specific cell denoted by (𝑖, 𝑗) at time 𝑡. Here, the
indexes 𝑖 and 𝑗 are the cell’s row and column number, respectively. In
its default settings, CoDiSS sets the concentration of viral pathogens
equal to zero at the start of every day (as well as simulation start),
where weekdays are tracked by the built-in calendar in CoDiSS.
𝑑�̇�𝑖,𝑗

𝑑𝑡
=

̇𝑁𝐸𝑖,𝑗 (1 − 𝜇𝑚 ⋅ 𝛾𝑚)
𝑉

− 𝜌 ⋅ �̇� 𝑡
𝑖,𝑗 (1)

where the differential 𝑑�̇�𝑖,𝑗 denotes changes in the concentration of
pathogens in cell (𝑖, 𝑗), 𝑑𝑡 stands for the simulation time step; 𝜇 is for
𝑚



Sustainable Cities and Society 98 (2023) 104781N. Sadeghi and N. Gerami-Seresht

s
r
d
o
w
C
(
i
2

f
s
(
b
o
w
a
s
b
W

𝑆

w
a
b
m
c
p

h
a
f
b
t
r
m
l
e
d
a

(
e
a
w
a
r
u
t
T
o
b

Table 1
The probability, duration, and location of the tasks assigned to each agent.
Task Probability/Duration Location Social or personal

Enter∖Exit 3 min Elevator or entrance Social
Meeting 60 min Meeting rooms Social
Decompression Uniform [3–6%] Coffee spot Personal
Working Uniform [86–93%] Assigned desk location Personal
Interaction with another agent Uniform [3–6%] Other agent’s desk Personal
Washrooms Uniform [1–2%] Washrooms Personal
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the efficiency of masks used by the occupants (i.e., 𝜇 = 0 if no masks are
used); 𝛾𝑚 is the rate of occupants’ compliance with the mask mandate.
Additionally, 𝑉 represents the total volume of the confined space
(i.e., equal to 6.75 m2 for a cell of 1.5 m wide and 3 m tall in this re-
earch), and 𝜌 denotes the decay rate of the viral pathogens. The decay
ate covers gravitational settling (i.e., the number of droplets settled
ue to the gravitational force), viral deactivation— calculated based
n the details provided in epidemiology literature (Lancet, 2020) — as
ell as the removal rate by air ventilation and air purification systems.
oDiSS also accounts for changes that occur in different disease stages
e.g., non-symptomatic non-contiguous, non-symptomatic contiguous)
n terms of viral pathogens released by infected individuals (Liu et al.,
020).

Air movement inside an enclosed space is a major contributing
actor to the aerosol transmission of infectious diseases. There are
everal features that affect air movements inside an enclosed space
e.g., architecture, ventilation, and occupancy), which can be modeled
y advanced CFD methods. For the sake of modeling simplicity, CoDiSS
nly accounts for the space architecture and average ventilation rate
hile modeling air movement inside the simulation environment. In
simple CFD formulation presented in Eq. (2), CoDiSS calculates the

peed of air movements – equally distributed in four main directions –
ased on the average ventilation rate inside the enclosed space (Bhagat,
ykes, Dalziel, & Linden, 2020).

= 0.8𝜈 (mm/s) = 4.8𝜈 ⋅ 10−2 (m/min) (2)

here 𝑆 denotes the speed of air movements, and 𝜈 stands for the
verage ventilation rate. CoDiSS also accounts for space architecture
y only allowing air movements through open spaces and blocking air
ovements through walls and doors. Further details regarding CoDiSS

an be found in the documentation of the open-access Python library
ublished by the authors (Gerami-Seresht & Sadeghi, 2023).

Agents’ decision-making is based on their social and personal be-
avior, where the former is an attribute of the simulation environment
nd applies to all agents. The latter is a personal attribute and may vary
rom one agent to another. In CoDiSS, agent behaviors are determined
ased on stochastic behavioral rules defined by probability distribu-
ions. Such stochastic behaviors provide a realistic representation of
eal-world scenarios. Instead of imposing deterministic behaviors, the
odel incorporates random occurrences of common behaviors and al-

ows for the emergence of diverse patterns with varying durations. For
xample, on every meeting occurrence, the attending agents are ran-
omly selected. This probabilistic approach reflects the unpredictability
nd variability often observed in the actual office settings.

Two aspects of social behavior are considered in this framework:
I) the work schedule that determines the timing of entering and
xiting the office space; and (II) meeting with several agents in the
llocated meeting rooms. The personal behaviors of agents involve: (I)
orking at the desk allocated to the agent; (II) taking a rest break
t the decompression area (e.g., tea or coffee break); (III) taking a
est break and interacting with another agent (a colleague); and (IV)
sing washrooms. At each simulation timestep, each agent is assigned
o one of these tasks based on the transition probabilities given in
able 1, considering that the social behaviors override the personal
nes. For example, if an agent is assigned to a meeting (i.e., a social
ehavior), it will attend the meeting regardless of its personal behavior
5

ssignment (e.g., working at its desk). Tasks undertaken by agents
nd their corresponding probabilities and locations are presented in
able 1.

The probabilities and durations of tasks, shown in Table 1, are ex-
racted from multiple resources in the literature (Afacan & Gurel, 2015;
lasche, Pasalic, Bauböck, Haluza, & Schoberberger, 2017; Verizon,
003), which focused on quantifying office work allocations. According
o the literature, an average office worker takes 2.9 rest breaks, each
ast between [9.3–20.2 min] (Blasche et al., 2017). The duration of time
pent in the rest breaks is equally distributed between ‘‘Interaction with
nother Agent’’ and ‘‘Decompression’’ in Table 1. The literature also
uggests the daily time allocation for using washrooms for a healthy
ndividual is [9–20 min]. Finally, in this paper, the ABM framework
imulates meetings are simulated by creating four meeting events per
ay and randomly selecting their participants from all present agents.
he transitional probabilities that define the personal behavior of the
gents are calculated as uniform distributions based on these tasks’
urations (see Table 1).

Once all agents are assigned to given tasks at each simulation time
tep, the concentration of viral pathogens (state variable 1) is updated,
nd the infection probability is determined for each healthy agent
state variable 2) inside the office. The ABM framework determines the
nfection probability based on the Wells-Riley equation (Riley et al.,
978) presented in Eq. (3) (de Oliveira, Mesquita, Gkantonas, Giusti, &
astorakos, 2021; Watanabe, Bartrand, Weir, Omura, & Haas, 2010).

𝑥(𝑡) = 1 − exp (− ̇𝑁𝐼𝑥(𝑡)) (3)

here 𝑃𝑥(𝑡) stands for the probability of agent 𝑥 getting infected at time
, and ̇𝑁𝐼𝑥(𝑡) is the total quanta of pathogens inhaled by agent 𝑥 until
he simulation time 𝑡. The total quanta inhaled by agent 𝑥 (represented
s ̇𝑁𝐼𝑥(𝑡)), who stays in the cell (𝑖, 𝑗) for the duration of 𝑡 is calculated
y Eq. (4).

̇𝐼𝑥(𝑡) = ∫

𝑡

𝑡0
(1 − 𝜇𝑚𝛾𝑚)𝐼𝑥�̇� 𝑡

𝑖,𝑗 ⋅ 𝑑𝑡 (4)

here �̇� 𝑡
𝑖,𝑗 denotes the concentration of viral pathogens in the cell

𝑖, 𝑗) at time 𝑡 (See Eq. (1)). Additionally, 𝐼𝑥 represents the air in-
alation rate of the agent, determined based on its activity at each
imulation time step using the details provided in epidemiology liter-
ture (Lancet, 2020). Furthermore, 𝑑𝑡 stands for the duration of the
imulation timestep (i.e., 1 min), and 𝜇𝑚 and 𝛾𝑚 denote mask efficiency
nd compliance, respectively. The compliance with mask usage is quan-
ified as the percentage of time during which agents consistently wear
asks over their face. Given Eqs. (3) and (4), the contribution of each

ell to the infection risk of all healthy agents – hereafter referred to as
he cell infection risk (𝐶𝐼𝑅𝑖,𝑗) – can be calculated as shown in Eq. (5).

𝐼𝑅𝑖,𝑗 = 1 − exp (−
𝑁𝐻
∑

𝑥=0

̇𝑁𝐼𝑥(𝑡max)) (5)

here 𝑁𝐻 indicates the total number of healthy individuals in the
ffice, and 𝑡max denotes the total simulation runtime. The cell infection
isk, as defined in Eq. (5), indicates the probability of any healthy
gent getting infected in the given cell throughout the simulation run.
n this research, the cell infection risk (𝐶𝐼𝑅) is used to determine
he high-risk zones of COVID-19 transmission in office spaces and to
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evaluate the effectiveness of non-restrictive interventions in limiting
the spread of COVID-19 in office spaces. According to the cell infection
risk formulation (Eq. (5)), the two following conditions are required for
a given cell to become a high-risk zone of COVID-19 transmission: (I)
having a high concentration of virus quanta throughout the simulation
run; and (II) having a high footfall of healthy agents.

3.3. Implementation details

CoDiSS is an open-source Python library, which is developed with
a modular architecture and is available on GitHub (Gerami-Seresht &
Sadeghi, 2023) for non-commercial applications. On simulation ini-
tialization, the simulation environment is created by mirroring the
physical characteristics of the office space. To this end, CoDiSS creates
a network of 1.5 m-wide cells over the entire office layout based on the
coordinates of the layout boundaries given by the modeler. Next, the
modeler manually defines the boundaries of each cell as an open space
or wall. Once the simulation environment is created, several agents
are created and enter the building (i.e., office) from the designated
entrance and move to their designated working space (i.e., desk). Then,
agents’ behavior is re-created in CoDiSS by randomly assigning each
agent to one of the tasks – manually defined by the modeler – at
each simulation time step. Since the ABM framework used in this
article is a general-purpose framework for simulating the spread of
contagious diseases (not specific to COVID-19 nor office spaces), the
disease specifications and tasks undertaken by each agent are manually
defined and empirically validated (see Section 4).

3.4. Decision-making on appropriate non-restrictive interventions

First, the cell infection risk 𝐶𝐼𝑅𝐼 is mapped inside the office by
oDiSS, and areas with the highest 𝐶𝐼𝑅𝐼 – hereafter called high-risk
ones – are identified. Next, several non-restrictive interventions are
uggested to reduce the infection risk in these high-risk zones. Non-
estrictive interventions refer to any intervention that limits the spread
f COVID-19 without significantly changing the work behavior of em-
loyees (like social distancing) or requiring compliance of individuals
like face masks and vaccination). Notably, the non-restrictive interven-
ions we suggest in this research may involve minor or major spatial
hanges to the office space; however, it aims to minimize the impacts
n the temporal structure of the system (i.e., employees’ behavior) or
he business capacity at the given office space.

Decision-making regarding the most effective non-restrictive inter-
entions is made based on two performance indicators: (I) the number
f agents infected during the simulation over the total number of agents
hereafter called infection rate); and (II) the cell infection risk (𝐶𝐼𝑅),
veraged over the entire office space (see Eq. (5). Given the stochastic
ehavior of the spread of infectious diseases, these performance indica-
ors are calculated for each intervention for 100 simulation runs – using
onte Carlo simulation – and the average results are reported.

For the sake of comparison, the spread of COVID-19 in the original
ettings of the case study office (hereafter called base scenario) is
imulated, and the two performance indicators are calculated for the
ase scenario. Next, by implementing each non-restrictive intervention,
ts performance indicators are compared to the base scenario (infec-
ion rates and 𝐶𝐼𝑅). Furthermore, the statistical significance of the
ifference between the base scenario and implemented interventions is
valuated using the 𝑡-tests. For two random distributions (e.g., infection
ates in the base scenario and the post-intervention scenario) with the
verages of 𝑚1 and 𝑚2, the 𝑡-test is applied by calculating the 𝑡 using
q. (6).

=
𝑚1 − 𝑚2

𝜎𝑑
√

1
𝑛1

+ 1
𝑛2

(6)

where 𝜎𝑑 represents the standard deviation of the differences between
the two samples, and 𝑛1 and 𝑛2 are the sample sizes of the first and sec-
6

ond distributions, respectively. The 𝑡 values are then compared to the s
critical 𝑡-value at 95% confidence level, and the statistical significance
of each intervention’s impact is statistically tested.

Additionally, the cost of implementing each intervention is incor-
porated into the decision-making process by assessing the implemen-
tation costs. While a comprehensive cost analysis could incorporate
factors such as the actual financial cost and adherence difficulty, our
research focuses specifically on assessing the effectiveness of interven-
tions rather than conducting a detailed cost evaluation. Therefore, a
three-point Likert scale (i.e., 𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, and ℎ𝑖𝑔ℎ) is used based on
the authors’ subjective judgment.

3.5. Developing a strategy to improve occupational safety

Once all suggested interventions are tested, we propose an additive
approach to combine multiple interventions one step at a time and
develop a strategy to improve occupational safety in office spaces. To
this end, we start with the 𝑙𝑜𝑤-cost interventions with the highest
effectiveness – based on the 𝑡-test results – in limiting the spread of
COVID-19. After implementing each intervention, the spread of COVID-
19 in the office space is simulated, and the new high-risk zones are
identified. Consequently, the next intervention is selected based on the
updated high-risk zones. In other words, the selection of non-restrictive
interventions for this strategy is based on the following three criteria:

• Interventions significantly (i.e., statistical significance) reduce the
infection rate (i.e., efficiency).

• Each intervention targets a distinct (different from other interven-
tions) high-risk zone to reduce its 𝐶𝐼𝑅.

• The implementation cost of interventions is either 𝑙𝑜𝑤 or 𝑚𝑒𝑑𝑖𝑢𝑚.

In each evolution, a new intervention is selected based on the
bove-mentioned criteria and added to the developing strategy. Upon
mplementing each intervention, the cell infection risk 𝐶𝐼𝑅 is cal-
ulated for the entire office, and the statistical significance of the
volution is tested by the 𝑡-test method at 95% confidence level. This
rocess continues until all interventions are considered. Finally, the last
volution represents our proposed strategy for improving occupational
afety in office spaces in the post-pandemic era.

. Model validation

In this section, the research methodology and accuracy of CoDiSS
re validated by simulating the spread of COVID-19 in a case study of
call center in South Korea and comparing the simulation results to the
mpirical data. For this purpose, we will simulate the spread of COVID-
9 in the case study, where the spatial and temporal structure of the
ffice is determined based on the information provided by Park et al.
2020) and the literature. Next, we will compare simulation results for
he daily number of infections over – averaged over 100 simulation runs
to the empirical data (Park et al., 2020) to determine the accuracy of
oDiSS in predicting the COVID-19 infection rate in the case study. We
ill also apply the behavior reproduction test at extreme conditions
y comparing the number of new cases reported on weekends to the
mpirical data (i.e., zero new cases).

The case study concerns the spread of COVID-19 in a call center,
hich is located on the 11th floor of a 19-story commercial building

n downtown Seoul, South Korea. The outbreak was reported on March
th, 2020, and the call center building was closed on March 9th, 2020,
mmediately after the report. Following its closure, all occupants were
ested; consequently, all positive cases were isolated, and the negative
ases were quarantined, monitored, and retested during a fourteen-days
indow. Among the total 1143 residents of the building, 97 positive

ases of COVID-19 were reported. Notably, 97% of the positive cases
i.e., 94 cases out of the total 97 infected individuals) were working
n the 11th floor of the building in the call center; hence, this case

tudy concerns this call center only. The empirical data, including the
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Fig. 2. The call center case study layout.
epidemiological details of the outbreak and the physical characteristics
of the office space, are further discussed by Park et al. (2020).

First, the office layout is created in CoDiSS by defining the exterior
and interior walls of the office space, assigning the workspace of
216 employees, and specifying the common-use locations within the
office space (e.g., the decompression areas, elevators, washrooms, and
meeting rooms). The office layout with all the aforementioned spatial
details was presented by Park et al. (2020) and was re-created in
CoDiSS, as presented in Fig. 2(a).

The office layout, presented in Fig. 2(a), comprises two primary
larger working zones and several smaller zones, referred to as clusters,
situated on the north and south wings of the office. Within this context,
we define cluster size as the number of individuals working in the
same indoor environment without any partitions or panels segregating
them. The upper and lower zones are connected by the conference room
and the elevators’ hallway in the center. Each cluster has designated
washrooms and decompression areas (also called common areas); hence
employees in each cluster will only use their own cluster’s common
areas. In the original settings (i.e., base scenario), all employees are
assumed to work in one shift for a total of 7 h [9:30 AM–4:30 PM] on
Mondays-Fridays, and 5 h [9:30 AM–2:30 PM] on Saturdays (working
days are similar to those reported in the case study Park et al., 2020).
By implementing this work schedule, all individuals will work for 40
h per week, following the guidelines set by the South Korean employ-
ment law (Silkin, 2023). At the start of the simulation run, employees
(i.e., agents) randomly arrive at the building in a 15−min window
before their workday starts ([9:15 AM–9:30 AM]). Similarly, exiting the
office is simulated, assuming the agents would leave the office within a
15−min window after their workday ends ([4:30 PM–4:45 PM]). Given
that all employees’ workday starts and finishes simultaneously, all
agents will spend three minutes waiting in the hall before entering the
elevator’s cab. The socio-personal behavior of all employees is manually
defined in CoDiSS based on the details discussed in Section 3.2.

Fig. 2(b) presents CoDiSS output for the base scenario, which maps
the infection risk of each cell – calculated by Eq. (5) – on the entire
office layout after completing the simulation run. Additionally, the first
infected individual is specified by a red circle in Fig. 2(b) since its
location can significantly affect the infection spread inside the office
space. As the simulation results (i.e., diagnostic analysis) confirm,
the highest risk of infection is observed in (I) decompression areas,
7

where agents gather during the work breaks and multiple agents may
interact with one another; (II) the elevators’ hallway, which is densely
populated at the start of the end of working hours; (III) meeting rooms
due to the increased virus quanta emission rate while agents speak
during meetings; and (IV) the open workspace, where agents spend
the majority of their time while in the office. The simulation results
also confirm that the north wing cluster has a higher risk of infection
as compared to the south wing since the first case of COVID-19 was
observed in the north wing cluster. The high-risk zones identified at this
stage are utilized for defining the proper non-restrictive interventions
in the office, as discussed in Section 5.

According to Park et al. (2020), the first symptomatic case of
COVID-19 was reported on 25th of February when an employee, lo-
cated on the north wing of the building – specified by a red circle in
Fig. 2(b) –, developed COVID-19 symptoms. Considering an average
of four days gap between the infection time and the first symptoms
of the disease (Shamil, Farheen, Ibtehaz, Khan, & Rahman, 2021),
the simulation of the case study starts on the 21th of January 2020.
Given the stochastic nature of infectious diseases spread, the model is
simulated for 100 times, and the average simulation result is compared
with the empirical data, as shown in Fig. 2.

As shown in Fig. 3, CoDiSS demonstrates its effectiveness by ac-
curately predicting the rising trend of cases over time and capturing
the extreme conditions experienced during the weekend of March
1st, where the model successfully reflects no new reported infections.
Additionally, the error of the simulation results (i.e., the infection rate)
is calculated using Eq. (7).

𝑅𝑀𝑆𝑃𝐸 =

√

√

√

√

𝑛
∑

𝑖=1

(

𝑃𝑟𝑖 − 𝐴𝑐𝑖
𝐴𝑐𝑖

)2 100
𝑛2

% (7)

where 𝑃𝑟𝑖 and 𝐴𝑐𝑖 stand for the predicted and actual values of the
𝑖th data point, respectively, and 𝑛 represents the total number of data
points (i.e., the number of days simulated). The results confirm that the
CoDiSS predicted the cumulative number of infections with 8% error
(𝑅𝑀𝑆𝑃𝐸 = 8%) in this case study. Considering that the spread of
infectious diseases is highly random, the prediction accuracy achieved
by CoDiSS (𝑅𝑀𝑆𝑃𝐸 = 8%) confirms the behavioral validity of this
simulation framework.
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Fig. 3. Actual data and stochastic simulation results for the call center case study.

5. Non-restrictive intervention for limiting the spread of COVID-
19 in office spaces

The non-restrictive interventions introduced in this paper can be
grouped into two major categories: (I) the spatial interventions that
alter the physical characteristics of the office space to limit the spread;
and (II) the temporal interventions that make insignificant changes to
individuals’ work behavior. Fig. 4 provides further details regarding
these two categories and the range of changes considered for each
intervention.

It is noteworthy that category III represents the common interven-
tions widely implemented by authorities during the COVID-19 pan-
demic, which are often deemed restrictive in certain settings and
challenging to sustain in the long run. Conversely, interventions falling
under Categories I and II, entailing alterations to the office layout or
subtle adjustments in agents’ work behavior, which demonstrate signif-
icant feasibility across diverse scenarios. With regard to office layout
modifications, simple yet cost-effective measures can be implemented,
such as incorporating additional panels to establish well-defined work-
ing areas or utilizing larger rooms for meetings. Furthermore, adapting
work dynamics, such as reducing meeting durations or implementing
minor shift changes, can be relatively straightforward to put into
practice compared to more restrictive measures like mandating masks
or vaccinations. These non-restrictive interventions can offer a flexible
and adaptable approach to maintaining a safe work environment.

This study simulates the impact of eight interventions for limiting
the spread of COVID-19 in office spaces, as presented in Fig. 4. These
interventions are: (I) changing workspace settings from open workspace
to clustered workspace, (II) changing the average size of clusters (III)
increasing decompression space allocation, (IV) increasing meeting
space allocation, (V) decreasing meetings duration, (VI) decreasing the
number of meetings participants, (VII) increasing the number of work-
ing shifts (or reducing the occupancy density), and (VIII) allocating and
prolonging the permissible time window to enter and exit the office.

Most interventions suggested in Fig. 4 can be implemented by sim-
ply changing the office layout or slightly changing the work behavior
of the agents. The unit of measure and the range of changes for each
intervention are also presented in Fig. 4. Additionally, two globally
accepted restrictive COVID-19 interventions (i.e., using face masks and
vaccination) are analyzed by CoDiSS, and their results are compared
to our suggested non-restrictive interventions. The compliance and
effectiveness of the face mask and vaccination mandates – shown
in Fig. 4 – are extracted from the literature (Agency, 2023; Office
of National Statistics, 2023; Sankhyan et al., 2021). To analyze the
effectiveness of each intervention, the baseline values (referred to as
‘‘Base’’ in Fig. 4) for all spatial or temporal parameters are set based on
8
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the case study project (including the location of the initially infected
agent); then, the given spatial or temporal intervention is implemented
in several scenarios by gradually altering the corresponding simulation
parameter. Next, the effectiveness of each intervention is determined by
two performance indicators: (I) the infection rate and (II) the mapping
of 𝐶𝐼𝑅 over the office space. These two indicators are compared
with the results of the case study project in its original settings (base
scenario) using statistical 𝑡-test at 95% confidence level.

The mapping of 𝐶𝐼𝑅 for the base scenario, presented in Fig. 2(b),
reveals the decompression area, elevators hall, the workplace occupied
by the infected agents, and the meeting rooms are the high-risk zones
for transmitting COVID-19 to the healthy agents inside the office space.
In the following sub-sections, the impact of different interventions on
reducing the 𝐶𝐼𝑅 and infection rates in these spaces is tested.

5.1. Work environments settings

The original setting of the case study involves two large work
clusters in which the desks are located inside an open workspace. In
these settings, agents can freely move and the air – and viral pathogens
carried by aerosols – are distributed within the entire workspace.
The distribution of viral pathogens in this settings, can increase the
infection risks within the entire office space. As graphically shown in
Fig. 2(b), the workplace of the infected agents is one of the high-risk
zones inside the office space; hence, developing smaller work clusters
and reducing the total number of employees working inside an enclosed
space is expected to reduce the overall risk of infection.

To analyze the impacts of the work environment settings, the two
large clusters are divided into smaller clusters by adding new wall
partitions while keeping the total number of employees unchanged.
Next, the average cluster size (𝐴𝐶𝑆) of the employees is calculated
using Eq. (8).

𝐴𝐶𝑆 =
𝑁
∑

𝑥=1

𝐶𝑆𝑥
𝑁

(8)

where 𝐶𝑆𝑥 is the cluster size of the 𝑥th agent and 𝑁 is the total
number of agents.The agents’ cluster sizes vary depending on their desk
location. For instance, in the base scenario, agents working in the north
wing are part of a larger working cluster with a size of 136. On the
other hand, agents occupying smaller offices in the south wing have a
cluster size of 8. As a result, we have 136 agents belonging to a cluster
of size 136. Referring to Fig. 2(b) presenting agents’ working spaces,
the Average Cluster Size (ACS) for the base scenario can be calculated
as:
1362 + 602 + 82 + 82 + 42

216
≈ 103

The 𝐴𝐶𝑆 is gradually reduced to 32.5, 19.1, 9.4, and 6.6 people
by adding wall partitions in the office layout, as presented in Fig. 5.
For each 𝐴𝐶𝑆, the simulation model ran 100 times, simulating the
spread of COVID-19 in the office space between Feb. 21st and Mar.
9th, 2020. Notably, all simulation runs start with one infected agent
located on the north wing cluster (see Fig. 2[b]). Fig. 5 shows how
reducing 𝐴𝐶𝑆 affects the cell infection risk (𝐶𝐼𝑅) in the workplace
by mapping the 𝐶𝐼𝑅 in the entire office for different layouts. Please
note that Fig. 5(a) corresponds to the base scenario, which essentially
mirrors Fig. 2(b). The base scenario is included in all subsequent figures
for easy comparison of the simulation results and to ensure consistency
and coherence in evaluating each intervention. Additionally, according
to the results presented in Fig. 6, reducing the 𝐶𝐼𝑅 affects the daily
number of infections (i.e., average infection rate).

Table 2 summarizes the simulation results and the statistical 𝑡-
est on how changing the work environment settings – from open
o clustered workspace – affects the spread of COVID-19 in office
paces. The 𝑡-test results indicate developing clustered workspace with
verage cluster sizes of 19.1, 9.4, and 6.6 can significantly (statistical
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Fig. 4. Categorization of non-restrictive interventions for limiting the spread of COVID-19.

Fig. 5. The impact of reducing average cluster size on the 𝐶𝐼𝑅 for (a) Base: 103.0, (b) 32.5, (c) 19.1, (d) 9.4, and (e) 6.6 people.
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Fig. 6. (a) The impact of reducing average cluster size on the average daily infection rate, (b) Changes in the average cluster size.
Fig. 7. The impact of decompression area allocation on the average daily infection rate.
Table 2
Summary of simulation results for reducing the average cluster size.
𝐴𝐶𝑆 Avg. Avg. infection t-value Statistical
(People) 𝐶𝐼𝑅 rate significance

Base: 103.0 0.112 50.1% 0.000
32.5 0.112 50.6% 0.127 No
19.1 0.088 38.6% −2.878 Yes
9.4 0.085 38.0% −3.172 Yes
6.6 0.071 33.3% −4.616 Yes

significance) reduce the COVID-19 infection rate. However, developing
work clusters with an average size of 𝐴𝐶𝑆 = 32.5 does not reduce the
infection rate significantly.

Adjusting the office layout to reduce the 𝐴𝐶𝑆 from 103 to 6.6 can
reduce the infection rate by 17.3% (from 50.6% in the base scenario to
33.3%). Hence, simulation results suggest that developing work clusters
of reasonably small sizes can enhance the resilience of office spaces
against the spread of COVID-19. This is achieved by containing the viral
pathogens within given clusters of the infected individuals and reducing
the inter-cluster spread of the disease. The implementation cost of this
intervention is rated as 𝑙𝑜𝑤 since it can be accomplished by dividing
10
the open workspace into several clusters using temporary or perma-
nent wall panels without reducing the total capacity of the workspace
(i.e., employees count) or affecting employees’ work behavior.

5.2. Decompression space allocation

According to the simulation results presented in Fig. 2(b), de-
compression areas have the highest 𝐶𝐼𝑅 in the office space. This
intervention aims to reduce infection risks in these areas by increasing
the total space dedicated to this purpose and avoiding high population
density in decompression areas. In the base scenario, 0.62m2 of decom-
pression area is allocated to every 10 office employee. This allocation
is gradually increased to 0.94 m2, 1.672, and 2.6 m2 per 10 employees,
and the average infection rate and the 𝐶𝐼𝑅 for the entire office space is
predicted for each scenario through 100 simulation runs, and the results
are presented in Figs. 7 and 8, respectively.

According to the presented results, increasing the decompression
areas can significantly limit the spread of COVID-19 in office spaces.
The simulation results reveal that increasing the decompression area
by 2 m2 per 10 employees can reduce the average infection rate by
26.8%. Considering the small initial allocation to the decompression
areas in the base scenario (0.62 m2∕10 ppl.), such an increase in this

allocation is feasible within the given layout without compromising
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Fig. 8. The impact of decompression area allocation on 𝐶𝐼𝑅 for (a) Base: 0.62, (b) 0.94, (c) 1.67, and (d) 2.6 (m2 per 10 people).
Table 3
Summary of simulation results for increasing the size of decompression area.

Decompression area size 𝐶𝐼𝑅 Avg. infection t-value Statistical
(m2 per 10 people) rate significance

Base: 0.62 0.112 50.1% 0.000
0.94 0.082 30.9% −5.122 Yes
1.67 0.073 26.2% −6.567 Yes
2.60 0.066 23.3% −7.550 Yes

on the workspace or re-purposing other functional spaces (e.g., meet-
ing rooms). In other words, the allocation of decompression areas
is increased by re-purposing the common areas. In other scenarios,
increasing the decompression area allocation to 0.94 and 1.67m2∕10ppl.
reduced the average infection rate by 19.2% and 23.9%, respectively.
Additionally, the 𝑡-test results also confirm the statistical significance
of the impact of this intervention in all three scenarios, as presented in
Table 3.

Increasing the decompression area allocation is rated as a 𝑚𝑒𝑑𝑖𝑢𝑚-
cost intervention since re-purposing common areas into decompression
areas can consume the space allocated to other activities, hence, mak-
ing some unforeseen changes to the work behavior of the employees.
Additionally, increasing the decompression area allocation is associ-
ated with some financial costs to accommodate layout changes and
purchasing furniture and equipment.

5.3. Meetings interventions

As shown in Fig. 2(b), meeting rooms are identified as one of the
high-risk zones in the base scenario. To reduce the infection risk in
meeting rooms, four meeting interventions (MI) are introduced and
evaluated in this case study in separate scenarios. The average infection
rate and the 𝐶𝐼𝑅 mapping are calculated for each scenario through 100
simulation runs.

In the first intervention (MI1), the larger conference rooms (see
Fig. 2[a]) to the meetings; hence, the meeting room size is increased
11
from 27 to 36m2. Notably, other meeting parameters (i.e., duration and
the number of participants) are similar to the base scenario (60 min
and 16 people, respectively). Fig. 9(b) confirms the implementation of
this intervention, where the 𝐶𝐼𝑅 is increased in conference rooms and
decreased to zero in meeting rooms. In the second intervention (MI2),
the number of meeting participants is changed from 16 people to 8
people to reduce the density of people in the small meeting rooms, in
comparison to the base scenario (Fig. 9[c]). Finally, in the third and
fourth interventions (MI3, MI4), meeting duration is decreased from
60min to 30, and 45min, respectively. In these two interventions, other
meeting parameters (meeting room size and the number of participants)
are similar to the base scenario. As illustrated in Fig. 9(d), the 𝐶𝐼𝑅
of the meeting rooms is slightly reduced in MI3, as compared to the
base scenario. Additionally, reducing the meeting duration to 30 min
(i.e., MI4) lowers the 𝐶𝐼𝑅 further, as shown in Fig. 9(d). The average
daily infection rate for the four interventions is calculated through 100
simulations and presented in Fig. 10.

Simulation results reveal that MI4 has the lowest infection rate
among the four meeting interventions, although the impact of all four
interventions is very slight (9.8% for MI4). Regarding MI1, Consider-
ing that conference rooms already exist in the original office layout
(i.e., base scenario), this intervention is rated as a 𝑙𝑜𝑤-cost intervention.
However, since implementing MI2, MI3, and MI4 requires changes to
the employees’ behavior, these interventions are rated as 𝑚𝑒𝑑𝑖𝑢𝑚-cost
interventions. Furthermore, according to the 𝑡-test results, the impact
of all meeting interventions on the average infection rate is statistically
significant except for MI3 (Table 4).

5.4. Workspace allocation and working shifts

Previous research confirms that COVID-19 transmission signifi-
cantly increases as the population density in indoor environments
increases. Hence, we expect to reduce the average infection rate and
𝐶𝐼𝑅 by increasing the workspace allocation (i.e., reducing the popula-
tion density) in this case study. This hypothesis is tested by (1) reducing
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Fig. 9. The impact of meeting interventions on the 𝐶𝐼𝑅 for (a) Base, (b) MI1, (c) MI2, (d) MI3, (e) MI4.
Fig. 10. The impact of meeting interventions on the average daily infection rate.
Table 4
Summary of simulation results for meeting interventions.

Scenario Room size Meeting size Duration Avg. Avg. infection t-value Statistical
(m2) (people) (min) 𝐶𝐼𝑅 rate significance

Base 27 16 60 0.112 50.1% 0.000
MI1 36 16 60 0.092 41.3% −2.248 Yes
MI2 27 8 60 0.093 42.5% −1.995 Yes
MI3 27 16 45 0.099 43.9% −1.565 No
MI4 27 16 30 0.091 40.1% −2.668 Yes
12
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Fig. 11. The effectiveness of increasing the working shifts and increasing the total office space per capita (reducing the population density) on average infection rate.
Fig. 12. The impact of workspace allocation on the 𝐶𝐼𝑅 for (a) Base: 59.9, (b) 47.9, (c) 39.9, (d) 19.9 (m2 per 10 people), and (e) two work shifts.
the number of employees and (2) changing the work schedule of the
call center into two working shifts.

First, the number of employees is reduced to 80%, 67%, and 50% of
the base scenario; hence, the average workspace allocation is increased
from 59 (m2 per 10 people) in the base scenario to 77, 91, and 161 (m2

per 10 people), respectively. Second, two shifts are introduced, each
running for 7 h, where each shift runs with half of the employees. The
simulation results for the average infection rate are presented in Fig. 11.
Also, Fig. 12 shows the impact of these two interventions on reducing
the 𝐶𝐼𝑅 in the case study.

The simulation results confirm that increasing the workspace al-
location (i.e., decreasing the population density) significantly reduces
13
the average infection rate, as compared to the base scenario. Fur-
thermore, adding one shift to the work schedule resembles doubling
the workspace allocation. Additionally, the 𝑡-test results presented in
(Table 5) confirm the statistical significance of these interventions’
impact on the average infection rate.

Despite the significant impact of these interventions, increasing the
workspace allocation and adding one work shift requires significant
changes in the spatial structure of the office (i.e., increasing the size) or
the work behavior of the employees. Hence, this intervention is rated
as a ℎ𝑖𝑔ℎ-cost intervention and will be suggested only if implement-
ing 𝑙𝑜𝑤- and 𝑚𝑒𝑑𝑖𝑢𝑚-cost interventions are insufficient for improving
occupational safety in the office space.
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Table 5
Summary of simulation results for changing the workspace allocation and work schedule.

Office space Number of Number of Avg. Avg. infection t-value Statistical
(m2 per 10 people) employees shifts 𝐶𝐼𝑅 rate significance

59.90 216 1 0.112 50.1% 0.000
47.92 173 1 0.056 23.6% −7.540 Yes
39.93 144 1 0.032 12.5% −11.983 Yes
19.97 108 1 0.021 8.0% −14.102 Yes
19.97 216 2 0.019 7.7% −14.040 Yes
Fig. 13. The impact of permissible time window allocation on 𝐶𝐼𝑅 for (a) Base (0 min), (b) 30, (c) 60, (d) 120, and (e) 180.
5.5. Allocating permissible time window to start working

The simulation results in the base scenario (Fig. 2[b]) confirm that
the elevators’ hall is a high-risk zone in the office layout. To address
this issue, the population density in the elevators’ hall is reduced by
allocating a 30 permissible time window to start the workday and
gradually increasing it to 60, 120, and 180 min. By implementing this
intervention, we are allowing (not mandating) the employees to start
their work anytime during the allocated time window and leave the
office after completing their 7 h of daily work. For example, for a 30 min
permissible time window, the employees are allowed to start working
anytime from 9:30 AM to 10:00 AM. In all scenarios, employees arrive
at the office within 15min, before starting their workday; and leave the
office within 15 min, after finishing their workday.

Allocating a permissible time window and prolonging it reduce the
population density in the elevators’ hall since not all employees start
and finish their work day simultaneously. Hence, this intervention is
supposed to reduce the 𝐶𝐼𝑅 in the elevators’ hall. The simulation
results presented in Fig. 13 confirm this hypothesis since the 𝐶𝐼𝑅
gradually decreases as the permissible time window prolongs.

The average infection rate is predicted for all four scenarios of
allocating a permissible time window, and results indicate that allo-
cating a permissible time window of 120 (min) results in the lowest
14
Table 6
Summary of simulation results for time-window interventions.

Arrival time Avg. Avg. infection t-value Stat.
window (min) 𝐶𝐼𝑅 rate significance

Base 0.112 50.1% 0.000
30 0.105 46.2% −0.964 No
60 0.111 50.0% −0.039 No
120 0.099 44.1% −1.538 No
180 0.103 46.9% −0.830 No

average infection rate (see Fig. 14). However, this intervention, in all
four scenarios, has a very slight impact on the average infection rate,
and the 𝑡-test results – presented in Table 6 – show that this impact is
not statistically significant.

Additionally, allocating a permissible time window requires some
adjustments to the work behavior of the employees; hence, it is rated
as a 𝑚𝑒𝑑𝑖𝑢𝑚-cost intervention, and its cost increases as the time window
prolongs. Considering its 𝑚𝑒𝑑𝑖𝑢𝑚 implementation cost and (statistically)
non-significant impact on the average infection rate, this intervention
is not used for improving occupational safety in office spaces.
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Fig. 14. The effectiveness of increasing the arrival and leaving time window.
. Improving occupation safety in office spaces

In this section, the most effective non-restrictive interventions intro-
uced and analyzed in Section 5 are implemented to improve occupa-
ional safety in the case study. In this process, all interventions rated as
𝑜𝑤- or 𝑚𝑒𝑑𝑖𝑢𝑚-cost are sequentially applied – each sequence is called
n evolution – to the case study. The interventions are selected based
n their impact zone to avoid redundancy (i.e., not implementing two
nterventions that target the same high-risk zone), and applied in three
volutions:

• Evolution 1: Increasing the decompression area allocation to
2.60 m2 per 10 people (see Section 5.2).

• Evolution 2: Changing the workspace setting from open to the
clustered workspace with the average cluster size of 𝐴𝐶𝑆 = 6.6
people (see Section 5.1).

• Evolution 3: Decreasing meetings’ duration to 30 min (see Sec-
tion 5.3).

For these three evolutions, the average daily infection rate and the
apping of 𝐶𝐼𝑅s over the office layout are presented in Figs. 15 and
6, respectively. In Fig. 15, the gradual decrease of infection rates
y adding one intervention at a time confirms the effectiveness of
ach and every evolution. Additionally, Fig. 16 shows how combining
nterventions with different impact zones can reduce the 𝐶𝐼𝑅s in the
ntire office layout.

To further investigate the combined effect of these interventions, the
tatistical significance of each evolution’s alleviating impact is tested
y 𝑡-test. To this end, the average infection rate in each evolution (𝑖) is
ompared to the previous evolution (𝑖− 1), to determine whether each
volution is significantly effective or not. Accordingly, the 𝑡-test results
resented in Table 7 compare the average infection rate of Evolution
to the base scenario, Evolution 2 to Evolution 1, and Evolution 3 to

volution 2. The results confirm that the impacts of all three evolutions
re statistically significant in improving occupational safety in office
paces.

Finally, we compare the collective impact of these three interven-
ions (i.e., Evolution 3) to the ℎ𝑖𝑔ℎ-cost intervention of adding working
hifts and the face mask and vaccination mandates. These two globally
ccepted interventions, face mask, and vaccination mandates are re-
trictive; hence, they faced public resistance in different countries (Dror
t al., 2020; Kearney et al., 2022; Martin & Vanderslott, 2022). Ac-
ordingly, this comparison shows whether our proposed non-restrictive
nterventions can replace these restrictive ones in the future. The daily
15

nfection rate of COVID-19 in these four scenarios (i.e., Evolution 3,
Table 7
Summary of simulation results for combining different interventions.

Intervention Avg. Avg. infection t-value Statistical
𝐶𝐼𝑅 rate significance

Base 0.112 50.1% 0.000
Evolution 1 0.066 23.3% −7.550 Yes
Evolution 2 0.033 11.8% −4.706 Yes
Evolution 3 0.023 7.5% −2.865 Yes

adding working shift, face mask mandate, vaccination mandate) is
simulated by CoDiSS over 100 simulation runs and the results are
presented in Fig. 17.

To accurately simulate the impact of these two interventions, the
rate of public compliance with the mandates (in the United Kingdom)
and their effectiveness of each are extracted from the literature. An
extensive interview survey in Ireland Kearney et al. (2022) with 11,171
participants reveals that 67.3% of the respondents used face masks
in shops and supermarkets, and only 17.8% consistently used face
masks at work. Additionally, the effectiveness of surgical masks, the
most common type used during the COVID-19 pandemic, is [42 −
88%] (Sankhyan et al., 2021). According to the Office for National
Statistics (Office of National Statistics, 2023), 70.2% of eligible British
citizens are fully vaccinated against COVID-19, and the aggregated ef-
fectiveness of vaccines provided to the public is [50−60%] in preventing
severe cases of COVID-19 (Agency, 2023). Furthermore, CoDiSS ac-
counts for the decrease in the viral load of the disease in vaccinated vs.
non-vaccinated individuals, where the viral load of COVID-19 decreases
by 4.8 folds in vaccinated individuals (Puhach et al., 2022).

According to the simulation results, the combined impact of three
non-restrictive interventions in Evolution 3 is higher than the effective-
ness of using face masks in the office, while the former requires no
compliance from the employees and does not alter their work behavior.
Additionally, Evolution 3 can improve occupational safety to the same
extent as adding one working shift to the case study, though with
significantly lower implementation costs. Adding one working shift
requires significant changes to the working behavior of employees
and can significantly increase the operational costs and energy con-
sumption of the office. However, the three non-restrictive interventions
combined (i.e., Evolution 3) can be implemented in similar offices
with some simple changes to the layout and slight behavioral changes
(i.e., meetings).

The vaccination mandate has a lower infection rate than Evolution
3, which is due to the immunity produced by the vaccine and the lower

viral load of COVID-19 in vaccinated individuals. However, vaccination
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Fig. 15. Gradual improvement of the infection rate by combining interventions.
Fig. 16. Gradual improvement of 𝐶𝐼𝑅 in the office layout by combining interventions (a) Base, (b) Evolution 1, (c) Evolution 2, and (d) Evolution 3.
is a pharmaceutical intervention with high implementation costs on
the macro (i.e., research and development) and micro (i.e., people
compliance) scales. Additionally, the immunity that COVID-19 vaccines
develop in susceptible individuals diminishes over time if booster doses
are not received; hence, these simulation results are only valid until the
compliance rate and effectiveness of the vaccines are within the given
range in Fig. 4. Considerably, the compliance rate used in this paper
corresponds to the vaccination program administered in the United
Kingdom, which is a pioneer in COVID-19 vaccine development and has
one of the highest rates of vaccination (Pettersson, Manley, Hernandez,
McPhillips, & Arias, 2023). Furthermore, developing vaccines for new
variants of the disease is time and cost-consuming; thus, vaccination
alone cannot guarantee occupational safety in the post-pandemic era.
Accordingly, our proposed strategy for improving occupational safety
(i.e., Evolution 3) is still a viable option despite its lower effectiveness
16
than vaccination. Given its low implementation costs, our proposed
strategy can also be applied in combination with vaccination to control
the spread of COVID-19 when new variants of the disease emerge.

7. Conclusions and future works

The COVID-19 pandemic has raised concerns regarding the re-
silience of businesses against the spread of infectious diseases. Several
existing interventions for COVID-19 (e.g., face masks, vaccination,
social distancing) are associated with high socio-economic costs; hence,
for healthy recovery of the economy, non-restrictive interventions are
needed to improve occupational safety in office spaces by limiting the
spread of COVID-19. This study addressed this need by suggesting,
evaluating, and combining several non-restrictive interventions to limit
the spread of COVID-19 in office spaces. The effectiveness of these
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Fig. 17. Comparing the collective impact of interventions in Evolution 3 with two shift work schedules, masking, and vaccination.
interventions is tested by CoDiSS, an agent-based modeling framework
developed by the authors for simulating the spread of contagious
diseases in buildings.

In order to validate the effectiveness of CoDiSS, we have successfully
conducted two approaches. Firstly, a case study was carried out to as-
sess the model’s ability to generate results that closely align with actual
data. The results obtained from this study demonstrated a high degree
of similarity between the model’s outputs and the real-world data,
indicating the accuracy of CoDiSS. Furthermore, the results obtained
from different interventions applied to the framework in Section 5
confirmed that CoDiSS delivers reliable and consistent outcomes across
a range of interventions, further highlighting its effectiveness.

The study introduces eight non-restrictive interventions. The re-
sults of our analysis show that decompression areas, open workspaces,
the elevators hall, and meeting rooms are the hotspots of COVID-19
transmission (i.e., areas with the highest cell infection risk [𝐶𝐼𝑅]).
Additionally, our analysis shows that the top three non-restrictive
interventions for limiting the spread of COVID-19 are: (I) increasing
the number of working shifts; (II) increasing decompression space
allocation; and (III) changing the workspace settings from open to a
clustered workspace with an average cluster size (ACS) of ≤6.60 people.

Next, we utilized our evaluation results and combined several inter-
ventions with 𝑙𝑜𝑤 or 𝑚𝑒𝑑𝑖𝑢𝑚 implementation costs to improve occupa-
tional safety in office spaces. This is achieved by selecting interventions
one at a time based on three criteria (I) the statistical significance of its
impact on limiting COVID-19 spread, (II) its implementation cost, and
(III) the exclusiveness of its impact zone in the office layout. Hence,
the following interventions are selected and sequentially applied to the
case study: (I) increasing decompression space allocation, (II) changing
workspace settings from an open workspace to a clustered workspace
with 𝐴𝐶𝑆 = 6.60; and (III) decreasing meetings duration to 30 min. The
simulation results reveal that these interventions, combined, can reduce
the infection rate of COVID-19 in the call center (case study) from
50% to 7.5%. The simulation results also indicate that the collective
impact of these interventions is higher than using face masks and is
equally effective as adding one working shift. Additionally, given their
𝑙𝑜𝑤 and 𝑚𝑑𝑖𝑢𝑚 implementation costs, these interventions can be easily
applied to different office spaces to improve occupational safety in
work environments.

The simulation results demonstrate that safe and effective vaccines
are more efficient than the non-restrictive interventions introduced.
However, it is important to consider that the development, distri-
bution, and administering of vaccine programs are associated with
17

high social and economic costs, and developing new vaccines can be
time-consuming, particularly in the case of emerging variants. The
vaccination mandate may face resistance from some segments of the
population, and, as a consequence, a low compliance rate can limit
the effectiveness of vaccines. Additionally, the immunity provided by
COVID-19 vaccines diminishes over time, and some individuals may de-
lay receiving their subsequent doses (boosters); consequently, lowered
immunity rate may reduce the effectiveness of vaccine intervention.
Therefore, a multi-pronged approach that includes a combination of
effective interventions, as proposed in this paper, along with vaccines,
can be the most viable strategy for improving occupational safety in
the post-pandemic era.

The contributions of this paper are threefold. First, a highly granular
micro-level framework – CoDiSS – is used for the prognostic analysis
of COVID-19 spread in office spaces. This framework addresses several
parameters that affect the spread of COVID-19, including virus quanta
and its impact on infection probabilities, as well as the changes in the
viral load over the entire infection period. Second, through diagnostic
analysis, this paper identifies the high-risk zones of COVID-19 trans-
mission in office spaces by mapping the risk of infection on the entire
layout of the case study. Third, several non-restrictive interventions
are introduced to address COVID-19 transmission in the identified
high-risk zones, and the effectiveness of each intervention is tested
through simulation. Consequently, the most effective non-restrictive
interventions for limiting the spread of COVID-19 are combined, and
a strategy is suggested to enhance occupational safety in office spaces
in the post-pandemic era. In the presented case study, our suggested
strategy reduces the infection rate of COVID-19 from 50.1% to 7.5%.

Although this paper provides a methodological contribution to mod-
eling the spread of COVID-19 and promising results in limiting its
spread in office spaces, it has some theoretical and applied limita-
tions. The theoretical limitation of this research relates to CoDiSS
(i.e., the ABM framework) since it only addresses the aerosol transmis-
sion of contagious diseases and ignores all other transmission routes.
Expanding the scope of CoDiSS to encompass the transmission of infec-
tious diseases through droplets and fomite can augment its utility for
managing a broad range of infectious diseases. Although in the case
of COVID-19, the impact of such improvements will be minor since
aerosol is the dominant transmission route of COVID-19.

Additionally, while the results of the study provide valuable insights
into potential strategies for improving occupational safety, it is impor-
tant to note that the interventions described in this paper were tested
in a single but typical office space. Therefore, their generalizability to
other settings may be limited. Further research is necessary to deter-

mine how these interventions can be adapted and modified to suit the
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unique characteristics of different workplaces, such as modeling the in-
fection spread across multiple floors or inside the co-work and hot-desk
workspaces, where individuals are not assigned to a permanent loca-
tion. Additionally, the impact of several random variables on the spread
of COVID-19 may be tested in future research, including the location
of the initially infected individual and the occupants’ tasks schedule.
Implementing the proposed methodology in individual buildings is
recommended to identify the most effective interventions for a specific
workplace and its unique building layout. This approach enables a
more tailored strategy to improve occupational safety that considers the
unique spatial and temporal characteristics of each workplace. Future
studies could also explore the cost of different interventions in greater
detail. By considering both the financial cost and feasibility of adher-
ence, researchers can provide a more comprehensive understanding
of implementing the suggested interventions. By taking this approach,
interventions can be targeted and optimized to provide the greatest
impact, ultimately reducing the spread of infections and improving the
overall safety of each workplace.
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